

EJTP 9, No. 26 (2012) 183–190

Involute Curves Of Timelike Biharmonic Reeb Curves $(LCS)_3$ - Manifolds

Talat Körpinar^{*}, Essin Turhan[†] and Vedat Asil [‡]

Firat University, Department of Mathematics 23119, Elazığ, Turkey

Received 27 May 2011, Accepted 5 December 2011, Published 17 January 2012

Abstract: In this paper, we study involute timelike biharmonic Reeb curves in $(LCS)_3$ -manifold. We characterize curvatures of timelike biharmonic Reeb curves in $(LCS)_3$ -manifold. We obtain parametric equation involute curves of the timelike biharmonic Reeb curves in $(LCS)_3$ -manifold.

© Electronic Journal of Theoretical Physics. All rights reserved.

Keywords: (LCS)₃-manifold; Bienergy; Reeb Vector Field Mathematics Subject Classifications: 53C41, 53A10 PACS (2010): 02.40.Ky; 02.20.-a; 02.10.-v

1. Introduction

A smooth map $\phi : N \longrightarrow M$ is said to be biharmonic if it is a critical point of the bienergy functional:

$$E_2(\phi) = \int_N \frac{1}{2} \left| \mathcal{T}(\phi) \right|^2 dv_h,$$

where $\mathcal{T}(\phi) := \mathrm{tr} \nabla^{\phi} d\phi$ is the tension field of ϕ

The Euler-Lagrange equation of the bienergy is given by $\mathcal{T}_2(\phi) = 0$. Here the section $\mathcal{T}_2(\phi)$ is defined by

$$\mathcal{T}_2(\phi) = -\Delta_\phi \mathcal{T}(\phi) + \operatorname{tr} R\left(\mathcal{T}(\phi), d\phi\right) d\phi, \tag{1}$$

and called the bitension field of ϕ . Non-harmonic biharmonic maps are called proper biharmonic maps.

In this paper, we study timelike biharmonic Reeb curves in $(LCS)_3$ -manifold. We characterize curvatures of timelike biharmonic Reeb curves in $(LCS)_3$ -manifold. Several

^{*} Email:talatkorpinar@gmail.com

[†] Email:essin.turhan@gmail.com

[‡] Email:vasil@firat.edu.tr

interesting results on a $(LCS)_3$ -manifold are obtained in terms of timelike biharmonic Reeb curves. Finally, we obtain parametric equation of the timelike biharmonic Reeb curves in $(LCS)_3$ -manifold.

2. $(LCS)_3$ -Manifolds

Definition 2.1. In a Lorentzian manifold (M, g) a vector field P defined by

$$g(X,P) = A(X)$$

for any $X \in \chi(M)$ is said to be a concircular vector field if

$$(\nabla_X A)(Y) = \alpha \{ g(X, Y) + \omega(X) A(Y) \},\$$

where α is a non-zero scalar and ω is a closed 1-form [15].

Let M^3 be a Lorentzian manifold admitting a unit timelike concircular vector field ξ , called the characteristic vector field of the manifold. Then we have

$$g(\xi,\xi) = -1. \tag{2}$$

Since ξ is a unit concircular vector field, it follows that there exists a non-zero 1-form η such that for

$$g(X,\xi) = \eta(X),\tag{3}$$

the equation of the following form holds

$$(\nabla_X \eta)(Y) = \alpha \{ g(X, Y) + \eta(X)\eta(Y) \} \ (\alpha \neq 0)$$

for all vector fields X, Y, where ∇ denotes the operator of covariant differentiation with respect to the Lorentzian metric g and α is a non-zero scalar function satisfies

$$\nabla_X \alpha = (X\alpha) = d\alpha(X) = \rho \eta(X),$$

 ρ being a certain scalar function given by $\rho = -(\xi \alpha)$. If we put

$$\phi X = \frac{1}{\alpha} \nabla_X \xi,$$

then from (2.3) and (2.5) we have

$$\phi X = X + \eta(X)\xi,$$

from which it follows that ϕ is a symmetric (1) tensor and called the structure tensor of the manifold. Thus the Lorentzian manifold M^3 together with the unit timelike concircular vector field ξ , its associated 1-form η and (1) tensor field ϕ is said to be a Lorentzian

 η

concircular structure manifold (briefly $(LCS)_3$ - manifold) [16]. In a $(LCS)_3$ -manifold, the following relations hold [15]:

$$\eta (\xi) = -1,$$

$$\phi \xi = 0,$$

$$(\phi X) = 0,$$
(4)

$$g(\phi X, \phi Y) = g(X, Y) + \eta(X) \eta(Y), \qquad (5)$$

$$\eta\left(R\left(X,Y\right)Z\right) = \left(\alpha^{2} - \rho\right)\left[g\left(Y,Z\right)\eta\left(X\right) - g\left(X,Z\right)\eta\left(Y\right)\right],\tag{6}$$

$$S(X,\xi) = (n-1)\left(\alpha^2 - \rho\right)\eta(X), \qquad (7)$$

$$R(X,Y)\xi = \left(\alpha^2 - \rho\right)\left[\eta\left(Y\right)X - \eta\left(X\right)Y\right],\tag{8}$$

$$(\nabla_X \phi)(Y) = \alpha[g(X, Y)\xi + 2\eta(X)\eta(Y)\xi + \eta(Y)X], \qquad (9)$$

for all vector fields X, Y, Z, where R, S denote respectively the curvature tensor and the Ricci tensor of the manifold.

3. Biharmonic Reeb Curves in the (LCS)₃-Manifold

Let γ be a timelike curve on the $(LCS)_3$ - manifold parametrized by arc length. Let $\{\mathbf{T}, \mathbf{N}, \mathbf{B}\}$ be the Frenet frame fields tangent to the 3-dimensional Kenmotsu manifold along γ defined as follows:

T is the unit vector field γ' tangent to γ , **N** is the unit vector field in the direction of $\nabla_{\mathbf{T}}\mathbf{T}$ (normal to γ), and **B** is chosen so that {**T**, **N**, **B**} is a positively oriented orthonormal basis. Then, we have the following Frenet formulas:

$$\nabla_{\mathbf{T}} \mathbf{T} = \kappa \mathbf{N},$$

$$\nabla_{\mathbf{T}} \mathbf{N} = \kappa \mathbf{T} + \tau \mathbf{B},$$

$$\nabla_{\mathbf{T}} \mathbf{B} = -\tau \mathbf{N},$$
(10)

where κ is the curvature of γ and τ its torsion and

$$g(\mathbf{T}, \mathbf{T}) = -1, \ g(\mathbf{N}, \mathbf{N}) = 1, \ g(\mathbf{B}, \mathbf{B}) = 1,$$

$$g(\mathbf{T}, \mathbf{N}) = g(\mathbf{T}, \mathbf{B}) = g(\mathbf{N}, \mathbf{B}) = 0.$$
(11)

Theorem 3.1. [13] Let (M, ϕ, ξ, η, g) be an 3-dimensional $(LCS)_3$ - manifold and unit vector field X orthogonal to the Reeb vector field ξ . Then,

$$R(\xi, X)\xi = (\alpha^2 - \rho)X, \qquad (12)$$

$$R(X,\xi)X = -(\alpha^2 - \rho)\xi.$$
(13)

Theorem 3.2. [13] γ is a timelike biharmonic Reeb curve which are either tangent or normal to the Reeb vector field in $(LCS)_3$ - manifold then

$$\kappa = constant \neq 0,$$

$$\kappa^{2} - \tau^{2} = \alpha^{2} - \rho,$$

$$\tau = constant.$$
(14)

Proof. Using (12) and Frenet formulas (10), we have (16).

Corollary 3.3. [13] If γ is a timelike biharmonic Reeb curve which orthogonal to the Reeb vector field ξ in $(LCS)_3$ - manifold, then γ is a helix.

We consider the three-dimensional $(LCS)_3$ -manifold

$$\mathbb{M} = \left\{ (x, y, z) \in \mathbb{R}^3 : x \neq \pm \sqrt{2}z^2, \ x \neq 0, \ z \neq 0 \right\},\$$

where (x, y, z) are the standard coordinates in \mathbb{R}^3 . Let $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ be linearly independent global frame on \mathbb{M} given by [17]

$$\mathbf{e}_1 = z \frac{\partial}{\partial x}, \quad \mathbf{e}_2 = z x \frac{\partial}{\partial y}, \quad \mathbf{e}_3 = \frac{\partial}{\partial z}.$$
 (15)

Let g be the Riemannian metric defined by

$$g(\mathbf{e}_{1}, \mathbf{e}_{1}) = g(\mathbf{e}_{2}, \mathbf{e}_{2}) = 1, \ g(\mathbf{e}_{3}, \mathbf{e}_{3}) = -1,$$

$$g(\mathbf{e}_{1}, \mathbf{e}_{2}) = g(\mathbf{e}_{2}, \mathbf{e}_{3}) = g(\mathbf{e}_{1}, \mathbf{e}_{3}) = 0.$$

Let η be the 1-form defined by

$$\eta(U) = g(U, \mathbf{e}_3)$$
 for any $U \in \chi(\mathbb{M})$.

Let ϕ be the (1) tensor field defined by

$$\phi(\mathbf{e}_1) = \mathbf{e}_1, \ \phi(\mathbf{e}_2) = \mathbf{e}_2, \ \phi(\mathbf{e}_3) = 0.$$

Then using the linearity of ϕ and g we have

$$\eta(\mathbf{e}_3) = -1,$$

$$\phi^2(U) = U - \eta(U)\mathbf{e}_3,$$

$$g(\phi U, \phi W) = g(U, W) - \eta(U)\eta(W),$$

for any $U, W \in \chi(\mathbb{M})$.

Let ∇ be the Levi-Civita connection with respect to g. Then, we have

$$[\mathbf{e}_1, \mathbf{e}_2] = \frac{z}{x}\mathbf{e}_2, \ [\mathbf{e}_1, \mathbf{e}_3] = -\frac{1}{z}\mathbf{e}_1, \ [\mathbf{e}_2, \mathbf{e}_3] = -\frac{1}{z}\mathbf{e}_2.$$

Taking $\mathbf{e}_3 = \xi$ and using the Koszul's formula, we obtain

$$\nabla_{\mathbf{e}_{1}}\mathbf{e}_{1} = -\frac{1}{z}\mathbf{e}_{3}, \qquad \nabla_{\mathbf{e}_{1}}\mathbf{e}_{2} = 0, \qquad \nabla_{\mathbf{e}_{1}}\mathbf{e}_{3} = -\frac{1}{z}\mathbf{e}_{1},$$

$$\nabla_{\mathbf{e}_{2}}\mathbf{e}_{1} = -\frac{z}{x}\mathbf{e}_{2}, \qquad \nabla_{\mathbf{e}_{2}}\mathbf{e}_{2} = \frac{z}{x}\mathbf{e}_{1} - \frac{1}{z}\mathbf{e}_{3}, \qquad \nabla_{\mathbf{e}_{2}}\mathbf{e}_{3} = -\frac{1}{z}\mathbf{e}_{2},$$

$$\nabla_{\mathbf{e}_{3}}\mathbf{e}_{1} = 0, \qquad \nabla_{\mathbf{e}_{3}}\mathbf{e}_{2} = 0, \qquad \nabla_{\mathbf{e}_{3}}\mathbf{e}_{3} = 0.$$
(16)

Moreover we put

$$R_{ijk} = R(\mathbf{e}_i, \mathbf{e}_j)\mathbf{e}_k,$$

where the indices i, j, k take the values 1, 2 and 3.

$$R_{122} = -[2(\frac{z}{x})^2 - \frac{1}{z^2}]\mathbf{e}_{1,1}, \quad R_{133} = -\frac{2}{z^2}\mathbf{e}_{1,1}, \quad R_{233} = -\frac{2}{z^2}\mathbf{e}_{2.1}$$

Theorem 3.4. [13] Let $\gamma : I \longrightarrow \mathbb{M}$ be a unit speed timelike biharmonic Reeb curve which orthogonal to the Reeb vector field ξ in $(LCS)_3$ - manifold \mathbb{M} . Then, the parametric equations of γ are

$$\begin{aligned} x\left(s\right) &= \frac{\sinh\varphi}{\wp^2} \sqrt{\sinh^2\varphi - 1} \cos\left(\wp s + \sigma\right) \\ &+ \frac{1}{\wp} \left(\sinh\varphi s + c_1\right) \sqrt{\sinh^2\varphi - 1} \sin\left(\wp s + \sigma\right) + c_2, \\ y\left(s\right) &= \frac{1}{12\wp^4} \left(\sinh^2\varphi - 1\right) \left(2\wp^3 s (3c_1^2 + 3\sinh\varphi c_1 s + \sinh^2\varphi s^2) \right) \\ &- 6\wp \sinh\varphi \left(\sinh\varphi s + c_1\right) \cos\left[2\left(\wp s + \sigma\right)\right] \\ &- 3(\wp^2 c_1^2 + 2\wp^2 \sinh\varphi c_1 s + \sinh^2\varphi (-1 + \wp^2 s^2)) \sin\left[2\left(\wp s + \sigma\right)\right]\right) \\ &+ \frac{c_2 \sinh\varphi}{\wp^2} \sqrt{\sinh^2\varphi - 1} \sin\left(\wp s + \sigma\right) \\ &- \frac{c_2}{\wp} \left(\sinh\varphi s + c_1\right) \sqrt{\sinh^2\varphi - 1} \cos\left(\wp s + \sigma\right) + c_3, \end{aligned}$$
(17)

where
$$\sigma$$
, c_1 , c_2 , c_3 are constants of integration.

Using Mathematica in above theorem, we have

4. Involute Curves of Biharmonic Reeb Curves in the(LCS)₃-Manifold

Definition 4.1. Let unit speed timelike curve $\gamma : I \longrightarrow \mathbb{M}$ and the curve $\Theta : I \longrightarrow \mathbb{M}$ be given. For $\forall s \in I$, then the curve Θ is called the involute of the curve γ , if the tangent

at the point $\gamma(s)$ to the curve γ passes through the tangent at the point $\Theta(s)$ to the curve Θ and

$$g\left(\mathbf{T}^{*}\left(s\right),\mathbf{T}\left(s\right)\right) = 0.$$
(18)

Let the Frenet-Serret frames of the curves γ and ζ be {**T**, **N**, **B**} and {**T**^{*}, **N**^{*}, **B**^{*}}, respectively.

Theorem 4.2. Let $\gamma : I \longrightarrow \mathbb{M}$ be a unit speed timelike biharmonic Reeb curve which are either tangent or normal to the Reeb vector field in $(LCS)_3$ - manifold \mathbb{M}, Θ its involute curve. Then, the parametric equations of Θ are

$$\begin{aligned} x\left(s\right) &= \frac{\sinh\varphi}{\varphi^2} \sqrt{\sinh^2\varphi - 1} \cos\left(\varphi s + \sigma\right) \\ &+ \frac{1}{\varphi} \left(\sinh\varphi s + c_1\right) \sqrt{\sinh^2\varphi - 1} \sin\left(\varphi s + \sigma\right) \\ &+ \left(C - s\right) \left(\sinh\varphi s + c_1\right) \sqrt{\sinh^2\varphi - 1} \cos\left(\varphi s + \sigma\right) + c_2, \end{aligned}$$
(19)
$$\begin{aligned} &= \frac{1}{12\varphi^4} \left(\sinh^2\varphi - 1\right) \left(2\varphi^3 s (3c_1^2 + 3\sinh\varphi c_1 s + \sinh^2\varphi s^2) \\ &- 6\varphi \sinh\varphi \left(\sinh\varphi s + c_1\right) \cos[2\left(\varphi s + \sigma\right)] \end{aligned}$$
(19)
$$\begin{aligned} &- 3(\varphi^2 c_1^2 + 2\varphi^2 \sinh\varphi c_1 s + \sinh^2\varphi (-1 + \varphi^2 s^2)) \sin[2\left(\varphi s + \sigma\right)]) \\ &+ \frac{c_2 \sinh\varphi}{\varphi^2} \sqrt{\sinh^2\varphi - 1} \sin\left(\varphi s + \sigma\right) \\ &- \frac{c_2}{\varphi} \left(\sinh\varphi s + c_1\right) \sqrt{\sinh^2\varphi - 1} \cos\left(\varphi s + \sigma\right) \\ &+ \left(C - s\right) \left(\sinh\varphi s + c_1\right) \left(\frac{\sinh\varphi}{\varphi^2} \sqrt{\sinh^2\varphi - 1} \cos\left(\varphi s + \sigma\right) \\ &+ \frac{1}{\varphi} (\sinh\varphi s + c_1) \sqrt{\sinh^2\varphi - 1} \sin\left(\varphi s + \sigma\right) \\ &+ \frac{1}{\varphi} (\sinh\varphi s + c_1) \sqrt{\sinh^2\varphi - 1} \sin\left(\varphi s + \sigma\right) \\ &+ \frac{1}{\varphi} (\sinh\varphi s + c_1) \sqrt{\sinh^2\varphi - 1} \sin\left(\varphi s + \sigma\right) \\ &+ \frac{1}{\varphi} (\sinh\varphi s + c_1) \sqrt{\sinh^2\varphi - 1} \sin\left(\varphi s + \sigma\right) \\ &+ \frac{1}{\varphi} (\sinh\varphi s + c_1) \sqrt{\sinh^2\varphi - 1} \sin\left(\varphi s + \sigma\right) \\ &+ \frac{1}{\varphi} (\sinh\varphi s + c_1) \sqrt{\sinh^2\varphi - 1} \sin\left(\varphi s + \sigma\right) \\ &+ \frac{1}{\varphi} (\sinh\varphi s + c_1) \sqrt{\sinh^2\varphi - 1} \sin\left(\varphi s + \sigma\right) \\ &+ \frac{1}{\varphi} (\sinh\varphi s + c_1) \sqrt{\sinh^2\varphi - 1} \sin\left(\varphi s + \sigma\right) \end{aligned}$$

 $z\left(s\right) = C\sinh\varphi + c_1,$

where σ , c_1 , c_2 , c_3 are constants of integration.

Proof. We assume that $\gamma : I \longrightarrow Heis^3$ be a unit speed timelike biharmonic curve and Θ its involute curve on Heis³. We find that the parametric equations of Θ .

The involute curve of timelike biharmonic curve may be given as

$$\Theta(s) = \gamma(s) + u(s)\mathbf{T}(s).$$
(20)

From (4.3), then we have

$$\Theta'(s) = (1 + u'(s)) \mathbf{T}(s) + u(s)\kappa(s) \mathbf{N}(s).$$
(21)

Since the curve Θ is involute of the curve γ , $g(\mathbf{T}^{*}(s), \mathbf{T}(s)) = 0$. Then, we get

$$1 + u'(s) = 0 \text{ or } u(s) = C - s, \tag{22}$$

where C is constant of integration.

Substituting (22) into (20), we get

$$\Theta(s) = \gamma(s) + (C - s) \mathbf{T}(s).$$
(23)

On the other hand, (19) and (23), imply

$$\mathbf{T} = \sqrt{\sinh^2 \varphi - 1} \cos\left(\wp s + \sigma\right) \mathbf{e}_1 + \sqrt{\sinh^2 \varphi - 1} \sin\left(\wp s + \sigma\right) \mathbf{e}_2 + \sinh \varphi \mathbf{e}_3.$$
(24)

Therefore, from (23) and (24) we have

$$\mathbf{T} = \left(\left(\sinh \varphi s + c_1 \right) \sqrt{\sinh^2 \varphi - 1} \cos \left(\varphi s + \sigma \right), \\ \left(\sinh \varphi s + c_1 \right) \left(\frac{\sinh \varphi}{\varphi^2} \sqrt{\sinh^2 \varphi - 1} \cos \left(\varphi s + \sigma \right) \right) \\ + \frac{1}{\varphi} \left(\sinh \varphi s + c_1 \right) \sqrt{\sinh^2 \varphi - 1} \sin \left(\varphi s + \sigma \right) \\ + c_2 \left(\sqrt{\sinh^2 \varphi - 1} \sin \left(\varphi s + \sigma \right), \sinh \varphi \right).$$
(25)

If we substitute (17) and (25) into (23), we have (19). This concludes the proof of Theorem.

We show that γ and Θ in terms of Mathematica as follows:

Acknowledgement

The authors would like to thank Dr. Jose Luis Lopez-Bonilla for his kindness and helpful comments.

References

- [1] K. Arslan, R. Ezentas, C. Murathan, T. Sasahara, *Biharmonic submanifolds 3*dimensional (κ,μ) -manifolds, Internat. J. Math. Math. Sci. 22 (2005), 3575-3586.
- [2] D. E. Blair: Contact Manifolds in Riemannian Geometry, Lecture Notes in Mathematics, Springer-Verlag 509, Berlin-New York, 1976.
- [3] R. Caddeo, S. Montaldo and C. Oniciuc: Biharmonic submanifolds of \mathbb{S}^n , Israel J. Math., to appear.
- [4] R. Caddeo, S. Montaldo and P. Piu: *Biharmonic curves on a surface*, Rend. Mat., to appear.
- B. Y. Chen: Some open problems and conjectures on submanifolds of finite type, Soochow J. Math. 17 (1991), 169–188.
- [6] S. Degla, L. Todjihounde: *Biharmonic Reeb curves in Sasakian manifolds*, arXiv:1008.1903.
- [7] J. Eells and L. Lemaire: A report on harmonic maps, Bull. London Math. Soc. 10 (1978), 1–68.
- [8] J. Eells and J. H. Sampson: Harmonic mappings of Riemannian manifolds, Amer. J. Math. 86 (1964), 109–160.
- [9] T. Hasanis and T. Vlachos: Hypersurfaces in E⁴ with harmonic mean curvature vector field, Math. Nachr. 172 (1995), 145–169.
- [10] G. Y.Jiang: 2-harmonic isometric immersions between Riemannian manifolds, Chinese Ann. Math. Ser. A 7(2) (1986), 130–144.
- [11] G. Y. Jiang: 2-harmonic maps and their first and second variational formulas, Chinese Ann. Math. Ser. A 7(4) (1986), 389–402.
- [12] K. Kenmotsu: A class of almost contact Riemannian manifolds, Tohoku Math. J., 24(1972), 93-103.
- [13] T. Körpınar, E. Turhan: Construction of timelike biharmonic reeb curves (LCS)₃manifolds, (submitted).
- [14] B. O'Neill: Semi-Riemannian Geometry, Academic Press, New York (1983).
- [15] A. A. Shaikh: Some results on $(LCS)_n$ manifolds, J. Korean Math. Soc. 46 (3) (2009), 449-461
- [16] A. A. Shaikh: On Lorentzian almost paracontact manifolds with a structure of the concircular type, Kyungpook Math. J. 43 (2) (2003), 305-314.
- [17] A. A. Shaikh, T. Basu, S. Eyasmin: On existence of ϕ -recurrent $(LCS)_n$ manifolds, Extracta Mathematicae 23 (1) (2008), 71-83.