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Abstract: In this paper, we study involute timelike biharmonic Reeb curves in (LCS )3-

manifold. We characterize curvatures of timelike biharmonic Reeb curves in (LCS )3-manifold.

We obtain parametric equation involute curves of the timelike biharmonic Reeb curves in

(LCS )3-manifold.
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1. Introduction

A smooth map φ : N −→ M is said to be biharmonic if it is a critical point of the

bienergy functional:

E2 (φ) =

∫
N

1

2
|T (φ)|2 dvh,

where T (φ) := tr∇φdφ is the tension field of φ

The Euler–Lagrange equation of the bienergy is given by T2(φ) = 0. Here the section

T2(φ) is defined by

T2(φ) = −ΔφT (φ) + trR (T (φ), dφ) dφ, (1)

and called the bitension field of φ. Non-harmonic biharmonic maps are called proper

biharmonic maps.

In this paper, we study timelike biharmonic Reeb curves in (LCS )3-manifold. We

characterize curvatures of timelike biharmonic Reeb curves in (LCS )3-manifold. Several
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interesting results on a (LCS )3-manifold are obtained in terms of timelike biharmonic

Reeb curves. Finally, we obtain parametric equation of the timelike biharmonic Reeb

curves in (LCS )3-manifold.

2. (LCS)3-Manifolds

Definition 2.1. In a Lorentzian manifold (M, g) a vector field P defined by

g(X,P ) = A(X)

for any X ∈ χ(M) is said to be a concircular vector field if

(∇XA)(Y ) = α{g(X, Y ) + ω(X)A(Y )},

where α is a non-zero scalar and ω is a closed 1-form [15].

Let M3 be a Lorentzian manifold admitting a unit timelike concircular vector field ξ,

called the characteristic vector field of the manifold. Then we have

g(ξ, ξ) = −1. (2)

Since ξ is a unit concircular vector field, it follows that there exists a non-zero 1-form

η such that for

g(X, ξ) = η(X), (3)

the equation of the following form holds

(∇Xη)(Y ) = α{g(X, Y ) + η(X)η(Y )} (α �= 0)

for all vector fields X, Y , where ∇ denotes the operator of covariant differentiation with

respect to the Lorentzian metric g and α is a non-zero scalar function satisfies

∇Xα = (Xα) = dα(X) = ρη(X),

ρ being a certain scalar function given by ρ = − (ξα). If we put

φX =
1

α
∇Xξ,

then from (2.3) and (2.5) we have

φX = X + η(X)ξ,

from which it follows that φ is a symmetric (1) tensor and called the structure tensor of the

manifold. Thus the Lorentzian manifold M3 together with the unit timelike concircular

vector field ξ, its associated 1-form η and (1) tensor field φ is said to be a Lorentzian
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concircular structure manifold (briefly (LCS )3- manifold) [16]. In a (LCS )3-manifold, the

following relations hold [15]:

η (ξ) = −1,
φξ = 0,

η (φX) = 0, (4)

g (φX, φY ) = g (X, Y ) + η (X) η (Y ) , (5)

η (R (X, Y )Z) =
(
α2 − ρ

)
[g (Y, Z) η (X)− g (X,Z) η (Y )], (6)

S (X, ξ) = (n− 1)
(
α2 − ρ

)
η (X) , (7)

R (X, Y ) ξ =
(
α2 − ρ

)
[η (Y )X − η (X)Y ], (8)

(∇Xφ) (Y ) = α[g (X, Y ) ξ + 2η (X) η (Y ) ξ + η (Y )X], (9)

for all vector fields X, Y, Z, where R, S denote respectively the curvature tensor and the

Ricci tensor of the manifold.

3. Biharmonic Reeb Curves in the(LCS)3-Manifold

Let γ be a timelike curve on the (LCS )3- manifold parametrized by arc length. Let

{T,N,B} be the Frenet frame fields tangent to the 3-dimensional Kenmotsu manifold

along γ defined as follows:

T is the unit vector field γ′ tangent to γ, N is the unit vector field in the direc-

tion of ∇TT (normal to γ), and B is chosen so that {T,N,B} is a positively oriented

orthonormal basis. Then, we have the following Frenet formulas:

∇TT = κN,

∇TN = κT+ τB, (10)

∇TB = −τN,

where κ is the curvature of γ and τ its torsion and

g (T,T) = −1, g (N,N) = 1, g (B,B) = 1, (11)

g (T,N) = g (T,B) = g (N,B) = 0.

Theorem 3.1. [13] Let (M,φ, ξ, η, g) be an 3-dimensional (LCS )3- manifold and

unit vector field X orthogonal to the Reeb vector field ξ. Then,

R (ξ,X) ξ =
(
α2 − ρ

)
X, (12)

R (X, ξ)X = −
(
α2 − ρ

)
ξ. (13)

Theorem 3.2. [13] γ is a timelike biharmonic Reeb curve which are either tangent

or normal to the Reeb vector field in (LCS )3- manifold then

κ = constant �= 0,

κ2 − τ 2 = α2 − ρ, (14)

τ = constant .
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Proof. Using (12) and Frenet formulas (10), we have (16).

Corollary 3.3. [13] If γ is a timelike biharmonic Reeb curve which orthogonal to the

Reeb vector field ξ in (LCS )3- manifold, then γ is a helix.

We consider the three-dimensional (LCS )3-manifold

M =
{
(x, y, z) ∈ R

3 : x �= ±
√
2z2, x �= 0, z �= 0

}
,

where (x, y, z) are the standard coordinates in R
3. Let {e1, e2, e3} be linearly independent

global frame on M given by [17]

e1 = z
∂

∂x
, e2 = zx

∂

∂y
, e3 =

∂

∂z
. (15)

Let g be the Riemannian metric defined by

g (e1, e1) = g (e2, e2) = 1, g (e3, e3) = −1,
g (e1, e2) = g (e2, e3) = g (e1, e3) = 0.

Let η be the 1-form defined by

η(U) = g(U, e3) for any U ∈ χ(M).

Let φ be the (1) tensor field defined by

φ(e1) = e1, φ(e2) = e2, φ(e3) = 0.

Then using the linearity of φ and g we have

η(e3) = −1,

φ2(U) = U − η(U)e3,

g (φU, φW ) = g (U,W )− η(U)η(W ),

for any U,W ∈ χ(M).

Let ∇ be the Levi-Civita connection with respect to g. Then, we have

[e1, e2] =
z

x
e2, [e1, e3] = −

1

z
e1, [e2, e3] = −

1

z
e2.

Taking e3 = ξ and using the Koszul’s formula, we obtain

∇e1e1 = −1

z
e3, ∇e1e2 = 0, ∇e1e3 = −

1

z
e1,

∇e2e1 = −z

x
e2, ∇e2e2 =

z

x
e1 −

1

z
e3, ∇e2e3 = −

1

z
e2, (16)

∇e3e1 = 0, ∇e3e2 = 0, ∇e3e3 = 0.

Moreover we put

Rijk = R(ei, ej)ek,
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where the indices i, j, k take the values 1, 2 and 3.

R122 = −[2(
z

x
)2 − 1

z2
]e1,, R133 = −

2

z2
e1,, R233 = −

2

z2
e2.

Theorem 3.4. [13] Let γ : I −→M be a unit speed timelike biharmonic Reeb curve

which orthogonal to the Reeb vector field ξ in (LCS )3- manifold M. Then, the parametric

equations of γ are

x (s) =
sinhϕ

℘2

√
sinh2 ϕ− 1 cos (℘s+ σ)

+
1

℘
(sinhϕs+ c1)

√
sinh2 ϕ− 1 sin (℘s+ σ) + c2,

y (s) =
1

12℘4

(
sinh2 ϕ− 1

)
(2℘3s(3c21 + 3 sinhϕc1s+ sinh2 ϕs2) (17)

−6℘ sinhϕ (sinhϕs+ c1) cos[2 (℘s+ σ)]

−3(℘2c21 + 2℘2 sinhϕc1s+ sinh2 ϕ(−1 + ℘2s2)) sin[2 (℘s+ σ)])

+
c2 sinhϕ

℘2

√
sinh2 ϕ− 1 sin (℘s+ σ)

−c2
℘
(sinhϕs+ c1)

√
sinh2 ϕ− 1 cos (℘s+ σ) + c3,

z (s) = sinhϕs+ c1,

where σ, c1, c2, c3 are constants of integration.

Using Mathematica in above theorem, we have

4. Involute Curves of Biharmonic Reeb Curves in the(LCS)3-

Manifold

Definition 4.1. Let unit speed timelike curve γ : I −→M and the curve Θ : I −→M be

given. For ∀s ∈ I, then the curve Θ is called the involute of the curve γ, if the tangent
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at the point γ(s) to the curve γ passes through the tangent at the point Θ(s) to the curve

Θ and

g (T∗ (s) ,T (s)) = 0. (18)

Let the Frenet-Serret frames of the curves γ and ζ be {T,N,B} and {T∗,N∗,B∗},
respectively.

Theorem 4.2. Let γ : I −→ M be a unit speed timelike biharmonic Reeb curve

which are either tangent or normal to the Reeb vector field in (LCS )3- manifold M, Θ

its involute curve.Then, the parametric equations of Θ are

x (s) =
sinhϕ

℘2

√
sinh2 ϕ− 1 cos (℘s+ σ)

+
1

℘
(sinhϕs+ c1)

√
sinh2 ϕ− 1 sin (℘s+ σ)

+ (C − s) (sinhϕs+ c1)

√
sinh2 ϕ− 1 cos (℘s+ σ) + c2,

y (s) =
1

12℘4

(
sinh2 ϕ− 1

)
(2℘3s(3c21 + 3 sinhϕc1s+ sinh2 ϕs2) (19)

−6℘ sinhϕ (sinhϕs+ c1) cos[2 (℘s+ σ)]

−3(℘2c21 + 2℘2 sinhϕc1s+ sinh2 ϕ(−1 + ℘2s2)) sin[2 (℘s+ σ)])

+
c2 sinhϕ

℘2

√
sinh2 ϕ− 1 sin (℘s+ σ)

−c2
℘
(sinhϕs+ c1)

√
sinh2 ϕ− 1 cos (℘s+ σ)

+ (C − s) (sinhϕs+ c1) (
sinhϕ

℘2

√
sinh2 ϕ− 1 cos (℘s+ σ)

+
1

℘
(sinhϕs+ c1)

√
sinh2 ϕ− 1 sin (℘s+ σ)

+c2)

√
sinh2 ϕ− 1 sin (℘s+ σ) + c3,

z (s) = C sinhϕ+ c1,

where σ, c1, c2, c3 are constants of integration.

Proof. We assume that γ : I −→ Heis3 be a unit speed timelike biharmonic curve

and Θ its involute curve on Heis3. We find that the parametric equations of Θ.

The involute curve of timelike biharmonic curve may be given as

Θ(s) = γ(s) + u(s)T (s) . (20)

From (4.3), then we have

Θ′(s) = (1 + u′(s))T (s) + u(s)κ (s)N (s) . (21)
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Since the curve Θ is involute of the curve γ, g (T∗ (s) ,T (s)) = 0. Then, we get

1 + u′(s) = 0 or u(s) = C − s, (22)

where C is constant of integration.

Substituting (22) into (20), we get

Θ(s) = γ(s) + (C − s)T (s) . (23)

On the other hand, (19) and (23), imply

T =

√
sinh2 ϕ− 1 cos (℘s+ σ) e1 +

√
sinh2 ϕ− 1 sin (℘s+ σ) e2 + sinhϕe3. (24)

Therefore, from (23) and (24) we have

T = ((sinhϕs+ c1)

√
sinh2 ϕ− 1 cos (℘s+ σ) ,

(sinhϕs+ c1) (
sinhϕ

℘2

√
sinh2 ϕ− 1 cos (℘s+ σ) (25)

+
1

℘
(sinhϕs+ c1)

√
sinh2 ϕ− 1 sin (℘s+ σ)

+c2)

√
sinh2 ϕ− 1 sin (℘s+ σ) , sinhϕ).

If we substitute (17) and (25) into (23), we have (19). This concludes the proof of

Theorem.

We show that γ and Θ in terms of Mathematica as follows:
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