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Abstract: In this paper, we study involute timelike biharmonic Reeb curves in (LCS)s-
manifold. We characterize curvatures of timelike biharmonic Reeb curves in (LCS)s-manifold.
We obtain parametric equation involute curves of the timelike biharmonic Reeb curves in
(LCS)z-manifold.
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1. Introduction

A smooth map ¢ : N — M is said to be biharmonic if it is a critical point of the
bienergy functional:

B2(0) = | 31T dun,

where T (¢) := trV?d¢ is the tension field of ¢
The Euler-Lagrange equation of the bienergy is given by 73(¢) = 0. Here the section
T2(¢) is defined by

T2(¢) = =AgT(¢) + trR(T (9), d) do, (1)

and called the bitension field of ¢. Non-harmonic biharmonic maps are called proper
biharmonic maps.

In this paper, we study timelike biharmonic Reeb curves in (LCS)s-manifold. We
characterize curvatures of timelike biharmonic Reeb curves in (LCS)s-manifold. Several
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interesting results on a (LCS)s-manifold are obtained in terms of timelike biharmonic
Reeb curves. Finally, we obtain parametric equation of the timelike biharmonic Reeb
curves in (LCS)s-manifold.

2. (LCS);-Manifolds
Definition 2.1. In a Lorentzian manifold (M, g) a vector field P defined by
9(X, P) = A(X)
for any X € x(M) is said to be a concircular vector field if
(VxA)(Y) = afg(X,Y) + w(X)AY)},

where « is a non-zero scalar and w is a closed 1-form [15].
Let M?3 be a Lorentzian manifold admitting a unit timelike concircular vector field &,
called the characteristic vector field of the manifold. Then we have

Since £ is a unit concircular vector field, it follows that there exists a non-zero 1-form
7 such that for

9(X, &) = n(X), (3)

the equation of the following form holds

(Vaxn)(Y) = a{g(X,Y) +0(X)n(Y)} (a7 0)

for all vector fields X,Y, where V denotes the operator of covariant differentiation with
respect to the Lorentzian metric g and « is a non-zero scalar function satisfies

Vya = (Xa) = da(X) = pn(X),
p being a certain scalar function given by p = — ({«). If we put
1
ng = _VX€7
a
then from (2.3) and (2.5) we have
X =X +n(X)¢,

from which it follows that ¢ is a symmetric (1) tensor and called the structure tensor of the
manifold. Thus the Lorentzian manifold M? together with the unit timelike concircular
vector field &, its associated 1-form 7 and (1) tensor field ¢ is said to be a Lorentzian
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concircular structure manifold (briefly (LCS)3- manifold) [16]. In a (LCS)s-manifold, the
following relations hold [15]:

n) = -1,
¢ =0,

n(¢X) =0, (4)
9(¢X,9Y) =g(X,Y)+n(X)n(Y), (5)
N(R(X,Y)Z) = (= p)lg(Y,Z)n(X) =g (X, Z)n(Y)], (6)
S(X,8) = (n—1) (a® = p)n(X), (7)
R(X,)Y)E=(a®=p)In(Y)X —n(X)Y], (8)
(Vxo) (Y) = alg(X,Y)E+2n(X)n(Y)E+n(Y) X], (9)

for all vector fields X, Y, Z, where R, S denote respectively the curvature tensor and the
Ricci tensor of the manifold.

3. Biharmonic Reeb Curves in the(LCS);-Manifold

Let v be a timelike curve on the (LCS)s- manifold parametrized by arc length. Let
{T,N,B} be the Frenet frame fields tangent to the 3-dimensional Kenmotsu manifold
along v defined as follows:

T is the unit vector field 7 tangent to v, N is the unit vector field in the direc-
tion of VT (normal to v), and B is chosen so that {T,N, B} is a positively oriented
orthonormal basis. Then, we have the following Frenet formulas:

VTT = HN,
VN = «T + 7B, (10)
VTB = —TN,

where x is the curvature of v and 7 its torsion and
g(T)N)=g¢(T,B)=¢g(N,B) =0.

Theorem 3.1. [13] Let (M, ¢,&,n,g9) be an 3-dimensional (LCS)s- manifold and
unit vector field X orthogonal to the Reeb vector field &. Then,

R(g,X)gz (OZQ—p) X, (12)
R(X,§) X = —(a” - p)¢. (13)

Theorem 3.2. [13] v is a timelike biharmonic Reeb curve which are either tangent
or normal to the Reeb vector field in (LCS)s- manifold then

Kk = constant # 0,
K2 — 12 =0a®—p, (14)

T = constant.
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Proof. Using (12) and Frenet formulas (10), we have (16).

Corollary 3.3. [13] If v is a timelike biharmonic Reeb curve which orthogonal to the
Reeb vector field & in (LCS)s3- manifold, then v is a heliz.

We consider the three-dimensional (LCS)s-manifold

M:{(x,y,z) eR®: 2 £ +V22% 40, 2%0},
where (x,y, ) are the standard coordinates in R?. Let {e1, e, €3} be linearly independent

global frame on M given by [17]
0 0 0

€ = 22—, €2 = Zl’@—y, €3 = —. (15)

ox 0z
Let g be the Riemannian metric defined by

g(e,er)

, €1 (62762) = 17 9(93763) = _17
g(elaeQ)

=9
= g(ez,e3) = g(er,e3) = 0.

Let n be the 1-form defined by
n(U) = g(U, es3) for any U € x(M).
Let ¢ be the (1) tensor field defined by
¢ler) = e1, ¢(e2) = e, (es) = 0.
Then using the linearity of ¢ and g we have
n(es) = —1,

¢*(U) =U — n(U)es,
g (U, oW) = g (U, W) —n(U)n(W),

for any U,W € x(M).
Let V be the Levi-Civita connection with respect to g. Then, we have

1 1
[617 62] = Ee27 [ely e3] = ——e€q, [62’ 63] = ——es.
X z >

Taking e3 = £ and using the Koszul’s formula, we obtain

1 1
v'3181 = ——es, leeQ = 07 Ve1e3 = ——€q
z z
z z 1 1
Ve,€1 = ——€3,  Ve,e2=—€; — —€3, Ve,e3=——6€ (16)
T T z z
Ve,€1 =0, Ves€2 =0, Ve,e3 = 0.

Moreover we put
Rijr = R(e;, e;)ey,
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where the indices 7, 7, k take the values 1,2 and 3.

“N\2 2
Rug = _[2(;) - ;]91,7 Ry33 = _;el,; Rasz = —;ez

Theorem 3.4. [13] Let v: 1 — M be a unit speed timelike biharmonic Reeb curve
which orthogonal to the Reeb vector field & in (LCS)s- manifold M. Then, the parametric
equations of v are

inh
x(s) = SmZSO\/sinthp — 1cos (ps+ o)
£
1
+— (sinh @s + ¢;) y/sinh? p — 1sin (ps + o) + ¢,
©

1
y(s) = 2,1 (sinh® ¢ — 1) (2p”s(3c] + 3sinh ey s + sinh® ps?) (17)

—6gp sinh ¢ (sinh ¢s + ¢;1) cos[2 (ps + 0)]
—3(p*c + 2p? sinh pc; s 4 sinh? p(—1 + p®s%)) sin[2 (ps + 0)])

inh
+W\/sinh2¢— Isin (ps + o)
©
_2 (sinh @s + ¢1) \/sinh® ¢ — 1cos (ps + o) + cs,
©

2 (s) = sinh s + ¢,

where g, ¢y, co, c3 are constants of integration.
Using Mathematica in above theorem, we have

4. Involute Curves of Biharmonic Reeb Curves in the(LCS)s;-
Manifold

Definition 4.1. Let unit speed timelike curve v : I — M and the curve © : I — M be
gwen. For Vs € I, then the curve © 1is called the involute of the curve vy, if the tangent
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at the point v(s) to the curve ~y passes through the tangent at the point ©(s) to the curve
O and
g(T"(s),T(s)) = 0. (18)

Let the Frenet-Serret frames of the curves 4 and ¢ be {T,N,B} and {T*, N*, B},
respectively.

Theorem 4.2. Let v : I — M be a unit speed timelike biharmonic Reeb curve
which are either tangent or normal to the Reeb vector field in (LCS)s- manifold M, ©
its tnvolute curve. Then, the parametric equations of © are

inh
z(s) = Sm;O\/sintho — 1cos(ps + o)
©
1
+— (sinh ¢s + ¢1) y/sinh® ¢ — 1sin (ps + o)
©
+(C = s) (sinh s + ¢1) y/sinh? ¢ — 1 cos (ps + o) + c2,

1
y(s) = 21 (sinh® ¢ — 1) (2p”s(3c] + 3sinh ;s + sinh® ps°) (19)

—6gp sinh ¢ (sinh ps + ¢1) cos[2 (ps + 0)]

—3(p?ct + 2p? sinh ey s + sinh® p(—1 + p*s?)) sin[2 (ps + 0)])

—{—%\/smm ¢ — Lsin (ps+ o)

—% (sinh @s + ¢1) y/sinh? ¢ — 1 cos (ps + o)

+(C — s) (sinh s + ¢1) (Sizlg('p\/sixlh2 @ —1cos(ps+ o)
—|—% (sinh s + ¢1) y/sinh? ¢ — 1sin (ps + o)

+¢)1/sinh? ¢ — 1sin (ps + o) + cs,

2 (s) = C'sinh ¢ + ¢4,

where o, ¢1, co, 3 are constants of integration.

Proof. We assume that v : I — Heis® be a unit speed timelike biharmonic curve
and O its involute curve on Heis®. We find that the parametric equations of ©.

The involute curve of timelike biharmonic curve may be given as

O(s) =(s) +u(s)T (s). (20)
From (4.3), then we have

O'(s) = (1 +u'(s)) T (s) + u(s)k (s) N (s). (21)
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Since the curve © is involute of the curve 7, g (T* (s), T (s)) = 0. Then, we get
14+ u'(s) =0oru(s)=C—s, (22)

where C' is constant of integration.
Substituting (22) into (20), we get

O(s) =7(s) + (C —s) T (s). (23)

On the other hand, (19) and (23), imply

T = \/sinh? p — 1 cos (ps + o) e; + 1/sinh? ¢ — 1sin (ps + o) e, + sinh pes. (24)

Therefore, from (23) and (24) we have

T = ((sinh s + ¢1) y/sinh® ¢ — 1 cos (ps + o),
(sinh s + ¢) (Sifgggp\/sinhQ @ — 1cos (ps+ o) (25)
+% (sinh s + ¢1) y/sinh? ¢ — 1sin (ps + o)
+cg)y/sinh? o — 1sin (ps + o) ,sinh ).

If we substitute (17) and (25) into (23), we have (19). This concludes the proof of
Theorem.
We show that v and © in terms of Mathematica as follows:

4
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