
Partition Statistics and q-Bell Numbers
(q = −1)

Carl G. Wagner
Department of Mathematics

University of Tennessee
Knoxville, TN 37996-1300, USA

Abstract

We study three types of q-Bell numbers that arise as generating
functions for some well known statistics on the family of partitions
of a finite set, evaluating these numbers when q = −1. Among the
numbers that arise in this way are (1) Fibonacci numbers and (2)
numbers occurring in the study of fermionic oscillators.

1 Introduction

The notational conventions of this paper are as follows: N = {0, 1, 2, . . . },
P = {1, 2, . . . }, [0] = 0, and [n] = {1, . . . , n} for n ∈ P. Empty sums take the
value 0 and empty products the value 1, with 00 := 1. The letter q denotes
an indeterminate, with 0q := 0, nq := 1 + q + · · · + qn−1 for n ∈ P, 0 !

q
:= 1,

and n !
q
:= 1q2q · · ·nq for n ∈ P. The binomial coefficient

(
n
k

)
is equal to zero

if k is a negative integer or if 0 6 n < k.
Let ∆ be a finite set of discrete structures, with I : ∆ → N. The gener-

ating function

G(I,∆; q) :=
∑
δ∈∆

qI(δ) =
∑

k

|{δ ∈ ∆ : I(δ) = k}| qk (1.1)

is an effective tool for studying the statistic I. Elementary examples include
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the binomial theorem,

(1 + q)n =
∑
S⊂[n]

q|S| =
n∑

k=0

(
n

k

)
qk, (1.2)

and
n !

q
=

∑
σ∈Sn

qi(σ), (1.3)

where Sn is the set of permutations of [n] and i(σ) is the number of inversions
in the permutation σ = i1i2 . . . in, i.e., the number of pairs (r, s) with 1 6
r < s 6 n and ir > is [7, Corollary 1.3.10].

Of course, G(I,∆; 1) = |∆|. On the other hand,

G(I,∆;−1) = |{δ ∈ ∆ : I(δ) is even}| − |{δ ∈ ∆ : I(δ) is odd}| . (1.4)

Hence if G(I,∆;−1) = 0, the set ∆ is “balanced” with respect to the parity
of I. In particular, setting q = −1 in (1.2) yields the familiar result that a
finite nonempty set has as many subsets of odd cardinality as it has subsets
of even cardinality. Setting q = −1 in (1.3) reveals that if n > 2, then among
the permutations of [n] there are as many with an odd number of inversions
as there are with an even number of inversions.

A word of explanation of our use of the term “statistic” may be in order.
One can always regard ∆ as being equipped with the uniform probability
distribution. Then I is a statistic, i.e., random variable, in the traditional
sense andG(I,∆; q)/G(I,∆; 1) is the so-called probability generating function
of I, which is useful in calculating various moments of I. In particular,

E(I) = G′(I,∆; 1)/G(I,∆; 1). (1.5)

In this note we consider three q-generalizations of Stirling numbers of the
second kind, denoted S∗q (n, k), Sq(n, k), and S̃q(n, k). These polynomials are
generating functions for three closely related statistics on the set of partitions
of [n] with k blocks. Most of the properties of these q-Stirling numbers, to be
established below in § 3, have appeared in the literature in various contexts,
Carlitz [1] having apparently been the first to construe these numbers as
generating functions for partition statistics. See also [4], [9], [3], and [8].
Our aim here is to offer a compact, unified treatment of these numbers.
Interestingly, each of the three types turns out to be suited to elucidating a
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particular subset of their more-or-less common properties. Our analysis is
greatly facilitated by a powerful formal algebraic result of Comtet [2].

We conclude in § 4 with new results on the evaluation of S∗q (n, k), Sq(n, k),

and S̃q(n, k) and their associated q-Bell numbers (gotten by summing q-
Stirling numbers over k for fixed n) when q = −1. Apart from the interpre-
tation of these results in terms of (1.4), the evaluation of S−1(n, k) and its
associated Bell numbers may be of additional interest, since these numbers
arise in the study of fermionic oscillators [6].

2 Preliminaries

This section reviews some material to be used later in the paper.
2.1. Comtet Numbers. The following theorem, due to Comtet [2] greatly

facilitates the analysis of many combinatorial arrays:

Theorem 2.1. Let D be an integral domain. If (un)n>0 is a sequence in D
and x is an indeterminate over D, then the following are equivalent charac-
terizations of an array (U(n, k))n,k>0:

U(n, k) =
∑

d0+d1+···+dk=n−k
di∈N

ud0
0 u

d1
1 · · ·udk

k , ∀ n, k ∈ N, (2.1)

∑
n>0

U(n, k)xn =
xk

(1− u0x)(1− u1x) · · · (1− ukx)
, ∀ k ∈ N, (2.2)

U(n, k) = U(n− 1, k − 1) + ukU(n− 1, k), ∀ n, k ∈ P, (2.3)

with U(n, 0) = un
0 and U(0, k) = δ0,k ∀ n, k ∈ N, and

xn =
n∑

k=0

U(n, k)pk(x), ∀ n ∈ N, (2.4)

where p0(x) := 1 and pk(x) := (x− u0) · · · (x− uk−1) for k ∈ P.

Proof. Straightforward algebraic exercise.

In what follows, we call the numbers U(n, k) the Comtet numbers asso-
ciated with the sequence (un)n>0.
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2.2 Partitions of a Set. A partition of a set S is a set of nonempty,
pairwise disjoint subsets (called blocks) of S, with union S. For all n, k ∈ N,
let S(n, k) := the number of partitions of [n] with k blocks. Then S(0, 0) = 1,
S(n, 0) = S(0, k) = 0, ∀ n, k ∈ P, and

S(n, k) = S(n− 1, k − 1) + kS(n− 1, k), ∀ n, k ∈ P, (2.5)

S(n − 1, k − 1) enumerating those partitions in which n is the sole element
of one of the blocks, and kS(n − 1, k) those in which the block containing
n contains at least one other element of [n]. From (2.5) it follows that the
numbers S(n, k), called Stirling numbers of the second kind, are the Comtet
numbers associated with the sequence (0, 1, 2, . . . ). Hence by Theorem 2.1

S(n, k) =
∑

d1+···+dk=n−k
di∈N

1d12d2 · · · kdk , ∀ n, k ∈ N, (2.6)

∑
n>0

S(n, k)xn =
xk

(1− x)(1− 2x) · · · (1− kx)
, ∀ k ∈ N, (2.7)

and

xn =
n∑

k=0

S(n, k)xk, ∀ n ∈ N, (2.8)

where x0 := 1 and xk := x(x− 1) · · · (x− k + 1) for k ∈ P.
The total number of partitions of [n] is given by the Bell number Bn,

where

Bn =
n∑

k=0

S(n, k). (2.9)

Clearly, B0 = 1, and

Bn+1 =
n∑

k=0

(
n

k

)
Bk, (2.10)

(
n
k

)
Bk enumerating those partitions of [n+ 1] for which the size of the block

containing the element n+ 1 is n− k + 1.
In the next section we consider three statistics on the set of partitions of

[n] with k blocks, and analyze their associated generating functions, each of
which furnishes a q-generalization of the Stirling number S(n, k).
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2.3 Restricted Sums of Binomial Coefficients. As we have already noted
in § 1, setting q = 1 and q = −1 in (1.2) yields the well known result∑

k even

(
n

k

)
=

∑
k odd

(
n

k

)
= 2n−1, ∀ n ∈ P. (2.11)

Here we recall, for readers not familiar with it, a method for evaluating sums
such as ∑

k≡0 (mod 3)

(
n

k

)
. (2.12)

Let ω be either of the two complex cube roots of 1, e.g., ω = (−1 + i
√

3)/2.
Then

(1 + x)n + (1 + ωx)n + (1 + ω2x)n =
n∑

k=0

(
n

k

)
xk

(
1 + ωk + ω2k

)
= 3

∑
k≡0 (mod 3)

(
n

k

)
xk, (2.13)

since k ≡ 0 (mod 3) ⇒ 1 + ωk + ω2k = 3 and k ≡ 1 or 2 (mod 3) ⇒
1 + ωk + ω2k = 1 + ω + ω2 = 0. Setting x = 1 in (2.13) yields∑

k≡0 (mod 3)

(
n

k

)
=

1

3

(
2n + (1 + ω)n + (1 + ω2)n

)
. (2.14)

3 Partition Statistics and q-Stirling Numbers

Let Π(n, k) denote the set of all partitions of [n] with k blocks. Given a
partition π ∈ Π(n, k), let (E1, . . . , Ek) be the unique ordered partition of
[n] comprising the same blocks as π, arranged in increasing order of their
smallest elements, and define statistics w∗, w, and w̃ by

w∗(π) :=
k∑

i=1

i|Ei|, (3.1)

w(π) :=
k∑

i=1

(i− 1)|Ei| = w∗(π)− n, (3.2)
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and

w̃(π) :=
k∑

i=1

(i− 1)(|Ei| − 1) = w∗(π)− n−
(
k

2

)
. (3.3)

If elements of [n] are regarded as labels on n unit masses, then w∗(π) is the
moment about x = 0 of the mass configuration in which the masses with
labels in Ei are placed at x = i. The statistics w(π) and w̃(π) admit of
similar interpretations.

We wish to study the generating functions

S∗q (n, k) :=
∑

π∈Π(n,k)

qw∗(π), (3.4)

Sq(n, k) :=
∑

π∈Π(n,k)

qw(π) = q−nS∗q (n, k), (3.5)

and

S̃q(n, k) :=
∑

π∈Π(n,k)

qw̃(π) = q−n−(k
2)S∗q (n, k). (3.6)

Each of these polynomials furnishes a q-generalization of S(n, k), reducing
to the latter when q = 1. As closely related as these q-Stirling numbers
appear to be, it might be thought that one could carry out an analysis of any
one of them, chosen arbitrarily, with properties of the others derived as easy
corollaries. Interestingly, it turns out that each is best suited to elucidating a
particular subset of their more-or-less common properties. We consider first
the matter of recursive formulas.

Theorem 3.1. The q-Stirling numbers S∗q (n, k) are generated by the recur-
rence relation

S∗q (n, k) = qkS∗q (n− 1, k − 1) + qkqS
∗
q (n− 1, k), ∀ n, k ∈ P, (3.7)

with S∗q (0, 0) = 1 and S∗q (n, 0) = S∗q (0, k) = 0, ∀ n, k ∈ P.

Proof. The boundary conditions are obvious. To establish the recurrence
(3.7), let

c(n, k, t) := |{π ∈ Π(n, k) : w∗(π) = t}| .
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Then,

c(n, k, t) = c(n− 1, k− 1, t− k) +
k∑

i=1

c(n− 1, k, t− i), ∀ n, k ∈ P. (3.8)

For if w∗(π) = t, with (E1, . . . , Ek) being the ordered partition associated
with π, then the number n ∈ [n] is either (i) in Ek alone (there are clearly
c(n − 1, k − 1, t − k) such π’s) or (ii) in some Ei, where 1 6 i 6 k, with at
least one element of [n−1] (there are clearly c(n−1, k, t− i) such π’s). From
(3.8) it follows that

S∗q (n, k) =
∑

t

c(n, k, t)qt

=
∑

r

c(n− 1, k − 1, r)qr+k +
k∑

i=1

qi
∑

r

c(n− 1, k, r)qr

= qkS∗q (n− 1, k − 1) + qkqS
∗
q (n− 1, k).

Recurrence relations for Sq(n, k) and S̃q(n, k) follow immediately from
(3.7), along with (3.5) and (3.6), respectively. We have

Sq(n, k) = qk−1Sq(n− 1, k − 1) + kqSq(n− 1, k), ∀ n, k ∈ P, (3.9)

and

S̃q(n, k) = S̃q(n− 1, k − 1) + kqS̃q(n− 1, k), ∀ n, k ∈ P. (3.10)

By (3.10), the numbers S̃q(n, k) are the Comtet numbers associated with the
sequence (nq)n>0. By Theorem 2.1 it follows immediately that

S̃q(n, k) =
∑

d1+···+dk=n−k
di∈N

(1q)
d1(2q)

d2 · · · (kq)
dk , ∀ n, k ∈ N, (3.11)

∑
n>0

S̃q(n, k)x
n =

xk

(1− 1qx)(1− 2qx) · · · (1− kqx)
, ∀ k ∈ N, (3.12)
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and

xn =
n∑

k=0

S̃q(n, k)φk(x), ∀ n ∈ N, (3.13)

where φ0(x) := 1 and φk(x) := x(x− 1q) · · · (x− (k − 1)q), ∀ k ∈ P.
Variants of (3.11)–(3.13) that hold for Sq(n, k) and S∗q (n, k) follow imme-

diately from the relations Sq(n, k) = q(
k
2)S̃q(n, k) and S∗q (n, k) = qnSq(n, k).

To cite a few examples, we have

∑
n>0

S∗(n, k)xn =
q(

k+1
2 )xk

(1− qx)(1− qx− q2x) · · · (1− qx− · · · − qkx)
,

∀ k ∈ N, (3.14)

and

xn =
n∑

k=0

Sq(n, k)ψk(x) =
n∑

k=0

S∗q (n, k)ψk

(
x

q

)
, (3.15)

where ψk(x) := q−(k
2)φk(x).

Using the method of linear functionals [5, pp. 89–90] one can derive from
(3.15) the recurrence [8, Theorem 5.4]

Sq(n+ 1, k) =
n∑

j=0

(
n

j

)
qjSq(j, k − 1), ∀ n ∈ N, k ∈ P, (3.16)

from which the variant recurrences

S∗q (n+ 1, k) = qn+1

n∑
j=0

(
n

j

)
S∗q (j, k − 1), ∀ n ∈ N, k ∈ P, (3.17)

and

S̃q(n+ 1, k) =
n∑

j=0

(
n

j

)
qj−k+1S̃q(j, k − 1), ∀ n ∈ N, k ∈ P (3.18)

follow immediately.
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Summing the q-Stirling numbers S∗q (n, k), Sq(n, k) and S̃q(n, k) over k

yields the respective q-Bell numbers B∗
q (n), Bq(n), and B̃q(n). From (3.16)

it follows that

Bq(n+ 1) =
n∑

j=0

(
n

j

)
qjBq(j), ∀ n ∈ N. (3.19)

Since B∗
q (n) = qnBq(n), the recurrence (3.19) yields

B∗
q (n+ 1) = qn+1

n∑
j=0

(
n

j

)
B∗

q (j), ∀ n ∈ N. (3.20)

Due to the factor q−k in (3.18), we do not get any recurrence for B̃q(n) anal-
ogous to (3.19) and (3.20), this being the single exception to the general
parallelism between properties of the three q-Stirling numbers under consid-
eration. The uniqueness of B̃q(n) is further manifested when q = −1, as we
shall see in the next section.

4 The Case q = −1

In this section we derive simple expressions for the foregoing q-Stirling and
q-Bell numbers when q = −1.

Theorem 4.1. The number S̃−1(n, k) is given by the formula

S̃−1(n, k) =

(
n−

⌊
k
2

⌋
− 1⌊

k−1
2

⌋ )
, 1 6 k 6 n. (4.1)

Proof. Note that

iq|q=−1 = ωi :=

{
1, if i is odd;

0, if i is even.
(4.2)

Hence by (3.11), if 1 6 m 6 bn/2c,

S̃−1(n, 2m) =
∑

d1+d3+···+d2m−1=n−2m
di∈N

1 =

(
n−m− 1

m− 1

)
, (4.3)
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since the number of sequences (t1, . . . , tm) of nonnegative integers summing
to s is

(
s+m−1
m−1

)
[7, p. 15]. Similarly, if 0 6 m 6 b(n− 1)/2c,

S̃−1(n, 2m+ 1) =

(
n−m− 1

m

)
. (4.4)

Formula (4.1) incorporates (4.3) and (4.4).

In tabulating the numbers S̃−1(n, k) it is of course more efficient to use
the recurrence

S̃−1(n, k) = S̃−1(n− 1, k − 1) + ωkS̃−1(n− 1, k), (4.5)

representing the case q = −1 of (3.10).
Let F0 = F1 = 1, with Fn = Fn−1 + Fn−2 if n > 2. As is well known,

Fn =

bn/2c∑
m=0

(
n−m

m

)
, ∀n ∈ N. (4.6)

Theorem 4.2. For all n ∈ N,

B̃−1(n) :=
n∑

k=0

S̃−1(n, k) = Fn. (4.7)

Proof. It is easy to check that (4.7) holds for n = 0, 1. If n > 2, then by
(4.3) and (4.4),

B̃−1(n) =

b(n−1)/2c∑
m=0

(
n−m− 1

m

)
+

bn/2c∑
m=1

(
n−m− 1

m− 1

)

=

b(n−1)/2c∑
m=0

(
(n− 1)−m

m

)
+

b(n−2)/2c∑
m=0

(
(n− 2)−m

m

)
= Fn−1 + Fn−2 = Fn.

From (4.1) and the fact that S∗q (n, k) = q(
k
2)+nS̃q(n, k), we have

S∗−1(n, k) = (−1)(
k
2)+n

(
n−

⌊
k
2

⌋
− 1⌊

k−1
2

⌋ )
, 1 6 k 6 n. (4.8)

On the other hand, the Bell numbers B∗
−1(n) are quite different from the

numbers B̃−1(n).
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Theorem 4.3. For all n ∈ N,

B∗
−1(n) :=

n∑
k=0

S∗−1(n, k) =


1, if n ≡ 0 (mod 3);

−1, if n ≡ 1 (mod 3);

0, if n ≡ 2 (mod 3).

(4.9)

Proof. Noting that B∗
−1(0) = 1, we prove (4.9) by course-of-values induction

on n. In what follows

br(n) :=
∑

k≡r (mod 3)

(
n

k

)
. (4.10)

From (3.20) with q = −1, we have

B∗
−1(n+ 1) = (−1)n+1

n∑
j=0

(
n

j

)
B∗
−1(j) = (−1)n+1b0(n) + (−1)nb1(n)

= (−1)n+1b0(n) + (−1)nb0(n− 1) + (−1)nb1(n− 1). (4.11)

Similarly, B∗
−1(n) = (−1)nb0(n− 1) + (−1)n−1b1(n− 1), and so

B∗
−1(n+ 1) = (−1)n+1b0(n) + 2(−1)nb0(n− 1)−B∗

−1(n)

1

3

[
ω2n−1 − ω2n−2 + ωn+1 − ωn−1

]
−B∗

−1(n), (4.12)

by (2.14), where ω is either of the two complex cube roots of 1. Taking
n+ 1 = 3m, 3m+ 1, and 3m+ 2, respectively, in (4.12) yields

B∗
−1(3m) = 1−B∗

−1(3m− 1) = 1, (4.13)

B∗
−1(3m+ 1) = 0−B∗

−1(3m) = −1, and (4.14)

B∗
−1(3m+ 2) = −1−B∗

−1(3m+ 1) = 0. (4.15)

It is easy to check that one can write (4.9) more compactly as

B∗
−1(n) =

1

1− ω
ωn − ω

1− ω
ω2n, (4.16)
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from which we get the nice exponential generating function

∞∑
n=0

B∗
−1(n)

xn

n!
=

1

1− ω
eωx − ω

1− ω
eω2x. (4.17)

From (4.1) and the fact that Sq(n, k) = q(
k
2)S̃q(n, k), we have

S−1(n, k) = (−1)(
k
2)

(
n−

⌊
k
2

⌋
− 1⌊

k−1
2

⌋ )
, 1 6 k 6 n. (4.18)

By (3.5),

B−1(n) :=
n∑

k=0

S−1(n, k) = (−1)nB∗
−1(n),

and so by (4.9)

B−1(n) =


(−1)n, if n ≡ 0 (mod 3);

(−1)n+1, if n ≡ 1 (mod 3);

0, if n ≡ 2 (mod 3),

(4.19)

and by (4.17)

∞∑
n=0

B−1(n)
xn

n!
=

1

1− ω
e−ωx − ω

1− ω
e−ω2x. (4.20)

Formulas (4.19) and (4.20) furnish answers to questions posed by Schork [6]
in a paper which showed how the numbers S−1(n, k) and B−1(n) arise in the
study of fermionic oscillators.

To conclude this section we remark that the list of partition statistics
(3.1)–(3.3) might have been rounded out to include the statistic

ŵ(π) :=
k∑

i=1

i(|Ei| − 1) = w̃(π) + n− k, (4.21)

with generating function

Ŝq(n, k) :=
∑

π∈Π(n,k)

qŵ(π) = q(n−k)S̃q(n, k). (4.22)
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Formula (4.22) and Theorem 4.1 yield an easy evaluation of Ŝ−1(n, k). As
for

B̂−1(n) :=
n∑

k=0

S̃−1(n, k), (4.23)

we have B̂−1(0) = B̂−1(1) = 1, B̂−1(2) = 0, and

B̂−1(n) = (−1)n−1Fn−3, ∀n > 3, (4.24)

the proof of which we leave to interested readers.

5 Bijective Proofs

We conclude by returning to the opening theme of this paper. If G(I,∆;−1)
= 0, then, as already noted, |∆0| = |∆1|, where ∆i = {δ ∈ ∆ : I(δ) ≡ i
(mod 2)}. In such a case it is enlightening, if sometimes difficult, to exhibit
a bijection from ∆0 to ∆1. A familiar example, related to (1.2), is the map

S 7→

{
S ∪ {1}, if 1 /∈ S;

S − {1}, if 1 ∈ S,

which is a bijection from the family of subsets of [n] with even cardinality to
those with odd cardinality.

If G(I,∆;−1) 6= 0, then a similar task arises. If, for example, G(I,∆;−1)
= c > 0, this equation can be rendered more salient by identifying a subset
∆∗ of ∆0 having cardinality c, along with a bijection from ∆0 − ∆∗ to ∆1.
The results in section 4 above present many interesting problems of this type,
perhaps the most intriguing of which is posed by the equation B̃−1(n) = Fn.
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R. Acad. Sci. Paris Série A 275 (1972), 747--750.

[3] P. Edelman, R. Simion, and D. White, Partition statistics on permuta-
tions, Discrete Math. 99 (1992), 62--68.

13



[4] S. Milne, A q-analogue of restricted growth functions, Dobinski’s equal-
ity, and Charlier polynomials, Trans. Amer. Math. Soc. 245 (1978),
89--118.

[5] G.-C. Rota, The number of partitions of a set, Amer. Math. Monthly 71
(1964), 498--504.

[6] M. Schork, On the combinatorics of normal ordering bosonic operators
and deformations of it, J. Phys. A: Math. Gen. 36 (2003), 4651--4665.

[7] R. Stanley, Enumerative Combinatorics, Vol. I, Wadsworth and
Brooks/Cole, 1986.

[8] C. Wagner, Generalized Stirling and Lah numbers, Discrete Math. 160
(1996), 199--218.

[9] M. Wachs and D. White, p, q-Stirling numbers and partition statistics,
J. Combin. Theory A 56 (1991), 27--46.

2000 Mathematics Subject Classification: 11B73, 11B39
Keywords: partition statistics, q-Stirling numbers, q-Bell numbers, Fibonacci
numbers

(Concerned with sequence A000045.)

14


