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ABSTRACT

Light field analysis recently received growing interest, since
its rich structure information benefits many computer vision
tasks. This paper presents a novel method to reconstruct con-
tinuous depth maps from light field data. Conventional ap-
proaches usually treat depth map reconstruction as an opti-
mization problem with discrete labels. On the contrary, our
proposed method can obtain continuous depth maps by solv-
ing a linear system, which preserves richer details compared
with conventional discrete approaches. Structure tensor is
employed to extract raw depth information and correspond-
ing confidence levels from the light field data. We introduce
a method to reduce the adverse effect of unreliable local esti-
mations, which helps to get rid of errors in specular areas and
edges where depth values are discontinuous. Experiments on
both synthetic and real light field data demonstrate the effec-
tiveness of the proposed method.

Index Terms— Depth map reconstruction, light field, lin-
ear system

1. INTRODUCTION

Light field (LF) is a function that describes the radiance at
each point in a 3D space in every direction. As the tech-
nique of capturing light fields develops, light field analysis
is of great interest in recently years. Since light field data
contains not only accumulated color intensity at each image
point, but also some information about ray directions, many
computer vision problems can be better solved by making use
of this structure information, such as virtual refocusing [1],
tracking through occlusions [2] and reconstructing occluded
surfaces [3]. In this paper, we focus on depth map reconstruc-
tion from the light field data.

Reconstructing depth map from stereo image pairs, also
known as stereo matching, is a traditional challenging com-
puter vision task, which has been studied for more than three
decades [4]. More recently, depth from moving camera [5]
and depth from integral images [6] are also investigated.
Studies on depth reconstruction from light fields have just
started, and most of them are focused on certain plenoptic

cameras [7]. More studies are needed on how the special
structure of light fields can benefit depth estimation.

Most traditional approaches treat depth map reconstruc-
tion as an optimization problem with discrete labels. Markov
Random Field (MRF) model [8] is widely used in this area,
which supports various definitions of energy functions. How-
ever, a drawback of these multi-labelling methods is that both
time complexity and memory cost increase rapidly with the
image resolution and the number of labels. To solve the
problem in a reasonable time, the number of discrete depth
labels is usually set as a small number (32 or 64). Conse-
quently the reconstructed depth maps usually have noticeable
“stairs”. Otherwise, long running time and large memory
costs are needed. Now thanks to the rich structure informa-
tion in light fields, continuous local estimations are available,
which makes it possible to seek for a continuous final result
instead of the optimal solution of a multi-labelling problem.

Our work has two main contributions. First, we introduce
a refinement step to local depth estimation, which helps to
reduce the effect of unreliable estimations. This is presented
in Section 3. Second, we propose a continuous method to
get a smooth depth map from local estimations by solving a
sparse linear system. We introduce this method in Section 4.
Experimental results are presented in Section 5.

2. RELATED WORK

2.1. EPIs and Structure Tensor

4D light field is first proposed in [9] and later widely used
in light field analysis. We adopt the two-plane parametriza-
tion [9] of 4D LF and denote a LF as L(x, y, s, t), as shown
in Figure 1. Under this parametrization, a 4D LF can be seen
as a 2D array of perspective views, where (s, t) can be seen as
the index of different views and (x, y) are spatial coordinates
within each view (see Figure 2(a)).

By fixing y and t, we can obtain a 2D (x, s) slice of a
LF, as shown in Figure 2(b). Similarly, 2D (y, t) slices can
be obtained if x and s are fixed. These 2D slices are called
epipolar plane images (EPIs). Any point in the 3D space can
be projected to a line on EPIs. And the slope of the line are
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Fig. 1. Two-plane parametrization of 4D light field.

(a) A visualization of 4D light field.

(b) Epipolar plane image.

(c) Local depth estimation on EPI.

(d) Confidence map on EPI.

Fig. 2. Local estimation on EPIs.

shown to be related to the depth of the corresponding point in
the 3D space [10].

Therefore, depth values can be obtained by estimating
the slope of lines in EPIs [11]. An structure tensor [12] is
employed, which produces an orientation estimation at each
point and the confidence level of each estimation. The depth
is derived as

d(x, s) = −f ∆s

∆x
= −f · cot θ(x, s), (1)

where θ is the estimated orientation by the structure tensor.
f is the distance between the two parallel planes in Figure 1.
By analyzing every 2D slice with different possible y, we can
obtain the local depth estimations and their confidence levels
of each view, as shown in Figure 3. Based on the local esti-
mation we try to construct a continuous depth map instead of
making use of multi-labelling methods.

(a) Local depth estimation (b) Confidence map

Fig. 3. An example of local depth estimation.

However, the local estimation still has several limitations.
It tends to give wrong estimations in areas where depth is dis-
continuous, but still assigns high confidence levels for these
estimations, which has an adverse effect on the future step.
Besides, it fails to produce reliable estimations on specular ar-
eas and texture-less areas. To fix these problems, Wanner and
Goldluecke [11] employ a variational labeling method [13]
to enforce visibility constraint on each EPI. However, since
this optimization is on each EPI, they need to optimize hun-
dreds of times for each LF, which usually takes several hours.
An alternative way to do visibility reasoning is to construct
occlusion maps, and iteratively optimize the depth maps and
occlusion maps [14]. Instead of explicit visibility reasoning,
Zhang et al. [5] incorporate visibility into data term of energy
function using statistical information from both color and ge-
ometry. In this paper, we propose a method to refine the con-
fidence map of the local estimation, so that wrong estimations
are always assigned with low confidence.

2.2. Depth Map Reconstruction

Most conventional approaches follow the MRF model to con-
struct depth map. An energy function is formulated, where the
label costs are encoded in a data term and the spatial smooth-
ness is enforced by a pairwise smooth term. Various meth-
ods are employed to minimize the global energy function [8],
such as graph cut, loopy belief propagation. Varational label-
ing methods [15, 13] are used in [11] to achieve global inte-
gration. However, all those methods treat the problem as a
multi-labelling problem, where depth values are quantized to
certain levels. Depth map reconstruction in these frameworks
is to assign the depth to a closest label. To achieve a smoother
result, larger number of levels should be set. However, this
will make the time and memory costs of solving the problem
increase rapidly.

Given that local depth estimation is available for LF data,
we discard the multi-labelling framework, but treat the prob-
lem as a continuous optimization problem. Depth values in
the proposed method are never quantized except when we
want to visualize the results as digital images. We rewrite
the energy function in MRF model into a matrix form, and
formulate a sparse linear system. A similar method is em-



ployed in [16] to propagate depth information from ground
control points. However, in their work this is only an inter-
mediate step. An multi-labelling method is later used to get
quantized final results. Very few attempts to construct contin-
uous depth maps based on linear systems have been done in
this field. However, similar methods have been well practised
in many other computer vision tasks, such as matting [17, 18]
and colorization [19].

3. CONFIDENCE MAP REFINEMENT

Local depth estimations and their confidence levels are ob-
tained by applying the structure tensor [12] on EPIs of
LFs [11]. However, in some cases the structure tensor gives
wrong estimations but assign high confidence levels for them,
especially in areas where the depth is discontinuous. As
shown in Figure 4(a)(b)(c), local estimation induces “fat-
tened” boundaries along stems of the plant, and wrong confi-
dence levels are assigned to them. In this step, we check the
color consistency between different views, and give a penalty
on the confidence values of wrong local estimations. As
the example shows in Figure 4(d), wrong estimations along
boundaries are assigned to low confidence values after this
step.

In each EPI, any point (x, s) can be warped to other views,
given the estimated depth d(x, s). Ideally, the color at the
original point and at the warped point should be identical, so
are the estimated depth values. We define a matching distance
to measure the difference between the original point and the
one warped onto view s′.

Φ(x, s, s′) = ||I(x, s)−I(x′, s′)||+c(x′, s′)|d(x, s)−d(x′, s′)|,
(2)

where I(x, s) and I(x′, s′) are three-dimensional vectors for
color intensity, and d(x, s) and d(x′, s′) are estimated depth
values. c(x′, s′) is the confidence level of d(x′, s′). If both
d(x, s) and d(x′, s′) are perfectly correct, and the surface is
Lambertion, the distance Φ(x, s, s′) should be zero. Large
distance indicates that the depth estimation at this point is not
reliable.

We warp point (x, s) to different available views, and
accumulate the distance. Then the accumulated distance is
mapped to a penalty coefficient p(x, s) for confidence level
c(x, s),

p(x, s) = 1− 1

1 + exp( 1
β (α− 1

||S||
∑
s′∈S Φ(x, s, s′)))

(3)

c′(x, s) = p(x, s)× c(x, s) (4)

where S is the set of all possible views. As the accumulated
distance goes larger, the penalty coefficient goes to zero, thus
the refined confidence level is also closed to zero. Otherwise
the estimation is considered reliable, and its confidence level
is almost unchanged. Parameters α and β control the shape

(a) (b) (c) (d)

Fig. 4. An example of confidence refinement. (a) a close-up
of the center view. (b) the local depth map, which has “fat-
tened” boundaries. (c) the raw confidence map from struc-
ture tensor. (d) the refined confidence map, in which wrong
estimation along boundaries are assigned to low confidence
values. See Figure 5(a) for the full image.

of the penalty function, which are empirically set as 20 and 1
respectively in the experiments.

Because of possible occlusions, it is better to only accu-
mulate matching distance on visible views rather than go over
all the views. Thus the temporal selection scheme in [20] is
employed. Besides, to avoid long running time, we sample
five views on each side of s.

Apparently, all the above analysis is also applicable to the
(y, t) slices, if x and s are fixed. We actually can get two
pairs of local depth maps and refined confidence maps, by
analysing (x,s) slices and (y,t) slices. They are merged to-
gether by adopting the depth value from the one with higher
confidence at each pixel.

4. OPTIMIZING DEPTH MAPS

4.1. Optimization by Solving a Linear System

As shown in Figure 3 and Figure 4, local depth maps are not
reliable and globally consistent. At this stage, we aim at get-
ting an optimized depth map from the local depth map and
corresponding confidence map.

We write the energy function in a matrix form,

J(d) = dTLd + λ(d− d̃)TC(d− d̃), (5)

where d and d̃ are N × 1 vectors, represent optimal depth
values and local depth values respectively. N is the number
of pixels in each view (i.e. N = P × Q, if the resolution of
the image is P × Q). We want to find the optimal d, which
minimizes the energy function J(d). In the first term, L is an
affinity matrix, which enforces the points with similar colors
to have similar depth values within a small neighbourhood.
The second term is a data term, which makes the optimized
result constrained by local depth estimations. C is a diagonal
matrix, whose elements are confidence levels of correspond-
ing pixels. Consequently, pixels with more reliable local es-
timations are more tightly constrained by the data term. λ
controls the weight of the data term.

To optimize d, we can take the derivative of J(d), and
try to find the optimal d that makes the derivative zero. As



a result, the cost function (5) can be minimized by solving a
sparse linear system.

∂J(d)

∂d
= 2dTL+ 2λ(d− d̃)TC = 0. (6)

(L+ λC)d = λCd̃. (7)

By defining the affinity matrix L properly, we can make
L + λC a symmetric positive definite matrix. Then this
sparse linear system can be solved with the conjugate gradient
method. Two formulations of affinity matrix are introduced,
which are explained in detail in Section 4.2.

4.2. Affinity Matrix

A straightforward formulation of the affinity matrix L is

L = (I −W )T (I −W ). (8)

Elements in W are defined as

Wij =

{
αij/

∑
k∈N(i) αik ifj ∈ N(i)

0 otherwise
(9)

αij = max(exp(
−∆Iij
γ

), ε). (10)

N(i) is the neighbourhood of pixel i, and αij is a pair-wise
weight based on color difference of neighbouring pixels. γ
and ε control the sharpness and the lower bound of the ex-
ponential function. With this formulation, the first term in
Equation (5) is identical with the typical smooth term in en-
ergy functions used in the area of stereo matching,

Esmooth(d) =
∑
i

(di −
∑
j∈N(i) αijdj∑
j∈N(i) αij

). (11)

Although the affinity matrix is a sparse matrix, computing
L and solving the linear system still take a long time with the
formulation (8). If a large window size is used, which makes
the matrix less sparse, even higher time and memory costs are
needed to solve the system.

To make the method more efficient, we also tried another
formulation, known as the matting Laplacian matrix [18]. A
faster algorithm [17] with large window sizes is available to
solve this system, if the matting Laplacian matrix is adopted.
The (i, j) element of this matrix is defined as∑
k|(i,j)∈ωk

(δij−
1

|ωk|
(1+(Ii−µk)T (Σk+

ε

|ωk|
U)−1(Ij−µk))),

(12)
where δij is the Kronecker delta, µk and Σk are the mean and
covariance matrix of the colors in a small local window ωk,
|ωk| is the number of pixels in it, and U is a 3 × 3 identity
matrix, ε is a regularizing parameter. More information can
be found in [18]. This matrix is originally proposed to mat-
ting problem, and later widely used in haze removal, intrinsic
images and colourization.

Fig. 5. The left image is the center view of a LF, and the right
one is the segmentation result. The area in the black square is
shown in Figure 4.

4.3. Segmentation

The matting Laplacian matrix (12) is based on an assumption
that in a small local window depth is a linear transformation of
color density. Apparently, the linear assumption in not always
valid, especially when there is significant depth or color dis-
continuity. Therefore, we segment images into several pieces.
For small pieces, we adopt the affinity matrix (8), which bet-
ter models the relationship between the depth and color in-
tensity. A very small window size (3 × 3) is used, so that
the matrix can be very sparse. The costs for solving the lin-
ear system are not too high when the segments are small and
the matrix is sparse. In large texture-less pieces, the matting
Laplacian matrix is adopted for the sake of efficiency. Actu-
ally in large texture-less areas depth and color intensity are
usually smooth, such as the light in Figure 5, which makes
the linear assumption suffice. The mean shift [21] is used
to segment images, which is robust and widely used in vari-
ous computer vision tasks. An example segmentation result
is shown in Figure 5.

5. EXPERIMENTAL RESULTS

The proposed method is tested with the HCI light field
archive [11] and Stanford light field archive [22]. Our method
manages to preserve rich details in the reconstructed depth
maps, as shown in Figure 6. It also works very well for real
light field data, as shown in Figure 7. The proposed method
is compared with latest work [11], which employs the func-
tional lifting method [15] to optimize local estimations. Their
results are from the published code of [15], and depth values
are quantized to 64 levels.

Quantitative results in Table 1, which is tested on the HCI
light field archive demonstrate that our method effectively re-
moves wrong estimations. Pixels whose relative estimation
error is more than 3.2% are considered as wrong estimations.
For the discrete functional lifting method, this threshold is
equivalent to that the depth value differs from the ground truth
by more than two levels. Results in the third line are produced



(a) (b)

(c) (d)

Fig. 6. A depth reconstruction result. The synthetic data is
from the HCI light field archive. There are 9×9 views, and the
image resolution is 768×768 each view. (a) is the center view
image. (b)-(d) are close-ups of results from local depth esti-
mation, the functional lifting [11] and the proposed method
respectively. We recommend to see the electronic version of
these images.

by applying our continuous method directly on local estima-
tions from the structure tensor. If the refinement step in Sec-
tion 3 is applied before the optimization step, slightly better
results can be achieved, which are presented in the fourth line
of Table 1.

The efficiency of the proposed method is comparative
with the functional lifting method, when the latter quantizes
the depth range to 64 levels. However, undesirable depth
jumps between different levels are noticeable in their results
as shown in the third column of Figure 6(c). If larger discrete
level is set, their method will be much slower than the pro-
posed one. Since our method is not multi-labelling based, its
complexity does not change with the depth range.

6. CONCLUSION

In this paper, we propose a novel method to reconstruct con-
tinuous depth maps from 4D light fields. A refinement of
local depth estimation is introduced by checking color con-
sistency between different views. Based on the local depth
estimations, we construct a sparse linear system, in which two
different affinity matrices are employed. Compared with tra-
ditional multi-labelling methods, our results preserve much
more details. In addition, to achieve similar level of smooth-
ness with our results, multi-labelling methods usually take
much longer time.

We made a novel attempt to reconstruct continuous depth

(a)
(d)

(b)
(e)

(c)
(f)

Fig. 7. Real data from Stanford light field archive. Each light
field data has 17×17 views. Image resolutions of the “bull-
dozer” data and “bunny” data are 615×490 and 1024×1024
respectively. Images in the first row is the center views of LFs.
The second and last rows are the reconstructed images by the
proposed method and functional lifting [11] respectively.

maps with rich details, which obviously benefits many other
computer vision tasks, such as 3D model reconstruction and
scene understanding. More accurate and efficient models to
obtain continuous depth maps are worth further investigating.
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