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Abstract

Matching concept descriptions against concept patterns was introduced as a new inference task in
Description Logics (DLs) almost 20 years ago, motivated by applications in the Classic system. For the
DL EL, it was shown in 2000 that the matching problem is NP-complete. It then took almost 10 years
before this NP-completeness result could be extended from matching to unification in EL. The next
big challenge was then to further extend these results from matching and unification without a TBox
to matching and unification w.r.t. a general TBox, i.e., a finite set of general concept inclusions. For
unification, we could show some partial results for general TBoxes that satisfy a certain restriction on
cyclic dependencies between concepts, but the general case is still open. For matching, we were able to
solve the general case: we can show that matching in EL w.r.t. general TBoxes is NP-complete. We
also determine some tractable variants of the matching problem.

1 Introduction
The DL EL, which offers the constructors conjunction (u), existential restriction (∃r.C), and the
top concept (>), has recently drawn considerable attention since, on the one hand, important
inference problems such as the subsumption problem are polynomial in EL, even in the presence
of general concept inclusions (GCIs) [11]. On the other hand, though quite inexpressive, EL
can be used to define biomedical ontologies, such as the large medical ontology SNOMEDCT.1

Matching of concept descriptions against concept patterns is a non-standard inference task
in Description Logics, which was originally motivated by applications of the Classic system [8].
In [10], Borgida and McGuinness proposed matching as a means to filter out the unimportant
aspects of large concept descriptions appearing in knowledge bases of Classic. Subsequently,
matching (as well as the more general problem of unification) was also proposed as a tool for
detecting redundancies in knowledge bases [7] and to support the integration of knowledge bases
by prompting possible interschema assertions to the integrator [9].

All three applications have in common that one wants to search the knowledge base for
concepts having a certain (not completely specified) form. This “form” can be expressed with
the help of so-called concept patterns, i.e., concept descriptions containing variables (which stand
for descriptions). For example, assume that we want to find concepts that are concerned with
individuals having a son and a daughter sharing some characteristic. This can be expressed
by the pattern D := ∃has-child.(Male u X) u ∃has-child.(Female u X), where X is a variable
standing for the common characteristic. The concept description C := ∃has-child.(Tall u Male) u
∃has-child.(Tall u Female) matches this pattern in the sense that, if we replace the variable X by
the description Tall, the pattern becomes equivalent to the description. Thus, the substitution
σ := {X 7→ Tall} is a matcher modulo equivalence of the matching problem C ≡? D since
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C ≡ σ(D). The original paper by Borgida and McGuinness actually considered matching
modulo subsumption rather than matching modulo equivalence: such a problem is of the form
C v? D, and a matcher τ is a substitution τ satisfying C v τ(D). Obviously, any matcher
modulo equivalence is also a matcher modulo subsumption, but not vice versa. For example,
the substitution σ> := {X 7→ >} is a matcher modulo subsumption of the matching problem
C v? D, but it is not a matcher modulo equivalence.

The first results on matching in DLs were concerned with sublanguages of the Classic de-
scription language, which does not allow for existential restrictions of the kind used in our
example. A polynomial-time algorithm for computing matchers modulo subsumption for a
rather expressive DL was introduced in [10]. The main drawback of this algorithm was that
it required the concept patterns to be in structural normal form, and thus it was not able to
handle arbitrary matching problems. In addition, the algorithm was incomplete, i.e., it did not
always find a matcher, even if one existed. For the DL ALN , a polynomial-time algorithm for
matching modulo subsumption and equivalence was presented in [5]. This algorithm is complete
and it applies to arbitrary patterns. In [4], matching in DLs with existential restrictions was
investigated for the first time. In particular, it was shown that in EL the matching problem (i.e.,
the problem of deciding whether a given matching problem has a matcher or not) is polynomial
for matching modulo subsumption, but NP-complete for matching modulo equivalence.

Unification is a generalization of matching where both sides of the problem are patterns and
thus the substitution needs to be applied to both sides. In [7] it was shown that the unification
problem in the DL FL0, which offers the constructors conjunction (u), value restriction (∀r.C),
and the top concept (>), is ExpTime-complete. In contrast, unification in EL is “only” NP-
complete [6]. In the results for matching and unification mentioned until now, there was no
TBox involved, i.e., equivalence and subsumption was considered with respect to the empty
TBox. For unification in EL, first attempts were made to take general TBoxes, i.e., finite
sets of general concept inclusions (GCIs), into account. However, the results obtained so far,
which are again NP-completeness results, are restricted to general TBoxes that satisfy a certain
restriction on cyclic dependencies between concepts [2, 3].

For matching, we were able to solve the general case: matching in EL w.r.t. general TBoxes
is NP-complete. The matching problems considered in this paper are actually generalizations
of matching modulo equivalence and matching modulo subsumption. For the special case of
matching modulo subsumption, we show that the problem is tractable also in the presence of
GCIs. The same is true for the dual problem where the pattern is on the side of the subsumee
rather than on the side of the subsumer.

Due to space constraints, we cannot provide proofs of our results. They can be found in [1].

2 The Description Logics EL
The expressiveness of a DL is determined both by the formalism for describing concepts (the
concept description language) and the terminological formalism, which can be used to state
additional constraints on the interpretation of concepts and roles in a so-called TBox.

The concept description language considered in this paper is called EL. Starting with a finite
set NC of concept names and a finite set NR of role names, EL-concept descriptions are built
from concept names using the constructors conjunction (C u D), existential restriction (∃r.C
for every r ∈ NR), and top (>). Since in this paper we only consider EL-concept descriptions,
we will sometimes dispense with the prefix EL.

On the semantic side, concept descriptions are interpreted as sets. To be more precise, an
interpretation I = (∆I , ·I) consists of a non-empty domain ∆I and an interpretation function
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·I that maps concept names to subsets of ∆I and role names to binary relations over ∆I . This
function is inductively extended to concept descriptions as follows:

>I := ∆I , (C uD)I := CI ∩DI , (∃r.C)I := {x | ∃y : (x, y) ∈ rI ∧ y ∈ CI}

A general concept inclusion axiom (GCI) is of the form C v D for concept descriptions C,D.
An interpretation I satisfies such an axiom C v D iff CI ⊆ DI . A general EL-TBox is a finite
set of GCIs. An interpretation is a model of a general EL-TBox if it satisfies all its GCIs.

A concept description C is subsumed by a concept description D w.r.t. a general TBox T
(written C vT D) if every model of T satisfies the GCI C v D. We say that C is equivalent
to D w.r.t. T (C ≡T D) if C vT D and D vT C. If T is empty, we also write C v D and
C ≡ D instead of C vT D and C ≡T D, respectively. As shown in [11], subsumption w.r.t.
general EL-TBoxes is decidable in polynomial time.

3 Matching in EL
In addition to the set NC of concept names (which must not be replaced by substitutions),
we introduce a set NV of concept variables (which may be replaced by substitutions). Concept
patterns are now built from concept names and concept variables by applying the constructors of
EL. A substitution σ maps every concept variable to an EL-concept description. It is extended
to concept patterns in the usual way:

• σ(A) := A for all A ∈ NC ∪ {>},
• σ(C uD) := σ(C) u σ(D) and σ(∃r.C) := ∃r.σ(C).

An EL-concept pattern C is ground if it does not contain variables, i.e., if it is a concept
description. Obviously, a ground concept pattern is not modified by applying a substitution.

Definition 3.1. Let T be a general EL-TBox.2 An EL-matching problem w.r.t. T is a finite
set Γ = {C1 v? D1, . . . , Cn v? Dn} of subsumptions between EL-concept patterns, where for
each i, 1 ≤ i ≤ n, Ci or Di is ground. A substitution σ is a matcher of Γ w.r.t. T if σ solves
all the subsumptions in Γ, i.e. if σ(C1) vT σ(D1), . . . , σ(Cn) vT σ(Dn). We say that Γ is
matchable w.r.t. T if it has a matcher.

Matching problems modulo equivalence and subsumption are special cases of the matching
problems introduced above:

• The EL-matching problem Γ is a matching problem modulo equivalence if C v? D ∈ Γ
implies D v? C ∈ Γ. This coincides with the notion of matching modulo equivalence
considered in [5, 4], but extended to a non-empty general TBox.

• The EL-matching problem Γ is a left-ground matching problem modulo subsumption if
C v? D ∈ Γ implies that C is ground. This coincides with the notion of matching modulo
subsumption considered in [5, 4], but again extended to a non-empty general TBox.

• The EL-matching problem Γ is a right-ground matching problem modulo subsumption if
C v? D ∈ Γ implies that D is ground. To the best of our knowledge, this notion of
matching has not been investigated before.

The general case of matching, as introduced in Definition 3.1, and thus also matching modulo
equivalence, is NP-complete, whereas the two notions of matching modulo subsumption are
tractable, even in the presence of GCIs.

2Note that the GCIs in T are built using concept descriptions, and thus do not contain variables.
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Theorem 3.2. Let Γ be an EL-matching problem and T a general EL-TBox. Deciding whether
Γ has a matcher w.r.t. T is

1. polynomial if Γ is a left-ground or a right-ground matching problem modulo subsumption;

2. NP-complete in the general case.

A detailed proof of this theorem can be found in [1]. Basically, the results for the case of
matching modulo subsumption are proved as follows: in each case we define a specific substitu-
tion, and show that the matching problem has a matcher iff this substitution is a matcher. NP-
hardness for the general case follows from the known NP-hardness result for matching modulo
equivalence without a TBox. The NP-upper bound can be shown by introducing a goal-oriented
matching algorithm that uses nondeterministic rules to transform a given matching problem
into a solved form by a polynomial number of rule applications.
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