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Abstract— The success of sampling-based motion planners
has resulted in a plethora of methods for improving plan-
ning components, such as sampling and connection strategies,
local planners and collision checking primitives. Although
this rapid progress indicates the importance of the motion
planning problem and the maturity of the field, it also makes
the evaluation of new methods time consuming. We propose
that a systems approach is needed for the development and
the experimental validation of new motion planners and/or
components in existing motion planners. In this paper, we
present the Online, Open-source, Programming System for
Motion Planning (OOPSMP), a programming infrastructure
that provides implementations of various existing algorithms
in a modular, object-oriented fashion that is easily extendible.
The system is open-source, since a community-based effort
better facilitates the development of a common infrastructure
and is less prone to errors. We hope that researchers will
contribute their optimized implementations of their methods
and thus improve the quality of the code available for use. A
dynamic web interface and a dynamic linking architecture at
the programming level allows users to easily add new planning
components, algorithms, benchmarks, and experiment with
different parameters. The system allows the direct comparison
of new contributions with existing approaches on the same
hardware and programming infrastructure.

I. INTRODUCTION

Motivated by the success of the initial sampling-based
motion planning framework [1] in dealing with high-
dimensional problems [2], [3], a series of alternative ap-
proaches and planning components have been proposed over
the years [4]–[15]. While the extensive literature constitutes
significant progress toward solving more difficult problems,
it also makes the experimental validation of new methods
increasingly challenging and time consuming.

The lack of a common infrastructure for comparing motion
planning techniques implies that a considerable amount of
time and effort must be spent on implementing existing
algorithms. This may have the negative effect of significantly
reducing the scope of such comparisons. Even when the
effort is spent, it is generally difficult to obtain a fair result.
The correct and efficient implementation of algorithms solely
based on their high-level description is difficult. Disparities
in results can also occur due to low-level programming
choices and platform-dependant issues. Although the distri-
bution of source code or binaries is a viable solution, it is of-
ten hindered by differences in coding and interface standards.
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Fig. 1. Various instances of the OOPSMP webpage on top of the home
page. These instances highlight some of its features, such as the set of
benchmarks, the capability to set various parameters, to execute online
experiments, extend implemented classes, and plug-and-play components.

In addition, components unrelated to the comparisons could
affect the result. For example, a comparison between two
different sampling strategies can be affected by the choice
of collision detectors, proximity algorithms, or even utility
routines such as vector and matrix operations.

An additional and important difficulty is the lack of an
openly available set of benchmarks that can be easily used by
different researchers to experimentally validate the efficiency
of their methods. This common set of test cases is important
for reproducing experimental results and comparing against
alternative approaches.

This paper presents the Online, Open-source, Program-
ming System for Motion Planning (OOPSMP). The objective
of OOPSMP is to aid researchers in the development,
experimental validation, and comparison of motion planning
components and methods. We undertook a systems approach
to develop a programming system for motion planning that
is simple to use, easy to extend, robust, and efficient. Some
of the functionality provided by OOPSMP is as follows.

a) Benchmarks: OOPSMP provides a common set of
benchmarks. This set includes two-dimensional and three-
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dimensional static workspaces, together with polygonal and
polyhedral robots and facilitates planning problems with
multiple rigid bodies.

b) Modules: OOPSMP identifies programming mod-
ules and algorithmic components that are common across
different motion planning methods. It provides implementa-
tions for these components, together with general purpose
utilities and data structures.

c) Motion planning methods: On top of these modules,
popular motion planning algorithms have been implemented,
such as the Probabilistic RoadMap (PRM) [1], Rapidly-
exploring Random Tree (RRT) [16], Expansive Spaces Tree
(EST) [17], and many others.

d) General functionality for experimental validation:
OOPSMP contains functionality to select different param-
eters of motion planners and other components, execute
experiments, gather statistics, and visualize results.

e) Online plug-and-play functionality: With the aid of
an online web interface, OOPSMP allows researchers to
plug-and-play new motion planning components, methods,
and benchmarks. The uploaded code can be dynamically
linked with the existing infrastructure and experiments can
be automatically executed for the uploaded plugins.

f) Open-source: OOPSMP provides direct access to the
source code. We hope that this will allow other researchers to
contribute to OOPSMP. Such contributions will significantly
improve the system and the quality of current implementa-
tions of different motion planning components and methods.

Overview

The rest of this paper presents in more detail the pro-
posed system. The hierarchical and modular code structure
of OOPSMP is described in section II. The online web
interface through which OOPSMP is accessed and extended
is discussed in section III. The most important feature of
OOPSMP is the capability to extend its current functional-
ity. A description of the necessary steps required to plug-
and-play new components onto OOPSMP is provided in
section IV. The simplicity of extending OOPSMP is also
demonstrated in section IV, where it is shown how to add a
recent tree-based motion planning method to OOPSMP. The
implementation of the tree-based planner uses many of the
available components in OOPSMP. A description of how to
run experiments, gather statistics, and visualize results using
OOPSMP and some experimental results using different
sampling components and different tree-based planners are
given in section IV.

II. OOPSMP – CODE STRUCTURE

A systems approach and a modular design were followed
to make the code structure of OOPSMP simple to use
and easily extendible. The design process of OOPSMP

focused on identifying general purpose utilities and common
components used by many sampling-based motion planning
methods. The result of this design process was a hierarchical
division of the code into three main modules: (i) utilities, (ii)
core, and (iii) motion planners. The core module depends

on the utilities module and the motion planners module
depends on the utilities and core modules. The next issue
considered in the design of OOPSMP was the programming
language to be used for the implementation of these modules.
Since the objectives of OOPSMP are to achieve robustness,
efficiency, and extendibility, using a combination of C and
C++ was considered to be the most appropriate choice for
implementing the modules of OOPSMP. The low-level and
frequently used utilities are implemented in C to ensure that
the generated code is efficient. The high-level functionality
is implemented using C++ to make the code easy to extend
by simply providing concrete implementations of abstract
classes or further extending existing classes.

Each main module is further divided into smaller modules,
as described in the rest of this section. Fig. 2 illustrates the
hierarchical structure of the code in OOPSMP.

A. Utilities Module

The utilities module encompasses general purpose func-
tionality that is needed by higher-level modules, such as core
and motion planners modules. It is currently divided into
several submodules: (1) general, (2) math, (3) data structures,
and (4) geometry. Fig. 2(b) provides an illustration.

1) General Submodule: This submodule contains imple-
mentations of general purpose functionality such as genera-
tion of pseudorandom and quasirandom sequences [18], uni-
form and Gaussian sampling of numbers, uniform generation
of points inside disks or on the surface of high-dimensional
spheres or ellipsoids. It also contains functionality to gen-
erate random or enumerate all possible permutations and
combinations of k elements out of n objects. These low-level
functionalities are typically necessary to construct high-level
sampling strategies.

Additional functionality contained in this module includes
methods for measuring computational time or gathering other
statistics. It also includes memory management functionality
such as the allocation and freeing of one-dimensional, two-
dimensional, or high-dimensional C arrays.

2) Math Submodule: The math submodule, as the name
indicates, encompasses mathematical functionality such as
low-dimensional vector and matrix operations, including
affine and other types of transformation. There are also
implementations of topological Lie groups and algebras,
such as the special Euclidean groups SE(2) and SE(3) and
their associated algebras, including the generation of uniform
random samples, multiplication and addition, logarithmic and
exponential operations, geodesic interpolations, and distance
measures. In addition, there is also functionality to do
numerical integration of ordinary differential equations using
Euler, Runge-Kutta, or Bulirsch-Stoer methods of different
orders of approximation.

We note that the above module provides the most com-
monly needed functionality used by sampling-based motion
planning methods. The problem of obtaining correct and
efficient implementations of many of these routines has also
been raised in [19]. For this reason, special care is taken to



obtain robust, fast, and optimized implementations of many
of these routines.

3) Data Structures Submodule: This submodule con-
tains implementations of different data structures such as
roadmaps and trees and functionality to search and manipu-
late these data structures. The data structures submodule also
includes implementations of proximity algorithms, which are
often used by sampling-based motion planners to compute
nearest neighbors. Currently, it contains proximity methods
for computing exact nearest neighbors, such as the brute-
force linear approach or the efficient Gnat method [15], or
computing approximate nearest neighbors, such as Random
and DPES [5]. The underlying implementation of these data
structures is in C in order to make them as efficient as
possible. However, there is also a C++ interface to wrap up
the C implementations and furthermore allow extendibility
of these data structures.

4) Geometry Submodule: The geometry submodule con-
tains implementation of 2D and 3D workspaces and collision
detectors and distance computations between polygons and
polyhedra, respectively. The 2D implementations uses fast
and optimized primitives, while 3D implementations link to
publicly available collision detectors such as PQP [20].

B. Core Module

The core module contains definition and implementations
of common components required by sampling-based meth-
ods. The current division of the core module includes the
(1) state space, (2) state sampling, and (3) path submodules.
Fig. 2(c) provides an illustration.

1) State-Space Submodule: The state-space submodule
defines the topology of the motion planning problem. As
an example, the topology of the sofa problem is SE(2),
since in the sofa problem the robot is allowed to only rotate
and translate. The state space also includes the definition
of distances between two points, i.e., configurations in the
case of the sofa problem. This submodule also contains
an implementation of the state space for multiple robots
as a Cartesian product of the state spaces associated with
each robot. In this way, high-level sampling-based motion
planners can be used to solve problems involving more than
one robot.

2) State-Sampling Submodule: The state-sampling sub-
module contains different sampling strategies. Current im-
plementations include uniform, Gaussian [14], bridge [21],
obstacle-based [13], and goal-biased methods.

3) Path Submodule: The path submodule corresponds to
what is commonly referred to in motion planning as the local
planner. Note that the local planner typically consists of two
parts: path definition, which indicates how two states are
connected to each-other, and path validation, which checks to
ensure that the path satisfies all the constraints, e.g., collision
avoidance. A path is parameterized by its length. In the case
of SE(2) and SE(3) state spaces, paths are defined as either
linear or geodesic interpolations. Path validation uses either
an incremental or subdivision approach.

OOPS

Utils Core MotionPlanners

(a) The three main modules of OOPSMP.

Utils

General Math DataStructures Geometry

Algebra Topology Integration Roadamp Tree Proximity

(b) Partial structure of utilities module.

Core

StateSpace StateSampling Path

Uniform Gaussian Bridge Obstacle Geodesic Subdivision

(c) Partial structure of core module.

MotionPlanners

RoadmapBased TreeBased BiTreeBased RoadmapTreesBased

PRM RRT EST SRT

(d) Partial structure of motion planners module.

Fig. 2. Code structure of OOPSMP. The figure illustrates the hierarchical
and modular structure of the code by showing many, but not all, available
modules and submodules. Researchers could contribute improvements to
existing modules, create new modules by extending existing ones, or add
completely new modules that are not currently available in OOPSMP. The
code in OOPSMP supports the plug-and-play paradigm.

C. Motion Planners Module

This module contains definitions and implementations of
sampling-based motion planning methods. Since it relies
upon the utilities and core modules, low-level planning
parameters are hidden at this point. This modular approach
facilitates the implementation of new methods. The planners
can be used to solve motion planning problems with one or
more robots using single or multiple queries. Sampling-based
motion planners are divided into methods that construct a
roadmap, single tree, bi-directional tree, or a roadmap of
trees. In order to ensure extendibility, all the sampling-based
methods extend or provide implementations of an abstract
motion planning class. Fig. 2(d) provides an illustration.

Roadmap methods include PRM and its variants. Note
however that, for example, GaussianPRM is obtained by
replacing the uniform sampling component in PRM by the



Gaussian sampling component. The connection strategies in
PRM are defined by the particular proximity component that
is being used. Similarly, the local planner is defined by the
selected path-definition and path-validation components. Sin-
gle and bi-directional tree methods include implementations
of RRT and EST. These implementations are also modular,
since they rely on different components, such as extend,
connect, explore, etc. Furthermore, tree-based methods also
use sampling, path, and proximity components. The roadmap
of trees methods, such as SRT [4], utilize the roadmap and
tree-based modules that are currently in use.

III. OOPSMP – ONLINE ACCESS AND INTERFACE

One of the primary goals of our system is to allow the
direct comparison of motion planners on the same hardware
and programming infrastructure. A user of OOPSMP is able
to achieve this by selecting the appropriate modules and
parameters to run an experiment and executing the code on
a publicly accessible server. We provide a webpage interface
to assist this procedure that is illustrated in Fig. 1. In this
section we describe how this interface can be used and how
it has been implemented.

The webpage has been built using “php”, with the ob-
jective of being dynamic, parameterizable, simple to extend
and integrate with the code. Since the user of the webpage
is provided the capability to upload and execute code on
a public server, an authorization procedure is used so as to
hopefully avoid possible malicious attacks. After registration,
a corresponding file space is allocated on the server where
the various files specific to a user are stored. These files
are related to benchmarks, code, parameter selection files,
and outputted results. In this way, each account operates
independently and can publish results, such as benchmarks
or source code, to other users only upon request.

The basic functionality for the webpage interface is to
construct an input parameter file according to HTML forms
that are passed as a parameter to the executable of OOPSMP

responsible for running experiments. The generation of the
forms is an automated procedure based on templates that
define a protocol between the code and the interface. This
is an important element of OOPSMP because it allows the
inclusion of potential additional parameters with a small
overhead and allows user extensions to the current infras-
tructure as described in the next section.

The webpage structure mostly follows the architecture of
the code and the order with which parameters need to be
specified to run an experiment.

A. Benchmarks

After the initial homepage, a user is able to define the
problem that will be solved. OOPSMP currently supports
motion planning problems with multiple rigid bodies. The
parameters that have to be specified are the workspace,
the number of robots and the type of each robot. Through
the “problems” link of the webpage, access is provided
to the libraries of benchmarks available with the system.
Providing easy access to these sets of benchmarks is an

important contribution of OOPSMP. Both two dimensional
and three dimensional problems are supported, so there are
two types of environments and robots available, accessible
from corresponding online libraries which visualize how
each workspace and robot geometry look like. A user can
directly access a benchmark file, corresponding either to a
workspace or a robot. The format of benchmarks is also
available and users can upload their own files. A visualization
of the benchmark is provided if the format of the file is
recognized by the system and the file is accessible to be
selected for experiments. As it is mentioned earlier, uploaded
files are not accessible to other members of OOPSMP until
the user decides to publish the file to the community.

B. Parameter Selection

The links “utilities”, “core modules” and “motion plan-
ners” provide a way to select parameters for experiments.
Access to the related source code is also provided through
these links. As mentioned, the only available parameter
currently supported for the “utilities” category is the choice
of a proximity computation algorithm. Following the code
structure, the “core modules” link provides access to choices
for state space representation, sampling strategy and defini-
tion of a local path. The “motion planners” link provides the
interface for the selection of a motion planner. The choices
range between the PRM algorithm, tree-based algorithms and
bi-directional tree-based algorithms. The current implemen-
tations for tree-based algorithms include RRT [16], EST [22],
and several of their variations. For algorithms, sampling
strategies and local path definitions additional parameters
may be specified. For example, for the PRM algorithm, the
fraction of total planning time devoted to sampling must
be defined. All the selections made by the user are stored
and they do not have to be resubmitted each time that an
experiment is executed.

C. Experiments and Queries

Through the “experiments” link experiments can be exe-
cuted over the online interface.

Before the execution of an actual experiment, appropriate
queries must be selected to define the motion planning prob-
lem. There is functionality for generating random queries
given the selected workspaces and robots. Access to a library
of queries similar to that of workspaces and robots is also
provided. The format of queries is described. A query file,
which contains multiple queries, can be uploaded. When a
user selects an existing query, a good practice for the user
is to validate whether the query file contains valid queries
for the given workspace and robot, which is a provided
functionality.

After the definition of a query, an experiment can be
initiated. An important parameter defines how much time will
be devoted in preprocessing during execution (e.g., roadmap
construction in PRM) and how much time in query solving.
The user has multiple choices on the type of files that will
be outputted from an experiment, such as statistics, logs with
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Fig. 3. A postscript file is automatically created at the end of each
experiments that contains the figures requested by the user. (a, c) Paths from
initial to final configurations for two different environments. Directions of
paths are shown as gradients. Obstacles are shown in black. Observe that
in several places the robot comes close to the obstacles, almost touching
their boundaries. (b) Fraction of queries solved by different PRM variants as
a function of total computation time using the workspace and robot in (a).
(d) Fraction of queries solved by RRT and DDRRT as a function of total
computation time using the workspace and robot in (c).

debug messages and information about the data structure
constructed by the algorithm.

Fig. 3 gives examples of experiments that can be executed
with OOPSMP. Fig. 3(a, b) provides a comparison among
various sampling strategies, while Fig. 3(c, d) shows the
result of a comparison between RRT and DDRRT [9].

After the execution of a motion planning experiment,
statistics about the performance of the planners employed
during the experiment can be reported, such as solution
time for all the queries and number of queries solved by
the planner. Furthermore, profiling information is reported,
which informs the user how the total execution time was
divided among different motion planning modules. Finally,
for experiments where the planner was successful in finding
a solution, a postscript file containing the solution path
is automatically created and can be accessed online. The
roadmap or the tree data-structure constructed during an
experiment can also be visualized.

IV. OOPSMP – EXTENDIBILITY

The most important property of OOPSMP is the ability to
implement an alternative algorithm for one of the planning
modules or a new motion planning algorithm and link it
directly with the existing infrastructure, run experiments, and
compare against motion planning methods and components
already implemented in OOPSMP.

Fig. 4. C++ code illustration for implementing DDRRT, a recent tree-based
motion planning method. The functionality and infrastructure provided by
OOPSMP facilitates the implementation of new ideas. Once the code is
submitted through the web interface, DDRRT is immediately available for
comparisons with existing methods.

We illustrate the simplicity of using OOPSMP to imple-
ment new ideas by showing all the necessary steps that are
needed to implement DDRRT [9], a recent tree-based motion
planning method.

1) Select module for extension: From the “extensions”
link of the online interface a user gets access to a webpage
that provides a tree structure of the extendible classes in
the existing code. In the case of DDRRT, the user selects to
extend RRT, since DDRRT is based on RRT. The webpage
creates a template for DDRRT, which simply indicates that
DDRRT extends RRT, and shows DDRRT as a branch under
RRT in the tree structure of the extendible classes.

2) Define additional parameters required by the new
module: The new module inherits all the parameters of the
module that it is extending. The online web interface also
allows the user to define additional parameters required by
the new module. In the case of DDRRT, the user specifies
that a parameter of type “real” is required for the “setRadius”
function in DDRRT. The current implementation in OOPSMP

supports several parameter types, such as “bool,” “int,”
“real,” “string,” or any combination of these types.

All the parameter types and the keywords associated with
these types are added to the template created for DDRRT.
The web interface gives the user the ability to add new
parameters, remove, or edit existing parameters.

3) Upload code and create module: Using the web in-
terface, the user can upload any number of C/C++ files.
Fig. 4 provides an illustration of the C++ code required to



implement DDRRT using the OOPSMP infrastructure.
Upon uploading the code, the user clicks on a “Create

Module” button, which invokes OOPSMP to compile the
code and create a dynamically linked library that is stored
only in the user’s space. Possible error messages from the
compiler are also displayed on the webpage. When all the
errors have been fixed, the new module is ready for use.

4) Experimental validation: The user can now use the
web interface to select and use the submitted module for
experiments. To continue with the example, DDRRT would be
presented as a possible choice when the user selects a motion
planner. Upon selecting DDRRT as the motion planner, the
user has the option of entering values for the parameters such
as “setRadius,” or use the provided default values. We note
that it is only the user who created DDRRT that has access
to this module. The other users are not presented with the
choice of DDRRT as a possible motion planner, since this
module has not been made publicly available yet.

After setting the parameters, the user can run experiments
using DDRRT. OOPSMP uses C/C++ functionality to search
and load the DDRRT module from the dynamically linked
libraries. At the end of each experiment, the user can
gather statistics and visualize the results. The illustrations in
Fig. 3 were produced by following the step-by-step procedure
described in this section.

V. DISCUSSION

The contribution of this work is OOPSMP, an online,
open-source, programming system for motion planning. Re-
searchers can use OOPSMP to implement new ideas, exper-
imentally evaluate the performance of their methods, or run
comparisons with existing methods. By making OOPSMP

open-source, easily accessible and extendible through an
online web interface, we hope that other researchers will
contribute to it motion planning benchmarks, improve im-
plementations of current modules, and add new motion
planning components and methods. A community-based ef-
fort is the key ingredient in ensuring that the infrastructure
of OOPSMP continues to be useful to researchers as the
research in motion planning progresses and new motion
planners are developed. Our objective is to continue improve
the infrastructure of OOPSMP, add support for large-scale
experiments, and in the near future implement parallel and
distributed motion planning algorithms that utilize the func-
tionality provided by OOPSMP.
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