
Lightweight Digital Hardware Random Number

Generators

Teng Xu, Miodrag Potkonjak

Computer Science Department

University of California, Los Angeles

{xuteng, miodrag}@cs.ucla.edu

Abstract— Random Number Generator (RNG) plays an es-
sential role in many sensor network systems and applications,
such as security and robust communication. We have developed
the first digital hardware random number generator (DHRNG).
DHRNG has a small footprint and requires ultra-low energy.
It uses a new recursive structure that directly targets efficient
FPGA implementation. The core idea is to place or extract
random values in FPGA configuration bits and randomly connect
the building blocks. We present our architecture, introduce
accompanying protocols for secure public key communication,
and adopt the NIST randomness test on the DHRNG’s output
stream.

I. INTRODUCTION

The use of RNGs in sensor networks has a long history

and results in significant variety of techniques, e.g., security,

privacy and remote trust. Specifically, distributed sensing

raises the importance of sensor security to an even higher level

[1][2][3][4][5]. It is important for the sensor user to verify

that the remotely received data is actually from the trusted

sensors in the distributed system. Meanwhile, RNGs enable

public key communication and other cryptographic protocols

in sensor networks due to its intrinsic randomness.

Classical (algorithmic) RNGs have been widely used. How-

ever, they are not well suited for the sensor networks. They

are relatively slow, require high energy, and large hardware

footprints. They are also susceptible to side channel and

physical attacks [6][7].

A number of hardware random number generators (HRNGs)

are proposed in [8] to mitigate the above the problems. All of

them employ analog mechanisms that cannot be controlled or

reduplicated, such as with the use of physically unclonable

functions (PUFs) in conjunction with Von Neumann data post

processing as random number generator was done by a group

in MIT [9]. However, traditional analog mechanisms are also

high energy consuming and pose high implementation require-

ments in terms of measurement accuracy and environmental

stability.

In this paper, we propose the DHRNGs on the platform

of FPGA that inherit the general advantage of HRNGs,

but employ a completely digital system, which is extremely

lightweight and resilient to environmental conditions [10][11].

Furthermore, two variants of DHRNGs are discussed, which

respectively targets different applications. The first variant tar-

gets easy replication, which enables creation of synchronized

RNGs that produce identical streams, therefore, can be used

for encryption/decryption and robust public key communica-

tion. The second variant employs random values after power-

up of the circuit which makes each DHRNG to be unique and

unclonable. The essence of the DHRNG variant II is that it is

a new type of SRAM PUF that can be applied to all the classic

HRNG applications because of the difficulty to reproduce or

simulate the new RNG. Both variants have the same hardware

architecture with only small modifications to the fabrication

procedure.

II. RELATED WORK

We now briefly survey the most directly related literature on

physical unclonable functions and hardware random number

generators.

A. PUF

Papu et al. demonstrated the first active physical unclonable

function using optical mesoscopic systems in 2001 [12].

Devadas and members of his research group observed that

intrinsic deep submicron process variation in silicon is an ideal

practical and economical starting point to fabricate a large

amount of PUFs [13][14].

More recently, many types of PUFs [15][16][17][18] are

proposed and several research groups have demonstrated

SRAM-based PUFs [19]. The key idea is that each SRAM cell

has a high probability that it is initialized to some value, either

0 or 1, after each power-up. Although the “stability ” of the

SRAM PUF cells has always been a problem, recently, it has

been experimentally demonstrated that the use of device aging

[20][21][22], specifically hot carrier injection (HCI) [23][24],

can completely eliminate this problem.

B. RNG

Pseudo number generation and its evaluation have a long

history and have resulted in a significant variety of techniques

and tools. However, they are rarely adopted in compact general

purpose processors and FPGA implementations since they

usually use 32 or 64 bit numbers as their variables. A list of

FPGA random number generators are also proposed [25]. All

of them employ analog mechanisms that cannot be controlled.

Exactly the same situation exists with other hardware-based

random generators [26], therefore, none of them are suitable to

be applied in sensor networks. The use of PUFs in conjunction

with standard pseudorandom generators and von Neuman data

post-processing was analyzed by Devadas group [9].

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/24060586?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


III. ARCHITECTURE

We now present the micro-architecture of DHRNG. The ba-

sic idea is to use randomly connected lookup tables(LUTs) to

generate the combinational logic to produce an output stream.

The DHRNG architecture shown in Figure 1 is consisted of a

LUT network of height h and width w, where h is the level

of randomly connected LUTs and w is the number of k-input

LUTs in each level. Each LUT randomly chooses its inputs

to be either output of a LUT in the previous level or its own

primary input in forming an output bit. By offering m bits

of primary inputs, w bits of final outputs are expected. Note

that the randomness of such structure mainly comes from the

randomness of shuffling and the contents of each LUT, which

can be easily achieved when h and w are large enough.

We use the structure shown in Figure 1 to generate a

stream of random numbers. A stream is generated by first

randomly choosing an m-bit input vector as the random seed,

which is then used to generate a w-bit output vector. A bit-

wise exclusive-or operation is performed between w-bit output

vector and the current input vector to produce a binary vector.

The generated binary vector would serve as the random seed

for the next round. We repeat this procedure to acquire the

output stream. We note that, although we allocate the LUTs

in such a way that each cell has the same probability to be

either 1 or 0 in each individual case, the number of 0’s and

number of 1’s may not be the same. Therefore, we further

adopt Von Neumann correction on our obtained output stream

to guarantee equal number of 0s and 1s in the final bit stream.

IV. TWO VARIANTS

Two variants of the DHRNG are proposed in this section

which respectively targets on different applications. Both vari-

ants use exactly the same architecture as discussed in previous

section and the only difference is the way to generate the LUT

contents.

A. Variant I

As for the Variant I DHRNG, the core idea is to manually

allocate the contents of the LUTs and the connections so

that the DHRNG can be easily replicated, which enables

the creation of synchronized DHRNGs that produce identical

streams. Note that matching procedure can either be configured

by the sensor owner themselves or the trusted third party

before the DHRNGs are put into use.

Now that since both devices contain the same LUT contents

connected by the same network, they produce the same outputs

for a given set of inputs, enabling such a design to be applied

for multi-party communication. Only the party with the right-

configured DHRNG can encrypt/decrypt the messages. The

advantage of this system comes from three points. The first

is the intrinsic randomness of each device’s output stream,

making it difficult to decrypt the message statistically. The

second point is the easy replication. As long as the DHRNG

configuration is known, it is very easy to configure and

reproduce the same piece of device. Therefore, multi-party

communication becomes simple which is particularly useful in

the case when a sensor owner wants to communicate with his

multiple sensors. The last point, as well as the most important

point, the device can be custom configured. Therefore, even

in the case when a malicious manufacturer or untrusted third-

party exists, the device can still be made secure.

B. Variant II

Before explaining the concept of Variant II DHRNG, it is

essential to introduce the HCI-based power-up. Hot carrier

injection (HCI) is a phenomenon in which the electron or

the hole in a transistor may be trapped in the gate oxide

when provided with high enough energy. HCI-based power-

up presents a PUF response reinforcement technique based

on HCI, which can reinforce the PUF golden response in a

short stress time without impacting the surrounding circuits.

According to a recent study, powering up a circuit for a long

enough duration (e.g., 125s) causes the content of each SRAM

cell to be randomly altered to either a stable 1 or 0 according

to its unique intrinsic ID regardless of the environmental

condition.

The Variant II DHRNG is built by applying the HCI-based

power-up on the SRAMs of LUT cells as shown in Figure

1. Two operations are required, the configuration and the

power-up. Configuration is the process in which we randomly

connect the LUTs on the FPGA. HCI-based power-up, which

should be adopted after configuration, is used to assign the

contents of the SRAM cells, in other words, the contents of

the LUTs on the FPGA. Due to the properties of the HCI-

based power-up, the contents of the LUTs are assigned in a

completely random, unique and stable way without impacting

the surrounding circuits. After the two operations complete,

both the connection and the contents of the LUTs in the

DHRNG are set in an unpredictable way.

The configuration and power-up creates a Variant II

DHRNG that enables two intrinsic properties which we can

take advantage of. First, the output stream cannot be predicted

or controlled in any way. Therefore, such a design can be

appied to generate the random seed for any secure protocols

of sensor networks. Second, the HCI-based power-up makes

our digital PUFS inherit the unclonable property of traditional

PUFs.

V. TEST RESULTS

We adopt the NIST randomness test as well as the standard

security test on our DHRNG structure in this section to

validate the output randomness.

A. NIST randomness test

The NIST randomness test [27] is a battery of standard

statistical tests to detect non-randomness in binary sequences

constructed using either random number generators or pseudo-

random number generators.

We simulate our DHRNG with height h = 20 and width

w = 64. The initial random seed is a randomly generated 64-

bit input vector (m = 64). Every LUT cell in the DHRNG

has an equal chance to be a 1 or 0. As mentioned before, we



����

��

����

��

����

��

����

��

����

��

����

��

	�

	�

	A

	B

C�

C�

C�

	DEF����B

�������

�������� ����������

�������

��������������

����

��

����

��

����

��

 

 

 

 

 

 

 

 

 

Fig. 1: DHRNG architecture with input number m, width w and height h.

use the DHRNG architecture iteratively to generate the output

stream. For each single statistical test, we test for 1000 cases.

Table I shows the average passing ratio of each NIST statistical

test. We can see that the proportion of successful tests is high

enough to indicate excellent randomness in the output stream.

Statistical Test Avg. Success Ratio

Frequency 100%

Block Frequency (m=128) 99.5%

Cusum-Forward 99.2%

Cusum-Reverse 99.2%

Runs 97.2%

Longest Runs of Ones 98.1%

Rank 99.4%

Spectral DFT 98.5%

Non-overlapping Templates (m=9) 95.8%

Overlapping Templates (m=9) 97.7%

Universal 100%

Approximate Entropy (m=8) 98.1%

Random Excursions (x=+1) 98.8%

Random Excursions Variant (x=-1) 97.0%

Serial (m=16) 99.5%

Linear Complexity (M=500) 97.9%

TABLE I: NIST Statistical Test Suite average success ratio.

1000 arrays are tested for each test. Significance Level σ =
0.01. When P -value≥σ, the array passes test.

B. Security test

While using the DHRNG to secure the sensor network,

the resistance against malicious attack/prediction is important.

In this section, we statistically analyse the security of the

DHRNG system by assuming potentially different types of

attacks. The attacks would be regarded successful if the output

stream can be predicted. The simulation is conducted on a

DHRNG architecture with height h = 20 and width w = 64.

The statistical results are based on 1,000,000 input-output

pairs.

One type of prediction is to predict outputs by the knowl-

edge of the outputs from similar inputs. This attack is dan-

gerous when the output vector with similar input vectors are

highly correlated with one another. To test this, we summarize

the hamming distance (the number of bits that are different

between two vectors) between the output vectors by changing

one bit of the input vectors at each iteration. In the ideal case,

the distribution would be in the form of a binomial distribution

Protocol 1 Public Key Communication

1: The sensor chooses a random seed as input vector I and

computes the corresponding output vector O.

2: The sensor XOR the output vector O with the message

M to be sent and gets the result R.

3: The sensor sends I and R to the sensor owner.

4: The sensor owner computes output vector O with the

received I and his/her identical DHRNG.

5: The sensor owner XOR O with the received R to get

message M .

with the peak on the half of the number of outputs. Figure 2a

shows the accumulative results of 1000 test cases, and in each

case, 1,000,000 instances of hamming distance are tested. The

binomial distribution proves that the DHRNG output stream

can not be predicted in this way.

Similar to the previously described attack, the other type

of attack attempts to predict an output bit Oi according to

the value of an input bit Ij or a corresponding output bit Oj .

In either case, if the output bit has a strong correlation with

either an input bit or another output bit, then the attacker can

deduce the output vector by knowing input bits or a subset of

the output bits. We present a conditional probability map of

P (Oi = 1|Ij = 1) in Figure 2b and P (Oi = 1|Oj = 1) in

Figure 2c depicting the low potential for prediction based on

input to output correlation and output to output correlation.

VI. PROTOCOLS

Public key communication is one of the most widely used

and fundamental protocols for secure message exchange in

sensor networks. We present how to use DHRNG to achieve

this in this section. The detailed steps of public key communi-

cation using DHRNG are enumerated in Protocol 1. Note that

both the sensor owner and the sensor are required to coordinate

their Variant I DHRNG before communication.

Since both the sensor and the sensor owner only need

very few clock cycle to encrypt/decrypt the message, the

energy overhead of this protocol is very small compared to

the traditional way of public key communication, therefore,

especially suitable for the low-power required sensor networks.



0 3 6 9 13 17 21 25 29 33 37 41 45 49 53 57 61

0
.0

0
0
.0

5
0
.1

0
0
.1

5

Output Hamming Distance

R
e
la

ti
ve

 F
re

q
u
e
n
c
y

(a)

10 20 30 40 50 60

10

20

30

40

50

60

Input Ij

O
u

tp
u

t 
O

i

P(Oi=1|Ij=1)

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b)

10 20 30 40 50 60

10

20

30

40

50

60

Output Oj

O
u

tp
u

t 
O

i

P(Oi=1|Oj=1)

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c)

Fig. 2: (a) The distribution of output hamming distance (the error bar shows the distribution of max, 75%, mean, 25% and

min), (b) Conditional Probabilities between Output bits Oi and input bits Ij , (c) Conditional Probabilities between Output bits

Oi and other output bits Oj .

VII. CONCLUSION

We have developed techniques for the creation of the first

digital hardware random number generator (DHRNG) by ran-

domly assigning the contents of look-up tables on FPGAs and

connecting them to form a combinational network. In addition

to inherit the intrinsic good properties of traditional HRNGs,

the DHRNG is low-power, has small-footprint, and completely

digital, as well as being resistant to environmental variations.

DHRNG superiorly passes all standard NIST randomness

test as well as a list of statistical test, indicating excellent

randomness and resistance to a wide range of security attacks.

Finally, we have explained how to use DHRNG to achieve

public key communication in sensor networks.

REFERENCES

[1] S. Wei, J. H. Ahnn, M. Potkonjak, “Energy attacks and defence techniques
for wireless systems,” WISEC, pp. 185-194, 2013.

[2] M. Potkonjak, S. Meguerdichian, J.L. Wong, “Trusted Sensors and
Remote Sensing”, IEEE Sensors, pp. 1104-1107, 2010.

[3] S. Meguerdichian, M. Potkonjak, “Security Primitives and Protocols for
Ultra Low Power Sensor Systems,” IEEE SENSORS, pp. 1225-1228,
October 2011.

[4] J. B. Wendt, M. Potkonjak, “Nanotechnology-Based Trusted Remote
Sensing,” IEEE SENSORS, pp. 1213-1216, October 2011.

[5] S. Wei, M. Potkonjak, “Wireless security techniques for coordinated
manufacturing and on-line hardware trojan detection,” WISEC, pp. 161-
172, April 2012.

[6] F. Koushanfar, M. Potkonjak, “CAD-based Security, Cryptography, and
Digital Rights Management”, Design Automation Conference, pp. 268-
269, San Diego, 2007.

[7] S. Wei, S. Meguerdichian, M. Potkonjak, “Gate-level characterization:
foundations and hardware security applications”, ACM/IEEE Design

Automation Conference, pp. 222-227, 2010.

[8] James, F., “A review of pseudorandom number generators,” Computer

Physics Communications, vol. 60, pp. 329-344, 1990.

[9] C. W. O’Donnell, G. E. Suh, and S. Devadas, “PUF-based random number
generation,” MIT CSAIL CSG Technical Memo 481, 2004.

[10] J. Zheng, M. Potkonjak, “Securing Netlist-Level FPGA Design through
Exploiting Process Variation and Degradation,” FPGA, pp. 129-139,
February 2012.

[11] J. X. Zheng, E. Chen, M. Potkonjak, “A benign hardware Trojan on
FPGA-based embedded systems”, IEEE International Conference on

Field Programmable Logic and Applications, pp. 464-470, 2012.

[12] R. Pappu, B. Recht, J. Taylor, and N. Gershenfeld, “Physical one-way
functions,” Science, vol. 297, no. 5589, pp. 2026-2030, 2002.

[13] B. Gassend, D. Clarke, M. van Dijk, and S. Devadas, “Silicon physical
random functions,” ACM Conference on Computer and Communications

Security, pp. 148-160, 2002.
[14] S. Devadas, V. Khandelwal, S. Paral, R. Sowell, E. Suh, T. Ziola,

“Design and Implementation of PUF-Based Unclonable RFID ICs for
Anti-Counterfeiting and Security Applications,” IEEE RFID, 2008.

[15] N. Beckmann, M. Potkonjak, “Hardware-based public-key cryptography
with public physically unclonable functions,” Information Hiding Confer-

ence, pp. 206–220, 2009.
[16] S. Meguerdichian, M. Potkonjak, “Matched public PUF: ultra low energy

security platform,” IEEE/ACM ISLPED, pp. 45–50, 2011.
[17] T. Xu, J. B. Wendt, M. Potkonjak, “Digital Bimodal Function: An Ultra-

Low Energy Security Primitive,” ISLPED, 2013.
[18] M. Potkonjak, S. Meguerdichian, A. Nahapetian, Sheng Wei, “Differen-

tial Public, Physically Unclonable Functions: Architecture and Applica-
tions”, ACM/IEEE Design Automation Conference, pp. 242-247, 2011.

[19] D. Holcomb, W. Burleson, and K. Fu, “Power-up SRAM state as an
identifying fingerprint and source of true random numbers,” IEEE Trans.

Computers, vol. 58, no. 9, pp. 1198-1210, 2009.
[20] S. Wei, A. Nahapetian, M. Nelson, F. Koushanfar, M. Potkonjak, “Gate

Characterization Using Singular Value Decomposition: Foundations and
Applications”, Vol. 7, No. 2, pp. 765-773 , IEEE Transactions on

Information Forensics and Security, 2012.
[21] S. Meguerdichian, M. Potkonjak, “Device Aging-Based Physically Un-

clonable Functions,” Design Automation Conference, pp. 288-289, June
2011.

[22] M. A. Alam and S. Mahapatra, “A comprehensive model of PMOS NBTI
degradation,” Microelectronics Reliability, vol. 45, pp. 71-81, 2005.

[23] M. Bhargava, C. Cagla, and M. Ken, “Comparison of bi-stable and
delay-based Physical Unclonable Functions from measurements in 65nm
bulk CMOS,” Custom Integrated Circuits Conference, IEEE, 2012.

[24] K. Miyaji, T. Suzuki, S. Miyano, and K. Takeuchi, “A 6T SRAM
with a carrier-injection scheme to pinpoint and repair fails that achieves
57% faster read and 31% lower read energy,” In Solid-State Circuits

Conference Digest of Technical Papers, 2012 IEEE International, pp.
232-234, IEEE, 2012.

[25] Bucci, Marco, and Raimondo Luzzi, “Design of testable random bit
generators,” Cryptographic Hardware and Embedded Systems - CHES

2005, pp. 147-156, 2005.
[26] B. Barak, R. Shaltiel, E. Tomer, “True random number generators secure

in a changing environment,” Cryptographic Hardware and Embedded

Systems - CHES 2003, pp. 166-180, 2003.
[27] “A Statistical Test Suite for Random and Pseudorandom Number Gen-

erators for Cryptographic Applications,” National Institute of Standards
and Technology (NIST) Special Publication 800-22, Rev. 1a, Apr. 2010.


