A Logic with Kolmogorov Style Conditional Probabilities*

Zoran Ognjanović ${ }^{1}$, Nebojša Ikodinović ${ }^{2}$, and Zoran Marković ${ }^{1}$
${ }^{1}$ Mathematical Institute
Kneza Mihaila 35, 11000 Belgrade, Serbia and Montenegro
zorano\{zoranm\}@mi.sanu. ac. yu
${ }^{2}$ Prirodno-matematički fakultet
R. Domanovića 12, 34000 Kragujevac, Serbia and Montenegro ikodinovic@kg.ac.yu

Abstract

In this paper we investigate a probability logic with conditional probability operators. The logic (denoted $L P P$) allows making statements such as $C P_{\geq s}(\alpha \mid \beta)$, with the intended meaning "the conditional probability of α given β is at least $s "$. Conditional probabilities are defined in the usual Kolmogorv style: $P(\alpha \mid \beta)=\frac{P(\alpha \wedge \beta)}{P(\beta)}, P(\beta)>0$. A possible-world approach is used to give semantics to probability formulas. An infinitary axiomatic system for our logic is given and the corresponding strong completeness theorem is proved. It is proved that the logic is decidable.

1 Syntax

The language \mathcal{L} of $L P P$ consists of a countable set $I=\left\{p_{1}, p_{2}, \ldots\right\}$ of propositional letters, classical connectives \wedge and \neg, a list of unary probabilistic operators $P_{\geq s}$ for every rational number $s \in[0,1]$, a list of binary probability operators $C P_{\geq s}$ for every rational number $s \in[0,1]$, and a binary probability operator $C P_{\leq 0}$.

The set $F o r_{L P P}^{C}$ of all classical propositional formulas is defined inductively as the smallest set X containing propositional letters and closed under the usual formation rules: if α and β belong to X, then $\neg \alpha, \alpha \wedge \beta$ are in X. Elements of $F_{o r}^{C} C_{P P}^{C}$ will be denoted by α, β, \ldots The set $\operatorname{For}_{L P P}^{P}$ of all probability formulas is the smallest set Y containing all formulas of the forms: $P_{\geq_{s}} \alpha, C P_{\geq_{s}}(\alpha \mid \beta)$, $C P_{\leq 0}(\alpha \mid \beta)$, for all $\alpha, \beta \in \operatorname{For}_{L P P}^{C}$ and each rational number s from $[0,1]$, and closed under the formation rules: if A and B belong to Y, then $\neg A$ and $A \wedge B$ are in Y. The formulas from $F_{\text {or }}^{P}{ }_{L P P}$ will be denoted by A, B, \ldots Let $\operatorname{For}_{L P P}=\operatorname{For}_{L P P}^{C} \cup \operatorname{For}_{L P P}^{P}$. The formulas from $\operatorname{For}_{L P P}$ will be denoted by Φ, Ψ, \ldots

As it can be seen, neither mixing of pure propositional formulas and probability formulas, nor nested probability operators are allowed. For example,

[^0]$\neg P_{\geq 0.5} p_{1} \wedge C P_{\geq 1}\left(p_{1} \rightarrow p_{2} \mid p_{2}\right)$ is a syntactically correct formula of the $L P P$, while $C P_{\geq 0.5}\left(p_{1} \mid C P_{\geq 0.5}\left(p_{1} \mid P_{\geq 1} p_{1}\right)\right)$ and $p_{1} \wedge P_{\geq 1} p_{1}$ are not.

We use the usual abbreviations for the other classical connectives $\vee, \rightarrow, \leftrightarrow$. For every rational number s from $[0,1]$ we denote $\neg P_{\geq s}(\alpha)$ by $P_{<s}(\alpha), P_{\geq 1-s}(\neg \alpha)$ by $P_{\leq s}(\alpha), \neg P_{\leq s}(\alpha)$ by $P_{>s}(\alpha)$, and $P_{\geq s}(\alpha) \wedge P_{\leq s}(\alpha)$ by $P_{=s}(\alpha)$ Also, for $s \neq 0$, we use the following abbreviations: $C P_{<s}(\alpha \mid \beta) \stackrel{\text { def }}{=} \neg C P_{\geq s}(\alpha \mid \beta), C P_{\leq s}(\alpha \mid$ $\beta) \stackrel{\text { def }}{=} C P_{\geq 1-s}(\neg \alpha \mid \beta), C P_{>s}(\alpha \mid \beta) \stackrel{\text { def }}{=} \neg C P_{\leq s}(\alpha \mid \beta)$, and $C P_{=s}(\alpha \mid \beta) \stackrel{\text { def }}{=}$ $C P_{\geq s}(\alpha \mid \bar{\beta}) \wedge C P_{\leq s}(\alpha \mid \beta)$. For $\alpha \in \operatorname{For}_{L P P}^{C}$, and $A \in \operatorname{For}_{L P P}^{P}$, we abbreviate both $\alpha \wedge \neg \alpha$ and $A \wedge \neg A$ by \perp letting the context determine the meaning.

2 Semantics

The semantics for $F^{\circ} r_{L P P}$ will be based on the possible-world approach.
Definition 1. An LPP-model is a structure $\mathbf{M}=\langle W, H, \mu, v\rangle$ where:

- W is a nonempty set of objects called worlds,
- H is an algebra of subsets of W, and
$-\mu$ is a finitely additive measure, $\mu: H \rightarrow[0,1]$,
$-v: W \times I \rightarrow\{$ true, false $\}$ provides for each world $w \in W$ a two-valued evaluation of the propositional letters, that is $v(w, p) \in\{$ true, false $\}$, for each propositional letter $p \in I$ and each world $w \in W$; a truth-evaluation $v(w, \cdot)$ is extended to classical propositional formulas as usual.

If \mathbf{M} is an $L P P$-model and $\alpha \in \operatorname{For}_{L P P}^{C}$, the set $\{w: v(w, \alpha)=$ true $\}$ is denoted by $[\alpha]_{\mathbf{M}}$. We will omit the subscript \mathbf{M} from $[\alpha]_{\mathbf{M}}$ and write $[\alpha]$ if \mathbf{M} is clear from the context. An $L P P-$ model $\mathbf{M}=\langle W, H, \mu, v\rangle$ is measurable if $[\alpha]_{\mathbf{M}} \in H$ for every formula $\alpha \in \operatorname{For}_{L P P}^{C}$. In this section we focus on the class of all measurable models (denoted by $L P P_{\text {Meas }}$).

Definition 2. The satisfiability relation fulfills the following conditions for every LPP-model $\mathbf{M}=\langle W, H, \mu, v\rangle$ and every world $w \in W$:

- if $\alpha \in$ For $_{L P P}^{C}, \mathbf{M}, w \models \alpha$ iff $v(w, \alpha)=$ true,
- if $\alpha \in$ For $_{L P P}^{C}, \mathbf{M}, w \models P_{\geq s} \alpha$ iff $\mu([\alpha]) \geq s$,
$-\alpha, \beta \in \operatorname{For}_{L P P}^{C}, \mathbf{M}, w \models C P_{\geq s}(\alpha \mid \beta)$ iff either $\frac{\mu([\alpha] \cap[\beta])}{\mu([\beta])} \geq s$ and $\mu([\beta])>0$, or $\mu([\beta])=0$,
$-\alpha, \beta \in \operatorname{For}_{L P P}^{C}, \mathbf{M}, w \models C P_{\leq 0}(\alpha \mid \beta)$ iff $\mu([\alpha] \cap[\beta])=0$ and $\mu([\beta])>0$,
- if $A \in \operatorname{For}_{L P P}^{P}, \mathbf{M}, w \models \neg A$ iff $\mathbf{M}, w \not \models A$,
- if $A, B \in \operatorname{For}_{L P P}^{P}, \mathbf{M}, w \models A \wedge B$ iff $\mathbf{M}, w \neq A$ and $\mathbf{M}, w \models B$.

A formula $\Phi \in$ For $_{L P P}$ is satisfiable if there is an LPP $P_{\text {Meas }}-$ model $\mathbf{M}=\langle W, H, \mu, v\rangle$, and a world $w \in W$ such that $\mathbf{M}, w \models \Phi ; \Phi$ is valid in an $L P P_{\text {Meas }}-m o d e l$ $\mathbf{M}=\langle W, H, \mu, v\rangle$ (denoted $\mathbf{M} \models \Phi$), if for every world $w \in W, \mathbf{M}, w \models \Phi ; \Phi$ is valid if for every $L P P_{\text {Meas }}-$ model $\mathbf{M}, \mathbf{M} \models \Phi$; a set of T formulas is satisfiable if there is an $L P P_{\text {Meas }}$-model $\mathbf{M}=\langle W, H, \mu, v\rangle$, and a world $w \in W$ such that $\mathbf{M}, w \models \Phi$ for every $\Phi \in T$.

3 Axiomatic system

The axiomatic system $A x_{L P P}$ for $L P P$ contains the following axiom schemata:

1. all $\operatorname{For}_{L P P}^{C}$-instances of classical propositional tautologies,
2. all $\operatorname{For}_{L P P}^{P}$-instances of classical propositional tautologies,
3. $P_{\geq 0} \alpha$,
4. $P_{\leq r} \alpha \rightarrow P_{<s} \alpha, s>r$,
5. $P_{<s} \alpha \rightarrow P_{\leq s} \alpha$,
6. $\left(P_{\geq r} \alpha \wedge P_{\geq s} \beta \wedge P_{\geq 1}(\neg \alpha \vee \neg \beta)\right) \rightarrow P_{\geq \min (1, r+s)}(\alpha \vee \beta)$,
7. $\left(P_{\leq r} \alpha \wedge P_{<s} \beta\right) \rightarrow P_{<r+s}(\alpha \vee \beta), r+s \leq 1$,
8. $C P_{\geq s}(\alpha \mid \beta) \wedge P_{\geq t} \beta \rightarrow P_{\geq s \cdot t}(\alpha \wedge \beta), t>0$,
9. $\left(P_{=0}(\alpha \wedge \beta) \wedge P_{>0} \beta\right) \leftrightarrow C P_{\leq 0}(\alpha \mid \beta)$,
and inference rules:
10. From Φ and $\Phi \rightarrow \Psi$ infer $\Psi, \Phi, \Psi \in \operatorname{For}_{L P P}^{C}$ or $\Phi, \Psi \in \operatorname{For}_{L P P}^{P}$,
11. From α infer $P_{\geq 1} \alpha$,
12. From $A \rightarrow P_{\geq s-\frac{1}{k}} \alpha$, for every integer $k \geq \frac{1}{s}$, infer $A \rightarrow P_{\geq s} \alpha$.
13. From $A \rightarrow\left(P_{\geq r} \beta \rightarrow P_{\geq r . s}(\alpha \wedge \beta)\right)$, for every rational number r from $[0,1]$, infer $A \rightarrow C P_{\geq_{s}}(\alpha \mid \beta)$.
$A x_{L P P}$ extends the axiomatic system for the (unconditional) probability logic analyzed in [7]. The new axioms 8 and 9 , and Rule 4 express the standard definition of conditional probability. Rule 4 relates unary and binary probability operators. The inference rules 3 and 4 are infinitary.

Definition 3. A formula Φ is deducible from a set T of formulas $(T \vdash \Phi)$ if there is an at most countable sequence of formulas $\Phi_{0}, \Phi_{1}, \ldots, \Phi$, such that every Φ_{i} is an axiom or a formula from the set T, or it is derived from the preceding formulas by an inference rule.

A formula Φ is a theorem $(\vdash \Phi)$ if it is deducible from the empty set, and a proof for α is the corresponding sequence of formulas.

A set T of formulas is consistent if there is at least one formula from For ${ }_{L P P}^{C}$, and at least one formula from For $_{L P P}^{P}$ that are not deducible from T, otherwise T is inconsistent.

A consistent set T of formulas is said to be maximal consistent if the following holds:

- for every $\alpha \in \operatorname{For}_{L P P}^{C}$, if $T \vdash \alpha$, then $\alpha \in T$ and $P_{\geq 1} \alpha \in T$, and
- for every $A \in \operatorname{For}_{L P P}^{P}$, either $A \in T$ or $\neg A \in T$.
A set T is deductively closed if for every $\Phi \in$ For $_{L P P}$, if $T \vdash \Phi$, then $\Phi \in T$.

4 Soundness and Completeness

Now, following the ideas from $[6,8,10]$, we can prove the extended completeness theorem for the class $L P P_{\text {Meas }}$.

Theorem 1 (Soundness theorem). The axiomatic system $A x_{L P P}$ is sound with respect to the class of $L P P_{\text {Meas }}$-models.

In order to prove the completeness theorems for our logic, we follow the Henkin procedure. We begin with some auxiliary statements. Then, we describe how a consistent set T of formulas can be extended to a suitable maximal consistent set, and how a canonical model can be constructed out of such maximal consistent sets.

Theorem 2. 1. (Deduction theorem) If T is a set of formulas, Φ is a formula, and $T \cup\{\Phi\} \vdash \Psi$, then $T \vdash \Phi \rightarrow \Psi$, where Φ and Ψ are either both classical or both probability formulas.
2. Let α, β be classical formulas. Then:
(a) $\vdash P_{\geq 1}(\alpha \rightarrow \beta) \rightarrow\left(P_{\geq s} \alpha \rightarrow P_{\geq s} \beta\right)$,
(b) $\vdash P_{\geq r} \alpha \rightarrow P_{\geq s} \alpha, r>s$,
(c) if $\alpha \rightarrow \beta$ is a classical tautology, then $\vdash C P_{\geq 1}(\beta \mid \alpha)$,
(d) $\vdash C P_{\geq 1}(\alpha \mid \beta) \rightarrow C P_{\geq s}(\alpha \mid \beta)$,
(e) $\vdash P_{=0} \beta \rightarrow C P_{=1}(\alpha \mid \bar{\beta})$.

Theorem 3. Every consistent set of formulas can be extended to a maximal consistent set.

The next theorem summarizes some obvious properties of the maximal consistent sets of formulas.

Theorem 4. Let \bar{T} be a maximal consistent set of formulas. Let Φ and Ψ be either both classical or both probability formulas, and let α be a classical formula. Then the following hold:

1. If $\Phi \in \bar{T}$, then $\neg \Phi \notin \bar{T}$.
2. $\Phi \wedge \Psi \in \bar{T}$ iff $\Phi \in \bar{T}$ and $\Psi \in \bar{T}$.
3. If $\bar{T} \vdash \Phi$, then $\Phi \in \bar{T}$, i.e. \bar{T} is deductively closed.
4. If $\Phi \in \bar{T}$ and $\Phi \rightarrow \Psi \in \bar{T}$, then $\Psi \in \bar{T}$.
5. If $P_{\geq s} \alpha \in \bar{T}$, and $s \geq r$, then $P_{\geq r} \alpha \in \bar{T}$.
6. If r is a rational number and $r=\sup \left\{s: P_{\geq s} \alpha \in \bar{T}\right\}$, then $P_{\geq r} \alpha \in \bar{T}$.

Using the maximal consistent extension \bar{T} of the set T, we can define a tuple $\mathbf{M}=\langle W, H, \mu, v\rangle$, where:

- W contains all classical propositional interpretations of the set I of propositional letters,
- for every $\alpha \in \operatorname{For}_{L P P}^{C},[\alpha]=\{w \in W \mid w \models \alpha\}$ and $H=\{[\alpha] \mid \alpha \in$ $\left.\operatorname{For}_{L P P}^{C}\right\}$,
$-\mu: H \rightarrow[0,1]$, such that $\mu([\alpha])=\sup \left\{s: P_{\geq s}(\alpha) \in \bar{T}\right\}$,
$-v: W \times I \rightarrow\{$ true, false $\}$ is an assignment such that for every world $w \in W$ and every propositional letter $p \in I, v(w, p)=$ true iff $w \models p$.

Note that, since w 's are classical propositional interpretations, in the above definition of \mathbf{M} we use $w \models \alpha$ to denote that the interpretation w satisfies α in the sense of classical propositional logic.

Theorem 5. The above defined structure \mathbf{M} is an LPP $P_{\text {Meas-model }}$.
Theorem 6 (Completeness theorem). Every consistent set T of formulas has a model from $L P P_{\text {Meas }}$.

5 Decidability

Since, it is well known that there is a procedure to decide whether a classical propositional formula is satisfiable, to prove decidability of $L P P$, it is enough to show that satisfiability problem for probability formulas is decidable. We will use the linear programming theory to show that.

Let $A \in \operatorname{For}_{L P P}^{P}$ be a probability formula and p_{1}, \ldots, p_{n} be a list of all propositional letters from A. An atom a of A is a formula $\pm p_{1} \wedge \ldots \pm p_{n}$, where $\pm p_{i}$ is either p_{i}, or $\neg p_{i}$. For different atoms a_{i} and a_{j} we have $\vdash a_{i} \rightarrow \neg a_{j}$. Thus, in every $L P P_{\text {Meas }}-$ model $\mu\left(a_{i} \vee a_{j}\right)=\mu\left(a_{i}\right)+\mu\left(a_{j}\right)$. Using propositional reasoning and the fact that if $\vdash \alpha \leftrightarrow \beta$, then $\vdash P_{\geq_{s}} \alpha \leftrightarrow P_{\geq_{s}} \beta$, it is easy to show that every probability formula A is equivalent to a formula:

$$
\operatorname{DNF}(A)=\bigvee_{i=1}^{m} \bigwedge_{j=1}^{k_{i}} X_{i, j}\left(p_{1}, \ldots, p_{n}\right)
$$

called a disjunctive normal form of A, where: $X_{i, j}$ is a probability operator from the set: $\left\{P_{\geq s_{i, j}}, P_{<s_{i, j}}, C P_{\geq s_{i, j}}, C P_{<s_{i, j}}, C P_{\leq 0}, \neg C P_{\leq 0}\right\}\left(s_{i, j}\right.$ is a rational number from $[0,1])$, and $X_{i, j}\left(p_{1}, \ldots, p_{n}\right)$ denotes that propositional formula which is in the scope of the probability operator $X_{i, j}$ is in the complete disjunctive normal form, i.e. the propositional formula is a disjunction of the atoms of A.

The formula A is satisfiable iff at least one disjunct from $\operatorname{DNF}(A)$ is satisfiable. Let $\pm P_{\geq r_{1}} \alpha_{1}, \ldots, \pm P_{\geq r_{a}} \alpha_{a}, \pm C P_{\geq s_{1}}\left(\beta_{1} \mid \gamma_{1}\right), \ldots, \pm C P_{s_{b}}\left(\beta_{b} \mid \gamma_{b}\right)$, $\pm C P_{\leq 0}\left(\delta_{1} \mid \eta_{1}\right), \ldots, \pm C P_{\leq 0}\left(\delta_{c} \mid \eta_{c}\right), a+b+c=k_{i}$, be an enumeration of all probability formulas which appear as conjuncts in some disjunct $D_{i}=$ $\bigwedge_{j=1}^{k} X_{i, j}\left(p_{1}, \ldots, p_{n}\right)$ from $D N F(A)$, where $\pm P_{\geq r} \in\left\{P_{\geq r}, P_{<r}\right\}, \pm C P_{\geq r} \in$ $\left\{C P_{\geq r}, C P_{<r}\right\}$, and $\pm C P_{\leq 0} \in\left\{C P_{\leq 0}, \neg C P_{\leq 0}\right\}$.

Let the measure of the atom a_{i} be denoted by x_{i}. We use $a_{i} \in \alpha$ to denote that the atom a_{i} appears in the complete disjunctive normal form of the classical propositional formula α. The disjunct D_{i} is satisfiable iff at least one of the following finitely many systems of linear equalities and inequalities is satisfiable:

$$
\sum_{i=1}^{2^{n}} x_{i}=1
$$

$$
\begin{aligned}
& x_{i} \geq 0,\left(i=1, \ldots, 2^{n}\right) \\
& \sum_{a_{i} \in \alpha_{k}} x_{i} \geq r_{k}, \text { if } \pm P_{\geq r_{k}}=P_{\geq r_{k}},(k=1, \ldots, a) \\
& \sum_{a_{i} \in \alpha_{k}} x_{i}<r_{k}, \text { if } \pm P_{\geq r_{k}}=P_{<r_{k}},(k=1, \ldots, a) \\
& \sum_{a_{i} \in \gamma_{k}} x_{i}>0 \text { and } \sum_{a_{i} \in \beta_{k} \wedge \gamma_{k}} x_{i} \geq s_{k} \sum_{a_{i} \in \gamma_{k}} x_{i}, \text { or } \sum_{a_{i} \in \gamma_{k}} x_{i}=0, \text { if } \\
& \pm C P \geq s_{k}=C P_{\geq s_{k}},(k=1, \ldots, b) \\
& \sum_{a_{i} \in \gamma_{k}} x_{i}>0 \text { and } \sum_{a_{i} \in \beta_{k} \wedge \gamma_{k}} x_{i}<s_{k} \sum_{a_{i} \in \gamma_{k}} x_{i}, \text { if } \pm C P_{\geq s_{k}}=C P_{<s_{k}}, \\
& (k=1, \ldots, b) \\
& \sum_{a_{i} \in \eta_{k}} x_{i}>0 \text { and } \sum_{a_{i} \in \delta_{k} \wedge \eta_{k}} x_{i}=0, \text { if } \pm C P_{\leq 0}=C P_{\leq 0},(k=1, \ldots, c) \\
& \sum_{a} a_{i \in \eta_{k}} x_{i}>0 \text { and } \sum_{a_{i} \in \delta_{k} \wedge \eta_{k}} x_{i}>0, \text { or } \sum_{a_{i} \in \eta_{k}} x_{i}=0, \text { if } \pm C P_{\leq 0}=\neg C P_{\leq 0}, \\
& (k=1, \ldots, c)
\end{aligned}
$$

Since the problem of satisfiability of A is reduced to the linear systems solving problem, we have:

Theorem 7. The logic LPP is decidable.

References

1. R. Fagin, J. Halpern, N. Megiddo, A logic for reasoning about probabilities, Information and Computation, vol. 87, no. 1/2, $78-128,1990$.
2. N. Ikodinović, Z. Ognjanović, A logic with coherent conditional probabilities, to appear in the Proceedings of the Eighth European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty ECSQARU-2005, July 6-9, 2005 Barcelona, Spain (it will be published by Springer Verlag as a Lecture Notes in Computer Science volume), 2005.
3. E. Marchioni, L. Godo, A Logic for Reasoning about Coherent Conditional Probability: A Modal Fuzzy Logic Approach, JELIA 2004: 213-225.
4. Z. Marković, Z. Ognjanović, M. Rašković, A Probabilistic Extension of Intuitionistic Logic, Mathematical Logic Quarterly, vol 49, no 5, 415-424, 2003.
5. N. Nilsson, Probabilistic logic, Artificial inteligence, no. 28, 71-87, 1986.
6. Z. Ognjanović, M. Rašković, Some probability logics with new types of probability operators, Journal of logic and Computation, Volume 9, Issue 2, 181-195, 1999.
7. Z. Ognjanović, M. Rašković, Some first order probability logics, Theoretical Computer Science, Vol. 247, No. 1-2, 191 - 212, 2000.
8. M. Rašković, Classical logic with some probability operators, Publication de l'Institut Math. (NS) vol 53 (67), 1993, 1-3.
9. M. Rašković, Z. Ognjanović, Z. Marković, A probabilistic Approach to Default Reasoning, 10th International Workshop on Non-Monotonic Reasoning NMR2004, Westin Whistler, Canada, June 6-8, 335-341, 2004.
10. M. Rašković, Z. Ognjanović, Z. Marković, A Logic with Conditional Probabilities, 9th Euroean conference JELIA'04 Logics in Artificial Inteligence, Lecture notes in artificial inteligence (LNCS/LNAI) 3229, 226-238, 2004.

[^0]: * This research was supported by Ministarstvo za nauku, tehnologije i razvoj Republike Srbije, through Matematički institut, under grant 1379.

