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Abstract. In this paper we investigate a probability logic with condi-
tional probability operators. The logic (denoted LPP ) allows making
statements such as CP≥s(α | β), with the intended meaning ”the condi-
tional probability of α given β is at least s”. Conditional probabilities are
defined in the usual Kolmogorv style: P (α | β) = P (α∧β)

P (β)
, P (β) > 0. A

possible-world approach is used to give semantics to probability formulas.
An infinitary axiomatic system for our logic is given and the correspond-
ing strong completeness theorem is proved. It is proved that the logic is
decidable.

1 Syntax

The language L of LPP consists of a countable set I = {p1, p2, . . . } of proposi-
tional letters, classical connectives ∧ and ¬, a list of unary probabilistic operators
P≥s for every rational number s ∈ [0, 1], a list of binary probability operators
CP≥s for every rational number s ∈ [0, 1], and a binary probability operator
CP≤0.

The set ForC
LPP of all classical propositional formulas is defined inductively

as the smallest set X containing propositional letters and closed under the usual
formation rules: if α and β belong to X , then ¬α, α ∧ β are in X . Elements of
ForC

LPP will be denoted by α, β, . . . The set ForP
LPP of all probability formulas

is the smallest set Y containing all formulas of the forms: P≥sα, CP≥s(α | β),
CP≤0(α | β), for all α, β ∈ ForC

LPP and each rational number s from [0, 1],
and closed under the formation rules: if A and B belong to Y , then ¬A and
A ∧ B are in Y . The formulas from ForP

LPP will be denoted by A,B, . . . Let
ForLPP = ForC

LPP ∪ ForP
LPP . The formulas from ForLPP will be denoted by

Φ, Ψ , . . .
As it can be seen, neither mixing of pure propositional formulas and prob-

ability formulas, nor nested probability operators are allowed. For example,
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Srbije, through Matematički institut, under grant 1379.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/24060555?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
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¬P≥0.5p1 ∧ CP≥1(p1 → p2 | p2) is a syntactically correct formula of the LPP ,
while CP≥0.5(p1 | CP≥0.5(p1 | P≥1p1)) and p1 ∧ P≥1p1 are not.

We use the usual abbreviations for the other classical connectives ∨, →, ↔.
For every rational number s from [0, 1] we denote ¬P≥s(α) by P<s(α), P≥1−s(¬α)
by P≤s(α), ¬P≤s(α) by P>s(α), and P≥s(α)∧P≤s(α) by P=s(α) Also, for s 
= 0,

we use the following abbreviations: CP<s(α | β) def= ¬CP≥s(α | β), CP≤s(α |
β) def= CP≥1−s(¬α | β), CP>s(α | β) def= ¬CP≤s(α | β), and CP=s(α | β) def=
CP≥s(α | β) ∧ CP≤s(α | β). For α ∈ ForC

LPP , and A ∈ ForP
LPP , we abbreviate

both α ∧ ¬α and A ∧ ¬A by ⊥ letting the context determine the meaning.

2 Semantics

The semantics for ForLPP will be based on the possible-world approach.

Definition 1. An LPP−model is a structure M = 〈W,H, µ, v〉 where:

– W is a nonempty set of objects called worlds,
– H is an algebra of subsets of W , and
– µ is a finitely additive measure, µ : H → [0, 1],
– v : W × I → {true, false} provides for each world w ∈ W a two-valued

evaluation of the propositional letters, that is v(w, p) ∈ {true, false}, for
each propositional letter p ∈ I and each world w ∈ W ; a truth-evaluation
v(w, ·) is extended to classical propositional formulas as usual.

If M is an LPP−model and α ∈ ForC
LPP , the set {w : v(w,α) = true} is

denoted by [α]M. We will omit the subscript M from [α]M and write [α] if M
is clear from the context. An LPP−model M = 〈W,H, µ, v〉 is measurable if
[α]M ∈ H for every formula α ∈ ForC

LPP . In this section we focus on the class
of all measurable models (denoted by LPPMeas).

Definition 2. The satisfiability relation fulfills the following conditions for ev-
ery LPP−model M = 〈W,H, µ, v〉 and every world w ∈W :

– if α ∈ ForC
LPP , M, w |= α iff v(w,α) = true,

– if α ∈ ForC
LPP , M, w |= P≥sα iff µ([α]) ≥ s,

– α, β ∈ ForC
LPP , M, w |= CP≥s(α | β) iff either µ([α]∩[β])

µ([β]) ≥ s and µ([β]) > 0,
or µ([β]) = 0,

– α, β ∈ ForC
LPP , M, w |= CP≤0(α | β) iff µ([α] ∩ [β]) = 0 and µ([β]) > 0,

– if A ∈ ForP
LPP , M, w |= ¬A iff M, w 
|= A,

– if A,B ∈ ForP
LPP , M, w |= A ∧B iff M, w |= A and M, w |= B.

A formula Φ ∈ ForLPP is satisfiable if there is an LPPMeas-model M = 〈W,H, µ, v〉,
and a world w ∈ W such that M, w |= Φ; Φ is valid in an LPPMeas-model
M = 〈W,H, µ, v〉 (denoted M |= Φ), if for every world w ∈ W , M, w |= Φ; Φ is
valid if for every LPPMeas-model M, M |= Φ; a set of T formulas is satisfiable
if there is an LPPMeas-model M = 〈W,H, µ, v〉, and a world w ∈ W such that
M, w |= Φ for every Φ ∈ T .
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3 Axiomatic system

The axiomatic system AxLPP for LPP contains the following axiom schemata:

1. all ForC
LPP−instances of classical propositional tautologies,

2. all ForP
LPP−instances of classical propositional tautologies,

3. P≥0α,
4. P≤rα → P<sα, s > r,
5. P<sα→ P≤sα,
6. (P≥rα ∧ P≥sβ ∧ P≥1(¬α ∨ ¬β)) → P≥min(1,r+s)(α ∨ β),
7. (P≤rα ∧ P<sβ) → P<r+s(α ∨ β), r + s ≤ 1,
8. CP≥s(α | β) ∧ P≥tβ → P≥s·t(α ∧ β), t > 0,
9. (P=0(α ∧ β) ∧ P>0β) ↔ CP≤0(α | β),

and inference rules:

1. From Φ and Φ→ Ψ infer Ψ , Φ, Ψ ∈ ForC
LPP or Φ, Ψ ∈ ForP

LPP ,
2. From α infer P≥1α,
3. From A → P≥s− 1

k
α, for every integer k ≥ 1

s , infer A→ P≥sα.
4. From A → (P≥rβ → P≥r·s(α ∧ β)), for every rational number r from [0, 1],

infer A→ CP≥s(α | β).

AxLPP extends the axiomatic system for the (unconditional) probability logic
analyzed in [7]. The new axioms 8 and 9, and Rule 4 express the standard
definition of conditional probability. Rule 4 relates unary and binary probability
operators. The inference rules 3 and 4 are infinitary.

Definition 3. A formula Φ is deducible from a set T of formulas (T 	 Φ) if
there is an at most countable sequence of formulas Φ0, Φ1, . . . , Φ, such that every
Φi is an axiom or a formula from the set T , or it is derived from the preceding
formulas by an inference rule.

A formula Φ is a theorem (	 Φ) if it is deducible from the empty set, and a
proof for α is the corresponding sequence of formulas.

A set T of formulas is consistent if there is at least one formula from ForC
LPP ,

and at least one formula from ForP
LPP that are not deducible from T , otherwise

T is inconsistent.
A consistent set T of formulas is said to be maximal consistent if the following

holds:

– for every α ∈ ForC
LPP , if T 	 α, then α ∈ T and P≥1α ∈ T , and

– for every A ∈ ForP
LPP , either A ∈ T or ¬A ∈ T .

A set T is deductively closed if for every Φ ∈ ForLPP , if T 	 Φ, then Φ ∈ T .
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4 Soundness and Completeness

Now, following the ideas from [6, 8, 10], we can prove the extended completeness
theorem for the class LPPMeas.

Theorem 1 (Soundness theorem). The axiomatic system AxLPP is sound
with respect to the class of LPPMeas-models.

In order to prove the completeness theorems for our logic, we follow the
Henkin procedure. We begin with some auxiliary statements. Then, we describe
how a consistent set T of formulas can be extended to a suitable maximal con-
sistent set, and how a canonical model can be constructed out of such maximal
consistent sets.

Theorem 2. 1. (Deduction theorem) If T is a set of formulas, Φ is a for-
mula, and T ∪ {Φ} 	 Ψ , then T 	 Φ → Ψ , where Φ and Ψ are either both
classical or both probability formulas.

2. Let α, β be classical formulas. Then:
(a) 	 P≥1(α→ β) → (P≥sα → P≥sβ),
(b) 	 P≥rα → P≥sα, r > s,
(c) if α→ β is a classical tautology, then 	 CP≥1(β | α),
(d) 	 CP≥1(α | β) → CP≥s(α | β),
(e) 	 P=0β → CP=1(α | β).

Theorem 3. Every consistent set of formulas can be extended to a maximal
consistent set.

The next theorem summarizes some obvious properties of the maximal con-
sistent sets of formulas.

Theorem 4. Let T be a maximal consistent set of formulas. Let Φ and Ψ be
either both classical or both probability formulas, and let α be a classical formula.
Then the following hold:

1. If Φ ∈ T , then ¬Φ 
∈ T .
2. Φ ∧ Ψ ∈ T iff Φ ∈ T and Ψ ∈ T .
3. If T 	 Φ, then Φ ∈ T , i.e. T is deductively closed.
4. If Φ ∈ T and Φ → Ψ ∈ T , then Ψ ∈ T .
5. If P≥sα ∈ T , and s ≥ r, then P≥rα ∈ T .
6. If r is a rational number and r = sup{s : P≥sα ∈ T}, then P≥rα ∈ T .

Using the maximal consistent extension T of the set T , we can define a tuple
M = 〈W,H, µ, v〉, where:

– W contains all classical propositional interpretations of the set I of propo-
sitional letters,

– for every α ∈ ForC
LPP , [α] = {w ∈ W | w |= α} and H = {[α] | α ∈

ForC
LPP },
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– µ : H → [0, 1], such that µ([α]) = sup{s : P≥s(α) ∈ T},
– v : W ×I → {true, false} is an assignment such that for every world w ∈W

and every propositional letter p ∈ I, v(w, p) = true iff w |= p.

Note that, since w’s are classical propositional interpretations, in the above def-
inition of M we use w |= α to denote that the interpretation w satisfies α in the
sense of classical propositional logic.

Theorem 5. The above defined structure M is an LPPMeas-model.

Theorem 6 (Completeness theorem). Every consistent set T of formulas
has a model from LPPMeas.

5 Decidability

Since, it is well known that there is a procedure to decide whether a classical
propositional formula is satisfiable, to prove decidability of LPP , it is enough
to show that satisfiability problem for probability formulas is decidable. We will
use the linear programming theory to show that.

Let A ∈ ForP
LPP be a probability formula and p1, . . . , pn be a list of all

propositional letters from A. An atom a of A is a formula ±p1 ∧ . . .± pn, where
±pi is either pi, or ¬pi. For different atoms ai and aj we have 	 ai → ¬aj .
Thus, in every LPPMeas−model µ(ai ∨ aj) = µ(ai) + µ(aj). Using propositional
reasoning and the fact that if 	 α↔ β, then 	 P≥sα↔ P≥sβ, it is easy to show
that every probability formula A is equivalent to a formula:

DNF (A) =
m∨

i=1

ki∧
j=1

Xi,j(p1, . . . , pn)

called a disjunctive normal form of A, where: Xi,j is a probability operator from
the set: {P≥si,j , P<si,j , CP≥si,j , CP<si,j , CP≤0, ¬CP≤0} (si,j is a rational num-
ber from [0, 1]), and Xi,j(p1, . . . , pn) denotes that propositional formula which
is in the scope of the probability operator Xi,j is in the complete disjunctive
normal form, i.e. the propositional formula is a disjunction of the atoms of A.

The formula A is satisfiable iff at least one disjunct from DNF (A) is sat-
isfiable. Let ±P≥r1α1, . . . , ±P≥raαa, ±CP≥s1(β1 | γ1), . . . , ±CPsb

(βb | γb),
±CP≤0(δ1 | η1), . . . , ±CP≤0(δc | ηc), a + b + c = ki, be an enumeration
of all probability formulas which appear as conjuncts in some disjunct Di =∧k

j=1 Xi,j(p1, . . . , pn) from DNF (A), where ±P≥r ∈ {P≥r, P<r}, ±CP≥r ∈
{CP≥r, CP<r}, and ±CP≤0 ∈ {CP≤0,¬CP≤0}.

Let the measure of the atom ai be denoted by xi. We use ai ∈ α to denote
that the atom ai appears in the complete disjunctive normal form of the classical
propositional formula α. The disjunct Di is satisfiable iff at least one of the
following finitely many systems of linear equalities and inequalities is satisfiable:∑2n

i=1 xi = 1
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xi ≥ 0, (i = 1, . . . , 2n)∑
ai∈αk

xi ≥ rk, if ±P≥rk
= P≥rk

, (k = 1, . . . , a)∑
ai∈αk

xi < rk, if ±P≥rk
= P<rk

, (k = 1, . . . , a)∑
ai∈γk

xi > 0 and
∑

ai∈βk∧γk
xi ≥ sk

∑
ai∈γk

xi, or
∑

ai∈γk
xi = 0, if

±CP≥sk
= CP≥sk

, (k = 1, . . . , b)∑
ai∈γk

xi > 0 and
∑

ai∈βk∧γk
xi < sk

∑
ai∈γk

xi, if ±CP≥sk
= CP<sk

,
(k = 1, . . . , b)∑

ai∈ηk
xi > 0 and

∑
ai∈δk∧ηk

xi = 0, if ±CP≤0 = CP≤0, (k = 1, . . . , c)∑
ai∈ηk

xi > 0 and
∑

ai∈δk∧ηk
xi > 0, or

∑
ai∈ηk

xi = 0, if ±CP≤0 = ¬CP≤0,
(k = 1, . . . , c)

Since the problem of satisfiability of A is reduced to the linear systems solving
problem, we have:

Theorem 7. The logic LPP is decidable.
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