
A Branch-and-Cut Strategy for the
Manickam-Miklós-Singhi Conjecture

Stephen G. Hartke∗ Derrick Stolee†

February 14, 2013

Abstract

The Manickam-Miklós-Singhi Conjecture states that when n ≥ 4k, every multi-
set of n real numbers with nonnegative total sum has at least

(
n−1
k−1
)
k-subsets with

nonnegative sum. We develop a branch-and-cut strategy using a linear programming
formulation to show that verifying the conjecture for fixed values of k is a finite prob-
lem. To improve our search, we develop a zero-error randomized propagation algorithm.
Using implementations of these algorithms, we verify a stronger form of the conjecture
for all k ≤ 7.

1 Introduction

Given a sequence x1, . . . , xn of real numbers with nonnegative sum
∑n

i=1 xi, it is natural to
ask how many partial sums must be nonnegative. Bier and Manickam [4] showed that every
nonnegative sum

∑n
i=1 xi has at least 2n−1 nonnegative partial sums. Manickam, Miklós,

and Singhi [10, 11] considered the situation when each partial sum has exactly k terms (we
call such partial sums k-sums), and they conjectured there are many nonnegative k-sums
when n is sufficiently large.

Conjecture 1 (Manickam-Miklós-Singhi [10, 11]). Let k ≥ 2 and n ≥ 4k. For all x1, . . . , xn ∈
R such that

∑n
i=1 xi ≥ 0, there are at least

(
n−1
k−1

)
subsets S ⊂ [n] with |S| = k such that∑

i∈S xi ≥ 0.

The bound
(
n−1
k−1

)
is sharp since the example x1 = n − 1 and xi = −1 for i 6= 1 has sum

zero and a k-sum is nonnegative exactly when it contains x1. The bound n ≥ 4k is not
necessarily sharp.

In this paper, we develop a computational method to solve fixed cases of the conjecture
based on a poset of k-sums and a linear programming instance. In particular, we prove a

∗Department of Mathematics, University of Nebraska–Lincoln, hartke@math.unl.edu. Supported by
National Science Foundation Grant DMS-0914815.
†Department of Mathematics, University of Illinois, stolee@illinois.edu.

1

ar
X

iv
:s

ub
m

it/
06

54
64

1
 [

m
at

h.
C

O
]

 1
4

Fe
b

20
13

CORE Metadata, citation and similar papers at core.ac.uk

Provided by CiteSeerX

https://core.ac.uk/display/24060549?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

stronger statement than the conjecture for all k ≤ 7. This leads us to formulate a stronger
form of the conjecture (see Conjecture 2).

Conjecture 1 is trivial for k = 1 and is a simple exercise for k = 2. Marino and Chi-
aselotti [12] proved the conjecture for k = 3. Bier and Manickam [4] showed there exists
a minimum integer f(k) such that for all n ≥ f(k), there are at least

(
n−1
k−1

)
nonnegative

k-sums in any nonnegative sum of n terms. Subsequent results [3, 4, 5, 6, 15] give several
exponential upper bounds on f(k). Alon, Huang, and Sudakov [1] showed the polynomial
bound f(k) ≤ min{33k2, 2k3}. Chowdhury [7] proved f(3) = 11 and f(4) ≤ 24.

We prove f(4) = 14, f(5) = 17, f(6) = 20, and f(7) = 23. For k ≤ 7 and n < f(k),
we find that the nonnegative sums with the fewest nonnegative k-sums have the following
structure: for positive integers a and b summing to n, let x1 = · · · = xb = a and xb+1 =
· · · = xn = −b. When 3k < n < f(k), the extremal examples have a = 3, b = n − 3, and(
n−3
k

)
nonnegative k-sums. This leads us to make the following conjecture.

Conjecture 2. Let Nk be the smallest integer such that
(
Nk−3

k

)
≥
(
Nk−1
k−1

)
. Then f(k) = Nk,

and hence1

lim
k→∞

f(k)

k
= lim

k→∞

Nk

k
≈ 3.147899.

In the next section we develop some necessary notation and preliminary results. In Sec-
tion 2, we place a symmetry-breaking constraint on the vectors and investigate a natural
poset among the k-sums. In Section 3, we develop our branch-and-cut strategy for verify-
ing the conjecture. We then modify this algorithm by adding a randomized propagation
algorithm in Section 4. In Section 5 we discuss stronger forms of the conjecture.

1.1 Preliminaries

Let a1, . . . , a` be real numbers and e1, . . . , e` be positive integers. We denote by ae11 ae22 . . . ae``
the vector in Rn with the first e1 coordinates equal to a1, the next e2 coordinates equal to
a2, and so on until the last e` coordinates are equal to a`. Using this notation, the vector
(n− 1)1 (−1)n−1 is conjectured to achieve the minimum number of nonnegative k-sets when
n ≥ 4k.

For a vector x = (x1, . . . , xn) ∈ Rn and a k-set S, define σS(x) =
∑

i∈S xi. The number

of nonnegative k-sums of x is sk(x) =
∣∣∣{S ∈ ([n]k) : σS(x) ≥ 0

}∣∣∣. For small values of k and n,

we will compute the minimum integer g(n, k) such that all vectors x ∈ Rn with nonnegative
sum have sk(x) ≥ g(n, k). By the sharpness example, g(n, k) ≤

(
n−1
k−1

)
always. Define the

deficiency function as ĝ(n, k) =
(
n−1
k−1

)
− g(n, k).

Since removing the least coordinate from a vector x ∈ Rn results in an (n−1)-coordinate
vector with nonnegative sum, the function g(n, k) is nondecreasing in n. Bier and Man-
ickam [4] proved that ĝ(n, k) = 0 when k divides n by using a theorem of Baranyai [2].

1This limit was computed by first simplifying
(
x−3
k

)
−
(
x−1
k−1
)

= 0 to (x− k)(x− k− 1)(x− k− 2)− k(x−
1)(x− 2) = 0 and taking the real root for x of the resulting cubic.

2

The following lemma of Chowdhury [7] reduces the problem of computing f(k) to verifying
ĝ(n, k) = 0 for a finite number of values n.

Lemma 3 (Chowdhury [7]). If ĝ(n, k) = 0, then ĝ(n+ k, k) = 0.

This lemma allows the computation of f(k) by first computing a finite number of values
of g(n, k). We develop a finite process to verify g(n, k) ≥ t for fixed values of k and n, and
hence by Lemma 3 we determine f(k) when we find that g(n, k) ≥

(
n−1
k−1

)
for k consecutive

values of n. Our computation to verify g(n, k) ≥ t for fixed integers n, k, and t is designed
as a search for a vector x ∈ Rn with sk(x) < t. By constraining the order of the coordinates
in a vector x ∈ Rn, we are able to make significant deductions about the sign of the k-sums
of x, which makes the computation very efficient. We first discuss this constraint on the
coordinates of x in Section 2, and then discuss the algorithm in Section 3.

2 The Shift Poset

To better control the vectors x ∈ Rn with nonnegative sum, we make a simple ordering con-
straint that adds significant structure. Let Fn be the set of vectors x ∈ Rn with nonnegative
sum and with the sequence xi nondecreasing. That is,

Fn =

{
x ∈ Rn :

n∑
i=1

xi ≥ 0 and x1 ≥ x2 ≥ · · · ≥ xn

}
.

Denote by [n] the set {1, . . . , n} and by
(
[n]
k

)
the collection of k-subsets of [n]. For two

k-sets S = {i1 < i2 < · · · < ik} and T = {j1 < j2 < · · · < jk}, let S � T if and only if i` ≤ j`
for all ` ∈ {1, . . . , k}. We call this poset over

(
[n]
k

)
the shift poset. Since we write x1, . . . , xn

from left to right in nondecreasing order and associate a k-set S as with the values xi for
i ∈ S, then when S � T we say S is to the left of T and T is to the right of S. Observe that
a relation S � T is a cover relation if and only if S \ T = {i}, T \ S = {j}, and i = j − 1.

Since we restrict vectors in Fn to have nondecreasing values as the index increases, S � T
implies σS(x) ≥ σT (x) for all x ∈ Fn. Therefore, if σT (x) is nonnegative, then so is σS(x).
Similarly, if σS(x) is strictly negative, then so is σT (x).

Given S ∈
(
[n]
k

)
, let the left shift of S be Lk(S) = {T ∈

(
[n]
k

)
: T � S} and the right shift

of S be Rk(S) = {T ∈
(
[n]
k

)
: S � T}. Given a set A ⊆

(
[n]
k

)
, the left closure of A, denoted

Lk(A), is the union of all families Lk(S) over all sets S ∈ A. Similarly, the right closure of
A, denoted Rk(A), is the union of all families Rk(S) over all sets S ∈ A.

The shift poset has many interesting properties, including the fact that it is a lattice,
which will be critical in later calculations. Fix any list F = {S1, . . . , S`} of k-sets where
Sj = {ij,1 < · · · < ij,k}. The meet of F , denoted ∧F or ∧`j=1Sj, is the k-set T such that for
all T ′ where Sj � T ′ for all j ∈ [`], then T � T ′. The join of F , denoted ∨F or ∧`j=1Sj, is
the k-set T such that for all T ′ where T ′ � Sj for all j ∈ [`], then T ′ � T . The meet and

3

join can be computed as

∧F = ∧`j=1Sj =
{

max{ij,t : j ∈ [`]} : t ∈ [k]
}
,

∨F = ∨`j=1Sj =
{

min{ij,t : j ∈ [`]} : t ∈ [k]
}
.

Observe that the k-sets to the left of all S1, . . . , S` are exactly the k-sets to the left of the
join ∨`j=1Sj, and the k-sets to the right of all S1, . . . , S` are exactly the k-sets to the right of
the meet ∧`j=1Sj. That is,

⋂̀
j=1

Lk(Sj) = L
(
∨`

j=1Sj

)
,

⋂̀
j=1

Rk(Sj) = R
(
∧`

j=1Sj

)
.

The shift poset preserves order with two standard linear orders of k-sets: the lexicographic
and colexicographic orders. Let lex(S) and colex(S) be the lexicographic and colexicographic
rank, respectively, of a k-set S = {i1 < · · · < ik} ⊆ {1, . . . , n}, defined as

lex(S) =
k∑

`=1

i`−1∑
j=i`−1+1

(
n− j
k − `

)
, colex(S) =

k∑
`=1

(
i` − 1

`

)
,

where i0 = 0 by convention. These functions are bijections from
(
[n]
k

)
to the set {0, . . . ,

(
n
k

)
−1}

with the property that when S � T we also have lex(S) ≤ lex(T) and colex(S) ≤ colex(T).
In addition to these ranking functions, the lexicographic and colexicographic orders also
have efficient successor and predecessor calculations. We use these methods to iterate over
all k-sets to find �-maximal or �-minimal elements.

Finally, we note that the shift poset is isomorphic to the dominance poset over composi-
tions of n+ 1 into k + 1 positive parts. Given two compositions of n+ 1 into k + 1 positive
parts, where A = {a1, . . . , ak+1} and B = {b1, . . . , bk+1}, A E B in the dominance order
when

∑t
`=1 a` ≤

∑t
`=1 b` for all t ∈ [k]. Note that the dominance order, also called the

majorization order, is usually defined over partitions, but the defining inequalities are the
same for compositions (see [14]).

For S = {i1 < · · · < ik}, let AS = {a1, . . . , ak+1} where a1 = i1, a` = i` − i`−1 for
2 ≤ ` ≤ k, and ak+1 = n + 1 − ik. The image AS has the property that

∑t
`=1 a` = it for

t ≤ k and
∑k+1

`=1 a` = n + 1. Therefore, if S � T in the shift poset, then AS E AT in the
dominance order.

2.1 Counting Shifts

The functions Lk(S) = |Lk(S)| and Rk(S) = |Rk(S)| count the size of the left and right
shifts, respectively. These shift functions are quickly computable using a recursive formula
due to Chowdhury [7] which we prove for completeness. If S = {i1, . . . , ik} and j ≤ k, let
Sj = {i1, . . . , ij}. We define Lj(S) = |Lj(Sj)|.

4

Proposition 4 (Chowdhury [7]). For a k-set S = {i1 < i2 < · · · < ik} ∈
(
[n]
k

)
,

Lk(S) =

(
ik
k

)
−
(
ik − i1
k

)
−

k−2∑
`=1

L`(S)

(
ik − i`+1

k − `

)
.

Proof. Observe that Lk(S) ⊆
(
[ik]
k

)
. We will count the sets T = {j1 < · · · < jk} in

(
[ik]
k

)
\

Lk(S) as
(
ik−i1

k

)
+
∑k−2

`=1 L`(S`)
(
ik−i`+1

k−`

)
. Every such set T has some minimum parameter

` ≥ 0 such that j`+1 > i`+1. If ` = 0, then the minimum of T is strictly larger than i1 and
there are exactly

(
ik−i1

k

)
such sets. When ` ≥ 1, we have jt ≤ it for all t ≤ `. These sets

can be constructed from the L`(S`) `-subsets of [n] that are to the left of S` and extended
by exactly

(
ik−i`+1

k−`

)
(k − `)-subsets of {i`+1 + 1, . . . , ik}.

Observe that if S = {i1 < · · · < ik}, then by symmetry for T = {n+ 1− i` : ` ∈ [k]} we
have Rk(S) = Lk(T). While computing Lk(S) for all k-sets, we first compute and store the
values of Lj(Sj) for 1 ≤ j < k.

2.2 Required Negative Sets

We use the shift function Lk(S) to determine that certain k-sums must be negative in order
to avoid t nonnegative k-sums.

Observation 5. Let n, k, t be integers. If S ∈
(
[n]
k

)
has Lk(S) ≥ t, then every vector x ∈ Fn

with sk(x) < t has σS(x) < 0.

Lemma 6. Fix integers n, k, t with t ≤
(
n−1
k−1

)
and a k-set S ∈

(
[n]
k

)
with 1 ∈ S. If Lk(S) +

g(n− k, k) ≥ t, then every vector x ∈ Fn with sk(x) < t has σS(x) < 0.

Proof. Fix a vector x ∈ Fn with sk(x) < t. The k-set T = {1, n − k + 2, . . . , n} has
Lk(T) =

(
n−1
k−1

)
, so by Observation 5, σT (x) < 0. Since

∑n
i=1 xi ≥ 0, we have

∑n−k+1
i=2 xi =∑

i/∈T xi ≥ 0. Let A be the family of nonnegative k-sums over x2, . . . , xn−k. By the definition
of g, |A| ≥ g(n− k, k). For all Q ∈ A, the minimum element of Q is at least 2 and hence Q
is not to the left of S, since the minimum element of S is 1. Therefore, if σS(x) ≥ 0, then
sk(x) ≥ |Lk(S)|+ |A| ≥ Lk(S) + g(n− k, k) ≥ t, a contradiction.

Similar inferences, discussed in Section 3.3, will be important to the performance of our
algorithms.

3 The Branch-and-Cut Method

Our method to verify the conjecture centers on searching for vectors x ∈ Fn which are
counterexamples (i.e. sk(x) <

(
n−1
k−1

)
). In addition, for values of n less than f(k), we will

search for vectors with the fewest number of nonnegative k-sets. For integers n, k, and t,
we say a vector x ∈ Fn is (n, k, t)-bad if sk(x) < t. Using the shift poset, we will determine
properties of such an (n, k, t)-bad vector and use that to guide our search.

5

For a vector x ∈ Fn, the k-subsets of [n] are partitioned into two parts by whether the
associated k-sums are nonnegative or strictly negative. Let C+x contain the k-sets S with
σS(x) ≥ 0 and C−x contain the the k-sets T with σT (x) < 0. Observe C+x = Lk(C+x) and
C−x = Rk(C−x). Our computational method focuses on testing whether vectors x ∈ Fn exist,
given certain contraints on C+x and C−x .

Definition 7. Given families A+ and A− of k-sets, let the linear program P (k, n,A+,A−)
be defined as

P (k, n,A+,A−) : minimize x1

subject to
n∑

i=1

xi ≥ 0

xi − xi+1 ≥ 0 ∀i ∈ {1, . . . , n− 1}∑
i∈S

xi ≥ 0 ∀S ∈ A+

∑
i∈T

xi ≤ −1 ∀T ∈ A−

x1, . . . , xn ∈ R

A vector x ∈ Fn has C+x ⊇ Lk(A+) and C−x ⊇ Rk(A−) if and only if an appropriate scalar
multiple of x is a feasible solution to P (n, k,A+,A−).

Due to the following observations, we can verify that sk(x) ≥ t for the infinite set of
vectors x in Fn by searching for partitions of

(
[n]
k

)
that correspond to the nonnegative and

negative k-sums of x.

Observation 8. If Lk(A+)∪Rk(A−) =
(
[n]
k

)
, then every feasible solution x to P (n, k,A+,A−)

has sk(x) = |Lk(A+)|. In particular, a feasible solution to P (n, k,A+,A−) is (n, k, t)-bad if
and only if |Lk(A+)| < t.

Observation 9. If P (n, k,A+,A−) is infeasible, then no vector x ∈ Fn has C+x ⊇ Lk(A+)
and C−x ⊇ Rk(A−).

Observation 10. If |Lk(A+)| ≥ t, then sk(x) ≥ t for all feasible solutions to P (n, k,A+,A−).

By searching for sets A+,A− such that a solution to P (n, k,A+,A−) has sk(x) < t, we
either find these vectors or determine that none exist. Thus, determining g(n, k) is a finite
problem, and by Lemma 3 determining f(k) is a finite problem.

3.1 The Search Strategy

Fix n, k, and t ≤
(
n−1
k−1

)
. We will search for sets A+ and A− such that the solution x to

P (n, k,A+,A−) has sk(x) < t. If Lk(A+) ∪ Rk(A−) is a partition of
(
[n]
k

)
with |Lk(A+)| <

t, then every feasible solution to P (n, k,A+,A−) is (n, k, t)-bad. The reason we use the

6

objective of minimizing x1 in the linear program is to try and distance the optimal solution
from the conjectured sharp example of x1 being a large positive value and x2, . . . , xn being
small negative values. In practice, when an (n, k, t)-bad vector exists we discover it before
Lk(A+) and Rk(A−) partition

(
[n]
k

)
.

During the algorithm, we will store two collections of k-sets, B+ and B−, called branch
sets. We initialize B+ = B− = ∅ and always B+ ⊆ A+ and B− ⊆ A−. The difference
between B− and A−, for instance, is that the sets in B− are chosen to have negative sum,
but the sets in A− \ B− are sets that must have negative sum for all (n, k, t)-bad vectors x
with C+x ⊇ B+ and C−x ⊇ B−.

The search procedure BranchAndCut (Algorithm 1) is recursive, taking parameters
n, k, t,B+,B−, C∗ under the requirement that Lk(B+) ∪ Rk(B−) ∪ C∗ is a partition of

(
[n]
k

)
.

The collection C∗ =
(
[n]
k

)
\ (Lk(B+) ∪ Rk(B−)) contains the k-sets S where σS(x) is not

immediately decided by the constraints on B+ and B−.
We will refer to each recursive call to BranchAndCut as a search node, and at each

search node we perform the following three actions:

1. Determine the �-maximal sets S ∈ C∗ such that all vectors x with C+x ⊇ B+ ∪ {S}
have sk(x) ≥ t and add these sets to A−.

2. Test that the linear program P (n, k,B+,A−) is feasible (prune if infeasible).

3. Select a set S ∈ C∗ and branch on the choice of placing S in B+ or B−, creating two
new search nodes.

One crucial step for the first action performed at each node is computing the number of
k-sets in C∗ that are also to the left of a set S or to the right of a set S. Define the functions
L∗k(S) = |Lk(S) \ Lk(A+)| and R∗k(S) = |Rk(S) \ Rk(A−)|.

The algorithm SelectBranchSet is a method for selecting a set S ∈ C∗ for the branch-
ing step is called a branching rule. A good branching rule can significantly reduce the number
of visited search nodes. However, it is difficult to predict which set is the best choice. Any
branching rule that selects a k-set S from C∗ will provide a correct algorithm, but these
choices can greatly change the size and structure of the search tree. Based on our experi-
ments and choices of several branching rules, we found selecting a k-set S that maximizes
min{L∗k(S), R∗k(S)} was most effective. This rule ensured that both branches removed as
many sets from C∗ as possible.

In Section 3.3, we define the algorithm PropagateNegative (Algorithm 2). Before
that, we must discuss how to efficiently compute L∗k(S) and R∗k(S).

3.2 Computing Intersections with C∗

For this discussion, fix two families A+ and A− with C∗ =
(
[n]
k

)
\(Lk(A+)∪Rk(A−)). We will

use three methods to compute |Lk(S)∩C∗| and |Rk(S)∩C∗|: breadth-first-search, inclusion-
exclusion, and iterative updates. In all techniques, we will store markers for whether a set
T is in Lk(A+), Rk(A−), or C∗.

7

Algorithm 1 The recursive algorithm BranchAndCut(n, k, t,B+,B−, C∗).
Require: Lk(B+), Rk(B−), and C∗ partition

(
[n]
k

)
.

Ensure: Returns an (n, k, t)-bad vector x with C+x ⊇ B+ and C−x ⊇ B− if it exists.
if |L(B+)| ≥ t then

return Null
end if
A+,A−, C∗ ← PropagateNegative(n, k, t,B+,B−, C∗) (See Algorithm 2)
Find optimal solution x to P (n, k,A+,A−)
if x ≡ Null or sk(x) < t then

The linear program is infeasible or found a counterexample.
return x

end if
S ← SelectBranchSet(A+,A−, C∗)
B+
1 ← B+, B−1 ← B− ∪ {S}, C∗1 ← C∗0 \ Rk(S)

x← BranchAndCut(n, k, t,B+
1 ,B−1 , C∗1)

if x ≡ Null then
B+
2 ← B+ ∪ {S}, B−2 ← B−, C∗2 ← C∗ \ Lk(S)

x← BranchAndCut(n, k, t,B+
2 ,B−2 , C∗2)

end if
return x

Breadth-First-Search. When k is small, it is reasonable to store the Hasse digraph (an
edge S ← T exists if S � T is a cover relation) of the shift poset in memory and use
breadth-first-search to count the number of sets to the left of S which are in C∗.
Inclusion-Exclusion. We can use the lattice structure of the shift poset to compute the
functions L∗k(S) and R∗k(S). First, we compute the values of L∗k(S) with increasing colex
rank and values of R∗k(S) with decreasing colex rank. With this order, we have access to
L∗k(T) whenever T � S or R∗k(T) whenever S � T . Let FL(S) be the collection of sets T
that cover S, and let FR(S) be the collection of sets T that S covers. Then,

L∗k(S) = 1 +
∑

∅6=A⊆FL(S)

(−1)|A|+1L∗k(∨A)

R∗k(S) = 1 +
∑

∅6=A⊆FR(S)

(−1)|A|+1R∗k(∧A)

When k ≤ 4, the breadth-first-search strategy is faster than the inclusion-exclusion strat-
egy. However, for k ≥ 6, the inclusion-exclusion strategy is the only method that is tractable.
For k = 5, the two strategies are too similar to demonstrate a clear preference.

As k grows, the number of terms of the inclusion-exclusion sum grows exponentially,
leading to a large amount of computation required for every set S ∈ C∗. Our next method
computes the values of L∗k(S) when a small change has been made to B+ using a smaller
amount of computation for every set S ∈ C∗.

8

Updates with B+. Observe that sets are added to A+ only when placing a set into B+.
Therefore, there are many fewer sets in A+ than in A−. Further, if the most recent branch
selected a k-sum to be negative, then the values L∗k(S) did not change for any sets still in
C∗. Therefore, we need only update the values of L∗k(T) for T ∈ C∗ after branching on a set
S and placing S in B+. For all such T , observe that

L∗k(T)← L∗k(T)− L∗k(T ∨ S)

properly updates the value of L∗k(T) when adding the set S to B+. Specifically, the sets that
are removed from Lk(T) \ L(A+) to Lk(T) \ Lk(A+ ∪ {S}) are exactly those to the left of
both T and S but not to the left of any elements in A+. Such k-sets are exactly those in
Lk(T ∨ S) \ L(A+), which are counted by L∗k(T ∨ S).

This method is not efficient for computing R∗k(S), since too many sets are being added to
A− during the propagation step (see the next section). Thus, we use this method to update
L∗k(S) only when a single set has been added to B+. If we need to recompute all values of
L∗k(S) after a significant change to B+, we use the inclusion-exclusion method.

3.3 Propagation

Given a set of branch sets B+ and B−, we want to determine which sets S ∈ C∗ must have
σS(x) < 0 for all (n, k, t)-bad vectors x which are feasible in P (n, k,A+,A−).

Recall that by Observation 5 and Lemma 6, any set S with Lk(S) ≥ t, or 1 ∈ S and
Lk(S) + g(n− k, k) ≥ t, has σS(x) < 0 for any (n, k, t)-bad vector x. This applies regardless
of the previous choices of sets placed in B+. When B+ is non-empty and we have access to
the function L∗k(S), we may be able to find more sets where σS(x) < 0 for any (n, k, t)-bad
vector x with C+x ⊇ B+.

Lemma 11. If S is a k-set with L∗k(S) + |Lk(B+)| ≥ t, then all feasible solutions x to
P (n, k,B+ ∪ {S},B−) have sk(x) ≥ t.

Proof. Observe that such vectors x have C+x ⊇ Lk(B+) ∪ Lk(S) and |Lk(B+) ∪ Lk(S)| =
|Lk(B+)|+ |Lk(S) \ Lk(B+)| = |Lk(B+)|+ L∗k(S) ≥ t.

The PropagateNegative algorithm (Algorithm 2) iterates on all sets S in C∗ using
lexicographic order and whenever a set S satisfies the hypotheses of Lemma 6 or Lemma 11
the set S is added to A−. Since all sets T � S have T ≤lex S, the set T was considered
before S and did not satisfy the condition for addition to A−. Hence, we construct A− as a
�-maximal set (other than possible comparisons within B−).

3.4 Results Using BranchAndCut

Using BranchAndCut (Algorithm 1), we computed g(n, k) for k ∈ {4, 5, 6} and k < n ≤
4k + 1, and we verified that f(k) = 3k + 2 for k ∈ {4, 5, 6}.

Theorem 12. f(4) = 14, f(5) = 17, and f(6) = 20.

9

Algorithm 2 PropagateNegative(n, k, t,B+,B−, C∗)
Require: Lk(B+),Rk(B−), and C∗ partition

(
[n]
k

)
and |Lk(B+)| < t.

Ensure: Returns B+, A−0 , and C∗0 such that any (n, k, t)-bad vector x with C+x ⊇ B+ and
C−x ⊇ B− also has C−x ⊇ A−0 , and C∗0 =

(
[n]
k

)
\ (Lk(B+) ∪Rk(A−0)).

A−0 ← B−, C∗0 ← C∗
for all sets S ∈ C∗0 (in lex order) do

if 1 ∈ S and Lk(S) + g(n− k, k) ≥ t then
A−0 ← A−0 ∪ {S}
C∗0 ← C∗0 \ Rk(S)

end if
if L∗k(S) + |Lk(B+)| ≥ t then
A−0 ← A−0 ∪ {S}
C∗0 ← C∗0 \ Rk(S)

end if
end for
return B+,A−0 , C∗0

Proof outline. By Lemma 3, we must only verify the values n where f(k) ≤ n ≤ f(k)+k−1.
For all n ≤ 3k + 1, we tested all sums a + b = n and found sk(x) for the vector x1 = · · · =
xb = a, xb+1 = · · · = xn = −b. We let t be the minimum such value sk(x) and executed
BranchAndCut(n, k, t,∅,∅,

(
[n]
k

)
), which found no vector with fewer than t nonnegative

k-sums. By executing these algorithms in increasing value of n, we have access to g(n−k, k)
during execution of PropagateNegative(n, k, t,B+,B−, C∗) (Algorithm 2) when testing
g(n, k) ≥ t for n > 2k. Finally, for n ∈ {3k + 2, . . . , 4k + 1}, we find g(n, k) ≥

(
n−1
k−1

)
by

executing BranchAndCut(n, k,
(
n−1
k−1

)
,∅,∅,

(
[n]
k

)
).

For k = 7, BranchAndCut succeeded in computing g(n, k) for n ≤ 23, but only after
resorting to parallel computation. Previous computations showed an order of magnitude
jump in computation time between n = f(k)− 1 and n = f(k), so using BranchAndCut
to verity ĝ(24, 7) = 0 seemed intractable.

In the next section, we develop a zero-error randomized propagation algorithm which
improves the performance enough for us to compute f(7).

4 Propagation With Randomness

When branching in our branch-and-cut method, we select a set S in C∗ and make a tem-
porary decision of σS(x) ≤ −1 or σS(x) ≥ 0. Then during our propagation step, the
PropagateNegative algorithm (Algorithm 2) places as many left-most sets into A− as
possible using Lemmas 6 and 11. We now describe a condition that allows us to add sets
into A+ without branching.

10

Algorithm 3 PropagatePositive(n, k, t,A+,A−, C∗)
Require: Lk(A+),Rk(A−), and C∗ partition

(
[n]
k

)
and |Lk(A+)| < t.

Ensure: Returns A+
0 , A−0 , and C∗0 such that any (n, k, t)-bad vector x with C+x ⊇ A+ and

C−x ⊇ A− also has C+x ⊇ A+
0 , A−0 ≡ A−, and C∗0 =

(
[n]
k

)
\ (Lk(A+

0) ∪Rk(A−0)).

A+
0 ,A−0 , C∗0 ← PropagateNegative(n, k, t,A+,A−, C∗)

updated ← True
while updated do

update ← False
for all sets S ∈ C∗0 (in reverse lex order) do

if P(n, k,A+,A− ∪ {S}) is infeasible then
update ← True
A+

0 ← A+
0 ∪ {S}.

C∗0 ← C∗0 \ Lk(S)
A+

0 ,A−0 , C∗0 ← PropagateNegative(n, k, t,A+
0 ,A−0 , C∗0)

end if
end for

end while
return A+

0 ,A−0 , C∗0

Given a set S in C∗, we can test the linear program for feasibility when S is added to A−
or A+.

Observation 13. If S is a k-set where P (n, k,A+,A− ∪ {S}) is infeasible, then all vec-
tors that are feasible solutions to P (n, k,A+,A−) are also feasible solutions to P (n, k,A+ ∪
{S},A−).

Observation 14. If S is a k-set where P (n, k,A+ ∪ {S},A−) is infeasible, then all vectors
that are feasible solutions to P (n, k,A+,A−) are also feasible solutions to P (n, k,A+,A− ∪
{S}).

Given these two lemmas, we could test every set in C+ and determine which sets should
be added to A+ or A−. The PropagatePositive algorithm (Algorithm 3) places as many
right-most sets into A+ as possible using Lemma 13.

Since PropagatePositive optimizes a linear program for every set in C∗, this algorithm
is too slow to be effective within BranchAndCut. However, since PropagatePositive
includes a call to PropagateNegative after every addition to B+, it is possible that a
single call to PropagatePositive results with the linear program P(n, k,A+

0 ,A−0) infea-
sible. Since PropagateNegative adds negative sets to A−, there are likely more sets
S ∈ C∗ where adding S to A− leads to an infeasible linear program. Such sets are added to
A+ by PropagatePositive, leading to more sets which satisfy the conditions in Propa-
gateNegative.

Using PropagatePositive in place of PropagateNegative in the propagation step
of BranchAndCut is slow for even k = 5. However, for k = 3 and k = 4, using Propa-

11

Algorithm 4 StochasticPropagation(n, k, t,A+,A−, C∗) — Randomly test sets for in-
clusion in A− and A+.

Require: k ≥ 3, n ≥ k, t ≤
(
n−1
k−1

)
, and B+,B− ⊂

(
[n]
k

)
.

Ensure: Sets added to A+ or A− satisfy the hypotheses of Observations 13 or 14.
loop
A+,A−, C∗ ← PropagateNegative(n, k, t,A+,A−, C∗) (see Algorithm 2)
updated ← False
while not updated do

Randomly select a set S ∈ C∗
if P(n, k,A+,A− ∪ {S}) is infeasible then
A+ ← A+ ∪ {S}, C∗ ← C∗ \ Lk(S), updated ← True
if |Lk(A+)| ≥ t then

return A+,A−, C∗
end if

else if P(n, k,A+ ∪ {S},A−) is infeasible then
A− ← A− ∪ {S}, C∗ ← C∗ \ Rk(S), updated ← True

end if
end while

end loop
return A+,A−, C∗

gatePositive terminates in at most three iterations of the loop and requires no branching.
The log of this computation is small enough that we present the computation as proofs that
f(3) ≤ 11 and f(4) ≤ 14 in Appendices B and C.

While PropagatePositive is unreasonably slow, PropagateNegative is very fast
to test since we have very quick methods for computing L∗k(S). If we can find just one set
S where adding S to A− creates an infeasible linear program, then we can add S to B+ and
likely the next iteration of PropagateNegative will add more negative sets.

Instead of carefully selecting a set S to peform this test, we simply select a set S in C∗
uniformly at random. By randomly selecting sets and testing the linear program, we may
quickly find a set that we can guarantee to be in C+x for any (n, k, t)-bad vector x ∈ Fn. This
is the idea for the algorithm StochasticPropagation (Algorithm 4). Simply, we select
a set from C∗ at random and test if the set fits the hypotheses of Observations 13 or 14.
We continue sampling until either (a) we find such a set and add it to A+ or A−, (b) we
sample a specified number of sets which all fail these conditions, or (c) we reach a specified
time limit. The sampling limits of (b) and (c) are not listed in Algorithm 4, but are both
parameters which can be modified in our implementation.

StochasticPropagation is a zero-error randomized algorithm: it adds sets to A+ or
A− only when previous evidence guarantees that is the correct choice. The only effect of the
randomness is how many sets actually are determined to be placed in A+ or A−.

What is particularly important is that the propagation in StochasticPropagation
is stronger than PropagateNegative, but it is still slower. For the best performance,

12

we need a balance between the branching procedure and the propagation procedure. This
balance is found by adjusting the number of random samples between successful updates in
StochasticPropagation, as well as the total time to spend in that algorithm. Further,
we can disable the call to StochasticPropagation until a certain number of k-sets have
been added to B+ or B−, thereby strongly constraining the linear program and leading to a
more effective random sampling process.

Solving the case k = 7 and n = 22 required more than 100 days of computation time for
the deterministic branch-and-cut method, but required only a few hours using the random-
ized algorithm.

4.1 Results Using StochasticPropagation

Using BranchAndCut with StochasticPropagation, we computed g(n, 7) for 8 ≤ n ≤
29 and verified that f(k) = 3k + 2 for k = 7.

Theorem 15. f(7) = 23.

The computation for this theorem is the same as in Thoerem 12, except we replace
PropagateNegative with StochasticPropagation.

4.2 Implementation

The BranchAndCut algorithm was implemented in the MMSConjecture project within
the SearchLib collection2. The software is available for download, reuse, and modification
under the GNU Public License 3.0.

For k ∈ {4, 5}, we were able to verify the statements using the exact arithmetic solver
supplied with GLPK [9], but for k ≥ 6 this method was too slow and instead was verified
using the floating-point linear programming software CPLEX [8]. The number of search
nodes for each search, as well as the amount of computation time for each case are presented
in Tables 1, 2, and 3. Empty cells refer to computations that were too long to complete (but
only for cases where k divides n) and cells containing “—” refer to experiments reporting less
than 0.01 seconds of computation time. In addition to the data presented here, all collected
statistics and sharp examples are available online3.

Execution times under one day were executed in a single process on a 2.3 GHz Intel
Core i5 processor. Longer execution times are from parallel execution on the Open Science
Grid [13] using the University of Nebraska Campus Grid [16]. The nodes available on the
University of Nebraska Campus Grid consist of Xeon and Opteron processors with a range
of speed between 2.0 and 2.8 GHz.

2SearchLib is available at http://www.math.illinois.edu/~stolee/SearchLib/.
3All data is available at http://www.math.illinois.edu/~stolee/data.htm.

13

http://www.math.illinois.edu/~stolee/SearchLib/
http://www.math.illinois.edu/~stolee/data.htm

0 50 100 150 200 250

3.12

3.14

3.16

3.18

3.2

Figure 1: Values of Nk/k for 5 ≤ k ≤ 250 and the line y = limk→∞Nk/k.

5 Sharp Examples, Uniqueness, and the Strengthened

Conjecture

In Tables 1, 2, and 3, the right-most column contains descriptions of the vectors x with sk(x)
of minimum value. For n ≥ f(k), the vectors listed had sk(x) of minimum value while also
having σT (x) < 0 for T = {1, n− k + 2, . . . , n}. Observe that for all n < f(k), the extremal
examples use only two numbers, and have the form ab (−b)a where a+ b = n.

Recall Conjecture 2, where we claim f(k) is exactly equal to Nk, where Nk is the minimum
integer such that

(
Nk−3

k

)
≥
(
Nk−1
k−1

)
. We make this conjecture for two reasons. First, the

example of 3n−3 (−(n− 3))3 was known to have fewer than
(
n−1
k−1

)
nonnegative k-sums when

3k < n < Nk by previous authors (for example, see [7] where these vectors were used to
show a lower bound f(k) ≥ 22k

7
), but no examples were previously discovered for n ≥ Nk.

Second, our search for extremal vectors found no violation to this bound, but also showed
that the extremal examples have the form ab (−b)a when n ≤ Nk and k does not divide
n. We therefore tested all vectors of the form ab (−b)a for all k ≤ 250. For all numbers n
with 3k < n < Nk the example 3n−3 (−(n − 3))3 was the best vector of this form, and for
Nk ≤ n < 4k the best vector was (n− 1)1 (−1)n−1.

Figure 1 contains a plot of Nk/k and the line y = limk→∞Nk/k, to demonstrate the
conjectured values of f(k)/k.

Another strengthening of the conjecture that follows from our method (for k ≤ 7) and
that of Chowdhury (for k = 3) is that when n ≥ f(k), a vector x ∈ Fn has sk(x) =

(
n−1
k−1

)
only if x1 + xn−k+2 + · · · + xn is nonnegative. Essentially, any sharpness example contains
the same set of nonnegative k-sums as the sharpness example (n− 1)1 (−1)n−1.

We test this example is essentially unique by searching for an vector x ∈ Fn where
σT (x) < 0 for T = {1, n − k + 2, . . . , n} and sk(x) ≤

(
n−1
k−1

)
. If no such vector is found,

then the sharpness example is “unique,” since all vectors x ∈ Fn with sk(x) ≤
(
n−1
k−1

)
have

14

C+x = Lk(T). Define gs(n, k) to be the minimum sk(x) over all x ∈ Fn where σT (x) < 0. We
can use our target value t to find an (n, k, t)-bad vector x ∈ Fn with σT (x) < 0. While the
bound t ≤

(
n−1
k−1

)
in the hypothesis of Lemma 6 does not hold, observe that since σT (x) < 0

the conclusion of the lemma does hold in this scenario. Therefore, PropagateNegative
(Algorithm 2) remains correct when verifying gs(n, k) ≥ t using a call to BranchAnd-
Cut(n, k, t,∅, {T},

(
[n]
k

)
\ Rk(T)).

Values of gs(n, k) were computed for 3 ≤ k ≤ 6, f(k) ≤ n < f(k) + k and are given
in Table 4. The sharp examples for vectors x ∈ Fn with σT (x) < 0 are given in the final
columns of Tables 1 and 2. Observe that the sharp examples make a “phase transition”
at n = 4k, where the sharp examples have the form ab (−b)a for all n < 4k, but then the
examples with n ≥ 4k have at least three distinct values. This may be hinting to a deeper
truth concerning the originally conjectured bound of f(k) ≤ 4k.

5.1 Conclusions

We developed two methods for verifying g(n, k) ≥ t, which we used to prove our strength-
ening of the Manickam-Miklós-Singhi conjecture for all k ≤ 7, extending the previously
best result of k ≤ 3 [7]. Our branch-and-cut method BranchAndCut uses a branching
procedure which we prove will, in finite time, verify g(n, k) ≥ t or find a vector x ∈ Fn

with sk(x) < t. Using the randomized propagation algorithm StochasticPropagation,
we computed f(k) and the values of g(n, k) for all k ≤ 7 and k < n < f(k) + k. Our
implementations were not successful in extending our results to larger values of k due to a
combination of large computation time and memory requirements.

Acknowledgments

The authors thank Ameera N. Chowdhury for many interesting discussions on this problem.
The authors also thank Igor Pak for suggesting a computational approach which led to our
branch-and-cut method.

References

[1] N. Alon, H. Huang, and B. Sudakov. Nonnegative k-sums, fractional covers, and probability of
small deviations. J. Combin. Theory, Ser. B 103(3), 784–796 (2012)

[2] Zs. Baranyai, On the factorization of the complete uniform hypergraph. In A. Hajnal, R. Rado,
V. T. Sós, eds. Infinite and Finite Sets, Proc. Coll. Keszthely, Colloquia Math. Soc. János
Bolyai, 10, North-Holland, 91–107 (1975).

[3] A. Bhattacharya, On a conjecture of Manickam and Singhi. Discrete Math. 272, 259–261 (2003).

[4] T. Bier, N. Manickam, The first distribution invariant of the Johnson-scheme. Southeast Asian
Bull. Math. 11(1), 61–68 (1987).

15

[5] G. Chiaselotti, On a problem concerning the weight functions. Europ. J. Combinatorics 23,
15–22 (2002).

[6] G. Chiaselotti, G. Infante, G. Marino, New results related to a conjecture of Manickam and
Singhi. Europ. J. of Combinatorics 29, 361–368 (2008).

[7] A. N. Chowdhury, Shadows and Intersections. Ph.D. dissertation, University of California San
Diego (2012).

[8] IBM ILOG CPLEX 11.0 User’s Manual. ILOG CPLEX Division, Incline Village, NV, (2007).

[9] A. Makhorin, GLPK–GNU Linear Programming Kit. http://www.gnu.org/software/glpk/,
(2008).

[10] N. Manickam and D. Miklós. On the number of nonnegative partial sums of a nonnegative sum.
In Combinatorics (Eger, 1987), volume 52 of Colloq. Math. Soc. János Bolyai, pages 385–392.
North-Holland, Amsterdam, (1988).

[11] N. Manickam and N. M. Singhi. First distribution invariants and EKR theorems. J. Combin.
Theory Ser. A 48(1), 91–103, (1988).

[12] G. Marino, G. Chiaselotti, A Method to Count the Positive 3-Subsets in a Set of Real Numbers
with nonnegative Sum. Europ. J. Combinatorics 23, 619–629 (2002).

[13] R. Pordes, D. Petravick, B. Kramer, D. Olson, M. Livny, A. Roy, P. Avery, K. Blackburn,
T. Wenaus, et al. The Open Science Grid. In Journal of Physics: Conference Series, volume 78,
pages 12–57. IOP Publishing, (2007).

[14] R. P. Stanley, Enumerative Combinatorics, Vol. 2. Cambridge Studies in Advanced Mathe-
matics 62 (2001).

[15] M. Tyomkyn, An improved bound for the Manickam-Miklós-Singhi Conjecture. Europ. J.
Combinatorics 33, 27–32 (2012).

[16] D. J. Weitzel. Campus Grids: A framework to facilitate resource sharing. Masters thesis,
University of Nebraska–Lincoln, (2011).

16

http://www.gnu.org/software/glpk/

A Computation Data

k n g(n, k) ĝ(n, k) Nodes GLPK CPLEX Strong Example

3 4 1 2 2 — — 13 (−3)1

3 5 3 3 2 — — 32 (−2)3

3 6 10 0 8 — —
3 7 10 5 2 — — 25 (−5)2

3 8 16 5 2 — — 53 (−3)5

3 9 28 0 2 — —
3 10 35 1 4 — — 37 (−7)3

3 11 45 0 6 — — 74 (−4)7

3 12 55 0 2 — — 75 (−5)7

3 13 66 0 2 — — 49 (−9)4

4 5 1 3 2 — — 14 (−4)1

4 6 5 5 2 — — 15 (−5)1

4 7 10 10 2 — — 52 (−2)5

4 8 35 0 268 0.47 s 0.31 s
4 9 35 21 4 — — 27 (−7)2

4 10 70 14 28 0.11 s 0.03 s 28 (−8)2

4 11 92 28 10 0.07 s 0.01 s 83 (−3)8

4 12 165 0 50 0.35 s 0.11 s
4 13 210 10 52 0.82 s 0.15 s 310 (−10)3

4 14 286 0 30 0.65 s 0.10 s 104 (−4)10

4 15 364 0 24 0.51 s 0.10 s 114 (−4)11

4 16 455 0 6 0.15 s 0.04 s 351 310 (−16)5

4 17 560 0 8 0.31 s 0.07 s 381 410 (−13)6

5 6 1 4 2 — — 15 (−5)1

5 7 6 9 2 — — 16 (−6)1

5 8 16 19 4 — — 35 (−5)3

5 9 35 35 4 0.01 s — 72 (−2)7

5 10 126 0
5 11 126 84 10 0.10 s 0.03 s 29 (−9)2

5 12 246 84 92 2.61 s 0.26 s 75 (−5)7

5 13 405 90 234 14.22 s 1.08 s 103 (−3)10

5 14 550 165 44 3.37 s 0.44 s 113 (−3)11

5 15 1001 0 996 12.03 s
5 16 1287 78 342 2.43 m 7.78 s 313 (−3)13

5 17 1820 0 702 5.48 m 23.26 s 107 (−7)10

5 18 2380 0 364 4.46 m 20.77 s 144 (−4)14

5 19 3060 0 192 3.64 m 16.54 s 154 (−4)15

5 20 3876 0 64 2.13 m 9.29 s 791 191 (−1)14 (−21)4

5 21 4845 0 64 3.09 m 13.53 s 671 413 (−17)7

Table 1: Data for branch-and-cut method with GLPK and CPLEX, for k ∈ {3, 4, 5}.

17

k n g(n, k) ĝ(n, k) Nodes GLPK CPLEX Stochastic Strong Example

6 7 1 5 2 — — — 16 (−6)1

6 8 7 14 2 — — — 17 (−7)1

6 9 28 28 6 0.01 s — 0.03 s 18 (−8)1

6 10 70 56 32 0.20 s 0.05 s 0.25 s 82 (−2)8

6 11 126 126 10 0.09 s 0.03 s 0.05 s 92 (−2)9

6 12 462 0
6 13 462 330 24 1.88 s 0.16 s 0.21 s 211 (−11)2

6 14 924 363 294 1.32 m 6.17 s 8.41 s 212 (−12)2

6 15 1705 297 12408 2.94 h 6.47 m 4.76 m 123 (−3)12

6 16 2431 572 1296 34.19 m 1.68 m 54.20 s 133 (−3)13

6 17 3367 1001 266 10.84 m 44.14 s 17.04 s 143 (−3)14

6 18 6188 0 183960 9.66 h
6 19 8008 560 7262 47.46 m 13.74 m 316 (−16)3

6 20 11628 0 27696 4.58 h 2.32 h 317 (−17)3

6 21 15504 0 8932 2.48 h 1.11 h 174 (−4)17

6 22 20349 0 4622 2.06 h 59.81 m 184 (−4)18

6 23 26334 0 2378 1.66 h 38.51 m 194 (−4)19

6 24 33649 0 764 49.35 m 331 116 (−7)7

6 25 42504 0 744 1.15 h 26.62 m 1041 416 (−21)8

Table 2: Data for the branch-and-cut method using GLPK and CPLEX, for k = 6.

k n g(n, k) ĝ(n, k) Nodes Deterministic Stochastic Sharp Example

7 8 1 6 2 — — 17 (−7)1

7 9 8 20 2 — — 18 (−8)1

7 10 35 48 8 — — 73 (−3)7

7 11 92 118 12 0.02 s 0.02 s 38 (−8)3

7 12 246 216 100 0.39 s 0.92 s 57 (−7)5

7 13 462 462 0.36 s 0.13 s 112 (−2)11

7 14 1716 0 26
7 15 1716 1287 58 6.02 s 9.59 s 213 (−13)2

7 16 3432 1573 1562 4.97 m 15.40 m 214 (−14)2

7 17 6116 1892 26852 2.61 h 1.07 h 125 (−5)12

7 18 10296 2080 450772 3.44 d 1.02 h 513 (−13)5

7 19 14924 3640 28778 1.25 d 1.15 h 163 (−3)16

7 20 20944 6188 3615 8.51 h 28.80 m 173 (−3)17

7 21 38760 0
7 22 50388 3876 795236 160.57 d 3.08 h 319 (−19)3

7 23 74613 0 13013∗ 8.09 d∗

7 24 100947 0 7870∗ 4.61 d∗

7 25 134596 0 6531∗ 3.85 d∗

7 26 177100 0 12718∗ 9.25 d∗

7 27 230230 0 30807∗ 19.18 d∗

7 28 296010 0 5564∗ 2.51 d∗

7 29 376740 0 6002∗ 3.38 d∗

∗ These node counts and CPU times are averages of at least three runs using StochasticPropagation.

Table 3: Completed computations for k = 7 using CPLEX.

18

k 3 3 3 4 4 4 4 5 5 5 5 5
n 11 12 13 14 15 16 17 17 18 19 20 21

g(n, k) 45 55 66 286 364 455 560 1820 2380 3060 3876 4845
gs(n, k) 46 80 84 311 375 455 750 1946 2562 3165 4876 6097

k 6 6 6 6 6 6
n 20 21 22 23 24 25

g(n, k) 11628 15504 20349 26334 33649 42054
gs(n, k) 12376 17136 21777 27303 39836 50456

Time 5.71 d 15.91 d 2.26 d 19.70 h 67.60 d 30.00 d

Table 4: Comparisons of g(n, k) and gs(n, k) when f(k) ≤ n < f(k) + k.

B A Computer-Generated Proof that f (3) ≤ 11

The following proofs were created by executing BranchAndCut with propagation step Propa-
gatePositive (Algorithm 3) and writing down the k-sums which are determined to be strictly
negative or nonnegative.

Theorem 16. g(3, 11) =
(
10
2

)
= 45.

Proof. The following sums generated by PropagateNegative (Algorithm 2) must be strictly
negative or we have at least 45 of nonnegative sets:

x1+x6 + x11 x1+x8 + x10 x2+x5 + x11

x2+x6 + x10 x2+x7 + x9 x3+x4 + x11

x3+x5 + x9 x3+x7 + x8 x4+x6 + x8

The following sums generated by PropagatePositive (Algorithm 3) must be nonnegative or else
the associated linear program (Definition 7) becomes infeasible:

x4+x6 + x7 x4+x5 + x8 x3+x4 + x10

These positive sets now force at least 56 nonnegative 3-sums, and our target was 45 nonnegative
3-sums.

Theorem 17. g(3, 13) =
(
12
2

)
= 66.

Proof. The following sums generated by PropagateNegative (Algorithm 2) must be strictly
negative or we have at least 66 nonnegative sets:

x1+x5 + x13 x1+x6 + x12 x1+x7 + x11

x3+x5 + x12 x3+x6 + x10 x4+x5 + x11

x4+x7 + x9

The associated linear program is infeasible.

19

C A Computer-Generated Proof that f (4) ≤ 14

The following proofs were created by executing BranchAndCut with propagation step Propa-
gatePositive (Algorithm 3) and writing down the k-sums which are determined to be strictly
negative or nonnegative.

Theorem 18. g(4, 14) =
(
13
3

)
= 286.

Proof. The following sums generated by PropagateNegative (Algorithm 2) must be strictly
negative or we have at least 286 nonnegative sets:

x1 + x7+x13 + x14 x1 + x8+x12 + x14 x1 + x9+x11 + x14

x2 + x5+x10 + x14 x2 + x6+x9 + x14 x2 + x6+x10 + x13

x2 + x8+x9 + x13 x3 + x4+x11 + x14 x3 + x5+x9 + x14

x3 + x5+x10 + x13 x3 + x6+x8 + x14 x3 + x6+x9 + x13

x3 + x6+x10 + x12 x3 + x7+x8 + x13 x3 + x7+x9 + x12

x4 + x5+x8 + x14 x4 + x5+x9 + x13 x4 + x6+x8 + x13

x4 + x6+x9 + x12 x4 + x8+x10 + x11 x5 + x7+x8 + x12

x5 + x7+x10 + x11 x6 + x8+x9 + x11

The following sums generated by PropagatePositive (Algorithm 3) must be nonnegative or
else the associated linear program becomes infeasible:

x3 + x4+x7 + x9 x3 + x4+x6 + x10 x2 + x4+x8 + x10

x1 + x7+x8 + x9 x1 + x6+x8 + x11 x1 + x5+x9 + x11

x1 + x5+x7 + x12 x1 + x4+x10 + x11 x1 + x4+x9 + x12

x1 + x4+x8 + x13 x1 + x4+x5 + x14 x1 + x2+x10 + x13

x1 + x2+x8 + x14

These positive sets now force at least 199 nonnegative 4-sums.
The following sums generated by PropagateNegative (Algorithm 2) must be strictly negative

or we have at least 286 of nonnegative sets:

x1 + x7+x12 + x14 x1 + x8+x11 + x14 x2 + x4+x11 + x14

x2 + x5+x9 + x14 x2 + x5+x11 + x13 x2 + x6+x8 + x14

x2 + x6+x9 + x13 x2 + x7+x10 + x12 x3 + x4+x10 + x14

x3 + x4+x12 + x13 x3 + x5+x8 + x14 x3 + x5+x9 + x13

x3 + x5+x10 + x12 x3 + x6+x7 + x14 x3 + x6+x8 + x13

x3 + x6+x9 + x12 x3 + x7+x8 + x12 x3 + x7+x10 + x11

x3 + x8+x9 + x11 x4 + x5+x7 + x14 x4 + x5+x8 + x13

x4 + x5+x9 + x12 x4 + x6+x7 + x13 x4 + x6+x8 + x12

x4 + x6+x9 + x11 x5 + x7+x8 + x11

20

The following sums generated by PropagatePositive (Algorithm 3) must be nonnegative or
else the associated linear program becomes infeasible:

x3 + x5+x6 + x9 x3 + x4+x8 + x10 x2 + x6+x7 + x10

x2 + x5+x8 + x10 x2 + x4+x9 + x10 x1 + x8+x9 + x10

x1 + x7+x10 + x11 x1 + x7+x8 + x13 x1 + x6+x9 + x12

x1 + x5+x10 + x13 x1 + x5+x8 + x14 x1 + x4+x10 + x14

These positive sets now force at least 265 nonnegative 4-sums.
The following sums generated by PropagateNegative (Algorithm 2) must be strictly negative

or we have at least 286 nonnegative sets:

x1 + x5+x12 + x14 x1 + x6+x11 + x14 x1 + x7+x12 + x13

x1 + x8+x10 + x14 x1 + x8+x11 + x13 x2 + x3+x9 + x14

x2 + x3+x10 + x13 x2 + x4+x7 + x13 x2 + x4+x9 + x12

x2 + x5+x6 + x14 x2 + x5+x8 + x12 x2 + x6+x9 + x11

x3 + x4+x6 + x13 x3 + x4+x8 + x12 x3 + x5+x7 + x12

x3 + x5+x8 + x11 x3 + x6+x7 + x11 x3 + x7+x9 + x10

x4 + x5+x6 + x12 x4 + x5+x7 + x11 x4 + x6+x8 + x10

x5 + x7+x8 + x9

The associated linear program is infeasible.

Theorem 19. g(4, 15) =
(
14
3

)
= 364.

Proof. The following sums generated by PropagateNegative (Algorithm 2) must be strictly
negative or we have at least 364 nonnegative sets:

x1 + x8+x14 + x15 x1 + x9+x13 + x15 x1 + x11+x12 + x15

x2 + x5+x11 + x15 x2 + x6+x10 + x15 x2 + x6+x11 + x14

x2 + x7+x9 + x15 x2 + x7+x10 + x14 x2 + x8+x12 + x13

x2 + x10+x11 + x13 x3 + x4+x13 + x15 x3 + x5+x9 + x15

x3 + x5+x10 + x14 x3 + x6+x8 + x15 x3 + x6+x9 + x14

x3 + x6+x10 + x13 x3 + x8+x9 + x13 x3 + x9+x11 + x12

x4 + x5+x12 + x13 x4 + x6+x9 + x13 x4 + x7+x8 + x14

x4 + x7+x10 + x12 x5 + x6+x8 + x14 x5 + x8+x9 + x12

The following sums generated by PropagatePositive (Algorithm 3) must be nonnegative or
else the associated linear program becomes infeasible:

x3 + x4+x7 + x10 x3 + x4+x6 + x11 x2 + x4+x7 + x11

x1 + x7+x9 + x12 x1 + x6+x8 + x13 x1 + x5+x11 + x12

x1 + x5+x8 + x14 x1 + x4+x11 + x13 x1 + x4+x7 + x15

x1 + x3+x8 + x15 x1 + x2+x11 + x15

21

These positive sets now force at least 267 nonnegative 4-sums.
The following sums generated by PropagateNegative (Algorithm 2) must be strictly negative

or we have 364 nonnegative sets:

x1 + x3+x13 + x15 x1 + x4+x9 + x15 x1 + x4+x11 + x14

x1 + x5+x8 + x15 x1 + x5+x9 + x14 x1 + x5+x10 + x13

x1 + x6+x8 + x14 x1 + x6+x9 + x13 x1 + x7+x11 + x12

x1 + x8+x10 + x12 x2 + x3+x9 + x15 x2 + x3+x10 + x14

x2 + x4+x8 + x14 x2 + x4+x9 + x13 x2 + x5+x7 + x14

x2 + x5+x8 + x13 x2 + x5+x9 + x12 x2 + x6+x8 + x12

x2 + x6+x10 + x11 x2 + x7+x9 + x11 x3 + x4+x7 + x15

x3 + x4+x10 + x12 x3 + x5+x6 + x15 x3 + x5+x7 + x13

x3 + x5+x8 + x12 x3 + x5+x10 + x11 x3 + x6+x8 + x11

x4 + x5+x9 + x11 x4 + x6+x7 + x12 x4 + x8+x9 + x10

x5 + x7+x9 + x10

The associated linear program is infeasible.

Theorem 20. g(4, 17) =
(
16
3

)
= 560.

Proof. The following sums generated by PropagateNegative (Algorithm 2) must be strictly
negative or we have at least 560 nonnegative sets:

x1 + x6+x16 + x17 x1 + x7+x13 + x17 x1 + x8+x12 + x17

x1 + x8+x15 + x16 x1 + x9+x13 + x16 x2 + x5+x15 + x17

x2 + x6+x12 + x17 x2 + x6+x14 + x16 x2 + x7+x11 + x17

x2 + x7+x12 + x16 x2 + x8+x10 + x17 x2 + x8+x11 + x16

x2 + x8+x13 + x15 x2 + x9+x12 + x15 x3 + x5+x11 + x17

x3 + x5+x13 + x16 x3 + x6+x10 + x16 x3 + x6+x12 + x15

x3 + x7+x9 + x17 x3 + x7+x11 + x15 x3 + x7+x13 + x14

x3 + x8+x10 + x15 x3 + x8+x12 + x14 x3 + x9+x11 + x14

x4 + x5+x10 + x17 x4 + x5+x11 + x16 x4 + x6+x9 + x17

x4 + x6+x11 + x15 x4 + x6+x13 + x14 x4 + x7+x9 + x16

x4 + x7+x10 + x15 x4 + x7+x11 + x14 x4 + x8+x9 + x15

x4 + x8+x10 + x14 x4 + x9+x12 + x13 x5 + x6+x9 + x16

x5 + x6+x10 + x15 x5 + x6+x12 + x14 x5 + x7+x8 + x17

x5 + x7+x9 + x15 x5 + x7+x10 + x14 x5 + x8+x11 + x13

x6 + x7+x12 + x13 x7 + x9+x10 + x13

The following sums generated by PropagatePositive (Algorithm 3) must be nonnegative or

22

else the associated linear becomes infeasible:

x4 + x6+x9 + x11 x4 + x6+x7 + x13 x4 + x5+x10 + x11

x4 + x5+x9 + x14 x4 + x5+x6 + x15 x3 + x7+x9 + x11

x3 + x6+x9 + x13 x3 + x6+x7 + x14 x3 + x5+x11 + x12

x3 + x5+x10 + x14 x3 + x5+x7 + x15 x3 + x4+x11 + x13

x3 + x4+x9 + x15 x3 + x4+x6 + x16 x2 + x8+x10 + x12

These positive sets now force at least 560 nonnegative 4-sums, and our target was 560 nonnegative
4-sums.

23

	1 Introduction
	1.1 Preliminaries

	2 The Shift Poset
	2.1 Counting Shifts
	2.2 Required Negative Sets

	3 The Branch-and-Cut Method
	3.1 The Search Strategy
	3.2 Computing Intersections with C*
	3.3 Propagation
	3.4 Results Using BranchAndCut

	4 Propagation With Randomness
	4.1 Results Using StochasticPropagation
	4.2 Implementation

	5 Sharp Examples, Uniqueness, and the Strengthened Conjecture
	5.1 Conclusions

	A Computation Data
	B A Computer-Generated Proof that f(3) 11
	C A Computer-Generated Proof that f(4) 14

