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Given a discrete sample of event locations, we wish to
produce a probability density that models the relative
probability of events occurring in a spatial domain.
Standard density estimation techniques do not incorporate
priors informed by spatial data. Such methods can result
in assigning significant positive probability to locations
where events cannot realistically occur. In particular, when
modeling residential burglaries, standard density estimation
can predict residential burglaries occurring where there are
no residences. Incorporating the spatial data can inform
the valid region for the density. When modeling very few
events, additional priors can help to correctly fill in the gaps.
Learning and enforcing correlation between spatial data and
event data can yield better estimates from fewer events.
We propose a nonlocal version of Maximum Penalized
Likelihood Estimation based on the H1 Sobolev seminorm
regularizer that computes nonlocal weights from spatial
data to obtain more spatially accurate density estimates. We
evaluate this method in application to a residential burglary
data set from San Fernando Valley with the nonlocal
weights informed by housing data or a satellite image.

1. Introduction
In real-world applications, satellite images, housing data,
census data, and other types of geographical data become
highly relevant for modeling the probability of a certain type
of event. The methodology presented here provides a general
framework paired with fast algorithms for incorporating
external information in density estimation computations.
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In density estimation, one is given a discrete sample of event locations, drawn from some unknown
density u on the spatial domain, and tries to approximately recover u [1]. Relating the events to the
additional data allows one to search over a smaller space of densities, which can yield more accurate results
with fewer events. We refer to the additional data source as the function g(x) defined over the spatial domain
Ω. We may typically assume two things about the relationship between g and u : 1) g informs the support
of u via g(x) = 0⇒ u(x) = 0 and 2) u varies smoothly with g in a nonlocal way (explained below). This
method allows the additional information in g to significantly improve the recovery of u.

(a) Maximum Penalized Likelihood Estimation
Although there are other classes of methods in the density estimation literature which are quite popular

(such as average shifted histogram and kernel density estimation [2]), in this work we shall focus on
Maximum Penalized Likelihood Estimation (MPLE). MPLE provides a general framework for finding an
approximate density from sampled events. The likelihood of events occurring at the locations {xi}ni=1

according to a proposed probability u is the product of the probability evaluated at each of those locations:

L
(
u, {xi}ni=1

)
=

n∏
i=1

u(xi).

MPLE approximates u as the maximizer of a log-likelihood term combined with a penalty term, typically
enforcing smoothness [3],

û= argmax
u≥0,

∫
Ω
udx=1

n∑
i=1

log(u(xi))− P (u).

Without some kind of penalty term, the solution is just a weighted sum of Dirac deltas located at the
training samples. Typical choices of P (u) include the TV-norm, P (u) = λ

∫
Ω |∇u|dx, and theH1 Sobolev

seminorm P (u) = λ
2

∫
Ω |∇u|

2dx. λ is the parameter which controls the amount of regularization. This is
typically chosen via cross-validation, when it is computationally feasible.

(b) MPLE applied to Crime
The H1 seminorm is a common, well-understood regularizer in image processing related to Poisson’s

equation, the heat equation, and the Weiner filter, producing visually smooth surfaces. For this reason,
it is often a default choice when little is known about the data being modeled. H1 MPLE has further
justification in crime density estimation from the "broken window" effect [4–6]. This observation states
that after a burglary has occurred at a given house, burglaries are more likely to occur at the same house or
nearby houses for some period of time afterwards. Initial burglaries give criminals information about what
valuables remain and the schedule of inhabitants in the area. Additionally, a successful burglary leaves
environmental clues, such as broken windows, that indicate an area is more crime-tolerant than others.
This effect leads to repeat and near-repeat burglaries. More generally, criminals tend to move in a bounded
region around a few key nodes and have limited awareness of potential for criminal activity outside of
familiar areas [7–9]. Within neighborhoods, risk factors are typically homogeneous [10–12]. All of this
explains why observed incidence rates of burglaries are locally smooth.

However, local smoothness is not always appropriate and in practice there is much room for
improvement. In recent years several studies on the application of MPLE to crime data [13–15] emphasize
the fact that crime density should have boundaries corresponding to the local geography. Mohler et al. and
Kostic et al. model this by choosing penalty functions that are edge-preserving, TV and Ginzburg-Landau
respectively [13,15]. Smith et al. more closely follows the idea presented here. That work introduces a
modifiedH1 MPLE, which based the penalty term on an additional component of the data [14]. The method
assumes that the the valid region of the probability density estimate is known a priori. In their application
to residential burglary the valid region was the approximate support of the housing density in the region. If
we denote the valid region by D, then the modified penalty term is just a standard H1 MPLE with a factor
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z2ε in the integral, where zε is a smooth Ambrosio-Tortorelli approximation of (1− δ(∂D)) :

û= argmin
u≥0,

∫
Ω
u=1

1

2

∫
Ω
z2ε |∇u|2dx− µ

n∑
i=1

log(u(xi)),

zε(x) =

{
1 if d(x, ∂D)> ε,

0 if x∈ ∂D.

(c) Graph-based methods
In spectral graph theory, data is represented as nodes of a weighted graph, where the weight on each edge

indicates the similarity between the two nodes. Such data structures have been very successfully applied
to data clustering problems and image segmentation [16–18]. The standard theory behind this is described
in [19,20] and a tutorial on spectral clustering is given in [21]. A theory of nonlocal calculus was developed
first by Zhou and Schölkopf in 2004 [22] and put in a continuous setting by Gilboa and Osher in 2008 [23].
Such methods were originally used for image denoising [23,24], but the general framework led to methods
for inpainting, reconstruction, and deblurring [25–29]. Compared with local methods, nonlocal methods are
generally better able to handle images with patterns and texture. Further, by choosing an appropriate affinity
function, the methods can be made suitable for a wide variety of different of data sets : not just images.

In this article we present nonlocal H1 MPLE (NL H1 MPLE), which modifies the standard H1 MPLE
energy to account for spatial inhomogeneities, but unlike Smith et al. [14], we do so in a nonlocal way, which
has the benefit of leveraging recent fast algorithms and the potential to generalize to other applications.

The organization of this article is as follows: In Sec. 2, we introduce the NL H1 MPLE method and
review the nonlocal calculus and numerical methods on which it is based. In Sec. 3 we demonstrate the
advantages of NLH1 MPLE by comparing it with standardH1 MPLE when applied to modeling residential
burglary. In Sec. 4 we summarize our conclusions and discuss directions for future research.

2. Nonlocal Crime Density Estimation
We propose replacing the H1 seminorm regularizer of H1 MPLE with a linear combination of an H1

regularizer and a nonlocal smoothing term
∫∫
Ω×Ω (∇w,su(x, u))2 dxdy where∇w,s denotes the nonlocal

symmetric-normalized gradient depending on an affinity function w derived from the spatial data, g. More
details are found in Sec. (b). The energy we optimize is thus

û= argmax
u≥0,

∫
Ω
u=1

n∑
i=1

log (u(xi))− α
∫∫
Ω×Ω

(∇w,su(x, u))2 dxdy −
β

2

∫
Ω
|∇u(x)|2dx. (2.1)

The nonlocal term in equation (2.1) is tolerant of sharp changes in the probability density estimate,
as long as they coincide with sharp nonlocal changes in the spatial data. The mathematical formulation
of this statement follows from the definitions presented in the following sections and is presented in
the appendix. Before reviewing the nonlocal caluculus behind this energy, we motivate why a nonlocal
regularizer is good for crime density estimation. Many cities grow in a dispersal colony-like fashion, i.e.
colony patches start growing at dispersed location at the same time with the same architectural or cultural
model as a starting point, generating nonlocal similarities [30]. Dissimilar colony patches grow and meet
to form diffuse interface-like boundaries [31]. Thus housing data typically contains similar features spread
across the domain, along with interfaces between different types of areas. Whereas opposite sides of these
interfaces are spatially close, they are nonlocally well-separated.

The clearest advantage of nonlocal regularization is that it allows for sharp changes in crime density
across interfaces of distinct housing regions. In particular, since the residential areas are nonlocally well-
separated from the non-residential areas, the nonlocal regularized estimate correctly captures the support of
the residential burglary density. This feature has been studied for its own sake in prior work and nonlocal
regularization addresses it in an automatic, hands-off way.

Another, more subtle advantage of nonlocal regularization is that it encourages distant, but nonlocally
similar regions (e.g. colony patches based on the same model) to have similar crime density values. The
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assumption is that the layout of a neighborhood and its crime density are both tied to underlying socio-
economic factors. When one has these relevant factors, one can perform Risk Terrain Modeling [12],
combining the factors in the way that is most consistent with the observed data. Nonlocal regularization
implicitly measures correlation between housing features and levels of crime, presumably explained by
these unknown factors. The regularization encourages those relationships to remain consistent across the
entire domain and all data. In this work, we base the nonlocal similarity of two locations on the similarity
of surrounding housing density patches. For simplicity, one could consider basing it on only the housing
density in the immediate vicinity. This would encourage the crime density to be a smooth function of the
immediate housing density. Likely, one would estimate residential burglaries as roughly proportional to
the housing density. This would be a simple, but reasonable null model, assuming that burglary depends
heavily on opportunity. One would balance the spatial smoothness and smoothness as a function of housing
density with cross-validation, allowing for varying results depend on what the data shows. Our nonlocal
weights are based on housing density patches, which makes them more noise-robust and representative of
more complex housing features. This approach is general, relates to previous work in image processing, and
produces favorable results.

(a) Nonlocal means
Nonlocal means was originally developed for the application of image denoising, but can also be interpreted
as an affinity function. The formula for the nonlocal means affinity, wIm, is given by [24]

wIm(x, y) = exp

−
(
Kr ∗ |Im(x+ ·)− Im(y + ·)|2

)
(0)

σ2

 . (2.2)

Here Im is the image the nonlocal means weights are based on, Kr is a nonnegative weight kernel of size
(2r + 1)× (2r + 1), and σ is a scaling parameter. This function measures similarity between two pixels
based on a weighted `2 difference between patches surrounding them in the image. In our experiments, the
image Im is either a housing image or a satellite image. In practical settings, computing and storing all
function values of w is a very computationally intensive task, so we use the fast approximation : Nyström’s
extension (see Sec. 2(d)).

(b) Nonlocal calculus and graphs
Nonlocal calculus was introduced in its discrete form by Zhou and Schölkopf [22] and put in a continuous
framework by Gilboa and Osher [23]. In these definitions, w(x, y) is a general nonnegative symmetric
affinity function which generally measures similarity between the points x and y.

Let Ω ⊂Rn, and u(x) be a function u :Ω→R. Then the nonlocal gradient of u at the point x∈Ω in
the direction of y ∈Ω is given by

(∇wu) (x, y) = (u(y)− u(x))
√
w(x, y).

This suggests an analogous generalization of divergence, which in turn leads to the following definition of
the nonlocal Laplacian.

∆wu(x) =

∫
Ω
(u(y)− u(x))w(x, y)dy (2.3)

Now let {pi}ni=1 be a discrete subset of Ω and let wij =w(pi, pj) if i 6= j and wii = 0. We then let
{pi}ni=1 be vertices and wij the edge weights on a weighted graph. Let di =

∑n
j=1 wij be the weighted

degree of the ith node. Then the graph Laplacian applied to the function on the graph, u, is given by Lu
where

Lij =

{
di if i= j

−wij otherwise
, and so (Lu)i =

n∑
j=1

(
ui − uj

)
wij .

To keep the spectrum of the graph Laplacian in a fixed range as the the number of samples in increased and
thus to guarantee consistency, we must normalize the graph Laplacian. See Bertozzi and Flenner 2012 [32]
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for a more in depth discussion of this. We use the symmetric normalization.

Lsym :=D−1/2LD−1/2, Dij =

{
di if i= j

0 otherwise

Because we express our energy as applied to functions over continuous domains, we also introduce the
following notation for the symmetric-normalized nonlocal gradient.

∇w,su(x, y) :=
∇wu(x, y)(∫

Ω w(x, z)dz
∫
Ω w(y, z)dz

)1/4
(c) Numerical optimization
We must numerically find an approximate solution. The unconstrained energy has gradient flow

ut = α∆w,su+ β∆u+
1

u

n∑
i=1

δ(x− xi).

We evolve this equation, projecting onto the space of probability densities after each step. We discretize the
equation as

uk+1 − uk

δt
=−αLsymuk+1 + β∆hu

k+1 +
1

uk

n∑
i=1

δ(x− xi).

Here ∆h denotes the discrete Laplacian from the 5-point finite difference stencil with mesh size h= 1.

Solving for uk+1 yields

uk+1 = (I + αδtLsym − βδt∆h)−1
(
δt

uk

n∑
i=1

δ(x− xi) + uk
)
.

To approximate this, we use a split-time method

uk+1/2 =

(
I + α

δt

2
Lsym

)−1(
δt

uk

n∑
i=1

δ(x− xi) + uk
)
,

uk+1 =

(
I − β δt

2
∆h

)−1(
δt

uk+1/2

n∑
i=1

δ(x− xi) + uk+1/2

)
.

To apply these operators, we use a spectral method. This has two advantages over forming and
multiplying the matrices. First, we can approximate the projection onto the constraint by using the spectral
decomposition of the discrete Laplacian (shown in Table 1). Second, the computation required to form and
apply the entire symmetric graph Laplacian is too intensive. Fortunately, we can apply Nyström’s extension
(discussed in Sec. (d)), which is a popular method for approximating a portion of the eigenvectors and
eigenvalues which approximate the operator well. To project onto the eigenvectors of ∆h we apply the 2D
Fast Fourier Transform.

In both the case of applying (I + α δt2 Lsym)−1 and (I − β δt2 ∆h)
−1 we are applying operators of

the form (I + δtP )−1 where P is symmetric and positive semidefinite. In general, if P has spectral
decomposition P =ΦΛΦT then we apply (I + δtP )−1 to ~w by first projecting onto the eigenvectors :
~a=ΦT ~w, updating the coefficients ãm = am/(1 + δtλm), and finally transforming back to the standard
basis : (I + δtP )−1 ~w=Φ~̃a. We summarize the steps of our algorithm in Table 1.

(d) Nyström’s extension
To apply the spectral method described in the previous section we need to approximate the eigenvectors
and eigenvalues of the symmetric graph Laplacian. Here we present the Nyström’s extension method and
refer the reader to [25,32,33] for further discussion and analysis. Nyström’s extension is a technique for
performing matrix completion, well-known within the spectral graph theory community. In this setting,
Nyström’s extension is applied to the normalized affinity matrix Wsym =D−1/2WD−1/2 where the
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Nyström (Img)→ Φ,Λ : Lsym ≈ΦΛΦT .
Initialize u0 ≡ 1/|Ω|, succDiff =∞, k= 0.

while succDiff > 10−7 and k <maxSteps= 800

• k= k + 1

• ~b=ΦT
[
uk−1 + δt

uk−1

∑n
i=1 δ(x− xi)

]
• ai = bi

1+α δt2 λi

• ~uk−1/2 =Φ~a

• ~b= fft2
[
uk−1/2 + δt

uk−1/2

∑n
i=1 δ(x− xi)

]
• ai = bi

1+2βδtπ2(m2+n2)
, i∼ (m,n)th Fourier mode,

a1 = 1 (guarantees integral 1 constraint)
• ~uk = ifft2 (~a)

• ~uk =max
(
~uk, 0

)
• succDiff = ‖uk − uk−1‖22/‖uk‖22

Table 1: Nonlocal H1 MPLE Algorithm

(i, j)th entry of W is the affinity between node i and j. Note that the matrices Wsym and Lsym have
the same eigenvectors, and λ is an eigenvalue of Wsym if and only if 1− λ is an eigenvalue of Lsym.

We let N denote the set of nodes in our complete weighted graph, then take X to be a small random
sample from N , and Y its complement. Up to a permutation of the nodes we can write the affinity matrix
as

W =

(
WXX WXY

WY X WY Y

)
,

where the matrix WXY =WT
Y X consists of weights between nodes in X and nodes in Y , WXX consists

of weights between pairs of nodes in X , and WY Y consists of weights between pairs of nodes in Y .
Nyström’s extension approximates the eigenvalues and eigenvectors of the affinity matrix by manipulating
the approximation:

W ≈ Ŵ =

(
WXX

WY X

)
W−1XX

(
WXX WXY

)
.

This approximates WY Y ≈WY XW
−1
XXWXY . The error due to this approximation is determined by how

well the rows ofWXY span the rows ofWY Y . If the affinity matrixW is positive semidefinite then we can
write it as a matrix transpose times itself : W = V TV . In [34] the authors show that the Nyström extension
thus approximates the unknown part of V (corresponding to WY Y ) by orthogonally projecting it onto the
range of the known part (corresponding to WXY ). In this setting it is clear that as the size of X grows, the
approximation improves. Further, a random choice of X is likely to yield WXY full-rank if the rank of the
rank of W is sufficiently large.

Next we must incorporate the normalization factors into the above approximation. The degrees are
approximated by applying their definition to the approximation. Note that di =

∑n
j=1 wij can also be

written as d=W1n where 1n is the n length vector of ones. This yields

d̂X =WXX1|X| +WXY 1|Y |

d̂Y =WY X1|X| +WY XW
−1
XXWXY 1|Y |
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In this way we approximate the degrees without forming any matrices of size larger than |X| × |Y |. Define
also the vectors sX = d

−1/2
X , sY = d

−1/2
Y . Normalizing our approximation of W gives

Wsym ≈ Ŵsym =

WXX �
(
sXs

T
X

)
WXY �

(
sXs

T
Y

)
WY X �

(
sY s

T
X

) (
WY XW

−1
XXWXY

)
�
(
sY s

T
Y

)
where � denotes component-wise product. For notational convenience going forward, let us define
W sym
XX =WXX �

(
sXs

T
X

)
and W sym

XY =WXY �
(
sXs

T
Y

)
.

In practice, one uses a diagonal decomposition of such a formula to avoid forming and applying the
full matrix. It follows from analysis discussed in [33] that if W sym

XX is positive definite, the diagonal
decomposition of the approximation is given by Ŵsym = V ΛSV

T , where

S =W sym
XX +

(
W sym
XX

)−1/2
W sym
XY W sym

YX

(
W sym
XX

)−1/2
,

S has diagonal decomposition S =USΛSU
T
S , and

V =

[
W sym
XX

W sym
YX

] (
W sym
XX

)−1/2
USΛ

−1/2
S .

Note that S is size |X| × |X| and V is size |N | × |X|. Their computation never requires computing or
storing matrices larger than size |N | × |X|. Thus V is a matrix of |X| approximate eigenvectors of Wsym

with corresponding eigenvalues ΛS . For more detailed discussion on Nyström’s extension, see [25,32,33].

(e) Cross-validation
Cross-validation is a methodology for choosing the smoothing parameter λ which yields probability
densities that are predictive of the missing data [35]. Because our method consists primarily of simple
coefficient updates after mapping to different eigenspaces, it is fast relative to methods with similar goals
( [14] for instance). This speed increase allows us to perform 10-fold cross-validation, which requires many
evaluations of the density estimation method. In V -fold cross validation we randomly partition the data
points into V disjoint subsets X =tVv=1Xv with complements X−v =X\Xv. We let uλ,−v denote the
density estimate using parameter λ trained on the data X−v. The objective we minimize is an application
of the Kullback-Leibler divergence, an assymetric distance measure for probabilities given by

DKL (p, q) =

∫
Ω
log

(
p(x)

q(x)

)
p(x)dx.

We select the parameter λ that minimizes the average KL divergence between the density estimates, uλ,−v ,
and the discrete distributions on the witheld data points :

pv(x) =
1

|Xv|
∑
xi∈Xv

δ(x− xi).

This yields the following optimization:

λ̂=argmin
λ

1

V

V∑
v=1

DKL(pv, uλ,−v)

= argmax
λ

1

V

V∑
v=1

∑
xi∈Xv

log(uλ,−v(xi)).

The result can also be interpreted as maximizing the average log-likelihood that the missing events are
drawn from the corresponding estimated densities. We approximate this optimization via a grid search
(note that λ= (α, β) is 2 dimensional). The search requires the computation of all the density estimates
uλ,−v . In particular, for 10-fold cross-validation, we must compute 10×|α values| × |β values| densities.

When evaluating the energy, it is important to ensure that nonnegativity and sum-to-one constraints
hold strictly for the input densities. If a density is slightly negative somewhere, it could add complex
terms to the objective, and if a density has sum slightly larger than 1, it could unfairly achieve a slightly
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higher objective. Further, in the strictest interpretation, if a density has a value 0 at the location of a
missing event, the objective will take value −∞. We relax this penalty by replacing uλ,−v(xi) with
max{uλ,−v(xi), 10−16}.

3. Numerical experiments
In this section, we demonstrate the advantage NLH1 MPLE method over standardH1 MPLE by evaluating
its performance on residential burglary data from San Fernando Valley in Los Angeles, California, using of
corresponding housing data and a satellite image to inform the nonlocal weights.

(a) Residential burglary
We perform experiments on residential burglary data from San Fernando Valley in 2005-2013, getting
substantially different results than those shown in [13–15]. In Fig. 1 we show the data used (locations of
residential burglaries in Fig. 1(a), housing in Fig. 1(b), satellite image in Fig. 1(c)), H1 MPLE (Fig. 1(d)),
housing-based NL H1 MPLE (Fig. 1(c)), and satellite-based NL H1 MPLE (Fig. 1(d)) density estimates
on increasing subsets of data from 2005-2008. To evaluate performance, we compute the log-likelihood of
each density on the residential burglaries from 2009-2013 (shown in Table 2).

As one would predict, the locations of residential burglaries in Fig. 1(a) are primarily restricted to
the support of the housing density image Fig. 1(b). There are some locations in the burglary data set
that correspond to locations with no residences (4,173 events out of 23,725 total), which we attribute to
imprecision in the burglary data. Most such misplaced events occur on streets, suggesting that the actual
event took place at a residence facing that street. Because of this inconsistency between the data sets, for
the experiments which use the housing data, we adjust the residential burglary data for training and testing
(for both H1 and NL H1), moving each event to the nearest house if it is within 2 pixels, and dropping the
event otherwise. This results in 603 dropped events. For the experiments which do not use housing data, we
work with the raw burglary data for training and testing.

We implement H1 MPLE by applying our algorithm, described in Table 1 with α= 0 and Φ= Id. We
choose the value of the regularization parameter β for each training data set by performing 10-fold log-
likelihood cross-validation, searching over β =[0,10.^(-2:8)]. We apply H1 MPLE to both the raw
and corrected burglary data.

For housing-based NL H1 MPLE , we perform Nyström’s extension with nonlocal means applied to g,
the housing density image shown in Fig. 1(c). We use 400 random samples for Nyström’s extension. We
use the first 300 eigenvectors and eigenvalues in our computations. The nonlocal means weights are based
on differences between patches of size 11× 11 and σ= 1 · std(g), the standard deviation of the housing
image. The weight kernel Kr , r= 5, is given as follows.

Kr(1 + r + i, 1 + r + j) =
1

r

r∑
d=max(|i|,|j|,1)

1

(2d+ 1)2
, i, j =−r, . . . , r

To choose the regularization parameters α, β,we perform 10-fold log-likelihood cross-validation, searching
over α=[0,10.^(-2:12)], β =[0,10.^(-2:8)]. We apply housing NL H1 MPLE to the
corrected burglary data.

For satellite-based NL H1 MPLE, we perform Nyström’s extension with nonlocal means applied to g,
the Google Maps image shown in Fig. 1(c). In applying nonlocal means to a color image, we interpret the
image as a vector valued function with 3 components (one for each color channel) and so in equation (2.2)
the expression |Im(x+ ·)− Im(y + ·)|2 is size (2r + 1)× (2r + 1)× 3 . We use 800 random samples for
Nyström’s extension. We use the first 600 eigenvectors and eigenvalues in our computations. The nonlocal
means weights are based on differences between patches of size 11× 11 and σ= 1 · std(g), the standard
deviation of the Google Maps image. The weight kernel is as in the previous case, but repeated on each
color channel. To choose the regularization parameters α, β for each training set, we perform 10-fold log-
likelihood cross-validation, searching over α=[0,10.^(-2:12)], β =[0,10.^(-2:8)]. We apply
satellite NL H1 MPLE to the raw burglary data.
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Training Data Set (corrected) scaled Histogram H1 Housing NL H1

50 random from 2008 −3.6039× 105 -1.3386× 105 −1.3396× 105

100 random from 2008 −3.5991× 105 -1.3369× 105 −1.3369× 105

500 random from 2008 −3.5197× 105 −1.3282× 105 -1.3004× 105

1000 random from 2008 −3.4350× 105 −1.3246× 105 -1.2953× 105

2008 −3.1905× 105 −1.3189× 105 -1.2888× 105

2007-2008 −2.9846× 105 −1.3174× 105 -1.2850× 105

2006-2008 −2.8152× 105 −1.3136× 105 -1.2815× 105

2005-2008 −2.6847× 105 −1.3121× 105 -1.2774× 105

Traing Data Set (raw) scaled Histogram H1 Satellite NL H1

50 random from 2008 −3.6959× 105 −1.3733× 105 -1.3553× 105

100 random from 2008 −3.6822× 105 −1.3732× 105 -1.3553× 105

500 random from 2008 −3.6342× 105 −1.3583× 105 -1.3524× 105

1000 random from 2008 −3.5733× 105 −1.3598× 105 -1.3525× 105

2008 −3.3313× 105 −1.3535× 105 -1.3494× 105

2007-2008 −3.1326× 105 −1.3525× 105 -1.3482× 105

2006-2008 −2.9630× 105 −1.3496× 105 -1.3449× 105

2005-2008 −2.8334× 105 −1.3488× 105 -1.3431× 105

Table 2: Log-likelihood of densities on residential burglaries from 2009-2013 (corrected & raw)

The H1 MPLE results transition from a completely smooth uniform density to a probability density
with more apparent structure as the amount of training data increases. The NL H1 MPLE housing and
satellite results exhibit a similar trend, but are able to better approximate the correct support of the density
with many fewer data points. The measurable benefit of nonlocal smoothing is shown by the log-likelihood
values in Table 2. NL H1 generally gets higher log-likelihood than H1. This means the densities estimated
by housing NL H1 on corrected 2005-2008 data are more congruous with the corrected 2009-2013 data
than the H1 densities, and the densities estimated by satellite NL H1 on raw 2005-2008 data are more
congruous with the raw 2009-2013 data than the H1 densities.

The added complexity of our algorithm results in an increase in run time from the standard H1 MPLE,
but the difference is not too substantial. We compare run times on a laptop with one Intel Core i7 processor
that has two cores with processor speed 2.67GHz and 4GB of memory. The run time for Nyström applied
to the housing image is typically about 17 seconds. The run time for Nyström applied to the satellite image
is typically about 36 seconds. For cross-validation purposes, Nyström can be run once outside of the loop
and the results used for all combinations of data sets and parameters. The run time for H1 MPLE with
parameters as chosen by cross-validation on the residential burglaries from 2005-2008 is typically about
half a second. The run time for housing NL H1 MPLE with parameters as chosen by cross-validation on
the the residential burglaries from 2005-2008 is typically about 2.3 seconds. The run time for satellite NL
H1 MPLE with parameters as chosen by cross-validation on the the residential burglaries from 2005-2008
is typically about 1.5 seconds. The cross-validation run times depend on what range of parameters are being
tested, but can easily be run in parallel across several computing nodes.

(b) Synthetic Density
To further verify that NLH1 MPLE is correctly performing density estimation, we test the method’s ability
to recover a given density. We start with a known density, draw events from it, and attempt to recover
it. Because the method assumes a relationship between the spatial data g and the density u, we generate
a synthetic density which is closely related to the housing data, shown in the bottom left of Fig. 2. This
density is given by taking a random linear combination of the first 5 approximated eigenvectors of the graph
Laplacian (with weights based on the housing image) and then shifting and normalizing the result to yield
a probability density. The coefficients are chosen uniformly at random in [0, 1] and the nonlocal weights
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Figure 1:
Top row: data
(a) 2005-2013 Residential burglaries in San Fernando Valley (from LAPD)
(b) San Fernando Valley log(min(# housing units, 7) + 1) (from LA County Tax Assessor)
(c) Satellite image of San Fernando Valley (from Google Maps)
Bottom three rows : MPLE of 50, 500, and 1000 random samples from ’08 residential burglaries
(d) Column 1 : H1 MPLE
(e) Column 2 : Housing NL H1 MPLE
(f) Column 3 : Satellite NL H1 MPLE
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Figure 2: Synthetic density recovery (see Sec. 3(b))
Top row : density estimates based on 400 samples from synthetic density
|error| : H1 7.12473× 10−6, NL H1 5.26617× 10−6 , NL H1 restricted 2.55042× 10−6

Bottom row : synthetic density and density estimates on 4,000 samples
|error| : H1 5.05662× 10−6, NL H1 2.52831× 10−6 , NL H1 restricted 1.36416× 10−6

are based on the housing data as they were in the previous section. This randomly generated density was
chosen over others because it looks like a potential probability density for residential burglary. It should be
noted that this choice of synthetic density is quite ideal for the proposed method. The hope is that very good
density recovery of ideal probability densities extends to good density recovery of less ideal probability
densities.

We sample events according to this density by generating numbers uniformly at random in [0, 1] and
inverting the cumulative distribution function associated with the density. In the top row of Fig. 2 we show
the H1 MPLE result on the 400 events (β = 5× 104), the housing NL H1 MPLE result on the 400 events
(α= 100, β = 0), and the NL H1 MPLE result on 400 events restricted to the first 5 eigenvectors. In the
bottom row of Fig. 2 we show the synthetic density, theH1 MPLE result on the 4,000 events (β = 105), the
housing NL H1 MPLE result on the 4,000 events (α= 108, β = 0), and the NL H1 MPLE result on 4,000
events restricted to the first 5 eigenvectors. In all cases, smoothing parameters were chosen to minimize
mean absolute error of the probability density. The NL H1 results and the restricted NL H1 results do a
substantially better job at recovering the probability density than H1 MPLE. This is expected of course,
from the construction of the probability. The comparison merely suggests that if the correct density is well-
approximated by a combination of eigenvectors of the graph Laplacian, enforcing nonlocal smoothness can
substantially improve recovery of the density. It is, in general, difficult to determine when a density is well-
approximated by a graph Laplacian’s eigenbasis. The assumption is that the primary and nonlocal data have
some meaningful, consistent connection. We refer the reader to Sec. 2 for heuristics on this connection and
the appendix for some more precise formulations. It is also worth noting that if unrelated nonlocal data is
used, cross-validation will likely yield α= 0, reverting the model back to standard H1 MPLE.

4. Conclusions and Future work
In this paper we have looked at the problem of obtaining spatially accurate probability density estimates.
The need for new approaches is demonstrated by the inadequate performance of standard techniques such
as H1 MPLE.

Our proposed solution accomplishes this by incorporating a nonlocal regularity term based on the
H1 regularizer and nonlocal means which fuses geographical information into the density estimate. Our
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experiments with the San Fernando Valley residential burglary data set demonstrate that this method does
yield a probability density estimate with the correct support which also gives favorable log-likelihood
results. Further, our results based on the Google Maps image suggest we can apply NL H1 MPLE to a
wide variety of geographic regions without obtaining specialized geographic data.

There are several others aspects of this and related problems to explore. In general, testing the method
on other datasets would be interesting. This may present the added challenge of dealing with other types
of geographical information since high-resolution housing density data may not be readily available. In
modeling the density of other types of events, the geographical data may not be related to housing at all.
As the problem dictates, the nonlocal weights can be replaced with whatever weights seem appropriate for
the data at hand. We have yet to incorporate time, leading indicators of crime, or census data into model.
Any of these could further improve results and allow one to use density estimation in place of risk terrain
modeling.

Finally, our method need not stand alone. Several sophisticated spatio-temporal models for probabilistic
events make use of density estimation, typically using the standard methods [36–38]. By replacing the
standard density estimation techniques with a nonlocally regularized MPLE such as ours, the density
estimates in these models could improve, thus improving the overall result of the resulting simulation.
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Appendix
To examine the effect of the nonlocal regularization term, we compute an alternate formulation of the NL
H1 MPLE problem and derive an inequality that solutions must satisfy. Recall from equation (2.1) that NL
H1 MPLE applied to the event samples X = {xi}ni=1 with parameters α, β ≥ 0 is given by the following
optimization.

uα,β,X := argmax
u≥0,

∫
Ω
u=1

n∑
i=1

log (u(xi))− α
∫∫
Ω×Ω

(∇w,su(x, u))2 dxdy −
β

2

∫
Ω
|∇u(x)|2dx

For every such X,α, β one can show there exists nonnegative constants C1, C2 such that uα,β,X is also
the solution to a more constrained optimization.

uα,β,X =argmax

n∑
i=1

log (u(xi)) subject to

{
u≥ 0,

∫
Ω
u= 1,

∫∫
Ω×Ω

(∇w,su(x, y))2 dxdy≤C1,
1

2

∫
Ω
|∇u(x)|2dx≤C2

}
(A 1)

It can further be shown that for X and β ≥ 0 fixed, C1 is a non-increasing function of α≥ 0 and for X and
α≥ 0 fixed, C2 is a non-increasing function of β ≥ 0.
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Any solution of equation (A 1) satisfies
∫∫
Ω×Ω(∇w,su(x, y))2dxdy≤C1, and likewise in the discrete

setting we have the following. ∑
i,j∈Ω

(ui − uj)2
wij√
didj

≤C1

Thus for some nonnegative discrete function f :Ω ×Ω→R≥0 with
∑
i,j∈Ω fij ≤C1 we have the

following.

∀i, j ∈Ω, (ui − uj)2 ≤ fij

√
didj

wij
(A 2)

Recalling that in our application, we set the weights wij to be nonlocal means applied to a housing image,
g :Ω→R, we can interpret what this means. Up to some factors constrained by the parameter C1, the
squared difference between the density at pixels i and j is bounded by

√
didj/wij . Thus the bound is

made restrictive when : di and dj are small, which means the patches of g around pixels i and j are very
different from the rest of the image; and when wij is large, which means the neighborhoods of g around
pixels i and j are similar to each other.

It is also worth noting that by constraint, the left-hand side of (A 2) is always smaller than or equal to 1.
Thus for the inequality to be nontrivial, we must have fij <wij/

√
didj for some pair i, j ∈Ω. Thus C1

must be sufficiently small (or α sufficiently large) in order to guarantee that the nonlocal smoothing will
have any effect on u.
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