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Abstract

Here, we study games of incomplete information and argue that it is important to correctly

specify the “context” within which hierarchies of beliefs lie. We consider a situation where

the players understand more than the analyst: It is transparent to the players—but not to

the analyst—that certain hierarchies of beliefs are precluded. In particular, the players’ type

structure can be viewed as a strict subset of the analyst’s type structure. How does this

affect a Bayesian equilibrium analysis? One natural conjecture is that this doesn’t change

the analysis—i.e., every equilibrium of the players’ type structure can be associated with an

equilibrium of the analyst’s type structure. We show that this conjecture is wrong. Bayesian

equilibrium may fail an Extension Property. This can occur even in the case where the game is

finite and the analyst uses the so-called universal structure (to analyze the game)—and, even,

if the associated Bayesian game has an equilibrium. We go on to explore specific situations in

which the Extension Property is satisfied.
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1 Introduction

This paper introduces a novel robustness question for the analysis of incomplete information

games. We focus on a situation where the analyst correctly specifies the exogenous parameters of

the game and the players’ hierarchies of beliefs, but misspecifies the context within which these

hierarchies lie. We ask: Are the analyst’s predictions robust to misspecifying the context of the

game?

What is the Context of the Game? Suppose that Nature tosses a coin, whose realization

is either θ or θ. The realization of this toss results in distinct payoff functions. Each of two

players, resp. Izzy (i) and Joe (j), face uncertainty about the realization of this coin toss. What

choices should Izzy and Joe make here? Presumably, Izzy’s choice will depend on her belief about

the realization of the coin toss. But, presumably, Izzy’s choice will also depend on what she

thinks about Joe’s belief about the realization of the coin toss. After all, Joe’s belief (about the

realization of the coin toss) should influence his action, too. And, Izzy is concerned not only with

what matrix is being played, but also with what choice Joe is making within the matrix.

To analyze the situation, we add to the description of the game, so that it also reflects these

hierarchies of beliefs. In particular, we append a type structure to the game. One such type

structure is given in Figure 1.1. Here, there are two possible types of Izzy, viz. ti and ui, and one

possible type of Joe, viz. tj . Type ti (resp. ui) of Izzy assigns probability one to Nature choosing

θ (resp. θ) and Joe’s type being tj . Type tj of Joe assigns probability 1
2 to “Nature choosing

θ and Izzy being type ti” and probability 1
2 to “Nature choosing θ and Izzy being type ui.” So,

type tj of Joe assigns probability 1
2 to “Nature choosing θ and Izzy assigning probability one to

θ” and probability 1
2 to “Nature choosing θ and Izzy assigning probability one to θ.” And so on.

βi(·) (θ, tj) (θ, tj)

ti 1 0

ui 0 1

βj(·) (θ, ti) (θ, ti) (θ, ui) (θ, ui)

tj
1
2 0 0 1

2

Figure 1.1: Type Structure

This type structure describes a situation where there are only two possible hierarchies of beliefs

that Izzy can hold and only one possible hierarchy of beliefs that Joe can hold. In particular, it

does not induce all hierarchies of beliefs. What is the rationale for limiting the type structure in

this way? We view the specified game as only one part of the picture—a small piece of a larger

story. The game sits within a broader strategic situation. That is, there is a history to the game,

and this history influences the players. As Brandenburger, Friedenberg and Keisler (2008, p. 319)

put it:
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We think of a particular . . . structure as giving the “context” in which the game is

played. In line with Savage’s Small-Worlds idea in decision theory, who the players are

in the given game can be seen as a shorthand for their experiences before the game.

The players’ possible characteristics—including their possible types—then reflect the

prior history or context.

Under this view, the type structure, taken as a whole, reflects the context of the game. (Section

6a expands on this point and discusses the relationship to other views of game theory.)

Misspecifying the Context of the Game Consider the following scenario: The analyst

looks at the strategic situation and the history. Perhaps the analyst even deduces that certain

hierarchies are inconsistent with the history. But, to the players, it is transparent that other—

that is, even more—hierarchies are inconsistent with the history. Put differently, players rule out

hierarchies the analyst hasn’t ruled out.

βi(·) (θ, tj) (θ, tj) (θ, uj) (θ, uj)

ti 1 0

ui 0 1

βj(·) (θ, ti) (θ, ti) (θ, ui) (θ, ui)

tj
1
2 0 0 1

2

uj

Figure 1.2: The Analyst’s Type Structure

Return to the earlier example and suppose the players’ type structure is as given in Figure 1.1.

Suppose the analyst misspecifies the type structure and instead studies the structure in Figure

1.2. But, it contains one extra type of Joe, viz. uj . Type uj is associated with some belief,

distinct from type tj ’s belief. The particular belief is immaterial. What is important is that

each of Izzy’s types assigns zero probability to this type of Joe. More to the point, each of Izzy’s

types is associated with the exact same beliefs as in the players’ type structure. So, the players’

type structure can be viewed as a subset (or substructure) of the analyst’s type structure.

How does this affect an analysis? Take the solution concept of Bayesian Equilibrium applied

to a Bayesian game associated with the type structure in Figure 1.2. For a given Bayesian

Equilibrium, the analyst will have a prediction associated with the type uj—i.e., a type that the

players have ruled out. But the analyst will also have a prediction for the types ti, ui, and tj .

These are types in the players’ structure, namely Figure 1.1.

The question is: How does the analyst’s predictions for these types relate to the predictions

he would have, if he had analyzed the game using the players’ type structure? Presumably, the

analyst’s predictions shouldn’t change. After all, the beliefs associated with ti, ui, and tj have

not changed at all. So, we can associate any equilibrium of the players’ actual type structure

with an equilibrium of the analyst’s type structure, and vice versa.
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Implicit in the above is that Bayesian Equilibrium satisfies Extension and Pull-Back Proper-

ties: Fix a type structure, viz. T , associated with type sets Ti and Tj . We will think of T as

the players’ type structure. Now, consider another type structure T ∗, associated with type sets

T ∗i and T ∗j . Suppose there is a map hi : Ti → T ∗i (resp. hj : Tj → T ∗j ) so that each ti and hi(ti)

(resp. tj and hj(tj)) induce the same hierarchies of beliefs. We will think of T ∗ as the analyst’s

structure. Now, we can state the Extension and Pull-back Properties.

The Equilibrium Extension Problem (Preliminary Version). Fix an equilib-

rium of T . Does there exist an equilibrium of T ∗ so that each hi(ti) ∈ T ∗i and each

hj(tj) ∈ T ∗j plays the same strategy as do ti and tj (under the original equilibrium of

T )?

The Equilibrium Pull-Back Problem (Preliminary Version). Fix an equilib-

rium of T ∗. Does there exist an equilibrium of T so that each ti ∈ Ti and each tj ∈ Tj
plays the same strategy as do hi(ti) and hj(tj) (under the original equilibrium of T ∗)?

Return to the question of whether the analyst can study the Bayesian game in Figure 1.2.

The answer is yes, provided that the analyst won’t lose any predictions and won’t introduce any

new predictions. The question of losing predictions is the Extension Problem. The question of

introducing new predictions is the Pull-Back Problem.

What is Already Known? While the robustness question is new to this paper, examples and

results in the literature appear to speak to the Extension and Pull-Back Problems—at least as

we have formalized these ideas, thus far. We begin with two examples.

Example 1.1. 1 Suppose Nature chooses the single parameter from Θ = {θ}. Type structures

T and T ∗, in Figures 1.3-1.4, describe Izzy’s and Joe’s hierarchies of beliefs about Θ. Observe

that these two type structures induce exactly the same set of hierarchies of beliefs about Nature’s

choice from Θ: In each type structure, each type of each player assigns probability 1 to θ. In each

each type structure, each type of each player assigns probability one to “the other player assigns

probability 1 to θ.” And so on.

βi(·) (θ, tj) (θ, uj)

ti 1 0

ui 0 1

βj(·) (θ, ti) (θ, ui)

tj 1 0

uj 0 1

Figure 1.3: Type Structure T

1We thank Pierpaolo Battigalli for suggesting this example.
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β∗i (·) (θ, t∗j )

t∗i 1

β∗j (·) (θ, t∗i )

t∗j 1

Figure 1.4: Type Structure T ∗

Let Nature’s choice of the parameter θ result in the payoff matrix in Figure 1.5. While the type

structures T and T ∗ induce the same set of hierarchies of beliefs, we will see that the Bayesian

game associated with the type structure T has equilibrium predictions that cannot be induced

by the Bayesian game associated with the type structure T ∗.
First focus on the Bayesian game associated with type structure T ∗. The Bayesian equilibria

of this game correspond exactly to the Nash equilibria of the game in Figure 1.5, i.e., either types

t∗i and t∗j play (Up,Left), play (Down,Right), or assign 1
2 : 1

2 to Up : Down and Left : Right.

Joe

Left Right

Izzy
Up 1,1 0,0

Down 0,0 1,1

Figure 1.5

Next, focus on the Bayesian game associated with type structure T . There are Bayesian

equilibria where the types of both players coordinate on a Nash equilibrium of the game in Figure

1.5, e.g., where both ti, ui play Up and tj , uj play Left. But there is also a Bayesian equilibrium

where, say, (ti, tj) play (Up,Left) and (ui, uj) play (Down,Right).

Observe that this already points to a problem with the Equilibrium Extension Property, at

least as we have defined it. For instance, take T to be the players’ type structure and T ∗ to be the

analyst’s type structure. Then there are mappings hi(ti) = hi(ui) = t∗i and hj(tj) = hj(uj) = t∗j
that preserve hierarchies of beliefs. Yet, there is an equilibrium of the players’ type structure that

cannot be extended to an equilibrium of the analyst’s type structure: The types ti and ui in the

players type structure are mapped to the same type t∗i in the analyst’s type structure. But, there

is some equilibrium where these types, i.e., ti and ui, choose different actions. 2

Example 1.2 (Battigalli and Siniscalchi, 2003; Ely and Peski, 2006; Dekel, Fudenberg and Morris,

2007; Liu, 2009). Suppose Nature chooses a parameter from Θ = {θ, θ}. This choice determines

the players’ payoff functions, as specified in Figure 1.6.

Type structures T and T ∗, in Figures 1.7-1.8, describe Izzy’s and Joe’s hierarchies of beliefs

about Θ. Observe that these two type structures induce exactly the same set of hierarchies of

beliefs about the parameter: In each type structure, each type of each player assigns 1
2 : 1

2 to θ : θ.

So, in each type structure, each type of each player assigns probability one to “the other player
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Joe

θ Left Right

Izzy
Up 5, 0 0, 0

Down 3, 0 3, 0

Joe

θ Left Right

Izzy
Up 0, 0 5, 0

Down 3, 0 3, 0

Figure 1.6

assigns 1
2 : 1

2 to θ : θ.” And so on.

βi(·) (θ, tj) (θ, tj) (θ, uj) (θ, uj)

ti
1
2 0 0 1

2

βj(·) (θ, ti) (θ, ti)

tj
1
2

1
2

uj
1
2

1
2

Figure 1.7: Type Structure T

β∗i (·) (θ, t∗j ) (θ, t∗j )

t∗i
1
2

1
2

β∗j (·) (θ, t∗i ) (θ, t∗i )

t∗j
1
2

1
2

Figure 1.8: Type Structure T ∗

While the type structures T and T ∗ induce the same set of hierarchies of beliefs, the Bayesian

game associated with the type structure T has equilibrium predictions that cannot be induced by

the Bayesian game associated with the type structure T ∗. In any equilibrium of Bayesian game

associated with T ∗, t∗i plays Down. But, there exists a Bayesian equilibrium associated with the

type structure T where ti plays Up, tj plays Left, and uj plays Right.

This example also points to a problem with the Equilibrium Extension and Pull-Back Prop-

erties, as we have defined them. For instance, take T to be the players’ type structure and T ∗

to be the analyst’s type structure. Then there are mappings hi(ti) = t∗i and hj(tj) = hj(uj) = t∗j
that preserve hierarchies of beliefs. Yet, there is an equilibrium of the players’ type structure that

cannot be extended to an equilibrium of the analyst’s type structure. Likewise, if we take T to be

the analyst’ type structure and T ∗ to be the player’s type structure, then there is an equilibrium

of the analyst’s type structure that cannot be pulled-back to an equilibrium of the players’ type

structure. 2

Examples 1.1-1.2 illustrate failures of preliminary versions of the Extension and Pull-Back

Properties. But, they do not address the robustness question we are interested in. To see this,

begin with Example 1.1, where the true parameter θ is common belief amongst the players. We
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described the players’ type structure as T , where two types of Izzy (resp. Joe) induce the same

single hierarchy of beliefs about θ. These types specify information that is not available to the

players when the only set of ex ante uncertainty is about the parameter Θ = {θ}. They provide

additional information—not only about Θ—but also about the realization of some external signal.

In effect, the name of these types, i.e., ti vs. ui (resp. tj vs. uj), specifies the information about the

realization of these external signals. Indeed, the new equilibrium of the Bayesian game (associated

with T ) can be obtained as an objective correlated equilibrium of the game matrix in Figure 1.5.

(See Aumann, 1987.)

A similar idea is at play in Example 1.2. There, the type structure T provides information

that is not available to Joe when the only set of ex ante uncertainty is hierarchies of beliefs about

the parameter Θ. Two types of Joe, viz. tj and uj induce the same hierarchies of beliefs about

Θ. The fact that Joe’s action can vary with these types reflects the idea that Joe has obtained

different information about the realization of some external signal.

In both examples, we have a type structure T , where two types of a player induce the same

hierarchies of beliefs about the parameter Θ. This type structure is redundant. Redundant

structures can provide information above and beyond hierarchies of beliefs about the parameter

Θ; they can also provide information about an external signal. (See Liu, 2009 for a formal

statement.)

We are interested in the case where the analyst correctly specifies the parameters of the game

(including the set of actual signals), correctly specifies players’ hierarchies of beliefs about these

parameters, but simply also considers possible that players may have ‘additional hierarchies,’ i.e.,

hierarchies ruled out by the players themselves. Examples 1.1-1.2 illustrate that, as stated, a

failure of the Extension or Pull-Back Property need not reflect this robustness criterion—it may

instead reflect a failure to correctly specify the parameter set (or signal space) in the game. Thus,

we will need to amend the statement of the Extension and Pull-Back Properties to reflect our

robustness question. One simple way to do so is by restricting Extension and Pull-Back to non-

redundant type structures. Once we introduce the main formalism, we will see that we can, in

fact, state the Extension and Pull-Back Problems somewhat more generally.

Are the Extension and Pull-Back Problems Satisfied? We will see that the Pull-Back

Problem is indeed satisfied. This fact is ‘in the air’ so to speak. Thus the focus of this paper

will be on the Extension Problem. It is easy to construct simple pathological examples where the

Extension Property fails:

Example 1.3. Suppose Nature chooses a parameter from Θ = {θ, θ}. In either case, players’

actions are 0, 1, 2, 3, . . .. If the true parameter is θ, then Izzy (resp. Joe) obtains a payoff of 1 if

she (resp. he) chooses 0 and obtains a payoff of 0 otherwise. If the true parameter is θ, then Izzy

(resp. Joe) obtains a payoff of 100 if she (resp. he) chooses an action strictly higher than Joe’s

(resp. Izzy’s) action; otherwise, she (resp. he) obtains a payoff of 0.
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βi(·) (θ, tj) (θ, tj)

ti 0 1

βj(·) (θ, ti) (θ, ti)

tj 0 1

Figure 1.9: Players’ Type Structure T

Take the player’s type structure to be T described in Figure 1.9. Here, there is a unique

Bayesian equilibrium where the single type Izzy and Joe both play the action 0. Now, take the

analyst’s type structure to be T ∗ as in Figure 1.10. This adds a type for each player. This new

Bayesian game does not have a equilibrium. Thus, we cannot extend a Bayesian equilibrium from

the players’ structure to a Bayesian equilibrium from the analyst’s type structure. 2

β∗i (·) (θ, t∗j ) (θ, t∗j ) (θ, u∗j ) (θ, u∗j )

t∗i 0 1 0 0

u∗i 0 .1 .9 0

β∗j (·) (θ, t∗i ) (θ, t∗i ) (θ, u∗i ) (θ, u∗i )

t∗j 0 1 0 0

u∗j 0 .1 .9 0

Figure 1.10: Type Structure T ∗

Example 1.3 illustrates that we may have a failure of the Equilibrium Extension Property.

The reason for this failure is that the game of incomplete information is itself pathological. As a

consequence, we have a situation where there is no Bayesian equilibrium of the analyst’s game.

But the failure of Equilibrium Extension need not be an artifact of such pathologies. We

will build an example of an Extension Failure from, arguably, “standard” ingredients—that is,

ingredients which are well-understood and for which we would very much expect no problem to

arise. Let us point to some features of the construction:

• The parameter set Θ is finite.

• The game Γ has a finite number of players and each player has a finite number of choices.

• For any associated type structure, there is an equilibrium of the associated Bayesian game.

So, in particular, there will be an equilibrium of the analyst’s Bayesian game.

• The players’ type structure T has (at most) a countable number of types. There are no

further restrictions on the structure—so, for instance, we can take it to arise from a common

prior.

• The analyst’s type structure T ∗ is the canonical construction of the universal type structure

based on the (finite) parameter set Θ.
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So we have a finite parameter set, a finite game, a finite or countable players’ type structure, a

universal analyst’s structure, and existence in the analyst’s Bayesian game—standard ingredients.

Along the way, we will construct an example of a second extension failure—one that satisfies

the above requirements with one notable exception: it need not be the case that, for any type

structure, there is an equilibrium of the associated Bayesian game. In particular, in this second

construction, there will not be an equilibrium of the analyst’s universal Bayesian game.2 This

alternate construction also implies a failure of Equilibrium Extension. But, it is not built from

“standard” ingredients. In our main example, we have a failure of Extension, despite the fact that

the players’ Bayesian game and the analyst’s universal Bayesian game both have an equilibrium.

Indeed, precisely because the analyst’s universal Bayesian game does have an equilibrium, the

analyst may be misled into thinking that he has captured all possible predictions, when he has

not. By contrast, if there is no equilibrium of the analyst’s structure, he will presumably not be

misled in this way.

The case of a universal type structure is of particular interest. It is often presumed that the

analyst should necessarily take the universal structure to applications, even if the current state of

applied work does not do so. See, e.g., Morris and Shin (2003) who say “optimal strategic behavior

should be analyzed in the space of all possible infinite hierarchies of beliefs.” The Extension failure

tells us that—while perhaps appealing—such an general principle may, in fact, be problematic.

Positive Results The negative results raise the question: Are there situations in which the

analyst can be guaranteed that his analysis will not fail the Extension property? We provide two

sets of conditions under which the answer is yes. First, we can extend any universally measurable

equilibrium in compact continuous games, provided there are (at most) a countable number of

types that are in the analyst’s structure but not the players’ structure. (See Definition 2.9 for

the concept of universal measurability.) Second, we have an Extension property if the analyst’s

structure satisfies a common prior plus a positivity requirement. See Sections 5.1-5.2.

Going Forward These positive results get at—but do not answer—an important question. To

what extent do the Bayesian games studied in applications satisfy or fail Extension? The positive

results tell us that, for certain applications, we do indeed satisfy Extension. But, they do not

cover all applications. At the theoretical level, addressing this question requires answering a

more fundamental question: Can we characterize the set of Bayesian games that satisfy or fail

Extension? We don’t know the answer and leave this as an open question.

Absent such a characterization, how can the analyst proceed (when the sufficient conditions

do not obtain)? One idea is to modify the Bayesian equilibrium concept and use, instead, what

Sadzik (2011) calls, Local Bayesian Equilibrium (LBE). Under an LBE analysis, the analyst does

not stop at characterizing the set of Bayesian equilibria for a given Bayesian game. Instead, the

2This construction uses an important result due to Hellman (2014). However, it is not a Corollary of Hellman.
It also makes use of Lemma 2.2 and the Pull-Back Property below. To the best of our knowledge, this is the first
example of a finite game so that the associated universal Bayesian game does not have any Bayesian equilibrium.
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analyst looks across all sub-Bayesian games and characterizes all equilibria across this class. In

effect, LBE requires that the analyst analyze every possible players’ type structure.

Sadzik (2011) introduced the LBE concept to ‘get around’ a different robustness question:

robustness to misspecifying external signals. (Refer back to the discussion on pages 6-7.) One

might have thought that, when the analyst can correctly specify the parameters of the game

(including the set of external signals) but is uncertain of the context, studying the LBE concept—

as opposed to the Bayesian equilibrium concept—is ‘overkill.’ However, our negative result shows

that this is not the case: Even if the game of incomplete information is finite and there exists

an equilibrium of every associated Bayesian game, using Bayesian equilibrium to analyze the

universal type structure may be insufficient to capture predictions associated with every players’

type structure.

The paper proceeds as follows. Section 2 sets up preliminaries. The Extension and Pull-Back

Properties are formally defined in Section 3. There, we also show the Pull-Back result. Section

4 shows the negative results. Sections 5.1-5.2 provide positive results—conditions on the game

and on the type structure which guarantee the Extension property. Finally, Section 6 concludes

by discussing some conceptual and formal aspects of the paper.

2 Bayesian Games

Throughout the paper, we adopt the following conventions. We will endow the product of topo-

logical spaces with the product topology, and a subset of a topological space with the induced

topology. Given a metrizable space Ω, endow Ω with the Borel sigma-algebra B(Ω) unless other-

wise stated. In this case, write ∆(Ω) for the set of probability measures on Ω and endow ∆(Ω)

with the topology of weak convergence. If Ω is Polish, so is ∆(Ω). Given some µ ∈ ∆(Ω), write

B(Ω;µ) for the completion of the Borel sigma-algebra with respect to µ.

Given a finite index set I, write Ω =
∏
i∈I Ωi, Ω−i =

∏
j∈I\{i}Ωj , and Ω−i−j =

∏
k∈I\{i,j}Ωk.

Write ω (resp. ω−i) for a typical element of Ω (resp. Ω−i). Given maps fi : Ωi → Φi, for each

i ∈ I, write f for the product map from Ω to Φ, given by f(ω1, . . . , ω|I|) = (f1(ω1), . . . , f|I|(ω|I|)).

Define f−i analogously.

Fix measure spaces (Ω1,S(Ω1)) and (Ω2,S(Ω2)), where S(Ω1) and S(Ω2) are arbitrary sigma-

algebras on Ω1 and Ω2. A function f : Ω1 → Ω2 is (S(Ω1),S(Ω2))-measurable if, for each E2 ∈
S(Ω2), f−1(E2) ∈ S(Ω1). A function f : Ω1 → Ω2 is (Borel) measurable if it is (B(Ω1),B(Ω2))-

measurable and µ-measurable if it is (B(Ω1;µ),B(Ω2))-measurable.

Say f is µ-integrable if it is Lebesgue integrable with respect to the measure µ. A standard

fact that we will make use of is that a bounded function f : Ω→ R is µ-integrable if and only if

it is µ-measurable. (See, e.g., Bogachev, 2006, pages 118, 121-122.)

Call f : Ω1 → Ω2 universally measurable if it is µ-measurable for all µ ∈ ∆(Ω1) or,

equivalently, if it is (BUM(Ω1),B(Ω2))-measurable where BUM(Ω1) =
⋂
µ∈∆(Ω1) B(Ω1;µ). Sets in⋂

µ∈∆(Ω) B(Ω;µ) are called universally measurable sets. The set of universally measurable
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sets contains the set of Borel sets.

We will make use of some facts about universally measurable functions: Any measurable

function is universally measurable. A function f : Ω → Φ is universally measurable if and only

if it is (BUM(Ω),BUM(Φ))-measurable. (See Fremlin, 2000, page 188.) A consequence is that

the composition of two universally measurable functions is universally measurable. If Ω1,Ω2 are

separable metrizable, f1 : Ω1 → Φ1 and f1 : Ω2 → Φ2 are universally measurable if and only if

the product map f : Ω→ Φ is universally measurable. (See Lemma A.1.)

Given a measurable mapping f : Ω→ Φ, write f : ∆(Ω)→ ∆(Φ) for the map that takes each

measure µ ∈ ∆(Ω) to its image measure under f , i.e., f(µ)(E) = µ(f−1(E)) for each E ∈ B(Φ).

Bayesian Games

Let Θ be a Polish set, to be interpreted as a parameter set or a set of states of Nature.

Throughout, we fix a finite player set I and label players as 1, . . . , |I|. Write i for a particular

player from I. A Θ-based game is then some Γ = ((Ci, πi)i∈I). Here, Ci is a choice or an

action set for player i, which is taken to be Polish. A payoff function for player i is a bounded

measurable map πi : Θ × C → R. Extend πi to Θ ×
∏
j∈I ∆(Cj) in the usual way; the extended

functions are again bounded and measurable. A special case will be of particular interest—namely,

a finite game, i.e., a game where the parameter set Θ and each of the choice sets Ci are each

finite.

To analyze the Θ-based game, we will need to append to the game a Θ-based type structure.

Definition 2.1. A Θ-based type structure is some T = (Θ, (Ti, βi)i∈I), where each Ti is a (non-

empty) Polish type set for player i and each βi is a measurable belief map βi : Ti → ∆(Θ×T−i)
for player i.

Say T = (Θ, (Ti, βi)i∈I) is countable if each Ti is at most countable.

Definition 2.2. A Θ-based Bayesian game consists of a pair (Γ, T ), where Γ is a Θ-based

game and T is a Θ-based type structure.

The Bayesian game induces strategies. A strategy for i, viz. si, is a map from Ti to ∆(Ci).

Let Si be the set of strategies for player i.

Bayesian Equilibrium

It will be convenient to introduce the following notation: Fix some ci ∈ Ci and write π̂i[ci] : Θ×∏
j∈I\{i}∆(Cj)→ R for the mapping with π̂i[ci](θ, σ−i) = πi(θ, ci, σ−i) where σ−i ∈

∏
j∈I\{i}∆(Cj).

So π̂i[ci] specifies the payoff of playing action ci, as a function of the payoff parameter and mixed

actions of the other players. Each π̂i[ci] is a bounded measurable function. Given some ci ∈ Ci
and a strategy profile s−i : T−i →

∏
j∈I\{i}∆(Cj), define Πi[ci, s−i] : Θ× T−i → R so that

Πi[ci, s−i](θ, t−i) = πi(θ, ci, s1(t1), . . . , si−1(ti−1), si+1(ti+1), . . . , s|I|(t|I|)).
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Note, Πi[ci, s−i] = π̂i[ci] ◦ (id × s−i), where id : Θ→ Θ denotes the identity map. So, Πi[ci, s−i]

specifies the payoff of playing action ci when the others play the strategy profile s−i, as a function

of the payoff parameter and types of the other players.

Definition 2.3. Say (s1, . . . , s|I|) is a Bayesian equilibrium if, for each i ∈ I, each ti ∈ Ti
and each ci ∈ Ci, the following hold:

(i) Πi[ci, s−i] is βi(ti)-integrable; and

(ii)
∫

Θ×T−i
Πi[si(ti), s−i]dβi(ti) ≥

∫
Θ×T−i

Πi[ci, s−i]dβi(ti).

Condition (i) says that each type can compute her expected payoffs for each possible action ci

she may choose, given that all other players choose the equilibrium strategy. It is automatically

satisfied for a Bayesian game (Γ, T ) with T countable. But, more generally, it must be stated

explicitly. Condition (ii) requires that each type maximize its expected payoffs, given its associated

belief.

Note, Condition (i) of Definition 2.3 is satisfied if and only if each Πi[ci, s−i] is βi(ti)-measurable.

Since π̂i[ci] : Θ×
∏
j∈I\{i}∆(Cj)→ R is measurable, this will in turn be satisfied if the mapping

id × s−i : Θ× T−i → Θ×
∏

j∈I\{i}

∆(Cj)

given by (id × s−i)(θ, t−i) = (θ, s−i(t−i)) is βi(ti)-measurable.3 In fact, in a particular class of

games, βi(ti)-measurability of id × s−i is also necessary for βi(ti)-integrability of Πi[ci, s−i].

Definition 2.4. Call a Θ-based game Γ injective if, for each i and each ci ∈ Ci, π̂i[ci] is injective.

Note carefully that a Θ-based game may be injective even if some player’s payoff function πi

is not injective. Many games of interest fail the injectivity condition. But, when the injectivity

condition is met, we have the following characterization of a Bayesian equilibrium.4

Lemma 2.1. Fix a Bayesian Game (Γ, T ), where Γ is injective. For each (ci, s−i) ∈ Ci × S−i
and each µi ∈ ∆(Θ× T−i), Πi[ci, s−i] is µi-measurable if and only if (id × s−i) is µi-measurable.

Corollary 2.1. Fix a Bayesian Game (Γ, T ), where Γ is injective. Then, (s1, . . . , s|I|) is a

Bayesian equilibrium if and only if, for each i, each ti ∈ Ti and each ci ∈ Ci, the following hold:

(i) (id × s−i) is βi(ti)-measurable; and

(ii)
∫

Θ×T−i
Πi[si(ti), s−i]dβi(ti) ≥

∫
Θ×T−i

Πi[ci, s−i]dβi(ti).

3A consequence is that Condition (i) is automatically satisfied if each s−i is measurable. That is, the requirement
that the equilibrium strategy be measurable is sufficient for Condition (i). Thus, some papers replace Condition (i)
with a measurability requirement. Restricting attention to measurable equilibrium suffices for a positive result, i.e.,
to establish existence or to characterize certain behavior as consistent with equilibrium. But, to establish a negative
result, as we have here, it is important to rule out more than simply ‘a sufficient condition cannot be satisfied.’ We
thank Jeff Ely pointing us to this distinction and thereby to push us toward establishing a significantly stronger
result than in a previous version of the paper.

4Proofs not found in the main text can be found in the Appendices.
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Universal Bayesian Games and Equilibria

We will want to consider a special case, where the analyst studies a Θ-based Bayesian game

(Γ, T ∗), where T ∗ induces all hierarchies of beliefs. Mertens and Zamir (1985), Brandenburger

and Dekel (1993), and Heifetz and Samet (1998) each provide (different) canonical constructions

of (Θ-based) type structures that contain all hierarchies of beliefs. Here, we will not need to

make use of the details of a particular construction. Instead, we can focus on certain properties

that each of these constructions satisfy. To state a key property, we will need to introduce some

terminology.

Definition 2.5 (Mertens and Zamir, 1985). Fix two Θ-based structures T = (Θ, (Ti, βi)i∈I)

and T ∗ = (Θ, (T ∗i , β
∗
i )i∈I) and measurable maps h1, . . . , h|I|, where each hi : Ti → T ∗i . Call

(h1, . . . , h|I|) a type morphism (from T to T ∗) if, for each i, id × h−i ◦ βi = β∗i ◦ hi.

hi 

βi β* 
i 

id ✕ h-i 

Δ(Θ×T-i) Δ(Θ×T-i) * 

Ti * Ti 

Figure 2.1

Definition 2.5 says that (h1, . . . , h|I|) is a type morphism if it preserves the belief maps

β1, . . . , β|I|. Specifically, it requires that the diagram in Figure 2.1 commutes. Proposition

5.1 in Heifetz and Samet (1998) shows that each type morphism is a mapping that preserves

hierarchies of beliefs, i.e., a hierarchy morphism.

Definition 2.6. Fix a player set I and a parameter set Θ. Call a Θ-based type structure, viz.

T ∗, terminal if, for each Θ-based structure T , there is a type morphism from T to T ∗.

Definition 2.7. Fix a player set I and a parameter set Θ. Call a Θ-based type structure, viz.

T ∗, universal if:

(i) T ∗ it is terminal; and

(ii) T ∗ is non-redundant, i.e., no two types induce the same hierarchies of beliefs.5

5We will not need a formal definition of non-redundancy, since we will only make use of a consequence of the
property.
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Each of the canonical constructions of a “universal type structure” in Mertens and Zamir

(1985), Brandenburger and Dekel (1993), Heifetz and Samet (1998) satisfy Definition 2.7. At

times we will write U(Θ) to indicate that the particular Θ-based type structure is universal.

Definition 2.8. Call a Θ-based Bayesian game, viz. (Γ, T ), a universal Bayesian game if T
is universal.

Fix some injective game Γ. Bayesian equilibria of a universal Bayesian game (Γ, T ) will

necessarily have a nice measurability property.

Definition 2.9. Call a Bayesian equilibrium, viz. (s1, . . . , s|I|), a universally measurable

equilibrium if, for each i and µ ∈ ∆(Ti), si is µ-measurable.

Lemma 2.2. Fix a Θ-based universal Bayesian game, viz. (Γ,U(Θ)).

(i) Fix a Bayesian equilibrium (s1, . . . , s|I|) of (Γ,U(Θ)). For each i and each ci ∈ Ci, Πi[ci, s−i]

is universally measurable.

(ii) If Γ is injective, any Bayesian equilibrium of (Γ,U(Θ)) is a universally measurable equilib-

rium.

Proof. Begin with part (i): Fix some universal Bayesian game (Γ,U(Θ)) and write U(Θ) =

(Θ, (Ui, γi)i∈I). Note, U(Θ) is complete in the sense of Brandenburger (2003), i.e., for each

µi ∈ ∆(Θ × U−i), there is a type ui ∈ Ui with γi(ui) = µi. (See Proposition 4.1 in Friedenberg,

2010 or, alternatively, use Theorem 4 in Meier, 2012.) So, by Condition (i) of Definition 2.3, if

(s1, . . . , s|I|) is a Bayesian equilibrium, then for each ci ∈ Ci and each µi ∈ ∆(Θ×U−i), Πi[ci, s−i]

is µi-measurable.

Turn to part (ii): By part (i) and Lemma 2.1, id × s−i is universally measurable for each i.

Then, by Lemma A.1, si is universally measurable for each i.

3 The Extension and Pull-Back Properties

We now turn to formalize the extension and pull back properties. To do so, fix two Θ-based

structures T = (Θ, (Ti, βi)i∈I) and T ∗ = (Θ, (T ∗i , β
∗
i )i∈I). We want to map T to T ∗ in a way

that preserves hierarchies of beliefs, i.e., for each player i and each type ti in Ti, there is a type

t∗i in T ∗i that induces the same hierarchy of beliefs. As we have seen, the type morphism concept

allows us to capture this idea without explicitly describing hierarchies of beliefs. We will state

the Extension and Pull-Back properties relative to the type morphism concept. Below we explain

why.

Definition 3.1. Fix Θ-based type structures T and T ∗. Say T can be mapped to T ∗ (via

h1, . . . ,h|I|) if (h1, . . . , h|I|) is a type morphism from T to T ∗.
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Given a Θ-based game Γ, write si for a strategy of player i in the Bayesian game (Γ, T ), and

write s∗i for a strategy of player i in the Bayesian game (Γ, T ∗). We begin by stating the Pull-Back

Property.

Definition 3.2. Let T and T ∗ be Θ-based type structures, so that T can be mapped to T ∗. Say a

Bayesian Equilibrium, viz. (s∗1, . . . , s
∗
|I|), of (Γ, T ∗) can be pulled-back to a Bayesian Equilibrium

of (Γ, T ) if, for every type morphism, viz. (h1, . . . , h|I|), from T to T ∗, (s∗1 ◦ h1, . . . , s
∗
|I| ◦ h|I|) is

a Bayesian Equilibrium of (Γ, T ).

The pair 〈T , T ∗〉 satisfies the Equilibrium Pull-Back Property for the Θ-based game Γ if

each Bayesian Equilibrium of (Γ, T ∗) can be pulled-back to a Bayesian Equilibrium of (Γ, T ).

To understand Definition 3.2, refer back to Example 1.2. We saw that there exists a hierarchy

preserving map from the structure T ∗ to the structure T . We argued above that the structure

T specified external signals that were not included in the structure T ∗. This was not the idea

we sought to capture. Indeed, this is why we require the mapping, in Definition 3.2, to be a type

morphism and not simply any hierarchy preserving map: There is no type morphism from the

structure T ∗ to the structure T .

To state the Extension Property we will need more. Refer back to Example 1.1. We saw there

exists a hierarchy preserving map from the structure T to the structure T ∗. Indeed, that hierarchy

preserving map is a type morphism, despite the fact that the structure T specifies external signals

that are not included in the type structure T ∗. While the type morphism concept is sufficient to

‘rule out’ external signals associated with the analyst’s type structure, it is insufficient to ‘rule

out’ external signals associated with the players’ type structure. To understand how these signals

will be ruled out, observe that the type structure T was redundant, in the sense that there were

two types that induce the same hierarchies of beliefs. To ‘rule out’ external signals associated with

the players’ type structure, it suffices to assume that the players’ type structure is non-redundant.

We will not need a formal definition of non-redundancy. Instead, we will make use of a single

property that follows from it—namely, if T can be mapped to T ∗ via (h1, . . . , h|I|) and T is

non-redundant, then (h1, . . . , h|I|) is injective.6

Definition 3.3. Let T and T ∗ be two Θ-based type structures, so that T can be mapped to T ∗

via injective maps (h1, . . . , h|I|). Say a Bayesian Equilibrium, viz. (s1, . . . , s|I|), of (Γ, T ) can

be extended to a Bayesian Equilibrium of (Γ, T ∗) if there exists a Bayesian Equilibrium, viz.

(s∗1, . . . , s
∗
|I|), of (Γ, T ∗) so that (s∗1 ◦ h1, . . . , s

∗
|I| ◦ h|I|) = (s1, . . . , s|I|).

The pair 〈T , T ∗〉 satisfies the Equilibrium Extension Property for the Θ-based game

Γ if each Bayesian Equilibrium of (Γ, T ) can be extended to a Bayesian Equilibrium of (Γ, T ∗).
The pair 〈T , T ∗〉 fails the Equilibrium Extension Property for the Θ-based game Γ if T
can be mapped to T ∗ via injective maps (h1, . . . , h|I|), but there is some Bayesian Equilibrium of

(Γ, T ) that cannot be extended to a Bayesian Equilibrium of (Γ, T ∗).
6Redundancy implies injectivity but the converse does not hold.

15



Observe that, if T cannot be mapped to T ∗ via injective maps, then the pair 〈T , T ∗〉 neither

satisfies nor fails the Equilibrium Extension Property. The Equilibrium Extension Property is

not defined when one type structure cannot be mapped to the second via injective maps. So,

in particular, Examples 1.1-1.2 do not show a failure of the Equilibrium Extension Property. In

both examples, the unique map from T to T ∗ was not injective. Indeed, there we explained why

those examples do not capture the question of invariance to misspecifying the context of the game.

To address our question, we need to be able to view T as a substructure of T ∗. The injectivity

requirement allows us to do just that.

Remark 3.1. Let T and T ∗ be two Θ-based type structures, so that T can be mapped to T ∗ via

injective maps (h1, . . . , h|I|). Then, by Purves’s (1966) Theorem, each hi is bimeasurable, i.e., the

image of each measurable set is itself measurable. So, by definition, each hi is an embedding. In

light of this, we will say that T can be embedded into T ∗ via (h1, . . . , h|I|) if T can be mapped

to T ∗ via (h1, . . . , h|I|), and each hi is injective.

We conclude this section by pointing out some basic observations about the Equilibrium

Pull-Back and Extension Properties, which will be useful in the subsequent analysis. First, the

Equilibrium Pull-Back Property is satisfied. Indeed, we can also obtain a Measurable Pull-Back

Property. (This property will be useful in arguments to come.) The pair 〈T , T ∗〉 satisfies the

Measurable Equilibrium Pull-Back Property for the Θ-based game Γ if any universally

measurable equilibrium of (Γ, T ∗) can be pulled-back to a universally measurable equilibrium of

(Γ, T ).7

Proposition 3.1. Fix Θ-based type structures, T and T ∗, so that T can be mapped to T ∗.

(i) For any Θ-based game Γ, the pair 〈T , T ∗〉 satisfies the Equilibrium Pull-Back Property for

Γ.

(ii) For any Θ-based game Γ, the pair 〈T , T ∗〉 satisfies the Measurable Equilibrium Pull-Back

Property for Γ.

Second, return back to the idea of a universal Bayesian game. We have the following property.

Lemma 3.1. Fix a Θ-based Bayesian game (Γ, T ) so that T can be embedded into U(Θ). Then

the following are equivalent:

(i) The pair 〈T ,U(Θ)〉 satisfies the Equilibrium Extension Property for Γ.

(ii) For every Θ-based structure T ∗ so that T can be embedded into T ∗, the pair 〈T , T ∗〉 satisfies

the Equilibrium Extension Property for Γ.

7Observe, the Measurable Equilibrium Pull-Back Property is not a logical implication of the Equilibrium Pull-
Back Property.
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4 An Equilibrium Extension Failure

This section shows an example of a finite Θ-based game Γ and Θ-based type structures T ∗, T ∗∗,
so that 〈T ∗, T ∗∗〉 fails the Equilibrium Extension Property for Γ. The game Γ is built off an

important example in Hellman (2014). Section 6b elaborates on the connection, as well as the

connection to an important paper by Simon (2003).

Example of Extension Failure

θ L2 M2 R2

L1 3, 3 2, 2 1, -1

M1 2, 2 3, 3 1, -1

R1 -1, 1 -1, 1 1, 1

θ L2 M2 R2

L1 4, 4 6, 7 1, -1

M1 7, 6 4, 4 1, -1

R1 -1, 1 -1, 1 1, 1

θ∗ L2 M2 R2

L1 1, 1 1, 1 0, 0

M1 1, 1 1, 1 0, 0

R1 0, 0 0, 0 1, 1

Figure 4.1: A Game that Fails Extension

Figure 4.1 describes a finite Θ-based game Γ. We point to several features of the game: The

parameter set is Θ = {θ, θ, θ∗}. When the parameter is θ, Li (resp. Mi) uniquely maximizes i’s

payoffs if and only if i’s co-player, viz. −i, plays L−i (resp. M−i). When the parameter is θ, Li

(resp. Mi) uniquely maximizes i’s payoffs if and only if i’s co-player, viz. −i, plays M−i (resp.

L−i). For any given parameter, Ri maximizes i’s payoffs only if i’s co-player, viz. −i, plays R−i.

When θ ∈ {θ, θ}, Ri maximizes i’s payoffs if and only if both Li and Mi also maximize i’s payoffs.

Remark 4.1. For any Θ-based structure T , (Γ, T ) has a Bayesian equilibrium. In particular,

for each (Γ, T ), there is a Bayesian equilibrium where each type of each player chooses Ri with

probability one.

Nonetheless, we construct Θ-based structures T ∗ and T ∗∗, where some equilibrium of (Γ, T ∗)
cannot be extended to an equilibrium of (Γ, T ∗∗). Of course, there will be another equilibrium of

(Γ, T ∗) that can be extended to an equilibrium of (Γ, T ∗∗), i.e., the one just mentioned above.

We will take the players’ type structure T ∗ = (Θ, T ∗1 , T
∗
2 , β

∗
1 , β
∗
2) to be an arbitrary countable

type structure, i.e., where T ∗1 and T ∗2 are countable. Then we have:

Remark 4.2. For any Θ-based countable type structure T ∗, (Γ, T ∗) has a Bayesian equilibrium,

viz. (s∗1, s
∗
2), where for each i and each t∗i ∈ T ∗i , s∗i (t

∗
i ) assigns probability one to {Li,Mi}.
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To see this, take Γ̂ to be the Θ-based game that differs from Γ only in restricting the action

sets to {Li,Mi}. Then the remark follows from the existence of a Bayesian equilibrium for (Γ̂, T ∗)
and the fact that Ri is not optimal under any belief that assigns probability one to {L−i,M−i}.8

We will take the analyst’s type structure T ∗∗ to be some arbitrary universal Θ-based type

structure, viz. U(Θ) = (Θ, U1, U2, γ1, γ2). This has the property that T ∗ can be mapped to U(Θ).

In keeping with Remark 4.1, there is a Bayesian equilibrium of (Γ, T ∗) that can be extended to

a Bayesian equilibrium of (Γ,U(Θ)), specifically the equilibrium where each type of each player i

assigns probability one to Ri. But, we will show:

Theorem 4.1.

(i) There is a Bayesian equilibrium, viz. (s∗1, s
∗
2), of (Γ, T ∗) that cannot be extended to a

Bayesian equilibrium of (Γ,U(Θ)).

(ii) There is a Bayesian equilibrium of (Γ,U(Θ)).

Part (i) of Theorem 4.1 says that the pair 〈T ∗,U(Θ)〉 fails the Equilibrium Extension Property.

Part (ii) says that this failure of Equilibrium Extension is non-trivial. In the statement of Theorem

4.1, we will take (s∗1, s
∗
2) to be any equilibrium where, for each player i, each type t∗i assigns

probability one to {Li,Mi}.
Before coming to the proof, it is worth repeating that Theorem 4.1 delivers a failure of Equilib-

rium Extension with standard ingredients. In particular, the Θ-based game Γ is finite. Moreover,

for any Θ-based type structure T , there exists an equilibrium of the Bayesian game (Γ, T ), a

fortiori for the universal Bayesian game (Γ,U(Θ)).

Proof of Main Theorem

We now turn to show Theorem 4.1. To do so, we make use of Lemma 3.1. By that Lemma, it

suffices to show:

Lemma 4.1. There exists a Θ-based type structure T = (Θ, T1, T2, β1, β2), so that:

(i) T ∗ can be embedded into T , and

(ii) the pair 〈T ∗, T 〉 fails the Equilibrium Extension Property for Γ.

We turn to construct a Θ-based type structure T = (Θ, T1, T2, β1, β2) satisfying the require-

ments of Lemma 4.1. To do so, we begin by constructing a subset of the parameters, viz.

Θ = {θ, θ}. Let U(Θ) = (Θ, U1, U2, γ1, γ2) be a Θ = {θ, θ}-based universal type structure.

We use the Θ-based structure U(Θ) to build the Θ-based structure T .

Each Ti is the disjoint union of T ∗i and U i, where we endow Ti with the disjoint union topology.

For the map βi, refer to Figure 4.2: For each t∗i ∈ T ∗i ⊆ Ti, take βi(t
∗
i )(E−i) = β∗i (t∗i )(E−i ∩ (Θ×

8It is often taken for granted that there exists a Bayesian equilibrium for some (Γ∗, T ∗) where Γ is finite and
T ∗ is countable. Takahashi (2009) has written a proof of this claim making use of Glicksberg’s (1952) Theorem.
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T ∗−i)). For each type ui ∈ U i ⊆ Ti, define βi(ui) as follows. Fix some p ∈ (0, 1) and t∗−i ∈ T ∗−i.
(Note, p and t∗−i will be chosen to be the same for each type ui ∈ U i.) Take βi(ui)(E−i) =

pγi(ui)(E−i∩ (Θ×U−i)) + (1−p) if (θ∗, t∗−i) ∈ E−i. Take βi(ui)(E−i) = pγi(ui)(E−i∩ (Θ×U−i))
if (θ∗, t∗−i) /∈ E−i.

0	  

0	  

0	  

0	  

0 0

0 0

βi(t*i) 

θ*
 

Θ 

U-i 	  	  	  	  	  	  T*-‐i	  

β*
i(t*

i) 0	  

0	  

0	  

0	  

βi(ui) 

θ* 

Θ 

U-i 

p	  ×	  γi	  (ui)	  

0	  

0	  

1-‐p	  0	  

	  	  	  	  	  	  t*-‐i	  

Figure 4.2: Constructed Type Structure

Property 4.1. The structure T ∗ can be embedded into T via (id 1, id 2), where id i : T ∗i → Ti

denotes the identity map.

Of course, there is a Bayesian equilibrium of (Γ, T ), i.e., where each type of i plays Ri with

probability one. But, we will show that there is no Bayesian equilibrium of (Γ, T ), viz. (s1, s2),

where each ti ∈ T ∗i ⊆ Ti has si(ti)({Li,Mi}) = 1.

Why is this the case? Derive an Θ = {θ, θ}-based game, viz. Γ = (Θ, C1, C2, π1, π2), from Γ:

Take each Ci = {Li,Mi} and take each πi to be the restriction of πi to Θ× C1 × C2. The game

Γ is given in Figure 4.3.

Now we will see two seemingly contradictory facts: First, there is no Bayesian equilibrium

of the game (Γ,U(Θ)). Second, if there is a Bayesian equilibrium of (Γ, T ) so that, for each

i, t∗i ∈ T ∗i ⊆ Ti plays {Li,Mi} with probability one, then there is a Bayesian equilibrium of

(Γ,U(Θ)). Putting these two together, we get that there is no equilibrium of (Γ, T ) so that,

for each i, t∗i ∈ T ∗i ⊆ Ti plays {Li,Mi} with probability one. As such, we cannot extend an

equilibrium of (Γ, T ∗) to an equilibrium of (Γ, T ). This establishes Lemma 4.1 and completes the

proof of Theorem 4.1.

θ L2 M2

L1 3, 3 2, 2

M1 2, 2 3, 3

θ L2 M2

L1 4, 4 6, 7

M1 7, 6 4, 4

Figure 4.3: The Restricted Game

We now turn to the two stated steps. First:
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Proposition 4.1. There is no equilibrium of the (finite) Θ-based Bayesian game (Γ,U(Θ)).9

To see why this is the case, let us recall an important result from Hellman (2014): He studies

the Θ-based game Γ and shows that there is some associated Bayesian game (Γ, T ) with no

universally measurable Bayesian equilibrium.

Proposition 4.2. There exists a Θ-based structure T so that:

(i) [Simon, 2003] there is an equilibrium of the Bayesian game (Γ, T ), but

(ii) [Hellman, 2014] there is no universally measurable equilibrium of the Bayesian game (Γ, T ).

Part (i) follows from Proposition 1 in Simon (2003). We don’t make use of this part; we

only include it for completeness. We will make explicit use of part (ii). The Online Appendix

reviews this result with an eye toward explaining two facts: First, the payoffs in Figure 4.3 are

formally different from those found in Hellman; we verify that Hellman’s (2014) arguments apply

to this case. (His proof is robust to changing payoffs, so long as three conditions are satisfied. We

change his example so that it satisfies injectivity.) Second, we show how Hellman’s result can be

translated to our framework. (His notion of a type structure is different from that here.)

Part (ii) is used to show:

Proposition 4.3. The finite Θ-based universal Bayesian game (Γ,U(Θ)) does not have a Bayesian

equilibrium.

Proof. Suppose, contra hypothesis, that there is an equilibrium of (Γ,U(Θ)). Note, Γ is injective.

So, by Lemma 2.2, the equilibrium is universally measurable. But then, using the Measurable Pull-

Back property (Proposition 3.1), there is a universally measurable equilibrium of (Γ, T ), where T
is as in Proposition 4.2(ii). But this contradicts Hellman’s (2014) result (i.e., Proposition 4.2).

This shows the first step. Now we turn to show the second step:

Lemma 4.2. Suppose there is an equilibrium (Γ, T ), viz. (s1, s2), so that, for each i and each

t∗i ∈ T ∗i ⊆ Ti, si(t
∗
i ) assigns probability one to {Li,Mi}. Then there is a Bayesian equilibrium of

(Γ,U(Θ)).

Proof. Fix a Bayesian Equilibrium, viz. (s1, s2), of (Γ, T ) so that, for each i and each t∗i ∈
T ∗i ⊆ Ti, si(t

∗
i )({Li,Mi}) = 1. We will first show that, for each i and each ui ∈ U i ⊆ Ti,

si(ui)({Li,Mi}) = 1. Then, we will use this fact to construct a Bayesian equilibrium (s1, s2) of

(Γ,U(Θ)).

Fix some ui ∈ U i ⊆ Ti. For this type, the expected payoffs from choosing some ci ∈ {Li,Mi}
are ∫

Θ×U−i

Πi[ci, s−i]dβi(ui) = p

∫
Θ×U−i

Πi[ci, s−i]dγi(ui) + (1− p).

9While, as a step, we will make use of a Bayesian game without an equilibrium, the final product will not simply
be a corollary of this fact. See Section 6c for a discussion.
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(Recall, Πi[ci, s−i] = π̂i[ci] · (id × s−i).) This type’s expected payoffs from choosing Ri are∫
Θ×U−i

Πi[Ri, s−i]dβi(ui) = p

∫
Θ×U−i

Πi[Ri, s−i]dγi(ui).

Note, for any given (θ, u−i) ∈ Θ× U−i and any given ci ∈ {Li,Mi},

Πi[ci, s−i](θ, u−i) ≥ Πi[Ri, s−i](θ, u−i).

Since 1− p > 0, it follows that

max

{∫
Θ×U−i

Πi[Li, s−i]dβi(ui),

∫
Θ×U−i

Πi[Mi, s−i]dβi(ui)

}
>

∫
Θ×U−i

Πi[Ri, s−i]dβi(ui).

Thus, it follows from condition (ii) of a Bayesian equilibrium that, for each ui ∈ U i, si(ui)({Li,Mi}) =

1.

Now turn to the Θ = {θ, θ}-based game Bayesian (Γ,U(Θ)). Construct strategies s1 and s2

as follows: For each ui ∈ U i and each Ei ⊆ {Li, Ri}, si(ui)(Ei) = si(ui)(Ei). (This is well defined

since si(ui)({Li,Mi}) = 1, as we have shown above.) We will show that (s1, s2) is an equilibrium

of the Bayesian game (Γ,U(Θ)).

To show condition (i): Fix some ci ∈ {Li,Mi} and some ui ∈ Ui. Let f−i : Θ×U−i → Θ×T−i
be the identity mapping. Note that Πi[ci, s−i] = Πi[ci, s−i]◦f−i. Then, by Corollary B.1, Πi[ci, s−i]

is γi(ui)-integrable provided that Πi[ci, s−i] is f−i(γi(ui))-integrable. (Note, f−i(γi(ui)) is the

image measure of γi(ui) under f−i.) The fact that Πi[ci, s−i] is f−i(γi(ui))-integrable follows

from the fact that Πi[ci, s−i] is βi(ui)-integrable and Lemma B.2.

To show condition (ii): Fix some ui ∈ U i and some ci ∈ {Li,Mi}. Then,∫
Θ×T−i

Πi[ci, s−i]dβi(ui) = p

∫
Θ×U−i

Πi[ci, s−i]dγi(ui) + (1− p).

Since (s1, s2) is a Bayesian equilibrium with si(ui)({Li,Mi}) = 1 (and si(ui) = si(ui)), it follows

that

p

∫
Θ×U−i

Πi[si(ui), s−i]dγi(ui) + (1− p) ≥ p
∫

Θ×U−i

Πi[ci, s−i]dγi(ui) + (1− p),

for each ci ∈ {Li,Mi}. From this,∫
Θ×U−i

Πi[si(ti), s−i]dγi(ui) ≥
∫

Θ×U−i

Πi[ci, s−i]dγi(ui),

for each ci ∈ {Li,Mi}.
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5 Positive Results

In Section 4, we saw that the Equilibrium Extension Property may fail. Now we ask: Are there

(interesting) situations where the Extension Property does obtain? To do so, it will suffice to

focus on situations where the players’ type structure can be seen as a strict substructure of the

analyst’s type structure. We formalize this idea below.

Definition 5.1. Say T can be properly embedded into T ∗ if T can be embedded into T ∗ but

T ∗ cannot be embedded into T .

Fix Θ-based structures T . Say
∏
i∈I Ei is a belief-closed subset of T =

∏
i∈I Ti if each Ei is

measurable in Ti and, for each ti ∈ Ei, βi(ti)(Θ× E−i) = 1.

Lemma 5.1. Fix Θ-based structures T and T ∗. If T can be embedded into T ∗ via (h1, . . . , h|I|),

then
∏
i∈I hi(Ti) is a belief-closed subset of T ∗ =

∏
i∈I T

∗
i .

Now, by the Pull-Back Property, we have:

Corollary 5.1. Let T and T ∗ be two Θ-based type structures, so that T can be embedded into

T ∗ and T ∗ can be embedded into T . Then, the pair 〈T , T ∗〉 satisfies the Equilibrium Extension

Property.

In light of Corollary 5.1, we will focus on the case in which T can be properly embedded into

T ∗. In this case, we have the following:

Lemma 5.2. Fix Θ-based structures T and T ∗, so that T can be properly embedded into T ∗ via

(h1, . . . , h|I|). Then, for some i = 1, . . . , |I|, hi(Ti) ( T ∗i .

5.1 Compact and Continuous Games

In Section 4, we saw that, even in the case of a finite game, the Extension property may fail. Note

two features of the example: First, because the players’ type structure was (at most) countable,

each equilibrium of the players’ Bayesian game was a universally measurable equilibrium. Second,

there were an uncountable number of types that are in the analyst’s structure but not in the

players’ structure—so, the analyst’s structure is “large” relative to the players’ type structure.

This section picks up on these two features. In particular, fix a finite game, viz. Γ, and

an associated “players’ Bayesian game,” viz. (Γ, T ). We will see that, if there are (at most)

a countable number of types that are in the analyst’s structure but not the players’ structure,

then we will be able to extend any universally measurable equilibrium of the players’ structure

to the analyst’s structure. Thus, for a finite game, we can only have an extension failure if

either (i) there are an uncountable number of types that are in the analyst’s structure but not

the players’ structure, or (ii) the original equilibrium (i.e., which we are trying to extend) is not

universally measurable.
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Definition 5.2. Say a Θ-based game, viz. Γ = (Θ, (Ci, πi)i∈I), is compact and continuous if

each Ci is compact and each πi is continuous.

(Note, there is no requirement that Θ be compact.)

Proposition 5.1. Fix Θ-based structures T and T ∗, so that T can be properly embedded into T ∗

via (h1, . . . , h|I|) and each T ∗1 \h1(T1), . . . , T ∗|I|\h|I|(T|I|) is (at most) countable. If Γ is compact and

continuous, then any universally measurable equilibrium of (Γ, T ) can be extended to a universally

measurable equilibrium of (Γ, T ∗).

The proof can be found in Appendix D. Here, we give the idea. In so doing, we will see the role

of the requirements that each T ∗i \hi(Ti) is countable and that each si is universally measurable.

Suppose T can be embedded into T ∗ via (h1, . . . , h|I|). Fix a universally measurable equilib-

rium (s1, . . . , s|I|) of the Bayesian game (Γ, T ). We want to show that there is an equilibrium of

the Bayesian Game (Γ, T ∗), viz. (s∗1, . . . , s
∗
|I|), that extends the equilibrium (s1, . . . , s|I|), i.e., that

satisfies (s1, . . . , s|I|) = (s∗1 ◦ h1, . . . , s
∗
|I| ◦ h|I|).

We will begin by constructing a certain game of complete information, viz. G, that depends

on the game Γ and the equilibrium (s1, . . . , s|I|). There will be many players in this game, each

corresponding to a type in T ∗i \hi(Ti) for some player i. As such, there are (at most) a countable

number of players in this game. Each such player ti ∈ T ∗i \hi(Ti) gets to make a choice from Ci,

as in Γ. The payoff functions will be constructed in a specific way. In particular, they will depend

on Γ and the equilibrium (s1, . . . , s|I|).

The complete information game G is compact and continuous. Compactness follows from the

fact that the underlying game is compact. Continuity uses the fact that the underlying game is

continuous, but it does not follow immediately from this fact. There are two issues: First, the

payoff functions depend on the equilibrium and the equilibrium may be discontinuous. Second,

there may be an infinite (but countable) number of players in the game and, when there are a

countable number of players, payoff functions may be discontinuous even if the choice set is finite.

See Peleg (1969).10

Now we have a compact and continuous complete information game G, with a countable

number of players. As such, we can apply Glicksberg’s (1952) fixed-point theorem to show that

there exists a mixed-strategy equilibrium of G.

Finally, we return to the Bayesian game (Γ, T ∗). We consider strategies that extend the

equilibrium (s1, . . . , s|I|) of (Γ, T ). We show that, in a certain sense, these strategies correspond

to the mixed strategies of the complete information game G. As such, we can use the fact that

there is a mixed strategy equilibrium of G to show that there is an equilibrium of (Γ, T ∗) that

extends the equilibrium (s1, . . . , s|I|) of (Γ, T ).

10Satoru Takahashi pointed us to the fact that, if a game with a countable number of players is (in a sense)
“generated” by a compact and continuous game of incomplete information, then the payoff functions are nonetheless
continuous. In so doing, Takahashi generalized a result in a previous version of this paper. We are very much
indebted to Satoru for this contribution.
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Notice, it is important, for this argument, that we begin with a universally measurable equilib-

rium of the Bayesian game (Γ, T ). To see why, suppose that we begin instead with an equilibrium,

viz. (s1, . . . , s|I|), that is not universally measurable. Then, by Lemma A.1, some id × s−i is not

µ-measurable for some µ ∈ ∆(Θ × T−i). Notice, there may be a type t∗i ∈ T ∗i \hi(Ti) so that

β∗i (t∗i )(Θ × h−i(T−i)) = 1 and β∗i (t∗i )(·|Θ × h−i(T−i)) = µ. Then for any extension of s−i, viz.

s∗−i, id × s∗−i is not β∗i (t∗i )-measurable. In this case, we cannot associate an equilibrium of the

complete information game with an equilibrium of the Bayesian game (Γ, T ∗).11 Of course, for

a type structure with (at most) a countable number of types, all strategies are measurable. As

such, an equilibrium is a universally measurable equilibrium. With this, we have the following

corollary:

Corollary 5.2. Fix Θ-based structures T and T ∗, so that T can be properly embedded into T ∗. If

Γ is compact and continuous and T ∗ is countable, then any equilibrium of (Γ, T ) can be extended

to an equilibrium of (Γ, T ∗).

5.2 The Common Prior Assumption

In this section, we will see that, if the analyst’s structure satisfies the common prior assumption,

then we have the Extension Property. Note, this holds independent of the underlying game Γ,

i.e., even if Γ is not compact or continuous.

To see why, let us begin by reviewing the analysis in Section 4. There, we had Θ-based

structures T ∗ = (Θ, T ∗1 , T
∗
2 , β

∗
1 , β
∗
2) and U(Θ) = (Θ, U1, U2, γ1, γ2). The structure T ∗ can be

viewed as a belief-closed subset of U(Θ). Write h1(T ∗1 )× h2(T ∗2 ) ⊆ U1 × U2 for this belief closed

subset. Note, types in this belief closed subset impose an equilibrium restriction on (some) types

outside of this subset. This is because there are types in Ui\hi(T ∗i ) that assign strictly positive

probability to types in h−i(T
∗
−i). This problem would not arise if the only types in the analyst’s

structure that assigned positive probability to types in h−i(T
∗
−i) are types that are in hi(T

∗
i ). (Of

course, this is not the case in a universal type structure.)

With the above in mind, consider the following scenario: Suppose we instead have a type

structure, viz. T ∗, that can be viewed as the union of two type structures. For a given game,

can we extend an equilibrium associated with one of these structures to an equilibrium associated

with T ∗? The answer will be yes if and only if there exists an equilibrium associated with the

other structure.

Let us first formalize the idea that a type structure T ∗ can be viewed as the union of some

structure T and some ‘remaining structure,’ which we’ll call the difference structure.

Definition 5.3. Fix Θ-based structures T and T ∗. Say T induces a decomposition of T ∗ (via
(h1, . . . ,h|I|)) if T can be embedded into T ∗ via (h1, . . . , h|I|) and

∏
i∈I T

∗
i \hi(Ti) is a belief-closed

subset of T ∗.

11There is the question of whether we can instead begin with the weaker requirement that each Πi[ci, s−i] is
universally measurable. We do not know. In Appendix D, we point out that our proof of continuity breaks down
with this weaker assumption.
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Note, if T induces a decomposition of T ∗ (via (h1, . . . , h|I|)), then both
∏
i∈I hi(Ti) and∏

i∈I(T
∗
i \hi(Ti)) are belief-closed subsets of T ∗. Any belief-closed subset of T ∗ induces, what

we will call, a separable metrizable type structure, i.e., a structure that differs from Definition 2.1

only in the fact that the type sets may not be complete. (See Lemma E.1.) So, we can view the Θ-

based structure T ∗ as the union of two metrizable Θ-based structures: the structure induced

by T (which corresponds to the belief-closed set
∏
i∈I hi(Ti)) and the difference structure

(which corresponds to the belief-closed set
∏
i∈I(T

∗
i \hi(Ti))). Write

(T ∗\T ) = (Θ, (T ∗i \hi(Ti), γOi )i∈I),

for this difference structure. (Here, γOi (t∗i )(E
O) = β∗i (t∗i )(E

O) for each event EO in Θ×
∏
j 6=i(T

∗
j \hj(Tj)).

Again, refer to Lemma E.1 for details.)

Now, we can state the result.

Lemma 5.3. Fix Θ-based structures T and T ∗, so that T induces a decomposition of T ∗. Fix,

also, a Θ-based game Γ so that (Γ, T ) has an equilibrium. Then, 〈T , T ∗〉 satisfies the Equilibrium

Extension Property for Γ if and only if there is an equilibrium of the difference game (Γ, (T ∗\T )).

As a consequence of Lemma 5.3 and the Pull-Back Property, we have the following:

Proposition 5.2. Fix Θ-based structures T and T ∗, so that T induces a decomposition of T ∗.
Fix, also, a Θ-based game Γ, so that (Γ, T ) has an equilibrium. Then, 〈T , T ∗〉 satisfies the

Equilibrium Extension Property for Γ if and only if there is an equilibrium for the Bayesian game

(Γ, T ∗).

In contrast to Proposition 5.1, Proposition 5.2 does not restrict attention to universally mea-

surable equilibria nor does it require Γ to be compact and continuous. That said, it imposes

restrictions on the players’ and analyst’s type structures.

Taken together, Propositions 3.1 and 5.2 say: If T induces a decomposition of T ∗, then 〈T , T ∗〉
satisfies the Equilibrium Extension Property for Γ if and only if either both (Γ, T ) and (Γ, T ∗)
have an equilibrium or both (Γ, T ) and (Γ, T ∗) do not have an equilibrium. So, here, we cannot

have the Extension failure when there is an equilibrium for (Γ, T ∗).
Let’s now ask: Is it of interest to consider the case where T induces a decomposition of T ∗? We

will show that there is a notable case in which T does induce a decomposition of T ∗. Specifically,

if the analyst’s structure, viz. T ∗, admits a common prior, then the players’ structure must induce

a decomposition of the analyst’s structure.

Why is this the case? Recall, the common prior assumption (CPA) reflects the idea that

differences in beliefs reflect only differences in information. That is, if an outside observer looks

at the situation, he can understand the different beliefs (i.e., associated with different types) as

reflecting some underlying belief, common to both players. Each type of each player reflects the

conditional of this belief on certain information.
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Under a common prior, what does Izzy think Joe thinks about Izzy? Can a type of Izzy

consider it possible that Joe considers that type of Izzy impossible? The answer would seem to

be no. In particular, this appears to require that Izzy considers it possible that Joe has learned

certain information that is inconsistent with the information she herself learned. This suggests

that, if a type structure satisfies the CPA, then it also satisfies a mutual absolute continuity

condition—i.e., if a type t∗i of Izzy considers a type t∗j of Joe possible (i.e., if β∗i (t∗i )(Θ × {t∗j} ×
T ∗−i−j) > 0 ), then that type t∗j of Joe also considers the given type t∗i of Izzy possible (i.e., then

β∗j (t∗j )(Θ× {t∗i } × T ∗−i−j) > 0). Note, here, we write T ∗−i−j for
∏
k 6=i,j T

∗
k .

Going back to the structures T and T ∗, suppose the analyst’s structure satisfies the common

prior assumption. We have just argued that it also satisfies a mutual absolute continuity con-

dition. Consider a type t∗i that is not contained in the structure induced by T . Can the type

t∗i assign strictly positive probability to a type of Joe in the structure induced by T ? No. The

structure induced by T is a belief-closed subset. So, types in this structure cannot assign positive

probability to the type t∗i , which is what mutual absolute continuity would require. As such, the

type t∗i must assign probability one to types in (what will be) the difference structure. That is,

T induces a decomposition of T ∗.
Let us state these facts formally: Fix a Θ-based type structure T = (Θ, (Ti, βi)i∈I)). Write

[ti] for the event Θ× {ti} × T−i. Given a measure µ ∈ ∆(Θ× T ) with µ([ti]) > 0, write µ(·||[ti])
for conditional of µ on [ti] and write marg Θ×T−i

µ for the marginal of µ on Θ× T−i.

Definition 5.4. Fix a Θ-based type structure T = (Θ, (Ti, βi)i∈I)). Call µ ∈ ∆(Θ×T ) a common

prior (for T ) if T is countable and, for each player i and each ti ∈ Ti,

(i) µ([ti]) > 0,

(ii) βi(ti) = marg Θ×T−i
µ(·||[ti]).

Say the structure T admits a common prior if there is a common prior for T .

Definition 5.5 (Stuart, 1997). Say a Θ-based type structure T = (Θ, (Ti, βi)i∈I)) is mutu-

ally absolutely continuous if T is countable and, for every pair of (distinct) players i, j ∈ I,

βi(ti)(Θ× {tj} × T−i−j) > 0 implies βj(tj)(Θ× {ti} × T−i−j) > 0.

Now, the connections.

Lemma 5.4. Fix a Θ-based type structure T = (Θ, (Ti, βi)i∈I)), where T admits a common prior.

Then, T is mutually absolutely continuous.

Lemma 5.5. Fix non-redundant Θ-based structures T and T ∗, so that T can be properly embedded

into T ∗ via (h1, . . . , h|I|). If T ∗ is mutually absolutely continuous, then T induces a decomposition

of T ∗ via (h1, . . . , h|I|).

Now, as a Corollary of Lemma 5.5 and Proposition 5.2, we have:
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Corollary 5.3. Fix Θ-based structures T and T ∗, so that T can be properly embedded into T ∗

and so that T ∗ satisfies mutual absolute continuity. Fix, also, a Θ-based game Γ, so that (Γ, T )

has an equilibrium. Then, 〈T , T ∗〉 satisfies the Equilibrium Extension Property for Γ if and only

if there is an equilibrium for the Bayesian game (Γ, T ∗).

And, as a corollary of Lemma 5.4 and Corollary 5.3, we have12:

Proposition 5.3. Fix Θ-based structures T and T ∗, so that T can be properly embedded into

T ∗ and so that T ∗ admits a common prior. Fix, also, a Θ-based game Γ, so that (Γ, T ) has an

equilibrium. Then, 〈T , T ∗〉 satisfies the Equilibrium Extension Property for Γ if and only if there

is an equilibrium for the Bayesian game (Γ, T ∗).

This says that, if the analyst’s structure satisfies the common prior assumption, then the only

way we can have an Extension failure is if there is an equilibrium of the players’ Bayesian game

but not the analyst’s Bayesian game.

Notice, if the analyst’s structure satisfies the common prior assumption, then both the players

and analyst’s structure have (at most) a countable number of types. So, in this case, if Γ is compact

and continuous, then both the players’ and analyst’s Bayesian game do have an equilibrium. (See

Footnote 8.) This is a special case of Corollary 5.2.

6 Discussion

This section discusses the relationship to the literature, and further discusses the results.

a. The Context of the Game: There are two distinct views of a game. Under the first view,

the game itself is a complete description of all interactions past, present, and future. See, for

instance, the discussion in Kohlberg and Mertens (1986). Under the second view, it is impractical

to write down “the big game.” Instead, the game studied represents a snapshot of the strategic

situation. This is a game-theoretic analog to Savage’s (1972) Small Worlds view in decision

theory.

Our position is that each of these views is of interest—both deserve to be studied. Here, we

focus on the second view, where there is a history prior to the given game. As such, it seems

natural to consider the case where the history influences which hierarchies of beliefs players can

hold. That is, it seems natural to consider the case in which the history determines the context

of the game.

In this case, two robustness questions arise. First, what if the players know more than the

analyst? This is the question we focused on here, i.e., the Extension Problem. But we can also

address a second question. What if the analyst rules out more hierarchies than the players? This

12Note that in the special case where Γ is compact and continuous, Corollary 5.3 and Proposition 5.3 follow directly
from Proposition 5.1: All involved type sets are at most countable, and therefore all equilibria are measurable.
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corresponds to the Pull-Back Problem. In this case, the analyst will not lose any prediction, but

may instead introduce extraneous predictions.

b. Proof of Extension Failure: Section 4 constructs a non-pathological example of two Θ-

based Bayesian games so that we cannot extend an equilibrium of the players’ Bayesian game to the

analyst’s Bayesian game, despite the fact that there is an equilibrium of the analyst’s Bayesian

game. To do so, it first constructs a pathological example of a Θ-based extension failiure. In

particular, it constructs a Θ-based Bayesian game (Γ,U(Θ))—where Γ is a finite Θ-based game

and U(Θ) is a Θ-based universal structure—so that there is no Bayesian equilibrium of (Γ,U(Θ)).

To the best of our knowledge, this is the first such example in the literature.

The example of (Γ,U(Θ)) builds on a result of Hellman (2014): There exists a finite Θ-based

Bayesian game (Γ, T ), so that any Bayesian equilibrium (s1, s2) of (Γ, T ) has some player i with

si that is not µi measurable for some µi ∈ ∆(T i). There is an analogous earlier result of Simon

(2003). We explicitly use Hellman’s example and not Simon’s. Below we review these results and

why we make this choice.

First, let’s start with Hellman’s (2014) result—that any Bayesian equilibrium of (Γ, T ), viz.

(s1, s2), has some si that is not µi-measurable for a µi ∈ ∆(T i). Note, the measure µi does not

correspond to the belief of any type of −i in T . So, we cannot conclude “if a strategy profile

is a proposed Bayesian equilibrium, some type in the model will not be able to compute its

expected payoffs.” And, indeed, there is a Bayesian equilibrium of Hellman’s example; all types

can, of course, compute their expected payoffs under the Bayesian equilibrium. (Again, this is a

consequence of Proposition 1 in Simon, 2003.)

Certainly, formally, non-existence in the universal Bayesian game (Γ,U(Θ)) is not a far leap

from Hellman’s result. Nonetheless, we note that Hellman does not make this leap.13 Moreover,

making the leap appears to require either a proof distinct from Hellman (2014) or a modification of

Hellman’s example: Note, Hellman’s is about non-measurability of a strategy mapping—namely

si. To find a violation of a Bayesian equilibrium, we need non-integrability of a payoff mapping—

namely Πi[ci, s−i]. We modify Hellman’s to have an example that satisfies the injectivity. Then we

use Lemma 2.1 (plus standard properties of U(Θ)) to draw the connection and reach the desired

conclusion.

Simon’s example is also about non-measurability of a strategy mapping. We don’t know if,

in the context of his example, it implies non-measurability (and so non-integrability) of a payoff

mapping and, likewise, we don’t know if we can modify his example to obtain non-measurability

of a payoff mapping. As such, we make use of Hellman’s example instead.

c. Ingredients of the Extension Failure: The negative result in Section 4 makes use of a

Bayesian game without an equilibrium. But, it is important to note that the result is not simply

13After learning of our result, Hellman added an example, modifying his original example. There is no Bayesian
equilibrium of this modified Bayesian game. This modified example is not an example of a universal Bayesian game.
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a corollary of the fact that there is some Bayesian game that does not have an equilibrium. In

particular, we have seen an example of a (finite) Θ-based Bayesian game (Γ, T ) where we cannot

extend an equilibrium of this game to an equilibrium of (Γ,U(Θ)), despite the fact that there

is an equilibrium of this Bayesian game. Moreover, each belief closed subset of U(Θ) induces a

Bayesian game that does have an equilibrium.

To better understand the connection between Extension failures and non-existence, it may be

useful to compare this analysis to another solution concept, namely correlated rationalizability.

There are games—albeit, perhaps, pathological games—for which the set of rationalizable strate-

gies is empty. (See Example 2 in Dufwenberg and Stegeman, 2002.) Yet, we have the following

result.

Result: Fix Θ-based structures, T and T ∗, so that T can be properly embedded into

T ∗. Fix also a Θ-based game Γ. If the rationalizable strategies are non-empty in both

the Bayesian games (Γ, T ) and (Γ, T ∗), then 〈T , T ∗〉 satisfies rationalizable extension

and pull-back properties for Γ. 14

As such, a non-existence example (as in Dufwenberg and Stegeman, 2002) cannot be used to get

an Extension failure where the analyst’s Bayesian game satisfies existence.

To sum up: Certainly, we can have an Extension failure that stems from the fact that there

is a prediction associated with the players’ Bayesian game but not the analyst’s Bayesian game.

Such an Extension failure necessarily stems from an Existence problem. But, the case of interest

is the case where there is a prediction associated with the analyst’s game. In this case, whether we

do vs. do not have such an Extension failure depends on the particular solution concept studied.

In particular, for Bayesian equilibrium there is such an Extension failure while for correlated

rationalizability there is no such Extension failure—this is the case despite the fact that, for both

solution concepts, there are Bayesian games that fail existence.

d. The Common Prior Assumption: Definition 5.4 states that the CPA reflects two re-

quirements, a common prior requirement and a positivity requirement.

Consider the sets [ti] = Θ×{ti}×T−i and note that these sets form a partition of Θ×T . Write

τi for the subalgebra generated by this partition. Given a measure µ ∈ ∆(Θ×T ) and an event E

in Θ×T , write µ(E, ·||τi) for a version of µ-conditional probability of E given τi. (Note, since the

conditioning events for Izzy and Joe are distinct, the versions of conditional probability will also

be distinct.) The common prior requirement is: There exists a measure µ ∈ ∆(Θ × T ) and

a version of µ-conditional probability of E given τi so that, for any type ti and any event E in

[ti], βi(ti)(proj Θ×T−i
E) = µ(E, [ti]||τi). (Note, µ(E, ·||τi) is constant on [ti].) Positivity requires

that, in addition, µ([ti]) > 0, for each type ti ∈ Ti.
14A proof is available upon request. Dekel, Fudenberg and Morris (2007) show an analogous result, when the

parameter and action sets are finite.
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The positivity requirement is important for Proposition 5.3. To see this, return to the type

structure T ∗ in Section 4 and note that this structure satisfies the common prior requirement. In

particular, the measure µ ∈ ∆(Θ× T ∗) with µ({(θ3, t1, t2, t3)}) = 1 is a common prior for T ∗. Of

course, it is not positive. Thus, we can see that the common prior requirement alone does not

suffice for Proposition 5.3. We also need the positivity requirement.

The need for the positivity requirement is important from the perspective of generalizing

Proposition 5.3. In particular, if Ti is uncountably infinite, there is no probability measure that

assigns strictly positive probability to each event [ti]. This suggests a limitation to Proposition

5.3. Alternatively, this might suggest that other tools are needed to study the case of uncountably

infinite spaces—i.e., lexicographic probability systems (Blume, Brandenburger and Dekel, 1991),

conditional probability systems (Rényi, 1955), or non-standard probabilities.

There is an interesting connection to be made at the conceptual level. Does a non-positive

common prior fit with the CPA? Arguably not. Recall, the idea of the CPA is that differences in

probabilities only reflect differences in information. As a consequence, the only personalistic fea-

tures of probability should come from informational differences. But, there may be many (regular

and proper) versions of conditional probability. Given this, the common prior requirement (as

specified above) need not pin down the beliefs (i.e., each βi(ti)). Indeed, in the example above,

there are many Θ-based structures T corresponding to the common prior µ. In fact, choosing

distinct probabilities p gives just such structures.

Appendix A Proofs for Section 2

Lemma A.1. Fix separable metrizable spaces Ω1,Ω2,Φ1, and Φ2. Let f1 : Ω1 → Φ1, f2 : Ω2 → Φ2

and write f : Ω→ Φ for the associated product map.

(i) If f1 and f2 are universally measurable, then f is universally measurable.

(ii) If f is universally measurable, then f1 and f2 are universally measurable.

Proof. Begin with part (i). Assume f1 and f2 are universally measurable. Since Ω1,Ω2 are

separable and metrizable, B(Φ1×Φ2) = B(Φ1)×B(Φ2). Thus, to show f is (BUM(Ω1×Ω2),B(Φ1×
Φ2))-measurable, it suffices to show that, for each E1 × E2 ∈ B(Φ1) × B(Φ2), f−1(E1 × E2) ∈
BUM(Ω1 × Ω2). By universal measurability of f1, f2, f−1(E1 × E2) = f−1

1 (E1) × f−1
2 (E2) ∈

BUM(Ω1)× BUM(Ω2). Since BUM(Ω1)× BUM(Ω2) ⊆ BUM(Ω) (see, e.g., Fremlin, 2000, page 202),

the conclusion follows.

Now assume that f is universally measurable. Fix some ν1 ∈ ∆(Ω1) and some E1 ∈ B(Φ1).

We will show that there are Borel sets F1, G1 ∈ B(Ω1) so that F1 ⊆ f−1
1 (E1) ⊆ G1 and ν1(F1) =

ν1(G1). Thus, f1 is universally measurable. (And, analogously, for f2.)

Fix ω∗2 ∈ Ω2 and define k : Ω1 → Ω1×Ω2 so that k(ω1) = (ω1, ω
∗
2). Certainly, k is measurable.

Define µ as the image measure of ν1 under k. Since f is universally measurable, there are
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Borel sets F,G ⊆ B(Ω1 × Ω2) so that F ⊆ f−1(E1 × Φ2) ⊆ G and µ(F ) = µ(G). Note that

f−1(E1 × Φ2) = f−1
1 (E1)× Ω2.

Since µ(Ω1×{ω∗2}) = 1, we have that µ(F ∩(Ω1×{ω∗2})) = µ(F ) = µ(G) = µ(G∩(Ω1×{ω∗2})),
and F ∩ (Ω1 × {ω∗2}) ⊆ f

−1
1 (E1)× {ω∗2} ⊆ G ∩ (Ω1 × {ω∗2}). Define F1 = proj Ω1

(F ∩ (Ω1 × {ω∗2})
and G1 = proj Ω1

(G∩ (Ω1×{ω∗2}). Then, F1, G1 ∈ B(Ω1) (Aliprantis and Border, 2007, Theorem

4.44 and Lemma 4.46) with F1 ⊆ f−1
1 (E1) ⊆ G1. Moreover, since F ∩ (Ω1 × {ω∗2}) = F1 × {ω∗2},

G ∩ (Ω1 × {ω∗2}) = G1 × {ω∗2}, and µ(Ω1 × {ω∗2}) = 1, we have ν1(F1) = µ(F1 × {ω∗2}) =

µ(G1 × {ω∗2}) = ν1(G1).

Proof of Lemma 2.1 . Fix a Bayesian Game (Γ, T ), where Γ is injective. Fix also a strategy

profile s−i : T−i →
∏
j∈I\{i}∆(Cj). We will show that, for each ci ∈ Ci and µi ∈ ∆(Θ × T−i),

(id × s−i) is µi-measurable if and only if Πi[ci, s−i] is µi-measurable.

First suppose that (id × s−i) is µi-measurable. Then, using the fact that Πi[ci, s−i] = π̂i[ci] ◦
(id × s−i) and π̂i[ci] is measurable, it follows that Πi[ci, s−i] is µi-measurable.

Next suppose that Πi[ci, s−i] is µi-measurable. Let F ∈ B(Θ×
∏
j∈I\{i}∆(Cj)). We want to

show that (id×s−i)−1(F ) ∈ B(Θ×T−i;µi). Note that (Πi[ci, s−i])
−1(·) = (id×s−i)−1((π̂i[ci])

−1(·)),
and therefore

(id × s−i)−1(F ) = (id × s−i)−1((π̂i[ci])
−1(π̂i[ci](F ))) = (Πi[ci, s−i])

−1(π̂i[ci](F )).

By Purves’ Theorem (Purves, 1966) and the fact that π̂i[ci] is injective and measurable, π̂i[ci](F ) ∈
B(R). Thus, since Πi[ci, s−i] is µi-measurable, (id × s−i)

−1(F ) = (Πi[ci, s−i])
−1(π̂i[ci](F )) ∈

B(Θ× T−i;µi), as required.

Appendix B Proofs for Sections 3 and 4

Lemma B.1. Fix Polish spaces Ω,Ω∗ and a Borel measurable mapping f : Ω→ Ω∗. Let g : Ω→ R
and g∗ : Ω∗ → R be such that g = g∗ ◦ f . For each µ ∈ ∆(Ω), if g∗ is f(µ)-measurable, then g is

µ-measurable.

Proof. Assume g∗ is f(µ)-measurable. Then, for E ⊆ R Borel, (g∗)−1(E) ∈ B(Ω∗; f(µ)). This

says that there are Borel sets X∗, Y ∗ ⊆ Ω∗ with X∗ ⊆ (g∗)−1(E) ⊆ Y ∗ and f(µ)(X∗) = f(µ)(Y ∗).

Then, f−1(X∗), f−1(Y ∗) are Borel subsets of Ω with f−1(X∗) ⊆ f−1((g∗)−1(E)) ⊆ f−1(Y ∗) and

µ(f−1(X∗)) = µ(f−1(Y ∗)). Note, f−1((g∗)−1(E)) = g−1(E) so that f−1(X∗) ⊆ g−1(E) ⊆
f−1(Y ∗). From this g−1(E) ∈ B(Ω;µ), as required.

Corollary B.1. Fix Polish spaces Ω,Ω∗ and a Borel measurable mapping f : Ω → Ω∗. Let

g : Ω→ R and g∗ : Ω∗ → R be bounded functions such that g = g∗ ◦ f . For each µ ∈ ∆(Ω), if g∗

is f(µ)-integrable, then g is µ-integrable.

Proof of Proposition 3.1. Begin with part (i): Fix a Bayesian equilibrium, viz. (s∗1, . . . , s
∗
|I|),
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of (Γ, T ∗). We will show that (s1, . . . , s|I|) = (s∗1 ◦ h1, . . . , s
∗
|I| ◦ h|I|) is a Bayesian Equilibrium of

(Γ, T ).

Begin with condition (i) of Definition 2.3. Fix some ti ∈ Ti and ci and note that, by the fact

that (s∗1, . . . , s
∗
|I|) is an equilibrium Π∗i [ci, s

∗
−i] is β∗i (hi(ti))-integrable. Note β∗i (hi(ti)) is the image

measure of βi(ti) under id × h−i. Moreover, Π∗i [ci, s
∗
−i] ◦ (id × h−i) = Πi[ci, s−i]. Thus, it follows

from Corollary B.1 that Πi[ci, s−i] is βi(ti)-integrable.

Now turn to Condition (ii) of Definition 2.3. Fix some type ti ∈ Ti and some choice ci of the

Bayesian game (Γ, T ). We have that∫
Θ×T−i

Πi[s
∗
i (hi(ti)), s

∗
−i ◦ h−i]dβi(ti) =

∫
Θ×T−i

πi(θ, s
∗
i (hi(ti)), s

∗
−i(h−i(t−i)))dβi(ti)

=

∫
Θ×T ∗−i

πi(θ, s
∗
i (hi(ti)), s

∗
−i(t

∗
−i))dβ

∗
i (hi(ti))

≥
∫

Θ×T ∗−i

πi(θ, ci, s
∗
−i(t

∗
−i))dβ

∗
i (hi(ti))

=

∫
Θ×T−i

πi(θ, ci, s
∗
−i(h−i(t−i)))dβi(ti)

=

∫
Θ×T−i

Πi[ci, s
∗
−i ◦ h−i]dβi(ti),

where the second and fourth lines use the Change of Variables Theorem (e.g., Billingsley, 2008,

Theorem 16.13) plus the fact that (h1, . . . , h|I|) is a type morphism and the third line uses the fact

that (s∗1, . . . , s
∗
|I|) is a Bayesian equilibrium of (Γ, T ∗). This establishes condition (ii) of Definition

2.3.

Now turn to part (ii): Fix a universally measurable Bayesian equilibrium, viz. (s∗1, . . . , s
∗
|I|),

of (Γ, T ∗). By part (i), (s1, . . . , s|I|) = (s∗1 ◦ h1, . . . , s
∗
|I| ◦ h|I|) is a Bayesian equilibrium. We will

show that each si is µ-measurable, for each µ ∈ ∆(Ti). For this, fix µ and let µ∗ = hi(µ). Since

the Bayesian equilibrium (s∗1, . . . , s
∗
|I|) is universally measurable, s∗i is µ∗-measurable. Then, by

Lemma B.1, si is µ-measurable.

Proof of Lemma 3.1. Fix a Θ-based Bayesian game (Γ, T ) where T can be embedded into

U(Θ). First suppose that, for each Θ-based structure T ∗, so that T can be embedded into T ∗,
the pair 〈T , T ∗〉 satisfies the Equilibrium Extension Property for Γ. Then certainly this is the

case when T ∗ = U(Θ). We show that, if the pair 〈T ,U(Θ)〉 satisfies the Equilibrium Extension

Property for Γ, then the pair 〈T , T ∗〉 also satisfies the Equilibrium Extension Property for Γ,

where T ∗ is some Θ-based structure so that T can be embedded into T ∗.
To show this, it will be useful to begin with properties of the mappings between these

structures. By assumption, there exists an injective type morphism, viz. (h1, . . . , h|I|), from

T to T ∗. Since U(Θ) is terminal, there is also a (not necessarily injective) type morphism

(l1, . . . , l|I|) from T ∗ to U(Θ). Note, the map (l1 ◦ h1, . . . , l|I| ◦ h|I|) is a type morphism from
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T to U(Θ) = (Θ, (Ui, γi)i∈I). To see this, fix an event E in Θ× U−i and note that

γi(li(hi(ti)))(E) = β∗i (hi(ti))((id × l−i)−1(E))

= βi(ti)((id × h−i)−1((id × l−i)−1(E))),

where the first line uses the fact that (l1, . . . , l|I|) is a type morphism from T ∗ to U(Θ) and the

second line uses the fact that (h1, . . . , h|I|) is a type morphism from T to T ∗. So, γi(li(hi(ti)))

is the image measure of βi(ti) under (id × l−i) ◦ (id × h−i) = id × (l−i ◦ h−i), as required. An

implication is that T can be mapped to U(Θ) via (l1 ◦ h1, . . . , l|I| ◦ h|I|).
Now observe that, by assumption, we have an injective type morphism (k1, . . . , k|I|) from

T to U(Θ). We also have that (l1 ◦ h1, . . . , l|I| ◦ h|I|) is a type morphism from T to U(Θ).

Since U(Θ) is non-redundant and type morphisms preserve hierarchies of beliefs, it follows that

(l1 ◦ h1, . . . , l|I| ◦ h|I|) = (k1, . . . , k|I|), i.e., (l1 ◦ h1, . . . , l|I| ◦ h|I|) is injective.

Let (s1, . . . , s|I|) be a Bayesian equilibrium of (Γ, T ). Since 〈T ,U(Θ)〉 satisfies the Extension

Property for Γ, there exists an equilibrium (r1, . . . , r|I|) of (Γ,U(Θ)) so that (s1, . . . , s|I|) = (r1 ◦
l1 ◦ h1, . . . , r|I| ◦ l|I| ◦ h|I|). The Pull-Back Property (Proposition 3.1) gives that (s∗1, . . . , s

∗
|I|) =

(r1 ◦ l1, . . . , r|I| ◦ l|I|) is an equilibrium of (Γ, T ∗). Thus, (s1, . . . , s|I|) = (s∗1 ◦ h1, . . . , s
∗
|I| ◦ h|I|), as

required.

Lemma B.2. Fix some µ ∈ ∆(Ω) and some µ-measurable f : Ω → R. Suppose there is ω∗ ∈ Ω

so that µ({ω∗}) ∈ (0, 1). Then, f is (µ(·|Ω\{ω∗}))-measurable.

Proof. Fix some E Borel in R. Since f is µ-measurable, there are Borel sets F,G ⊆ Ω with

F ⊆ f−1(E) ⊆ G and µ(F ) = µ(G). We will show that F ⊆ f−1(E) ⊆ G and µ(F |Ω\{ω∗}) =

µ(G|Ω\{ω∗}): Since µ(F ) = µ(G) and µ({ω∗}) > 0, it must be that either ω∗ 6∈ F ∪ G or

ω∗ ∈ F ∩G. From this the claim follows.

Appendix C Proofs for Section 5

Proof of Lemma 5.1. Fix Θ-based structures T and T ∗, so that T can be embedded into T ∗

via (h1, . . . , h|I|). Then, each hi(Ti) ∈ B(Ti) and so each Θ ×
∏
j∈I\{i} hj(Tj) ∈ B(Θ × T−i). So,

by definition of a type morphism, for any hi(ti) ∈ hi(Ti),

β∗i (hi(ti))(Θ×
∏

j∈I\{i}

hj(Tj)) = βi(ti)(Θ× T−i) = 1,

as desired.

Proof of Lemma 5.2. Fix Θ-based structures T and T ∗, so that T can be embedded into T ∗

via (h1, . . . , h|I|). Suppose, for each i, hi(Ti) = T ∗i . Write gi = (hi)
−1 : T ∗i → Ti. (This is well

33



defined since, by assumption, each hi is bijective.) We will show that T ∗ can be embedded into

T via (g1, . . . , g|I|).

Certainly, each gi is an injective bimeasurable map. It suffices to show that (g1, . . . , g|I|) is

a type morphism from T ∗ to T : For this, fix some gi(t
∗
i ) ∈ Ti and some Borel E−i ⊆ Θ × T−i.

Then,

βi(gi(t
∗
i ))(E−i) = βi(gi(t

∗
i ))((id × h−i)−1((id × g−i)−1(E−i)))

= β∗i (hi(gi(t
∗
i )))((id × g−i)−1(E−i))

= β∗i (t∗i )((id × g−i)−1(E−i))

where the first and last lines are by definition and the second line uses the fact that (h1, . . . , h|I|)

is a type morphism from T to T ∗. This establishes the desired conclusion.

Appendix D Proofs for Section 5.1

This appendix is devoted to proving Proposition 5.1. Throughout, we make use of the following

notational conventions: Given sets Ω1, . . . ,Ω|I| and some subset K ⊆ {1, . . . , |I|}, write ΩK =∏
k∈K Ωk and write ωK for a profile in ΩK . Likewise, given maps f1, . . . , f|I|, where each fi : Ωi →

Φi, write fK : ΩK → ΦK for the associated product map.

Fix two (non-redundant) Θ-based type structures T = (Θ, (Ti, βi)i∈I) and T ∗ = (Θ, (T ∗i , β
∗
i )i∈I).

Suppose, further, that T can be properly embedded into T ∗ via (h1, . . . , h|I|), so that each

T ∗1 \h1(T1), . . . , T ∗|I|\h|I|(T|I|) is (at most) countable (and possibly empty). By Lemma 5.2, there is

some i = 1, . . . , |I|, so that T ∗i \hi(Ti) is non-empty. Order players so that (a) for each i = 1, . . . , J ,

T ∗i \hi(Ti) 6= ∅ and (b) for each i = J+1, . . . , |I|, T ∗i \hi(Ti) = ∅ (if J < |I|). For each i = 1, . . . , J ,

write M(i) for the cardinality of T ∗i \hi(Ti) and m(i) for some element of T ∗i \hi(Ti). By assump-

tion, M(i) is (at most) countable.

Consider a Θ-based compact and continuous game Γ = (Θ, (Ci, πi)i∈I). Throughout this ap-

pendix, we fix a universally measurable equilibrium of the Bayesian game (Γ, T ), viz. (s1, . . . , s|I|).

We want to show that there is a universally measurable equilibrium of the Bayesian game (Γ, T ∗),
viz. (s∗1, . . . , s

∗
|I|), with (s1, . . . , s|I|) = (s∗1 ◦ h1, . . . , s

∗
|I| ◦ h|I|).

Section 5.1 gives the idea of the proof. In particular, we begin by constructing the game

of complete information, namely G. The game has a finite or countable number of players,

corresponding to
⋃J
i=1 T

∗
i \hi(Ti). The choice set for a player m(i) ∈ T ∗i \hi(Ti) is Ci. Write Ci for

the set [Ci]
M(i), so that C =

∏J
i=1 Ci is the set of choice profiles in this game. Note, we can think

of −→c i = (c1
i , c

2
i , . . .) ∈ Ci as a mapping −→c i : T ∗i \hi(Ti)→ Ci. So, when we write −→c i(t∗i ) we mean

the t∗i -th component of −→c i = (c1
i , c

2
i , . . .). Likewise, given a subset of players K ⊆ {1, . . . , J}, we

can think of the mapping −→c K :
∏
i∈K(T ∗i \hi(Ti)) → CK . Write −→c K(t∗K) for the profile in CK

with −→c K(t∗K) = (−→c i(t∗i ) : i ∈ K). Note, we endow T ∗i \hi(Ti) with the discrete topology and so
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the mapping −→c i is continuous.

We now want to define a payoff function um(i) : C → R for player m(i) (in the game G). To

do so, it will be useful to first define auxiliary (payoff) functions for m(i) that depend on subsets

of players. The function um(i) will be, effectively, the sum of these auxiliary functions.

Fix some player i and consider a subset K of players not containing i, i.e., some K ⊆
{1, . . . , J}\{i}. Write Kc = {1, . . . , I}\(K ∪ {i}), i.e., all players that are not in K ∪ {i}. Let us

give the loose idea: We will construct a function vm(i)[K] that takes choice profiles for members of

K and a choice for m(i), and maps it into a payoff for player m(i). When we do so, we will assume

that players in Kc (if there are any) play according to the equilibrium profile. For instance, if

I = J = 3 and i = 1, then we can have K be either ∅, {2}, {3}, or {2, 3}. Consider the case of

K = {2}. We will have vm(1)[{2}] : C1 × C2 → R, so that we are computing expected payoffs for

m(1) when types for player 2 are in T ∗2 \h2(T2) and types for player 3 are in h3(T3). Because (for

this subset K) types for player 2 are in T ∗2 \h2(T2), vm(1)[{2}] maps a choice for player m(1) plus

choices players in T ∗2 \h2(T2), i.e., C1 × C2, into a payoff. Because (for this subset K) types for

player 3 are in h3(T3), we assume they play according to the given equilibrium.

Once we have the functions vm(i)[K] for all subsets K ⊆ {1, . . . , J}\{i}, we can extend these

functions to a function um(i) : C → R. Specifically, set um(i) =
∑

K⊆J [vm(i)[K] ◦ proj Ci×CK ],

where we write proj Ci×CK : C → Ci × CK for the projection map. The functions um(i) are the

payoff functions for the game G.

Now, let’s specify the functions vm(i)[K]. To do so, it will be useful to recall that, for each

j = 1, . . . , |I|, hj : Tj → T ∗j is injective and bimeasurable. As such, we can define a bimeasurable

map gj : hj(Tj) → Tj so that gj(hj(tj)) = tj . Now, fix a K ⊆ {1, . . . , J}\{i}. Let vm(i)[K] :

Ci × CK → R be such that

vm(i)[K](ci,
−→c K) =

∫
Θ×

∏
j∈K(T ∗j \hj(Tj))×hKc (TKc )

πi(θ, ci,
−→c K(t∗K), sKc(gKc(t∗Kc)))dβ∗i (m(i)).

(Note, if K = ∅, then we take the convention that Θ ×
∏
j∈K(T ∗j \hj(Tj)) × hKc(TKc) = Θ ×

hKc(TKc) so that vm(i)[K] reduces to a mapping from Ci to R. If Kc = ∅, then we take the

convention that Θ ×
∏
j∈K(T ∗j \hj(Tj)) × hKc(TKc) = Θ ×

∏
j∈K(T ∗j \hj(Tj)), so that vm(i)[K]

reduces with sKc(gKc(t∗Kc)) no longer being a factor.)

We begin by showing that each vm(i)[K] is continuous. For this, we will need a mathematical

result.

Lemma D.1. Fix metrizable spaces Ω1,Ω2. Let µ ∈ ∆(Ω2) and f : Ω1 × Ω2 → R be a bounded

function so that each f(ω1, ·) : Ω2 → R is µ-measurable and each f(·, ω2) : Ω1 → R is continuous.

Define F : Ω1 → R so that

F (ω1) =

∫
E2

f(ω1, ω2)dµ,

where E2 ∈ B(Ω2). Then, F is a bounded continuous function.
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Proof. The fact that F is bounded follows directly from the fact that f is bounded and µ(E2) ≤ 1.

We focus on showing that F is continuous. For this, fix a sequence (ωn1 : n = 1, 2, . . .) contained in

Ω1 and suppose ωn1 → ω∗1. To show that F is continuous, it suffices to show that F (ωn1 )→ F (ω∗1).

Write f∗(·) : Ω2 → R for the ω∗1-section of the map f . Also, for each n, write fn(·) : Ω2 → R
for the ωn1 -section of the map f . By assumption, each of f∗, f1, f2, . . . is µ-measurable. Moreover,

since f is bounded, f∗ is bounded and the sequence (fn : n = 1, 2, . . .) is uniformly bounded.

Given this, it suffices to show that pointwise fn → f∗ (that is, fn(ω2)→ f∗(ω2), for all ω2 ∈ Ω2

) If so, then, by the Dominated Convergence Theorem, F (ωn1 ) → F (ω∗1). (See Aliprantis and

Border, 2007, page 407.)

To show that fn → f∗: Note that ωn1 → ω∗1. It follows from the fact that each f(·, ω2) is

continuous that fn → f∗.

Lemma D.2. For each m(i) ∈ T ∗i \hi(Ti) and each K ⊆ {1, . . . , J}\{i}, vm(i)[K] : Ci × CK → R
is continuous.

Proof. Define a mapping fi[K] : Ci × CK ×Θ×
∏
j∈K(T ∗j \hj(Tj))× hKc(TKc)→ R so that

fi[K](ci,
−→c K , θ, t∗K , t∗KC ) = πi(θ, ci,

−→c K(t∗K), sKc(gKc(t∗Kc))).

Certainly, then, fi[K] is bounded. We will show that each fi[K](ci,
−→c K , ·) is universally measur-

able and each fi[K](·, θ, t∗K , t∗KC ) is continuous. Then the result follows from Lemma D.1 and the

fact that

vm(i)[K](ci,
−→c K) =

∫
Θ×(

∏
j∈K(T ∗j \hj(Tj)))×hKc (TKc )

fi[K](ci,
−→c K , θ, t∗K , t∗KC )dβ∗i (m(i)).

First we show that, for each (ci,
−→c K), fi[K](ci,

−→c K , ·) is universally measurable: Write

Fi[ci,
−→c K ] : Θ×

∏
j∈K

(T ∗j \hj(Tj))× hKc(TKc)→ Θ× {ci} × CK ×
∏
j∈KC

∆(Cj)

for the mapping (θ, t∗K , t
∗
Kc) 7→ (θ, ci,

−→c K(t∗K), sKc(gKc(t∗Kc))). To show that fi[K](ci,
−→c K , ·)

is universally measurable, it suffices to show that Fi[ci,
−→c K ] is universally measurable: Then

fi[K](ci,
−→c K , ·) = πi ◦ Fi[ci,−→c K ] is the composite of universally measurable maps and so univer-

sally measurable.

To see that Fi[ci,
−→c K ] is universally measurable: Applying Lemma A.1 and the fact that

each sj is universally measurable, sKc is universally measurable. So, the restriction of sKc to

the domain hKc(TKc) is universally measurable. Now, note that Fi[ci,
−→c K ] is the product of

universally measurable maps, each of which has a separable metrizable domain. So, again applying

Lemma A.1, Fi[ci,
−→c K ] is universally measurable.

Next we show that, for each (θ, t∗K , t
∗
KC ), fi[K](·, θ, t∗K , t∗KC ) is continuous: For this, suppose

that (cni ,
−→c nK)→ (ci,

−→c K). Then, note that (θ, cni ,
−→c nK(t∗K), sKc(gKc(t∗Kc)))→ (θ, ci,

−→c K(t∗K), sKc(gKc(t∗Kc))).
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So, using the continuity of πi, fi[K](cni ,
−→c nK , θ, t∗K , t∗KC ) → fi[K](ci,

−→c K , θ, t∗K , t∗KC ), as required.

Note, the proof of Lemma D.2 explicitly uses the fact that each si is universally measurable.

We do not know if it would attain, if we instead assumed that each Πi[ci, s−i] is universally

measurable.

Lemma D.3. The map um(i) is continuous.

Proof. Note, each proj Ci×CK is a continuous function. With this and Lemma D.2, each vm(i)[K]◦
proj Ci×CK is a continuous function. It follows that um(i) is a finite sum of continuous functions

and so continuous.

Write Di for the set [∆(Ci)]
M(i) write −→σ i for an arbitrary element of Di. Take D =

∏J
i=1Di

and write −→σ = (−→σ 1, . . . ,
−→σ j) for an arbitrary element of D. For a given player m(i), take D−m(i)

to be [∆(Ci)]
(M(i)−1) ×

∏
j 6=iDj if M(i) is finite and D otherwise. Note, if M(i) is (countably)

infinite D−m(i) = D. An arbitrary element of D−m(i) will be denoted as −→σ −m(i).

Extend payoff functions to um(i) : D → R in the usual way. Note, the extended functions

remain continuous. (Use, e.g., Fristedt and Gray, 1996, Theorem 20, Chapter 18 and the definition

of weak convergence.)

Lemma D.4. There exists some mixed choice equilibrium for the game G.

Proof. For each player m(i), define a best response correspondence BRm(i) : D−m(i) � ∆(Ci) so

that

BRm(i)(
−→σ −m(i)) = {σm(i) ∈ arg maxum(i)(·,−→σ −m(i))}.

Extend this correspondence to a best response correspondence BRm(i) : D � D so that

BRm(i)(σm(i),
−→σ −m(i)) = BRm(i)(

−→σ −m(i))×D−m(i).

Define BR : D � D so that BR (−→σ ) =
⋂J
i=1

⋂M(i)
m(i)=1 BRm(i)(

−→σ ). To show that there is a mixed

strategy equilibrium of the game G, it suffices to show that there is a fixed point of BR .

To show that there is a fixed point of BR , we will apply the Glicksberg’s (1952) Theorem.

For this, it suffices to show that D is a non-empty, compact, convex subset of a convex Hausdorff

linear topological space and that BR has a closed graph and is non-empty convex valued.

Note that each ∆(Ci) is a non-empty, compact, convex subset of a convex Hausdorff linear

topological space. It follows that D satisfies the desired conditions. As such, we focus on the

properties of BR .

First, we show that BR has a closed graph: By Berge’s Maximum Theorem (see 17.31 in

Aliprantis and Border, 2007), for each m(i), BRm(i) is compact valued and upper-hemicontinuous.

It follows that BRm(i) is a compact valued and upper-hemicontinuous correspondence to a Haus-

dorff space. So, applying Theorem 17.10 in Aliprantis and Border (2007), it follows that BRm(i)
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has a closed graph. It now follows from Theorem 17.25 in Aliprantis and Border (2007) that BR
has a closed graph.

Next we show that BR is non-empty convex valued: By Berge’s Maximum Theorem (see

17.31 in Aliprantis and Border, 2007), for each m(i), BRm(i) is non-empty valued. It is standard

that BRm(i) is convex valued. (This follows from the fact that payoffs are linear in mixtures of

probabilities of choices.) It follows from construction then that BRm(i) and BR are non-empty

valued.

In what follows, we fix strategies r∗i of (Γ, T ∗) satisfying r∗i ◦ hi = si. Note, such strategies

are well defined since hi is injective. If T ∗i \hi(Ti) 6= ∅, then given some r∗i we write −→r ∗i for

(r∗i (1), r∗i (2), . . .), i.e., the associated element of Di played by types in T ∗i \hi(Ti) under r∗i . A

standard argument establishes the next remark.

Remark D.1. Fix some m(i) ∈ T ∗i \hi(Ti). For any (r∗1, . . . , r
∗
|I|) with (r∗1 ◦ h1, . . . , r

∗
|I| ◦ h|I|) =

(s1, . . . , s|I|), ∫
Θ×T ∗−i

Π∗i [r
∗
i (m(i)), r∗−i]dβ

∗
i (m(i)) = um(i)(

−→r ∗1, . . . ,−→r ∗j ).

Conversely, given some (−→σ 1, . . . ,
−→σ j) ∈ D, there is a unique strategy profile (r∗1, . . . , r

∗
|I|) with

(−→r ∗1, . . . ,
−→r ∗j ) = (−→σ 1, . . . ,

−→σ j) and (r∗1 ◦ h1, . . . , r
∗
|I| ◦ h|I|) = (s1, . . . , s|I|). In this case,∫

Θ×T ∗−i

Π∗i [r
∗
i (m(i)), r∗−i]dβ

∗
i (m(i)) = um(i)(

−→σ 1, . . . ,
−→σ j).

Lemma D.5. Let Ω,Ω∗ be Polish. If f : Ω→ Ω∗ is an embedding, then f maps sets in BUM(Ω)

to sets in BUM(Ω∗).

Proof. Fix some E ∈ BUM(Ω) and some µ∗ ∈ ∆(Ω∗). We will show that f(E) is µ∗-measurable.

Note that f(Ω) ∈ B(Ω∗), since f is an embedding. Thus, if µ∗(f(Ω)) = 0, then ∅ ⊆ f(E) ⊆
f(Ω) with µ∗(∅) = µ∗(f(Ω)) = 0, i.e., f(E) ∈ B(Ω∗;µ∗). As such, we focus on the case where

µ∗(f(Ω)) > 0.

Define µ(G) = µ∗(f(G))
µ∗(f(Ω)) , for each G ∈ B(Ω). (Since f is bimeasurable, this is well-defined.)

Using the fact that f is injective, this defines a probability measure µ ∈ ∆(Ω). Given that E ∈
BUM(Ω), there exist X,Y ∈ B(Ω) so that X ⊆ E ⊆ Y and µ(X) = µ(Y ). Since f is bimeasurable,

f(X), f(Y ) ∈ B(Ω∗). By construction, f(X) ⊆ f(E) ⊆ f(Y ) with µ∗(f(X)) = µ∗(f(Y )), as

required.

Proof of Proposition 5.1. Fix a universally measurable equilibrium (s1, . . . , s|I|) of the

Bayesian game (Γ, T ). As above, construct the game G (based on (s1, . . . , s|I|)). By Lemma

D.4, there exists a mixed choice profile, viz. (−→σ 1, . . . ,
−→σ j), that is an equilibrium for the game

G. Now, by Remark D.1, we can find a strategy profile (s∗1, . . . , s
∗
|I|) so that (−→s ∗1, . . . ,

−→s ∗j ) =

(−→σ 1, . . . ,
−→σ j) and (s∗1 ◦ h1, . . . , s

∗
|I| ◦ h|I|) = (s1, . . . , s|I|). We will show that (s∗1, . . . , s

∗
|I|) is a

universally equilibrium for the Bayesian game (Γ, T ∗).
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First we show that each s∗i is universally measurable. Fix a Borel Ei in ∆(Ci) and note that

(s∗i )
−1(Ei) = hi((si)

−1(Ei)) ∪ {t∗i ∈ T ∗i \hi(Ti) : s∗i (t
∗
i ) ∈ Ei}.

Note, since si is universally measurable, (si)
−1(Ei) is a universally measurable set and, so, using

the fact that hi is an embedding and Lemma D.5, hi((si)
−1(Ei)) is a universally measurable set.

Next, notice that T ∗i \hi(Ti) is countable (and possibly empty); so {t∗i ∈ T ∗i \hi(Ti) : s∗i (t
∗
i ) ∈ Ei} is

Borel. It follows that (s∗i )
−1(Ei) is the union of two universally measurable sets and so universally

measurable.

Now we show Condition (ii) of Definition 2.3: First, fix some type hi(ti) ∈ hi(Ti). Notice that,

for each ci ∈ Ci,∫
Θ×T ∗−i

πi(θ, s
∗
i (hi(ti)), s

∗
−i(t

∗
−i))dβ

∗
i (hi(ti)) =

∫
Θ×T−i

πi(θ, s
∗
i (hi(ti)), s

∗
−i(h−i(t−i)))dβi(ti)

≥
∫

Θ×T−i

πi(θ, ci, s
∗
−i(h−i(t−i)))dβi(ti)

=

∫
Θ×T ∗−i

πi(θ, ci, s
∗
−i(t

∗
−i))dβ

∗
i (hi(ti)),

where the first and last lines use the Change of Variables Theorem (e.g., Billingsley (2008, Theorem

16.13) plus the fact that h−i is injective, and the second line uses the fact that the fact that

(s1, . . . , s|I|) = (s∗1 ◦ h1, . . . , s
∗
|I| ◦ h|I|) is an equilibrium for the Bayesian game (Γ, T ).

Next, fix some type t∗i ∈ T ∗i \hi(Ti), if one exists. Here, Condition (ii) follows from Remark

D.1 and the fact that (−→σ 1, . . . ,
−→σ i) is an equilibrium of the constructed strategic form game G.

Thus, we have that (s∗1, . . . , s
∗
|I|) is a universally measurable Bayesian equilibrium of (Γ, T ∗).

Moreover, (s∗1 ◦ h1, . . . , s
∗
|I| ◦ h|I|) = (s1, . . . , s|I|), as required.

Appendix E Proofs for Section 5.2

For the purpose of this Appendix, we will need to extend the notion of a type structure. Call T =

(Θ, (Ci, πi)i∈I) a Θ-based separable metrizable type structure if is satisfies the conditions

of Definition 2.1, with the exception that each Ti may only be a separable metrizable set. The

definitions in Sections 2-3 apply by replacing a Θ-based type structure with a Θ-based separable

metrizable type structure.

Lemma E.1. Fix a Θ-based type structure T = (Θ, (Ti, βi)i∈I). Let
∏|I|
i=1 T i be a belief-closed

subset of T . Then, there is a Θ-based separable metrizable type structure

T = (Θ, (T i, βi)i∈I),

where, for each ti ∈ T i and each event E−i in Θ× T−i, βi(ti)(E−i) = βi(ti)(E−i).
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Proof. Since we endow each T i with the relative topology, we have that each T i is separable

metrizable. Also note that βi(ti) is indeed a probability measure on Θ× T−i. To see this, recall

that
∏|I|
i=1 T i is a belief-closed subset of T , so that each T−i is Borel in T−i with βi(ti)(Θ×T−i) = 1.

So, if E−i is an event in Θ × T−i, it is also an event in Θ × T−i and βi(ti) forms a probability

measure.

Finally, we show that each βi is measurable. Fix some F Borel in ∆(Θ × T−i). Define

H ⊆ ∆(Θ×T−i) so that ν ∈ H if and only if there exists some µ ∈ F so that µ(E−i) = ν(E−i) for

each event E−i in Θ× T−i. It follows from Lemma 14.4 in Aliprantis and Border (2007) that H

is Borel in ∆(Θ× T−i). It is immediate from the construction that (βi)
−1(F ) = (βi)

−1(H) ∩ T i.
So, using the fact that βi is measurable, (βi)

−1(F ) is measurable, as required.

Take the Θ-based type structure T = (Θ, (Ti, βi)i∈I) and the constructed separable metrizable

structure, viz. T = (Θ, (T i, βi)i∈I), from Lemma E.1. Write (id i : T i → Ti) for the identity map.

Then, T can be embedded into T via (id 1, . . . , id |I|).

Lemma E.2. Fix a Θ-based Bayesian games (Γ, T ) and (Γ, T ∗) where

(i) T = (Θ, (Ti, βi)i∈I) is a separable metrizable type structure and

(ii) T can be embedded in T ∗ = (Θ, (T ∗i , β
∗
i )i∈I) via (h1, . . . , h|I|).

Let (s1, . . . , s|I|) (resp. (s∗1, . . . , s
∗
|I|) ) be a strategy profile of (Γ, T ) (resp. (Γ, T ∗)) so that si =

s∗i ◦ hi for each i. If Πi[ci, s−i] is βi(ti)-measurable, then Π∗i [ci, s
∗
−i] is β∗i (hi(ti)) measurable.

Proof. Fix some hi(ti) ∈ hi(Ti) ⊆ T ∗i . Fix also some ci ∈ Ci and some Borel E ⊆ R. We will

show that (Π∗i [ci, s
∗
−i])

−1(E) ∈ B(Θ× T ∗−i;β∗i (hi(ti))).

By assumption, (Πi[ci, s−i])
−1(E) is in B(Θ × T−i;βi(ti)). That is, there exists F−i, G−i ∈

B(Θ× T−i) so that

F−i ⊆ (Πi[ci, s−i])
−1(E) ⊆ G−i

and βi(ti)(F−i) = βi(ti)(G−i). Since (id ×h−i) is bimeasurable, (id ×h−i)(F−i), (id ×h−i)(G−i) ∈
B(Θ× T ∗−i). Moreover,

(id × h−i)(F−i) ⊆ (id × h−i)((Πi[ci, s−i])
−1(E)) ⊆ (id × h−i)(G−i)

and, using the fact that (id × h−i) is injective,

β∗i (hi(ti))((id × h−i)(F−i)) = βi(ti)(F−i) = βi(ti)(G−i) = β∗i (hi(ti))((id × h−i)(G−i)).

Now notice that

(id × h−i)((Πi[ci, s−i])
−1(E)) = (Π∗i [ci, s

∗
−i])

−1(E) ∩ (Θ× h−i(T−i)).

This allows us to conclude that (Π∗i [ci, s
∗
−i])

−1(E) ∩ (Θ× h−i(T−i)) is β∗i (hi(ti)) measurable.
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Since (Π∗i [ci, s
∗
−i])

−1(E) ∩ (Θ × h−i(T−i)) is β∗i (hi(ti)) measurable, there exists F ∗−i, G
∗
−i in

B(Θ× T ∗−i) with

F ∗−i ⊆ (Π∗i [ci, s
∗
−i])

−1(E) ∩ (Θ× h−i(T−i)) ⊆ G∗−i

and β∗i (hi(ti))(F
∗
−i) = β∗i (hi(ti))(G

∗
−i). Take H∗−i = Θ × (T ∗−i\h−i(T−i))). Since (id × h−i) is

bimeasurable, G∗−i ∪H∗−i is Borel. Thus,

F ∗−i ⊆ (Π∗i [ci, s
∗
−i])

−1(E) ⊆ G∗−i ∪H∗−i.

Moreover, since H∗−i is β∗i (hi(ti))-null, β∗i (hi(ti))(F
∗
−i) = β∗i (hi(ti))(G

∗
−i ∪H∗−i).

Proof of Lemma 5.3. Suppose T induces a decomposition of T ∗ via (h1, . . . , h|I|). Then, both∏
i∈I hi(Ti) and

∏
i∈I(T

∗
i \hi(Ti)) are belief-closed subsets of T ∗. So, using Lemma E.1, each of

these induce a Θ-based separable metrizable type structure. Write

T (h1, . . . , h|I|) = (Θ, (hi(Ti), βi)i∈I)

for the structure induced by T , and write

(T ∗\T ) = (Θ, (T ∗i \hi(Ti), β
O
i )i∈I)

for the difference structure.

Fix a Θ-based game Γ and an equilibrium (s1, . . . , s|I|) for the Bayesian Game (Γ, T ). Suppose

there exists an equilibrium for the difference game (Γ, (T ∗\T )), viz. (sO1 , . . . , s
O
|I|). Construct a

strategy, viz. s∗i , for (Γ, T ∗), as follows. For each ti ∈ Ti, let s∗i (hi(ti)) = si(ti). (This is well-

defined since each hi is injective.) For each t∗i ∈ T ∗i \hi(Ti), let s∗i (t
∗
i ) = sOi (t∗i ). We now show that

the constructed (s∗1, . . . , s
∗
|I|) is a Bayesian equilibrium for (Γ, T ∗).

Condition (i) follows from Lemma E.2. Thus we focus on Condition (ii).

First, fix a type hi(ti) ∈ hi(Ti). For an action ci ∈ Ci, the Change of Variables Theorem (e.g.,

Billingsley, 2008, Theorem 16.13) gives that∫
Θ×T ∗−i

πi(θ, ci, s
∗
−i(t

∗
−i))dβ

∗
i (hi(ti)) =

∫
Θ×T−i

πi(θ, ci, s−i(t−i))dβi(ti).

So, using the fact that (s1, . . . , s|I|) is a Bayesian Equilibrium of (Γ, T ),∫
Θ×T ∗−i

πi(θ, s
∗
i (hi(ti)), s

∗
−i(t

∗
−i))dβ

∗
i (hi(ti)) ≥

∫
Θ×T ∗−i

πi(θ, ci, s
∗
−i(t

∗
−i))dβ

∗
i (hi(ti)), (1)

for all ci.
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Likewise, given a type t∗i ∈ T ∗i \hi(Ti) and a choice ci ∈ Ci,∫
Θ×T ∗−i

πi(θ, ci, s
∗
−i(t

∗
−i))dβ

∗
i (t∗i ) =

∫
Θ×

∏
j 6=i T

∗
j \hj(Tj)

πi(θ, ci, s
O
−i(t

∗
−i))dβ

O
i (t∗i ).

So, using the fact that (sO1 , . . . , s
O
|I|) is a Bayesian Equilibrium of (Γ, T ∗\T ),∫

Θ×T ∗−i

πi(θ, s
∗
i (t
∗
i ), s

∗
−i(t

∗
−i))dβ

∗
i (t∗i ) ≥

∫
Θ×T ∗−i

πi(θ, ci, s
∗
−i(t

∗
−i))dβ

∗
i (t∗i ), (2)

for all strategies ci.

Taking Equations 1-2, (s∗1, . . . , s
∗
|I|) is an equilibrium for the Bayesian game (Γ, T ∗). The

converse follows immediately from the Pull-Back Property (Proposition 3.1).

Proof of Proposition 5.2. If 〈T , T ∗〉 satisfies the Extension Property for Γ, then it is

immediate that there is an equilibrium for the Bayesian game (Γ, T ∗). Conversely, suppose there

is an equilibrium for the Bayesian game (Γ, T ∗). By the Pull-Back Property (Proposition 3.1),

there is an equilibrium for the difference game (Γ, (T ∗\T )). Now, using Lemma 5.3, 〈T , T ∗〉
satisfies the Equilibrium Extension Property for Γ.

Proof of Lemma 5.4. Now, let µ be a common prior for T . Fix distinct players i and j and

note that

βi(ti)(Θ× {tj} × T−i−j) =
µ(Θ× {ti} × {tj} × T−i−j)

µ(Θ× {ti} × T−i−j)
.

So, βi(ti)(Θ×{tj}× T−i−j) > 0 if and only if µ(Θ×{ti}× {tj}× T−i−j) > 0. But, an analogous

argument for j gives that βj(tj)(Θ×{ti}×T−i−j) > 0 if and only if µ(Θ×{ti}×{tj}×T−i−j) > 0.

This establishes the result.

Proof of Lemma 5.5. By Lemma 5.2, there exists some i with T ∗i \hi(Ti) non-empty. In

particular, fix t∗i ∈ T ∗i \hi(Ti). Recall, since T ∗ is mutually absolutely continuous, it is countable.

As such, for each player j 6= i, we can find some t∗j ∈ T ∗j with β∗i (t∗i )(Θ × {t∗j} × T ∗−i−j) > 0.

Again using the fact that T ∗ is mutually absolutely continuous, we also have that, for each such

t∗j , β
∗
j (t∗j )(Θ × {t∗i } × T ∗−i−j) > 0. This implies that t∗j ∈ T ∗j \hj(Tj). (If t∗j ∈ hj(Tj), then

there is some tj ∈ Tj with βj(tj)(Θ × (hi)
−1({t∗i }) × T−i−j) > 0, contradicting the fact that

(hi)
−1({t∗i }) = ∅.)
Now, note that, since each hj is bimeasurable, each T ∗j \hj(Tj) is Borel. So, for each j,
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β∗i (t∗i )(Θ× (T ∗j \hj(Tj))× T ∗−i−j) = 1. Since this holds for each j 6= i, we have

1 = β∗i (t∗i )(Θ× ∩j 6=i((T ∗j \hj(Tj))× T ∗−i−j))

= β∗i (t∗i )(Θ×
∏
j 6=i

(T ∗j \hj(Tj))),

as required.

Finally, note that we showed that, for each j 6= i, T ∗j \hj(Tj) is non-empty. So, applying the

same argument to each t∗j ∈ T ∗j \hj(Tj), we get the desired result.
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