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ABSTRACT
Designing systems able to interact with humans in a natural
manner is a complex and far from solved problem. A key
aspect of natural interaction is the ability to understand and
appropriately respond to human emotions. This paper de-
tails our response to the Audio/Visual Emotion Challenge
(AVEC’12) whose goal is to continuously predict four af-
fective signals describing human emotions (namely valence,
arousal, expectancy and power). The proposed method uses
log-magnitude Fourier spectra to extract multiscale dynamic
descriptions of signals characterizing global and local face
appearance as well as head movements and voice. We per-
form a kernel regression with very few representative sam-
ples selected via a supervised weighted-distance-based clus-
tering, that leads to a high generalization power. For select-
ing features, we introduce a new correlation-based measure
that takes into account a possible delay between the labels
and the data and significantly increases robustness. We also
propose a particularly fast regressor-level fusion framework
to merge systems based on di↵erent modalities. Experi-
ments have proven the e�ciency of each key point of the
proposed method and we obtain very promising results.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering]: Metrics—complexity mea-

sures, performance measures
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1. INTRODUCTION
In Human-Computer Intelligent Interaction systems, a cur-

rent challenge is to give the computer the ability to interact
naturally with the user with some kind of emotional intelli-
gence. Interactive systems should be able to perceive pain,
stress or inattention and to adapt and respond to these a↵ec-
tive states, or, in other words, to interact with humans vo-
cally and visually in a natural way. An essential step towards
this goal is the acquisition, interpretation and integration
of human a↵ective state within the Human-Machine com-
munication system. To recognize a↵ective states, human-
centered interfaces should interpret various social cues from
both audio and video modalities, mainly linguistic messages,
prosody, body language, eye contact and facial expressions.

Automatic recognition of human emotions from both modal-
ities has been an active field of research over the last decade.
Most of the proposed systems have focused on the recog-
nition of acted or prototypal emotions recorded in a con-
strained environment and leading to high recognition rates.
These systems usually describe a↵ects via a prototypal mod-
eling approach using the six basic emotions introduced in the
early 70s by Ekman [3]. Another standard way to describe
facial expressions is to analyze the set of muscles movements
produced by a subject. These movements are called facial
Action Units (AUs) and the corresponding code is the Facial
Action Coding System (FACS) [4]. The first challenge on
Facial Expression Recognition and Analysis (FERA’11) fo-
cused on these two kinds of a↵ect description. Meta-analysis
of challenge results are summarized in [21]. These meth-
ods generally use discrete systems whether based on static
descriptors (geometrical or appearance features) and/or on
static classifiers such as Support Vector Machines [20].

However, these descriptions do not reflect real-life interac-
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tions and the resulted systems can be irrelevant to an every-
day interaction where people may display subtle and com-
plex a↵ective states. To take this complexity into account,
this classical description via prototypal modeling approach
has recently evolved to a dimensional approach where emo-
tions are described continuously within an a↵ect space. The
choice of the dimensions of this space remains an open ques-
tion but Fontaine & al. [5] showed that four dimensions
cover the majority of a↵ective variability: Valence (pos-
itivity or negativity), Arousal (activity), Expectancy (an-
ticipation) and Power (control). The A↵ective Computing
research community has recently focused on the area of di-
mensional emotion prediction and the first workshop on this
topic (EmoSPACE’11, [7]) was organized last year, followed
by the first Audio/Visual Emotion Challenge (AVEC’11 [19]).

Usually, the most important parts of multimodal emo-
tion recognition systems are the learning database, the ex-
tracted features, the predictor and the fusion method. More
precisely, one of the main key points concerns the features’
semantic level. Some methods use low-level features. For
example, Wollmer et al. [23] propose an approach using fea-
tures based on the optical flow. Dahmane et al. [2] use Ga-
bor filter energies to compute their visual features. Ramirez
et al. [15], conversely, prefer to extract high-level features
such as gaze direction, head tilt or smile intensity. Similarly,
Gunes et al. [6] focus on spontaneous head movements.

Another key aspect of this new dimensional approach is
the need for the system to take the dynamic of human emo-
tions into account. Some methods propose to directly en-
code dynamic information in the features. For example,
Jiang et al. [8] extend the purely spatial representation LPQ
to a dynamic texture descriptor called Local Phase Quan-
tisation from Three Orthogonal Planes (LPQ-TOP). Cruz
et al. [1] propose an approach that aligns the faces with
Avatar Image Registration, and subsequently compute LPQ
features. Mcdu↵ et al. [9] predict valence using facial Action
Unit spectrograms as features. In this study, we focus on
mid-level dynamic features, extracted using di↵erent visual
cues: head movements, face deformations and also global
and local face appearance variations. Most methods use vi-
sual cues directly as features. In our method, dynamic infor-
mation is included by computing the log-magnitude Fourier
spectra of the temporal signals that describe the evolution
of the previously introduced visual cues. Since an accurate
and robust system should take advantage of interpreting sig-
nals from various modalities, we also include audio features
to bring complementary information.

For the prediction step, di↵erent machine learning algo-
rithms can be used. Several methods are based on context-
dependent frameworks. For example, Meng et al. [11] pro-
pose a system based on Hidden Markov Models. Wollmer
et al. [23] investigate a more advanced technique based on
context modeling using Long Short-Term Memory neural
networks. These systems provide the advantage to encode
dynamics within the learning algorithm. Another solution is
to base the system on a static predictor as, for instance, the
well-known Support Vector Machine [1, 17]. Dynamic infor-
mation being already included in our features, we chose a
static predictor. The proposed method uses a kernel regres-
sor based on the Nadaraya-Watson estimator [12]. For se-
lecting representative samples, we perform a clustering step
in a space of preselected relevant features.

To merge all visual and vocal information, various fusion

strategies may be relevant. Feature-level fusion (also called
early fusion) can be performed by merging extracted fea-
tures from each modality into one cumulative structure and
feeding it to a single classifier. This technique is appropriate
for synchronized modalities but some issues may appear for
unsynchronized or heterogeneous features. Another solution
is decision-level fusion (or late fusion); each extracted fea-
ture set feeds one classifier and all the classifier outputs are
merged to provide the final response. For example, Nico-
laou et al [14] propose an output-associative fusion frame-
work. In our case, the fusion is based on a simple method
linearly combining outputs corresponding to the predictions
of the four dimensions with di↵erent systems to make the
final predictions. This way, the system is able to capture the
correlations between the di↵erent emotion dimensions and
to increase robustness by using di↵erent modalities.

The designed system is our response to the second Audio/
Visual Emotion Challenge (AVEC’12) [18]. This challenge
uses the SEMAINE [10] corpus as benchmarking database.
Concerning SEMAINE, as Nicolaou et al. [13], we noticed
some annotation issues which may directly impact the sys-
tem performance. This database has been continuously an-
notated by humans in real-time and a delay between the
a↵ect events and the labels has thus been introduced. To
avoid this issue, we present in this paper a delay probabil-
ity estimation method directly used in the feature selection
process.

The main contributions presented in this paper for a↵ec-
tive signals prediction are the followings:

1. The use of the log-magnitude Fourier spectrum to in-
clude dynamic information for human emotions pre-
diction.

2. A new correlation-based measure for the feature se-
lection process that increases robustness to possibly
time-delayed labels.

3. A fast e�cient framework for regression and fusion de-
signed for real-time implementation.

The proposed framework, presented in Fig. 1, is based
on audio-visual dynamic information detailed in section 2.
As visual cues, we propose a set of features based on fa-
cial shape deformations, and two sets respectively based on
global and local face appearance. For each visual cue, we
obtain a set of temporal signals and encode their dynamic
using log-magnitude Fourier spectra. Audio information is
added using the provided audio features. Regarding the pre-
diction, we propose a method based on independent sys-
tems for each set of features and for each dimension (section
3). For each system, a new correlation-based feature selec-
tion is performed using a delay probability estimator. This
process is particularly well-adapted to unsure and possibly
time-delayed labels. The prediction is then done by a non-
parametric regression using representative samples selected
via a k-means clustering process. We finally linearly combine
the 16 outputs during a fusion process to take into account
dependencies between each modality and each a↵ective di-
mension (section 4). Section 5 is dedicated to evaluation and
analysis. Finally, conclusion and future work are presented
in section 7.
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Figure 1: Overview of the proposed framework.

2. FEATURES
In this section, we present the four di↵erent sets of features

we used. We propose three multiscale dynamic feature sets
based on video; the fourth one is based on audio.

For the sets of visual cues, we first extract temporal sig-
nals describing the evolution of facial shape and appearance
movements before calculating multiscale dynamic features
on these signals. The feature extraction process is described
in Fig. 2.

Dynamic shape 
features

VideoAudio

Dynamic global 
appearance  

features

Dynamic local 
appearance  

features
Audio features

Figure 2: Feature extraction overview.

2.1 Signals extraction
We extract three kinds of signals: one based on shape

parameters, and two others based on global and local face
appearance.

1. Shape parameters:

The first set of features we used is based on face de-
formation shape parameters. The initial step of this
feature extraction process is the use of the 3D face
tracker proposed in [16]. It detects the face area in the
images with a Viola-Jones algorithm [22] before esti-
mating the relative position of 66 landmarks using a
Point Distribution Model (PDM). The position of the
ith landmark si in the image can be expressed as:

si(p) = sR(̄si +�iq) + t (1)

where s̄i denotes the mean location of the ith land-
mark and �i the principal subspace matrix computed
from training shape samples using principal compo-
nent analysis (PCA). Here, p = {s,R, t,q} denotes
the PDM parameters, which consist of global scaling
s, rotation R and translation t. Vector q represents
the deformation parameters that describe the defor-
mation of si along each principal direction.

As output of this system, we obtain temporal signals:
some of them correspond to the external parameters
and give information on the head position, and the
others characterize deformations related to facial ex-
pressions.



2. Global appearance:

The second set of features we used is based on global
face appearance. First, we warp the faces into a mean
model using the point locations obtained with the face
tracker. This way, the global appearance will be less
sensitive to shape variations and head movements, al-
ready encoded in the first set. Then, we select the most
important modes of appearance variations using PCA.
We obtain a set of temporal signals by projecting the
warped images on the principal modes.

3. Local appearance:

The third set is based on local face appearance. First,
we extract local patches of possibly interesting areas
regarding deformations related to facial expressions.
We extract an area around the mouth in order to cap-
ture smiles, areas around the eyes to capture the gaze
direction, around the eyebrows to capture their move-
ments, and areas where the most common expression-
related lines can appear (periorbital lines, glabellar
lines, nasolabial folds and smile lines). We chose to
avoid the worry lines area because of the high proba-
bility it has to be occulted by hairs. Then, we use PCA
as for the global warped images to compute temporal
signals corresponding to the evolution of the local ap-
pearance of the face during time.

2.2 Dynamic features
For each of these three sets, we calculate the log-magnitude

Fourier spectra of the associated temporal signals in order to
include dynamic information. We also calculate the mean,
the standard deviation, the global energy, and the first and
second-order spectral moments. We chose to compute these
features every second for di↵erent sizes of windows (from
one to four seconds). This multiscale extraction gives infor-
mation about short-term and longer-term dynamics.

2.3 Audio features
The last set of features we used is the audio feature set

given to the participants of the AVEC’12 Challenge. It con-
tains the most commonly used audio features for the aimed
task of predicting emotions from speech (energy, spectral
and voice-related features).

2.4 Feature normalization
Within a set of features, the range of values can be highly

di↵erent from one feature to another. In order to give the
same prior to each feature, we need to normalize them. A
global standardization on the whole database would be a
solution but we chose to standardize each feature by subject
in order to reduce the inter-subject variability. This method
should be e�cient under the hypothesis that the amount
of data for each subject is su�ciently representative of the
whole emotion space.

3. PREDICTION SYSTEM
Using each of the four feature sets, we make separate pre-

dictions for the four dimensions, leading to a total of 16
signals. The method used for each prediction is described
below.

3.1 Delay probability estimation
The SEMAINE database has been continuously annotated

by humans. Therefore, a delay exists between videos and
labels, which may significantly corrupt the learning system
[13]. We introduce in this paragraph a delay probability
estimation method to avoid this issue. Let y(t) be the label
signal and {fi(t), i 2 [[1, n]]} be a set of n features. Making
the assumption that the features that are relevant for our
prediction will be more correlated to the undelayed label, we
can use the sum of the correlations between the features and
the ⌧ seconds delayed label signal as a probability indice for
the label to be delayed by ⌧ seconds. Thus, we can estimate
the delay probability P (⌧) as follows:

P (⌧) =
1
A

nX

i=1

r(fi(t), y(t� ⌧)) (2)

where r is the Pearson product-moment correlation coe�-
cient defined, for two random variables X and Y as:

r(X,Y ) =
E(X � X̄)E(Y � Ȳ )

�X�Y

where �X refers to the standard deviation of variable X
and X̄ refers to its mean. A is the normalization coe�cient
defined as:

A =

1Z

�1

nX

i=1

r(fi(t), y(t� ⌧))d⌧

We calculate P (⌧) for ⌧ varying in a range [[0, T ]] where T
is the largest expected delay that we fixed at 20 seconds to
obtain an estimate of the delay probability distribution in
this range. Eq. 2 requires continuous functions. In our case,
the data contain di↵erent video sequences. We thus estimate
the delay probability as the mean of the delay probabilities
estimated for the di↵erent sequences. To simplify notations,
we refer to this estimate as P (⌧).

In Fig. 3, we represent the four di↵erent delay proba-
bility distributions that have been learned on the training
database for the first feature set. By looking at those distri-
butions’ maxima, we identify an averaged delay between 3
and 4 seconds for valence and arousal, and between 5 and 6
seconds for expectancy and power. The di↵erences between
those delays could be explained by the higher complexity of
human evaluation for expectancy and power.
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Figure 3: Delay probability distributions



3.2 Correlation-based feature selection
We present in this paragraph a feature selection method

adapted to a possibly time-delayed label. The kernel re-
gression proposed in this paper uses a similarity measure
based on distances between samples. Using all the features
(including the ones that are not useful for our prediction)
would corrupt the regression by adding an important noise.
We need to identify the most relevant ones and then reduce
the number of features that will be used in our distance cal-
culation. In order to only select the features that are corre-
lated to the label knowing the delay probability distribution
(Eq. 2), we introduce a time-persistent-correlation-based
measure, defined as follows:

⇢(fi(t), y(t)) =

1Z

�1

r(fi(t), y(t� ⌧))P (⌧)d⌧ (3)

This way, we consider the correlation between the feature
and the label, but also between the feature and di↵erent
delayed versions of the label weighted by an estimation of the
delay probability. As before, with di↵erent separate video
sequences, we need to calculate the mean of this measure for
the di↵erent sequences to obtain a correlation score between
the ith feature and the label. To simplify notations, we refer
to this score as ⇢(fi(t), y(t)). This measure is more robust
than a simple correlation measure in the case of possibly
time-delayed label (see section 5.3). By selecting features
maximizing ⇢(fi(t), y(t)), we select a relevant set of features.

3.3 Clustering
We present in this paragraph a clustering step with super-

vised weighted-distance learning. The feature selection step
presented in the previous paragraph gives a correlation score
between the label and each selected feature using Eq. 3. We
use these scores as the weights of a diagonally-weighted dis-
tance dw, defined as follows:

dw(X,Y ) =
p
X>WY

where W 2 Mn(R) such as:

Wij = ⇢(fi(t), y(t))�ij

We perform a k-means clustering algorithm to reduce the
uncertainty of the label by grouping samples that are close
in the sense of the learned distance dw. We calculate the
label of each group as the mean of the labels of the group.
In order to initialize the algorithm, we sort out the samples
by label values and gather them in k groups of the same
size. We calculate the initialization seeds as the means of
the features of each group’s samples. This initialization is
done to ease the repeatability of the clustering and because
we expect to gather samples with neighboring labels after
the clustering algorithm by using the learned distance dw.
This step leads to the identification of a set of representative
samples.

3.4 Kernel regression
After these learning steps, the prediction is done by a ker-

nel regression using the Nadaraya-Watson estimator ([12]).
We use a radial basis function (RBF) combined with the pre-
viously learned weighted-distance dw as kernel. Let {xj 2
Rn, j 2 [[1,m]]} be the feature vectors of the m representa-
tive samples obtained after the clustering step, and {yj , j 2

[[1,m]]} be the associated labels. The prediction for a sam-
ple s described by feature vector xs 2 Rn is given by the
following formula:

ŷ(s) =

mP
j=1

K�(xs,xj)yj

mP
j=1

K�(xs,xj)
(4)

where � is the spread of the radial basis function and K
is defined as:

K�(xs,xj) = e�
dw(x

s

,x
j

)2

� (5)

As a final step, we proceed to a temporal smoothing to re-
duce the noise of the regressor output.

4. FUSION
Using the regression method described in the previous sec-

tion, we obtain 16 signals, which are the predictions of the
four dimensions using the four di↵erent sets of features. In
order to fuse these signals and make the final prediction of
the four dimensions, we chose to use local linear regressions
to estimate linear relationships between the signals and the
labels. More precisely, the coe�cients of these linear rela-
tionships are estimated as the means of the di↵erent linear
regressions coe�cients weighted by the Pearson’s correlation
between the predicted signal and the label of each sequence.
Let {yj

i , i 2 [[1, ns]], j 2 {V,A,E, P}} be the labels of the ns

video sequences of the learning set. Let {Si, i 2 [[1, ns]]} be
the matrices containing the 16 predictions of our system on
the ns sequences of the training set (previously standard-
ized). We estimate the four vectors of coe�cients ↵j 2 R16

of the linear relationships as follows:

↵j =

nsP
i=1

r(�j
i Si, y

j
i )�

j
i

nsP
i=1

r(�j
i Si, y

j
i )

(6)

where �j
i = (S>

i Si)
�1S>

i yj
i is the ordinary least squares

coe�cients vector for sequence i and label j. We can then
calculate our final predictions for the four dimensions {ŷj , j 2
{V,A,E, P}} as: ŷj = ↵jSt where St is a matrix containing
the 16 standardized predictions of our regressors on the test
sequence we aim to predict.

5. EXPERIMENTS
In this section, we present some experiments we carried

out to evaluate the di↵erent key points of our method. In
order to be robust in generalization, we chose to optimize the
hyperparameters in subject-independent cross-validation (each
training partition does not contain the tested subject).

As evaluation procedure, we first present the results of the
full system (with feature normalization by subject, our time-
persistent-correlation measure and our regression framework).
Then, we evaluate the contribution of each key point by re-
placing it by a more commonly used process (global normal-
ization, Pearson’s correlation and Support Vector Regres-
sion):

1. Normalization by subject, Time-persistent-correlation,
Kernel regression (sect. 5.1)



2. Global normalization, Time-persistent-correlation, Ker-
nel regression. (sect. 5.2)

3. Normalization by subject, Standard correlation, Ker-
nel regression. (sect. 5.3)

4. Normalization by subject, Time-persistent-correlation,
SVR. (sect. 5.4)

5.1 Fusion evaluation
The proposed fusion method, which is based on a simple

linear combination of the inputs learned via local linear re-
gressions, is particularly fast and well-suited for a real-time
system. To evaluate the e�ciency of this fusion method and
the contribution of each feature set, we present the results
we obtained by learning on the training set and testing on
the development set in Table 1.

Table 1: Pearson’s correlations averaged over all
sequences of the AVEC’12 development set. Re-
sults are given for valence, arousal, expectancy and
power. We also indicate the mean of these four di-
mensions. S corresponds to the shape features. GA
to the global appearance features. LA to the local
appearance features and A to the audio features. F
corresponds to the fusion.

Val Aro Exp Pow Mean
S 0.319 0.538 0.365 0.429 0.413

GA 0.281 0.498 0.347 0.431 0.389
LA 0.354 0.470 0.323 0.432 0.395
A -0.057 0.445 0.280 0.298 0.241

F 0.350 0.644 0.341 0.511 0.461

We can see that visual features give better results than au-
dio features. Local appearance-based features give a better
valence prediction than the other sets. The fusion system
significantly improves arousal and power predictions giving
a mean score increased by 11.7%. We can notice that when
the four predictions (using each set of features) are accu-
rate, the fusion is more successful. On the contrary, the
prediction scores of valence and expectancy are lower and
the fusion does not improve the system performance.

5.2 Normalization evaluation
In this subsection, we evaluate the e↵ect of the standard-

ization of the features that we performed by subject in order
to reduce the inter-subject variability. We compare the re-
sults we obtained (presented in the previous table) to those
achieved with a global standardization on the whole training
set (Table 2).

The normalization by subject has increased the mean score
by 9.8%. The e↵ect on valence is more important than on
the other dimensions, which can be explained because the
selected features for valence predictions are more sensitive
to human morphological variations. Most of the features se-
lected for the three other dimensions are high-frequency sub-
bands energies extracted from the temporal signals, which
are more robust to morphological variations than the sig-
nals’ mean values that seem to be useful to predict valence.

Table 2: Pearson’s correlations averaged over all se-
quences of the AVEC’12 development set in the case
of a global standardization instead of a standardiza-
tion by subject.

Val Aro Exp Pow Mean
S 0.079 0.526 0.373 0.463 0.361

GA 0.102 0.471 0.353 0.416 0.335
LA 0.314 0.436 0.311 0.441 0.376
A -0.069 0.509 0.227 0.254 0.230

F 0.199 0.633 0.331 0.515 0.420

5.3 Time-persistent-correlation evaluation
For evaluating the e�ciency of the new proposed correlation-

based measure, we compare our results to those we obtain
by selecting the features with a standard Pearson’s corre-
lation measure which does not take the delay into account.
The results are presented in Table 3.

Table 3: Pearson’s correlations averaged over all se-
quences of the AVEC’12 development set in the case
of the use of Pearson’s correlation instead of our new
time-persistent-correlation for feature selection.

Val Aro Exp Pow Mean
S 0.299 0.527 0.273 0.413 0.378

GA 0.297 0.489 0.279 0.392 0.364
LA 0.303 0.464 0.294 0.411 0.368
A 0.017 0.426 0.261 0.265 0.242

F 0.333 0.652 0.301 0.453 0.435

The use of the proposed time-persistent-correlation-based
measure has increased the mean score by 6%, which can
be explained by the improved robustness of the proposed
measure to possibly time-delayed labels.

5.4 Regressor evaluation
Our regression method, which consists of a clustering and

a kernel regression, is particularly fast to learn and compute
and is therefore suited for real-time implementation. We
compare our method to the commonly used Support Vec-
tor Regression combined with the kernel defined in Eq. 5.
As for our method, the hyperparameters are optimized in
subject-independent cross-validation. The obtained results
are presented on Table 4.

Table 4: Pearson’s correlations averaged over all
sequences of the AVEC’12 development set with a
Support Vector Regression.

Val Aro Exp Pow Mean
S 0.286 0.504 0.360 0.442 0.398

GA 0.252 0.393 0.347 0.404 0.349
LA 0.363 0.473 0.309 0.411 0.389
A -0.089 0.400 0.232 0.380 0.231

F 0.275 0.591 0.297 0.493 0.414

The mean score after fusion has increased by 11% by using
our method. However, we can see that the fusion is less



e�cient with SVR than with our regression method. It can
be explained by the fact that the fusion coe�cients have
been estimated using the SVR predictions on the training
set. A likely explanation could be that SVR are prone to
over-fitting. A solution to this issue would be to learn the
fusion coe�cients in cross-validation. It is thus not relevant
to compare the results after fusion. It is more reliable to
compare our regression method to the SVR feature set by
feature set. We obtain, in this case, an averaged gain of 5%.

6. RESULTS ON THE TEST SET
We learned our system on the concatenation of the train-

ing and the development sets to compute our predictions on
the test set. We compare in Table 5 our results to those
given in the baseline paper [18]. We can notice that the
results obtained on the test set are quite similar to those
obtained on the development set. This highlights the high
generalization power of the proposed framework. It can be
explained by the small number of representative samples for
the kernel regression (60 in our system) which limits the flex-
ibility of the model and allows the system to only capture
important trends in the data.

Table 5: Pearson’s correlations averaged over all se-
quences of the AVEC’12 test set.

Val Aro Exp Pow Mean
Our method 0.341 0.612 0.314 0.556 0.456
Baseline 0.146 0.149 0.110 0.138 0.136

7. CONCLUSION
We presented a complete framework for continuous pre-

diction of human emotions based on features characterizing
head movements, face appearance and voice in a dynamic
manner by using log-magnitude Fourier spectra. We intro-
duced a new correlation-based measure for feature selection
and evaluated its e�ciency and robustness in the case of
possibly time-delayed labels. We proposed a fast regression
framework based on a supervised clustering followed by a
Nadaraya-Watson kernel regression that appears to outper-
form, for the aimed task, Support Vector Regression. Our
fusion method is based on simple local linear regressions and
significantly improves our results. Because of the high power
of generalization of our method, we directly learned our fu-
sion parameters using our regressors outputs on the training
set. In order to improve the fusion for methods that are
more prone to over-fitting, we would have to learn these pa-
rameters in cross-validation. Our system has been designed
for the Audio/Visual Emotion Challenge (AVEC’12) which
uses Pearson’s correlation as evaluation measure. Therefore,
every step of our method has been built and optimized to
maximize this measure. An accurate system for everyday
interactions would need to be e�cient in terms of correla-
tion but also in terms of Root-Mean-Square Error (RMSE).
Some modifications on our system would be needed to in-
crease its performance regarding this measure. The SE-
MAINE database on which our system has been learned and
tested contains videos of natural interactions but recorded
in a very constraint environment. A perspective for adapt-
ing these kinds of human emotion prediction systems to real

conditions, as for assistance robotics, would be to learn the
system on ”in the wild” data
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