Potential theory of subordinated Brownian motions

Tomasz Byczkowski, IMPAN

SSDNM

Lectures No 1, 2: Classical potential theory versus Brownian motion I: Elementary theory

Wrocław, October 3 and 17, 2013

Beginning of potential theory

- Newton (1687): Law of universal gravitation, study of F(x) force acting on a unit mass at x ∈ ℝ^d, d ≥ 3.
- Lagrange (1773): The above vector field (of forces) is a gradient of a certain function $U := U_2(x) = A_{d,2}|x|^{2-d}$.
- Green (1828) named U potential function.
- Gauss (1840) named U potential.
- Gauss: potential method is suitable to resolve many complicated problems of mathematical physics, not only problems of gravitation or electrostatics.

More generally: for a field generated by a charge located according to a measure μ we define a **potential** of μ :

$$U_2\mu(x) = \mathcal{A}_{d,2} \int\limits_{\mathbf{R}^d} |x-y|^{2-d} d\mu(y), \quad \mathcal{A}_{d,2} = rac{\Gamma(d/2-1)}{2\pi^{d/2}}.$$

Harmonicity of potentials

Physically, $U_2(x)$ corresponds to the potential at the point x generated by the unit charge placed at the point $0 \in \mathbb{R}^d$. By a direct differentiation we check that the function $U_2(x - y)$ is **harmonic** for $x \in \mathbb{R}^d \setminus \{y\}$, i.e. it satisfies the Laplace equation:

$$\Delta_x U_2(x-y) = 0, \quad x \neq y,$$

where $\Delta = \sum_{i=1}^{d} \partial_i^2$.

More generally, $U_2\mu(x)$, potential of a measure μ , is harmonic outside the support of μ .

The same (Laplace) equation is satisfied by a stabilized temperature T(x) of the body D with no inner heat sources, when heated only by the surface. To determine the temperature of the body requires to solve **the Dirichlet problem**.

Radial harmonic functions

Radial harmonic functions on $\mathbb{R}^d \setminus \{0\}$, $d \ge 1$, (depending only on |x|) are of the form

$$C_1|x| + C_2 \quad \text{in } \mathbb{R}^1,$$

$$C_1 \ln |x| + C_2 \quad \text{in } \mathbb{R}^2,$$

$$C_1|x|^{2-d} + C_2 \quad \text{in } \mathbb{R}^d, d \ge 3.$$

To justify this statement, we write the Laplace equation for the function h(r), where r = |x|. By a direct differentiation, we obtain

$$\frac{d^2h}{dr^2} + \frac{d-1}{r}\frac{dh}{dr} = 0$$

Solving this differential equation, we obtain the conclusion.

Equivalent definitions of harmonicity

Let *D* be a domain (i.e. connected open subset) in \mathbb{R}^d , $d \ge 1$. A Borel function *f*, defined on \mathbb{R}^d is called **harmonic** on *D* if $f \in C^2(D)$ and $\Delta f \equiv 0$ on *D*.

Equivalent definition:

A Borel function f on \mathbb{R}^d , $|f| < \infty$, is harmonic on a domain D iff it satisfies **mean value property** on D; that is for every ball $B(x, r) \subset C D$ we have

$$f(x) = \int_{\mathcal{S}(x,r)} f(y) \,\sigma_r(dy) = \int_{\mathcal{S}(0,1)} f(x+ry) \,\sigma_1(dy).$$

Here σ_r is the (normalized) uniform surface measure on the sphere $S(x, r) = \partial B(x, r)$; analogously σ_1 - on the unit sphere S(0, 1).

Remark: spherical integration over S(x, r) can be replaced by integration over B(x, r) with respect to the Lebesgue measure.

Basic properties of harmonic functions

- Maximum Principle. Let f be harmonic in a domain D ⊂ ℝ^d and continuous in D. Then either f(x) < sup_{u∈D}f(u), for x ∈ D, or f(x) ≡ const. over the whole set D;
- Harnack Inequality. Let f be a positive harmonic in a domain D ⊂ ℝ^d. Then for every compact subset K ⊂ D there is a constant C > 0 such that for every x₁, x₂ ∈ K we have

$$C^{-1}f(x_1) \leqslant f(x_2) \leqslant C f(x_1).$$

• Harnack Theorem. Let f_n be an increasing sequence of harmonic functions in a domain $D \subset \mathbb{R}^d$. Then either f_n is convergent to a harmonic function on D, uniformly on compact subsets of D, or f_n is everywhere divergent to $+\infty$ on D.

Dirichlet Problem (1850)

D – domain in \mathbb{R}^d ,

 φ - continuous function on ∂D (boundary of D).

Problem: Find a function $f: D \to \mathbb{R}^d$ which

• is harmonic in the domain D, that is, for $x \in D$ it satisfies

$$\Delta f(x) = \sum_{i=1}^{d} \frac{\partial^2 f(x)}{\partial x_i^2} = 0,$$

- f is continuous on \overline{D} and such that $f|_{\partial D} = \varphi$.
- Solution (if it exists) is unique Maximum principle!
- Remark: not for all domains such a function exists.

Solution of the Dirichlet Problem

If the boundary of the set D is "smooth", then there exists a function of two variables $G_D(x, y)$ such that **the solution** f(x) can be expressed in the form

$$f(x) = \int_{\partial D} \varphi(y) \frac{\partial G_D(x, y)}{\partial \vec{n}_y} \, d\sigma(y),$$

- $G_D(x, y)$ is the Green function of the set D,
- \vec{n}_y is **normal vector** at the point y of the boundary,
- σ is the normalized surface measure on ∂D .
- function

۵

$$P_D(x,y) = \frac{\partial G_D(x,y)}{\partial \vec{n_y}}$$

is the Poisson kernel of the set D.

Properties of Green function

A function $G_D(x, y)$ defined on $\overline{D} \times D$, for a domain $D \subset \mathbb{R}^d$ is called **the Green function of** D if it satisfies

- $G_D(\cdot, y)$ is harmonic on $D \setminus \{y\}$,
- $G_D(\cdot, y)$ is continuous on $\overline{D} \setminus \{y\}$ and vanishes on ∂D ,
- $G_D(\cdot, y) U_2(\cdot, y)$ remains harmonic at the point $\{y\}$. Remark. If the Green function for a domain D exists, it is unique.

Indeed, for a fixed $y \in D$ the function

$$w_y(x) = G_D(x, y) - U_2(x, y)$$

is a solution of the Dirichlet problem

$$\Delta w_y = 0$$
 in D , $w_y(x) = U_2(x, y)$ in ∂D .

Physically, $G_D(x, y)$ is the potential at the point x generated by the unit charge placed at $y \in D$ and the charge on the grounded (potential 0) conducting surface ∂D .

Potentials, case $D = \mathbb{R}^d$

When $d \ge 3$, then **the Green function** of the whole space (traditionally called **potential** and denoted by U) is given by the formula

$$U(x,y) = \frac{\Gamma(\frac{d-2}{2})/2\pi^{d/2}}{|x-y|^{d-2}}.$$

When
$$d = 2$$
 potential $U(x, y) = -\frac{1}{\pi} \log |x - y|$.

When d = 1 potential U(x, y) = -|x - y|.

Green function - halfspace

Green function and **Poisson kernel** are expressed by explicit formulas also for *D* being a **halfspace** or a **ball** in \mathbb{R}^d . Let D = H, $H = \{x \in \mathbb{R}^d : x_d > 0\}$. For $y = (y_1, ..., y_{d-1}, y_d) \in H$ put $y^* = (y_1, ..., y_{d-1}, -y_d)$ (symmetry with respect $\{y_d = 0\}$).

Green function of halfspace: for $x, y \in H$ and $d \ge 3$

$$G_{\mathcal{H}}(x,y) = rac{\Gamma(rac{d-2}{2})}{2\pi^{d/2}} \left(rac{1}{|x-y|^{d-2}} - rac{1}{|x-y^*|^{d-2}}
ight).$$

We subtract another unit charge placed at such a point that the resulting potential at ∂H is 0. The same apply to the case of a ball. We check that $G_H(x, y)$ is harmonic for $x \in H \setminus \{y\}$, vanishes at ∂H and $G_H(x, y) - \frac{\Gamma(\frac{d-2}{2})}{2\pi^{d/2}} \frac{1}{|x-y|^{d-2}}$ is harmonic for all $x \in H$.

Green function for D = B(0, 1)

۲

If $y \in B(0,1)$, $y \neq 0$, put $y^* = y/|y|^2$ - inversion with respect to sphere $\{|x| = 1\}$. We have $|y|/|y^*| = 1$ and $y/|y| = y^*/|y^*|$.

Green function of B(0,1): for $x, y \in B(0,1)$, $y \neq 0$, and $d \ge 3$

$$G_{B(0,1)}(x,y) = \frac{\Gamma(\frac{d-2}{2})}{2\pi^{d/2}} \left(\frac{1}{|x-y|^{d-2}} - \frac{1}{|y|^{d-2}|x-y^*|^{d-2}} \right).$$

We put $G_{B(0,1)}(x,0) = \Gamma(\frac{d-2}{2})/2\pi^{d/2}(|x|^{2-d}-1)$. We have $|y|^2|x-y^*|^2 = |y|^2|x|^2 - 2(x,y^*/|y^*|)|y^*||y|^2 + |y|^2|y^*|^2 =$ $|y|^2|x|^2 - 2(x,y/|y|)|y|^2|y^*| + |y|^2|y^*|^2 = |y|^2|x|^2 - 2(x,y) + 1$. Hence, $\lim_{0 \neq y \to 0} G_{B(0,1)}(x,y) = G_{B(0,1)}(x,0)$ for $x \in B(0,1)$ at y = 0 and $G_{B(0,1)}(x,y) = 0$, for |x| = 1. It also satisfies all the remaining conditions.

Properties of Poisson kernel

A positive and continuous function function K(x, y) defined on $D \times \partial D$, for a domain $D \subset \mathbb{R}^d$, is called **the Poisson kernel for** D if it satisfies

- $K(\cdot, z)$ is harmonic in D, for every $z \in \partial D$,
- $\int_{\partial D} K(x,z) \, \sigma(dz) = 1$, for every $x \in D$,
- $\lim_{D \ni x \to w} \int_{\partial D \cap B(w,\delta)^c} K(x,z) \sigma(dz) = 0$, for every $w \in \partial D$ and $\delta > 0$.

Here σ denotes the normalized surface measure on ∂D .

Remark. If the Poisson kernel for a domain D exists, it is unique (again, it is the unique solution of of the Dirichlet problem with the given boundary condition). If the Poisson kernel for a bounded domain D exists, then the solution of the Dirichlet problem with a boundary value $f \in C(\partial D)$ can be expressed by

$$f(x) = \int_{\partial D} K(x,z) f(z) \sigma(dz).$$

Poisson kernel

۲

For
$$x = (x_1, ..., x_d)$$
 put $\tilde{x} = (x_1, ..., x_{d-1})$.

For $x \in H$, $y \in \partial H$ we have the formula for Poisson kernel for H:

$$P_{H}(x,y) = \frac{\Gamma(d/2)}{\pi^{d/2}} \frac{x_{d}}{(x_{d}^{2} + |\tilde{y} - \tilde{x}|^{2})^{\frac{d}{2}}}$$

When d = 2, then P_H(x, y) is the density of the Cauchy distribution on the line {(x, y) : y = 0}.

For a ball B := B(0, r) in \mathbb{R}^d , $d \ge 1$, Poisson kernel is determined by the formula:

For $x \in B(0, r)$ and $z \in \partial B(0, r)$, i.e. |z| = r we obtain

$$P_B(x,z) = rac{\Gamma(d/2)}{\pi^{d/2}r} \, rac{r^2 - |x|^2}{|x-z|^d} \, .$$

Solution of the Dirichlet problem in a ball

The explicit formula for the Poisson kernel in a ball gives us the possibility of write down the form of the solution for the Dirichlet problem.

Solution of the Dirichlet problem in $B(x_0, r)$ with the boundary value f is given by the formula:

$$u(y) = \int_{\partial B(x_0,r)} f(x) \frac{r^2 - |y - x_0|^2}{r|y - x|^d} \, d\sigma(x) \, ,$$

where σ is the normed uniform surface measure on $\partial B(x_0, r)$, and f is defined and continuous on $\partial B(x_0, r)$.

A direct consequence of the above formula is the Harnack Inequality and Harnack Theorem for a ball and, consequently, for compact subsets.

Brownian motion and the Dirichlet problem

In 40-ties of XX century **S.Kakutani**, and in 50-ties **J.L.Doob** explained how to solve **the Dirichlet problem** in terms of **Brownian motion**. Foundations of the contemporary potential theory of Markov processes are due to **G.Hunt** (1957, 1958).

let W(t) be the Brownian motion starting from \mathbb{R}^d and let D be a (regular) domain in \mathbb{R}^d . Assume that Brownian motion starts from the point $x \in D$ and put

- $\tau_D = \inf\{t > 0: W_t \notin D\}$ the first exit time from the set D.
- Function

$$f(x) = \mathbb{E}^{x} \left(\varphi(W_{\tau_{D}}) \right)$$

• is the solution of the Dirichlet problem for D and φ .

Stopping time

Let (Ω, Σ, P) be a probability space, $\Omega_{\tau} \subseteq \Omega$, T - an interval $\overline{\mathbb{Z}}$ or $\overline{\mathbb{R}}$; $\{\mathcal{F}_t; t \in T\}$ - increasing family of sub σ -algebras Σ .

Definition. A positive random variable $\tau : \Omega_{\tau} \longrightarrow T$ is called a stopping time, (Markov time) if $\{\tau \leq t\} \in \mathcal{F}_t$, $t \in T$

We also define $\mathcal{F}_{\tau} := \{ A \subseteq \Omega_{\tau}; A \cap \{ \tau \leqslant t \} \in \mathcal{F}_t, \text{ for every } t \in T \}.$

Remark. 1. When τ is countably valued then the above definition is equivalent to the following: τ is stopping time with respect to $\{\mathcal{F}_n\}$ if for every *n* the following holds: $\{\tau = n\} \in \mathcal{F}_n$. **2.** \mathcal{F}_{τ} is a σ -algebra $\subseteq \Omega_{\tau} \cap \Sigma$. **3.** $\tau : (\Omega_{\tau}, \mathcal{F}_{\tau}) \longrightarrow (T, \mathcal{B}_{T})$ is measurable.

Markov property of the process $X = \{X_t; t \in T\}$

Let $\theta_s : (\Omega, \Sigma) \longrightarrow (\Omega, \Sigma)$ acts as a "shift" on the basic probability space according to the rule: $X_t \circ \theta_s = X_{t+s}$. The easiest way to perceive these operators is to work on the standard probability space $(\mathbb{R}^{[0,\infty)}, \otimes_{t \ge 0} \mathcal{B}_{\mathbb{R}}, \mu)$, where μ is the distribution of the process X. Then $X_t(\omega) = \omega(t)$ and $X_t(\omega) \circ \theta_s = \omega(t+s)$. Further, we consider the process with the initial distribution X(0) = Y - an arbitrary random variable. Conditional expectation (probability) with respect to a process with the initial distribution Y we denote by $\mathbb{E}^{Y}[\cdot]$, $(P^{Y}(\cdot))$. When $Y = x \in \mathbb{R}^d$ we write $\mathbb{E}^{x}[\cdot]$, $(P^{x}(\cdot))$.

Markov property of $\{X_t; t \ge 0\}$: for $Z \ge 0$, \mathcal{F}_{∞} -measurable

$$\mathbb{E}^{\mathsf{X}}[Z \circ \theta_t | \mathcal{F}_t] = \mathbb{E}^{\mathsf{X}_t}[Z],$$

where
$$\mathcal{F}_t = \sigma\{X_s; s \leq t\}$$
, $\mathcal{F}_\infty = \sigma\{X_s; s \geq 0\}$.

Strong Markov property of the process X

For τ - \mathcal{F}_t -stopping time and $Z \ge 0$, \mathcal{F}_{∞} -measurable random variables, we have

$$\mathbb{E}^{\mathsf{X}}[Z \circ \theta_{\tau} | \mathcal{F}_{\tau}] = \mathbb{E}^{\mathsf{X}_{\tau}}[Z],$$

where $\mathcal{F}_t = \sigma\{X_s; s \leq t\}$, $\mathcal{F}_\infty = \sigma\{X_s; s \geq 0\}$.

Remark. When $\{X_t; \mathcal{F}_t; t \ge 0\}$ has a Markov property and $\mathcal{F}_t, \mathcal{F}_t$ is right-continuous, i.e. $\mathcal{F}_t = \mathcal{F}_{t+} = \bigcap_{s>t} \mathcal{F}_t$ and complete, and X_t is a normal Markov process, then $\{X_t; \mathcal{F}_t; t \ge 0\}$ has the strong Markov property.

Normal Markov process - phase space *S* is compact, metric and separable, process has a Feller property and P_t defined by $P_t f(x) = \int f(y) P_t(x, dy) = \mathbb{E}^x f(X_t)$ acts on C(S) as a strongly continuous contraction semigroup (process is stochastically continuous).

Regular points of the process

Let $\{X_t\}_{t\geq 0}$ be a stochastic process with values in \mathbb{R}^d and $D \subseteq \mathbb{R}^d$ - a Borel subset. Define the first exit time from D:

 $\tau_D = \inf\{t > 0; X_t \notin D\}.$

Definition. The point $x \in \mathbb{R}^d$ is called regular for D when $P^x(\tau_D = 0) = 1$.

We further assume that X = W is a Wiener process in \mathbb{R}^d and $\mathcal{F}_t = \sigma\{W_s; s \leq t\}$. We note that $\{\tau_D = 0\} \in \mathcal{F}_{0+}$ so by the 0-1Blumenthal law we have either $P^x(\tau_D = 0) = 0$ or 1. The set of all regular points of the set D is denoted by D^r . When $x \in Int(D^c)$ then $x \in D^r$. When $x \in Int(D)$ then the Wiener process remains certain time in Int(D) so $Int(D) \subseteq (D^r)^c$. The only problem is to determine what is the behaviour of the process at $x \in \partial D$. Typically, the process oscilates wildly in the vicinity of the point $x \in \partial D$, hence it leaves immediately from D.

Exterior cone property

Definition. Let $V_a = \{(x_1, \ldots, x_d); x_1 > 0; |(x_2, \ldots, x_d)| < ax_1\}$. A cone V in \mathbb{R}^d is a translation and a rotation of V_a .

Let $z \in \partial D$. If there exists a cone *V* with the vertex *z* such that $V \cap B(z, r) \subseteq D^c$ for a r > 0, then *z* is regular.

Proof. Put $C = \frac{\sigma_r(V \cap \mathbb{S}_r(z))}{\sigma_r(\mathbb{S}_r(z))}$ and $B_n = B(z, r/n)$, $V_n = V \cap \mathbb{S}_{r/n}(z)$. By the rotational invariance (with respect to the starting point) of the distribution of the Wiener process, $W_{\tau_{B(x,r)}}$ is also rotationally invariant hence it is the normed spherical measure on $\mathbb{S}_r(x)$. Hence $P^x(W_{\tau_{B(x,r)}} \in V) = C$. At the same time,

$$P^{z}(\tau_{D}=0) \geq P^{z}(\limsup\{W_{\tau_{B_{n}}} \in V_{n}\}) \geq \limsup P^{z}(\{W_{\tau_{B_{n}}} \in V_{n}\})$$

so $P^{z}(\tau_{D} = 0) \ge C > 0$ thus 0 - 1 Blumenthal law implies $P^{z}(\tau_{D} = 0) = 1$.

Probabilistic solution of the Dirichlet problem

Let *D* be a bounded in \mathbb{R}^d and $f \in L^{\infty}(\partial D)$. The function $H_D f(x)$ defined by

 $H_D f(x) = \mathbb{E}^x [\tau_D < \infty; f(W_{\tau_D})]$

is harmonic in *D*. If *z* is regular and **f** - continuous at $z \in \partial D$ then $\lim_{D \ni x \to z} H_D f(x) = f(x)$

Proof of harmonicity. Let $x \in D$, $B \subset B(x, r)$. Since $\tau_B < \tau_D - P^x$ a.s. so $\tau_D = \tau_B + \tau_D \circ \theta_{\tau_B}$. Moreover, $W_{\tau_D} \circ \theta_{\tau_B} = W_{\tau_B + \tau_D \circ \theta_{\tau_B}} = W_{\tau_D}$. Let $\Psi = \mathbf{1}_{\{\tau_D < \infty\}} f(W_{\tau_D})$. It holds $\Psi \circ \theta_{\tau_B} = \Psi$ hence $\mathbb{E}^x[\Psi] = \mathbb{E}^x[\mathbb{E}^x[\Psi \circ \theta_{\tau_B} | \mathcal{F}_{\tau_B}]] = \mathbb{E}^x[\mathbb{E}^{W_{\tau_B}}[\Psi]] = \mathbb{E}^x[H_D f(W_{\tau_B})]$. Since the distribution of W_{τ_B} is the uniform normalized spherical measure, therefore $H_D f(x) = \frac{1}{r^{d-1}\omega_d} \int_{\mathbb{S}_r(x)} H_D f(y)\sigma_r(dy)$, and $H_D f$ has the mean value property in D, so it is harmonic in D.

Convergence at regular points - auxiliary lemmas

Lemma 1. If $f \in L^{\infty}(\mathbb{R}^d)$ or $f \in L^1(\mathbb{R}^d)$ then $P_t f(\cdot) \in C(\mathbb{R}^d)$ for every t > 0.

Proof. For $f \in L^{\infty}(\mathbb{R}^d)$ and $x_n \to x$ we obtain $|P_t f(x_n) - P_t f(x)| \leq ||f||_{\infty} \int_{\mathbb{R}^d} |p_t(x_n, y) - p_t(x, y)| dy$ and the integral on the left-hand side converges since $\int_{B(0,r)^c} |\dots| < \varepsilon$, for large r. We also have $\int_{B(0,r)} |\dots| \to 0$, by bounded convergence theorem. For $f \in L^1(\mathbb{R}^d)$ we again apply bounded convergence theorem. Here $p_t(x, y) = \frac{1}{(2\pi t)^{d/2}} e^{-||x-y||^2/2t}$ - the transition density of the Wiener process in \mathbb{R}^d .

Corollary. Proces X_t has both Feller and strong Feller property, i.e. $P_t : C_0(\mathbb{R}^d) \longrightarrow C_0(\mathbb{R}^d)$ and $P_t : L^{\infty}(\mathbb{R}^d) \longrightarrow C(\mathbb{R}^d)$

Convergence at regular points - auxiliary lemmas

Feller property of the process.

We show that $P_t : C_0(\mathbb{R}^d) \longrightarrow C_0(\mathbb{R}^d)$. To do this, observe that if $f \in C_0(\mathbb{R}^d)$ then for every $\varepsilon > 0$ there exists r > 0 such that $|f(y)| < \varepsilon$ if only |y| > r. Then we have

$$|P_tf(x)| \leq \varepsilon + ||f||_{\infty} \int_{B(0,r)} p(t;x,y) \, dy \, .$$

The integral on the right-hand side tends to 0 when $x \to \infty$. The property that $\lim_{t\to 0} ||P_t f - f||_{\infty} = 0$, for $f \in C_0(\mathbb{R}^d)$ follows from the uniform continuity of functions in $C_0(\mathbb{R}^d)$. This finishes the proof of the Feller property of the process.

Lemma 2. The function $x \longrightarrow \mathbb{E}^{\kappa}[\kappa \circ \theta_t]$ is continuous on \mathbb{R}^d for t > 0 and κ bounded and \mathcal{F}_{∞} -measurable.

Convergence at regular points - auxiliary lemmas

Proof. Let $f(x) = \mathbb{E}^{x}[\kappa]$. It holds $f \in L^{\infty}(\mathbb{R}^{d})$. Applying the Markov property: $\mathbb{E}^{x}[\kappa \circ \theta_{t}] = \mathbb{E}^{x}[\mathbb{E}^{x}[\kappa \circ \theta_{t}|\mathcal{F}_{t}]] = \mathbb{E}^{x}[\mathbb{E}^{W_{t}}[\kappa]] = \mathbb{E}^{x}[f(W_{t})] = P_{t}f(x) \in C(\mathbb{R}^{d})$. **Remark.** A function $\phi : \mathbb{R}^{d} \to \mathbb{R}$ is called upper semicontinuous if it is a decreasing limit of continuous functions. We have $\limsup_{x \to x_{0}} \phi(x) \leq \phi(x_{0})$.

Lemma 3. The function $\phi : x \longrightarrow P^{x}(\tau_{D} > t)$ is upper semicontinuous on \mathbb{R}^{d} for t > 0 and any D open in \mathbb{R}^{d} .

Proof. We show that $P^{x}(\tau_{D} > t) = \lim_{s \downarrow 0} \downarrow P^{x}(\tau_{D} \circ \theta_{s} > t - s)$ = $\lim_{s \downarrow 0} \mathbb{E}^{x}[\mathbf{1}_{(t-s,\infty)}(\tau_{D}) \circ \theta_{s}]$. We note that $\inf\{t > s; W_{t} \notin D\}$ = $s + \tau_{D} \circ \theta_{s}$. Let $x \in D^{r}$, i.e. $P^{x}(\tau_{D} = 0) = 1$. There exists a sequence $s_{n} \downarrow 0$ such that $W_{s_{n}} \in D^{c}$ thus for $s < s_{n}$ it holds $s + \tau_{D} \circ \theta_{s} < s_{n}$. Now, $\{s + \tau_{D} \circ \theta_{s} > t\}_{0 < s < t}$ increases in s, so

Convergence at regular points

 $\lim_{s \ge 0} \downarrow P^{x}(\tau_{D} \circ \theta_{s} > t - s) = P^{x}(0 > t) = 0 = P^{x}(\tau_{D} > t).$ Let now $x \notin D^r$, i.e. $\tau_D > 0 P^x$ a.e. For s < t it holds $\{\tau_D > s\} \supset \{\tau_D > t\}$. If $\tau_D > s$ then $\tau_D = s + \tau_D \circ \theta_s$ hence $\tau_D \circ \theta_s > t - s$. Moreover, $\tau_D \circ \theta_s > t - s$, for s < t, which with $\tau_D > s_0$, for some $s_0 < t$ ($\tau_D > 0$) yields $\tau_D > t$. This justifies our formula, hence ϕ is a decreasing limit of continuous functions (Lemma 2) - consequently, it is upper semicontinuous. **Proof of convergence at regular points.** Let z be a regular point from ∂D and let f be continuous at z. For $\varepsilon > 0$ there exists $\delta > 0$ such that for $w \in \partial D \cap B(z, \delta)$ we have $|f(w) - f(z)| < \varepsilon/2$. Put $M = ||f||_{\infty}$. Since $P^{x}(au_{B(x,\delta/2)}>0)=P^{0}(au_{B(0,\delta/2)}>0)=1$ we see that there exists s > 0 such that for every x it holds $P^{x}(\tau_{B(x,\delta/2)} \leq s) < \varepsilon/8M$. By Lemma 3 lim sup, $P^{x}(\tau_{D} > s) \leq P^{z}(\tau_{D} > s) = 0$. Thus, there exists $\delta' > 0$ such that if $|x - z| < \delta'$ then $P^{x}(\tau_{D} > s) < \varepsilon/8M$.

Convergence at regular points

Moreover, $P^{x}(\tau_{B(x,\delta/2)} \leq \tau_{D}) \leq P^{x}(\tau_{B(x,\delta/2)} \leq s) + P^{x}(\tau_{D} > s)$. Therefore, when $|x - z| < \delta/2$ to $\tau_{B(x,\delta/2)} \leq \tau_{B(z,\delta)}$ then $P^{x}(\tau_{B(z,\delta)} \leq \tau_{D}) \leq P^{x}(\tau_{B(x,\delta/2)} \leq \tau_{D}) \leq \varepsilon/8M + \varepsilon/8M = \varepsilon/4M$. If $x \in \overline{D}$ and $|x - z| < \delta' \land (\delta/2)$ we obtain $\mathbb{E}^{x}[\tau_{D} < \infty; |f(X_{\tau_{D}}) - f(z)|] \leq$ $P^{x}(\tau_{D} < \tau_{B(z,\delta)})\varepsilon/2 + P^{x}(\tau_{B(z,\delta)} \leq \tau_{D})2M \leq \varepsilon/2 + (\varepsilon/4M)2M$ and this concludes the proof. As an application, for the solution $u_{1,0}$ of the Dirichlet problem with boundary values $f \equiv 1$ on $\mathbb{S}_{\delta}(0)$ and $f \equiv 0$ on $\mathbb{S}_{R}(0)$ we

obtain

• (i)
$$u_{1,0}(x) = \frac{\ln R - \ln ||x||}{\ln R - \ln \delta}$$
, $x \in \overline{D}$, for $d = 2$,
• (ii) $u_{1,0}(x) = \frac{||x||^{2-d} - R^{2-d}}{\delta^{2-d} - R^{2-d}}$, $x \in \overline{D}$, for $d \ge 3$.

Recurrence and transitivity of the Wiener process

From the uniqueness of the solution of Dirichlet problem, we obtain $u_{1,0}(x) = P^x(||W_{\tau_D}|| = \delta) = P^x(W_t \text{ hits } \mathbb{S}_{\delta} \text{ before hitting } \mathbb{S}_R)$. Fix $\delta > 0$ and let $R \to \infty$. For \mathbb{R}^2 (case (i)): $\lim_{R\to\infty} u_{1,0}(x) = 1$. When $d \ge 3$ (case (ii)): $\lim_{R\to\infty} u_{1,0}(x) = (\delta/||x||)^{d-2}$. Hence

• d = 2: $P^{\mathsf{x}}(W_t \text{ hits } \mathbb{S}_{\delta} \text{ , for some } t > 0) = 1.$

• $d \geqslant 3$: $P^{x}(W_t \text{ hits } \mathbb{S}_{\delta}$, for some $t > 0) = (\delta/||x||)^{d-2}$.

Let now d = 2, R > 0 and $\delta \to 0$. We obtain $\lim_{\delta \to 0} u_{1,0}(x) = 0$. so $P^{x}(W_{t} \text{ hits } 0) = 0$. We repeat the same arguments for every translation of D so we obtain

Two-dimensional Wiener process, starting from x, 1 does not hit any fixed point $y \neq x$, almost surely.

Killed process

Let X_t be a Markov process with the transition density function p(t; x, y). Define the first exit time from the set D:

$$\tau_D = \inf\{t > 0: X(t) \notin D\}$$

and the process killed at the time of first exit from D:

$$X_D(t) = \left\{egin{array}{cc} X(t), & ext{gdy } 0 \leqslant t < au_D, \ \partial, & ext{gdy } t \geqslant au_D. \end{array}
ight.$$

where ∂ is a "cemetery" – a certain, isolated state of the space of the values of the process X. Its transition function is of the form

$${\sf P}^D_t(x,A)={\sf P}^D(t;x,A)={\sf P}^x(t< au_D;X_t\in A),\ t>0,\ x\in D,\ ;$$

and its transition density (if X has one) is given by

Hunt's Formula

$$p^D(t;x,y) = p(t;x,y) - \mathbb{E}^x[au_D < t; p(t- au_D;X_{ au_D},y)].$$

Basic properties of killed process

Justification of the Hunt's Formula

For a bounded Borel function f we obtain

$$\int_{D} \mathbb{E}^{x}[\tau_{D} < t; p(t - \tau_{D}; X_{\tau_{D}}, y)] f(y) dy$$

$$= \mathbb{E}^{x}[\tau_{D} < t; \int_{D} p(t - \tau_{D}; X_{\tau_{D}}, y) f(y) dy]$$

$$= \mathbb{E}^{x}[\tau_{D} < t; \mathbb{E}^{X_{\tau_{D}}}[f(X_{s})]|_{s=t-\tau_{D}}]$$

$$= \mathbb{E}^{x}[\mathbb{E}^{x}[\tau_{D} < t; f(X_{s+\tau_{D}})|\mathcal{F}_{\tau_{D}}]|_{s=t-\tau_{D}}]$$

$$= \mathbb{E}^{x}[\mathbb{E}^{x}[\tau_{D} < t; f(X_{t})|\mathcal{F}_{\tau_{D}}]] = \mathbb{E}^{x}[\tau_{D} < t; f(X_{t})].$$

Subtracting from the first part of the formula, with f(y) integrated over D, we obtain

$$\mathbb{E}^{ imes}[f(X_t)] - \mathbb{E}^{ imes}[au_D < t; f(X_t)] = \mathbb{E}^{ imes}[t < au_D; f(X_t)]$$

Feller properties of killed process

Theorem. For regular *D* the killed process has Feller and strong Feller property

Semigroup, Feller and strong Feller properties. For $f \in L^{\infty}(D)$ and 0 < s < t

$$P_t^D f(x) = \mathbb{E}^x [s < \tau_D; \mathbb{E}^{X_s} [t - s < \tau_D; f(X_{t-s})]] \\ = P_s^D P_{t-s}^D f(x) = \mathbb{E}^x [s < \tau_D; \phi_{t-s}(X_s)] = P_s^D \phi_{t-s}(x),$$

where $\phi_s(x) = \mathbb{E}^x[s < \tau_D; f(X_s)]]$. This proves the semigroup property of P_t^D . Furthermore, $P_s\phi_{t-s} \in C_b(\mathbb{R}^d)$ and

$$|P_s\phi_{t-s}(x)-P_t^Df(x)|=|P_s\phi_{t-s}(x)-P_s^D\phi_{t-s}(x)|\leqslant P^x(\tau_D\leqslant s)\,||f||_{\infty}\,.$$

We show that $P^{x}(\tau_{D} \leq s)$ converges uniformly to zero, as $s \to 0$, on any compact subset of D. This will show that $P_{t}^{D}f$ is continuous in D, so $P_{t}^{D}f \in C_{b}(D)$.

Feller property of killed process

 $P^{x}(\tau_{D} \leq s)$ converges uniformly to zero, as $s \rightarrow 0$, on any compact subset of D.

Indeed, for $x \in D$ and small r > 0 we have $\tau_{B(x,r)} \leq \tau_D$ hence $\{\tau_D \leq s\} \subseteq \{\tau_{B(x,r)} \leq s\}$ and we obtain, as $s \to 0$,

$$egin{aligned} & P^x(au_D\leqslant s)\leqslant P^x(au_{B(x,r)}\leqslant s) \ &= & P^0(au_{B(0,r)}\leqslant s) o 0\,. \end{aligned}$$

By compactness arguments, we obtain the conclusion. Now, by lower semicontinuity of $x \to P^x(\tau_D > t)$ we obtain for any $z \in \partial D$

$$\begin{split} \limsup_{x \to z} P_t^D f(x) | &\leq ||f||_{\infty} \limsup_{x \to z} P_t^x(\tau_D > t) \\ &\leq ||f||_{\infty} P_t^z(\tau_D > t) \end{split}$$

and the last expression is 0 if z is regular. This, along with the strong continuity of the semigroup, proves the Feller property.

Killed process

Stopping or killing the process

- $\tau_D = \inf\{t > 0 : X(t) \notin D\}$ first exit time (from D)
- $X_{\tau_D \wedge t}$ stopped process (when exiting from *D*)
- $X_t, t < \tau_D$ killed process (when exiting from D)

The simplest (conceptually) object - first exit time τ_D . The most widely used object - X_{τ_D} - the stopped process (at the first hitting time). The density of distribution of X_{τ_D} - called Poisson kernel of the set D - provides the solution of the Dirichlet problem. Killed process - very difficult to investigate.

The Hunt's formula indicates that if we know the distribution of (τ_D, X_{τ_D}) then we are able to determine the transition density of the killed process. The basic example - Brownian motion and D - a halfspace . The starting point – reflection principle for Brownian motion.

Reflection Principle for Brownian motion

Let $W = (W_t)_{t \ge 0}$ be a Brownian motion in \mathbb{R}^1 (starting from 0) and τ - a stopping time with respect to W. Put

$$\rho_{\tau} W_t = \begin{cases} W_t, & t \leq \tau, \\ 2W\tau - W_t, & t > \tau. \end{cases}$$

Reflection Principle: $\rho_{\tau} W_t$ is a Brownian motion

Corollary.
$$P(\max_{s \leqslant t} W_s > a) = 2P(W_t > a) = P(|W_t| > a)$$

Remark. We apply Reflection Principle to compute the distribution of the first exit time from the halfspace (a, ∞) , where a > 0 and the process starts from 0. We denote $\tau_a := \tau_{(a,\infty)}$.

Potential theory and Brownian motion

Density function of distribution of τ_a

We have

$$\{\max_{s\leqslant t}W_t>a\}=\{\tau_a\leqslant t\}$$

We compute the density function of the random variable τ_a :

$$\frac{d}{dt}P\{\tau_a \leqslant t\} = \frac{d}{dt}P\{\max_{s\leqslant t} W_t > a\} =$$

$$\frac{d}{dt}\left[\sqrt{\frac{2}{\pi t}}\int_a^\infty e^{-x^2/2t}dx\right] = -\frac{1}{2}\sqrt{\frac{2}{\pi t^3}}\int_a^\infty e^{-x^2/2t}dx +$$

$$\sqrt{\frac{2}{\pi t}}\int_a^\infty \frac{x^2}{2t^2}e^{-x^2/2t}dx \xrightarrow{\text{int.byparts}} \frac{a}{\sqrt{2\pi t^3}}e^{-a^2/2t}$$

Laplace transform of τ_a

$$\mathbb{E}[e^{-\lambda^{2}\tau_{a}}] = \frac{a}{\sqrt{2\pi}} \int_{0}^{\infty} e^{-\lambda^{2}u} e^{-a^{2}/2u} u^{-3/2} du$$
$$= \frac{a}{\sqrt{2\pi}} 2\left(\frac{a^{2}}{2\lambda^{2}}\right)^{-1/4} \mathbf{K}_{-1/2}(\sqrt{2}\lambda a)$$
$$= \frac{a}{\sqrt{2\pi}} 2\sqrt{\frac{\sqrt{2}\lambda}{a}} \sqrt{\frac{\pi}{2\sqrt{2}a\lambda}} e^{-\sqrt{2}\lambda a} = e^{-\sqrt{2}\lambda a}$$

where \textbf{K}_{ϑ} - the modified Bessel function of second kind:

$$\int_{0}^{\infty} e^{-au} e^{-b/u} u^{
u-1} du = 2(b/a)^{
u/2} \mathbf{K}_{
u}(2\sqrt{ab})$$

Moreover, $\mathbf{K}_{-1/2}(x) = \mathbf{K}_{1/2}(x) = \sqrt{\frac{\pi}{2x}}e^{-x}$.

Transition density of the killed process

The most fundamental object in potential theory - transition probability P^D of the process $X_D(t)$ killed at the first exit time from the set D: for $x, y \in D$ we put

$$P^D(x; A) = P^x[t < \tau_D; X_t \in A].$$

When X has the transition density p(t; x, y) then the transition density of the killed process can be expressed by the formula:

$$p^D(t;x,y) = p(t;x,y) - \mathbb{E}^x[au_D < t; p(t- au_D;X_{ au_D},y)].$$

Kelvin's symmetry principle gives us $p^D(t; x, y)$ for halfspace $D = H = \{x \in \mathbb{R}^d : x_d > 0\}$. For $y = (y_1, ..., y_{d-1}, y_d) \in H$ put $y^* = (y_1, ..., y_{d-1}, -y_d)$.

We then obtain

$$p^{D}(t; x, y) = p(t; x, y) - p(t; x, y^{*}).$$

Transition density of the killed process (optional)

As an exercise we compute $p^D(t; x, y)$ directly from Hunt's formula. The time τ_D is determined by the last coordinate of the process; consequently, it does not depend on the first (d-1) coordinates of the process. Now, $y \to \tilde{y}$ denotes the projection onto first (d-1) coordinates. We thus obtain

$$\mathbb{E}^{x}[\tau_{D} < t; p(t - \tau_{D}; X_{\tau_{D}}, y)]$$

$$= \mathbb{E}^{x}\left[\int_{0}^{t} \frac{x e^{-x^{2}/2s}}{\sqrt{2\pi s^{3}}} p(t - s, (\tilde{X}_{s}, 0), y) ds\right]$$

$$= \int_{\mathbb{R}^{d-1}} \int_{0}^{t} \frac{x e^{-x^{2}/2s}}{\sqrt{2\pi s^{3}}} \frac{e^{-|z - \tilde{x}|^{2}/2s}}{(2\pi s)^{(d-1)/2}} \frac{e^{-(|z - \tilde{y}|^{2} + y_{d}^{2})/2(t - s)}}{(2\pi (t - s))^{d/2}} ds dz$$

$$= \int_{0}^{t} \frac{x e^{-x^{2}/2s}}{\sqrt{2\pi s^{3}}} \frac{e^{-y_{d}^{2}/2(t - s)}}{\sqrt{2\pi (t - s)}}$$

$$\left\{\int_{\mathbb{R}^{d-1}} \frac{e^{-|z - \tilde{x}|^{2}/2s}}{(2\pi s)^{(d-1)/2}} \frac{e^{-|z - \tilde{y}|^{2}/2(t - s)}}{(2\pi (t - s))^{(d-1)/2}} dz \right\} ds .$$

$$Tomas Byckowski IMPAN$$

Transition density of the killed process (optional)

Now, the expression in parentheses is the convolution of two (d-1)-dimensional Gaussian densities hence is equal to

$$\frac{e^{-|\tilde{x}-\tilde{y}|^2/2t}}{(2\pi t)^{(d-1)/2}}$$

To compute the remaining expression

$$\int_0^t \frac{x \, e^{-x^2/2s}}{\sqrt{2\pi s^3}} \, \frac{e^{-y_d^2/2(t-s)}}{\sqrt{2\pi(t-s)}} \, ds$$

we take the Laplace transform and, after changing order of integration and variables we obtain

$$\int_0^\infty \frac{x \, e^{-x^2/2s}}{\sqrt{2\pi s^3}} \, e^{-\lambda \, s} \, ds \int_0^\infty e^{-\lambda \, u} \, \frac{e^{-y_d^2/2u}}{\sqrt{2\pi u}} \, du$$

Transition density of the killed process (optional)

The last expression can be expressed in terms of modified Bessel function $\mathbf{K}_{1/2}$ of the second order as follows

$$\frac{2}{\sqrt{2\pi}} \left(\frac{y_d^2}{2\lambda}\right)^{1/4} \mathbf{K}_{1/2}(\sqrt{2\lambda} \, y_d) = \frac{e^{-\sqrt{2\lambda} \, y_d}}{\sqrt{2\lambda}}$$

while the first one is of the form

$$\frac{2x_d}{\sqrt{2\pi}} \left(\frac{x_d^2}{2\lambda}\right)^{-1/4} \mathbf{K}_{-1/2}(\sqrt{2\lambda}x_d) = e^{-\sqrt{2\lambda}y_d}$$

Hence, after multiplication we obtain

$$\frac{e^{-\sqrt{2\lambda}(x_d+y_d)}}{\sqrt{2\lambda}} = \mathcal{L}\left(\frac{e^{-(x_d+y_d)^2/2t}}{\sqrt{2\pi t}}\right)$$

Thus, the whole expression is of the form $(2\pi t)^{-d/2} e^{-|x-y^*|^2/2t}$ where $y^* = (y_1, y_2, ..., y_{d-1}, -y_d)$.

Green function and Poisson kernel

Poisson kernel and **Green function** of the set *D* have simple explanations in terms of the process killed or stopped when exiting *D*:

$$P_D(x,y) = P^x \left(X_{\tau_D} \in dy \right)$$

the density of the distribution of hitting the boundary of the set D;

$$G_D(x,y) = \int_0^\infty p^D(t;x,y) \, dt$$

", density" of occupying time of the process at y.

Green operator

For bounded Borel functions $f : \mathbb{R}^d \to \mathbb{R}$ and domain D put **Green operator**:

$$G_D f(x) = \mathbb{E}^x \left(\int_0^{\tau_D} f(X_t) \, dt \right).$$

• Green function is the kernel of this operator:

$$G_D f(x) = \int_D G_D(x, y) f(y) \, dy.$$

• In particular, when $f = 1_A$, we obtain

$$G_D 1_A(x) = \mathbb{E}^x \left[\int_0^{ au_D} 1_A(X_t) dt
ight] = \int_D G_D(x, y) 1_A(y) dy$$

is the mean occupying time of the process, starting from x, within the set A.

Properties of Green function

For $d \ge 3$ we have

$$\mathcal{G}_D(x,y) = \mathcal{U}_2(x,y) - \mathbb{E}^x[au_D < \infty; \mathcal{U}_2(X_{ au_D},y)]\,.$$

Indeed, denote

$$r^{D}(t; x, y) = \mathbb{E}^{\times}[\tau_{D} < t; p(t - \tau_{D}; X_{\tau_{D}}, y);].$$

We obtain, for $x \neq y$,

$$\int_0^\infty r^D(t;x,y)\,dt = \mathbb{E}^x[\tau_D < \infty; \int_0^\infty p(u;X_{\tau_D},y)\,du]\,.$$

which justifies the formula, if we show that this expression is finite. Putting $\delta = \rho(y, \partial D)$ we obtain

$$\mathbb{E}^{\times}[\tau_D < \infty; U(X_{\tau_D}, y)] \leqslant U(\delta) < \infty$$
.

For d = 1, 2 the corresponding formulas are also valid but in terms of compensated potentials instead.

Potential operator

When $D = \mathbb{R}^d$, $d \ge 3$, computing as before, we obtain the **potential operator** and the **potential function**:

$$U_2f(x)=\int_0^\infty \mathbb{E}^x[f(X_t)]\,dt.$$

• Potential function is the kernel of this operator:

$$U_2f(x)=\int_{\mathbb{R}^d}U_2(x,y)\,f(y)\,dy.$$

• We obtain

۲

$$U_2(x,y) = \int_0^\infty \frac{1}{(2 \pi t)^{d/2}} e^{-|x-y|^2/2t} dt = \frac{1}{2 \pi^{d/2}} \frac{\Gamma(d/2-1)}{|x-y|d-2}.$$

In this way, we obtained the same object as at the beginning, thus exemplifying the connection between analytical and probabilistic theories. For d = 1, 2 analogous formulas are valid, but with different proofs.

Brownian motion: $\mathfrak{U}f = \frac{1}{2}f''$ on $\mathfrak{D}_{\mathfrak{U}} = C^{(2)}$

Generator of Brownian motion.

$$\begin{split} S &= \mathbf{R}^*, \ P_t(x, E) = \frac{1}{\sqrt{2\pi t}} \int_{E-x} e^{-y^2/2t} dy, \ P_t(\infty, \infty) = 1. \ \text{We have} \\ P_t f(x) &= \frac{1}{\sqrt{2\pi t}} \int f(y) e^{-(y-x)^2/2t} dy, \ f \ \text{-bounded Borel. If} \ f \in C^{(2)} \\ \text{then } \frac{1}{t} [T_t f(x) - f(x)] &= \frac{1}{\sqrt{2\pi t}} \int e^{-y^2/2t} \frac{f(x+y) - f(x) - f'(x) y}{t} dy = \\ \frac{1}{\sqrt{2\pi t}} \int e^{-y^2/2t} \frac{f''(x+\theta y)}{2t} y^2 dy &= \frac{1}{2\sqrt{2\pi t}} \int e^{-u^2/2} f''(x+\theta u \sqrt{t}) u^2 du \\ &\to \frac{1}{2} f''(x), \ \text{for every } x, \ \text{when } t \to 0. \ \text{We thus have} \ f \in C^{(2)} \subseteq \mathfrak{D}_{\mathfrak{U}} \\ \text{and } \mathfrak{U} f &= \frac{1}{2} f'' \ \text{on } C^{(2)}. \ \text{Furthermore, } \mathfrak{D}_{\mathfrak{U}} = C^{(2)}. \end{split}$$

For
$$g \in C$$
, we solve in $f: \lambda f - \frac{1}{2}f'' = g$. We obtain
 $f(x) = \Re_{\lambda}g(x) = \frac{1}{\sqrt{2\pi}} \int [\int_0^{\infty} e^{-\lambda t} e^{-(y-x)^2/2t} t^{-1/2} dt]g(y) dy = \frac{1}{\sqrt{2\lambda}} \int g(y) e^{-\sqrt{2\lambda}|x-y|} dy$, since $\int_0^{\infty} e^{-au} e^{-b/u} u^{\nu-1} du = 2(b/a)^{\nu/2} \mathbf{K}_{\nu}(2\sqrt{ab})$ (modified Bessel function of 2-nd order), and we have $\mathbf{K}_{\frac{1}{2}}(x) = \sqrt{\frac{\pi}{2x}} e^{-x}$. $f \in C^{(2)}$, it solves $\lambda f - f''/2 = g$.

Tomasz Byczkowski, IMPAN

Potential theory and Brownian motion

Fundamental solution of $\frac{1}{2}\Delta = \delta_0$

For $f \in C_c(\mathbb{R}^d)$ the following holds

$$\frac{1}{2}\Delta U_2f(x)=-f(x).$$

Proof. We obtain

$$P_t U_2 f(x) = \mathbb{E}^x \left[\int_0^\infty \mathbb{E}^{X_t} [f(X_s)] ds \right]$$

=
$$\int_0^\infty \mathbb{E}^x \left[\mathbb{E}^{X_t} [f(X_s)] \right] ds = \int_0^\infty \mathbb{E}^x [f(X_{t+s})] ds$$

=
$$\int_t^\infty \mathbb{E}^x [f(X_u)] du.$$

We thus have obtained

$$P_t U_2 f(x) - U_2 f(x) = -\int_0^t \mathbb{E}^x [f(X_u)] du$$
.

After dividing by t, we obtain the conclusion when $t \rightarrow 0$.

 $\Delta(\overline{G_D}\phi) = -2\phi$ for $\phi \in \overline{C_c}(D)$

We use the following representation of the Green function

$$G_D(x,y) = U_2(x,y) - \mathbb{E}^x[\tau_D < \infty; U_2(X_{\tau_D},y)].$$

From the previous result we obtain

$$\Delta U_2\phi(x)=-2\phi(x).$$

However, the second term in the representation of G_D , acting on ϕ , gives the harmonic function so the result follows. If $\phi \in C_c^{\infty}(D)$ then $G_D \phi \in C_c^{\infty}(D)$ and we also have

$$G_D(\Delta\phi) = -2\phi$$
.

For d = 1 and d = 2 additional assumptions are required, e.g. boundedness of the domain D.

Bibliography

- **1.** R. Bass, Probabilistic Techniques in Analysis, Springer-Verlag, 1995, New York.
- **2.** R. M. Blumenthal and R. K. Getoor, Markov Processes and Potential Theory, Springer-Verlag, 1968, New York.
- **3.** K. L. Chung and Z. Zhao, From Brownian motion to
- Schrödinger's equation, Springer-Verlag, 1995, New York.
- **4.** W. K. Hayman and P. B. Kennedy, Subharmonic Functions, Vol. I, 1976, Academic Press, London, New York.
- **5.** G. A. Hunt, Some Theorems Concerning Brownian Motion, Trans. Amer. Math. Soc., 81, 1956, 294-319.
- **6.** G. A. Hunt, Markov Processes and Potentials I and II, Illinois J. of Math. 1, 1957, 44-93 and 316-369; Illinois J. of Math. 2, 1958, 151-213.