Potential theory of subordinated Brownian motions

Tomasz Byczkowski, IMPAN

SSDNM

Lectures No 1, 2: Classical potential theory versus Brownian motion I: Elementary theory

Wrocław, October 3 and 17, 2013

Beginning of potential theory

- **Newton** (1687): Law of universal gravitation, study of $F(x)$ force acting on a unit mass at $x \in \mathbb{R}^d$, $d \geqslant 3$.
- **Lagrange** (1773): The above vector field (of forces) is **a** \boldsymbol{g} radient of a certain function $U := U_2(\mathsf{x}) = \mathcal{A}_{d,2}|\mathsf{x}|^{2-d}$.
- **Green** (1828) named U **potential function**.
- **Gauss** (1840) named U **potential**.
- **Gauss**: **potential method** is suitable to resolve many complicated problems **of mathematical physics**, not only problems of gravitation or electrostatics.

More generally: for a field generated by a charge located according to a measure μ we define a **potential** of μ :

$$
U_2\mu(x) = A_{d,2} \int_{\mathbf{R}^d} |x-y|^{2-d} d\mu(y), \quad A_{d,2} = \frac{\Gamma(d/2-1)}{2\pi^{d/2}}.
$$

Harmonicity of potentials

Physically, $U_2(x)$ corresponds to the potential at the point x generated by the unit charge placed at the point $0 \in \mathbb{R}^d$. By a direct differentiation we check that the function $U_2(x - y)$ is $\textsf{harmonic} \text{ for } x \in \mathbb{R}^d \setminus \{y\},$ i.e. it satisfies the Laplace equation:

$$
\Delta_x U_2(x-y)=0, \quad x\neq y,
$$

where $\Delta = \sum_{i=1}^{d} \partial_i^2$.

More generally, $U_2\mu(x)$, potential of a measure μ , is harmonic outside the support of *µ*.

The same (Laplace) equation is satisfied by a stabilized temperature $T(x)$ of the body D with no inner heat sources, when heated only by the surface. To determine the temperature of the body requires to solve **the Dirichlet problem**.

Radial harmonic functions

Radial harmonic functions on $\mathbb{R}^d \setminus \{0\}$, $d \geqslant 1$, (depending only on *|*x*|*) are of the form

$$
C_1|x| + C_2 \quad \text{in } \mathbb{R}^1,
$$

\n
$$
C_1 \ln |x| + C_2 \quad \text{in } \mathbb{R}^2,
$$

\n
$$
C_1 |x|^{2-d} + C_2 \quad \text{in } \mathbb{R}^d, d \ge 3.
$$

To justify this statement, we write the Laplace equation for the function $h(r)$, where $r = |x|$. By a direct differentiation, we obtain

$$
\frac{d^2h}{dr^2} + \frac{d-1}{r}\frac{dh}{dr} = 0
$$

Solving this differential equation, we obtain the conclusion.

Equivalent definitions of harmonicity

Let D be a domain (i.e. connected open subset) in \mathbb{R}^d , $d\geqslant 1$. A Borel function f , defined on \mathbb{R}^d is called **harmonic** on D if $f \in C^2(D)$ and $\Delta f \equiv 0$ on D .

Equivalent definition:

A Borel function f on \mathbb{R}^d , $|f|<\infty$, is harmonic on a domain D iff it satisfies **mean value property** on D; that is for every ball B(x*,*r) *⊂⊂* D we have

$$
f(x) = \int_{S(x,r)} f(y) \, \sigma_r(dy) = \int_{S(0,1)} f(x+ry) \, \sigma_1(dy).
$$

Here σ_r is the (normalized) uniform surface measure on the sphere $S(x, r) = \partial B(x, r)$; analogously σ_1 - on the unit sphere $S(0, 1)$.

Remark: spherical integration over $S(x, r)$ can be replaced by integration over $B(x, r)$ with respect to the Lebesgue measure.

Basic properties of harmonic functions

- **Maximum Principle.** Let f be harmonic in a domain D *⊂* R d and continuous in \overline{D} . Then either $f(x) < \sup_{u \in D} f(u)$, for $x \in D$, or $f(x) \equiv const.$ over the whole set D;
- **Harnack Inequality.** Let f be a positive harmonic in a domain $D \subset \mathbb{R}^d$. Then for every compact subset $K \subset D$ there is a constant $C > 0$ such that for every $x_1, x_2 \in K$ we have

$$
C^{-1} f(x_1) \leqslant f(x_2) \leqslant C f(x_1).
$$

• Harnack Theorem. Let f_n be an increasing sequence of harmonic functions in a domain $D\subset \mathbb{R}^d.$ Then either f_n is convergent to a harmonic function on D, uniformly on compact subsets of D, or f_n is everywhere divergent to $+\infty$ on D.

Dirichlet Problem (1850)

 D – domain in \mathbb{R}^d ,

ϕ - continuous function on *∂*D (boundary of D).

Problem: Find a function $f: D \to \mathbb{R}^d$ which

is harmonic in the domain D, that is, for x *∈* D it satisfies

$$
\Delta f(x) = \sum_{i=1}^d \frac{\partial^2 f(x)}{\partial x_i^2} = 0,
$$

- **•** f is continuous on \overline{D} and such that $f|_{\partial D} = \varphi$.
- Solution (if it exists) is unique Maximum principle!
- **•** Remark: not for all domains such a function exists.

Solution of the Dirichlet Problem

If the boundary of the set D is "smooth", then there exists a function of two variables $G_D(x, y)$ such that **the solution** $f(x)$ can be expressed in the form

$$
f(x) = \int_{\partial D} \varphi(y) \, \frac{\partial G_D(x, y)}{\partial \vec{n}_y} \, d\sigma(y),
$$

- $G_D(x, y)$ is the Green function of the set D,
- \vec{n}_v is **normal vector** at the point y of the boundary,
- *σ* is **the normalized surface measure** on *∂*D.
- **o** function

٥

$$
P_D(x,y) = \frac{\partial G_D(x,y)}{\partial \vec{n}_y}
$$

is **the Poisson kernel** of the set D.

Properties of Green function

A function $\mathsf{G}_{\!D}(x,y)$ defined on $\overline{D}\times D$, for a domain $D\subset \mathbb{R}^d$ is called **the Green function of** D if it satisfies

- \bullet $G_D(\cdot, y)$ is harmonic on $D \setminus \{y\},\$
- **•** $G_D(\cdot, y)$ is continuous on $\overline{D} \setminus \{y\}$ and vanishes on ∂D ,

• $G_D(\cdot, y) - U_2(\cdot, y)$ remains harmonic at the point $\{y\}$. Remark. If the Green function for a domain D exists, it is unique. Indeed, for a fixed y *∈* D the function

$$
w_y(x) = G_D(x,y) - U_2(x,y)
$$

is a solution of the Dirichlet problem

$$
\Delta w_y = 0
$$
 in *D*, $w_y(x) = U_2(x, y)$ in ∂D .

Physically, $G_D(x, y)$ is the potential at the point x generated by the unit charge placed at y *∈* D and the charge on the grounded (potential 0) conducting surface *∂*D.

Potentials, case $D = \mathbb{R}^d$

When $d \geqslant 3$, then **the Green function** of the whole space (traditionally called **potential** and denoted by U) is given by the formula

$$
U(x,y) = \frac{\Gamma(\frac{d-2}{2})/2\pi^{d/2}}{|x-y|^{d-2}}.
$$

When
$$
d = 2
$$
 potential $U(x, y) = -\frac{1}{\pi} \log |x - y|$.

When $d = 1$ **potential** $U(x, y) = -|x - y|$.

Green function - halfspace

Green function and **Poisson kernel** are expressed by explicit formulas also for D being a **halfspace** or a **ball** in \mathbb{R}^d . Let $D = H$, $H = \{x \in R^d \,:\, x_d > 0\}$. For $y = (y_1, ..., y_{d-1}, y_d) \in H$ put *y*^{*} = (*y*₁*, .., y*_{d−1}*, −y*_d) (symmetry with respect {*y*_d = 0}).

Green function of halfspace: for $x, y \in H$ and $d \geqslant 3$

$$
f_{\rm{max}}
$$

 \bullet

$$
G_H(x,y) = \frac{\Gamma(\frac{d-2}{2})}{2\pi^{d/2}} \left(\frac{1}{|x-y|^{d-2}} - \frac{1}{|x-y^*|^{d-2}} \right)
$$

We subtract another unit charge placed at such a point that the resulting potential at *∂*H is 0. The same apply to the case of a ball. We check that $G_H(x, y)$ is harmonic for $x \in H \setminus \{y\}$, vanishes at ∂H and $G_H(x,y) - \frac{\Gamma(\frac{d-2}{2})}{2\pi^{d/2}}$ 2*π*d*/*² 1 *|*x*−*y*|* d*−*2 is harmonic for all x *∈* H.

.

Green function for $D = B(0, 1)$

If $y \in B(0,1)$, $y \neq 0$, put $y^* = y/|y|^2$ - inversion with respect to sphere $\{|x| = 1\}$. We have $|y|/|y^*| = 1$ and $y/|y| = y^*/|y^*|$.

Green function of $B(0,1)$: for $x, y \in B(0,1)$, $y \neq 0$, and $d \geq 3$ \bullet

$$
G_{B(0,1)}(x,y)=\frac{\Gamma(\frac{d-2}{2})}{2\pi^{d/2}}\left(\frac{1}{|x-y|^{d-2}}-\frac{1}{|y|^{d-2}|x-y^*|^{d-2}}\right).
$$

 $\mathsf{W} \in \mathsf{put} \ G_{B(0,1)}(x,0) = \Gamma(\frac{d-2}{2})/2\pi^{d/2}(|x|^{2-d}-1)$. We have $|y|^2 |x-y^*|^2 = |y|^2 |x|^2 - 2\overline{(x,y^*/|y^*|)} |y^*||y|^2 + |y|^2 |y^*|^2 =$ $|y|^2|x|^2 - 2(x,y/|y|)|y|^2|y^*| + |y|^2|y^*|^2 = |y|^2|x|^2 - 2(x,y) + 1.$ $\mathsf{Hence},\ \mathsf{lim}_{0\neq \mathsf{y}\to 0}\ \mathsf{G}_{\mathsf{B}(0,1)}(\mathsf{x},\mathsf{y})=\mathsf{G}_{\mathsf{B}(0,1)}(\mathsf{x},0)\ \mathsf{for}\ \mathsf{x}\in \mathsf{B}(0,1) \ \mathsf{at}$ $y=0$ and $G_{B(0,1)}(x,y)=0,$ for $\vert x\vert=1.$ It also satisfies all the remaining conditions.

Properties of Poisson kernel

A positive and continuous function function $K(x, y)$ defined on D *× ∂*D, for a domain D *⊂* R d , is called **the Poisson kernel for** D if it satisfies

- K(*·,* z) is harmonic in D, for every z *∈ ∂*D,
- $\int_{\partial D} K(x, z) \sigma(dz) = 1$, for every $x \in D$,
- $\lim_{D\ni x\to w}\int_{\partial D\cap B(w,\delta)^c} K(x,z)\,\sigma(dz)=0,$ for every $w\in\partial D$ and $\delta > 0$

Here *σ* denotes the normalized surface measure on *∂*D.

Remark. If the Poisson kernel for a domain D exists, it is unique (again, it is the unique solution of of the Dirichlet problem with the given boundary condition). If the Poisson kernel for a bounded domain D exists, then the solution of the Dirichlet problem with a boundary value f *∈* C(*∂*D) can be expressed by

$$
f(x) = \int_{\partial D} K(x, z) f(z) \sigma(dz).
$$

Poisson kernel

 \bullet

For
$$
x = (x_1, ..., x_d)
$$
 put $\tilde{x} = (x_1, ..., x_{d-1})$.

For x *∈* H*,* y *∈ ∂*H we have the formula for Poisson kernel for H:

$$
P_H(x, y) = \frac{\Gamma(d/2)}{\pi^{d/2}} \frac{x_d}{(x_d^2 + |\tilde{y} - \tilde{x}|^2)^{\frac{d}{2}}}
$$

.

• When $d = 2$, then $P_H(x, y)$ is the density of the Cauchy distribution on the line $\{(x, y) : y = 0\}$.

For **a ball** $B := B(0, r)$ in \mathbb{R}^d , $d \geq 1$, **Poisson kernel** is determined by the formula:

For $x \in B(0, r)$ and $z \in \partial B(0, r)$, i.e. $|z| = r$ we obtain

$$
P_B(x, z) = \frac{\Gamma(d/2)}{\pi^{d/2} r} \frac{r^2 - |x|^2}{|x - z|^d}.
$$

Solution of the Dirichlet problem in a ball

The explicit formula for the Poisson kernel in a ball gives us the possibility of write down the form of the solution for the Dirichlet problem.

Solution of the Dirichlet problem in $B(x_0, r)$ with the boundary value f is given by the formula:

$$
u(y) = \int_{\partial B(x_0,r)} f(x) \frac{r^2 - |y - x_0|^2}{r|y - x|^d} d\sigma(x),
$$

where σ is the normed uniform surface measure on $\partial B(x_0, r)$, and f is defined and continuous on *∂*B(x0*,*r).

A direct consequence of the above formula is the Harnack Inequality and Harnack Theorem for a ball and, consequently, for compact subsets.

Brownian motion and the Dirichlet problem

In 40-ties of XX century **S.Kakutani**, and in 50-ties **J.L.Doob** explained how to solve **the Dirichlet problem** in terms of **Brownian motion** . Foundations of the contemporary potential theory of Markov processes are due to **G.Hunt** (1957, 1958).

let $W(t)$ be the Brownian motion starting from \mathbb{R}^d and let D be a (regular) domain in \mathbb{R}^d . Assume that Brownian motion starts from the point x *∈* D and put

- $\tau_D = \inf\{t > 0: W_t \notin D\}$ the first exit time from the set D.
- **•** Function

$$
f(x) = \mathbb{E}^x\left(\varphi(W_{\tau_D})\right)
$$

is the solution of the Dirichlet problem for D and *ϕ*.

Stopping time

Let (Ω, Σ, P) be a probability space, $\Omega_{\tau} \subseteq \Omega$, T - an interval $\overline{\mathbb{Z}}$ or $\overline{\mathbb{R}};\,\{\mathcal{F}_t;t\in \mathcal{T}\}$ - increasing family of sub σ -algebras $\Sigma.$

Definition. A positive random variable *τ* : Ω*^τ −→* T **is called a stopping time, (Markov time) if** $\{\tau \leq t\} \in \mathcal{F}_t$, $t \in \mathcal{T}_t$

We also define $\mathcal{F}_{\tau} := \{A \subseteq \Omega_{\tau}; A \cap \{\tau \leqslant t\} \in \mathcal{F}_{t}, \text{ for every } t \in \mathcal{T}\}.$

Remark. 1. When *τ* is countably valued then the above definition is equivalent to the following: τ is stopping time with respect to *{F_n*} if for every *n* the following holds: $\{\tau = n\} \in \mathcal{F}_n$. **2.** \mathcal{F}_{τ} is a σ -algebra ⊂ Ω_{τ} ∩ Σ. **3.** $\tau : (\Omega_{\tau}, \mathcal{F}_{\tau}) \longrightarrow (\mathcal{T}, \mathcal{B}_{\tau})$ is measurable.

$\boldsymbol{\mathsf{Markov}}$ property of the process $\mathcal{X} = \{X_t; \, t \in \mathcal{T}\}$

Let *θ*^s : (Ω*,* Σ) *−→* (Ω*,* Σ) acts as a "shift" on the basic probability space according to the rule: $X_t \circ \theta_{\color{red} s} = X_{t + s}.$ The easiest way to perceive these operators is to work on the standard probability space $(\mathbb{R}^{[0,\infty)}, \otimes_{t\geqslant 0} \mathcal{B}_\mathbb{R},\mu)$, where μ is the distribution of the process X. Then $X_t(\omega) = \omega(t)$ and $X_t(\omega) \circ \theta_s = \omega(t+s)$. Further, we consider the process with the initial distribution $X(0) = Y$ - an arbitrary random variable. Conditional expectation (probability) with respect to a process with the initial distribution Y we denote by $\mathbb{E}^Y[\cdot]$, $(P^Y(\cdot))$. When $Y = x \in \mathbb{R}^d$ we write $\mathbb{E}^{\times}[\cdot]$, $(P^{\times}(\cdot))$.

Markov property of $\{X_t; t\geqslant 0\} \colon$ for $Z\geqslant 0$, $\mathcal{F}_\infty\text{-measurable}$

$$
\mathbb{E}^{\times}[Z \circ \theta_t | \mathcal{F}_t] = \mathbb{E}^{X_t}[Z],
$$

where
$$
\mathcal{F}_t = \sigma\{X_s; s \leq t\}
$$
, $\mathcal{F}_{\infty} = \sigma\{X_s; s \geq 0\}$.

Strong Markov property of the process X

For τ **-** \mathcal{F}_t -stopping time and $Z \ge 0$, \mathcal{F}_{∞} -measurable random **variables, we have**

$$
\mathbb{E}^{\times}[Z \circ \theta_{\tau}|\mathcal{F}_{\tau}] = \mathbb{E}^{X_{\tau}}[Z],
$$

 $\text{where } \mathcal{F}_t = \sigma\{X_{\mathsf{s}}; \mathsf{s} \leqslant t\}, \ \mathcal{F}_\infty = \sigma\{X_{\mathsf{s}}; \mathsf{s} \geqslant 0\}.$

 $\bf{Remark.}$ When $\{X_t; {\cal F}_t; t \geqslant 0\}$ has a Markov property and ${\cal F}_t$, ${\cal F}_t$ is right-continuous, i.e. $\mathcal{F}_t = \mathcal{F}_{t+} = \bigcap_{s>t} \mathcal{F}_t$ and complete, and X_t is a normal Markov process, then $\{X_t; \mathcal{F}_t; t\geqslant 0\}$ **has the strong Markov property**.

Normal Markov process - phase space S is compact, metric and separable, process has a Feller property and P_t defined by $P_t f(x) = \int f(y) P_t(x, dy) = \mathbb{E}^x f(X_t)$ acts on $C(S)$ as a strongly continuous contraction semigroup (process is stochastically continuous).

Regular points of the process

Let $\{X_t\}_{t\geqslant 0}$ be a stochastic process with values in \mathbb{R}^d and $D\subseteq \mathbb{R}^d$ - a Borel subset. Define the first exit time from D^T

 $\tau_D = \inf\{t > 0; X_t \notin D\}.$

Definition. The point $x \in \mathbb{R}^d$ is called regular for D when $P^{\times}(\tau_D = 0) = 1.$

We further assume that $X=W$ is a Wiener process in \mathbb{R}^d and $\mathcal{F}_t = \sigma\{W_{\mathsf{s}}; \mathsf{s}\leqslant t\}$. We note that $\{\tau_D=0\}\in \mathcal{F}_{0+}$ so by the $0-1$ Blumenthal law we have either $P^{\times}(\tau_D = 0) = 0$ or 1. The set of all regular points of the set D is denoted by D^r . When $x \in Int(D^c)$ then $x \in D^r$. When $x \in Int(D)$ then the Wiener process remains certain time in $\mathit{Int}(D)$ so $\mathit{Int}(D) \subseteq (D^r)^c$. The only problem is to determine what is the behaviour of the process at x *∈ ∂*D. Typically, the process oscilates wildly in the vicinity of the point x *∈ ∂*D, hence it leaves immediately from D.

Exterior cone property

Definition. Let $V_a = \{(x_1, \ldots, x_d) : x_1 > 0; |(x_2, \ldots, x_d)| < ax_1\}$. A cone V in \mathbb{R}^d is a translation and a rotation of V_a .

Let z *∈ ∂*D**. If there exists a cone** V **with the vertex** z **such that** $V \cap B(z, r) \subseteq D^c$ for a $r > 0$, then z is regular.

Proof. Put $C = \frac{\sigma_r(V \cap \mathbb{S}_r(z))}{\sigma_r(\mathbb{S}_r(z))}$ and $B_n = B(z, r/n)$, $V_n = V \cap \mathbb{S}_{r/n}(z)$. By the rotational invariance (with respect to the starting point) of the distribution of the Wiener process, $W_{\tau_{\mathcal{B}(\mathsf{x}, r)}}$ is also rotationally invariant hence it is the normed spherical measure on $\mathbb{S}_r(x)$. Hence $P^{\times}(W_{\tau_{\mathcal{B}(x,r)}} \in V) = C$. At the same time,

$$
P^{z}(\tau_D=0) \geqslant P^{z}(\limsup \{W_{\tau_{B_n}} \in V_n\}) \geqslant \limsup P^{z}(\{W_{\tau_{B_n}} \in V_n\})
$$

 $\mathsf{s}\mathsf{o}\,\, P^{\mathsf{z}}(\tau_D=0) \geqslant \mathsf{C} > 0$ thus $0-1$ Blumenthal law implies $P^{z}(\tau_D = 0) = 1.$

Probabilistic solution of the Dirichlet problem

Let D be a bounded in \mathbb{R}^d and $f \in L^\infty(\partial D)$. The function $H_Df(x)$ defined by

$$
H_Df(x) = \mathbb{E}^x[\tau_D < \infty; f(W_{\tau_D})]
$$

is harmonic in D**. If** z **is regular and f - continuous at** z *∈ ∂*D **then** $\lim_{D \to x \to z} H_D f(x) = f(x)$

Proof of harmonicity. Let $x \in D$, $B \subset\subset B(x, r)$. Since $\tau_B < \tau_D$ - P^{\times} a.s. so $\tau_D = \tau_B + \tau_D \circ \theta_{\tau_B}$. Moreover, $W_{\tau_D} \circ \theta_{\tau_B} = W_{\tau_B + \tau_D \circ \theta_{\tau_B}}$ $W = W_{\tau_D}$. Let $\Psi = \mathbf{1}_{\{\tau_D<\infty\}}f(W_{\tau_D})$. It holds $\Psi \circ \theta_{\tau_B} = \Psi$ hence $\mathbb{E}^{\times}[\Psi] = \mathbb{E}^{\times}[\mathbb{E}^{\times}[\Psi \circ \theta_{\tau_{\mathcal{B}}}|\mathcal{F}_{\tau_{\mathcal{B}}}]] = \mathbb{E}^{\times}[\mathbb{E}^{W_{\tau_{\mathcal{B}}}}[\Psi]] = \mathbb{E}^{\times}[H_{D}f(W_{\tau_{\mathcal{B}}})].$ Since the distribution of W_{τ_B} is the uniform normalized spherical measure, therefore $H_D f(x) = \frac{1}{r^{d-1} \omega_d} \int_{\mathbb{S}_r(x)} H_D f(y) \sigma_r(dy)$, and H_Df has the mean value property in D, so it is harmonic in D.

Convergence at regular points - auxiliary lemmas

Lemma 1. If $f \in L^{\infty}(\mathbb{R}^d)$ or $f \in L^1(\mathbb{R}^d)$ then $P_t f(\cdot) \in C(\mathbb{R}^d)$ for every $t > 0$.

Proof. For $f \in L^{\infty}(\mathbb{R}^d)$ and $x_n \to x$ we obtain $|P_t f(x_n) - P_t f(x)| \leqslant ||f||_{\infty} \int_{\mathbb{R}^d} |p_t(x_n, y) - p_t(x, y)| dy$ and the $\sup_{B(0,r)^c} | \ldots | < \varepsilon$, for large $r.$ We also have $\int_{B(0,r)}|\ldots|\to 0,$ by bounded convergence theorem. For $f\in L^1(\mathbb{R}^d)$ we again apply bounded convergence theorem. Here $p_t(x,y) = \frac{1}{(2\pi t)^{d/2}}e^{-||x-y||^2/2t}$ - the transition density of the Wiener process in \mathbb{R}^d .

Corollary. Proces X_t has both Feller and strong Feller property, i.e. $P_t:\mathcal{C}_0(\mathbb{R}^d)\longrightarrow\mathcal{C}_0(\mathbb{R}^d)$ and $P_t:L^{\infty}(\mathbb{R}^d)\longrightarrow\mathcal{C}(\mathbb{R}^d)$

Convergence at regular points - auxiliary lemmas

Feller property of the process.

We show that $P_t: \mathcal{C}_0(\mathbb{R}^d) \longrightarrow \mathcal{C}_0(\mathbb{R}^d).$ To do this, observe that if $f\in\mathcal{C}_0(\mathbb{R}^d)$ then for every $\varepsilon>0$ there exists $r>0$ such that $|f(y)| < \varepsilon$ if only $|y| > r$. Then we have

$$
|P_t f(x)| \leq \varepsilon + ||f||_{\infty} \int_{B(0,r)} p(t; x, y) dy.
$$

The integral on the right-hand side tends to 0 when $x \to \infty$. The property that $\lim_{t\to 0} ||P_t f - f||_{\infty} = 0,$ for $f\in \mathcal{C}_0(\mathbb{R}^d)$ follows from the uniform continuity of functions in $\mathcal{C}_0(\mathbb{R}^d)$. This finishes the proof of the Feller property of the process.

Lemma 2. The function $\mathsf{x} \longrightarrow \mathbb{E}^{\mathsf{x}}[\mathsf{k} \circ \theta_t]$ is continuous on \mathbb{R}^d **for** $t > 0$ and κ **bounded and** \mathcal{F}_{∞} -measurable.

Convergence at regular points - auxiliary lemmas

Proof. Let $f(x) = \mathbb{E}^x[\kappa]$. It holds $f \in L^\infty(\mathbb{R}^d)$. Applying the Markov property: $\mathbb{E}^{\times}[\kappa \circ \theta_t] = \mathbb{E}^{\times}[\mathbb{E}^{\times}[\kappa \circ \theta_t | \mathcal{F}_t]] = \mathbb{E}^{\times}[\mathbb{E}^{W_t}[\kappa]] = 0$ $\mathbb{E}^{\times}[f(W_t)]=P_tf(x)\in C(\mathbb{R}^d).$ **Remark.** A function ϕ : $\mathbb{R}^d \to \mathbb{R}$ is called upper semicontinuous if it is a decreasing limit of continuous functions. We have $\limsup_{x\to x_0} \phi(x) \leq \phi(x_0)$.

Lemma 3. The function $\phi: x \longrightarrow P^{\times}(\tau_D > t)$ is upper semicontinuous on \mathbb{R}^d for $t>0$ and any D open in $\mathbb{R}^d.$

Proof. We show that $P^x(\tau_D > t) = \lim_{s \downarrow 0} \downarrow P^x(\tau_D \circ \theta_s > t - s)$ $=$ $\lim_{s\downarrow 0} \mathbb{E}^{\times} [\mathbf{1}_{(t-s,\infty)}(\tau_D) \circ \theta_s].$ We note that $\inf\{t>s; W_t \notin D\}$ $\tau = s + \tau_D \circ \theta_s$. Let $x \in D^r$, i.e. $P^x(\tau_D = 0) = 1$. There exists a s equence $s_n \downarrow 0$ such that $\mathcal{W}_{s_n} \in D^c$ thus for $s < s_n$ it holds $s + \tau_D \circ \theta_s < s_n$. Now, $\{s + \tau_D \circ \theta_s > t\}_{0 < s < t}$ increases in s , so

Convergence at regular points

 $\lim_{s \downarrow 0} \downarrow P^{\times}(\tau_D \circ \theta_s > t - s) = P^{\times}(0 > t) = 0 = P^{\times}(\tau_D > t).$ Let now $x \notin D^r$, i.e. $\tau_D > 0$ P^\times a.e. For $s < t$ it holds $\{\tau_D > s\}$ \supset $\{\tau_D > t\}$. If $\tau_D > s$ then $\tau_D = s + \tau_D \circ \theta_s$ hence $\tau_D \circ \theta_s > t - s$. Moreover, $\tau_D \circ \theta_s > t - s$, for $s < t$, which with $\tau_D > s_0$, for some $s_0 < t$ ($\tau_D > 0$) yields $\tau_D > t$. This justifies our formula, hence ϕ is a decreasing limit of continuous functions (Lemma 2) - consequently, it is upper semicontinuous. **Proof of convergence at regular points.** Let z be a regular point from *∂*D and let f be continuous at z. For *ε >* 0 there exists δ > 0 such that for *w* ∈ $\partial D \cap B(z, \delta)$ we have *|*f (w) *−* f (z)*| < ε/*2. Put M = *||*f *||∞*. Since $P^{\times}(\tau_{B(x,\delta/2)} > 0) = P^{0}(\tau_{B(0,\delta/2)} > 0) = 1$ we see that there exists $s>0$ such that for every χ it holds $P^\chi(\tau_{\mathcal{B}(\chi,\delta/2)}\leqslant s)<\varepsilon/8M.$ By $\mathsf{Lemma} \ 3\ \mathsf{lim}\, \mathsf{sup}_{\mathsf{x}\to\mathsf{z}}\, P^\mathsf{x}(\tau_D> \mathsf{s})\leqslant P^\mathsf{z}(\tau_D> \mathsf{s})=0.$ Thus, there $\text{exists} \; \delta' > 0 \; \text{such that if} \; |x - z| < \delta' \; \text{then} \; P^{\times}(\tau_D > s) < \varepsilon/8M.$

Convergence at regular points

Moreover,
$$
P^{\times}(\tau_{B(x,\delta/2)} \leq \tau_D) \leq P^{\times}(\tau_{B(x,\delta/2)} \leq s) + P^{\times}(\tau_D > s)
$$
.
\nTherefore, when $|x - z| < \delta/2$ to $\tau_{B(x,\delta/2)} \leq \tau_{B(z,\delta)}$ then
\n $P^{\times}(\tau_{B(z,\delta)} \leq \tau_D) \leq P^{\times}(\tau_{B(x,\delta/2)} \leq \tau_D) \leq \varepsilon/8M + \varepsilon/8M = \varepsilon/4M$.
\nIf $x \in \overline{D}$ and $|x - z| < \delta' \wedge (\delta/2)$ we obtain
\n $\mathbb{E}^{\times}[\tau_D < \infty; |f(X_{\tau_D}) - f(z)|] \leq$
\n $P^{\times}(\tau_D < \tau_{B(z,\delta)})\varepsilon/2 + P^{\times}(\tau_{B(z,\delta)} \leq \tau_D)2M \leq \varepsilon/2 + (\varepsilon/4M)2M$
\nand this concludes the proof.

As an application, for the solution $u_{1,0}$ of the Dirichlet problem with boundary values $f \equiv 1$ on $\mathbb{S}_{\delta}(0)$ and $f \equiv 0$ on $\mathbb{S}_{R}(0)$ we obtain

(i)
$$
u_{1,0}(x) = \frac{\ln R - \ln ||x||}{\ln R - \ln \delta}
$$
, $x \in \overline{D}$, for $d = 2$,
\n(ii) $u_{1,0}(x) = \frac{||x||^{2-d} - R^{2-d}}{\delta^{2-d} - R^{2-d}}$, $x \in \overline{D}$, for $d \ge 3$.

Recurrence and transitivity of the Wiener process

From the uniqueness of the solution of Dirichlet problem, we obtain $u_{1,0}(x) = P^x(||W_{\tau_D}|| = \delta) = P^x(W_t \text{ hits } \mathbb{S}_{\delta} \text{ before hitting } \mathbb{S}_{R}).$ Fix $\delta>0$ and let $R\to\infty.$ For \mathbb{R}^2 (case (i)): $\lim_{R\to\infty}u_{1,0}(x)=1.$ When $d\geqslant 3$ (case (ii)): $\lim_{R\to\infty}u_{1,0}(x)=(\delta/||x||)^{d-2}.$ Hence

 $d = 2$: $P^{\times}(W_t$ hits \mathbb{S}_{δ} , for some $t > 0$) = 1.

 $d \geqslant 3$: $P^{\times}(W_t$ hits \mathbb{S}_{δ} , for some $t > 0$) = $(\delta/||x||)^{d-2}$.

Let now $d = 2$, $R > 0$ and $\delta \rightarrow 0$. We obtain $\lim_{\delta \rightarrow 0} u_{1,0}(x) = 0$. so $P^{\times}(W_t$ hits $0)=0.$ We repeat the same arguments for every translation of D so we obtain

Two-dimensional Wiener process, starting from x**,** 1 **does not** hit any fixed point $y \neq x$, almost surely.

Killed process

Let X_t be a Markov process with the transition density function $p(t; x, y)$. Define the first exit time from the set D:

$$
\tau_D=\inf\{t>0:\,X(t)\notin D\}
$$

and the process killed at the time of first exit from D:

$$
X_D(t) = \begin{cases} X(t), & \text{gdy } 0 \leqslant t < \tau_D, \\ \partial, & \text{gdy } t \geqslant \tau_D. \end{cases}
$$

where *∂* is a "cemetery" – a certain, isolated state of the space of the values of the process X. Its transition function is of the form

$$
P_t^D(x, A) = P^D(t; x, A) = P^x(t < \tau_D; X_t \in A), t > 0, x \in D, ;
$$

and its transition density (if X has one) is given by

Hunt's Formula

$$
p^{D}(t;x,y)=p(t;x,y)-\mathbb{E}^{x}[\tau_{D}
$$

Basic properties of killed process

Justification of the Hunt's Formula

For a bounded Borel function f we obtain

$$
\int_{D} \mathbb{E}^{x} [\tau_{D} < t; p(t - \tau_{D}; X_{\tau_{D}}, y)] f(y) dy
$$
\n
$$
= \mathbb{E}^{x} [\tau_{D} < t; \int_{D} p(t - \tau_{D}; X_{\tau_{D}}, y) f(y) dy]
$$
\n
$$
= \mathbb{E}^{x} [\tau_{D} < t; \mathbb{E}^{X_{\tau_{D}}}[f(X_{s})]|_{s=t-\tau_{D}}]
$$
\n
$$
= \mathbb{E}^{x} [\mathbb{E}^{x} [\tau_{D} < t; f(X_{s+\tau_{D}}) | \mathcal{F}_{\tau_{D}}]|_{s=t-\tau_{D}}]
$$
\n
$$
= \mathbb{E}^{x} [\mathbb{E}^{x} [\tau_{D} < t; f(X_{t}) | \mathcal{F}_{\tau_{D}}]] = \mathbb{E}^{x} [\tau_{D} < t; f(X_{t})].
$$

Subtracting from the first part of the formula, with $f(y)$ integrated over D, we obtain

$$
\mathbb{E}^{\times}[f(X_t)] - \mathbb{E}^{\times}[\tau_D < t; f(X_t)] = \mathbb{E}^{\times}[t < \tau_D; f(X_t)].
$$

Feller properties of killed process

Theorem. For regular D the killed process has Feller and strong Feller property

Semigroup, Feller and strong Feller properties. For f *∈* L*∞*(D) and $0 < s < t$

$$
P_t^D f(x) = \mathbb{E}^{\times} [s < \tau_D; \mathbb{E}^{X_s} [t - s < \tau_D; f(X_{t-s})]]
$$

=
$$
P_s^D P_{t-s}^D f(x) = \mathbb{E}^{\times} [s < \tau_D; \phi_{t-s}(X_s)] = P_s^D \phi_{t-s}(x),
$$

where $\phi_{\bm{s}}(\mathsf{x}) = \mathbb{E}^{\mathsf{x}}[\mathsf{s} < \tau_D; f(X_{\bm{s}})]]$. This proves the semigroup property of P_t^D . Furthermore, $P_s\phi_{t-s} \in \mathcal{C}_b(\mathbb{R}^d)$ and

$$
|P_s \phi_{t-s}(x)-P_t^D f(x)|=|P_s \phi_{t-s}(x)-P_s^D \phi_{t-s}(x)|\leq P^x(\tau_D\leq s)\,||f||_{\infty}\,.
$$

We show that $P^\times(\tau_D\leqslant s)$ converges uniformly to zero, as $s\to 0,$ on any compact subset of D. This will show that $P_t^D f$ is continuous in D, so $P_t^D f \in C_b(D)$.

Feller property of killed process

P x (*τ*^D *¬* s) **converges uniformly to zero, as** s *→* 0**, on any compact subset of** D.

Indeed, for $x \in D$ and small $r > 0$ we have $\tau_{B(x,r)} \leq \tau_D$ hence $\{\tau_D \leqslant s\} \subseteq \{\tau_{B(x,r)} \leqslant s\}$ and we obtain, as $s \to 0$,

$$
\begin{aligned} P^\times(\tau_D\leqslant s)&\leqslant P^\times(\tau_{B(\mathsf{x},r)}\leqslant s)\\ &=&P^0(\tau_{B(\mathsf{0},r)}\leqslant s)\rightarrow 0\,. \end{aligned}
$$

By compactness arguments, we obtain the conclusion. Now, by lower semicontinuity of $x \to P^{\times}(\tau_D > t)$ we obtain for any z *∈ ∂*D

$$
\limsup_{x \to z} P_t^D f(x) \leq ||f||_{\infty} \limsup_{x \to z} P_t^x (\tau_D > t)
$$

$$
\leq ||f||_{\infty} P_t^z (\tau_D > t)
$$

and the last expression is 0 if z is regular. This, along with the strong continuity of the semigroup, proves the Feller property.

Killed process

Stopping or killing the process

- $\tau_D = \inf\{t > 0 : X(t) \notin D\}$ first exit time (from D)
- **◆** $X_{\tau_0 \wedge t}$ stopped process (when exiting from D)
- $X_t, t < \tau_D$ killed process (when exiting from $D)$

The simplest (conceptually) object - first exit time τ_D . The most widely used object - \mathcal{X}_{τ_D} - the stopped process (at the first hitting time). The density of distribution of X_{τ_D} - called Poisson kernel of the set D - provides the solution of the Dirichlet problem. Killed process - very difficult to investigate.

The Hunt's formula indicates that if we know the distribution of $(\tau_D, \mathsf{X}_{\tau_D})$ then we are able to determine the transition density of the killed process. The basic example - Brownian motion and D a halfspace . The starting point – reflection principle for Brownian motion.

Reflection Principle for Brownian motion

Let $W=(W_t)_{t\geqslant0}$ be a Brownian motion in \mathbb{R}^1 (starting from 0) and τ - a stopping time with respect to W. Put

$$
\rho_{\tau}W_t = \begin{cases} W_t, & t \leq \tau, \\ 2W\tau - W_t, & t > \tau. \end{cases}
$$

Reflection Principle: $\rho_{\tau}W_{t}$ is a Brownian motion

Corollary.
$$
P(\max_{s\leq t} W_s > a) = 2P(W_t > a) = P(|W_t| > a)
$$

Remark. We apply Reflection Principle to compute the distribution of the first exit time from the halfspace (a, ∞) , where $a > 0$ and the process starts from 0. We denote $\tau_{\mathsf{a}} := \tau_{(\mathsf{a},\infty)}.$

[Potential theory and Brownian motion](#page-15-0)

Density function of distribution of $τ_a$

We have

$$
\{\max_{s\leq t}W_t>a\}=\{\tau_a\leqslant t\}
$$

We compute the density function of the random variable *τ*a:

$$
\frac{d}{dt}P\{\tau_a \leq t\} = \frac{d}{dt}P\{\max_{s \leq t} W_t > a\} =
$$
\n
$$
\frac{d}{dt}[\sqrt{\frac{2}{\pi t}} \int_a^{\infty} e^{-x^2/2t} dx] = -\frac{1}{2}\sqrt{\frac{2}{\pi t^3}} \int_a^{\infty} e^{-x^2/2t} dx +
$$
\n
$$
\sqrt{\frac{2}{\pi t}} \int_a^{\infty} \frac{x^2}{2t^2} e^{-x^2/2t} dx \quad \text{int. by parts} \quad \frac{a}{\sqrt{2\pi t^3}} e^{-a^2/2t}
$$

Laplace transform of $τ_a$

$$
\mathbb{E}[e^{-\lambda^2 \tau_a}] = \frac{a}{\sqrt{2\pi}} \int_0^\infty e^{-\lambda^2 u} e^{-a^2/2u} u^{-3/2} du
$$

=
$$
\frac{a}{\sqrt{2\pi}} 2 \left(\frac{a^2}{2\lambda^2}\right)^{-1/4} \mathbf{K}_{-1/2}(\sqrt{2}\lambda a)
$$

=
$$
\frac{a}{\sqrt{2\pi}} 2 \sqrt{\frac{\sqrt{2}\lambda}{a}} \sqrt{\frac{\pi}{2\sqrt{2}a\lambda}} e^{-\sqrt{2}\lambda a} = e^{-\sqrt{2}\lambda a}.
$$

where \mathbf{K}_{θ} - the modified Bessel function of second kind:

$$
\int_0^{\infty} e^{-au} e^{-b/u} u^{\nu-1} du = 2(b/a)^{\nu/2} K_{\nu}(2\sqrt{ab})
$$

Moreover, $\mathbf{K}_{-1/2}(x) = \mathbf{K}_{1/2}(x) = \sqrt{\frac{\pi}{2x}} e^{-x}$.

Transition density of the killed process

The most fundamental object in potential theory - transition probability P^{D} of the process $X_{D}(t)$ killed at the first exit time from the set D: for $x, y \in D$ we put

$$
P^{D}(x; A) = P^{x}[t < \tau_{D}; X_{t} \in A].
$$

When X has the transition density $p(t; x, y)$ then the transition density of the killed process can be expressed by the formula:

$$
p^{D}(t; x, y) = p(t; x, y) - \mathbb{E}^{x}[\tau_{D} < t; p(t - \tau_{D}; X_{\tau_{D}}, y)].
$$
\nKelvin's symmetry principle gives us

\n
$$
p^{D}(t; x, y) \text{ for halfspace}
$$
\n
$$
D = H = \{x \in \mathbb{R}^{d} : x_{d} > 0\}. \text{ For } y = (y_{1}, \ldots, y_{d-1}, y_{d}) \in H \text{ put}
$$
\n
$$
y^{*} = (y_{1}, \ldots, y_{d-1}, -y_{d}).
$$

We then obtain

$$
p^{D}(t; x, y) = p(t; x, y) - p(t; x, y^{*}).
$$

Transition density of the killed process (optional)

As an exercise we compute $\mathcal{p}^D(t;x,y)$ directly from Hunt's formula. The time τ_D is determined by the last coordinate of the process; consequently, it does not depend on the first (d *−* 1) coordinates of the process. Now, $y \rightarrow \tilde{y}$ denotes the projection onto first (d *−* 1) coordinates. We thus obtain

$$
\mathbb{E}^{\times}[\tau_D < t; p(t - \tau_D; X_{\tau_D}, y)]
$$
\n
$$
= \mathbb{E}^{\times}[\int_0^t \frac{x e^{-x^2/2s}}{\sqrt{2\pi s^3}} p(t - s, (\tilde{X}_s, 0), y) ds]
$$
\n
$$
= \int_{\mathbb{R}^{d-1}} \int_0^t \frac{x e^{-x^2/2s}}{\sqrt{2\pi s^3}} \frac{e^{-|z - \tilde{X}|^2/2s}}{(2\pi s)^{(d-1)/2}} \frac{e^{-(|z - \tilde{y}|^2 + y_\sigma^2)/2(t - s)}}{(2\pi (t - s))^{d/2}} ds dz
$$
\n
$$
= \int_0^t \frac{x e^{-x^2/2s}}{\sqrt{2\pi s^3}} \frac{e^{-y_\sigma^2/2(t - s)}}{\sqrt{2\pi (t - s)}}
$$
\n
$$
\left\{\int_{\mathbb{R}^{d-1}} \frac{e^{-|z - \tilde{X}|^2/2s}}{(2\pi s)^{(d-1)/2}} \frac{e^{-|z - \tilde{y}|^2/2(t - s)}}{(2\pi (t - s))^{(d-1)/2}} dz\right\} ds.
$$
\n
$$
\left\{\int_{\mathbb{R}^{d-1}} \frac{e^{-|z - \tilde{X}|^2/2s}}{(2\pi s)^{(d-1)/2}} \frac{e^{-|z - \tilde{y}|^2/2(t - s)}}{(2\pi (t - s))^{(d-1)/2}} dz\right\} ds.
$$

Transition density of the killed process (optional)

Now, the expression in parentheses is the convolution of two (d *−* 1)-dimensional Gaussian densities hence is equal to

$$
\frac{e^{-|\widetilde{x}-\widetilde{y}|^2/2t}}{(2\pi t)^{(d-1)/2}}.
$$

To compute the remaining expression

$$
\int_0^t \frac{x e^{-x^2/2s}}{\sqrt{2\pi s^3}} \frac{e^{-y_d^2/2(t-s)}}{\sqrt{2\pi(t-s)}} ds
$$

we take the Laplace transform and, after changing order of integration and variables we obtain

$$
\int_0^\infty \frac{x e^{-x^2/2s}}{\sqrt{2\pi s^3}} e^{-\lambda s} ds \int_0^\infty e^{-\lambda u} \frac{e^{-y_d^2/2u}}{\sqrt{2\pi u}} du
$$

Transition density of the killed process (optional)

The last expression can be expressed in terms of modified Bessel function $K_{1/2}$ of the second order as follows

$$
\frac{2}{\sqrt{2\pi}}\left(\frac{y_d^2}{2\lambda}\right)^{1/4}\mathbf{K}_{1/2}(\sqrt{2\lambda}\,y_d)=\frac{e^{-\sqrt{2\lambda}\,y_d}}{\sqrt{2\lambda}}
$$

while the first one is of the form

$$
\frac{2x_d}{\sqrt{2\pi}}\left(\frac{x_d^2}{2\lambda}\right)^{-1/4} \mathbf{K}_{-1/2}(\sqrt{2\lambda}x_d) = e^{-\sqrt{2\lambda}y_d}.
$$

Hence, after multiplication we obtain

$$
\frac{e^{-\sqrt{2\lambda}(x_d+y_d)}}{\sqrt{2\lambda}}=\mathcal{L}\left(\frac{e^{-(x_d+y_d)^2/2t}}{\sqrt{2\pi t}}\right).
$$

Thus, the whole expression is of the form $(2\pi t)^{-d/2}$ $e^{-|x-y^*|^2/2t}$ $where y^* = (y_1, y_2, ..., y_{d-1}, -y_d).$

Green function and Poisson kernel

Poisson kernel and **Green function** of the set D have simple explanations in terms of the process killed or stopped when exiting D:

$$
P_D(x,y)=P^x\left(X_{\tau_D}\in dy\right)
$$

the density of the distribution of hitting the boundary of the set D:

$$
\bullet
$$

0

$$
G_D(x,y)=\int_0^\infty p^D(t;x,y)\,dt
$$

", density" of occupying time of the process at v .

Green operator

For bounded Borel functions $f:\mathbb{R}^d \to \mathbb{R}$ and domain D put **Green operator**:

 \bullet

$$
G_Df(x)=\mathbb{E}^x\left(\int_0^{\tau_D}f(X_t)\,dt\right).
$$

Green function is the kernel of this operator:

$$
G_Df(x)=\int_D G_D(x,y)\,f(y)\,dy.
$$

• In particular, when $f = 1_A$, we obtain

$$
G_D 1_A(x) = \mathbb{E}^x \left[\int_0^{\tau_D} 1_A(X_t) dt \right] = \int_D G_D(x, y) 1_A(y) dy
$$

is the mean occupying time of the process, starting from x , within the set A.

Properties of Green function

For $d \geqslant 3$ we have

$$
G_D(x,y)=U_2(x,y)-\mathbb{E}^x[\tau_D<\infty;U_2(X_{\tau_D},y)].
$$

Indeed, denote

$$
r^{D}(t;x,y)=\mathbb{E}^{x}[\tau_{D}
$$

We obtain, for $x \neq y$,

$$
\int_0^\infty r^D(t;x,y)\,dt=\mathbb{E}^x[\tau_D<\infty;\int_0^\infty \rho(u;X_{\tau_D},y)\,du].
$$

which justifies the formula, if we show that this expression is finite. Putting $\delta = \rho(\gamma, \partial D)$ we obtain

$$
\mathbb{E}^{\times}[\tau_D < \infty; U(X_{\tau_D}, y)] \leq U(\delta) < \infty.
$$

For $d = 1, 2$ the corresponding formulas are also valid but in terms of compensated potentials instead.

Potential operator

When $D=\mathbb{R}^d$, $d\geqslant 3$, computing as before, we obtain ${\bf the}$ **potential operator** and **the potential function**:

$$
U_2f(x)=\int_0^\infty\mathbb{E}^x[f(X_t)]\,dt.
$$

• Potential function is the kernel of this operator:

$$
U_2f(x)=\int_{\mathbb{R}^d}U_2(x,y)\,f(y)\,dy.
$$

• We obtain

 \bullet

$$
U_2(x,y)=\int_0^\infty \frac{1}{(2\pi t)^{d/2}} e^{-|x-y|^2/2t} dt = \frac{1}{2\pi^{d/2}} \frac{\Gamma(d/2-1)}{|x-y|d-2}.
$$

In this way, we obtained the same object as at the beginning, thus exemplifying the connection between analytical and probabilistic theories. For $d = 1, 2$ analogous formulas are valid, but with different proofs.
Tomasz Byczkowski, IMPAN

Brownian motion: $\mathfrak{U}f = \frac{1}{2}$ $\frac{1}{2}f''$ on $\mathfrak{D}_{\mathfrak{U}}=C^{(2)}$

Generator of Brownian motion.

$$
S = \mathbf{R}^*, P_t(x, E) = \frac{1}{\sqrt{2\pi t}} \int_{E-x} e^{-y^2/2t} dy, P_t(\infty, \infty) = 1.
$$
 We have
\n
$$
P_t f(x) = \frac{1}{\sqrt{2\pi t}} \int f(y) e^{-(y-x)^2/2t} dy, f
$$
-bounded Borel. If $f \in C^{(2)}$
\nthen $\frac{1}{t} [T_t f(x) - f(x)] = \frac{1}{\sqrt{2\pi t}} \int e^{-y^2/2t} \frac{f(x+y) - f(x) - f'(x)y}{t} dy =$
\n $\frac{1}{\sqrt{2\pi t}} \int e^{-y^2/2t} \frac{f''(x+\theta y)}{2t} y^2 dy = \frac{1}{2\sqrt{2\pi t}} \int e^{-u^2/2} f''(x+\theta u \sqrt{t}) u^2 du$
\n $\rightarrow \frac{1}{2} f''(x)$, for every x, when $t \rightarrow 0$. We thus have $f \in C^{(2)} \subseteq \mathfrak{D}_{\mathfrak{U}}$
\nand $\mathfrak{U}f = \frac{1}{2} f''$ on $C^{(2)}$. Furthermore, $\mathfrak{D}_{\mathfrak{U}} = C^{(2)}$.

For
$$
g \in C
$$
, we solve in $f: \lambda f - \frac{1}{2}f'' = g$. We obtain
\n $f(x) = \Re_{\lambda}g(x) = \frac{1}{\sqrt{2\pi}}\int \int_0^{\infty} e^{-\lambda t}e^{-(y-x)^2/2t}t^{-1/2}dt]g(y)dy =$
\n $\frac{1}{\sqrt{2\lambda}}\int g(y)e^{-\sqrt{2\lambda}|x-y|}dy$, since $\int_0^{\infty} e^{-au}e^{-b/u}u^{\nu-1}du =$
\n $2(b/a)^{\nu/2}\mathbf{K}_{\nu}(2\sqrt{ab})$ (modified Bessel function of 2-nd order), and
\nwe have $\mathbf{K}_{\frac{1}{2}}(x) = \sqrt{\frac{\pi}{2x}}e^{-x}$. $f \in C^{(2)}$, it solves $\lambda f - f''/2 = g$.
\nTomsz Byzzkowski, IMPAN
\nPotential theory of subordinated Brownian motions

[Potential theory and Brownian motion](#page-15-0)

Fundamental solution of $\frac{1}{2}\Delta = \delta_0$

For $f\in\mathcal{C}_c(\mathbb{R}^d)$ the following holds

$$
\frac{1}{2}\Delta U_2f(x)=-f(x).
$$

Proof. We obtain

$$
P_t U_2 f(x) = \mathbb{E}^x \left[\int_0^\infty \mathbb{E}^{X_t} [f(X_s)] ds \right]
$$

=
$$
\int_0^\infty \mathbb{E}^x [\mathbb{E}^{X_t} [f(X_s)]] ds = \int_0^\infty \mathbb{E}^x [f(X_{t+s})] ds
$$

=
$$
\int_t^\infty \mathbb{E}^x [f(X_u)] du.
$$

We thus have obtained

$$
P_t U_2 f(x) - U_2 f(x) = - \int_0^t \mathbb{E}^x [f(X_u)] du.
$$

After dividing by t, we obtain the conclusion when $t \to 0$.

 $\Delta(G_D\phi) = -2\phi$ for $\phi \in C_c(D)$

We use the following representation of the Green function

$$
G_D(x,y)=U_2(x,y)-\mathbb{E}^x[\tau_D<\infty;U_2(X_{\tau_D},y)].
$$

From the previous result we obtain

$$
\Delta U_2 \phi(x) = -2\phi(x).
$$

However, the second term in the representation of G_D , acting on *φ*, gives the harmonic function so the result follows. If $\phi \in \mathcal{C}^{\infty}_{c}(D)$ then $G_{D}\phi \in \mathcal{C}^{\infty}_{c}(D)$ and we also have

$$
G_D(\Delta\phi)=-2\phi.
$$

For $d = 1$ and $d = 2$ additional assumptions are required, e.g. boundedness of the domain D.

Bibliography

1. R. Bass, Probabilistic Techniques in Analysis, Springer-Verlag, 1995, New York.

2. R. M. Blumenthal and R. K. Getoor, Markov Processes and Potential Theory, Springer-Verlag, 1968, New York.

3. K. L. Chung and Z. Zhao, From Brownian motion to

Schrödinger's equation, Springer-Verlag, 1995, New York.

4. W. K. Hayman and P. B. Kennedy, Subharmonic Functions, Vol. I, 1976, Academic Press, London, New York.

5. G. A. Hunt, Some Theorems Concerning Brownian Motion, Trans. Amer. Math. Soc., 81, 1956, 294-319.

6. G. A. Hunt, Markov Processes and Potentials I and II, Illinois J. of Math. 1, 1957, 44-93 and 316-369; Illinois J. of Math. 2, 1958, 151-213.