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Abstract In this chapter, we illustrate the properties of the continuous shearlet trans-
form with respect to its ability to describe the set of singularities of multidimen-
sional functions and distributions. This is of particular interest since singularities
and other irregular structures typically carry the most essential information in mul-
tidimensional phenomena. Consider, for example, the edges of natural images or the
moving fronts in the solutions of transport equations. In the following, we show that
the continuous shearlet transform provides a precise geometrical characterization
of the singularity sets of multidimensional functions and precisely characterizes the
boundaries of 2D and 3D regions through its asymptotic decay at fine scales. These
properties go far beyond the continuous wavelet transform and other classical meth-
ods, and set the groundwork for very competitive algorithms for edge detection and
feature extraction of 2D and 3D data.

Key words: analysis of singularities, continuous wavelet transform, shearlets, spar-
sity, wavefront set, wavelets

1 Introduction

A well known property of the continuous wavelet transform is its special ability to
identify the singularities of functions and distributions. This property is a manifes-
tation of the locality of the wavelet transform, which is extremely sensitive to local
regularity structures. Specifically, if f is a function which is smooth apart from a
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discontinuity at a point x0, then the continuous wavelet transform of f , denoted
by Wψ f (a, t), exhibits very rapid asymptotic decay as a approaches 0, unless t is
near x0 [14, 16]. The complement of the set of locations where Wψ f (a, t) has rapid
asymptotic decay, as a → 0, is called the singular support of f , and it corresponds,
essentially, to the set where f is not regular. Indeed, an even finer analysis of the
local regularity properties of f , expressed in terms of local Lipschitz regularity,
can be performed using the wavelet transform. This shows that there is a precise
correspondence between the Lipschitz exponent α of f at a point x0 (where α mea-
sures the regularity type) and the asymptotic behaviour of Wψ f (a,x0) as a → 0
(see [11, 10]). This is in contrast with the traditional Fourier analysis which is only
sensitive to global regularity properties and cannot be used to measure the regularity
of a function f at a specific location.

However, despite all its good properties, the wavelet transform is unable to pro-
vide additional information about the geometry of the set of singularities of f . In
many situations, such as in the study of the propagation of singularities associated
with PDEs or in image processing applications such as edge detection and image
restoration and enhancement, it is extremely important not only to identify the lo-
cation of singularities, but also to capture their geometrical information, such as
the orientation and the curvature of discontinuity curves. We will show that, to this
purpose, directional multiscale methods such as the shearlet transform provide, in
a certain sense, the most effective solution, thanks to their ability to combine the
microlocal properties of the wavelet transform and a sharp sensitivity for directional
information.

In fact, it was shown that the continuous curvelet and shearlet transforms can be
used to characterize the wavefront set of functions and distributions [1, 4, 17]. Fur-
thermore, as will be discussed in this chapter, the continuous shearlet transform can
be used to provide a very precise geometric description of the set of singularities,
together with the analysis of the singularity type. Not only these results demonstrate
that the continuous shearlet transform is a highly effective microanalysis tool, going
far beyond the traditional wavelet framework; they also set the theoretical ground-
work for very competitive numerical algorithms for edge analysis and detection,
which will be discussed in Chapter 8 of this volume (see also the work in [19]).

In order to illustrate the properties of the shearlet transform with respect to the
analysis of singularities, let us start by presenting a few simple examples. This will
introduce some general concepts which will be further elaborated in the rest of the
chapter.

1.1 Example: Line singularity

In many signal and image processing applications, there is a particular interest in
functions which are well localized, that is, they have rapid decay both in Rn and
in the Fourier domain. Since functions which have rapid decay must have highly
regular Fourier transform and vice versa, it follows that well localized functions
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must also exhibit good decay both in Rn and in the Fourier domain. Hence, one way
to obtain well localized functions is to define them in the Fourier domain so that
they have both compact support and high regularity. In particular, we are interested
in affine family of functions on Rn of the form ψM,t(x)= |detM|−1/2ψ(M−1(x−t)),
where t ∈ Rn and M ∈ GLn(R). Indeed we have the following observation stating,
essentially, that if ψ̂ has compact support and high regularity, then the functions
ψM,t are well localized.

Proposition 1. Suppose that ψ ∈ L2(Rn) is such that ψ̂ ∈ C∞
c (R), where R =

supp ψ̂ ⊂ Rn. Then, for each k ∈ N, there is a constant Ck > 0 such that, for any
x ∈ Rn, we have

|ψM,t(x)| ≤Ck |detM|−
1
2 (1+ |M−1(x− t)|2)−k.

In particular, Ck = k m(R)
(
∥ψ̂∥∞+∥△kψ̂∥∞

)
, where △=∑n

i=1
∂ 2

∂ξ 2
i

is the frequency

domain Laplacian operator and m(R) is the Lebesgue measure of R.

Proof. From the definition of the Fourier transform, it follows that, for every x∈Rn,

|ψ(x)| ≤ m(R)∥ψ̂∥∞. (1)

An integration by parts shows that∫
R
△ψ̂(ξ )e2πi⟨ξ ,x⟩ dξ =−(2π)2 |x|2 ψ(x)

and thus, for every x ∈ Rn,

(2π |x|)2k |ψ(x)| ≤ m(R)∥△kψ̂∥∞. (2)

Using (1) and (2), we have(
1+(2π |x|)2k) |ψ(x)| ≤ m(R)

(
∥ψ̂∥∞ +∥△kψ̂∥∞

)
. (3)

Observe that, for each k ∈ N,

(1+ |x|2)k ≤
(
1+(2π)2 |x|2

)k ≤ k
(
1+(2π |x|)2k).

Using this last inequality and (3), we have that for each x ∈ Rn

|ψ(x)| ≤ k m(R)(1+ |x|2)−k (∥ψ̂∥∞ +∥△kψ̂∥∞
)
.

The proof is completed using a simple change of variables. ⊓⊔

It is clear that Proposition 1 applies, in particular, to the continuous shearlet sys-

tems {ψa,s,t = ψMas,t}, where Mas =

(
a −a1/2 s

0 a1/2

)
, for a > 0, s ∈R, t ∈R2 (provided

that ψ satisfies the assumptions of the Proposition).
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Fig. 1 Linear singularity. Left: The continuous shearlet transform of the linear delta distribution
νp has rapid asymptotic decay except when the location variable t is on the support of νp and the
shearing variable s corresponds to the normal direction at t; in this case SHψ νp(a,s, t) ∼ a−1/4,
as a → 0. Right: The continuous shearlet transform of the Heaviside function has rapid asymptotic
decay except when the location variable t is on the line of x1 = 0 and the shearing variable s
corresponds to the normal direction to this line; in this case SHψ νp(a,s, t)∼ a3/4, as a → 0.

In the following, we will assume that ψ , the generator of the continuous shear-
let system, is a classical shearlet, according to the definition in Chapter 1 of this
volume. That is, for ξ = (ξ1,ξ2) ∈ R2, ξ2 ̸= 0, we have

ψ̂(ξ ) = ψ̂1(ξ1) ψ̂2(
ξ2

ξ1
)

where

• ψ̂1 ∈C∞
c (R), supp ψ̂1 ⊂ [−2,− 1

2 ]∪ [ 1
2 ,2], and it satisfies the Calderòn condition∫ ∞

0
|ψ̂1(aω)|2 da

a
= 1, for a.e. ω ∈ R; (4)

• ψ̂2 ∈C∞
c (R), supp ψ̂2 ⊂ [−

√
2

4 ,
√

2
4 ], and ∥ψ2∥2 = 1. (5)

Since ψ̂ ∈C∞
c (R2), it follows that ψ ∈ S (R2) and, therefore, the continuous shear-

let transform of f , denoted by
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SHψ f (a,s, t) = ⟨ f ,ψa,s,t⟩, (a,s, t) ∈ R+×R,×R2,

is well defined for all tempered distributions f ∈ S ′. Hence, we can examine the
continuous shearlet transform of the delta distribution supported along the line x1 =
−px2, which we denote by νp(x1,x2) = δ (x1 + px2), p ∈ R and is defined by

⟨νp, f ⟩=
∫
R

f (−px2,x2)dx2.

The following simple result from [17] shows that SHψ νp(a,s, t), the continuous
shearlet transform of νp, has rapid asymptotic decay, as a → 0, for all values of
s and t, except when t is on the singularity line and s corresponds to the normal
orientation to the singularity line (see Fig. 1). Here and in the following, by rapid
asymptotic decay, we mean that, given any N ∈ N, there is a CN > 0 such that
|SHψ νp(a,s, p)| ≤CN aN , as a → 0.

Proposition 2. If t1 =−pt2 and s = p, we have

lim
a→0

a
1
4 SHψ νp(a,s, t) ̸= 0.

In all other cases,

lim
a→0

a−NSHψ νp(a,s, t) = 0, for all N > 0.

Proof. Recall that the Fourier transform of νp is given by

ν̂p(ξ1,ξ2) =
∫ ∫

δ (x1 + px2)e−2πi⟨ξ ,x⟩ dx2 dx1

=
∫

e−2πix2(ξ2−pξ1) dx2 = δ (ξ2 − pξ1) = ν(− 1
p )
(ξ1,ξ2).

That is, the Fourier transform of the linear delta on R2 is another linear delta on R2,
where the slope − 1

p is replaced by the slope p. Hence, a direct computation gives:

SHψ νp(a,s, t) = ⟨ν̂p , ψ̂a,s,t⟩

=
∫
R

ψ̂a,s,t(ξ1, pξ1)dξ1

= a
3
4

∫
R

ψ̂(aξ1,
√

apξ1 −
√

asξ1)e−2πiξ1(t1+pt2) dξ1

= a−
1
4

∫
R

ψ̂(ξ1,a−
1
2 pξ1 −a−

1
2 sξ1)e−2πia−1ξ1(t1+pt2) dξ1

= a−
1
4

∫
R

ψ̂1(ξ1) ψ̂2(a−
1
2 (p− s))e−2πia−1ξ1(t1+pt2) dξ1

= a−
1
4 ψ̂2(a−

1
2 (p− s))ψ1(−a−1(t1 + pt2)).



6 Kanghui Guo and Demetrio Labate

Recall that ψ̂2 is compactly supported in the interval [−1,1]. It follows that, if s ̸= p,
then ψ̂2(a−1/2(p− s)) → 0 as a → 0 since |p− s| >

√
a for a sufficiently small.

Thus lima→0 SHψ νp(a,s, t) = lima→0⟨ν̂p , ψ̂a,s,t⟩= 0 for s ̸= p. On the other hand,
if t1 =−pt2 and s = p, then ψ̂2(a−1/2(p− s)) = ψ̂2(0) ̸= 0, and

⟨ν̂p , ψ̂a,s,t⟩= a−
1
4 ψ̂2(a−

1
2 (p− s))ψ1(0)∼ a−

1
4 , as a → 0.

Finally, if t1 ̸=−pt2, Proposition 1 implies that, for all N ∈ N,

⟨ν̂p , ψ̂a,s,t⟩

≤ a−
1
4 ψ̂2(a−

1
2 (p− s)) |ψ1(a−1(t1 + pt2))|

≤ CN a−
1
4 ψ̂2(a−

1
2 (p− s))(1+a−2(t1 + pt2)2)−N ∼ a2N− 1

4 , as a → 0.⊓⊔

As another example of line singularity, we will consider the Heaviside function
H(x1,x2) = χx1>0(x1,x2). Also in this case, as the following result shows, the con-
tinuous shearlet transform has rapid asymptotic decay, as a → 0, for all values of s
and t, except when t is on the singularity line and s corresponds to the normal ori-
entation to the singularity line (see Fig. 1). Notice that, using an appropriate change
of variables, this result can be extended to deal with step discontinuities along lines
with arbitrary orientations.

Proposition 3. If t = (0, t2) and s = 0, we have

lim
a→0

a−
3
4 SHψ H(a,0,(0, t2)) ̸= 0.

In all other cases,

lim
a→0

a−NSHψ H(a,s, t) = 0, for all N > 0.

Proof. Observe that ∂
∂x1

H = δ1, where δ1 is the delta distribution defined by

⟨δ1,ϕ⟩=
∫

ϕ(0,x2)dx2,

and ϕ is a function in the Schwartz class S (R2) (notice that here we use the notation
of the inner product ⟨,⟩ to denote the functional on S ). Hence

Ĥ(ξ1,ξ2) = (2πiξ1)
−1δ̂1(ξ1,ξ2),

where δ̂1 is the distribution obeying

⟨δ̂1, ϕ̂⟩=
∫

ϕ̂(ξ1,0)dξ1.

The continuous shearlet transform of H can now be expressed as
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SHψ H(a,s, t) = ⟨H,ψa,s,t⟩

=
∫
R2
(2πiξ1)

−1δ̂1(ξ ) ψ̂a,s,t(ξ )dξ

=
∫
R
(2πiξ1)

−1 ψ̂a,s,t(ξ1,0)dξ1

=
∫
R

a3/4

2πiξ1
ψ̂1(aξ1) ψ̂2(a−

1
2 s)e2πiξ1t1 dξ1

=
a3/4

2πi
ψ̂2(a−

1
2 s)

∫
R

ψ̂1(u)e2πiu t1
a

du
u
,

where t1 is the first component of t ∈ R2.
Notice that, by the properties of ψ1, the function ψ̃1(v) =

∫
R ψ̂1(u)e2πiuv du

u de-
cays rapidly, asymptotically, as v→∞. Hence, if t1 ̸= 0, it follows that ψ̃1(

t1
a ) decays

rapidly, asymptotically, as a → 0, and, as a result, SHψ H(a,s, t) also has rapid de-
cay as a → 0. Similarly, by the support conditions of ψ̂2, if s ̸= 0 it follows that the
function ψ̂2(a−

1
2 s) approaches 0 as a → 0. Finally, if t1 = s = 0, then

a−3/4SHψ H(a,0,(0, t2)) =
1

2πi
ψ̂2(0)

∫
R

ψ̂1(u)
du
u

̸= 0. ⊓⊔

1.2 General singularities

The two examples presented above show that the continuous shearlet transform de-
scribes, through its asymptotic decay at fine scales, both the location and the ori-
entation of delta-type and step-type singularities along lines. As will be discussed
below, this result holds in much greater generality. In particular, away from the sin-
gularities, the continuous shearlet transform has always rapid asymptotic decay. At
the singularity, as the examples suggest, the behaviour depends (i) on singularity
type and (ii) on the geometry of the singularity set.

For the dependence on the singularity type, both examples show that non-rapid
decay occurs at the singularity, in the normal orientation. However, for the step sin-
gularity, we found that, as a → 0, SHψ H(a,0,(0, t2))∼ a3/4 (slow decay), whereas
for the delta singularity we found SHψ νp(a,s, t) ∼ a−1/4 (increase). This shows
that the sensitivity on the singularity type is consistent with the wavelet analysis as
presented in [10, 11]. Recall, in fact, that if f ∈ L2(R) is uniformly Lipschitz α in
a neighborhood of t and ψ̃ is a nice wavelet, the continuous wavelet transform of f
satisfies

Wψ̃ f (a, t)≤C aα+1/2,

which shows that the decay is controlled by the regularity of f at t. This analysis
extends to the case where f has a jump or delta singularity at t, corresponding to
α = 0 and α =−1, respectively. This yields that Wψ̃ f (a, t) has slow decay a1/2, if



8 Kanghui Guo and Demetrio Labate

t is a jump discontinuity, while it increases as a−1/2 if t is a delta-type singularity
(cf. [15]).

That the qualitative behaviours of the decay of the continuous shearlet transform
at the singularity is similar to the continuous wavelet transform should not be sur-
prising since the continuous shearlet transform preserves the microlocal features
of the continuous wavelet transform. Additional observations about this aspect are
found in [5, 17].

x2

O(aN)

O(a3/4)

O(a3/4)

O(aN)

O(a3/4)

x1

Fig. 2 General region S with piecewise smooth boundary ∂S. The continuous shearlet transform
of B = χS has rapid asymptotic decay except when the location variable t is on ∂S and the shearing
variable s corresponds to the normal direction at t; in this case SHψ B(a,s, t)∼ a3/4, as a → 0. The
same slow decay rate occurs at the corner points, for normal orientations.

On the other hand, the ability of the continuous shearlet transform to detect the
geometry of the singularity set goes far beyond the continuous wavelet transform
and is its most distinctive feature. As a particular manifestation of this ability, we
will shows that the continuous shearlet transform provides a very general and el-
egant characterization of step discontinuities along 2D piecewise smooth curves,
which can summarized as follows (see [7, 6]). Let B = χS, where S ⊂ R2 and its
boundary ∂S is a piecewise smooth curve.

• If t /∈ ∂S, then SHψ B(a,s, t) has rapid asymptotic decay, as a → 0, for each
s ∈ R.
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• If t ∈ ∂S and ∂S is smooth near t, then SHψ B(a,s, t) has rapid asymptotic decay,
as a → 0, for each s ∈R unless s = s0 is the normal orientation to ∂S at p. In this
last case, SHψ B(a,s0, t)∼ a

3
4 , as a → 0.

• If t is a corner point of ∂S and s = s0, s = s1 are the normal orientations to ∂S at
t, then SHψ B(a,s0, t),SHψ B(a,s1, t)∼ a

3
4 , as a → 0. For all other orientations,

the asymptotic decay of SHψ B(a,s, t) is faster (even if not necessarily “rapid”).

This behaviour is illustrated in Fig. 2.
The proof of this result and its generalization to higher dimensions will be the

main content of the sections below.

2 Analysis of Step Singularities (2D)

In this section, we describe how the shearlet framework is employed to provide
a characterization of the step singularities associated with functions of the form
B = χS, where S is a bounded region in R2, and the boundary set ∂S is piecewise
smooth.

Before presenting this result, let us discuss the properties of the continuous shear-
let transform that are needed for this analysis. As already noticed in Chapter 1 of
this volume, the continuous shearlet transform exhibits a directional bias which is
manifested, in particular, by the fact that the shearlet detection of the line singularity
given by Proposition 2 does not cover the case where the singularity line is t2 = 0. In
this case, in fact, to be able to capture the correct orientation, the shearing variable
should be taken in the limit value s → ∞. As also discussed in Chapter 1 of this vol-
ume, this limitation can be overcome by using the cone-adapted continuous shearlet
systems.

Hence, for ξ = (ξ1,ξ2) ∈ R2, we let ψ(h),ψ(v) be defined by

ψ̂(h)(ξ1,ξ2) = ψ̂1(ξ1) ψ̂2(
ξ2
ξ1
), ψ̂(h)(ξ1,ξ2) = ψ̂1(ξ2) ψ̂2(

ξ1
ξ2
),

and, for

Mas =

(
a −a1/2 s

0 a1/2

)
, Nas =

(
a1/2 0

−a1/2 s a

)
,

we define the systems of “horizontal” and “vertical” continuous shearlets by

{ψ(h)
a,s,t = |detMas|−

1
2 ψ(h)(M−1

as (x− t)) : 0 < a ≤ 1
4 ,−

3
2 ≤ s ≤ 3

2 , t ∈ R2},

{ψ(v)
a,s,t = |detNas|−

1
2 ψ(h)(N−1

as (x− t)) : 0 < a ≤ 1
4 ,−

3
2 ≤ s ≤ 3

2 , t ∈ R2}.

Notice that, in the new definition, the shearing variable is now allowed to vary over
a compact interval only. In fact, as also described in Chapter 1 of this volume, each
system of continuous shearlets spans only a subspace of L2(R2), namely, the spaces
L2(P(h))∨ and L2(P(v))∨, where P(h) and P(v) are the horizontal and vertical
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cones in the frequency domain, given by

P(h) = {(ξ1,ξ2) ∈ R2 : |ξ1| ≥ 2 and | ξ2
ξ1
| ≤ 1}

P(v) = {(ξ1,ξ2) ∈ R2 : |ξ1| ≥ 2 and | ξ2
ξ1
|> 1}.

Hence, we will define a continuous shearlet transform which uses as analyzing ele-
ments either the “horizontal” or the “vertical” continuous shearlet system. That is,
for 0 < a ≤ 1/4, s ∈ R, t ∈ R2, we define the (fine-scale) cone-adapted continuous
shearlet transform as the mapping from f ∈ L2(R2 \ [−2,2]2)∨ into SHψ f which
is given by:

SHψ f (a,s, t) =

{
SH

(h)
ψ f (a,s, t) = ⟨ f ,ψ(h)

a,s,t⟩, if |s| ≤ 1

SH
(v)

ψ f (a, 1
s , t) = ⟨ f ,ψ(v)

a,s,t⟩, if |s|> 1.

The term fine-scale refers to the fact that this shearlet transform is only defined for
values 0 < a ≤ 1/4. In fact, for the analysis of the boundaries of planar regions, we
will only be interested in deriving asymptotic estimates as a approaches 0.

Finally, we will still assume the shearlet generators ψ(h),ψ(v) are well local-
ized functions. However a few additional assumptions with respect to Sec. 1.1 are
needed. For completeness, we summarize below the complete set of assumptions on
the functions ψ1,ψ2. We assume that:

• ψ̂1 ∈C∞
c (R), supp ψ̂1 ⊂ [−2,− 1

2 ]∪ [ 1
2 ,2], is odd, nonnegative

on [ 1
2 ,2] and it satisfies

∫ ∞

0
|ψ̂1(aξ )|2 da

a
= 1, for a.e. ξ ∈ R; (6)

• ψ̂2 ∈C∞
c (R), supp ψ̂2 ⊂ [−

√
2

4 ,
√

2
4 ], is even, nonnegative,

decreasing in [0,
√

2
4 ), and ∥ψ2∥2 = 1. (7)

Before presenting the proof of the general characterization result, it is useful to
examine the situation where S is a disc. In this case, thanks to the simpler geometry,
it is possible to use a more direct argument than in the general case.

2.1 Shearlet analysis of circular edges

Let DR be the ball in R2 of radius R ≥ R0 > 0, centered at the origin, and let BR =
χDR . It was shown in [6] (by refining an incomplete proof in [17]) that the continuous
shearlet transform of BR exactly characterizes the curve ∂DR.

Theorem 1. Let t ∈ P = {t = (t1, t2) ∈ R2 : | t2
t1
| ≤ 1}.

If t = t0 = R(cosθ0,sinθ0), for some |θ0| ≤ π
4 , then

lim
a→0+

a−
3
4 SHψ BR(a, tanθ0, t0) ̸= 0. (8)
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If t = t0 and s ̸= tanθ0, or if t /∈ ∂D(0,R), then

lim
a→0+

a−N SHψ BR(a,s, t) = 0, for all N > 0. (9)

Proof (Sketch). We only sketch the main ideas of this proof, since this result is a
special case of Theorem 2, which will be presented below. Also, we will consider
the system of horizontal shearlets {ψ(h)

a,s,t} only, since the analysis for the vertical
shearlets is essentially the same. For simplicity of notation, we will drop the upper-
script (h).

A direct computation gives:

SHψ BR(a,s, t) = ⟨B̂R, ψ̂a,s,t⟩

= a
3
4

∫
R

∫
R

ψ̂1(aξ1) ψ̂2(a−
1
2 ( ξ2

ξ1
− s))e2πi⟨ξ ,t⟩ B̂R(ξ1,ξ2)dξ1 dξ2. (10)

For R = 1, the Fourier transform B̂1(ξ1,ξ2) is the radial function:

B̂1(ξ1,ξ2) = |ξ |−1 J1(2π|ξ |),

where J1 is the Bessel function of order 1, whose asymptotic behaviour satis-
fies [18]:

J1(2π|ξ |) = 1
π
|ξ |−

1
2 cos(2π|ξ |− 3π

4
)+O(|ξ |−3/2) as |ξ | → ∞.

It is useful to express the integral (10) using polar coordinates. For | t2
t1
| ≤ 1, |s| ≤ 3

2

and 1
2 R≤ r ≤ 2R, we write t = (t1, t2) as r (cosθ0,sinθ0), where 0≤ |θ0| ≤ π

4 . Thus,
we have:

SHψ BR(a,s,r,θ0)

= a
3
4

∫ ∞

0

∫ 2π

0
ψ̂1(aρ cosθ)ψ̂2(a−

1
2 (tanθ − s))e2πiρr cos(θ−θ0)R2 B̂1(Rρ)dθρdρ

= R2a−
5
4

∫ ∞

0

∫ 2π

0
ψ̂1(ρ cosθ)ψ̂2(a−

1
2 (tanθ − s))e2πi ρr

a cos(θ−θ0)B̂1(
Rρ
a
)dθρdρ

= R2a−
5
4

∫ ∞

0
η(ρ,a,s,r,θ0) B̂1(

Rρ
a
)ρ dρ, (11)

where

η(ρ,a,s,r,θ0) =
∫ 2π

0
ψ̂1(ρ cosθ) ψ̂2(a−

1
2 (tanθ − s))e2πi ρr

a cos(θ−θ0) dθ ,

= η1(ρ,a,s,r,θ0)−η2(ρ,a,s,r,θ0),

and
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η1(ρ,a,s,r,θ0) =
∫ π

2

− π
2

ψ̂1(ρ cosθ) ψ̂2(a−
1
2 (tanθ − s))e2πi ρr

a cos(θ−θ0)dθ ; (12)

η2(ρ,a,s,r,θ0) =
∫ π

2

− π
2

ψ̂1(ρ cosθ) ψ̂2(a−
1
2 (tanθ − s))e−2πi ρr

a cos(θ−θ0) dθ .(13)

In the last equality, we have used the fact that ψ̂1 is odd. Hence, using the asymptotic
estimate for J1, for small a we have:

SHψ BR(a,s,r,θ0) = a
1
4

R
1
2

π
(I(a,s,r,θ0)+E(a,s,r,θ0)),

where

I(a,s,r,θ0) =
∫ ∞

0
η(ρ,a,s,r,θ0) cos

(2πRρ
a

− 3π
4
)

ρ− 1
2 dρ,

E(a,s,r,θ0) =
∫ ∞

0
η(ρ,a,s,r,θ0)O((

Rρ
a
)−3/2)ρ− 1

2 dρ.

At this point, taking advantage of the assumptions on the support of ψ̂1 and ψ̂2,
one can show that, as a → 0, we have that

a−β E = O(a
3
2−β )→ 0

uniformly for s,r,R, for each β ∈ (0,1).
It follows that the asymptotic behaviour of SHψ BR(a,s,r,θ0), as a → 0, is con-

trolled by the integral I(a,s,r,θ0). The rest of the proof is divided in several cases,
depending on the values of s and r, which we briefly summarize.

Case 1: s ̸= tanθ0 (non-normal orientation).

In this case, since the derivative of the phase of the exponential in the inte-
grals (12) and (13) does not vanish, an integration by parts argument shows that
|η(ρ,a,s,r,θ0)| ≤ CN aN , for any N > 0. This implies that I(a,s,r,θ0) has rapid
asymptotic decay, as a → 0.

Case 2: s = tanθ0, but r ̸= R (away from the boundary)

The original argument in [6] was rather involved. Lemma 2 below, which is used
in the general result, provides a simpler proof for this situation.

Case 3: s = tanθ0, r = R (normal orientation)

Setting s = tanθ0 and t = R(cosθ0,sinθ0), a direct computation leads to the ex-
pression:
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lim
a→0

a−
3
4 |SHψ BR(a,s, t)| = lim

a→0
a−

3
4 |SHψ BR(a, tanθ0,R,θ0)|

=

∣∣∣∣∣−e−
3πi
4

2

∫ ∞

0
ψ̂1(ρ cosθ0)ρ− 1

2 h(ρ,R)dρ (14)

+
e

3πi
4

2

∫ ∞

0
ψ̂1(ρ cosθ0)ρ− 1

2 h(ρ,R)dρ

∣∣∣∣∣ , (15)

where

h(ρ,R) =
R

1
2

π

∫ 1

−1
ψ̂2(usec2 θ0)e−πiρRu2

du.

Combining (14) and (15) and using the fact that ψ̂2 is even, it follows that

lim
a→0

a−
3
4 |SHψ BR(a, tanθ0,R,θ0)|

=

√
2R
π

∣∣∣∣∫ ∞

0
ψ̂1(ρ cosθ0)ρ− 1

2

∫ 1

0
ψ̂2(usec2 θ0)

(
sin(πρRu2)+ cos(πρRu2)

)
dudρ

∣∣∣∣ .
The proof is completed using the fact that ψ̂1 is decreasing and applying the follow-
ing Lemma, which is also found in [7].

Lemma 1. Let ψ2 ∈ L2(R) be such that ∥ψ2∥2 = 1, supp ψ̂2 ⊂ [−1,1] and ψ̂2 is an
even function and is nonnegative and decreasing on [0,1]. Then, for each ρ > 0, one
has ∫ 1

0
ψ̂2(u)

(
sin(πρu2)+ cos(πρu2)

)
du > 0.

2.2 General 2D boundaries

As indicated above, the characterization result for the boundaries of 2D regions
holds for general bounded planar regions S ⊂ R2 whose boundary is piecewise
smooth.

More precisely, we assume that the boundary set of S, denoted by ∂S, is a sim-
ple curve, of finite length L, which is smooth except possibly for finitely many
corner points. To precisely define the corner points, it is useful to introduce a
parametrization for ∂S. Namely, let α(t) be the parametrization of ∂S with re-
spect to the arc length parameter t. For any t0 ∈ (0,L) and any j ≥ 0, we as-
sume that limt→t−0

α( j)(t) = α( j)(t−0 ) and limt→t+0
α( j)(t) = α( j)(t+0 ) exist. Also,

let n(t−), n(t+) be the outer normal direction(s) of ∂S at α(t) from the left and
right, respectively; if these two are equal, we write them as n(t). Similarly, for the
curvature of ∂S, we use the notation κ(t−), κ(t+) and κ(t).

We say that p = α(t0) is a corner point of ∂S if either (i) α ′(t−0 ) ̸= ±α ′(t+0 ) or
(ii) α ′(t−0 ) =±α ′(t+0 ), but κ(t−0 ) ̸= κ(t+0 ). When (i) holds, we say that p is a corner
point of first type, while when (ii) holds, we say that p is a corner point of second
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type. On the other hand, if α(t) is infinitely many times differentiable at t0, we say
that α(t0) is a regular point of ∂S. Finally, we say that the boundary curve α(t) is
piecewise smooth if the values α(t) are regular points for all 0 ≤ t ≤ L, except for
finitely many corner points.

Notice that it is possible to relax the assumptions on the regularity, by assuming
that the regular points of ∂S are M times differentiable, for M ∈ N, rather than
infinitely differentiable. All the results presented below can be adapted to the case
of piecewise CM boundary curves, for M ≥ 3.

Let p = α(t0) be a regular point and let s = tan(θ0) with θ0 ∈ (−π
2 ,

π
2 ). Let

Θ(θ0) = (cosθ0,sinθ0). We say that s corresponds to the normal direction of ∂S at
p if Θ(θ0) =±n(t0). We can proceed similarly when α(t0) is a corner point. In this
case, however, there may be two outer normal directions n(t−0 ) and n(t+0 ).

We are now ready to state the following results from [7].

Theorem 2. Let B = χS, where S ⊂ R2 satisfies the properties described above.

(i) If p /∈ ∂S then

lim
a→0+

a−N SHψ B(a,s0, p) = 0, for all N > 0. (16)

(ii) If p∈ ∂S is a regular point and s= s0 does not correspond to the normal direction
of ∂S at p then

lim
a→0+

a−N SHψ B(a,s0, p) = 0, for all N > 0. (17)

(iii) If p ∈ ∂S is a regular point and s = s0 corresponds to the normal direction of
∂S at p then

lim
a→0+

a−
3
4 SHψ B(a,s0, p) ̸= 0. (18)

In the case where p ∈ ∂S is a corner point we have the following result.

Theorem 3. Let B = χS, where S ⊂ R2 satisfies the properties described above.

(i) If p is a corner point of the first type and s = s0 does not correspond to any of
the normal directions of ∂S at p, then

lim
a→0+

a−
9
4 SHψ B(a,s0, p)< ∞. (19)

(ii) If p is a corner point of the second type and s = s0 does not correspond to any of
the normal directions of ∂S at p, then

lim
a→0+

a−
9
4 SHψ B(a,s0, p) ̸= 0. (20)

(iii) If s = s0 corresponds to one of the normal directions of ∂S at p then

lim
a→0+

a−
3
4 SHψ B(a,s0, p) ̸= 0 (21)
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Theorem 2 shows that, if p ∈ ∂S is a regular point, the continuous shearlet trans-
form decays rapidly, asymptotically for a → 0, unless s = s0 corresponds to the
normal direction of ∂S at p, in which case

SHψ B(a,s0, p)∼ O(a
3
4 ), as a → 0.

This result contains the situation where B is a disk, as a special case.
Theorem 3 shows that, at a corner points p, the asymptotic decay of the continu-

ous shearlet transform depends both on the tangent and the curvature at p. If s = s0
corresponds to one of the normal directions of ∂S at p, then the continuous shearlet
transform decays as

SHψ B(a,s0, p)∼ O(a
3
4 ), as a → 0.

This is the same decay rate as for regular points, when s0 corresponds to the normal
direction (but now there are two normal directions). If p is a corner point of the
second type and s does not correspond to any of the normal directions, then

SHψ B(a,s0, p)∼ O(a
9
4 ), as a → 0,

which is a faster decay rate than in the normal-orientation case. Finally, if p is a cor-
ner point of the first type and s0 does not correspond to any of the normal directions,
then, by the theorem, we only know that the asymptotic decay of |SHψ B(a,s0, p)|
is not slower than O(a

9
4 ); however the decay could be faster than O(a

9
4 ). For exam-

ple, as shown in [7], if p is a corner point of a half disk, when s0 does not correspond
to the normal directions, we have that

SHψ B(a,s0, p)∼ O(a
9
4 ), as a → 0.

However, when p is corner point of a polygon S and s0 does not correspond to the
normal directions, for any N ∈ N, there is a constant CN > 0 such that

|SHψ B(a,s0, p)| ≤CN aN , as a → 0.

2.3 Proofs of Theorems 2 and 3

It is clear that the proof used for the disk in Section 2.1 cannot be extended to
this case directly since that argument requires an explicit expression of the Fourier
transform of the region B. Instead, using the divergence theorem, we can express
the Fourier transform of our general region B ⊂ R2 as
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B̂(ξ ) = χ̂S(ξ ) =− 1
2πi|ξ |

∫
∂S

e−2πi⟨ξ ,x⟩Θ(θ) ·n(x)dσ(x)

= − 1
2πiρ

∫ L

0
e−2πiρ Θ(θ)·α(t)Θ(θ) ·n(t)dt (22)

where ξ = ρ Θ(θ), Θ(θ) = (cosθ ,sinθ). Notice that this idea for representing the
Fourier transform of the characteristic function of a bounded region is used, for
example, in [13].

Hence, using (22), we have that

SHψ B(a,s, p)

= ⟨B,ψa,s,p⟩

=
∫ 2π

0

∫ ∞

0
B̂(ρ,θ) ψ̂(d)

a,s,p(ρ,θ)ρ dρ dθ

=− 1
2πi

∫ 2π

0

∫ ∞

0

∫ L

0
ψ̂(d)

a,s,p(ρ,θ)e−2πiρ Θ(θ)·α(t)Θ(θ) ·n(t)dt dρ dθ , (23)

where the upper-script in ψ(d)
a,s,p is either d = h, when |s| ≤ 1, or d = v, when |s|> 1.

The first useful observation is that the asymptotic decay of the shearlet transform
SHψ B(a,s, p), as a→ 0, is only determined by the values of the boundary ∂S which
are “close” to p. To state this fact, for ε > 0, let D(ε, p) be the ball in R2 of radius
ε and center p, and Dc(ε, p) = R2 \D(ε, p). Hence, using (23), we can write the
shearlet transform of B as

SHψ B(a,s, p) = I1(a,s, p)+ I2(a,s, p),

where

I1(a,s, p)

=− 1
2πi

∫ 2π

0

∫ ∞

0

∫
∂S∩D(ε,p)

ψ̂(d)
a,s,p(ρ,θ)e−2πiρ Θ(θ)·α(t)Θ(θ) ·n(t)dt dρ dθ , (24)

I2(a,s, p)

=− 1
2πi

∫ 2π

0

∫ ∞

0

∫
∂S∩Dc(ε,p)

ψ̂(d)
a,s,p(ρ,θ)e−2πiρ Θ(θ)·α(t)Θ(θ) ·n(t)dt dρ dθ . (25)

Thus, the following Localization Lemma shows that I2 has rapid asymptotic decay,
at fine scales.

Lemma 2 (Localization Lemma). Let I2(a,s, p) be given by (25). For any positive
integer N, there is a constant CN > 0 such that

|I2(a,s, p)| ≤CN a
N
2 ,

asymptotically as a → 0, uniformly for all s ∈ R.
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Proof. We will only examine the behaviour of I2(a,s, p) for |s| ≤ 1 (in which case
we use the ‘horizontal’ shearlet transform). The case where |s| > 1 is similar. We
have:

I2(a,s, p) = − 1
2πi

∫
∂S∩Dc(ε,p)

∫ 2π

0

∫ ∞

0
ψ̂(h)

a,s,p(ρ,θ)e−2πiρ Θ(θ)·α(t)Θ(θ) ·n(t)dt dρ dθ

=
−a3/4

2πi

∫
∂S∩Dc(ε,p)

∫ 2π

0

∫ ∞

0
ψ̂1(aρ cosθ) ψ̂2(a−1/2(tanθ − s))

×e2πiρ Θ(θ)·p dρ dθe−2πiρ Θ(θ)·α(t)Θ(θ) ·n(t)dt

=
−a−1/4

2πi

∫
∂S∩Dc(ε,p)

∫ 2π

0

∫ ∞

0
ψ̂1(ρ cosθ) ψ̂2(a−1/2(tanθ − s))

×e2πi ρ
a Θ(θ)·(p−α(t))Θ(θ) ·n(t)dρ dθ dt.

By assumption, ∥p − α(t)∥ ≥ ε for all α(t) ∈ ∂S ∩ Dc(ε, p). Hence, there is
a constant Cp such that infx∈∂S∩Dc(ε,p) |p − x| = Cp. Let I = {θ : | tanθ − s| ≤
a

1
2 }, I1 = {θ : |Θ(θ) · (p− x)| ≥ Cp√

2
}
∩

I , and I2 = I \I1. Since the vectors

Θ(θ),Θ ′(θ) form an orthonormal basis in R2, it follows that, on the set I2, we
have |Θ ′(θ) ·(p−x)| ≥ Cp√

2
. Hence we can express the integrals I2 as a sum of a term

where θ ∈I1 and another term where θ ∈I2, and integrate by parts as follows. On
I1, we integrate by parts with respect to the variable ρ; on I2 we integrate by parts
with respect to the variable θ . Doing this repeatedly, it yields that, for any positive
integer N, |I2(a,s, p)| ≤CN a

N
2 , uniformly in s. This finishes the proof of the lemma.

⊓⊔

Let α(t) be the boundary curve ∂S, with 0 ≤ t ≤ L. We may assume that L > 1
and p = (0,0) = α(1). When p is a corner point of ∂S, we can write

C = ∂S∩D(ε,(0,0)) = C−∪C+,

where

C− = {α(t) : 1− ε ≤ t ≤ 1}, C+ = {α(t) : 1 ≤ t ≤ 1+ ε}. (26)

When p is a corner point of ∂S and s corresponds to one of the normal directions
of ∂S at p, it will be useful to replace the portion of ∂S near p by the Taylor poly-
nomials of degree 2 on both sides of p. Notice that these two polynomials are not
necessarily the same since p is a corner point.

On the other hand, for regular point p ∈ ∂S, rather than using the arclength rep-
resentation, we let C+ = {(G+(u),u), 0 ≤ u ≤ ε} and C− = {(G−(u),u), −ε ≤
u ≤ 0}, where G+(u) and G−(u) are smooth functions on [0,ε] and [−ε,0], respec-
tively. Without loss of generality, we may assume that p = (0,0) so that u0 = 0
and G(0) = 0. Hence we define the quadratic approximation of S near p = (0,0) by
∂S0 = (G0(u),u), where G0 is the Taylor polynomial of degree 2 of G centered at
the origin, given by G0(u) = G′(0)u+ 1

2 G′′(0)u2. Hence we define B0 = χS0 , where
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S0 is obtained by replacing the curve ∂S in B = χS with the quadratic curve ∂S0
near the point p = (0,0). If p is a corner point, then S0 is obtained by replacing the
curve ∂S near p in B = χS with both the left and right quadratic curves ∂S0 near the
point p. For simplicity, we only prove the following result for a regular point p. The
argument for a corner point p is similar.

Lemma 3. For any |s| ≤ 3
2 , we have

lim
a→0+

a−
3
4
∣∣SHψ B(a,s,0))−SHψ B0(a,s,0)

∣∣= 0.

Proof. Notice that, since we assume |s| ≤ 3
2 , we use the system of ‘horizontal’ shear-

lets only.
Let γ be chosen such that 3

8 < γ < 1
2 and assume that a is sufficiently small, so

that aγ < ε . A direct calculation shows that∣∣SHψ B(a,s,0)−SHψ B0(a,s,0)
∣∣ ≤ ∫

R2
|ψ(h)

a,s,0(x)| |χS(x)−χS0(x)|dx

= T1(a)+T2(a),

where x = (x1,x2) ∈ R2 and

T1(a) = a−
3
4

∫
D(aγ ,(0,0))

|ψ(h)(M−1
as x)| |χS(x)−χS0(x)|dx,

T2(a) = a−
3
4

∫
Dc(aγ ,(0,0))

|ψ(h)(M−1
as x)| |χS(x)−χS0(x)|dx.

Observe that:

T1(a) ≤ C a−
3
4

∫
D(aγ ,(0,0))

|χS(x)−χS0(x)|dx.

To estimate the above quantity, it is enough to compute the area between the regions
S and S0. Since G0 is the Taylor polynomial of G of degree 2, we have

T1(a)≤C a−
3
4

∫
|x|<aγ

|x|3dx ≤C a4γ− 3
4 .

Since γ > 3
8 , the above estimate shows that T1(a) = o(a

3
4 ).

The assumptions on the generator function ψ(h) of the shearlet system ψ(h) imply
that, for each N > 0, there is a constant CN > 0 such that |ψ(x)| ≤CN (1+ |x|2)−N .

It is easy to see that (Mas)
−1 = Aa Bs, where Bs =

(
1 s

0 1

)
and Aa =

(
a−1 0

0 a−
1
2

)
.

Also, it is easy to verify that, for all |s| ≤ 3
2 , there is a constant C0 > 0 such that

∥Bsx∥2 ≥C0∥x∥2, or (x1 + sx2)
2 + x2

2 ≥C0(x2
1 + x2

2) for all x ∈ R2. Thus, for a < 1,
we can estimate T2(a) as:
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T2(a) ≤ C a−
3
4

∫
Dc(aγ ,(0,0))

|ψ(h)(Masx)|dx

≤ CN a−
3
4

∫
Dc(aγ ,(0,0))

(
1+(a−1(x1 + sx2))

2 +(a−
1
2 x2)

2
)−N

dx

≤ CN a−
3
4

∫
Dc(aγ ,(0,0))

(
(a−1/2(x1 + sx2))

2 +(a−
1
2 x2)

2
)−N

dx

= CN aN− 3
4

∫
Dc(aγ ,(0,0))

(x2
1 + x2

2)
−N dx

= CN aN− 3
4

∫ ∞

aγ
r1−2N dr

= CN a2N( 1
2−γ) a2γ− 3

4 ,

where the constant C0 was absorbed in the constant CN .
Since γ < 1

2 and N can be chosen arbitrarily large, it follows that T2(a) = o(a
3
4 ).

We can now proceed with the proof of Theorem 2. Here and in the proof of
Theorem 3, it will be sufficient to examine the case of the horizontal shearlets only.
The case of the vertical ones can be handled in essentially the same way.

Proof of Theorem 2.

• Part (i) This follows directly from Lemma 2.

• Part (ii) Assume that s = s0 does not correspond to any of the normal di-
rections of ∂S at p = (0,0). We write s0 = tanθ0, where we assume that |θ0| ≤ π

4 .
Otherwise, for the case π

4 < |θ0| ≤ π
2 , one will use the “vertical” shearlet transform,

and the argument is very similar to the one we will present below. Hence, we have
that

I1(a,s0,0) = −a−
1
4

2πi

∫ ∞

0

∫ 2π

0
ψ̂1(ρ cosθ) ψ̂2(a−1/2(tanθ − tanθ0))K(a,ρ,θ)dθ dρ,

where

K(a,ρ,θ) =
∫ 1+ε

1−ε
e−2πi ρ

a Θ(θ)·α(t)Θ(θ) ·n(t)dt.

Letting G(t) ∈ C∞
0 (R) with G(t) = 1 for |t − 1| ≤ ε

4 and G(t) = 0 for |t − 1| > 3ε
4 ,

we write
I1(a,s0,0) = I11(a,s0,0)+ I12(a,s0,0),

where

I11(a,s0,0) = −a−
1
4

2πi

∫ ∞

0

∫ 2π

0
ψ̂1(ρ cosθ) ψ̂2(a−

1
2 (tanθ − tanθ0))K1(a,ρ,θ)dθ dρ,

I12(a,s0,0) = −a−
1
4

2πi

∫ ∞

0

∫ 2π

0
ψ̂1(ρ cosθ) ψ̂2(a−

1
2 (tanθ − tanθ0))K2(a,ρ,θ)dθ dρ,
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and

K1(a,ρ,θ) =
∫ 1+ε

1−ε
e−2πi ρ

a Θ(θ)·α(t)Θ(θ) ·n(t)G(t)dt

K2(a,ρ,θ) =
∫ 1+ε

1−ε
e−2πi ρ

a Θ(θ)·α(t)Θ(θ) ·n(t)(1−G(t)) dt.

From the definition of G(t), we have 1 − G(t) = 0 for |t − 1| ≤ ε
4 . Since the

boundary curve {α(t), 0 ≤ t ≤ L} is simple and p = (0,0) = α(1), it follows that
there exists a c0 > 0 such that ∥α(t)∥ ≥ c0 for all t with ε

4 ≤ |t −1| ≤ ε . Replacing
the set Dc(ε, p) by the set {α(t), ε

4 ≤ |t −1| ≤ ε}, one can repeat the argument of
Lemma 2 for I12(a,s0,0) to show that |I12(a,s0,0)| ≤CN aN for any N > 0.

Recall that when a → 0, we have θ → θ0. Since s0 does not correspond to the
normal direction at p, one can choose ε sufficient small so that Θ(θ) ·α ′(t) ̸= 0 for
|t −1| ≤ ε and for all small a (and hence for θ near θ0). Also from the assumption
on G(t), it follows that G(n)(1− ε) = 0 and G(n)(1+ ε) = 0 for all n ≥ 0. Writing

e−2πi ρ
a Θ(θ)·α(t) =

−a
2πiρ Θ(θ) ·α ′(t)

(
e−2πi ρ

a Θ(θ)·α(t)
)′
,

it follows that

K1(a,ρ,θ) = − a
2πiρ

∫ 1+ε

1−ε

(
e−2πi ρ

a Θ(θ)·α(t)
)′ Θ(θ) ·n(t)

Θ(θ) ·α ′(t)
G(t)dt

=
ai

2πρ
{
(

e−2πi ρ
a Θ(θ)·α(t) Θ(θ) ·n(t)

Θ(θ) ·α ′(t)
G(t)

)1+ε

1−ε
+K3(a,ρ,θ)}

=
ai

2πρ
K3(a,ρ,θ),

where we used the fact that G(1− ε) = 0, G(1+ ε) = 0.
Repeating the above argument for K3(a,ρ,θ) and using induction, it follows that

for all N > 0 there exists a CN > 0 such that |K1(a,ρ,θ)| ≤CN aN and, hence, that
|I11(a,s0,0)| ≤CN aN .

• Part (iii) We may assume that p = (0,0) and s = tanθ0 for some |θ0| ≤ π
4 . Let

S,G,S0,G0 be defined as in Lemma 3. Thus, according to Lemma 3, on the curve
C , one can use G0(u) to replace G+(u) since the approximation error is o(a

3
4 ). For

simplicity of notation, in the following we will use G to denote G+.
Using polar coordinates, we can express I1(a,0,0), evaluated on S0, as

I1(a,0,0) =− 1

2πia
1
4

∫ ∞

0

∫ 2π

0
ψ̂1(ρ cosθ)ψ̂2(a−

1
2 (tanθ − tanθ0))

×
∫ ε

−ε
e−2πi ρ

a (cosθG0(u)+sinθ u)(−cosθ + sinθ G′
0(u))dudθ dρ.

By Lemma 2 and Lemma 3, to complete the proof it is sufficient to show
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lim
a→0+

a−
3
4 I1(a,0,0) ̸= 0.

Let Hθ (u) = cosθG0(u)+u sinθ and A = 1
2 G′′(0). Since s = tanθ0 corresponds to

the normal direction of S0 at p = (0,0), it follows that H ′
θ0
(0) = 0. This implies that

G′(0) = − tanθ0, so that Hθ (u) = cosθ(−u tanθ0 +Au2)+ u sinθ = Au2 cosθ +
u(sinθ − cosθ tanθ0). We will consider separately the cases A ̸= 0 and A = 0.

Case 1: A ̸= 0. In this case, we may assume that A > 0 since the case A < 0 is
similar. We have that∫ ε

−ε
e−2πi ρ

a (G0(u) cosθ+u sinθ)(−cosθ +G′
0(u)sinθ)du

= e
ρπi

a
(sinθ−cosθ tanθ0)

2

2A cosθ

∫ ε

−ε
e−2πi ρ

a A(u−uθ )
2 cosθ (2Au sinθ − cosθ − sinθ tanθ0)du

= K0(θ ,a)+K1(θ ,a),

where uθ =− sinθ−cosθ tanθ0
2Acosθ =− 1

2A (tanθ − tanθ0),

K0(θ ,a) = −(cosθ + sinθ tanθ0)e
ρπi
2A

(tanθ−tanθ0)
2

a

∫ ε

−ε
e−2πi ρ

a cosθ A(u−uθ )
2

du,

K1(θ ,a) = 2Asinθ e
ρπi
2A

(tanθ−tanθ0)
2

a

∫ ε

−ε
e−2πi ρ

a cosθ A(u−uθ )
2
udu.

In the expression of I1, the interval [0, 2π] of the integral in θ can be broken into
the subintervals [−π

2 ,
π
2 ] and [π

2 ,
3π
2 ]. On [π

2 ,
3π
2 ], we let θ ′ = θ −π so that θ ′ ∈

[−π
2 ,

π
2 ] and that sinθ = −sinθ ′, cosθ = −cosθ ′. Using this observation and the

fact that ψ̂1 is an odd function, it follows that I1(a,0,0) = I10(a,0,0)+ I11(a,0,0),
where for j = 0,1,

I1 j(a,0,0) =− 1

2πia
1
4

∫ ∞

0

∫ π
2

− π
2

ψ̂1(ρ cosθ)ψ̂2(a−
1
2 (tanθ))K j(θ ,a)dθ dρ.

+
1

2πia
1
4

∫ ∞

0

∫ π
2

− π
2

ψ̂1(ρ cosθ)ψ̂2(a−
1
2 (tanθ))K j(θ +π,a)dθ dρ.

For θ ∈ (−π
2 ,

π
2 ), let t = a−

1
2 (tanθ − tanθ0) and a−

1
2 u = u′. Since a → 0 implies

θ → θ0, we obtain:

lim
a→0+

a−
1
2 K0(θ ,a) = −secθ0 e

iπρ
2A t2

∫ ∞

−∞
e−2πiρAcosθ0(u− t

2A )
2

du

= −secθ0 e
iπρ
2A t2

∫ ∞

−∞
e−2πiρAcosθ0u2

du.

Similarly, we have that

lim
a→0+

a−
1
2 K0(θ +π,a) = secθ0 e−

i πρ
2A t2

∫ ∞

−∞
e2πiρAcosθ0u2

du.
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Using the calculations of K0(θ ,a) and K0(θ +π,a), it follows from the additional
factor u inside the integral of K1 that K1(θ ,a) = O(a) and K1(θ + π,a) = O(a).
Thus, we obtain:

lim
a→0+

2πi
a3/4 I1(a,0,0) = lim

a→0+

2πi
a3/4 I10(a,0,0).

Using the fact that ψ̂1 is odd, we have that

lim
a→0+

2πia−
3
4 I1(a,0,0)

= secθ0

∫ ∞

0
ψ̂1(ρ)

∫ 1

−1
e

πiρ
2A t2

ψ̂2(t)dt
∫ ∞

−∞
e−2πiρAcosθ0u2

dudρ

+secθ0

∫ ∞

0
ψ̂1(ρ)

∫ 1

−1
e−

πiρ
2A t2

ψ̂2(t)dt
∫ ∞

−∞
e2πiρAcosθ0u2

dudρ

= secθ0

∫ ∞

0
ψ̂1(ρ)

∫ 1

−1
ψ̂2(t)2ℜ

{
e

πiρ
2A t2

∫ ∞

−∞
e−2πiρAcosθ0u2

du
}

dt dρ.

Recalling the formulas of Fresnel integrals∫ ∞

−∞
cos(

π
2

x2)dx =
∫ ∞

−∞
sin(

π
2

x2)dx = 1,

it follows that∫ ∞

−∞
cos(2πρAcosθ0x2)dx =

∫ ∞

−∞
sin(2πρAcosθ0x2)dx =

1
2
√

ρAcosθ0
.

Thus, we conclude that

lim
a→0+

2πia−
3
4 I1(a,0,0)

=
(secθ0)

3
2

√
A

∫ ∞

0

ψ̂1(ρ)√ρ

(∫ 1

−1
cos(

πρ
2A

t2)ψ̂2(t)dt +
∫ 1

−1
sin(

πρ
2A

t2)ψ̂2(t)dt
)

dρ.

The last expression is strictly positive by Lemma 1 and by the properties of ψ̂1.

Case 2: A = 0. Since, in this case, G0(u) = −u tanθ0 and, hence, G′
0(u) =

− tanθ0, it follows that∫ ε

−ε
e−2πi ρ

a (G0(u)cosθ+usinθ)(−cosθ +G′
0(u)sinθ)du

=−(cosθ + sinθ tanθ0)
∫ ε

−ε
e−2πi ρ

a usinθ du.

Using this observation, a direct calculation yields that
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2πi I1(a,0,0)

= −a−
1
4

∫ ∞

0

∫ 2π

0
ψ̂1(ρ cosθ)ψ̂2(a−

1
2 (tanθ − tanθ0))

×
(
−(cosθ + sinθ tanθ0)

∫ ε

−ε
e−2πi ρ

a (sinθ−cosθ tanθ0)udu
)

dθ dρ

= a−
1
4

∫ ∞

0

∫ ε

−ε

∫ 2π

0
ψ̂1(ρ cosθ)ψ̂2(a−

1
2 (tanθ − tanθ0))

×e−2πi ρ
a sinθu(cosθ + sinθ tanθ0)dθ dudρ

= a−
1
4

∫ ∞

0

∫ ε

−ε

∫ π
2

− π
2

ψ̂1(ρ cosθ)ψ̂2(a−
1
2 ((tanθ − tanθ0))

×e−2πi ρ
a (sinθ−cosθ tanθ0)u (cosθ + sinθ tanθ0)dθ dudρ

+a−
1
4

∫ ∞

0

∫ ε

−ε

∫ π
2

− π
2

ψ̂1(ρ cosθ)ψ̂2(a−
1
2 (tanθ − tanθ0))

×e2πi ρ
a (sinθ−cosθ tanθ0)u (cosθ + sinθ tanθ0)dθ dudρ

Using the change of variables t = a−
1
2 (tanθ − tanθ0) and a−

1
2 u = u′, from the last

set of equalities we obtain that

lim
a→0+

2πia−
3
4 I1(a,0,0)

=
∫ ∞

0

∫ ∞

0
ψ̂1(ρ)

∫ 1

−1
ψ̂2(t)e−2πicosθ0ρtudt dudρ

+
∫ ∞

0

∫ ∞

0
ψ̂1(ρ)

∫ 1

−1
ψ̂2(t)e2πicosθ0ρtudt dudρ

= secθ0 ψ̂2(0)
∫ ∞

0

ψ̂1(ρ)
ρ

dρ > 0.

This completes the proof of (iii) and, together with it, the proof of Theorem 2. ⊓⊔

We now prove Theorem 3. Notice that the proofs of parts (i) and (iii) are obtained
by modifying the arguments used in (ii) and (iii) of the proof above.

Proof of Theorem 3.

• Part (i). The proof follows essentially the same ideas as in the proof of (ii) of
Theorem 2.

Assume that s = s0 does not correspond to any of the normal directions of ∂S at
p = (0,0). As in the the proof of Theorem 2, we write s0 = tanθ0, where we assume
that |θ0| ≤ π

4 .
Breaking the interval [−π

2 ,
3π
2 ] into [−π

2 ,
π
2 ] and [π

2 ,
3π
2 ], and changing the vari-

able θ = θ ′+π for the integral on [π
2 ,

3π
2 ], we can write I1, given by (24), as

I1(a,s0,(0,0)) = I11(a,s0,(0,0))+ I12(a,s0,(0,0)),
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where, for j = 1,2,

I1 j(a,s0,(0,0))

=−a−
1
4

2πi

∫ ∞

0

∫ π
2

− π
2

ψ̂1(ρ cosθ) ψ̂2(a−1/2(tanθ − tanθ0))K j(a,ρ,θ)dθ dρ,

and
K j(a,ρ,θ) = K j1(a,ρ,θ)+K j2(a,ρ,θ),

with

K11(a,ρ,θ) =
∫ 1

1−ε
e−2πi ρ

a Θ(θ)·α(t)Θ(θ) ·n(t)dt,

K12(a,ρ,θ) =
∫ 1+ε

1
e−2πi ρ

a Θ(θ)·α(t)Θ(θ) ·n(t)dt,

K21(a,ρ,θ) =
∫ 1

1−ε
e2πi ρ

a Θ(θ)·α(t)Θ(θ) ·n(t)dt,

K22(a,ρ,θ) =
∫ 1+ε

1
e2πi ρ

a Θ(θ)·α(t)Θ(θ) ·n(t)dt.

By the support condition on ψ̂2, we have that θ → θ0 as a → 0. Since s0 = tanθ0
does not correspond to any of the normal directions of ∂S at (0,0), it follows that
Θ(θ0) · α ′(1) ̸= 0. Hence, for a sufficiently small (in which case θ is near θ0),
there is an ε > 0 sufficiently small, such that Θ(θ) ·α ′(t) ̸= 0 for all θ near θ0 and
t ∈ [1− ε,1+ ε]. Next, writing

e−2πi ρ
a Θ(θ)·α(t) =

−a
2πiρ Θ(θ) ·α ′(t)

(
e−2πi ρ

a Θ(θ)·α(t)
)′
,

and then integrating by parts twice the integral K11 with respect to t, we obtain

K11(a,ρ,θ) = − a
2πiρ

∫ 1

1−ε

(
e−2πi ρ

a Θ(θ)·α(t)
)′ Θ(θ) ·n(t)

Θ(θ) ·α ′(t)
dt

= K111(a,ρ,θ)+K112(a,ρ,θ)+K113(a,ρ,θ)+O(a3),

where

K111(a,ρ,θ) = − a
2πiρ

e−2πi ρ
a Θ(θ)·α(1−) Θ(θ) ·n(1−)

Θ(θ) ·α ′(1−)

K112(a,ρ,θ) =
a

2πiρ
e−2πi ρ

a Θ(θ)·α(1−ε) Θ(θ) ·n(1− ε)
Θ(θ) ·α ′(1− ε)

K113(a,ρ,θ) =
a2

(2πiρ)2

(
e−2πi ρ

a Θ(θ)·α(t) 1
Θ(θ) ·α ′(t)

(
Θ(θ) ·n(t)
Θ(θ) ·α ′(t)

)′
)∣∣∣∣1

1−ε
.

Similarly, one can write
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K12(a,ρ,θ) = K121(a,ρ,θ)+K122(a,ρ,θ)+K123(a,ρ,θ)+O(a3).

Accordingly, we write

I11(a,s0, p) = I111(a,s0, p)+ I112(a,s0, p)+ I113(a,s0, p)+O(a3),

where, for l = 1,2,3,

I11l(a,s0, p) = −a−
1
4

2πi

∫ ∞

0

∫ 2π

0
ψ̂1(ρ cosθ) ψ̂2(a−1/2(tanθ − tanθ0))×

×(K11l(a,ρ,θ)+K12l(a,ρ,θ)) dθ dρ.

Similarly, for the integral I12 we write

I12(a,s0, p) = I121(a,s0, p)+ I122(a,s0, p)+ I123(a,s0, p)+O(a3),

where, for l = 1,2,3,

I12l(a,s0, p) = −a−
1
4

2πi

∫ ∞

0

∫ 2π

0
ψ̂1(ρ cosθ) ψ̂2(a−1/2(tanθ − tanθ0))×

×(K21l(a,ρ,θ)+K22l(a,ρ,θ)) dθ dρ,

and the terms K21l ,K22l are constructed as the corresponding terms K11l ,K12l . A
direct computation shows that

K111(a,ρ,θ)+K121(a,ρ,θ)+K211(a,ρ,θ)+K221(a,ρ,θ) = 0,

and this implies that 1

I111(a,s0, p)+ I121(a,s0, p) = 0.

Since ∂S is simple, it follows that α(1−ε) ̸= (0,0) and α(1+ε) ̸= (0,0). There-
fore, by the argument used in the proof of Lemma 2, it follows that, for any N > 0,

|I112(a,s0, p)| ≤CN aN , as a → 0.

Similarly, one has
|I122(a,s0, p)| ≤CN aN , as a → 0.

It only remains to analyze the terms I113, I123. To do that, notice that each one
of the elements K113, K123, K213, K223, is made out of two terms, one at t = 1± ε
and one at t = 1. As for the integrals I112(a,s0, p) and I122(a,s0, p), also in this case
the K terms evaluated at t = 1± ε have fast asymptotic decay as a → 0, and can be
included in negligible part O(a3). Thus, in order to determine the asymptotic decay
rate for I113(a,s0, p)+ I123(a,s0, p), one only needs to analyze the corresponding K

1 Notice: the assumption that ψ̂1 is odd makes this cancellation possible. By contrast, the generating
function of the curvelet system, which is defined in polar coordinates, does not share this property.
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terms corresponding to t = 1. To do that, let κ(t) be the curvature of ∂S at α(t). By
the Frenet’s formula [3], we have that

α ′′(t) = κ(t)n(t), n′(t) =−κ(t)α ′(t).

Hence, using these equalities and the fact the the pair {α ′(t), n(t)} is an orthonormal
basis in R2, we have:(

Θ(θ) ·n(t)
Θ(θ) ·α ′(t)

)′

=
(Θ(θ) ·n′(t))(Θ(θ) ·α ′(t))− (Θ(θ) ·α ′′(t))(Θ(θ) ·n(t))

(Θ(θ) ·α ′(t))2

=−κ(t) ((Θ(θ) ·α ′(t))(Θ(θ) ·α ′(t))+(Θ(θ) ·n(t))(Θ(θ) ·n(t)))
(Θ(θ) ·α ′(t))2

=− κ(t) |Θ(θ)|2

(Θ(θ) ·α ′(t))2 =− κ(t)
(Θ(θ) ·α ′(t))2 .

It follows from the above observations that

lim
a→0+

(ρ
a

)2
(K−

113(a,s0, p)+K+
123(a,s0, p))

=
1

(2πi)2

(
κ(1+)

(Θ(θ0) ·α ′(1+))3 − κ(1−)
(Θ(θ0) ·α ′(1−))3

)
. (27)

Similarly, one has

lim
a→0+

(ρ
a

)2
(K−

213(a,s0, p)+K+
223(a,s0, p))

=
1

(2πi)2

(
κ(1+)

(Θ(θ0) ·α ′(1+))3 − κ(1−)
(Θ(θ0) ·α ′(1−))3

)
. (28)

Finally, by making the change of variables u = a−
1
2 (tanθ − tanθ0) in I113 and I123,

and applying (27) and (28), we obtain

lim
a→0+

a−
9
4 (I113(a,s0, p)+ I123(a,s0, p)) =−A,

where

A =
cos2 θ0

2π2

(
κ(1+)

(Θ(θ0) ·α ′(1+))3 − κ(1−)
(Θ(θ0) ·α ′(1−))3

)
×
∫ ∞

0
ψ̂1(ρ cosθ0)dρ

∫ 1

−1
ψ̂2(u)du < ∞. (29)

This completes the proof of part (i).
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• Part (ii). It is sufficient to show that, if p is a corner point of the second type,
A ̸= 0, where A is given by (29).

In fact, we have that

α ′(1+) = α ′(1−) or α ′(1+) =−α ′(1−).

If α ′(1+) = α ′(1−), from κ(1+) ̸= κ(1−), we have

A =
cos2 θ0

2π2
κ(1+)−κ(1−)
(Θ(θ0) ·α ′(1))3

∫ ∞

0
ψ̂1(ρ cosθ0)dρ

∫ 1

−1
ψ̂2(u)du ̸= 0.

If on the other hand, α ′(1+)=−α ′(1−), then it follows that n(1+)=−n(1−). Since
α ′′(1+)=−κ(1+)n(1−) and α ′′(1−)= κ(1−)n(1−), and since κ(1+) ̸= κ(1−), we
see that it is not possible to have κ(1+) = κ(1−) = 0. Since we know κ(1+) ≥ 0,
and κ(1−)≥ 0, it follows that κ(1+)+κ(1−)> 0. Thus, also in this case we have

A =
cos2 θ0

2π2
κ(1+)+κ(1−)

(Θ(θ0) ·α ′(1+))3

∫ ∞

0
ψ̂1(ρ cosθ0)dρ

∫ 1

−1
ψ̂2(u)du ̸= 0.

This completes the proof of part (ii).

• Part (iii). By the assumptions on the corner points, it follows that if s corre-
sponds to C− at p, then it cannot correspond to C+ at p. From part (i), we see that
it is enough to consider C− or C+. Thus, we may assume that s corresponds to
the outer normal direction of C+ at p = (0,0). Since the argument for this case is
very similar to the one for (iii) of Theorems 2, to save the notations here we assume
θ0 = 0 so that s = 0.

Let S,G,S0,G0 be defined as in Lemma 3. Thus, according to Lemma 3, on C+,
we one can use G0(u) to replace G+(u) since the approximation error is o(a

3
4 ). For

simplicity, in the following we will use G to denote G+.
Using polar coordinates we can express I1(a,0,0), evaluated on S0, as

I1(a,0,0) =− 1

2πia
1
4

∫ ∞

0

∫ 2π

0
ψ̂1(ρ cosθ)ψ̂2(a−

1
2 tanθ)

∫ ε

0
e−2πi ρ

a (cosθG0(u)+sinθ u)

×(−cosθ + sinθ G′
0(u))dudθ dρ.

By Lemma 2 and Lemma 3, to complete the proof it is sufficient to show

lim
a→0+

a−
3
4 I1(a,0,0) ̸= 0.

Since θ0 = 0, we have n(p) = (1,0). It follows that G0(0) = 0, G′
0(0) = 0 so that

G0(u) = 1
2 G′′(0)u2. Let A = 1

2 G′′(0). We will consider separately the case A ̸= 0
and A = 0.

Case 1: A ̸= 0. In this case, we may assume that A > 0, since the case A < 0 is
similar. We have that
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0
e−2πi ρ

a (G0(u)cosθ+usinθ)(−cosθ +G′
0(u)sinθ)du

= e
ρπi

a
sin2 θ

2cosθA

∫ ε

0
e−2πi ρ

a cosθ A(u−uθ )
2
(−cosθ +2Ausinθ)du

= K0(θ ,a)+K1(θ ,a),

where uθ =− sinθ
2Acosθ and

K0(θ ,a) = −cosθe
ρπi

a
sin2 θ

2Acosθ

∫ ε

0
e−2πi ρ

a cosθ A(u−uθ )
2

du,

K1(θ ,a) = 2Asinθe
ρπi

a
sin2 θ

2Acosθ

∫ ε

0
e−2πi ρ

a cosθ A(u−uθ )
2
udu.

In the expression of I1, the interval [0, 2π] of the integral in θ can be broken into the
subintervals [−π

2 ,
π
2 ] and [π

2 ,
3π
2 ]. On [π

2 ,
3π
2 ], we let θ ′ = θ −π so that θ ′ ∈ [−π

2 ,
π
2 ]

and that sinθ = −sinθ ′, cosθ = −cosθ ′. Using this observation and the fact that
ψ̂1 is an odd function, it follows that I1(a,0,0) = I10(a,0,0)+ I11(a,0,0), where for
j = 0,1,

I1 j(a,0,0) =− 1

2πia
1
4

∫ ∞

0

∫ π
2

− π
2

ψ̂1(ρ cosθ)ψ̂2(a−
1
2 (tanθ))K j(θ ,a)dθ dρ.

+
1

2πia
1
4

∫ ∞

0

∫ π
2

− π
2

ψ̂1(ρ cosθ)ψ̂2(a−
1
2 (tanθ))K j(θ +π,a)dθ dρ.

For θ ∈ (−π
2 ,

π
2 ), let t = a−

1
2 tanθ (and a−

1
2 u = u′). Recall that as a → 0, θ ap-

proaches θ0 = 0 so that cosθ → 1. We have

lim
a→0+

a−
1
2 K0(θ ,a) = −e

i πρ
2A t2

∫ ∞

0
e−2πiρA(u− t

2A )
2

du

= −e
i πρ
2A t2

∫ ∞

0
e−2πiρAu2

du− e
i πρ
2A t2

∫ 0

− t
2A

e−2πiρAu2
du.

Similarly, we have

lim
a→0+

a−
1
2 K0(θ +π,a) = −e−

i πρ
2A t2

∫ ∞

0
e2πiρAu2

du+ e−
i πρ
2A t2

∫ 0

− t
2A

e2πiρAu2
du.

Since sinθ = O(a
1
2 ) (due to the conditions on the support of ψ̂), based on the calcu-

lation of K0(θ ,a) and K0(θ +π,a), it follows that K1(θ ,a) = O(a), K1(θ +π,a) =
O(a). Thus,

lim
a→0+

2πi
a3/4 I1(a,0,0) = lim

a→0+

2πi
a3/4 I10(a,0,0).

Finally, using the facts that ψ̂2 is even, that the function
∫ 0
− t

2A
e2πiρAu2

du is an odd
function of t, and the formulas of Fresnel integral as in the proof of Theorem 2, we
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conclude that

lim
a→0+

2πi a−
3
4 I1(a,0,0) =

∫ ∞

0
ψ̂1(ρ)

∫ 1

−1
e

πiρ
2A t2

ψ̂2(t) dt
∫ ∞

0
e−2πiρAu2

du dρ

+
∫ ∞

0
ψ̂1(ρ)

∫ 1

−1
e−

πiρ
2A t2

ψ̂2(t) dt
∫ ∞

0
e2πiρAu2

du dρ

=
1√
A

∫ ∞

0

ψ̂1(ρ)√ρ

(∫ 1

−1
cos(

πiρ
2A

t2)ψ̂2(t)dt +
∫ 1

−1
sin(

πiρ
2A

t2)ψ̂2(t)dt
)

dρ.

The last expression is strictly positive by Lemma 1, and by the properties of ψ̂1.
Case 2: A = 0. Since, in this case, G0(u) = 0, it follows that∫ ε

0
e−2πi ρ

a (G0(u)cosθ+usinθ)(−cosθ +G′
0(u)sinθ)du =−cosθ

∫ ε

0
e−2πi ρ

a usinθ du.

It follows that

2πi I1(a,0,0)

=−a−
1
4

∫ ∞

0

∫ 2π

0
ψ̂1(ρ cosθ)ψ̂2(a−

1
2 tanθ)

(
−cosθ

∫ ε

0
e−2πi ρ

a sinθ udu
)

dθ dρ

= a−
1
4

∫ ∞

0

∫ ε

0

∫ 2π

0
ψ̂1(ρ cosθ)ψ̂2(a−

1
2 tanθ)e−2πi ρ

a sinθu cosθ dθ dudρ

= a−
1
4

∫ ∞

0

∫ ε

0

∫ π
2

− π
2

ψ̂1(ρ cosθ)ψ̂2(a−
1
2 (tanθ))e−2πi ρ

a sinθu cosθ dθ du dρ

+a−
1
4

∫ ∞

0

∫ ε

0

∫ π
2

− π
2

ψ̂1(ρ cosθ)ψ̂2(a−
1
2 (tanθ))e2πi ρ

a sinθu cosθ dθ du dρ

Using the change of variables t = a−
1
2 tanθ (and a−

1
2 u = u′) we obtain

lim
a→0+

2πia−
3
4 I1(a,0,0)

=
∫ ∞

0

∫ ∞

0
ψ̂1(ρ)

∫ 1

−1
ψ̂2(t)e−2πiρtudt dudρ +

∫ ∞

0

∫ ∞

0
ψ̂1(ρ)

∫ 1

−1
ψ̂2(t)e2πiρtudt dudρ

= (ψ̂2(0))2
∫ ∞

0

ψ̂1(ρ)
ρ

dρ > 0.

This completes the proof of (iii) and, together with it, the proof of Theorem 3. ⊓⊔

2.4 Extensions and Generalizations

The results presented above are limited to the analysis of the continuous shearlet
transform of characteristic functions of sets. It is clear that, to provide a more re-
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alistic model for images containing edges, it would be useful to consider a more
general class of compactly supported functions, which are not necessarily constant
or piecewise constant.

Unfortunately, the analysis of this situation is significantly more complicated and
cannot be derived directly using the techniques developed above. This is due to the
fact that one main technical tool which was used to deduced Theorem 2 and 3 is the
divergence theorem (cf. (22)), which allows us to conveniently express the Fourier
transform of B = χS, the characteristic function of a set S. If χS is replaced by gχS,
this produces a convolution in the Fourier domain, and this has a dramatic impact
on all the arguments used above, even in the simplified situation where g can be
expanded using a Taylor polynomial.

Despite the fact that a general result for the characterization of singularities of
piecewise smooth functions is not known at the moment, it is still possible to derive
some useful observations which take advantage of the directional sensitivity of the
continuous shearlet transform. Following the approach in [6], let Ω be a bounded
open subset of R2 and assume a smooth partition

Ω =
L∪

n=1

Ωn ∪Γ ,

where:

1. for each n = 1, . . . ,L, Ωn is a connected open domain;
2. each boundary ∂Ω Ωn is generated by a C3 curve γn and each of the boundary

curves γn can be parametrized as (ρ(θ)cosθ ,ρ(θ)sinθ) where ρ(θ) : [0,2π)→
[0,1] is a radius function;

3. Γ =
∪L

n=1 ∂Ω Ωn, where ∂Ω X denotes the relative topological boundary in Ω of
X ⊂ Ω .

Hence, we define the space E1,3(Ω) as the collection of functions which are com-
pactly supported in Ω and have the form

f (x) =
L

∑
n=1

fn(x)χΩn(x) for x ∈ Ω\Γ

where, for each n = 1, . . . ,L, fn ∈C1
0(Ω) with ∑|α |≤1 ∥Dα fn∥∞ ≤C for some C > 0,

and the sets Ωn are pairwise disjoint in measure. The functions E1,3(Ω) are a variant
of the cartoon-like images, where the set Γ describes the boundaries of different
objects. Similar image models are commonly used, for example, in the variational
approach to image processing [2, Ch.3]. Notice that each term un(x) = fn(x)χΩn(x)
models the relatively homogeneous interior of a single object and that the definition
above does not specify the function value along the boundary set Γ .

For each x in a C3 component of Γ , we define the jump of f at x, denoted by [ f ]x,
to be

[ f ]x = lim
ε→0+

f (x+ ε vx)− f (x− ε vx)
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where vx is an unit normal vector along Γ at x. Also, for x∈R2, L> 0, we denote the
cube of center x and side-length 2L by Q(x,L); that is, Q(x,L) = [−L,L]2 + x. For
k = (k1,k2)∈Z2, let M ∈N be sufficiently large so that each of the boundary curves
γn may be parametrized as either (E(t2), t2) or (t1,E(t1)) in Q( k

M , 1
M ) if Q( k

M , 1
M )∩

Γ ̸= /0. We have the following result from [6].

Theorem 4. Let f ∈ E1,3(Ω) and suppose that the boundary curve γn, for some n,
is parametrized as (E(t2), t2) in Q( k

M , 1
M ) for some k ∈ Z2, and that t = (E(t2), t2) ∈

Q( k
M , 1

2M ) for some t2. If s =−E ′(t2), there exist positive constants C1 and C2 such
that

C1 |[ f ]t | ≤ lim
a→0+

a−
3
4 |SHψ f (a,s, t)| ≤C2 |[ f ]t |. (30)

If s ̸=−E ′(t2),then
lim

a→0+
a−

3
4 |SHψ f (a,s, t)|= 0. (31)

This shows that, on the discontinuity curve, if s corresponds to the normal ori-
entation, then the continuous shearlet transform of f decay as O(a−

3
4 ), provided

|[ f ]t | ̸= 0. However, if s does not correspond to the normal orientation, we can only
claim that SHψ f (a,s, t) decays faster than O(a−

3
4 ).

3 Extension to Higher Dimensions

The characterization of boundary regions using the continuous shearlet transform
extends to the 3D setting [8, 9]. However, due to the more complicated geometry,
the arguments for the 2D case do not carry over directly. More precisely, the main
difficulties arise in dealing with irregular points on the boundary of solid regions,
for which there are still some open problems as will be described below.

3.1 3D Continuous Shearlet Transform

The construction of shearlet systems in 3D follows essentially the same ideas as the
2D construction. Also in this case, it is convenient to use separate shearlet systems
defined in different subregions of the frequency space. This leads to the definition
of three pyramid-based systems, associated with the pyramidal regions:

P1 = {(ξ1,ξ2,ξ3) ∈ R3 : |ξ1| ≥ 2, | ξ2
ξ1
| ≤ 1 and | ξ3

ξ1
| ≤ 1},

P2 = {(ξ1,ξ2,ξ3) ∈ R3 : |ξ1| ≥ 2, | ξ2
ξ1
|> 1 and | ξ3

ξ1
| ≤ 1},

P3 = {(ξ1,ξ2,ξ3) ∈ R3 : |ξ1| ≥ 2, | ξ2
ξ1
| ≤ 1 and | ξ3

ξ1
|> 1}.

For ξ = (ξ1,ξ2,ξ3) ∈ R3, ξ1 ̸= 0, let ψ(d), d = 1,2,3 be defined by
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ψ̂(1)(ξ ) = ψ̂(1)(ξ1,ξ2,ξ3) = ψ̂1(ξ1) ψ̂2(
ξ2
ξ1
), ψ̂2(

ξ3
ξ1
),

ψ̂(2)(ξ ) = ψ̂(2)(ξ1,ξ2,ξ3) = ψ̂1(ξ2) ψ̂2(
ξ1
ξ2
), ψ̂2(

ξ3
ξ2
),

ψ̂(3)(ξ ) = ψ̂(3)(ξ1,ξ2,ξ3) = ψ̂1(ξ3) ψ̂2(
ξ2
ξ3
), ψ̂2(

ξ1
ξ3
),

where ψ1, ψ2 satisfy the same assumptions as in the 2D case. Hence, for d = 1,2,3,
the 3D pyramid-based continuous shearlet systems for L2(Pd)

∨ are the systems

{ψ(d)
a,s1,s2,t : 0 ≤ a ≤ 1

4 ,−
3
2 ≤ s1 ≤ 3

2 ,−
3
2 ≤ s2 ≤ 3

2 , t ∈ R3} (32)

where ψ(d)
a,s1,s2,t(x) = |detM(d)

as1s2 |−
1
2 ψ(d)((M(d)

as1s2)
−1(x− t)), and

M(1)
as1s2 =

(
a −a1/2 s1 −a1/2 s2

0 a1/2 0
0 0 a1/2

)
, M(2)

as1s2 =

(
a1/2 0 0

−a1/2 s1 a −a1/2 s2
0 0 a1/2

)
,

M(3)
as1s2 =

(
a1/2 0 0

0 a1/2 0
−a1/2 s1 −a1/2 s2 a

)
.

Notice that the elements of the shearlet systems ψ(d)
a,s1,s2,t are well localized wave-

forms associated with various scales, controlled by a, various orientations, con-
trolled by the two shear variables s1,s2 and various locations, controlled by t. Similar
to the 2D case, in each pyramidal region the shearing variables are only allowed to
vary over a compact set.

For f ∈ L2(R3), we define the 3D (fine-scale) pyramid-based continuous shearlet
transform f → SHψ f (a,s1,s2, t), for a > 0, s1,s2 ∈ R, t ∈ R3 by

SHψ f (a,s1,s2, t) =


⟨ f ,ψ(1)

a,s1,s2,t⟩ if |s1|, |s2| ≤ 1,

⟨ f ,ψ(2)
a, 1

s1
,

s2
s1
,t
⟩ if |s1|> 1, |s2| ≤ |s1|

⟨ f ,ψ(3)
a, s1

s2
, 1

s2
,t
⟩ if |s2|> 1, |s2|> |s1|.

That is, depending on the values of the shearing variables, the 3D continuous shear-
let transform corresponds to one specific pyramid-based shearlet system. As above,
we are only interested in the continuous shearlet transform at“fine scales”, as a ap-
proaches 0, since this is all we need for the analysis of the singularities of f .

3.2 Characterization of 3D Boundaries

The 3D continuous shearlet transform shares the same properties as its 2D counter-
part in terms of the ability to characterize the geometry of the set of singularities of
a function or distribution f . In particular, it is possible to derive a characterization
for the boundary set of some rather general solid regions.
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Fig. 3 General region Ω ⊂ R3 with piecewise smooth boundary ∂Ω . The continuous shear-
let transform of B = χΩ has rapid asymptotic decay except when the location variable t is
on ∂Ω and the shearing variables (s1,s2) correspond to the normal direction at t; in this case
SHψ B(a,s1,s2, t)∼ a, as a → 0.

To present this results, let us define the type of surfaces which will be considered.
Let B = χΩ , where Ω is a subset of R3 whose boundary ∂Ω is a 2-dimensional
manifold. We say that ∂Ω is piecewise smooth if:

(i) ∂Ω is a C∞ manifold except possibly for finitely many separating C3 curves on
∂Ω ;

(ii) at each point on a separating curve, ∂Ω has exactly two outer normal vectors,
which are not on the same line.

Let the outer normal vector of ∂Ω be np = ±(cosθ0 sinϕ0,sinθ0 sinϕ0,cosϕ0) for
some θ0 ∈ [0,2π], ϕ0 ∈ [0,π]. We say that s = (s1,s2) corresponds to the normal
direction np if s1 = a−

1
2 tanθ0, s2 = a−

1
2 cotϕ0 secθ0. Notice that this definition

excludes, in particular, surfaces containing cusps, such as the vertex of a cone, since
at the moment no argument is known for dealing with the type of points.

The following theorem shows that the behaviour of the 3D continuous shearlet
transform is consistent with the one found in dimension 2. Namely, for a bounded
region in R3 whose boundary is a piecewise smooth 2-dimensional manifold, the
continuous shearlet transform of B, denoted by SHψ B(a,s1,s2, t), has rapid asymp-
totic decay as a → 0 for all locations t ∈R3, except when t is on the boundary of Ω
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and the orientation variables s1,s2 correspond to the normal direction of the bound-
ary surface at t, or when t is on a separating curve and the orientation variables s1,s2
correspond to the normal direction of the boundary surface at t (see Fig. 3). Thus,
as in the 2D case, the continuous shearlet transform provides a description of the
geometry of ∂Ω through the asymptotic decay of SHψ B(a,s1,s2, t), at fine scales.

Theorem 5. Let Ω be a bounded region in R3 and denote its boundary by ∂Ω . As-
sume that ∂Ω is a piecewise smooth 2-dimensional manifold. Let γ j, j = 1,2, · · ·m
be the separating curves of ∂Ω . Then we have

(i) If t /∈ ∂Ω then

lim
a→0+

a−N SHψ B(a,s1,s2, t) = 0, for all N > 0.

(ii) If t ∈ ∂Ω \
∪m

j=1 γ j and (s1,s2) does not correspond to the normal direction of
∂Ω at t, then

lim
a→0+

a−N SHψ B(a,s1,s2, t) = 0, for all N > 0.

(iii) If t ∈ ∂Ω \
∪m

j=1 γ j and s = (s1,s2) corresponds to the normal direction of ∂Ω at
t or t ∈

∪m
j=1 γ j and s = (s1,s2) corresponds to one of the two normal directions

of ∂Ω at t, then
lim

a→0+
a−1 SHψ B(a,s1,s2, t) ̸= 0.

(iv) If t ∈ γ j and (s1,s2) does not correspond to the normal directions of ∂Ω at t, then
there is a constant C (possibly C = 0) such that

lim
a→0+

a−3/2 SHψ B(a,s1,s2, t) =C.

Hence, similar to the 2D case, the continuous shearlet transform decays rapidly
away from the boundary and on the boundary, for non-normal orientations. The
decay rate is only O(a1) at the boundary, for normal orientation. However, the sit-
uation on the separating curves of the surface is less sharp, in the sense that, for
normal orientations, the decay rate is O(a1), but, for non-normal orientations, we
can only say that the decay rate is of the order of or faster than O(a3/2) (C could be
zero). However there are examples where the decay rate on a separating curve, for
non-normal orientation, is exactly O(a3/2)(C ̸= 0). Thus, the rate a

3
2 in (iv) cannot

be improved. In the following, we only make a few observation about the proof. We
refer the reader to [9] for a complete proof of this result.

As in the 2D case, the starting point is the divergence theorem, which allows us
to write the Fourier transform of B can be expressed as

B̂(ξ ) = χ̂Ω (ξ ) =− 1
2πi|ξ |2

∫
∂Ω

e−2πi⟨ξ ,x⟩ ξ ·n(x)dσ(x),

where n is the outer normal vector to ∂Ω at x. Next, using spherical coordinates, we
have that
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SHψ B(a,s1,s2, t) = ⟨B,ψa,s1,s2,t⟩= I1(a,s1,s2, t)+ I2(a,s1,s2, t),

where

I1(a,s1,s2, t) =
∫ 2π

0

∫ π

0

∫ ∞

0
T1(ρ,θ ,ϕ) ψ̂a,s1,s2,t(ρ,θ ,ϕ)ρ2 sinϕ dρ dϕ dθ

I2(a,s1,s2, t) =
∫ 2π

0

∫ π

0

∫ ∞

0
T2(ρ,θ ,ϕ) ψ̂a,s1,s2,t(ρ,θ ,ϕ)ρ2 sinϕ dρ dϕ dθ

and

T1(ρ,θ ,ϕ) = − 1
2πiρ

∫
Pε (t)

e−2πiρ Θ(θ ,ϕ)·x Θ(θ ,ϕ) ·n(x)dσ(x)

T2(ρ,θ ,ϕ) = − 1
2πiρ

∫
∂Ω\Pε (t)

e−2πiρ Θ(θ ,ϕ)·x Θ(θ ,ϕ) ·n(x)dσ(x),

where Pε(t) = ∂Ω ∩βε(t), and βε(t) is a ball of radius ε and center t. Notice that
I2 is associated with the term T2 which is evaluated away from the location t of
the continuous shearlet transform. Hence, a localization result similar to Lemma 2
shows that I2 is rapidly decreasing as a → 0. The rest of the proof, when t is located
on a regular point of ∂Ω , is similar to Theorem 2. By contrast, the situation where
t is on a separating curve requires a different method than the one contained in the
proof of Theorem 3.
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