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Abstract – The media equation [22] states that users react to systems as they 

would to another person, while continuously emitting social signals. Today’s 

users expect systems to be empathetic and understand these social signals. De-

cision systems are a specific sub-branch, facing the need to incorporate affec-

tive information, to facilitate users to maximize their cognitive resources. To 

this end, we attempt to incorporate affective information in the form of physiol-

ogy to learn users’ decision behavior. In a controlled experiment, we record 

participants’ decisions and measure physiological signals elicited from subjects. 

To predict the binary decision to buy or sell, three algorithms, multi-layer per-

ceptron, radial basis function, and decision trees, are compared, and they yield 

recognition rates of 76%, 73% and 77.2% respectively. Taking these results, we 

propose that a decision tree with feature-level fusion, factors in affective infor-

mation in this controlled context best. These results however have to be extrap-

olated to decision contexts that elicit emotions more strongly. 
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1 Introduction 

During decision-making, people are found to be lingering between two bounds: the 

influence of a myriad of emotions, which could be adverse for rational thinking; and 

the lack of emotions of any kind and adhering strictly to rational thinking and behav-

ior [7]. While emotions (or their absence) at the crucial point of decision making have 

been found to contain valuable information about the decision’s nature [8], a diverse 

amount of work establishes that emotions can be induced and regulated by means of 

continuous training in the arts, like music [6]. In general, the consequences of deci-

sions made by taking into view all the cognitive resources available to the brain, are 

more likely to be accepted, and less likely to be regretted than those made without 

incorporating sufficient information as one has been trained to.  

 

In the field of economics, however, emotions have proven to be hazardous, leading to 

expensive actions, which have been regretted later. Physiological evidence for these 
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emotions has been measured in specific contexts, such as auctions [1]. A lot of work 

has been done in affective computing to understand and classify the emotions that a 

subject is likely to be experiencing, in an attempt to build empathetic user systems 

[22]. The application of machine learning algorithms, like support vector machines, 

enabled the classification of emotions into one of 8 classes, and many more [20]. The 

implications of these findings are far-reaching, especially for building systems capa-

ble of identifying and classifying emotional intelligence.  

 

Under the premise that emotions are a key factor in decision-making, we aim to build 

a decision prediction system that incorporates affective information revealed by par-

ticipants and hence, leads to better decisions. To this end, we focus on (1) economic 

aspects, like the risk and the stakes associated with the decision, (2) affective infor-

mation through physiology, and (3) individual characteristics, like emotion regulation 

strategy, risk aversion and expertise levels of subjects. We record participants’ deci-

sions by means of an experiment to investigate a decision bias in a controlled envi-

ronment. Based on the above three layers, we present the results of three classification 

algorithms, Multi-Layer Perceptron, Radial Basis Function, and CART Decision Tree, 

to predict the decision a subject is likely to make, applying the methodologies sug-

gested in [15] for decision systems. The overall goal is to be able to employ the classi-

fication results in building decision systems to aid humans to deal with affect in a 

desirable way, especially in cognitively demanding situations.  

 

The paper is structured as follows. Section II discusses related work, followed by an 

experimental and analysis methodology in Section III, the results in Section IV, and 

conclusions drawn from this approach towards decision prediction in Section V. 

2 Related Work 

Utility functions factoring in emotions like regret and pride have been proposed in 

recent literature to understand why traditional financial models failed [9]. While these 

functions are the foundational steps to factor in emotions in a financial context, fur-

ther empirical work needs to be done to delineate finer aspects, such as the infor-

mation processed before decision making, the emotional content, and individual be-

havioral characteristics. We present an overview of emotions in finance, decision 

support systems, emotion recognition, decisions and emotions, and behavioral charac-

teristics.  

 

2.1 Emotional Finance 

 

The concept of incorporating emotions in financial decision making has received 

much focus in recent literature, especially due to the tendency of investors to fall into 

“traps”, or behavioral fallacies, such as the irrational belief that stocks will revert to 

their mean, or the belief that losing stocks will outperform winners in future [24]. 

Such beliefs have been attributed to cognitive biases [10, 26], personality traits such 



as loss aversion or risk aversion [29], and heuristics employed in making good judg-

ments [12]. Another explanation is due to emotional factors, since they are driven by 

the core tendency of not acknowledging visceral emotions such as fear of regret, or 

the fear of failure [17]. In this context, one of the existing methodologies is to employ 

an objective measurement of subjects’ physiology, as a proxy for their emotional 

arousal [4]. Of these, previous literature agrees that SCR (Skin Conductance Re-

sponse) is the most useful, since it is easy to elicit, is reliable, and it has been studied 

thoroughly by psycho physiologists, in normal individuals of various ages and cul-

tures [7]. Secondly, cardiovascular activation after negative emotions has been found 

to last longer than after positive emotions [5]. While the use of an affective parameter 

could be a simplification in interpreting emotional states, it suggests as being a tangi-

ble way of understanding an excited state of the person, and hence serving as an indi-

cator for anomalies in the experience of emotions. Our first research question is as 

follows: By means of an affective parameter as a proxy for emotions, is it possible to 

predict participants’ behavior? 

 

 

2.2 Emotion Recognition & Multimodal Fusion 

 

The combination of two physiological modalities to build multimodal systems has 

been extensively employed in building affective and speech extraction [25] systems. 

Literature reveals that by applying multimodal fusion of physiological information, it 

is possible to achieve higher classification rates in emotion recognition, as early as 

[16]. Several approaches exist, for fusing data: early fusion, late fusion, feature-level 

fusion, and decision-level fusion, among many others [25]. The right approach for 

fusion thus depends on the type of application being built.  Feature-level fusion has 

been regarded suitable for building systems with different modalities, without build-

ing a separate classifier for each modality, but taking into account the heterogeneous 

nature of each feature, as long as they are temporally synchronized. Hence, our sec-

ond research question is as follows: By incorporating multimodal information, do we 

obtain additional validity of the correctness of our classification algorithm, and also 

improve predictions about user behavior? 

 

2.3 Behavioral Characteristics 

 

While incorporating affective information in building decision systems, one of the 

factors to be considered is if subjects inherently refrained from revealing emotional 

information. Emotion regulation [14] has been a long-standing theory in the study of 

emotions. Emotion regulation is defined as the ability to increase or decrease emo-

tions in accordance with situational demand [13]. Effective regulators and reapprais-

ers of emotions address their emotional state, and cognitively reappraise them by 

factoring in their emotions, or altering their emotional state in their decisions. On the 

other hand, suppressors do not adopt a similar strategy, but ignore, or even allow the 

negative impact of emotions to persist, thus leading to major physiological and psy-

chological impacts. Hence, along with measuring subjects’ intermittent emotions, we 
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propose that an affective system incorporating such stable behavioral characteristics, 

can improve learning participants’ behavior, and hence provide a higher degree of 

decision support. 

 

2.4 Decision Support Systems 

 

A variety of statistical methods and heuristics from AI literature have been applied to 

decision-making scenarios such as business failure prediction [27] and debt risk as-

sessment [28]. Based on several such as (1) normality (2) linearity in relationship 

between variables, (3) multicollinearity, (4) multimodality (5) size and (6) dynamic 

versus static nature of the application; a variety of algorithms are available for use in 

decision support systems, and a complete survey can be found in [15]. According to 

this work, Neural Networks, Decision Tree (C4.5), Logistic Regressions are algo-

rithms, are applied depending on continuity of sample size, density of regions, lack of 

multimodality, respectively, and necessitates a thorough understanding of the type of 

data. Due to the multimodality, neural networks and decision trees are most suitable 

candidates of comparison in this context. We work towards building business deci-

sion-making systems, which could incorporate affective information while decision 

making, to avoid traps created in the mind, which lead to regrettable and expensive 

decisions. This leads us to our final research question: In a multimodal context, which 

learning algorithm (between decision trees and neural networks) is most suited in 

terms of classification accuracy for predicting user behavior in a complete infor-

mation context, while incorporating affective information? 

 

To summarize, in a decision context with complete information, we explore (1) 

whether incorporating multimodal fusion improves predictions about participants’ 

behavior, (2) incorporating behavioral characteristics with multimodal fusion im-

proves predictions about participants’ behavior (3) which learning algorithm is most 

suited for predicting buy/sell behavior in a simple decision task, while incorporating 

affective information? In order to answer these questions, we detail an experiment 

design in the next section. 

 

3 Methodology 
 

In order to build a decision system incorporating affective information, we simulate a 

decision environment in the lab, wherein emotional information is measured non-

invasively. There are several benefits of a controlled lab experiment to elicit affective 

information. Field environments typically involve variable noise levels in the signal 

(such as bodily movement, temperature changes, etc.), which influences the level of 

skin conductance and heart rate, and hence makes it difficult to measure. Secondly, 

during continuous social interchange, multitasking and interruption of tasks are inevi-

table, which could lead to non-specific emotions not relevant to the current decision. 

In a field setting, emotions could occur in short periods of time, making their meas-

urement even harder. Finally, in these situations, obtaining good training data be-

comes a non-trivial problem. A controlled experiment enables to correlate the infor-



mation provided to a user to his decision more directly. Moreover, by means of event-

related markers, emotions elicited specifically to this information are measured in a 

temporally synchronous manner. By means of repeated trials, we simulate a situation 

in which subjects make repeated decisions, providing a suitable context to learn sub-

jects’ behavior. The experiment design is detailed below. 

 

3.1 Experiment Task 

 

The experiment is designed to examine subjects’ decisions when holding/selling a 

winning/losing stock.  Two types of information are provided to the subject: the prob-

ability of price increase, and the stakes associated with the stock, with two levels for 

each variable (0.45 or 0.55 for probability, and €2 or €10 for stakes). Similar to the 

experimental design of [29], each subject is initially endowed a stock worth €100, and 

information about the stock’s value after one trading round (whether it gained/lost). 

Subjects’ task is to now decide whether to hold/sell this stock based on the infor-

mation presented to them. After their decision, the participant is shown how the stock 

performed in the next trading round. If the participant held/sold the stock, their final 

profit would be the loss/gain after two/one rounds of trading. In this context, we de-

fine the strategy of the rational risk-neutral homo-economic subject, that the subject is 

expected to always sell in the 0.45 probability case, and always hold in the 0.55 prob-

ability case irrespective of stakes and gain/loss in the stock. By this design, we at-

tempt to magnify into the individual decision to hold/sell the stock, by providing 

complete information and a minimal path-dependent scenario. The experiment was 

implemented on z-tree [11] and conducted with 100 participants. 

 

3.2 Affective Considerations 

 

In order to obtain the affective information revealed by a subject, we employ both 

subjective and objective measures. Subjects reported their happiness and regret levels 

at the end of each trial, on a standardized 7-point Likert scale. For an objective meas-

urement, during the entire experiment, the participants’ skin conductivity using 

Ag/AgCl electrodes (silver/silver chloride) was observed. The electrodes were at-

tached on the thenar and hypothenar eminences of the palm of the non-dominant hand 

by use of standard SCR electrode paste [4]. Heart rate was measured using the ECG 

electrodes provided by Bioplux systems [21], and both modalities were recorded sim-

ultaneously by connecting to two channels on the Bioplux system. Physiological data 

for each subject was transferred via Bluetooth, and stored on each corresponding sub-

ject’s machine.  

 

3.3 Multimodal Measures  

 

Multimodal physiological systems incorporate several modalities of information 

about the subject at the same time. In this experiment, we measure two modalities, 

namely, the SCR and the Heart Rate Variability of a person as a proxy for their emo-

tion at a particular point in time. It has been shown that multimodal systems are able 



to gain from the complementarity of information in their unimodal parts [19] especial-

ly in the domains of speech extraction and emotion recognition from facial recogni-

tion. Figure 1 illustrates the complete methodology employed in this study. We start 

with a decision context, wherein subjects’ decision, their behavioral data is acquired 

using questionnaires, and their emotional data could be acquired using both subjective 

and objective methods. The experimental data is next classified as three layers: eco-

nomic, behavioral and physiological parameters.  

 

Due to the intricate interplay between emotions and decisions, it is vital to consider 

the direct and possible interaction effects between the three sets of variables. In an 

offline processing step, we identify direct, as well as indirect effects of economic 

indicators on decisions. From the questionnaires, participants’ characteristics, such as 

emotion regulation strategy, etc. are computed. As part of physiological pre-

processing, signals were band-pass filtered and artifact corrected, before feature ex-

traction. By use of suitable signal processing tools, various features (such as high 

frequency, low frequency power for heart rate and tonic and phasic activity features 

for skin conductance) were extracted offline. The two modalities yielded up to 23 

different sets of physiological features. While this is the complete data set represent-

ing emotional information, it is possible that some of the features are highly correlat-

ed, or are not explaining any variance in data. In order to decrease the complexity of 

the data, we reduce the number of features by means of PCA (Principal Component 

Analysis). 

 

Fig. 1. Methodology illustrating steps in including affective information  

 

This reduced feature set is then fed into a classifier, to predict the final binary deci-

sion (to hold/sell). We present the results of three classification algorithms, namely, 

decision trees, radial basis function, and multi-layer perceptron. 



4 Results 

Of the 100 participants, 67 participants reported good or expert level of knowledge in 

economics and stock experiments, while 33 participants reported basic knowledge. By 
comparing the participants’ score on the emotion regulation questionnaire [14], 57 of 

them used reappraisal as an emotion regulation strategy, while 58 were classified as 

suppressors (in addition, 32 participants applied both these strategies, and 17 of them 

used neither). The classification was carried out by dividing subjects into those scor-

ing higher and those scoring lower than the arithmetic mean on the respective ques-

tions for reappraisal (6 items) and suppression (4 items). We herewith present the 

results for the two research questions, whether incorporating affective information 

could predict behavior in decision support system, and a comparison of three learning 

algorithms.   

4.1 Economic Behavior 

 

A preliminary analysis revealed that the amount of risk and the amount of stakes 

significantly impacts the decision to hold/sell the stock, in tune with [18]. Further, 

behavioral parameters such as expertise, gender [3], and emotion regulation were 

strongly correlated to whether the participant sold in the high/low stakes situation. We 

investigate by means of learning algorithms whether there is a systematic influence of 

the amount of arousal on behavior.  

 

4.2 Decision Prediction – An attempt, and a comparison of algorithms 

 

The properties of a good feature set according to [21] should be: (1) related to the 

classification problem, (2) not strongly interdependent, (3) able to be interpreted easi-

ly, (4) extracted robustly (5) and calculated rapidly.  We utilize the heart rate variabil-

ity, decrease in heart rate, and the skin conductance features correlated with decisions. 

All physiological data was normalized to each person’s baseline measure in the initial 

cool down period of 5 minutes, such that the classifier is expected to perform in a 

person-independent manner. In order to represent the information content of the fea-

tures resulting physiology, we apply a Factor Analysis method to build a reduced 

parameter, using the PCA algorithm. The inherent advantage of this method is that it 

is easy to implement, and accounts for interrelations between signals [25]. A reduced 

joint feature space is thus obtained, which can be passed through a single classifier 

and hence improve the overall time performance. 

 

We split the data into two parts; the classifier was trained on the first part and the 

second part of the samples was used for testing. A 3-fold cross validation was applied 

for all algorithms. In case of decision-trees, the C&RT algorithm was employed, such 

that the trees were post-pruned to avoid over fitting. Table 1 depicts the classification 

results of three algorithms, Radial Basis Function (RBF), Decision Tree, and Multi-

layer perceptron (MLP). Decision trees performed better than RBF, even when con-

sidering only economic variables and without information fusion. MLP’s classified 



76% of samples correctly, with all three layers, and information fusion, and adding 

interaction terms did not improve the classification rate. As can be observed, decision 

trees factoring in interaction terms and information fusion performed the best (pre-

dicting up to 77.2% of the samples in the test set). 

Table 1. Classification results 

Classification Algorithm 

Classification Methodology Accuracy (Average % of 

samples classified correctly) 

Independent  

Variables 

Information 

Fusion Employed 

Training  

(50%) 

Testing  

(50%) 

Radial Basis Function E + B + P No, only SCR 73.7% 71.1% 

Radial Basis Function E + B + P Yes 73.5% 83.3% 

Multi-layer Perceptron E + B + P No, only SCR 73.2% 73.9% 

Multi-layer Perceptron E + B + P Yes 72.2% 76.0% 

Decision Tree E + B + P No, only SCR N.A. 74.3% 

Decision Tree E + B + P Yes N.A. 74.8% 

Radial Basis Function E + B + P + I No, only SCR 74.6% 71.4% 

Radial Basis Function E + B + P + I Yes 72.7% 73.0% 

Multi-layer Perceptron E + B + P + I No, only SCR 74.80% 72.20% 

Multi-layer Perceptron E + B + P + I Yes 80.50% 75.10% 

Decision Tree E + B + P + I No, only SCR N.A. 74.40% 

Decision Tree E + B + P + I Yes N.A. 77.2% 

Results reported in increasing order of testing accuracy. Wherever missing, it can be assumed that 

employing that combination was not a significant improvement.  

E = Economic, B = Behavioral, P = Physiological, I = Interaction Terms, N.A. = Not applicable 

N=6000 Decisions to buy or sell a stock 



 

(E) consisted of the economic information shown to the subject, namely the stakes, 

and the probability of increase. B consisted of behavioral attributes, such as gender, 

expertise level, risk aversion level, and the type of emotion regulation strategy 

employed. (P) comprised of heart rate and skin conductance features, and (I) 

consisted of significant interaction terms within these subsets for instance, the 

interaction between reappraiser and SCR features. Multi-Layer Perceptron & Radial 

Basis functions did not perform better with the inclusion of interaction terms (a drop 
by around 1%), whereas decision trees classified 3% better in both with and without 

information fusion, when the interaction terms are included. This improved 

performance of a decision tree enables the usage of affective information in a decision 

support system, and predict user behavior in real time, while factoring in possible 

moderating or interaction effects at the same time. Further, systems could learn which 

decisions deviate from the user’s expected decisions, and seek confirmation in a non-

invasive manner, before the subject makes a possibly deviant decision. A point worth 

noting is that most of the improvement from 50% (up to 73%) is explained by the 

economic variables (E), physiological and behavioral attributes add only a marginal 

value under all three algorithms. However, it is worth noting that the contribution by 

physiology and behavioral terms is positive, and might be significantly more in a real-

world situation, where subjects are less influenced by economic factors, but more 
likely to be influenced by emotions (such as real-life trading decisions, or contexts of 

electoral voting).  Table 2 summarizes the variable importance of the factors adding 

up to the 77.2% classification accuracy obtained for the last row (Decision Tree 

method E+B+P+I) in Table 1. 

Table 2. Variable Importance 

Independent Variable Importance 
Independent Variable Importance Normalized Importance 

Int: (Reappraiser)  x (is_high_probability) .116 100.0% 

Dummy: is_high_probability .113 96.9% 

Dummy: is_high_valuation .035 30.1% 

Int : (Reappraiser)  x (SCR_Factor) .009 7.3% 

Int : (Male) x (SCR_Factor) .005 4.6% 

Dummy: is_suppressor .005 4.3% 

Dummy: is_expert .005 3.9% 

Dummy: is_reappraiser .004 3.2% 

SCR_Factor .003 2.7% 

ECG_Factor .003 2.6% 

Int: (Male) x (SCR_Factor) x (is_reappraiser) .003 2.5% 

Factor_3_mixed .003 2.3% 

Dummy: is_risk_averse .002 1.9% 

Dummy: is_gain .002 1.4% 

Dummy: is_male .001 1.3% 

Int : Interaction terms 

Dummy: dichotomous variables used 

Growing Method: Decision Tree 

Dependent Variable: Binary Decision to Hold/Sell 

 



5 Conclusion  
 

Decision support systems are a specific sub-branch of information systems, facing the 

need to incorporate affective information, to facilitate users to maximize their cogni-

tive resources. This study moves towards building empathetic decision support sys-

tems. To this end, we attempt to incorporate affective information in the form of 

physiology to learn users’ decision behavior. In a controlled experiment, we record 

participants’ decisions and measure physiological signals elicited by subjects. To 

predict the binary decision to buy or sell, three algorithms, multi-layer perceptron, 

radial basis function, and decision trees, are compared, and they yield classification 

rates of 76%, 73% and 77.2% respectively. Taking these results, we propose within 

the scope of our analysis that a decision tree with feature-level fusion, factors in affec-

tive information in order to understand user behavior. Whether emotions impact deci-

sions positively or negatively is highly context & person dependent, but they do add 

valuable information to the decision to be made, as illustrated in the methodology in 

this paper. 

 

In order to avoid over-fitting, decision trees were suitably optimized by means of 

post-pruning. Applying optimization lets us obtain a good estimate of performance; 

however there could be a bias towards experiment conditions. The choice of the phys-

iological features might suffer from limitations as well, for instance, SCR response 

rate needs to be taken into consideration depending on the time scale of the decision 

to be taken. Further work needs to carry out an evaluation of such a user system, tak-

ing into account quality of service (such as interaction performance and influencing 

factors), and quality of experience metrics to evaluate affective information in a deci-

sion context. The proposed methodology could be applied in incorporating affect in 

decision systems – such as risk management information systems, used by bankers, 

private investment systems, credit assessment systems, etc. While a majority of these 

analyses are performed offline in this study, the onset of real-time algorithms has 

enabled real-time detection of change in user state, and arousal state. The onset of 

unobtrusive measurements (such as mouse pressure [23]) makes the shift towards a 

real-time system more achievable. Further work incorporating affective measures 

from other modalities has to be carried out. Additionally, another important factor to 

consider is the expertise level of subjects, which have shown to play a vital role in 

their decision-making process, and how they exhibit emotions in complex situations.  
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