
Online Markov Decision Processes under Bandit
Feedback

Gergely Neu∗†
∗Department of Computer Science and

Information Theory, Budapest University of
Technology and Economics, Hungary

neu.gergely@gmail.com

András György
†Machine Learning Research Group

MTA SZTAKI Institute for Computer
Science and Control, Hungary

gya@szit.bme.hu

Csaba Szepesvári
Department of Computing Science,

University of Alberta, Canada
szepesva@ualberta.ca

András Antos
Machine Learning Research Group

MTA SZTAKI Institute for Computer
Science and Control, Hungary
antos@szit.bme.hu

Abstract

We consider online learning in finite stochastic Markovian environments where in
each time step a new reward function is chosen by an oblivious adversary. The
goal of the learning agent is to compete with the best stationary policy in terms
of the total reward received. In each time step the agent observes the current state
and the reward associated with the last transition, however, the agent does not
observe the rewards associated with other state-action pairs. The agent is assumed
to know the transition probabilities. The state of the art result for this setting is
a no-regret algorithm. In this paper we propose a new learning algorithm and,
assuming that stationary policies mix uniformly fast, we show that after T time
steps, the expected regret of the new algorithm is O

(
T 2/3(lnT)1/3

)
, giving the

first rigorously proved regret bound for the problem.

1 Introduction

The problem that we consider is online learning in finite Markov decision processes (MDPs) with a
fixed, known dynamics. The problem is defined formally as follows: An agent navigates in a finite
stochastic environment by selecting actions based on the states and rewards experienced previously.
At each time instant the agent observes the reward associated with the last transition and the current
state, that is, at time t+ 1 the agent observes rt(xt,at), where xt is the state visited at time t and at
is the action chosen. The agent does not observe the rewards associated with other transitions, that
is, the agent faces a bandit situation. The goal of the agent is to maximize its total expected reward
R̂T in T steps. As opposed to the standard MDP setting, the reward function at each time step may
be different. The only assumption about this sequence of reward functions rt is that they are chosen
ahead of time, independently of how the agent acts. However, no statistical assumptions are made
about the choice of this sequence. As usual in such cases, a meaningful performance measure for
the agent is how well it can compete with a certain class of reference policies, in our case the set
of all stationary policies: If R∗T denotes the expected total reward in T steps that can be collected
by choosing the best stationary policy (this policy can be chosen based on the full knowledge of
the sequence rt), the goal of learning can be expressed as minimizing the total expected regret,
L̂T = R∗T − R̂T .

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/24060326?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

In this paper we propose a new algorithm for this setting. Assuming that the stationary distributions
underlying stationary policies exist, are unique and they are uniformly bounded away from zero and
that these policies mix uniformly fast, our main result shows that the total expected regret of our
algorithm in T time steps is O

(
T 2/3(lnT)1/3

)
.

The first work that considered a similar online learning setting is due to Even-Dar et al. (2005,
2009). In fact, this is the work that provides the starting point for our algorithm and analysis. The
major difference between our work and that of Even-Dar et al. (2005, 2009) is that they assume that
the reward function is fully observed (i.e., in each time step the learning agent observes the whole
reward function rt), whereas we consider the bandit setting. The main result in these works is a
bound on the total expected regret, which scales with the square root of the number of time steps
under mixing assumptions identical to our assumptions. They propose an algorithm, MDP-E, which
is very similar to ours in that it uses some (optimized) expert algorithm in every state which is fed
with the action-values of the policy used in the last round. Another work that considered the full
information problem is due to Yu et al. (2009) who proposed new algorithms and proved a bound on
the expected regret of order O

(
T 3/4+ε

)
for arbitrary ε ∈ (0, 1/3). The algorithm proposed (“Lazy

FPL”) works with phases of length m1/3−ε and changes policies only at the end of the phases. At
the end of a phase the optimal (differential) value function corresponding to the sum of past reward
functions is first found. Within the phase, the action to be followed at some time step is then selected
as the one that maximizes the one-step lookahead action value computed with this value function
but with the immediate rewards perturbed randomly in an appropriate manner. The advantage of
this algorithm to that of Even-Dar et al. (2009) is that it is computationally less expensive, which,
however, comes at the price of an increased bound on the regret. Yu et al. (2009) introduced another
algorithm (“Q-FPL”) and they have shown a sublinear (o(T)) almost sure bound on the regret.

All the works reviewed so far considered the full information case. The requirement that the full
reward function must be given to the agent at every time step significantly limits their applicability.
There are only three papers that we know of where the bandit situation was considered.

The first paper which falls into this category is due to Yu et al. (2009) who proposed an algorithm
(“Exploratory FPL”) for this setting. This algorithm estimates the immediate rewards by appropri-
ately weighting the rewards received and in a phase either uses a uniformly exploring policy or that
of underlying their Lazy FPL algorithm. They prove an o(T) almost sure bound on the regret of this
algorithm.

Recently, Neu et al. (2010) gave O
(√

T
)

regret bounds for a special bandit setting when the agent
interacts with a loop-free episodic environment. The algorithm and analysis in this work heavily
exploits the specifics of these environments (i.e., that in the same episode no state can be visited
twice) and so they do not generalize to our setting.

Another closely related work is due to Yu and Mannor (2009a,b) who considered the problem of
online learning in MDPs where the transition probabilities may also change arbitrarily after each
transition. This problem is significantly more difficult than the case where only the reward function is
changed arbitrarily. Accordingly, the algorithms proposed in these papers fail to achieve consistency
for this setting. The reason these papers are relevant because the regret bounds are provided in terms
of a parameter ε which describe the extent by which the transition probabilities are allowed to vary.
By taking the limit ε → 0, we may obtain results for the case when the transition probabilities
are fixed. This way, we can obtain a result from Theorem IV.1 of Yu and Mannor (2009b) for the
case which interests us, that is, when rewards are only observed along the trajectory traversed by
the agent. However, the result which can be obtained this way seems to be incorrect: If the state
space consists of only a single state, the learning problem becomes identical to the non-stochastic
multi-armed bandit problem. The above technique then gives a bound of order O

(√
ln |A|T

)
on

the expected regret, which contradicts the known Ω
(√
|A|T

)
lower bound.1 It remains for future

work to see if the results in this paper can be corrected. Thus, currently, the only result for the case
considered in this paper is an asymptotic “no-regret” result.

1To show this contradiction, one has to replace, in the bound of Theorem IV.1 of Yu and Mannor (2009b),
the condition T > N with an extra O (1/T) term, and then let ε and δ converge to zero at appropriate rates.

2

The rest of the paper is organized as follows: The problem is laid out in Section 2, which is followed
by a section about our assumptions (Section 3). The algorithm and the main result are given in
Section 4, while the proof of the latter, with the exception of some technical results given in the
Appendix, is presented in Section 5.

2 Problem definition

Formally, a finite Markov Decision Process (MDP) M is defined by a finite state space X , a finite
action set A, a transition probability kernel P : X × A × X → [0, 1], and a reward function
r : X × A → [0, 1]. In time step t ∈ {1, 2, . . .}, knowing the state xt ∈ X , an agent acting in
the MDP M chooses an action at ∈ A(xt) to be executed based on (xt, r(at−1,xt−1),at−1,xt−1,
. . . ,x2, r(a1,x1),a1,x1).2 HereA(x) ⊂ A is the set of admissible actions at state x. As a result of
executing the chosen action the process moves to state xt+1 ∈ X with probability P (xt+1|xt,at)
and the agent receives reward r(xt,at). In the so-called average-reward problem, the goal of the
agent is to maximize the average reward received over time. For a more detailed introduction the
reader is referred to, for example, Puterman (1994).

2.1 Online learning in MDPs

In this paper we consider the online version of MDPs when the reward function is allowed to change
arbitrarily. That is, instead of a single reward function r, a sequence of reward functions {rt} is
given. This sequence is assumed to be fixed ahead of time, and, for simplicity, we assume that
rt(x, a) ∈ [0, 1] for all (x, a) ∈ X × A and t ∈ {1, 2, . . .}. No other assumptions are made about
this sequence.

The learning agent is assumed to know the transition probabilities P , but is not given the sequence
{rt}. The protocol of interaction with the environment is unchanged: At time step t the agent
receives xt and then selects an action at which is sent to the environment. In response, the reward
rt(xt,at) and the next state xt+1 are communicated to the agent. The initial state x1 is generated
from a fixed distribution P0.

The goal of the learning agent is to maximize its expected total reward

R̂T = E

[
T∑
t=1

rt(xt,at)

]
.

An equivalent goal is to minimize the regret, that is, to minimize the difference between the expected
total reward received by the best algorithm within some reference class and the expected total reward
of the learning algorithm. In the case of MDPs a reasonable reference class, used by various previous
works (e.g., Even-Dar et al., 2005, 2009; Yu et al., 2009) is the class of stationary stochastic policies.3
A stationary stochastic policy, π, (or, in short: a policy) is a mapping π : A × X → [0, 1], where
π(a|x) ≡ π(a, x) is the probability of taking action a in state x. We say that a policy π is followed
in an MDP if the action at time t is drawn from π, independently of previous states and actions given
the current state x′t: a

′
t ∼ π(·|x′t). The expected total reward while following a policy π is defined

as

RπT = E

[
T∑
t=1

rt(x
′
t,a
′
t)

]
.

Here {(x′t,a′t)} denotes the trajectory that results from following policy π from x′1 ∼ P0.

The expected regret (or expected relative loss) of the learning agent relative to the class of policies
(in short, the regret) is defined as

L̂T = sup
π
RπT − R̂T ,

where the supremum is taken over all (stochastic stationary) policies. Note that the optimal policy
is chosen in hindsight, depending acausally on the reward function. If the regret of an agent grows

2We follow the convention that boldface letters denote random variables.
3This is a reasonable reference class because for a fixed reward function one can always find a member of

it which maximizes the average reward per time step, see Puterman (1994).

3

sublinearly with T then we can say that in the long run it acts as well as the best (stochastic station-
ary) policy (i.e., the average expected regret of the agent is asymptotically equal to that of the best
policy).

3 Assumptions

In this section we list the assumptions that we make throughout the paper about the transition proba-
bility kernel (hence, these assumptions will not be mentioned in the subsequent results). In addition,
recall that we assume that the rewards are bound to [0, 1].

Before describing the assumptions, a few more definitions are needed: Let π be a stationary policy.
Define

Pπ(x′|x) =
∑
a

π(a|x)P (x′|x, a).

We will also view Pπ as a matrix: (Pπ)x,x′ = Pπ(x′|x), where, without loss of generality, we
assume that X = {1, 2, . . . , |X |}. In general, distributions will also be treated as row vectors.
Hence, for a distribution µ, µPπ is the distribution over X that results from using policy π for one
step from µ (i.e., the “next-state distribution” under π). Remember that the stationary distribution
of a policy π is a distribution µ which satisfies µPπ = µ.

Assumption A1 Every policy π has a well-defined unique stationary distribution µπ .

Assumption A2 The stationary distributions are uniformly bounded away from zero:
infπ,x µ

π(x) ≥ β for some β > 0.

Assumption A3 There exists some fixed positive τ such that for any two arbitrary distributions µ
and µ′ over X ,

sup
π
‖(µ− µ′)Pπ‖1 ≤ e−1/τ‖µ− µ′‖1,

where ‖ · ‖1 is the 1-norm of vectors: ‖v‖1 =
∑
i |vi|.

Note that Assumption A3 implies Assumption A1. The quantity τ is called the mixing time under-
lying P by Even-Dar et al. (2009) who also assume A3.

4 Learning in online MDPs under bandit feedback

In this section we shall first introduce some additional, standard MDP definitions, which we will be
used later. That these are well-defined follows from our assumptions on P and from standard results
to be found, for example, in the book by Puterman (1994). Next, we discuss a previous result that
motivates our algorithm, which is followed by the definition of our algorithm. We finish by stating
our main results concerning the performance of the proposed algorithm.

4.1 Preliminaries

Fix an arbitrary policy π and t ≥ 1. Let {(x′s,a′s)} be the random trajectory generated by π and the
transition probability kernel P . Define the action-value and value functions underlying π and the
immediate reward rt by

qπt (x, a) = E

[∞∑
s=1

{rt(x′s,a′s)− ρπt }

∣∣∣∣∣ x′1 = x,a′1 = a

]
,

vπt (x) = E

[∞∑
s=1

{rt(x′s,a′s)− ρπt }

∣∣∣∣∣ x′1 = x

]
,

where ρπt is the average reward per stage corresponding to π:

ρπt = lim
S→∞

1

S

S∑
s=1

E[rt(x
′
s,a
′
s)] .

4

The average reward per stage can be computed by

ρπt =
∑
x

µπ(x)
∑
a

π(a|x)rt(x, a),

where µπ is the stationary distribution underlying policy π. These value functions are equivalently
defined by the Bellman equations:

qπt (x, a) = rt(x, a)− ρπt +
∑
x′

P (x′|x, a)vπt (x′)

vπt (x) =
∑
a

π(a|x)qπt (x, a).

Now, consider the trajectory {(xt,at)} underlying a learning agent, where x1 is randomly chosen
from P0, and define

ut = (x1,a1, r1(x1,a1), x2,a2, r2(x2,a2), . . . , xt,at, rt(xt,at))

and πt(a|x) = P[at = a|ut−1,xt = x]. That is, πt denotes the policy followed by the agent at
time step t (which is computed based on past information and is therefore random). We will use the
following notation:

qt = qπtt , vt = vπtt , ρt = ρπtt .

Thus, the following holds:

qt(x, a) = rt(x, a)− ρt +
∑
x′

P (x′|x, a)vt(x
′),

vt(x) =
∑
a

πt(a|x)qt(x, a).

For reasons to be made clear later in the paper, we shall need the state distribution at time step t
given that we start from the state-action pair (x, a) at time t −N , conditioned on the policies used
between time steps t−N and t:

µNt,x,a(x′)
def
= P [xt = x′ |xt−N = x,at−N = a,πt−N+1, . . . ,πt−1] , x, x′ ∈ X , a ∈ A .

It will be useful to view µNt as a matrix of dimensions |X ×A|×|X |. Thus, µNt,x,a(·) will be viewed
as one row of this matrix. To emphasize the conditional nature of this distribution, we will also use
µNt (·|x, a) instead of µNt,x,a(·).

4.2 A previous result for the full-information setting

The starting point of our work is the paper of Even-Dar et al. (2009) who proposed an algorithm for
the full information online learning problem that uses an “optimized best expert algorithm” to select
the actions in each state x. The expert algorithm at state x is fed with the value functions qt(x, ·).

Even-Dar et al. (2009) decompose the regret relative to a policy π as

RπT − R̂T =

(
RπT −

T∑
t=1

ρπt

)
+

(
T∑
t=1

ρπt −
T∑
t=1

ρt

)
+

(
T∑
t=1

ρt − R̂T

)
. (1)

Note that in the algorithm of Even-Dar et al. (2009), the policies π1, . . . ,πT are computed determin-
istically based on the past, just like q1, . . . ,qT (in particular, they do not depend on the past states
and actions visited during learning). That is, each term in the above decomposition is deterministic.

Bounding each term separately Even-Dar et al. (2009) arrive at the following bound (cf. Theorem 5.1
in there):

L̂T ≤ 2τ + 2 +
√

(4τ + 6)T ln |A|+
(

(1 + 3τ)2
√
T ln |A|+ 2τ

)
. (2)

Note that this bound is a slightly refined version of the original one, the difference being that while
Even-Dar et al. (2009) claimed that qπt (x, a) ∈ [0, 3τ] for all x, a, π (and τ ≥ 1), we prove in
Lemma 2 that in fact qπt (x, a) ∈ [−2τ − 3, 2τ + 3]. We also handle some terms more carefully in
Lemma 7 and replace the original factor of 4τ2 by (3τ + 1)2 in the third term. The first term in the
bound comes from the following standard MDP result (which is a slightly corrected version of the
corresponding lemma of Even-Dar et al., 2009):

5

Lemma 1. For any T ≥ 1 and any policy π it holds that(
RπT −

T∑
t=1

ρπt

)
≤ 2τ + 2 .

The proof is given for completeness.

Proof. Let {(xt,at)} be the trajectory when π is followed and let νπt (x) = P[xt = x]. Then, using
νπt = νπt−1P

π , the stationarity of µπ and Assumption A3, we have(
RπT −

T∑
t=1

ρπt

)
=

T∑
t=1

∑
x

(νπt (x)− µπ(x))
∑
a

π(a|x)rt(x, a)

≤
T∑
t=1

2e−(t−1)/τ ≤ 2

(
1 +

∫ ∞
0

e−t/τ dt

)
= 2(τ + 1).

The second term of (2) comes from the regret bound available for the expert algorithms sitting in
the states. The last term, that compares the sum of average rewards ρ1,ρ2, . . . ,ρT to the actual
expected return R̂T , is similar to the first term, just it uses the policies π1, . . . ,πT instead of a fixed
policy. Hence, similarly to the previous case, we can expect this term to stay small as long as the
policies change slowly. The algorithms proposed by Even-Dar et al. (2009) produce policies that
enjoy this property. In particular, the “total change” in the policies (in an appropriate metric) is
bounded by O

(√
T
)

. As a result, we get the bound as shown in the last term of (2).

4.3 The algorithm

Our algorithm is similar to that of Even-Dar et al. (2009) in that we use an expert algorithm in each
state. Since in our case the full reward function rt is not observed, the agent uses an estimate of it.
The main difficulty is to come up with an unbiased estimate of rt with a controlled variance. Here
we propose to use the following estimate:

r̂t(x, a) =

{
rt(x,a)

πt(a|x)µNt (x|xt−N ,at−N)
if (x, a) = (xt,at)

0 otherwise,
(3)

where t ≥ N + 1. Define q̂t, v̂t and ρ̂ as the solution to the Bellman equations underlying the
average reward MDP defined by (P,πt, r̂t):

q̂t(x, a) = r̂t(x, a)− ρ̂t +
∑
x′

P (x′|x, a)v̂t(x
′)

v̂t(x) =
∑
a

πt(a|x)q̂t(x, a)

ρ̂t =
∑
x,a

µπt(x)πt(a|x)r̂t(x, a).

(4)

Note that if N is sufficiently large and πt changes sufficiently slowly then

µNt (x|xt−N ,at−N) > 0, (5)

almost surely, for arbitrary x ∈ X , t ≥ N + 1. This fact will be shown in Lemma 9. Now, assume
that πt is computed based on ut−N , that is, πt is measurable with respect to the σ-field σ(ut−N)
generated by the history ut−N :

πt ∈ σ(ut−N) . (6)

Then also πt−1, . . . ,πt−N ∈ σ(ut−N) and µNt can be computed using

µNt,x,a = exP
aPπt−N+1 · · ·Pπt−1 , (7)

6

where P a is the transition probability matrix when in every state action a is used and ex is the unit
row vector corresponding to x (and we assumed that X = {1, . . . , |X |}). Moreover, a simple but
tedious calculation shows that (5) and (6) ensure the conditional unbiasedness of our estimates: First
note that

E [r̂t(x, a) |ut−N] =
rt(x, a)

πt(a|x)µNt (x|xt−N ,at−N)
E
[
I{(x,a)=(xt,at)} |ut−N

]
,

where we have exploited that πt, µNt , xt−N ,at−N ∈ σ(ut−N). Let us now deal with
E
[
I{(x,a)=(xt,at)} |ut−N

]
= P [at = a |xt = x,ut−N] P [xt = x |ut−N]. Since by assumption

πt ∈ σ(ut−N), P [at = a |xt = x,ut−N] = P [at = a |xt = x,ut−1] = πt(a|x) holds, where
the last equality follows from the definition of πt and at. Since πt−N+1, . . . ,πt−1 ∈ σ(ut−N),
P [xt = x |ut−N] = P [xt = x |ut−N ,πt−N+1, . . . ,πt−1] = µNt (x|xt−N ,at−N). Combining
these identities we get

E [r̂t(x, a)|ut−N] = rt(x, a). (8)

It then follows that
E[ρ̂t|ut−N] = ρt,

and, hence, by the uniqueness of the solutions of the Bellman equations, we have, for all (x, a) ∈
X ×A,

E[q̂t(x, a)|ut−N] = qt(x, a),

E[v̂t(x)|ut−N] = vt(x).
(9)

As a consequence, we also have, for all (x, a) ∈ X ×A, t ≥ N + 1,

E[ρ̂t] = E [ρt] ,

E[q̂t(x, a)] = E [qt(x, a)] ,

E[v̂t(x)] = E [vt(x)] .

(10)

The bandit algorithm that we propose is shown as Algorithm 1. It follows the approach of Even-Dar
et al. (2009) in that a bandit algorithm is used in each state which together determine the policy to be
used. These bandit algorithms are fed with estimates of action-values for the current policy and the
current reward. In our case these action-value estimates are q̂t defined earlier, which are based on the
reward estimates r̂t. A major difference is that the policy computed based on the most recent action-
value estimates is used only N steps later. This delay allows us to construct unbiased estimates of
the rewards. Its price is that we need to store N policies (or weights, leading to the policies), thus,
the memory needed by our algorithm scales with N |A||X |. The computational complexity of the
algorithm is dominated by the cost of computing r̂t (and, in particular, by the cost of computing
µNt (·|xt−N ,at−N)). The cost of this is O

(
N |A||X |3

)
. In addition to the need of dealing with the

delay, we also need to deal with the fact that in our case qt and q̂t can be both negative, which must
be taken into account in the proper tuning of the algorithm’s parameters.

4.4 Main result

Our main result is the following bound concerning the performance of Algorithm 1.

Theorem 1. Let N = dτ lnT e,

η = T−2/3 · (ln |A|)2/3 ·
(

4τ + 8

β

(
(2τ + 4)τ |A| lnT + (3τ + 1)2

))−1/3
,

γ = T−1/3 · (2τ + 4)−2/3 ·
(

2 ln |A|
β

(
(2τ + 4)τ |A| lnT + (3τ + 1)2

))1/3

.

Then the regret can be bounded as

L̂T ≤ 3T 2/3 ·
(

(4τ + 8) ln |A|
β

(
(2τ + 4)τ |A| lnT + (3τ + 1)2

))1/3

+O
(
T 1/3

)
.

7

Algorithm 1 Algorithm for the online bandit MDP.

Set N ≥ 1, w1(x, a) = w2(x, a) = · · · = w2N (x, a) = 1, γ ∈ (0, 1), η ∈ (0, γ].
For t = 1, 2, . . . , T , repeat

1. Set

πt(a|x) = (1− γ)
wt(x, a)∑
bwt(x, b)

+
γ

|A|
for all (x, a) ∈ X ×A.

2. Draw an action at randomly, according to the policy πt(·|xt).
3. Receive reward rt(xt,at) and observe xt+1.
4. If t ≥ N + 1

(a) Compute µNt (x|xt−N ,at−N) for all x ∈ X using (7).
(b) Construct estimates r̂t using (3) and compute q̂t using (4).
(c) Set wt+N (x, a) = wt+N−1(x, a)eηq̂t(x,a) for all (x, a) ∈ X ×A.

It is interesting to note that, similarly to the regret bound of Even-Dar et al. (2009), the main term
of the regret bound does not directly depend on the size of the state space, but it depends on it only
through β and the mixing time τ , defined in Assumptions A2 and A3, respectively; however, we also
need to note that β > 1/|X |. While the theorem provides the first rigorously proved finite sample
regret bound for the online bandit MDP problem, we suspect that the given convergence rate is not
sharp in the sense that it may be possible, in agreement with the standard bandit lower bound of
Auer et al. (2002), to give an algorithm with an O

(√
T
)

regret (up to some logarithmic factors).

The proof of the theorem is similar to the proof of a similar bound done for the full-information case
by Even-Dar et al. (2009). We use the decomposition of the regret given in (1). Since the first term
is bounded by 2(τ + 1) as before (Lemma 1), it remains to bound the expectation of the other terms.
This is done in the following two propositions.

Proposition 1. Let c = 2η
β

(
1
γ + 4τ + 6

)
and assume that

c(3τ + 1)2 < β/2, (11)

N ≥ max

{
τ ln

(
4

β − 2c(3τ + 1)2

)
, τ lnT

}
, (12)

and
0 < η <

β

2(1/γ + 2τ + 3)
.

Then, for any policy π, we have
T∑
t=1

E [ρπt − ρt]

≤ (4τ + 10)N +
ln |A|
η

+ (2τ + 4)T

(
γ +

2η

β
|A|
(
N (1/γ + 4τ + 6) + (e− 2)(2τ + 4)

))
.

Proposition 2. Assume that (11) and (12) hold. Then
T∑
t=1

E [ρt]− R̂T ≤ T
2η

β

(
1

γ
+ 4τ + 6

)
(3τ + 1)2 + 2Te−N/τ + 2N. (13)

Note that setting
N ≥ τ lnT,

the second term in (13) becomes O(1). Also, if T is large enough, the choices of N , η and γ in
Theorem 1 will satisfy the conditions of Proposition 1. That the conclusion of the theorem holds
can be verified by plugging in the definitions of N, η and γ in the bounds of the two propositions.

The proofs are broken into a number of statements presented in the next section.

8

5 Analysis

5.1 General tools

We proceed with a series of lemmas to control the rate of change of the policies generated by Exp3.
Lemma 2. Pick any policy π. If |

∑
a π(a|x)r(x, a)| ≤ R holds for any x ∈ X , then |vπ(x)| ≤

2R(τ + 1) holds for all x ∈ X . Furthermore, for any (x, a) ∈ X × A, |qπ(x, a)| ≤ 2R(τ + 1) +
R+ |r(x, a)|.

Proof. As it is well known, the differential value of policy π at state x can be written as

vπ(x) =

∞∑
s=1

∑
x′

(νπs,x(x′)− µπ(x′))
∑
a

π(a|x′)r(x′, a),

where νπs,x = ex(Pπ)s−1 (with ex being the xth unit row vector) is the state distribution when
following π for s − 1 steps starting from state x. Using the bound on

∑
a π(a|x′)r(x′, a) and the

triangle inequality, gives the bound

|vπ(x)| ≤ R
∞∑
s=1

∑
x′

|νπs,x(x′)− µπ(x′)| ≤ 2R (τ + 1),

where in the second inequality we used ‖νπs,x − µπ‖1 ≤ 2e−(s−1)/τ and that
∑∞
s=1 e

−(s−1)/τ ≤
τ + 1 (cf. the proof of Lemma 1). This proves the first inequality. The second inequality follows
from the first part and the Bellman equation:

|qπ(x, a)| ≤ |r(x, a)|+ |ρπ|+
∑
x′

P (x′|x, a)|vπ(x′)| ≤ |r(x, a)|+R+ 2R(τ + 1).

Here, we used that ρπ =
∑
x µ

π(x)
∑
a π(a|x)r(x, a) and the bound on

∑
a π(a|x)r(x, a).

Lemma 3. Let N < t ≤ T and assume that µNt,xt−N ,at−N (x′) ≥ β/2 holds for all states x′. Then,
for any x ∈ X , we have

|v̂t(x)| ≤ 4τ + 4

β
.

Proof. The result follows because v̂t = vπt and thus one can apply Lemma 2. The proof is finished
by noting that |

∑
a πt(a|x)r̂t(x, a)| ≤ 1

µNt,xt−N,at−N
(x′)
≤ 2

β , by assumption.

The previous result can be strengthened if one is interested in a bound on E [|v̂t(x)| |ut−N]:
Lemma 4. Let N < t ≤ T and assume that µNt,xt−N ,at−N (x′) > 0 holds for all states x′. Then, for
any x ∈ X , we have

E [|v̂t(x)| |ut−N] ≤ 2(τ + 1) .

Proof. Proceeding as in the proof of Lemma 2 and then taking expectations, we get

E [|v̂t(x)| |ut−N] ≤
∞∑
s=1

∑
x′

|νπs,x(x′)− µπ(x′)| E

[∑
a

πt(a|x′)r̂t(x′, a)

∣∣∣∣∣ut−N
]
,

where we have exploited that r̂t takes only nonnegative values. Now, by (6) and (8),

E

[∑
a

πt(a|x′)r̂t(x′, a)

∣∣∣∣∣ut−N
]

=
∑
a

πt(a|x′)E [r̂t(x
′, a) |ut−N]

=
∑
a

πt(a|x′)rt(x, a),

which is bounded between 0 and 1. Hence,

E [|v̂t(x)| |ut−N] ≤
∞∑
s=1

∑
x′

|νπs,x(x′)− µπ(x′)|.

Now, finishing as before we get the statement.

9

We shall also need a bound on the expected value of E [|q̂t(x, a)| |ut−N]. This is bounded as
follows:

Lemma 5. Let N < t ≤ T and assume that µNt,xt−N ,at−N (x′) > 0 holds for all states x′. Then, for
any (x, a) ∈ X ×A, we have

E [|q̂t(x, a)| |ut−N] ≤ 2(τ + 2) .

Proof. By the Bellman equations (4),

E [|q̂t(x, a)| |ut−N] ≤ E [|r̂t(x, a)| |ut−N] +E [|ρ̂t| |ut−N] +
∑
x′

P (x′|x, a)E [|v̂t(x′)| |ut−N] .

As before, E [|r̂t(x, a)| |ut−N] ≤ 1, and also E [|ρ̂t| |ut−N] ≤ 1. Combining these with the result
of the previous Lemma, we get the desired statement.

The quantity πt(x, a)|q̂t(x, a)| also enjoys a bound which is independent of the exploration rate γ:

Lemma 6. Let N < t ≤ T and assume that µNt,xt−N ,at−N (x′) > β/2 holds for all states x′. Then,
for any (x, a) ∈ X ×A, it holds that

πt(x, a) |q̂t(x, a)| ≤ 4

β
(τ + 2) .

Proof. By assumption and the construction of r̂t(x, a),

πt(x, a)|r̂t(x, a)| ≤ 2

β
. (14)

Thus, we can apply Lemma 2 with R = 2/β to obtain |q̂t(x, a)| ≤ 2
β (2(τ + 1) + 1) + |r̂t(x, a)|.

Multiplying both sides by πt(x, a) and using (14) again finishes the proof.

Now we show that if the policies that we follow up to time step t change slowly, µNt is “close” to
µπt :

Lemma 7. Let 1 ≤ N < t ≤ T and c > 0 be such that maxx
∑
a |πs+1(a|x)− πs(a|x)| ≤ c

holds for 1 ≤ s ≤ t− 1. Then we have

max
x,a

∑
x′

∣∣µNt,x,a(x′)− µπt(x′)
∣∣ ≤ c (3τ + 1)2 + 2e−N/τ .

Proof. The proof is similar to that of Lemma 5.2 of Even-Dar et al. (2009). Again, we will treat
distributions as row vectors. In particular, µNt,x,a will denote the row vector whose x′th element is
µNt,x,a(x′). First, note that

‖µNt,x − µπt‖1 = ‖µN−1t−1,xP
πt−1 − µN−1t−1,xP

πt + µN−1t−1,xP
πt − µπt‖1

≤ ‖µN−1t−1,xP
πt−1 − µN−1t−1,xP

πt‖1 + ‖µN−1t−1,xP
πt − µπtPπt‖1

≤ c+ e−1/τ‖µN−1t−1,x − µπt‖1.

Here we used that

‖µN−1t−1,xP
πt−1 − µN−1t−1,xP

πt‖1 ≤ max
x

∑
a

|πt−1(a|x)− πt(a|x)| ≤ c

(this follows by elementary algebra; for the actual proof see Lemma 5.1 in Even-Dar et al., 2009).
Similarly, we get

‖µN−kt−k,x − µ
πt‖1 ≤ (k + 1) c+ e−1/τ‖µN−(k+1)

t−(k+1),x − µ
πt‖1, 1 ≤ k ≤ N.

Thus,
‖µNt,x − µπt‖1 ≤ c(1 + 2e−1/τ + 3e−2/τ + . . .+Ne−(N−1)/τ) + 2e−N/τ .

10

Now, SN
def
= 1+2e−1/τ +3e−2/τ + . . .+Ne−(N−1)/τ ≤ e1/τ

(
e−1/τ + 2e−2/τ + 3e−3/τ + . . .

)
.

We bound the term in the bracket as follows: First, assume that τ ≥ 1 and let n = bτc. Then
t exp(−t/τ) is increasing up to n and it is decreasing from t = n+ 1. Hence,

e−1/τ + 2e−2/τ + 3e−3/τ + . . . ≤ e−1/τ + 2e−2/τ + 3e−3/τ + . . .+ (n+ 1)e−(n+1)/τ

+ (n+ 2)e−(n+2)/τ + (n+ 3)e−(n+3)/τ + . . .

≤ (n+ 1)(n+ 2)

2e1/τ
+

∫ ∞
n+1

te−t/τdt

≤ 3
e1/τ

τ2 +

∫ ∞
0

te−t/τdt

≤
(

3
e1/τ

+ 1
)
τ2.

Therefore, we get SN ≤ (3 + e)τ2 < 6τ2. When τ < 1, SN ≤ 1 + e1/τ
∫∞
1
t exp(−t/τ)dt ≤

1 + e1/τe−1/ττ(τ + 1) = 1 + τ(τ + 1) = 1 + τ + τ2. Hence, SN ≤ 1 + τ + 6τ2 ≤ (1 + 3τ)2.

Plugging in this bound into the bound derived for ‖µNt,x − µπt‖1 gives the desired result.

In the next two lemmas we compute the rate of change of the policies produced by Exp3 and show
that for a large enough value of N , µNt,x,a can be uniformly bounded form below by β/2.

Lemma 8. Assume that for some N + 1 ≤ t ≤ T , µNt,xt−N ,at−N (x′) ≥ β/2 holds for all states x′.
Let

c =
2η

β

(
1

γ
+ 4τ + 6

)
.

Then,

max
x

∑
a

|πt+N−1(a|x)− πt+N (a|x)| ≤ c. (15)

Proof. We have ρ̂t =
∑
x,a µ

πt(x)πt(a|x)rt(x, a) and thus from the definition of rt(x, a) we get
ρ̂t ≤ 2/β. Hence, by Lemma 3 and the Bellman equations,

q̂t(x, a) ≥ − 2

β
− 4τ + 4

β
= − 2

β
(2τ + 3). (16)

Using rt(x, a) ≤ 2
γβ and ρ̂t ≥ 0, we also get

q̂t(x, a) ≤ 2

γβ
+

4τ + 6

β
=

2

β

(
1

γ
+ (2τ + 3)

)
. (17)

Hence, η q̂t(x, a) is contained in an interval of length at most 2η
β

(
1
γ + 4τ + 6

)
= c. Define

π′s(a|x) =
ws(x, a)∑
bws(x, b)

for s ∈ {t+N − 1, t+N}. Clearly, |πt+N−1(a|x)−πt+N (a|x)| ≤ |π′t+N−1(a|x)−π′t+N (a|x)|
for all x and a, and hence it is sufficient to bound maxx

∑
a |π′t+N−1(a|x) − π′t+N (a|x)|. First

we bound the Kullback-Leibler divergence D(π′t+N−1(·|x)||π′t+N (·|x)) between the action distri-

11

butions resulting from π′t+N−1 and π′t+N when these policies are used in state x:

D(π′t+N−1(·|x)||π′t+N (·|x))

=
∑
a

π′t+N−1(a|x) ln
π′t+N−1(a|x)

π′t+N−1(a|x)eηq̂t(x,a)/
∑
b π
′
t+N−1(b|x)eηq̂t(x,b)

=
∑
a

π′t+N−1(a|x) ln

∑
b π
′
t+N−1(b|x)eηq̂t(x,b)

eηq̂t(x,a)

= ln
∑
b

π′t+N−1(b|x)eηq̂t(x,b) − η
∑
a

π′t+N−1(a|x)q̂t(x, a)

≤ η
∑
a

π′t+N−1(a|x)q̂t(x, a) +
c2

8
− η

∑
a

π′t+N−1(a|x)q̂t(x, a)

=
c2

8
,

(18)

where we have used Hoeffding’s Lemma (cf. Lemma 2.2 in Cesa-Bianchi and Lugosi, 2006) and
that q̂t(x, a) is contained in an interval of length at most c. Now, by Pinsker’s inequality (see, e.g.,
Cesa-Bianchi and Lugosi, 2006), we have∑

a

|π′t+N−1(a|x)− π′t+N (a|x)| ≤
√

8D(π′t+N−1(·|x)||π′t+N (·|x)) ≤ c.

Lemma 9. Let c be as in Lemma 8. Assume that c(3τ + 1)2 < β/2, and let

N ≥
⌈
τ ln

(
4

β − 2c(3τ + 1)2

)⌉
. (19)

Then, for all N < t ≤ T , x, x′ ∈ X and a ∈ A, we have µNt,x,a(x′) ≥ β/2 and
maxx′

∑
a′ |πt+1(a′|x′)− πt(a

′|x′)| ≤ c.

Proof. We prove the lemma by induction on t. The induction hypothesis is that for N + 1 ≤ t ≤ T ,
minx,x′,a µ

N
s,x,a(x′) ≥ β/2 and maxx′

∑
a′ |πs+1(a′|x′) − πs(a

′|x′)| ≤ c hold for all N + 1 ≤
s ≤ t.
Let us first show that this hypothesis holds when N + 1 ≤ t ≤ 2N − 1. Fix some state x ∈ X and
action a ∈ A. By the construction of the policies, we have maxx′

∑
a′ |πt+1(a′|x′)− πt(a

′|x′)| =
0 ≤ c for all 1 ≤ t ≤ 2N − 1. Thus, by Lemma 7, we get that

‖µNt,x,a − µπt‖1 ≤ c(3τ + 1)2 + 2e−N/τ

holds for all N + 1 ≤ t ≤ 2N − 1. By our assumption about N , we have

c(3τ + 1)2 + 2e−N/τ ≤ β/2, (20)

thus for any N + 1 ≤ t ≤ 2N − 1, x ∈ X , a ∈ A,

‖µNt,x,a − µπt‖∞ ≤ ‖µNt,x,a − µπt‖1 ≤ β/2. (21)

Since, by assumption, µπ(x′) ≥ β holds for any stationary policy π, we also have µπt(x′) ≥ β.
This, together with (21) gives that µNt,x,a(x′) ≥ β/2 holds for any x, x′ ∈ X and a ∈ A.

Now, fix a time index 2N ≤ t ≤ T and assume that the induction hypothesis holds for time t − 1.
Then, thanks to minx,x′,a µ

N
t−N+1,x,a(x′) ≥ β/2, Lemma 8 implies

max
x′

∑
a′

|πt+1(a′|x′)− πt(a
′|x′)| ≤ c.

Now, by Lemma 7, we have for any x ∈ X , a ∈ A,

‖µNt,x,a − µπt‖1 ≤ c(3τ + 1)2 + 2e−N/τ .

Using the same reasoning as above, we finish the inductive step and thus the proof.

12

5.2 Proof of Proposition 1

The statement is trivial for T ≤ N . The following simple result is the first step in proving Proposi-
tion 1 for T > N .

Lemma 10. (cf. Lemma 4.1 in Even-Dar et al., 2009) For any policy π and t ≥ 1,

ρπt − ρt =
∑
x,a

µπ(x)π(a|x) [qt(x, a)− vt(x)] .

Proof. We have∑
x,a

µπ(x)π(a|x)qt(x, a) =
∑
x,a

µπ(x)π(a|x)

[
rt(x, a)− ρt +

∑
x′

P (x′|x, a)vt(x
′)

]
= ρπt − ρt +

∑
x

µπ(x)vt(x).

Reordering the terms gives the result.

For every x, a define QT (x, a) =
∑T
t=N+1 qt(x, a) and VT (x) =

∑T
t=N+1 vt(x). The pre-

ceding lemma shows that in order to prove Proposition 1, it suffices to prove an upper bound on
E [QT (x, a)−VT (x)].

Lemma 11. Let c be as in Lemma 8. Assume that γ ∈ (0, 1), c(3τ + 1)2 < β/2, N ≥⌈
τ ln

(
4

β−2c(3τ+1)2

)⌉
, 0 < η ≤ β

2(1/γ+2τ+3) , and T > N hold. Then, for all (x, a) ∈ X ×A,

E [QT (x, a)−VT (x)]

≤ (4τ + 8)N +
ln |A|
η

+ (2τ + 4)T

(
γ +

2η

β
|A|
(
N (1/γ + 4τ + 6) + (e− 2)(2τ + 4)

))
.

The proof is presented in Appendix A.

Proof of Proposition 1. Under the conditions of the proposition, combining Lemmas 10-11 yields

T∑
t=1

E [ρπt − ρt]

≤ 2N +
∑
x,a

µπ(x)π(a|x)E [QT (x, a)−VT (x)]

≤ (4τ + 10)N +
ln |A|
η

+ (2τ + 4)T

(
γ +

2η

β
|A|
(
N (1/γ + 4τ + 6) + (e− 2)(2τ + 4)

))
,

proving Proposition 1.

5.3 Proof of Proposition 2

Let t > N . First, since πt is σ(ut−N)-measurable,

E [ρt] = E

[∑
x

µπt(x)E [rt(x,at)|ut−N]

]
.

We also have

E [rt(xt,at)] = E [E [rt(xt,at)|ut−N]]

= E

[∑
x

µNt,xt−N ,at−N (x)E [rt(x,at)|ut−N]

]
.

13

Hence,

E [ρt − rt(xt,at)] = E

[∑
x

(µπt(x)− µNt,xt−N ,at−N (x))E [rt(x,at)|ut−N]

]

≤ E

[∑
x

∣∣∣µπt(x)− µNt,xt−N ,at−N (x)
∣∣∣] ,

where we have used that rt(x, a) ∈ [0, 1].

Thanks to Lemma 9, Lemma 7 is applicable. Hence,∑
x

∣∣∣µπt(x)− µNt,xt−N ,at−N (x)
∣∣∣ ≤ c(3τ + 1)2 + 2e−N/τ ,

and thus E [ρt − rt(xt,at)] ≤ c(3τ + 1)2 + 2e−N/τ . Summing up these inequalities for t =
N + 1, . . . , T , we get (

T∑
t=N+1

E [ρt]

)
− R̂T ≤ T c(3τ + 1)2 + 2Te−N/τ .

Using the trivial bound E [ρt − rt(xt,at)] ≤ 2 for the first N terms, we get the desired result.

A Proof of Lemma 11

We follow the steps of the proof in Auer et al. (2002). Fix (x, a) ∈ X × A. For any 1 ≤ t ≤ T
define Wt(x) =

∑
awt(x, a). First, note that since the conditions of Lemma 9 are satisfied, hence,

the conclusions of this lemma, as well as those of Lemmas 3–6 hold. In particular, by Lemma 6,
πt(a|x)|q̂t(x, a)| ≤ Bq

def
= 4

β (τ + 2) holds for any s ≥ N + 1. Now, using Lemma 2 and
the Bellman equations, we get that q̂t(x, a) ≤ 2

β (1/γ + 2τ + 3), thus by the constraint on η,
ηq̂t(x, a) ≤ 1.

Fix 2N ≤ t ≤ T − 1. We have the following:
Wt+1(x)

Wt(x)
=
∑
a

wt+1(x, a)

Wt(x)

=
∑
a

wt(x, a)

Wt(x)
eηq̂t−N+1(x,a)

=
∑
a

πt(a|x)− γ/|A|
1− γ

eηq̂t−N+1(x,a)

≤
∑
a

πt(a|x)− γ/|A|
1− γ

(
1 + ηq̂t−N+1(x, a) + (e− 2) (ηq̂t−N+1(x, a))

2
)

(as ηq̂t−N+1(x, a) ≤ 1)

≤ 1 +
η

1− γ
∑
a

πt(a|x)q̂t−N+1(x, a) +
η2(e− 2)

1− γ
∑
a

πt(a|x)(q̂t−N+1(x, a))2

≤ 1 +
η

1− γ
v̂Nt (x) +

Bq η
2(e− 2)

(1− γ)

∑
a

|q̂t−N+1(x, a)| ,

where v̂Nt (x) =
∑
a πt(a|x)q̂t−N+1(x, a). Using 1 + x ≤ ex and then taking logarithms gives

ln
Wt+1(x)

Wt(x)
≤ η

1− γ
v̂Nt (x) +

Bq η
2(e− 2)

(1− γ)

∑
a

|q̂t−N+1(x, a)| .

Summing over t = 2N, 2N + 1, . . . , T we get

ln
WT+1(x)

W2N (x)
≤ η

1− γ
V̂N
T (x) +

Bq η
2(e− 2)

(1− γ)

T−N+1∑
t=N+1

∑
a

|q̂t(x, a)| (22)

14

with V̂N
T (x) =

∑T
t=2N v̂Nt (x). On the other hand, for any action b we have

ln
WT+1(x)

W2N (x)
≥ ln

wT+1(x, b)

W2N (x)
= η

T−N+1∑
t=N+1

q̂t(x, b)− ln |A|,

where we used that w2N (x, a) = 1 holds for all a ∈ A. Combining with (22), we get

V̂N
T (x) ≥ (1− γ)Q̂N

T (x, b)− ln |A|
η
−Bq η(e− 2)

T−N+1∑
t=N+1

∑
a

|q̂t(x, a)| (23)

where Q̂N
T (x, b) =

∑T−N+1
t=N+1 q̂t(x, b).

Let us now bound the difference of V̂N
T (x) and

V̂T (x) =

T∑
t=N+1

v̂t(x) =

T∑
t=N+1

∑
a

πt(a|x)q̂t(x, a).

Note that

V̂N
T (x) =

T−N+1∑
t=N+1

∑
a

πt+N−1(a|x)q̂t(x, a).

Therefore,

V̂N
T (x)− V̂T (x)

≤
T−N+1∑
t=N+1

∑
a

|q̂t(x, a)|
∣∣∣πt+N−1(a|x)− πt(a|x)

∣∣∣+

T∑
t=T−N+2

∑
a

πt(a|x)|q̂t(x, a)|

≤
T−N+1∑
t=N+1

‖πt+N−1(·|x)− πt(·|x) ‖1 ‖ q̂t(x, ·) ‖∞ +

T∑
t=T−N+2

∑
a

πt(a|x)|q̂t(x, a)|

≤ N c

T−N+1∑
t=N+1

‖ q̂t(x, ·) ‖∞ +

T∑
t=T−N+2

∑
a

πt(a|x)|q̂t(x, a)|,

where we have used that by Lemma 8, ‖πt+N−1(·|x)− πt(·|x) ‖1 ≤ Nc, that is, the policies
change slowly. Taking the expectation of both sides, we get

E
[
V̂N
T (x)

]
− E

[
V̂T (x)

]
≤ N c

T−N+1∑
t=N+1

E [‖ q̂t(x, ·) ‖∞] +

T∑
t=T−N+2

E

[∑
a

πt(a|x)|q̂t(x, a)|

]
.

By Lemma 5,
E [|q̂t(x, a)|] ≤ B′q

def
= 2(τ + 2) (24)

holds for any (x, a) ∈ X ×A. Therefore, E [‖ q̂t(x, ·) ‖∞] ≤ |A|B′q.
Using again (24),

E

[∑
a

πt(a|x)|q̂t(x, a)|

]
= E

[
E

[∑
a

πt(a|x)|q̂t(x, a)|

∣∣∣∣∣ut−N
]]

= E

[∑
a

πt(a|x)E [|q̂t(x, a)| |ut−N]

]

≤ E

[∑
a

πt(a|x)B′q

]
≤ B′q.

Hence,
E
[
V̂N
T (x)

]
≤ E

[
V̂T (x)

]
+N B′q (c T |A|+ 1).

15

This, together with (23) gives

E
[
V̂T (x)

]
+N B′q (c T |A|+1) ≥ (1−γ)E

[
Q̂N
T (x, b)

]
− ln |A|

η
−Bq η(e−2)

T−N+1∑
t=N+1

∑
a

E [|q̂t(x, a)|] .

(25)

By equation (10), we have
E
[
V̂T (x)

]
= E [VT (x)]

and with the definition QN
T (x, b) =

∑T−N+1
t=N+1 qt(x, b), we also have

E
[
Q̂N
T (x, b)

]
= E

[
QN
T (x, b)

]
.

Thus, using (24) again, we get

E [VT (x)] +N B′q (c T |A|+ 1) ≥ (1− γ)E
[
QN
T (x, b)

]
− ln |A|

η
− η(e− 2)Bq B

′
q T |A|.

By reordering the terms and noticing that Bq = 2
βB
′
q , we get

E
[
QN
T (x, b)−VT (x)

]
≤ γE

[
QN
T (x, b)

]
+N B′q (c T |A|+ 1) +

ln |A|
η

+
2

β
η(e− 2)B′2q T |A|.

(26)
We now lower bound QN

T (x, a) by QT (x, a):

QT (x, b)−QN
T (x, b) =

T∑
t=T−N+2

qt(x, b) ≤ B′qN, (27)

where we used that by Lemma 2,

qt(x, b) ≤ B′q = 2(τ + 2) (28)

since the rewards are bounded between 0 and 1.

Combining (27) with (26), we obtain

E [QT (x, b)−VT (x)] ≤ γE
[
QN
T (x, b)

]
+N B′q (c T |A|+1)+

ln |A|
η

+B′q

(
2

β
η(e− 2)B′q T |A|+N

)
.

Using (28) again, we get E
[
QN
T (x, b)

]
≤ B′qT . Thus,

E [QT (x, b)−VT (x)] ≤ 2B′qN +
ln |A|
η

+ TB′q

(
γ +N |A|c+

2

β
η(e− 2)B′q |A|

)
.

Using that c = 2η
β

(
1
γ + 4τ + 6

)
and B′q = 2(τ + 2), we arrive at the final result:

E [QT (x, b)−VT (x)] ≤ 2 · 2(τ + 2)N +
ln |A|
η

+ 2(τ + 2)T

(
γ +N |A|2η

β

(
1

γ
+ 4τ + 6

)
+ η(e− 2)

4

β
(τ + 2) |A|

)
.

Acknowledgments

This work was supported in part by the Hungarian Scientific Research Fund and the Hungarian
National Office for Research and Technology (OTKA-NKTH CNK 77782), the PASCAL2 Network
of Excellence under EC grant no. 216886, NSERC, AITF, the Alberta Ingenuity Centre for Machine
Learning, the DARPA GALE project (HR0011-08-C-0110) and iCore.

16

References
Auer, P., Cesa-Bianchi, N., Freund, Y., and Schapire, R. E. (2002). The nonstochastic multiarmed

bandit problem. SIAM J. Comput., 32(1):48–77.
Cesa-Bianchi, N. and Lugosi, G. (2006). Prediction, Learning, and Games. Cambridge University

Press, New York, NY, USA.
Even-Dar, E., Kakade, S. M., and Mansour, Y. (2005). Experts in a Markov decision process. In Saul,

L. K., Weiss, Y., and Bottou, L., editors, Advances in Neural Information Processing Systems 17,
pages 401–408.

Even-Dar, E., Kakade, S. M., and Mansour, Y. (2009). Online Markov decision processes. Mathe-
matics of Operations Research, 34(3):726–736.

Neu, G., György, A., and Szepesvári, C. (2010). The online loop-free stochastic shortest-path prob-
lem. In COLT-10.

Puterman, M. L. (1994). Markov Decision Processes: Discrete Stochastic Dynamic Programming.
Wiley-Interscience.

Yu, J. Y. and Mannor, S. (2009a). Arbitrarily modulated Markov decision processes. In Joint 48th
IEEE Conference on Decision and Control and 28th Chinese Control Conference. IEEE Press.

Yu, J. Y. and Mannor, S. (2009b). Online learning in Markov decision processes with arbitrarily
changing rewards and transitions. In GameNets’09: Proceedings of the First ICST international
conference on Game Theory for Networks, pages 314–322, Piscataway, NJ, USA. IEEE Press.

Yu, J. Y., Mannor, S., and Shimkin, N. (2009). Markov decision processes with arbitrary reward
processes. Mathematics of Operations Research, 34(3):737–757.

17

