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Abstract This article presents a new approach for guiding a group of people using an adaptive
multi agent system. For the simulations of the group of people we use social forces, with
theses forces human motion is controlled depending on the dynamic environment. To get the
group of people being guide we use a set of agents that work cooperatively and they adapt
their behavior according to the situation where they are working and how people react. For
that reason, we present a model that overcomes the limitations of existing approaches, which
are either tailored to tightly bounded environments, or based on unrealistic human behaviors.
In particular we define a Discrete-Time- Motion model, whichfrom one side represents the
environment by means of a potential field, and on the other hand the motion models for
people and robots respond to realistic situations, and for instance human behaviors such as
leaving the group are considered. Furthermore, we present an analysis of forces actuating
among agents and humans throughout simulations of different situations of robot and human
configurations and behaviors. Finally, a new model of multi-robot task allocation applied to
people guidance in urban settings is presented. The developed architecture overcomes some
of the limitations of existing approaches, such as emergentcooperation or resource sharing.

1 Introduction
The interest on developing social and cooperative agents has significantly increased through-
out the recent years. In this work we present a new approach for guiding people in open areas
of urban settings using multiple agents acting in a cooperative way. One of the agents is the
leader, as a human tour-guide. It is placed at the front of the group and its role is to estimate
the trajectory of both the people and the rest of agents. The other agents, calledshepherds, are
responsible for guiding the people, preventing any person leaving the group, and following
the path given by the leader, considering in every instant people reactions using social forces
[1].

Furthermore, in this research, we go one step ahead, presenting a method to optimize
locally the tasks assignment to agents for doing their missions. Agents assignation are done
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by analyzing the minimum work required to do such task, wherethe function to minimize is
based on one hand, by agents motion (which will be applied with robot on the future), and,
on the other hand, by the impact of such motions on peoples displacement.

Moreover, an orientation where the main question is not about the division of tasks be-
tween agents is presented. In the developed approach the participation to solve a task is not
limited to a single agent. Agents will try to participate in the tasks that give them more bene-
fits, even when the task is already being done by someone else.In many cases the tasks can be
performed by more than one agent. This feature has not been explored so far by other existing
architectures.

This paper contents has been distributed as follows. We start presenting the representation
model of the environment and people behavior. In section IIIthe cost function for the rescuing
people task is presented. In section IV the MRTA model we are presenting is applied to the
task of people guidance. And last but not least, the results and conclusions are presented in
sections V and VI respectively.

2 Modeling The Environment and People motion
For modeling the environment where the agents (future robots) work, we have developed a
model called Discrete Time Motion model (DTM) which has two components: The Discrete
Time component and the Discrete Motion component. The former estimates position, ori-
entation and velocity of the robots and persons, and the position of the obstacles at a time
instancek. It will be used to estimate the intersection of the people with the obstacles and
detect if someone is leaving the group. The Discrete Motion component estimates the change
of position, orientation and velocity of people and robots between two time instancesk and
k+ p. It will be used to compute the robots’ trajectory to reach the goal while preventing
people leaving the group.

2.1 The Discrete Time Motion Model
The first task of the Discrete Time component is to estimate position, orientation and velocity
of the robots and persons. This is done with a standard particle filter formulation [2].

Then, the Discrete Time component aims to represent the areas where the robots will be
allowed to move, by means of potential fields. To this end, we define a set of functions that
describe the tension produced by the obstacles, people and robots over the working area.
These tensions are computed based on the area defined by a security region surrounding each
one of the persons, robots and obstacles.

In order to decide the trajectories the robots will follow wewill define a potential field
over the working area, and perform path planning in it. In particular, the goal the robots try
to reach will generate an attractive force pulling the robots towards it. On the other hand, the
obstacles will generate a repulsive potential pushing a given robot away . We parameterized
all these attractive and repulsive forces by Gaussian functions. For more detail of this model
see [6].
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2.2 Modeling People Motion
In order to model people’s motion we will use the concepts introduced by the works of Hel-
bing et al. [1], this research studies the dynamics of pedestrian crowds from the “social” point
of view. More specifically, they describe the motion of pedestrians based on social forces
which are the result of the internal motivations of the individuals to perform certain motions.
For more information see [1].

Let us now explain mathematically. People usually take the shortest path, which may be
formally represented as the shape of a open polygon with edges r 1

α . . .r n
α := r 0

α , whereα
refers to a given person andr 0

α the destination he/she wants to reach.

The desired motion directioneα(t) of a pedestrianα will then be:eα(t) := r k
α −rα (t)

‖r k
α −rα (t)‖

whererα(t) is thecurrent positionandr k
α is the subsequent edge of the polygon that will be

reached. A deviation of the desired speed,v0
α , from the current velocity,v 0

α (t) := v 0
α eα(t),

may also exist due to deceleration or obstacle avoidance processes:

F 0
α (vα ,v

0
α eα) :=

1
τα

(v0
α eα −vα) (2)

whereτα is a relaxation term. In practice we set the termτ to 0.5 for all the pedestrians [1].

3 Adaptation Model for Rescuing People
One of the biggest issues when guiding a group of people usingmulti agents, it is the possi-
bility that a person or some people escape from the formation, in this case the agents have to
adapt to the new situation to solve the new task. To this end, we will speak in term of robot
instead of agent because all this theory will be applied to robots. The cost function, described
below, speaks in Work terms, and it can be divided into two blocks: (i) Robot work motion,
and(ii) Human work motion. In order to know what robots’ tasks are, wehave considered
the following situations:(i) One robot has to look for the person (or people) that can poten-
tially escape from the crowd formation and push him (or them)to regroup him (or them) into
group,(ii) one robot has to go behind the people in order to push them in case that the crowd
formation is broken down while the Leader guides the formation.

Firstly, the leader robot computes a path planning and movesto the next point. We also
assume that there exists adrag forcethat will attract people behind the robot. Here, the robot
has only to move from the present position to the next one of the guiding path. ThePushing
taskoccurs when the robot pushes a person that has gone away in order to reach the crowd
formation. This task can be also applied when a robot pushes aperson (or people) who is (are)
going behind the crowd formation in order to regroup people when the formation is broken
down. Finally,Crowd traversing task, where the robot has to move through the formation
to achieve the estimated position of the person that goes away from the crowd formation.
In order to compute the dragging, pushing and crowd traversing forces, we use the equa-
tions defined in previous works on human behavior with other individuals [1]. Working with
autonomous mobile robots, the roboti work motion is expressed by:

f mot
i = miai ; Wmot

i = f mot
i ∆si (3)

wheremi is the mass of the i-th robot,ai its acceleration and∆xi the space traversed by
the robot to achieve its goal.
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In this problem it is necessary to consider thedragging, pushingandcrowd intrusion forces
that robot’s motion produces and that can affect to people. This component is calledHuman
Work Motion, and it is the expense of people’s movements as a result of robot’s motions. As
it has been mentioned several times in this paper, the group follows the robot guide/leader,
and there is a set of robots that help to achieve their goal.

The dragging force is necessary when the leader robot guidesthe group of people from
one place to another. It acts as an attractive force, hence the force applied by robot leaderi to
each personj is:

f drag
i j (t) =−Ci j nij(t) =−Ci j

xi(t)−x j(t)

di j (t)
; di j (t) =

∥

∥xi(t)−x j(t)
∥

∥ (4)

wheredi j (t) is the normalizated vector pointing from personj to robot i at instantt. Ci j

reflects the attraction coefficient over the individualj, and it depends on the distance between
the robot leader and personj. Thus, the dragging work that robot leader applied to each
individual is defined by:

Wdrag = ∑
∀ person j

f drag
i j ∆sj (5)

Where∆sj is the distance traveled by the personj.
ThePushing forceis given by the repulsive effect developed by shepherding robot on the

group of people, for regrouping a person (or the broken crowd) in the main crowd formation.
This repulsive force is due by the intrusion of the robot in the people’s living space, which is
five feet around humans. The territorial effect may be described as a repulsive social force:

f push
i j = Aiexp(r i j−di j )/Bi nij

(

λi +(1+λi)
1+cos(ϕi j )

2

)

(6)

WhereAi is the interaction strength,r i j = r i + r j the sum of the radiis of roboti and
personj, usually people has radii of one meter, and robots 1.5 m,Bi parameter of repulsive
interaction,di j (t) =

∥

∥xi(t)−x j(t)
∥

∥ is the distance of the mass center of roboti and personj.
Finally, with the choiceλ < 1 , the parameter reflects the situation in front of a pedestrian has
a larger impact on his behavior than things happening behind. The angleϕi j (t) denotes the
angle between the directionei(t) of motion and the direction−nij(t) of the object exerting
the repulsive force. We can write pushing work by:

Wpush= ∑
∀ person inΩi

f push
i j (t)∆sj (7)

WhereΩi is the set of people in which one of the helper robots have reached the living
space.

And last but not least, theTraversing forceis determined by the forces applied by the robot
when is traversing the crowd. For security reasons, we have considered in this research that
the value of this force is infinity, so we will ensure that a robot will not cross the crowd in
order to avoid any damage.

The cost function for agent (robot)i, given a specific task, is the following one:
Wi = δmotW

mot
i +δdragW

drag
i + +δpushW

push
i +δtravW

trav
i (8)

whereδk =

{

1 if this task is assigned
0 if this task is not assigned
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Wherek could bepushing, dragging, traversingor motion. For each period of time, the
leader and shepherded agents (robots) will be given a task inthe guiding mission, which will
imply one or several robot motion works and human robot works.

Finally, the task assignment for the agents (robots) will bethe one which minimizes the
minimum assigned work cost required to do the global task. Itis computed by the following
way:

C= argmin{Wtotal(c)}, ∀ configuration c (9)

where theConfigurationsmean how the tasks are distributed among the agents, for each
configurationc agents computeWtotal which is the addition of allWi for all agentsi that are
working cooperatively.

4 Multi Agent Coordination
In the previous section, we have described a const function that it would be used when one
person or more people escape from the formation. In the present section we will define a new
approach of Multi Robot Task Allocation (MRTA). Our proposal addresses the challenge
of people guidance in a way no previously explored, using MRTA. In agents and robotics
systems there are many approaches to task allocation, but almost all solve tasks that does not
involve human interaction. Other shortcoming in current architectures is that most of them
assign one task to one robot, limiting the capacities of robot teams to work cooperatively. A
good review and analysis of current multi-robot task allocation architectures is [3] of Gerkey
and Mataríc.

In general, existing proposals attempt to allocate one taskto one robot. Only a few consider
the case for cooperating to solve a task, and with the exception of ASyMTRe [5] in which
cooperation is somehow preset on the system definition, cooperation only occurs when there
are special situations (i.e. errors) during execution.

Fig. 1 A component includes uncertaintyu and required ports (marked with an asterisk).

Our architecture, Selfish Task Allocation (STA), follows the Component Based Develop-
ment, meaning that all the software to be used inside STA mustbe constructed as a component
(see figure 1, therefore it must have a name and include input and/or output ports. Furthermore
we add uncertainty to each component and the propertyrequiredto each port.

Each componentCi =(nCi ,PCi ,uCi ), has a namenCi , a list of portsPCi = {PCi
1 ,PCi

2 ,PCi
3 , ...,PCi

m },

and an uncertainty valueuCi . Each portPCi
j = (tP

Ci
j ,wP

Ci
j , rP

Ci
j ) is described by aninformation
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type tP
Ci
j that represents the kind of information transported in the port, wP

Ci
j is a binary value

that stores thedirectionof the port (input or output), andrP
Ci
j that indicates if a port isrequired

or not to accomplish that component.
As each piece of software inside a robot should be designed asa component, a robot can

be conceived as a collection of componentsR= {C1,C2,C3, ...,Cn}.
Since our approach addresses the problem as a task allocation system, we need to for-

malize the list of tasksT = {T1,T2,T3, ...,To} and the description of each of that tasks
Tk = (nTk,gTk,sTk).

wherenTk represents the name of the task,gTk the geographic information, if any (for
example in people guidance the position of the group to be guided and the goal of the group),
andsTk the status of the task (unsolved, attempted or solved).

We decided to tackle the problem of multi-robot task allocation with a different point of
view, instead of use a complex group algorithm to distributetasks, our approach uses the
single robot task selection algorithm, allowing each robotto select the task that better fits its
capabilities. When all the robots selects their best task, a task management algorithm coordi-
nates the actions of the robots on the same task and task allocation just emerge. This section
explores the Single Robot Task Selection (SRTS) algorithm we develop for our architecture.
We understand SRTS as the algorithm used to define which is thebest task for each robot.

Our approach for single-robot task selection is inspired bythe proposal of Tang and
Matatíc, ASyMTRe [5], which in turn is inspired in information invariants. Like previous
proposals (information invariants and ASyMTRe), our proposal called Selfish Task Alloca-
tion (STA) ”allows robots to reason about how to solve a task based upon the fundamental
information needed to accomplish the task”[5].

The Single-Robot Task Selection (SRTS) algorithm, part of STA, begins when it receives
the list of tasksT, then∀Tk ∈ T, the SRTS algorithm searches if∃Ci s.t.nCi = nTk, onceCi is
found the algorithm tries toactivatethat component satisfying the following rules:

1. Ci can be activated iff∀PCi
j ∈ PCi whererP

Ci
j = truecan be connected to acompatible port

(see rule 2). At the same time components providing those ports must be activated.

2. Two portsPCi
a andPCi

b are compatibles iff they have the same information typetP
Ci
a = tP

Ci
b

and opposite directionwP
Ci
a 6= wP

Ci
b .

As result of the search some solutions could be obtained, we represent each solution as the
list of the components involved in the solution of the taskSl = {Cx,Cy, ...}⊂R. And as can be
inferred, if there exists more that one algorithm to solve the same problem (particle filter- and
odometry-based localization) or if two or more components provide the same information
type, could exist many ways to satisfy the required port of a component, and therefore many
alternative solutions for each taskS= {S1,S2, ...,Sl} between all these alternatives, to select
the task to be performed we use the solution with less uncertainty in connectionsuTx and
displacementuD(pos,gTk).

Ts = Tx, s.t.uTx = min
∀Tk∈T

uTk (10)

with,uTk = uD(pos,gTk)+uSm, s.t.uSm = min∀Sl∈SuSl , where,uSm represents the solution
Sl with less uncertainty,uD(pos,gTk) the displacement uncertainty, uncertainty of reach the
position of the taskgTk from the robot positionpos(only for mobile robots),uTk the uncer-
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tainty of Tk when the solution with less uncertainty is selected, andTs the finally selected
task.

Once the robot selects the task that it can perform with less uncertainty (Ts), it tries to
tackle that task, and probably other robot is already working on it. We propose an algorithm
to face up the possible issues generated for the multi-robottask tackling.

We distinguish two main challenges when more than one robot acts over one single task,
the first related to task-specific behavior (i.e. the position of each robot in cooperative box
pushing) and the second related to detect when robots becomehindering each other.

Our approximation to the task-specific coordination challenge lies on the assignment of an
id to each robot that joints to solve the same task, the id assignment and the number of robots
participating in the task is managed in a distributed mannerand is only valid inside that task.

The id and the number of robots into each task must be used by the component designer
to define the robot specific behavior for each task.

To face up the challenge of detect when there are too many robots tackling the same
task, we propose the use of performance functions. While acting, each robot continuously
calculates the performance of the team in the specific task

pTk
t = PTk(VTk

t−1,V
Tk
t ) (11)

Where,VTk
t represents the value of environment variables involved inTk at momentt. PTk()

The specific performance function forTk. And pTk
t the performance ofTk at timet.

As mentioned before, in our proposal of task selection each robot chooses the task that
better fits their capabilities. But this selection mechanism means that many times the robots
select the same task. Here it is when performance metrics make sense. When a robot tries to
participate in a task where other robots are already working, it is accepted in test mode, all
the robots adapt their behavior to the new number of robots and they continue tackling the
task and getting performance information, but after a predefined time, the performance of the
team is compared with the performance stored before the new member inclusion, if it was
increased then the robot is considered now as part of the team, else the robot is asked to leave
the task.

5 Implementation and Results
The results we will present correspond to different synthetic experiments, some of them
within the previous map. In these experiments, the dynamical models of the persons –we
considered a group of 5 persons– will follow the models described in the Section described
before. In figure 3 some instants of time of a group of agent working cooperatively solving
the task of guiding a group of people is shown.

We perform some experiments where one group was guided, we include in the simulated
persons the ability to randomly leave the formation, to testour cost function and to study
which is the recovery component and prove the behavior of theproposed architecture in
group splitting. In fig. 2 it can be seen that when people leavethe group a recover task is
added to the list and some robot reacts to solve this task.

6 Conclusions
We have presented a new model to guide people in urban areas with a set of multi agents
that work cooperatively and are able to adapt their behaviordepending on people motion.
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(a) (b)

Fig. 2 (a) Two different group of people are being guided by groups of cooperative agents. Several instants of
time and the entire trajectory are shown. (b)Entire trajectory of people and robots in a guiding people mission.

(a) (b)

Fig. 3 (a) A group of people is being guided by two agents (red circles), in this occasion no human escapes
from the formation, the task is being done correctly. (b) Two agents are guiding the group while a third agent
is rescuing somebody who tries to escape.

In contrast to existing approaches, our method can tackle more realistic situations, such as
dealing with large environments with obstacles, or regrouping people who left the group. For
that reason, this work can be applied in some real robots applications, for instance, guiding
people in emergency areas, or acting as a robot companion.
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