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Abstract We present an extension of the Heterogeneous Tool Set HETS that enables
proof support for Common Logic. This is achieved via logic translations that relate
Common Logic and some of its sublogics to already supported logics and automated
theorem proving systems. We thus provide the first full theorem proving support for
Common Logic, including the possibility of verifying meta-theoretical relationships
between Common Logic theories.

1 Introduction

Common Logic (CL) is an ISO-standardised5 language based on untyped first-order lo-
gic, but extending it in several ways that ease the formulation of complex first-order
theories. [24] discusses in detail the motivations and philosophical background of CL,
arguing that it not only is a natural formalism for knowledege representation in the con-
text of the Web, but that it also constitutes a natural evolution from the canonical text-
book notation and semantics of first-order logic (FOL for short), dispensing with some
deeply entrenched views that are reflected in FOL’s syntax (and that partly go back to,
e.g., Frege’s metaphysical views), in particular the segregation of objects, functions, and
predicates, fixed arities and signatures, and strict syntactic typing.

Although there are several (also large) CL theories around, surprisingly little tool
support has been realised so far. In this work, we fill this gap using the Heterogeneous
Tool Set (HETS [30,31,25]). HETS is a general purpose analysis and proof management
tool for logical theories. We show that the HETS architecture eases the implementation
of a comprehensive tool set for CL, including parsing, theorem proving, checking for
consistency, and more.

This paper is organised as follows. In Section 2, we recall CL, define a number of im-
portant sublogics, and discuss its use cases and hitherto existing tool support. Section 3
briefly outlines the Heterogeneous Tool Set HETS and describes in some detail the integ-
ration of CL into HETS, enabling proof support for CL and its sublogics via various logic
translations to already supported logics and automated reasoners. Section 4 discusses
meta-theoretical relations between CL theories, and Section 5 illustrates the achieved
CL reasoning support for both theorem proving and establishing meta-theoretical rela-
tionships between CL theories.

5 Published as “ISO/IEC 24707:2007 — Information technology — Common Logic (CL): a frame-
work for a family of logic-based languages” [14]
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2 Common Logic

CL is based on untyped first-order logic, but extends first-order logic in two ways (1) any
term can be used as function or predicate, and (2) sequence markers allow for talking
about sequences of individuals directly, and in particular, provide a succinct way for
axiomatising polyadic functions and predicates.6

A CL signature Σ (called vocabulary in CL terminology) consists of a set of names,
with a subset called the set of discourse names, and a set of sequence markers. A Σ-
model consists of a set UR, the universe of reference, with a non-empty subset UD ⊆
UR, the universe of discourse7, and four mappings:

– rel from UR to subsets of UD∗ = {< x1, . . . , xn > |x1, . . . , xn ∈ UD} (i.e., the set of
finite sequences of elements of UD);

– fun from UR to total functions from UD∗ into UD;
– int from names in Σ to UR, such that int(v) is in UD if and only if v is a discourse

name;
– seq from sequence markers in Σ to UD∗.

A Σ-sentence is a first-order sentence, where predications and function applications
are written in a higher-order like syntax as (t s). Here, t is an arbitrary term, and s
is a sequence term, which can be a sequence of terms t1 . . . tn, or a sequence marker.
However, a predication (t s) is interpreted like the first-order formula holds(t, s), and
a function application (t s) like the first-order term app(t, s), where holds and app are
fictitious symbols denoting the semantic objects rel and fun. In this way, CL provides
a first-order simulation of a higher-order language, while still keeping the option of
representing ordinary FOL predicate and function symbols (namely via non-discourse
names, which do not denote values in the universe of discourse).

Interpretation of terms and formulae is as in first-order logic, with the difference that
the terms at predicate resp. function symbol positions are interpreted with rel resp. fun
in order to obtain the predicate resp. function, as discussed above. A further difference
to first-order logic is the presence of sequence terms (namely sequence markers and
juxtapositions of terms), which denote sequences in UD∗, with term juxtaposition in-
terpreted by sequence concatenation. For details, see [14]. As an example, consider the
formula of the upper ontology DOLCE ∀φ(φ(x)), corresponding to

∧
ψ∈Π(ψ(x)), where

predicate variables φ, ψ range over a finite set Π of explicitly introduced universals. In
CL, this is written, using the Lisp-like syntax of the CL Interchange Format CLIF:

(forall (?phi) (if (pi ?phi) (?phi ?x)))

Sequence markers add even more flexibility. For example, it is possible to express
that a list of items is mutually different as follows (using the sequence marker “. . .”):

(mutually-different) //the empty sequence is mutually different

6 Strictly speaking, only the sequence markers go beyond first-order logic.
7 The CLIF dialect of CL also requires that the natural numbers and the strings over unicode

characters are part of the universe of discourse. Even if we use CLIF input syntax, We ignore
this requirement here, as it is not a general requirement for Common Logic, and the role of
datatypes is currently subject of the discussion of the revision of the CL standard.
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(mutually-different x) //singleton sequences are mutually different
(iff (mutually-different x y ...) //recursion for length > 1

(and (not (= x y))
(mutually-different x ...)
(mutually-different y ...) ))

For the rationale and methodology of CL and the possibility to define dialects cov-
ering different first-order languages, see [14]. CL also includes modules as a syntactic
category, with a semantics that restricts locally the universe of discourse (see [33] for
technical details of the revised semantics for CL modules, which is also considered in
the current revision process of ISO/IEC 24707).

2.1 Sublogics of Common Logic

We define four sublogics of CL, all defined through restrictions on the sentences. Moreover,
given a sublogic CL.X, we also define a logic CL.X] which results from CL.X by eliminat-
ing the use of the module construct.

CL.Full: full Common Logic,
CL.Seq: Common Logic with sequence markers, but without impredicative higher-order

like features. That is, in each predication and function application (t s), t must be a
name.

CL.Imp: Common Logic with impredicative features, but without sequence markers.
CL.Fol: Common Logic without impredicative features and without sequence markers.

2.2 Uses of Common Logic

Common Logic has been used for a number of tasks, see Table 1 for a summary, showing
the (rough) number of lines, the number of axiomatised concepts (names), and the
sublogic of Common Logic used.

Collection lines concepts sublogic
COLORE 22,500 400 mostly CL.Fol, also CL.Seq, CL.Imp
SUMO-KIF 150,000 32,000 CL.Full
SUMO-CL 12,000 1,700 CL.Full
fUML 2,000 200 CL.Fol
PSL 1,000 50 CL.Fol

Table 1. Summary of the largest Common Logic ontologies and repositories

COLORE (Common Logic Ontology Repository)8 is an open repository of over 600
Common Logic ontologies. One of the primary applications of COLORE is to support
the verification of ontologies for commonsense domains such as time, space, shape, and

8 http://code.google.com/p/colore/
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processes. Verification consists in proving that the ontology is equivalent to a set of core
ontologies for mathematical domains such as orderings, incidence structures, graphs,
and algebraic structures. COLORE comprises core ontologies that formalise algebraic
structures (such as groups, fields, and vector spaces), orderings (such as partial order-
ings, lattices, betweenness), graphs, and incidence structures in Common Logic, and,
based on these, representation theorems for generic ontologies for the above-mentioned
commonsense domains. COLORE is mostly written in CL.Fol, only 13 ontologies use
CL.Seq, and only one uses CL.Imp.

SUMO (Suggested Upper Merged Ontology) is a large upper ontology, covering a
wide range of concepts. It is one candidate for the “standard upper ontology” of IEEE
working group 1600.1. While SUMO has originally been formulated in the Knowledge
Interchange Format (KIF9), SUMO-CL is a CL variant of SUMO produced by Kojeware
(see also [6] for a discussion of higher-order aspects in SUMO). In table 1, we have
added SUMO-KIF with all the mid-level and domain ontologies that are shipped with
SUMO.

fUML (Foundational UML) is a subset of the Unified Modelling Language (UML)
version 2 defined by the Object Management Group (OMG). The OMG has specified a
“foundational execution semantics” for fUML using CL (see http://www.omg.org/
spec/FUML/).

PSL (Process Specification Language, ISO standard 18629), developed at the Na-
tional Institute of Standards and Technology (NIST), is an ontology of processes, their
components and their relationships. It is also part of COLORE.

2.3 Tool support for Common Logic

Current software tool support for Common Logic is still ad hoc, and is primarily restric-
ted to parsers and translators between CLIF and the TPTP exchange syntax for first-order
logic. The work in [20] proposed an environment for ontology development in Common
Logic, named Macleod; although this work includes detailed design documents for the
environment, there is as yet no available implementation. Similarly [37] proposed a
system architecture for COLORE that supports services for manipulating Common Logic
ontologies, once more merely with basic functionality such as parsing being implemen-
ted. There exist some ad-hoc syntax translations of Common Logic to first-order provers,
but these seem not to be backed up with a semantic analysis of their correctness.

Our main motivation for the present work is to remedy this situation of little tool
support for Common Logic. We thus have extended the Heterogeneous Tool Set (HETS)
with several kinds of tool support for Common Logic:

– a parser for the Common Logic Interchange Format (CLIF) and the Knowledge In-
terchange Format (KIF);

– a sublogic analysis for CL;
– a connection of CL to well-known first-order theorem provers such as SPASS, dar-

win and Vampire, such that logical consequences of CL theories can be proved;
– a connection of CL to the higher-order provers Isabelle/HOL and Leo-II in order to

perform induction proofs in theories involving sequence markers;

9 Common Logic can be considered the ISO-standardised and revised successor of KIF.
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– a connection to first-order model finders such as darwin that allow one to find
models for CL theories;

– support for proving interpretations between CL theories to be correct;
– a translation that eliminates the use of CL modules. Since the semantics of CL

modules is special to CL, this elimination of modules is necessary before sending CL
theories to a standard first-order prover;

– a translation of the Web Ontology Language OWL to CL;
– a translation of propositional logic to CL.

All this is based upon a formal semantic background. For the full functionalities of HETS,
see the HETS user guide [29] (and the special CL version of the guide).10

3 Common Logic and The Heterogeneous Tool Set

3.1 The Heterogeneous Tool Set HETS

The Heterogeneous Tool Set (HETS) [30,31,25] is an open source software providing
a general framework for formal methods integration and proof management. One can
think of HETS acting like a motherboard where different expansion cards can be plugged
in, the expansion cards here being individual logics (with their analysis and proof tools)
as well as logic translations. The HETS motherboard already has plugged in a number
of expansion cards (e.g., theorem provers like SPASS, Vampire, Leo-II, Isabelle and more,
as well as model finders). Hence, a variety of tools is available, without the need to
hard-wire each tool to the logic at hand.

HETS consists of logic-specific tools for the parsing and static analysis of basic logical
theories written in the different involved logics, as well as a logic-independent parsing
and static analysis tool for structured theories and theory relations. The latter of course
needs to call the logic-specific tools whenever a basic logical theory is encountered.

HETS supports a number of input languages directly, such as Common Logic and OWL
2. For expressing meta relations between logical theories, HETS supports the Distributed
Ontology Language (DOL), which is currently being standardised as ISO 17347.11 DOL
can express relations of theories such as logical consequences, relative interpretations of
theories and conservative extensions. DOL is also capable of expressing such relations
across theories written in different logics, as well as translations of theories along logic
translations. A DOL file usually imports files written in specific logics such as Common
Logic or OWL 2.

The semantic background of HETS is the theory of institutions [16], formalising the
notion of a logic. An institution provides a notion of signature, and for each signature,
a set of sentences, a class of models and a satisfaction relation between models and
sentences. Furthermore, an institution provides a notion of signature morphism, such
that sentences can be translated along signature morphisms, and models against signa-
ture morphisms, in a way that satisfaction is preserved. By equipping Common Logic as
defined above with such signature morphisms, Common Logic (CL) can be formalised

10 Available at https://svn-agbkb.informatik.uni-bremen.de/Hets/trunk/doc/
UserGuideCommonLogic.pdf

11 See http://www.ontoiop.org
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as an institution, see [22]. HETS also allows for plugging in logic translations, formalised
as so-called institution comorphisms (see Sect. 3.3).

HETS is currently available for Linux and Mac OS X from the HETS home page http:
//www.dfki.de/cps/hets, where you also find packages ready for Ubuntu Linux.

3.2 HETS’ support for Common Logic and its Relatives

HETS supports a variety of different logics. The following ones are most important for
use with Common Logic:

Common Logic The Common Logic Interchange Format (CLIF) provides a Lisp-like syn-
tax for Common Logic. HETS currently supports parsing CLIF and KIF.

OWL 2 is the Web Ontology Language recommended by the World Wide Web Consor-
tium (W3C, http://www.w3.org); see [2]. It is used for knowledge representa-
tion on the Semantic Web [8]. HETS supports OWL 2 DL and the provers Fact++ and
Pellet.

FOL/TPTP is untyped first-order logic with equality12, underlying the interchange lan-
guage TPTP [39], see http://www.tptp.org. [23] offers several automated the-
orem proving (ATP) systems for SPASS [41], Vampire [36], Eprover [38], Darwin [4],
E-KRHyper [35], and MathServe Broker13 [42]. These together comprise some of
the most advanced theorem provers for first-order logic.

CFOL is many sorted first-order logic with so-called sort generation constraints, express-
ing the generation of a sort from (constructor) functions. In particular, this allows
the axiomatisation of lists and other datatypes. CFOL is a sublogic of the Common Al-
gebraic Specification Language CASL, see [32,9]. Proof support for CFOL is available
through a poor man’s induction scheme in connection with automated first-order
provers like SPASS [23], or via the comorphism to HOL.

HOL is typed higher-order logic [11]. HETS actually supports several variants of HOL,
among them THF0 (the higher-order version of TPTP [7]), with automated provers
Leo-II [5], Satallax [12] and an automated interface to Isabelle [34], as well as the
logic of Isabelle, with an interactive interface to Isabelle.

Proof support for CL, for which there is no dedicated theorem prover available, can
be obtained by using logic translations to a logic supported by some prover, as discussed
next.

3.3 Logic translations supported by HETS

The logic translations in HETS are formalised as so-called institution comorphisms [15].
A comorphism from logic I to logic J consists of

– a translation Φ of I-signatures to J -signatures,
– for each signature Σ, a translation αΣ of Σ-sentences in I to Φ(Σ)-sentences in J ,

and
– for each signature Σ, a translation βΣ of Φ(Σ)-models in J to Σ-models in I,14

12 FOL/TPTP is called SoftFOL in the HETS implementation. SoftFOL extends first-order logic with
equality this with a softly typed logic used by SPASS; however in this paper we will only use the
sublanguage corresponding to FOL.

13 which chooses an appropriate ATP upon a classification of the FOL problem
14 Actually, α and β also have to commute with translations along signature morphisms.
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Figure 1. Graph of logics related to Common Logic that are currently supported by HETS.

such that the following satisfaction condition holds:

βΣ(M)I |= ϕ iff M |=J αΣ(ϕ)

for each signature Σ, Σ-sentence ϕ and Φ(Σ)-model M .
A crucial property of such comorphisms is faithfulness, which means that logical con-

sequence is preserved and reflected along the comorphism:

Γ |=I ϕ iff α(Γ ) |=J α(ϕ)

In particular, this means that a proof goal Γ |=I ϕ in I can be solved by a theorem prover
for J by just feeding the theorem prover with α(Γ ) |=J α(ϕ).

A comorphism is model-expansive, if each βΣ is surjective. It is easy to see that each
model-expansive comorphism is also faithful.

A comorphism is a subinstitution comorphism, if Φ is an embedding, each αΣ is in-
jective and each βΣ is bijective15. Obviously, each subinstitution comorphism is model-
expansive and hence also faithful. Moreover, subinstitution comorphism preserve the
semantics of more advanced DOL structuring constructs such as renaming and hiding.

A subinstitution comorphism is an inclusion comorphism, if Φ and each αΣ are inclu-
sions, and each βΣ is the identity.

The notion of theoroidal comorphisms provides a generalisation of the notion of a
comorphism: Φ may map signatures to theories (where a theory (Σ,Γ ) is a signature Σ
equipped with a set Γ of Σ-sentences).

The logic graph in Fig. 1 is naturally divided into two parts: on the left hand-side,
we find classical first and higher-order logics, on the right hand-side the sublogics of
Common Logic. Within both parts, we have subinstitution relations: for Common Logic,

15 An isomorphism, if model morphisms are taken into account.
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these are obvious (they are even inclusions), while on the left hand-side, the subinstitu-
tions are a bit more complex. Namely, the subinstitution comorphism from SROIQ (the
logic of OWL 2) into FOL is the standard translation [21], FOL is an obvious sublogic of
CFOL, and the translation from CFOL to HOL expands the generation axioms to explicit
Peano-style higher-order induction axioms.

Between the parts of the logic graph, the relations are less tight. Due to the different
model theories of classical first and higher-order logics on the one hand-side and Com-
mon Logic on the other hand-side, we cannot expect subinstitution comorphisms, but
only model expansive and faithful comorphisms to run between the different parts.

In the direction from classical logic to Common Logic, the comorphisms in Fig. 1 are
the following ones:

– a comorphism from classical FOL to CL.Fol. It maps constants to discourse names
and function and predicate symbols to non-discourse names, with a straight-forward
sentence and model translation;

– a comorphism from SROIQ to CL.Fol, corresponding to the standard translation [21],
and

– a comorphism from SROIQ to CL.Full. Here, the higher-order like features of Com-
mon Logic are used to define all features of OWL 2, including Boolean operators
on concepts, inverses of roles etc. directly, such that the translation of sentences
becomes trivial. In particular, mutually-different plays a crucial role for the
translation of number restrictions. Due to the theory needed for axiomatisation of
the OWL 2 features, this comorphism is theoroidal.

In the direction from Common Logic to classical logic, the comorphisms in Fig. 1 are
all quite similar. The idea behind these translations is to make explicit in the signature
the functional and relational interpretations of the elements of the universe. The sym-
bols introduced for this depend on the source sublogic. Namely, if arbitrary terms are
allowed on function/predicate positions in the sentences, the interpretation is given by
the signature symbols rel and fun; otherwise, the interpretation is given by signature
symbols with the same name as the CL names. Furthermore, the arity of these symbols
is determined by the presence of sequence markers: if the sublogic contains sequence
markers, then in the translated signature we introduce the datatype of lists16 which is
then used as an argument; otherwise, the arguments are simply from the universe. The
table on the next page gives an overview of the signature translation component of the
four comorphisms in the table below. We denote by n an arbitrary name and by m an
arbitrary marker in a CL signature.

CL.Fol→ FOL CL.Imp→ FOL
CL.Seq→ CFOL CL.Full→ CFOL

16 Here, we need many-sortedness and sort generation constraints from CFOL.

8



op n : 1
op n : k op fun : k

pred n : k pred rel : k
for each k ∈ N for each k ∈ N

op n : ind op n : ind
op m : list op m : list

op n : list→ ind op fun : ind× list→ list
op ++ : list× list→ list op ++ : list× list→ list

pred n : list pred rel : ind× list

The sentence translation component of the comorphisms, denoted αΣ , is defined
inductively on the structure of sentences. The inductive base is given in the table below,
where t(s) denotes a term or a predicate in a CL sentence.

t(αΣ(s1), . . . , αΣ(sk)) relk(αΣ(t), αΣ(s1), . . . , αΣ(sk))
t(αΣ(s)) rel(αΣ(t), αΣ(s))

On the bottom line of the table, we denote by αΣ(s) the translation of a sequence
s to CFOL. Recall that a sequence s is either a sequence marker, or a juxtaposition
of terms or a juxtaposition of sequences. The translation is defined inductively as tak-
ing each sequence marker to its corresponding constant of sort list, each juxtaposition
of terms t1 . . . tn to cons(αΣ(t1), . . . , cons(αΣ(tn), nil)) and each juxtaposition of se-
quences s1 . . . sn to αΣ(s1) + + · · ·+ +αΣ(sn).

Moreover, we have defined a comorphism CL.Full → HOL in a similar way as
CL.Full→ CFOL, except that now HOL lists are used.

Note that for the comorphisms in the top line of our table we generate infinite signa-
tures. Of course, a tool can only work with finite signatures. Therefore, after translating
a CL theory (Σ,Γ ) along one of the two translations, we further apply a syntactic trans-
formation γ that removes from the signature of the translated theory the symbols that
do not appear in the translation of Γ , denoted by Γ ′. It is easy to notice that by doing
this we have Γ ′ |=Σ e ⇐⇒ Γ ′ |=γ(Σ) e for each γ(Σ)-sentence e.

The proofs that each of these comorphisms are faithful are similar. The key idea is
to define a function δΣ taking CL-models to (C)FOL-models such that βΣ(δΣ(M)) and
M have the same Γ -consequences e where Γ is a Σ-theory, M is a Γ -model and e is a
Σ-sentence that only uses terms on function/predicate positions with the same number
of arguments as in Γ , and then the proof follows using the satisfaction condition of the
comorphism.

CL.Full#

CL.Seq#

CL.Fol#

CL.Imp#

CL.Full

CL.Seq

CL.Fol

CL.Imp

Figure 2. Elimination of the module
construct in CL.

Finally, Fig. 2 shows the square of CL.Full and
its sublogics Cl.Imp, CL.Seq, and CL.Fol and the
square of logics obtained by eliminating the mod-
ule construct from the languages (denoted by
CL.Full# Cl.Imp#, CL.Seq#, and CL.Fol#):

– the obtained cube relates CL (and its sublo-
gics) with the respective restrictions;

– logics without a module construct are ob-
tained (essentially) as a re-writing using
quantifier restrictions;
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– while the restrictions are obviously inclusions,
the reverse translations are obtained as subin-
stitutions.

4 Relations between Common Logic Texts

Common Logic itself does not support the specification of logical consequences, nor rel-
ative theory interpretations, nor other features that speak about structuring and compar-
ing logical theories. Therefore, DOL must be used for these purposes, and consequently
the Common Logic Repository COLORE [17] already contains several DOL files.

Relations between logical theories are expressed in the so-called development graph
calculus [26]. Development graphs are a simple kernel formalism for (heterogeneous)
structured theorem proving and proof management.

A development graph consists of a set of nodes (corresponding to whole structured
specifications or parts thereof), and a set of arrows called definition links, indicating
the dependency of each involved structured specification on its subparts. Each node is
associated with a signature and some set of local axioms. The axioms of other nodes are
inherited via definition links. Definition links are usually drawn as black solid arrows,
denoting an import of another specification.

Complementary to definition links, which define the theories of related nodes, the-
orem links serve for postulating relations between different theories. Theorem links are
the central data structure to represent proof obligations arising in formal developments.

HETS shows development graphs when started with the -g option.
We support the following relations between Common Logic texts:

Importation is defined in ISO/IEC 24707:2007 [14] as virtual copying of a resource.
In HETS, a definition link to the imported theory is created. HETS also supports URIs
for importing resources. The allowed URI schemes are file:, http: and https:.
( cl−imports f i l e : /// abso lu te / path / to / someFile . c l i f )
( cl−imports ht tp :// someDomain . com/ path / to / someFile . c l i f )
( cl−imports h t tp s : // someDomain . com/ path / to / someFile . c l i f )

Relative interpretation is formally defined in [19]. Informally, one module relatively
interprets those “modules whose theorems are preserved within the current mod-
ule through [a] mapping. There exists a mapping between modules such that all
theorems of the other module hold in the current module after the mapping is ap-
plied.” [18] The formal semantics of a relative interpretation is that each model of
the target theory, when reduced to the source theory (along the signature morphism
induced by the symbol map), is a model of the source theory.
HETS represents relative interpretation by a theorem link (display as a red arrow) in
the development graph.
The DOL syntax for relative interpretations is

interpretation i : someCLText to someTargetCLText end
or

interpretation i : someCLText to someTargetCLText =
<symbol map (see below)> end

where a symbol map allows for renaming symbols, e.g.
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name1Old 7→17 name1New, name2Old 7→ name2New.
We provide an example interpretation (without symbol maps) below.
Just as with imports (see above), HETS supports different types of references to re-
sources here, such as URIs.

Conservative extension A theory T2 conservatively extends a theory T1, if each model
of T1 can be expanded to a model of T2. Conservative extensions are another form
of proof obligation in HETS (annotated to definition links or theorem links), and
they need to be discharged with specific tools. HETS interfaces several conservativity
checkers for OWL 2, and features a built-in conservativity checker for CFOL.

Non-conservative extension is informally defined as follows: One module non-conser-
vatively extends other modules, if its “axioms entail new facts for the shared lexicon
[= signature in the terminology of this paper] of the [other] module(s). [That is,
the] shared lexicon between the current module and a [non-conservatively exten-
ded] module are not logically equivalent with respect to their modules.” [18].
HETS represents non-conservative extension by a definition link in the development
graph.

Except for importation, one can specify an optional symbol map (name map) in a re-
lation.18 Names from the source theory are mapped to names from the target theory. The
semantics is given by a signature morphism, which is used to decorate the corresponding
(definition or theorem) link.

Relative Interpretation in COLORE We give an example for relative interpretation
in COLORE. The COLORE [17] module RegionBooleanContactAlgebra relatively
interprets the module AtomlessBooleanLattice. These two modules specify axioms
about Booleans; thus, they have the same signature.

For use with HETS, we have made a dump of the COLORE contents available in
CommonLogic/colore in the HETS library [1].
distributed−ontology COLORE−RelativeInterpretat ion

log i c CommonLogic

ontology AtomlessBoo leanLat t i ce =
http://colore.googlecode.com/svn/trunk/ontologies/complex/lattices/boolean_lattice.clif

then
. ( f o r a l l ( x ) ( ex i s t s ( y ) (and ( not (= y 0)) ( leq y x ) ) ) )
end

ontology RegionBooleanContactAlgebra =
http://colore.googlecode.com/svn/trunk/ontologies/core/contact_algebras/boolean_contact_algebra.

clif
then
. ( f o r a l l ( x )

( i f (and ( not (= x 0)) ( not (= x 1)))
( ex i s t s ( y ) (and ( complement x y ) (C x y ) ) ) ) )

end

interpretat ion i : A tomlessBoo leanLat t i ce to RegionBooleanContactAlgebra

17 alternative ASCII syntax: |->
18 While the “copy” semantics of Common Logic importations does not permit renamings, DOL’s

extension mechanism offers an alternative possibility to reuse ontologies and rename some of
their symbols, using the “importedSpec with name1Old 7→ name1New, name2Old 7→ name2New
then importingSpec” syntax.
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5 Proof Support for Common Logic in HETS

The proof calculus for development graphs [26] reduces global theorem links to local
proof goals. This reduction can be done in the HETS development graph window via the
Edit/Proofs/Auto-DG-Prover menu item. Local proof goals (indicated by red nodes in
the development graph) can eventually be discharged using a theorem prover, i.e. by
using the “Prove” menu of a red node.

The graphical user interface (GUI) for calling a prover is shown in Fig. 3 — we call
it “Proof Management GUI”. The top list on the left shows all goal names prefixed with
their proof status in square brackets. A proved goal is indicated by a ‘+’, a ‘–’ indicates a
disproved goal, a space denotes an open goal, and a ‘×’ denotes an inconsistent theory
(think of a fallen ‘+’).

Figure 3. HETS Goal and Prover Interface Figure 4. Interface of Vampire Prover

When opening this GUI when processing the goals of one node for the first time, it
will show all goals as open. Within this list one can select those goals that should be
inspected or proved. The GUI elements are the following:

– The button ‘Display’ shows the selected goals in the ASCII syntax of this theory’s
logic in a separate window.

– The ‘Proof details’ button opens a window that shows for each proved goal the used
axioms, its proof script, and its proof — the level of detail depends on the used
theorem prover.

– The list ‘Pick Theorem Prover:’ lets you choose one of the connected provers. ‘Prove’
launches the selected prover; the theory along with the selected goals is translated
via the shortest possible path of comorphisms into the prover’s logic.

– The pop-up choice box below ‘Selected comorphism path:’ lets you pick a (com-
posed) comorphism to be used for the chosen prover. In HETS, the comorphisms
CL.Fol→ FOL and CL.Imp→ FOL have been united into CommonLogic2CASLCompact,

12



while CL.Seq→ CFOL and CL.Full→ CFOL have been united into CommonLogic2
CASLFol.

– Since the amount and kind of sentences sent to an ATP system is a major factor for
the performance of the ATP system, it is possible to fine tune the lists of the axioms
and proven theorems that will comprise the theory of the next proof attempt.

– When pressing the bottom-right ‘Close’ button the window is closed and the status
of the goals’ list is integrated into the development graph. If all goals have been
proved, the selected node turns from red into green.

– All other buttons control selecting list entries.

5.1 Consistency Checker and Disproving

Since proofs are void if theories are inconsistent, their consistency should be checked by
the HETS Consistency checker interface, which provides access to a list of model finders.
As with proving, suitable comorphisms can be used to bridge logics such as FOL/TPTP
that come with model finders. For example, when checking consistency of a CL.Imp
theory, using the comorphism CL.Imp → FOL, the FOL model finder darwin can be
used for model finding. Darwin will output the found model as a theory in FOL syntax.
With the model translation component β of the comorphism, the found model can be
translated back to a model in CL.Imp.

Each development graph node that is red (i.e. has open proof obligations) also fea-
tures a “Disprove” button. HETS then adds then negation of the proof goal to the theory
of the node and calls model finders. If a model of the thus extended theory has been
found, it is a countermodel to the provability of the goal.

6 Discussion and Outlook

We have established the first full theorem proving support for Common Logic as well as
the possibility of verifying meta-theoretical relationships between Common Logic theor-
ies via an integration into the HETS system, primarily exploiting the power of logic trans-
lation and the structuring capabilities of the DOL language. As CL is a popular language
within ontology communities interested in greater expressive power than provided by
the decidable OWL DL language, this is a substantial step towards supporting more am-
bitious ontology engineering efforts.

We have used HETS for the verification of a number of consequences and interpreta-
tions of COLORE theories, as well as for the check of their consistency. During this pro-
cess, numerous errors in COLORE have been found and corrected. The sublogic analysis
for Common Logic provided by HETS was of particular importance here, because auto-
mation and efficiency of proofs greatly varies among the sublogics. Most proof goals in
the CL.Fol theories of COLORE could be proved using SPASS, while for COLORE’s graph
theories involving recursive use of sequence markers, the interactive theorem prover
Isabelle needed to be used.

Future work should analyse non-recursive uses of sequence markers (as they occur
in theories that are generic over the arity of certain predicates and functions) more
carefully and provide automated first-order proof support for these. We also plan to
integrate our work into the web ontology repository engine ontohub.org.
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Optional Appendix (not for inclusion in the final version)

A Institutions for Common Logic and its Neighbours

We now cast Common Logic and its most important neighbours in the logic graph as
institutions, following [22,28], but adding a more fine-grained analysis of CL’s subinsti-
tutions and their connections.

First, we recall how specification frameworks in general may be formalized in terms
of so-called institutions [16].

An institution I = (Sig,Sen,Mod, |=) consists of

– a category Sig of signatures,
– a functor Sen : Sig→ Set giving, for each signature Σ, a set of sentences Sen(Σ),

and for each signature morphism σ : Σ→Σ′, a sentence translation map
Sen(σ) : Sen(Σ)→Sen(Σ′), where Sen(σ)(ϕ) is often written σ(ϕ),

– a functor Mod : Sigop→Cat 19 giving, for each signature Σ, a category of models
Mod(Σ), and for each signature morphism σ : Σ→Σ′, a reduct functor
Mod(σ) : Mod(Σ′)→Mod(Σ), where Mod(σ)(M ′) is often written M ′ |σ, and

– a satisfaction relation |=Σ ⊆ |Mod(Σ)| × Sen(Σ) for each Σ ∈ Sig,

such that for each σ : Σ→Σ′ in Sig the following satisfaction condition holds:

M ′ |=Σ′ σ(ϕ) ⇐⇒ M ′ |σ|=Σ ϕ

for each M ′ ∈Mod(Σ′) and ϕ ∈ Sen(Σ).

Definition 1 (Untyped First-order Logic (FOL)). In the institution FOL= of untyped
first-order logic with equality, signatures are first-order signatures, consisting of a set of
function symbols with arities, and a set of predicate symbols with arities. Signature morph-
isms map symbols such that arities are preserved. Models are first-order structures, and
sentences are first-order formulas. Sentence translation means replacement of the trans-
lated symbols. Model reduct means reassembling the model’s components according to the
signature morphism. Satisfaction is the usual satisfaction of a first-order sentence in a first-
order structure.

Definition 2 (Many-sorted First-order Logic with sort generation constraints (CFOL)
[9,13]). The institution FOLms= of many-sorted first-order logic with equality is similar
to FOL=, the main difference being that signatures are many-sorted first-order signatures,
consisting of sorts and typed function and predicate symbols, and that formulas need to
be well-typed. For details, see [16]. A sort generation constraint states that a given set of
sorts is generated by a given set of functions. Technically, sort generation constraints also
contain a signature morphism component; this allows them to be translated along signa-
ture morphisms without sacrificing the satisfaction condition. Formally, a sort generation

19 Here, Cat is the quasi-category of all categories. As metatheory, we use ZFCU , i.e. ZF with
axiom of choice and a set-theoretic universe U . This allows for the construction of quasi-
categories, i.e. categories with more than a class of objects.

16



constraint over a signature Σ is a triple (S̃, F̃ , θ), where θ : Σ→Σ, Σ = (S,TF ,PF , P ),
S̃ ⊆ S and F̃ ⊆ TF ∪ PF .

A Σ-constraint (S̃, F̃ , θ) is satisfied in a Σ-model M iff the carriers of M |θ of sorts in
S̃ are generated by the function symbols in F̃ , i.e. for every sort s ∈ S̃ and every value
a ∈ (M |θ)s, there is a Σ-term t containing only function symbols from F̃ and variables of
sorts not in S̃ such that ν#(t) = a for some valuation ν into M |θ. Here, ν# is the usual
extension of the valuation ν from variables to terms. ut

Although not strictly more expressive than untyped FOL=, introducing a sort structure
allows a cleaner and more principled design of first-order ontologies. Moreover, axioms
involving different sorts can be stated more succinctly, and static type checking gives
more control over correct modelling.

Definition 3 (Common Logic - CL). Common Logic (CL) has first been formalised as an
institution in [22]. We here only provide the missing details that have not been presented
in Section 2. A signature morphism consists of two maps between these sets, such that the
property of being a discourse name is preserved and reflected.20 Model reducts leave UR,
UD , rel and fun untouched, while int and seq are composed with the appropriate signature
morphism component. Sentence translation along a signature morphism is just replacement
of names.

Definition 4 (Description Logics: OWL and its profiles EL,QL,RL). Signatures of the
description logic ALC consist of a set A of atomic concepts, a set R of roles and a set I
of individual constants, while signature morphisms provide respective mappings. Models
are single-sorted first-order structures that interpret concepts as unary and roles as binary
predicates. Sentences are subsumption relations C1 v C2 between concepts, where concepts
follow the grammar

C ::= A |> |⊥ |C1 t C2 |C1 u C2 | ¬C | ∀R.C | ∃R.C

These kind of sentences are also called TBox sentences. Sentences can also be ABox sentences,
which are membership assertions of individuals in concepts (written a : C for a ∈ I) or
pairs of individuals in roles (written R(a, b) for a, b ∈ I, R ∈ R). Sentence translation and
reduct is defined similarly as in FOL=. Satisfaction is the standard satisfaction of description
logics.

The logic SROIQ, which is the logical core of the Web Ontology Language OWL 2 DL21

extends ALC with the following constructs: (i) complex role boxes (denoted by SR): these
can contain: complex role inclusions such as R ◦ S v S as well as simple role hierarchies
such as R v S, assertions for symmetric, transitive, reflexive, asymmetric and disjoint roles
(called RBox sentences), as well as the construct ∃R.Self (collecting the set of ‘R-reflexive
points’); (ii) nominals (denoted by O); (iii) inverse roles (denoted by I); qualified and
unqualified number restrictions (Q). SROIQ can be straightforwardly rendered as an
institutions following the previous examples.

The OWL 2 specification contains three further DL fragments of SROIQ, called pro-
files, namely EL, QL, and RL.22 These are obtained by imposing syntactic restrictions on
20 That is, a name is a discourse name if and only if its image under the signature morphism is.
21 See also http://www.w3.org/TR/owl2-overview/
22 See http://www.w3.org/TR/owl2-profiles/ for details of the specifications.
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the language constructs and their usage, with the motivation that these fragments are of
lower expressivity and support specific computational tasks. For instance, RL is designed to
make it possible to implement reasoning systems using rule-based reasoning engines, QL
to support query answering over large amounts of data, and EL is a sub-Boolean fragment
sufficiently expressive e.g. for dealing with very large biomedical ontologies such as the NCI
thesaurus. To sketch one of these profiles in some more detail, the (sub-Boolean) description
logic EL underlying EL has the same sentences as ALC but restricts the concept language
of ALC as follows:

C ::= B | > |C1 u C2 | ∃R.C

Given that EL, QL, and RL are obtained via syntactic restrictions but leaving the overall
SROIQ semantics intact, it is obvious that they are subinstitutions of SROIQ. ut

Apart from some exceptions23, description logics can be seen as fragments of first-
order logic via the standard translation [3] that translates both the syntax and semantics
of various DLs into untyped first-order logic.

Definition 5 (HOL). [11] presents an institution for a higher-order logic extending Church’s
type theory with polymorphism; this is basically the higher-order logic used in modern in-
teractive theorem provers like Isabelle/HOL [34] (one additional feature of Isabelle are type
classes).

B Institution Comorphisms

We can define a lattice of sublogics for Common Logic, based on its features: sequence
markers and occurrence of arbitrary terms on function/predicate positions of a theory-
We thus obtain:

CL.Full : both sequence markers and arbitrary terms on function/predicate positions are
allowed. This is the full Common Logic.

CL.Imp : there are no sequence markers in the signature, arbitrary terms on function/-
predicate positions are allowed.

CL.Seq : the signature contains sequence markers, but only names are permitted on
function/predicate positions.

CL.FOL : no sequence markers or other terms than names are used.

Definition 6. Given two institutions I1, I2 with Ii = (Sigi,Seni,Modi, |=i), an institu-
tion comorphism from I1 to I2 consists of a functor Φ : Sig1 → Sig2 and natural trans-
formations β : Φ; Mod2 ⇒ Mod1 and α : Sen1 ⇒ Φ; Sen2, such that the following
satisfaction condition holds:

M ′ |=2
Φ(Σ) αΣ(e) ⇐⇒ βΣ(M ′) |=1

Σ e,

where Σ is an I1-signature, e is a Σ-sentence in I1 and M ′ is a Φ(Σ)-model in I2.

23 For instance, adding transitive closure of roles or fixpoints to DLs makes them decidable frag-
ments of second-order logic [10].
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B.1 CL.FOL to CFOL.

A signature Σ = (Names,DNames, ∅) is translated to a CFOL signature Φ(Σ) with a
single sort, that we denote by individual , and which has for each name n and each
natural number k

– a k-ary function symbol n : individualk → individual and
– a k-ary predicate symbol n : individualk.

Sentences are mapped inductively on their structure and based on the translation of
terms. Since we are in the FOL sublogic of Common Logic, we know that we have only
names on function/predicate positions, and therefore we can define the translation αΣ
of a term f(s) as αΣ(f(s)) = f(αΣ(s1), . . . , αΣ(sk)) and the translation of a predication
p(s) as αΣ(p(s)) = p(αΣ(s1), . . . , αΣ(sk)), if s is a sequence of length k.

For the model reduction component of the comorphism, letΣ = (Names,DNames, ∅)
be a Common Logic.FOL signature and let N be a Φ(Σ)-model. Then M = βΣ(N) is
defined as follows:

– URM = Nindividual ]Names,
– UDM = Nindividual ]DNames,
– for any n ∈ Names, intM (n) = n
– for any x ∈ URM , funM (x) : (UDM )∗ → UD is defined as funM (x)(s) = Nx(s1, . . . , sk)

if s is a sequence of length k of elements of Nindividual and x is in Names, 24, or
funM (x)(s) = choose(Names), where choose(Names) is a function returning an
element of Names otherwise (that is, either s contains an element from Names or x
is an element of Nindividual).

– for any x ∈ URM , relM (x)(s) is defined as either Nx(s1, . . . , sk), if s is a sequence
of length k of elements of Nindividual and x is in Names, or False, otherwise.

B.2 CL.Imp to CFOL.

A signature Σ = (Names,DNames, ∅) is translated to a CFOL signature Φ(Σ) with a
single sort, that we denote by individual , and which has

– a constant n : individual for each domain name n ∈ Names
– a family of function symbols {fun : individualk+1 → individual}k∈N
– a family of predicate symbols {rel : individualk+1}k∈N

Sentences are translated inductively on their structure, with predications t(s) trans-
lated to αΣ(t(s)) = rel(αΣ(t), αΣ(s1), . . . , αΣ(sn)) and terms t(s) translated to αΣ(t(s)) =
fun(αΣ(t), αΣ(s1), . . . , αΣ(sn)), where n is the length of s. Since there are no sequence
markers, the length of s is always known.

Given a signature Σ, a Φ(Σ)-model N in CFOL reduces to M = βΣ(N) as follows:

– URM = Nindividual ]Names,
– UDM = Nindividual ]DNames,
– for any n ∈ Names, intM (n) = n,

24 Notice that since N is a Φ(Σ)-model, it must provide a function Nx of any arity.
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– for any x ∈ URM , funM (x)(s) = Nfunk(n, s1, ..., sk) if x is a name and s is a sequence
of elements in Nindividual of length k,25 or funM (x)(s) = choose(Names) otherwise

– for any x ∈ URM , relM (x)(s1, ..., sk) = Nrelk(x, s1, ..., sk) if x is a name and s is a
sequence of elements in Nindividual of length k (with the same notational convention
as above), or relM (x)(s) = False otherwise.

B.3 Getting finite signatures.

The signatures Φ(Σ) obtained for the two comorphisms are infinite. Of course, a tool
works with finite signatures. A feature of Common Logic is that signatures are impli-
citly defined by the symbols used in the sentences of a theory, and reasoning in that
theory makes use only of those symbols. We can therefore apply a syntactic transform-
ation α that removes from the signature of a theory Γ all symbols that do not occur
in Γ . For the first comorphism, this means that for each name n ∈ DNames, we only
introduce a function/predicate symbol of arity k if the sentences in Γ contain a term/-
predication where n takes k arguments. Similarly, for the second comorphism, we keep
in the signature only those function symbols fun and predicate symbols rel whose arity
is given by the terms/predications in Γ . Since this transformation is only syntactical,
we do not need to define a corresponding translation between the class of models of
(Σ,Γ ) and (Φ(Σ), Γ ). It is however easy to notice that for any Σ-sentence e we have
that Γ |=Σ e⇔ Γ |=Φ(Σ) e.

B.4 CL.Seq to CFOL.

A signature Σ = (Names,DNames,Markers) is translated to a CFOL theory (Φ(Σ), Γ )
such that

– Φ(Σ) has two sorts, individual and list
– on sort list we have nil : list and cons : individual × list→ list and m : list for each
m ∈ Markers

– for each n ∈ Names we have a function symbol n : individual , a function symbol
n : list→ individual and a predicate symbol n : list

– Γ consists of the sort generation constraint that asserts that list is a free type over
its constructors nil and cons

Sentences are mapped inductively on their structure, such that each predicate or
term t(s) is mapped to αΣ(t(s)) = t(αΣ(s)).

Given a (Φ(Σ), Γ )-model N , its reduct M = βΣ(N) is defined as follows:

– URM = Nindividual ]Names,
– UDM = Nindividual ]DNames,
– for any n ∈ Names, intM (n) = n,
– for any x ∈ URM , funM (x)(s) = Nx(s) if x is a name and s is a sequence of elements

in Nindividual , or funM (x)(s) = choose(Names) otherwise
– for any x ∈ URM , relM (x)(s1, ..., sk) = Nx(s) if x is a name and s is a sequence of

elements in Nindividual , or relM (x)(s) = False otherwise.
– for any m ∈ Markers, seqM (m) = Nm.

25 Note that we made explicit that we use the interpretation of the function symbol fun :
individualk+1 → individual .
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B.5 CL.Full to CFOL.

A signature Σ = (Names,DNames,Markers) is translated to a CFOL theory (Φ(Σ), Γ )
such that

– Φ(Σ) has two sorts, individual and list
– on sort list we have nil : list and cons : individual × list→ list and m : list for each
m ∈ Markers

– Φ(Σ) has a function symbol fun : individual × list → individual , predicate symbol
rel : individual × list and constant symbols n : individual for each n ∈ Names

– Γ consists of the sort generation constraint that asserts that list is a free type over
its constructors nil and cons

Sentences are translated inductively on their structure, with predications t(s) trans-
lated to rel(t, s) and terms t(s) translated to fun(αΣ(t), αΣ(s)).

Given a (Φ(Σ), Γ )-model N , its reduct M = βΣ(N) is defined as follows:

– URM = Nindividual ]Names,
– UDM = Nindividual ]DNames,
– for any n ∈ Names, intM (n) = n,
– for any x ∈ URM , funM (x)(s) = Nfun(x, s) if s is a sequence of elements in
Nindividual , or funM (x)(s) = choose(Names) otherwise

– for any x ∈ URM , relM (x)(s1, ..., sk) = Nrel(x, s) if s is a sequence of elements in
Nindividual , or relM (x)(s) = False otherwise.

– for any m ∈ Markers, seqM (m) = Nm.

Note that for the last two comorphisms we make use of the translation of a sequence
to CFOL defined on page 9.

B.6 Faithful comorphisms

The proofs that these four comorphisms are faithful are similar, therefore we only present
it for the translation CL.Seq to CFOL.

Theorem 1. The comorphism CL.Seq to CFOL is faithful.

Proof:
It suffices to prove that for any CL-signature Σ, if αΣ(Γ ) |=CFOL

Φ(Σ) αΣ(e), then Γ |=CL
Σ

e.
We define a mapping δΣ : ModCL(Σ) → ModCFOL(Φ(Σ)) such that βΣ(δΣ(M))

and M have the same Γ -consequences e, where Γ is a Σ-theory, M is a Γ -model and
e is a Σ-sentence that only uses terms on function/predicate positions with the same
number of arguments as in Γ .

We denote N = δΣ(M) and NDNames = Names \DNames. N is defined as follows:

– Nindividual = UDM ] {intM (n)|n ∈ NDNames};
– the interpretation of the sort list and of the operations cons, nil and ++ is the

expected one
– Nm = seqM (m) for each m ∈ Markers
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– Nn = intM (n) for each n ∈ Names
– for each x in Names, Nx(s) = funM (intM (x))(s) if s has only elements in UDM , or
Nx(s) = choose(NDNames), otherwise

– for each x in Names, Nx(s) = relM (intM (x))(s) if s has only elements in UDM , or
Nx(s) = False, otherwise

It is easy to see that βΣ(δΣ(M)) and M have the same Γ -consequences.

LetM be aΣ-model such thatM |=CL
Σ Γ and assume that e does not hold inM . Then

e also does not hold in βΣ(δΣ(M)). By the satisfaction condition of the comorphism we
get that αΣ(e) does not hold in δΣ(M). But it is easy to see thatM |= Γ implies δΣ(M) |=
αΣ(Γ ) and thus we get a contradiction with the fact that αΣ(Γ ) |=CFOL

Φ(Σ) αΣ(e).
ut

B.7 FOL to CL.Fol

A FOL signature is translated to CL.Fol by turning all constants into discourse names,
and all other function symbols and predicate symbols into non-discourse names. A FOL
sentence is translated to CL.Fol by a straightforward recursion, the base being transla-
tions of predications:

αΣ(P (t1, . . . , tn)) = (P αΣ(t1) . . . αΣ(tn))

Within terms, function applications are translated similarly:

αΣ(f(t1, . . . , tn)) = (f αΣ(t1) . . . αΣ(tn))

A CL.Fol model is translated to a FOL model by using the universe of discourse as FOL
universe. The interpretation of constants is directly given by the interpretation of the
corresponding names in CL.Fol. The interpretation of a predicate symbol P is given by
using relM (intM (P )) and restricting to the arity of P ; similarly for function symbols
(using funM). The satisfaction condition is straightforward.

B.8 FOL to CFOL

A FOL signature is mapped to (many-sorted) CFOL by introducing a sort s, and let-
ting all function and predicate symbols be typed by a list of s’s, the length of the list
corresponding to the arity. The rest is straightforward.

B.9 CFOL to HOL

A CFOL signature is translated to a HOL signature by mapping all sorts to type constants,
and all function and predicate symbols to constants of the respetive higher-order type.
Translation of sentences and models is then straightforward, except for sort generation
constraints.

For a sort generation constraint

(
•
S,
•
F , θ : Σ̄→Σ)
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we assume without loss of generality that all the result sorts of function symbols in
•
F

occur in
•
S. Let

•
S= {s1; . . . ; sn},

•
F= {f1 : s11 . . . s

1
m1
→s1; . . . ; f1 : sk1 . . . s

k
mk
→sk}

The sort generation constraint is now translated to the second-order sentence

∀Ps1 : pred(θ(s1)) . . . ∀Psn : pred(θ(sn)) • (ϕ1 ∧ · · · ∧ ϕk)⇒
∧

j=1,...,n

∀x : θ(sj) • Psj (x)

where

ϕj = ∀x1 : θ(sj1), . . . , xmj
: θ(sjmj

)•

 ∧
i=1,...,mj ; s

j
i∈
•
S

Psji
(xi)

⇒ Psj
(
θ(fj)(x1, . . . , xmj

)
)

For a proof of the satisfaction condition, see [27].

B.10 SROIQ to FOL

Translation of Signatures Φ((C,R, I)) = (F, P ) with

– function symbols: F = {a(1)|a ∈ I}
– predicate symbols P = {A(1)|A ∈ C} ∪ {R(2)|R ∈ R}

Translation of Sentences Concepts are translated as follows:

– αx(A) = A(x)
– αx(¬C) = ¬αx(C)
– αx(C uD) = αx(C) ∧ αx(D)
– αx(C tD) = αx(C) ∨ αx(D)
– αx(∃R.C) = ∃y.(R(x, y) ∧ αy(C))
– αx(∃U.C) = ∃y.αy(C)
– αx(∀R.C) = ∀y.(R(x, y)→ αy(C))
– αx(∀U.C) = ∀y.αy(C)
– αx(∃R.Self) = R(x, x)
– αx(≤ nR.C) = ∀y1, . . . , yn+1.

∧
i=1,...,n+1(R(x, yi) ∧ αyi(C))→

∨
1≤i<j≤n+1 yi = yj

– αx(≥ nR.C) = ∃y1, . . . , yn.
∧
i=1,...,n(R(x, yi) ∧ αyi(C)) ∧

∧
1≤i<j≤n yi 6= yj

– αx({a1, . . . an}) = (x = a1 ∨ . . . ∨ x = an)

For inverse roles R−, R−(x, y) has to be replaced by R(y, x), e.g.

αx(∃R−.C) = ∃y.(R(y, x) ∧ αy(C))

This rule also applies below.
Sentences are translated as follows:

– αΣ(C v D) = ∀x. (αx(C)→ αx(D))
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– αΣ(a : C) = αx(C)[a/x]26

– αΣ(R(a, b)) = R(a, b)
– αΣ(R v S) = ∀x, y.R(x, y)→ S(x, y)
– αΣ(R1; . . . ;Rn v R) =
∀x, y.(∃z1, . . . zn−1.R1(x, z1) ∧R2(z1, z2) ∧ . . . ∧Rn(zn−1, y))→ R(x, y)

– αΣ(Dis(R1, R2)) = ¬∃x, y.R1(x, y) ∧R2(x, y)
– αΣ(Ref(R)) = ∀x.R(x, x)
– αΣ(Irr(R)) = ∀x.¬R(x, x)
– αΣ(Asy(R)) = ∀x, y.R(x, y)→ ¬R(y, x)
– αΣ(Tra(R)) = ∀x, y, z.R(x, y) ∧R(y, z)→ R(x, z)

Translation of Models

– ForM ′ ∈ ModFOL(φΣ) define βΣ(M ′) := (∆, ·I) with∆ = |M ′| and AI = M ′A, a
I =

M ′a, R
I = M ′R.

Proposition 1. CI =
{
m ∈M ′Thing|M ′ + {x 7→ m} |= αx(C)

}
Proof. By Induction over the structure of C.

– AI = M ′A =
{
m ∈M ′Thing|M ′ + {x 7→ m} |= A(x)

}
– (¬C)I = ∆ \ CI =I.H. ∆ \ {m ∈ M ′Thing|M ′ + {x 7→ m} |= αx(C)} = {m ∈
M ′Thing|M ′ + {x 7→ m} |= ¬αx(C)}

The satisfaction condition holds as well.

B.11 SROIQ to CL.Fol

This comorphism can be obtained as the composition SROIQ→ FOL→ CL.Fol.

B.12 SROIQ to CL.Full

Translation of Signatures A signature is translated by mapping all individuals, concepts
and roles to discourse names, and augmenting this with the following CL.Imp theory:

(forall (c x) (iff ((OWLnot c) x) (not (c x))))
(forall (c x) (iff ((OWLand c d) x) (and (c x) (d x))))
(forall (c x) (iff ((OWLor c d) x) (or (c x) (d x))))
(forall (r c x) (iff ((OWLsome r c) x)

(exists (y) (and (r x y) (c y)))))
(forall (r c x) (iff ((OWLall r c) x)

(forall (y) (implies (r x y) (c y)))))
(forall (x y) (OWLU x y))
(forall (r x) (iff ((OWLself r) x) (r x x)))
(forall (r x y) (iff ((OWLinv r) x y) (r x y)))
(forall (c d) (iff ((OWLsubsumes c d)

26 Replace x by a.

24



(forall (x) (if (c x) (d x))))))
(forall (r s) (iff ((OWLsubsumesRole r s)

(forall (x y) (if (r x y) (s x y))))))
(forall (r s) (iff ((OWLdisjoint r s)

(forall (x y) (not (and (r x y) (s x y)))))))
(forall (r) (iff ((OWLref r)

(forall (x y) (r x x)))))
(forall (r) (iff ((OWLirr r)

(forall (x y) (not (r x x))))))
(forall (r) (iff ((OWLasy r)

(forall (x y) (if (r x x) (not (r y x)))))))
(forall (r) (iff ((OWLtra r)

(forall (x y) (if (and (r x y) (r y z)) (r x z))))))
(forall (r c) (iff ((OWLmax r c) x)

(forall (y) (not (and (r x y) (c y))))))

(mutually-different)
(mutually-different x)
(iff (mutually-different x y ...)

(and (not (= x y))
(mutually-different x ...)
(mutually-different y ...) ))

(forall (p) (holds-all p))
(forall (p x ...) (iff (holds-all p x ...)

((and (p x) (holds-all p ...)))))
(forall (p) (not (holds-some p)))
(forall (p x ...) (iff (holds-some p x ...)

((or (p x) (holds-some p ...)))))

((same-length))
(forall (x ...) (not ((same-length) x ...)))
(forall (x ...) (not ((same-length x ...))))
(forall (x y ...a ...b) (iff ((same-length x ...a) y ...b)

((same-length ...a) ...b)))

(forall (r c x y) (iff ((restrict r c x) y)
(and (r x y) (c y))))

(forall (r c ...) (iff ((OWLmax r c ...) x)
(forall (...a) (if (and ((same-length c ...) ...a)

(holds-all (restrict r c x) ...a))
(not ((mutually-different ...a)))))))

(forall (r c ...) (iff ((OWLmin r c ...) x)
(exists (...a) (and ((same-length ...) ...a)

(holds-all (restrict r c x) ...a)
((mutually-different ...a))))))
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(forall x (not ((OWLnominal) x)))
(forall ... x y (iff ((OWLnominal y ...) x)

(or (= x y) ((OWLnominal ...) x))))

(forall (r x y) (iff ((OWLcomp r) x y) (r x y)))
(forall (r ... x y)

(iff ((OWLcomp r ...) x y)
(exists (z) (and (r x z) ((OWLcomp ...) z y)))))

Note the use of sequence markers for handling lists of variable length. Functions cannot
take two sequence markers as argument unless they are written in curried form (other-
wise, the two sequences will be concatenated into one argument). Therefore, functions
like same-length use a curried form; that is, two separate function applications are
used for the two arguments, as in ((f x) y).

Translation of Sentences Concepts are translated as follows:

– α(A) = A
– α(¬C) = (OWLnot α(C))
– α(C uD) = (OWLand α(C) α(D))
– α(C tD) = (OWLor α(C) α(D))
– α(∃R.C) = (OWLsome α(R) α(C))
– α(∀R.C) = (OWLall α(R) α(C))
– α(∃R.Self) = (OWLself R)
– α(≤ nR.C) = (OWLmax α(R) α(C) (a . . . a))
– α(≥ nR.C) = (OWLmin α(R) α(C) (a . . . a))
– α({a1, . . . an}) = (OWLnominal a1 . . . an)

Here, the sequence (a ...a) repeats an arbitrary name a n times. This is used as
a coding of the natural number n. The function same-length above is then used for
quantifying over all sequences of length n. The term ((same-length c ...) ...a)
above tests whether ...a has length n + 1, where n is encoded by .... Note that the
value of c is irrelevant here, it is just used for increasing the length of the sequence ...
by one.

Roles are translated by: α(R−) = (OWLinv αR).
Sentences are translated as follows:

– αΣ(C v D) = (OWLsubsumes α(C) α(D))
– αΣ(a : C) = (α(C) a)
– αΣ(R(a, b)) = (α(R) a b)
– αΣ(R v S) = (OWLsubsumesRole α(R) α(S))
– αΣ(R1; . . . ;Rn v R) = (OWLsubsumesRole (OWLcomp α(R1) . . . α(Rn)) α(R))
– αΣ(Dis(R1, R2)) = (OWLdisjoint α(R) α(S))
– αΣ(Ref(R)) = (OWLref α(R))
– αΣ(Irr(R)) = (OWLirr α(R))
– αΣ(Asy(R)) = (OWLasy α(R))
– αΣ(Tra(R)) = (OWLtra α(R))
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Translation of Models

– For M ′ ∈ ModCL.Imp(ΦΣ) define βΣ(M ′) := (∆, ·I) with ∆ being the universe of
discourse of M ′, and the interpretation of individuals, concepts and roles given by
the interpretation of the respective names.

C Further Examples

Relative Interpretation (Standalone Example) This example defines a partial order
twice: once as an extension of a strict partial order, and once directly. Then, we connect
both definitions by a view that expresses the relative interpretation.
log i c CommonLogic

ontology S t r i c t _ P a r t i a l _ O r d e r =
%% s t r i c t
. ( f o r a l l ( x )

( not ( l t x x ) ) )
%% asymmetric
. ( f o r a l l ( x y )

( i f ( l t x y )
( not ( l t y x ) ) ) )

%% t r a n s i t i v e
. ( f o r a l l ( x y z )

( i f (and ( l t x y )
( l t y z ))

( l t x z ) ) )
end

ontology Par t i a l _Orde r_F rom_S t r i c t _Pa r t i a l _Orde r =
S t r i c t _ P a r t i a l _ O r d e r

then
%% d e f i n e " l e s s or equa l " in terms o f " l e s s than " ’
. ( f o r a l l ( x y )

( i f f ( l e x y )
( or ( l t x y )

(= x y ) ) ) )
end

ontology Par t i a l _Orde r =
%% r e f l e x i v e
. ( f o r a l l ( x )

( l e x x ))
%% ant i symmet r i c
. ( f o r a l l ( x y )

( i f (and ( l e x y )
( l e y x ))

(= x y ) ) )
%% t r a n s i t i v e
. ( f o r a l l ( x y z )

( i f (and ( l e x y )
( l e y z ))

( l e x z ) ) ) )
end

interpreta t ion v : Pa r t i a l _Orde r to Par t i a l _Orde r_F rom_S t r i c t _Pa r t i a l _Orde r

Heterogeneous Views from OWL to Common Logic An interpretation from one on-
tology to another ontology in the same logic has been shown in Sect. 4, but it is also
possible to have interpretations across logics, as long as there is a translation between
these logics that is known to HETS (cf. Sect. 3.3).
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The following example establishes an interpretation between the OWL Time ontology
and its reimplementation in Common Logic, using the “OWL22CommonLogic” transla-
tion:
log i c OWL
ontology TimeOWL =

Class : TemporalEnt i ty
ObjectProperty : be fore

Domain : TemporalEnt i ty
Range : TemporalEnt i ty
Charac ter i s t i c s : Trans i t ive

end

log ic CommonLogic
ontology TimeCL =
%% CommonLogic e q u i v a l e n t o f Domain and Range above
. ( f o r a l l ( t1 t2 )

( i f ( before t1 t2 )
(and ( TemporalEnt i ty t1 )

( TemporalEnt i ty t2 ) ) ) )
%% CommonLogic e q u i v a l e n t o f T r a n s i t i v e above
. ( f o r a l l ( t1 t2 t3 )

( i f (and ( before t1 t2 )
( before t2 t3 ))

( before t1 t3 ) ) )
%% A new axiom tha t cannot be e x p r e s s e d in OWL
. ( f o r a l l ( t1 t2 )

( or ( before t1 t2 )
( before t2 t1 )
(= t1 t2 ) ) )

end

interpreta t ion TimeOWLtoCL : { TimeOWL with log ic OWL22CommonLogic } to TimeCL
%% As OWL22CommonLogic i s the d e f a u l t t r a n s l a t i o n ,
%% i t i s o p t i o n a l to s p e c i f y i t .

Figure 5. Consistency checker results Figure 6. Interface of the SPASS prover

Automated Theorem Proving Systems Interface All ATPs integrated into HETS share
the same GUI, with only a slight modification for the MathServe Broker: the input field
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for extra options is inactive. Fig. 6 shows the instantiation for SPASS, where in the top
right part of the window the batch mode can be controlled. The left side shows the list
of goals (with status indicators). If goals are timed out (indicated by ‘t’) it may help to
activate the check box ‘Include preceding proven theorems in next proof attempt’ and
pressing ‘Prove all’ again.

On the bottom right the result of the last proof attempt is displayed. The ‘Status:’
indicates ‘Open’, ‘Proved’, ‘Disproved’, ‘Open (Time is up!)’, or ‘Proved (Theory incon-
sistent!)’. The list of ‘Used Axioms:’ is filled by SPASS. The button ‘Show Details’ shows
the whole output of the ATP system. The ‘Save’ buttons allow you to save the input and
configuration of each proof for documentation. By ‘Close’ the results for all goals are
transferred back to the Proof Management GUI.

The MathServe system [42] developed by Jürgen Zimmer provides a unified inter-
face to a range of different ATP systems. Their capabilities are derived from the Special-
ist Problem Classes (SPCs) defined upon the basis of logical, language and syntactical
properties by Sutcliffe and Suttner [40]. Only two of the Web services provided by the
MathServe system are used by HETS currently: Vampire and the brokering system. The
ATP systems are offered as Web Services using standardised protocols and formats such
as SOAP, HTTP and XML. Currently, the ATP system Vampire may be accessed from HETS

via MathServe; the other systems are only reached after brokering.
For details on the ATPs supported, see the HETS user guide [29].

Figure 7. Selection of consistency checker Figure 8. HETS Consistency Checker Interface

Consistency Checker Interface The consistency checker interface is shown in Fig. 8.
This GUI is invoked from the ‘Edit’ menu as it operates on all nodes.

The list on the left shows all node names prefixed with a consistency status in square
brackets that is initially empty. A consistent node is indicated by a ‘+’, a ‘–’ indicates an
inconsistent node, a ‘t’ denotes a timeout of the last checking attempt.

For some selection of development graph nodes having Common Logic theories, a
model finder should be selectable from the ‘Pick Model finder:’ list. When pressing
‘Check’, possibly after ‘Select comorphism path:’, all selected nodes will be checked,
spending at most the number of seconds given under ‘Timeout:’ on each node. Pressing
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‘Stop’ allows to terminate this process if too many nodes have been chosen. Either by
‘View results’ or automatically the ‘Results of consistency check’ (Fig. 9) will pop up and
allow you to inspect the models for nodes, if they could be constructed.

Figure 9. Consistency checker results
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