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Abstract
We identify logical web application flaws which can be
exploited by TLS truncation attacks to desynchronize the
user- and server-perspective of an application’s state. It
follows immediately that servers may make false assump-
tions about users, hence, the flaw constitutes a security
vulnerability. Moreover, in the context of authentication
systems, we exploit the vulnerability to launch the follow-
ing practical attacks: we exploit the Helios electronic vot-
ing system to cast votes on behalf of honest voters, take
full control of Microsoft Live accounts, and gain tempo-
rary access to Google accounts.

Keywords. Attack, authentication, exploit, Google, He-
lios, logical flaw, Microsoft, sign-out, single sign-on, TLS
truncation, web applications.

1 Introduction

Web applications are distributed, concurrent algorithms
that are executed over public communication networks
such as the Internet. Since the communication medium
is public, there is a possibility of interference by a pow-
erful adversary and this has made the design of secure
web applications difficult [24]. Nevertheless, the burden
is somewhat reduced by HTTPS.

HTTPS [17] uses HTTP [8] over TLS [6] to ensure con-
fidentiality and integrity of a communication session, in
particular, integrity ensures that all messages are received
as sent. HTTPS is typically used by web applications
to protect client-server communication. However, TLS
alone is generally insufficient to protect sensitive oper-
ations (such as protecting authentication credentials, for
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example), since the security of such operations is also
dependent upon the application logic and TLS provides
no protection against logical application flaws. Moreover,
TLS only ensures messages are received as sent for a sin-
gle connection and, crucially, does not guarantee the or-
dering of messages in multiple connections; this is par-
ticularly pertinent to web applications, due to the use of
parallel computation, whereby each simultaneous com-
munication uses a different TLS connection (for example,
browsers maintain multiple persistent connections to load
content in parallel, thereby reducing latency). Accord-
ingly, web application logic must protect sensitive opera-
tions in the presence of parallel computation.

In this paper, we highlight logical application flaws
which permit desynchronisation between the applica-
tion’s state, as perceived by the user and the server, by
truncating selected TLS connections. Furthermore, we
exploit the desynchronisation to attack real systems.

1.1 Application state
In web applications, the user is typically notified of the
server’s state using some feedback mechanism [14, 15].
Feedback can be positive, when the user is notified of suc-
cessful state changes, or negative, when the user is noti-
fied on errors. The absence of feedback can cause con-
fusion – for instance, if a user attempts to save a file and
no feedback is provided, then the user does not know if
her file was saved or not – and violates basic design prin-
ciples [13]. By comparison, we focus on incorrect feed-
back: web applications that generate (positive) user feed-
back before the server has committed to a state change.

1.2 Truncating TLS connections
TLS security guarantees are defined with respect to the
following termination modes: graceful connection clo-
sure (that is, at the end of a successful connection) and
fatal closure (that is, at the end of an unsuccessful con-
nection, for example, after receiving a corrupt message).
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In the event of graceful closure, TLS ensures that all mes-
sages are received as sent, by comparison, in the event
of fatal closure, TLS ensures that a prefix of all messages
are received as sent. At a lower level of abstraction, TLS
is permitted to split messages into fragments, and TLS
guarantees ordered delivery of all fragments on graceful
closure and a prefix of all fragments on fatal closure.

Historically, graceful and fatal closure modes were
not supported in SSL (TLS’s predecessor) until version
3.0 [9]. Today, TLS termination modes are not distin-
guished by many applications, indeed, major browsers
(including Internet Explorer, Firefox, Chrome and Sa-
fari) and HTTP servers do not always distinguish between
graceful and fatal closure. As a consequence, the TLS
specification notes “failure to properly close a connec-
tion no longer requires that a session not be resumed [...]
to conform with widespread implementation practice” [6,
§7.2.1]. Unfortunately, ignoring the termination mode can
result in TLS truncation attacks [4]. Let us illustrate such
a truncation attack with a simple example [5]. Suppose a
user initiates a wire transfer to Charlie’s Angels using the
following HTTP request:

POST /wire_transfer.php HTTP/1.1

Host: mybank.com

Content-Type: application/x-www-form-urlencoded

Content-Length: 40

amount=1000&recipient=Charlie%27s_Angels

Further suppose that the request is fragmented by TLS
as follows: “POST [...] recipient=Charlie” and
“%27s Angels”. In this setting, an adversary can make
a transfer to Charlie, rather than the intended recipient,
simply by dropping the second (and crucially the last)
fragment (e.g., by closing the underlying TCP connection
after the first fragment is delivered). The attack works
against HTTP servers that ignore the connection termi-
nation status and Content-Length field, in particular, a
payload shorter than the specified length will be accepted.
On the other hand, the attack can be thwarted by insist-
ing that either the length of the payload is correct or wire
transfers are only initiated upon graceful closure of the
TLS connection. Henceforth, we shall consider a simpler
class of truncation attacks: truncation attacks which drop
messages, rather than fragments.

1.3 Adversary model
We assume that web applications should achieve their ob-
jectives in the presence of an adversary that has full con-
trol of the network; this assumption is standard in both the
symbolic [7] and computational [10] cryptographic veri-
fication models and, furthermore, such power is typical of
governments and ISPs [18, 19]. Since the adversary has
complete control of the network, messages may be read,
deleted, and injected. Moreover, the adversary is able to

manipulate data contained within unencrypted messages.
We also assume that the adversary has access to shared
computers, but cannot compromise them; we motivate the
practicality of this assumption in Section 1.4.

1.4 Contribution and structure

We identify logical web application flaws which can be
exploited by TLS truncation attacks to ensure that a client
receives feedback about a state change, whereas, the
server is unaware of any goal to reach the aforementioned
state. Consequently, servers may make false assumptions
about users and, as discussed below, this flaw can be ex-
ploited to violate security objectives, hence, the flaw is a
security vulnerability. We believe this insight constitutes
a new attack vector.

Using our attack vector, we demonstrate the following
practical attacks: we exploit the Helios electronic vot-
ing system to cast votes on behalf of honest voters (Sec-
tion 2), take full control of Microsoft Live accounts (Sec-
tion 3), and gain temporary access to Google accounts
(Section 4). In essence, our attacks against Helios and
Microsoft Live are due to the following application flaw:
the sign-out procedure spawns several TLS connections
such that one connection provides the user feedback and,
independently, the others revoke the user’s authentication
from the servers. It follows that we can truncate the TLS
connections which revoke authentication whilst notifying
the user that the sign-out procedure successfully com-
pleted, hence, the server believes that the user is authen-
ticated, but the user does not. In this context, an adver-
sary can use the voting terminal after honest voters to cast
votes on their behalf and, in the context of Microsoft Live,
an adversary can take control of users’ accounts, assum-
ing the user shares a computer with the adversary (this
setting is typically of computers in public libraries and
work places, for example). We stress that physical ac-
cess after the user believes she has signed out is sufficient
and the attack does not rely on tampering with voting ter-
minals nor compromising shared computers (e.g., using
malware). By comparision, our attack against Google ex-
ploits an application flaw and poor handling of TLS ter-
mination modes, as we shall discuss in Section 4.3.

2 Attack I: Helios electronic voting system

Helios [2] is an open-source web-based end-to-end ver-
ifiable electronic voting system, which has been used
in several binding elections, for instance, the Interna-
tional Association of Cryptologic Research (IACR) have
used Helios annually since 2010 to elect its board mem-
bers [12, 3, 11], the Catholic University of Louvain
adopted the system to elect the university president [2],
and Princeton University have used Helios to elect sev-
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eral student governments [1, 16]. In this section, we anal-
yse the current Helios release and discover a flaw in the
authentication logic. The flaw allows an adversary to
drop sign-out requests (although the sign-out request is
encrypted in the TLS traffic, it has a unique size, which
allows such a request to be identified and dropped by the
adversary), whilst providing the voter with positive feed-
back that their request succeeded. The adversary can then
use the voting terminal to take control of the voter’s ses-
sion and cast a ballot on the voter’s behalf. The attack
works under the standard assumption that the adversary
controls the network and may access the voting terminal,
but, we stress, in accordance with the Helios threat model,
the attack does not rely on modifying the voting terminal
software.

2.1 Preliminaries
The trace in Figure 1 lists the requests performed by a
browser during a normal ballot casting/sign-out proce-
dure. The first request confirms the voter’s intention to
cast their ballot and the server responds with a redirect.
The second request handles the redirect and the server re-
sponds with an HTML payload confirming receipt of the
voter’s ballot and provides the voter with the following
notification: “For your safety, we have logged you out.”
The third request is the voter’s sign-out request and the
server responds with a redirect.

2.2 Our attack
By observation of the trace (Figure 1), we can immedi-
ately observe a flaw in the authentication logic: voters are
given positive sign-out feedback before the voting termi-
nal makes sign-out requests. This flaw can be exploited by
a truncation attack which drops sign-out requests without
the voters’ knowledge. In this context, the voting terminal
maintains a session with the server and the adversary can
use the voting terminal to take control of voting sessions
and, therefore, cast ballots on behalf of honest voters (He-
lios permits re-voting – that is, a voter may cast arbitrarily
many ballots and only the last will be counted – hence,
ballots cast by the adversary will overwrite honestly cast
ballots). We stress that TLS does not offer protection
against this kind of attack, because any TLS connection
made by the adversary is independent from TLS connec-
tions used by voters and TLS does not guarantee the or-
dering of messages between connections, that is, dropping
the third request does not prevent the adversary making a
future connection to the Helios server and casting ballots
on behalf of honest voters.

Launching the attack in practise. We have success-
fully demonstrated the attack in a supporting video [20].
For the purposes of this video demonstration, the voting

terminal is modelled as a virtual machine running Ubuntu
10.04.4 LTS (Lucid Lynx) from an ISO image and the
network is modelled as the host, which the adversary con-
trols. In this setting, we used basic traffic analysis tech-
niques to observe that request 3 (the sign-out request) is
701 bytes in length and we configured the host’s iptables
to drop packets of this length, using the following com-
mand:

iptables -A OUTPUT -m length --length 701 -j DROP

The above command instructs the host to drop any packet
from the virtual machine of length 701. The rule ensures
that request 3 is dropped and, hence, the user incorrectly
believes that she has been signed out.

Vulnerability disclosure. Our preliminary findings
where disclosed to the Helios developers on 4 June
2012, and the findings of this report were released on 21
September 2012. At the time of publication, the vulnera-
bility has not been fixed.

2.3 Detecting our attack
Since Helios is an end-to-end verifiable voting system, the
voter can discover that this attack has taken place. How-
ever, Helios does not provide accountability – hence, the
adversary’s actions cannot be attributed to any party – and
the voter is unable to convince the administrator that any
malpractice has taken place. Indeed, the administrator
will believe that the voter, contrary to the voter’s claim,
cast the adversary’s ballot.

2.4 Countermeasures
We propose the following solution: the three client ac-
tions in the trace (Figure 1) should be atomic. Specifi-
cally, on receipt of the voter’s intention to cast their bal-
lot, the server should sign the voter out and provide posi-
tive feedback of these actions. If implementing this solu-
tion is difficult, then the following interim solution could
be adopted: the voter should be more precisely informed
about the internal transition state of the server, in partic-
ular, the page returned by the cast done request should
inform the voter that a sign-out operation is in progress,
rather than giving positive feedback about a successful
sign-out. In addition, the server should provide positive
feedback after the sign-out request. In this setting, if the
adversary drops a sign-out request, then the voter per-
ceives that a sign-out operation was in progress, but it was
never successfully completed.

3 Attack II: Microsoft services

We demonstrate a flaw in Microsoft Live’s authentication
logic which can be exploited by an adversary to gain ac-
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Figure 1 Trace of the ballot casting/sign-out procedure in Helios

1. POST https://vote.heliosvoting.org/helios/elections/�id�/cast_confirm

Response: 302 - Moved Temporarily
Location[https://vote.heliosvoting.org/helios/elections/�id�/cast_done]

2. GET: https://vote.heliosvoting.org/helios/elections/�id�/cast_done

Response: 200 - OK; HTML payload:

...

<p><b>For your safety, we have logged you out.</b></p>

<iframe border="0" src="/auth/logout" frameborder="0" height="0" width="0">

</iframe>

...

3. GET: https://vote.heliosvoting.org/auth/logout
Response: 302 - Moved Temporarily
Location[http://vote.heliosvoting.org/]

cess to a user’s account. Our assumptions are as follows:
the user has at least two open sessions with Microsoft and
the adversary controls the network and can access a com-
puter shared with the user. We stress that the attack does
not rely on tampering with the shared computer, and the
adversary only needs access after the user believes she
signed out, i.e., when the user is likely to leave the com-
puter unattended. In essence, our attack works as fol-
lows. First, a user visits Hotmail and is redirected to lo-
gin.live.com for authentication. Secondly, once the user
has finished reading her mail, she visits account.live.com
and a session is seamlessly authenticated by Microsoft
Live single sign-on service. (In the supporting video, the
chosen account lacks some basic information, so the user
is automatically redirected to account.live.com before she
can access her email.) Thirdly, the user makes a sign-out
request from Hotmail and the server responds by guid-
ing the user’s browser through a series of further requests
which are intended to terminate each active session, in
particular, this procedure should ensure that sessions with
both Hotmail and accounts.live.com are terminated. How-
ever, we show that an adversary can selectively prevent
the termination of active sessions, whilst giving the user
feedback that her sign-out request succeeded. Finally,
when the user leaves the shared computer, the adversary
can use the computer to access the user’s account infor-
mation on account.live.com and can reset the user’s pass-
word, for example.

3.1 Preliminaries

The trace in Figure 2 shows a normal sign-out proce-
dure, listing the requests a browser performs following
a user sign-out request (for brevity, we omit some de-
tails). The trace shows that signing-out is not a cen-
tralised action and each Microsoft service maintains some
session information. Intuitively, it follows that the sign-

out procedure is designed to terminate each active ser-
vice and, as can be observed from the trace, the proce-
dure uses HTTP redirects and HTML pages with embed-
ded Javascript. More precisely, the Javascript loaded in
steps 2 and 3 is intended to work as follows. The session
with account.live.com is terminated in step 4, the session
with accountservices.msn.com is terminated in step 5, and
the session with mail.live.com is terminated in step 6. Fi-
nally, as a consequence of step 6, the browser loads the
Micorosft Live home page.

Server misconfiguration. We observe that requests 6
and 7 are sent over HTTP, rather than HTTPS, which triv-
ially permits attacks. The fix is trivial: all requests in
the sign-out procedure must be sent over HTTPS. In the
remainder of this section, we assume this fix has been
applied and, nonetheless, demonstrate a further attack,
which constitutes the main subject of this section.

3.2 Our attack

Microsoft’s decentralised sign-out procedure is not se-
cure, because steps 4-6 are independent of each other and
an adversary can drop request 4 (the request that signs
the user out of the account.live.com service), by truncat-
ing a TLS connection, to prevent the user’s account.

live.com session from terminating. The sign-out pro-
cedure will then proceed as normal, signing the user out
from the remaining services, and displaying the “You’ve
signed out” message. The adversary can then use the
shared computing terminal to access account.live.com as
the user, add a recovery email address to the user’s ac-
count, and then reset the user’s password. The password
reset operation sends an email to the address supplied by
the adversary, thereby allowing the adversary to take full
control of the user’s account.
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Figure 2 Trace of the sign-out procedure for Microsoft Live

1. GET https://login.live.com/logout.srf?ct=1364567198&rver=6.1.6206.0&lc=1033&id=64855&ru=http\

%2F\%2Fbay171.mail.live.com\%2Fhandlers\%2FSignout.mvc\%3Fservice\%3DLive.Mail&mkt=en-fr

Response: 200 - OK. The HTML payload initiates the two following requests (the Javascript code defined by Login_Core.js

and Login_Alt.js is obfuscated and we have not attempted to reverse engineer the code, since it is not necessary for our
attack).

2. GET https://secure.shared.live.com/~Live.SiteContent.ID/~17.0.11/~/~/~/~/js/Login_Core.js

Response: 200 - OK.

3. GET https://secure.shared.live.com/~Live.SiteContent.ID/~17.0.11/~/~/~/~/js/Login_Alt.js

Response: 200 - OK.

4. GET https://account.live.com/logout.aspx?ct=1364567254

Response: 200 - OK

5. GET https://accountservices.msn.com/LogoutMSN.srf?ct=1364567254

Response: 200 - OK

6. GET http://bay171.mail.live.com/handlers/Signout.mvc?service=Live.Mail&lc=1033

Response: 302 - Moved Temporarily,
Location[http://g.live.com/9ep9nmso/so-EN-US]

7. GET http://g.live.com/9ep9nmso/so-EN-US

Response: 301 - Moved Permanently,
Location[https://signout.live.com/content/dam/imp/surfaces/mail_signout/v7/mail/en-us.html]

8. GET https://signout.live.com/content/dam/imp/surfaces/mail_signout/v7/mail/en-us.html

Response: 200 - OK
This page redirects to the Microsoft Live portal and provides the user with the following positive feedback, namely, “You’ve
signed out.”

Launching the attack in practise. We have success-
fully demonstrated the attack in a supporting video [22],
using the setup described in Section 2.2. In advance of
the attack, we used basic traffic analysis techniques to
observe that request 4 (the request signing the user out
from account.live.com) is between 474 and 506 bytes in
length, and we configure the network to drop packets in
this range, using the following command:

iptables -A OUTPUT -m length --length 474:506

-j DROP

(We acknowledge that more sophisticated traffic analysis
techniques would be better suited to identifying and drop-
ping packets, but our simplistic approach is sufficient for
our demonstration.)

Variants of our attack. As can be observed from our
trace (Figure 2), we can truncate TLS connections which
are used to sign the user out from other services, in par-
ticular, we have successfully attacked Hotmail and MSN.

Vulnerability disclosure. We disclosed our findings to
Microsoft on 2 April 2013 and Microsoft provided (3 July
2013) the following response for publication.

Microsoft would like to thank the authors for
sharing their research with us and allowing us
to evaluate this issue. This [attack] scenario

relies on gaining physical access to the user’s
computer and the ability to man in the middle
its network connection. This scenario can be
mitigated by clearing the browser history and
closing the browser. Microsoft takes this and
all issues very seriously and is investigating de-
fense in depth strategies that could further help
to mitigate this issue. We will continue to take
appropriate action to help protect customers.

We acknowledge that deleting cookies is sufficient to pre-
vent this attack. However, deleting cookies places an un-
necessary burden upon the user. Accordingly, we recom-
mend that a server-side solution is deployed as part of Mi-
crosoft’s “defense in depth strategy” and, at the time of
publication, we are discussing our countermeasures with
Microsoft.

3.3 Countermeasures
We recommend that all authentication is managed cen-
trally – by account.live.com, for example – therefore
avoiding all of the problems highlighted in this sections.
In addition, particularly sensitive actions, such as adding
recovery email addresses, should be password protected.

We acknowledge that our solution (above) may not be
viable, for example, it may violate some privacy policy or
may be unsuited to Microsoft’s architecture, in particular,
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Figure 3 Sketch of a countermeasure for the sign-out procedure in Microsoft Live

1. GET https://login.live.com/�signout�
Response: 302 - Moved Temporarily, Location[https://account.live.com/�signout�]

2. GET https://account.live.com/�signout�
Response: 302 - Moved Temporarily, Location[https://accountservices.msn.com/�signout�]

3. GET https://accountservices.msn.com/�signout�
Response: 302 - Moved Temporarily, Location[https://mail.live.com/�signout�]

4. GET https://mail.live.com/�signout�
Response: 302 - Moved Temporarily, Location[https://signout.live.com]

it will create additional traffic for the Account server. In
this case, we recommend modifying the sign-out proce-
dure to use a chain of HTTP redirects over TLS as de-
picted in Figure 3. In comparison with Microsoft’s sign-
out procedure, our solution never returns an HTML page
containing Javascript code, instead, we force sequential
actions by returning a redirect for each page that would
have been previously loaded in parallel by Javascript. One
may implement this solution using well-implemented and
carefully monitored URL redirectors. We believe chain-
ing a sequence of HTTP redirects over TLS is a secure
way of implementing a decentralised sign-out procedure:
if an arbitrary request or response is blocked, then the
browser hangs (or displays an error message); thereby en-
suring that the user is aware of any failure. Alternatively,
the Javascript code could be revised to ensure sequential
loading of URLs, reporting sign-out failures to the user.

4 Attack III: Google services

We demonstrate a flaw in Gmail’s authentication logic
which can be exploited to gain access to a user’s email
account. Our assumptions are as follows: the user has
at least two open sessions with Google and the adversary
controls the network and can access a computer shared
with the user. In essence, our attack works as follows.
First, a user visits Gmail and authenticates a session on
a shared computer. Secondly, once the user has finished
reading her mail, she visits Search and a session is seam-
lessly authenticated by Google’s single sign-on service.
Thirdly, the user makes a sign-out request and the server
responds by guiding the user’s browser through a series
of further requests which are intended to terminate each
active session, in particular, this procedure should ensure
that the session with Gmail is terminated. However, we
show that an adversary can selectively prevent the termi-
nation of active sessions, whilst giving the user feedback
that her sign-out request succeeded. Finally, when the
user leaves the shared computer, the adversary can use
the computer to access the user’s Gmail account.

4.1 Preliminaries

The trace in Figure 4 shows a normal sign-out procedure,
listing the requests a browser performs following a user
sign out request (for brevity, we omit some details). As
can be observed from the trace, the procedure is not cen-
tralised and a combination of HTML pages with embed-
ded Javascript and HTTP redirects are used to sign-out
the user. More precisely, the procedure is intended to
work as follows. First, the session with Accounts is ter-
minated and the browser is redirected. Secondly, the redi-
rect responds with an HTML page containing an image1

and some Javascript code which is executed once the page
has completely loaded all other content, in particular, the
script will be executed after the image has been loaded.
Thirdly, the browser requests the aforementioned image
from the Gmail server and the server terminates the user’s
session before responding with the requested image and
instructions to reset all local cookies. Having executed the
doRedirect() Javascript function, the browser is redi-
rected and the fourth & fifth actions are similar to the sec-
ond & third. Finally, in the sixth step, the browser loads
Google’s home page.

Server misconfiguration. We observe that requests 2
and 4 are sent over HTTP, rather than HTTPS, which
trivially permits attacks. For example, an adversary can
replace ils=mail,s.FR with ils=s.FR in request 2,
which effectively skips requests 2 and 3, and proceeds
with request 4. Consequently, at the end of the sign-
out procedure, the user will be presented with feedback
(namely, the user will observe a sign-in button) that her
sign-out request succeeded, whilst her Gmail session is
still active. The fix is trivial: all requests in the sign-out
procedure must be sent over HTTPS. In the remainder of
this section, we assume this fix has been applied.

1As an aside, we remark that this is an inefficient technique to make
a dummy request to a server, since the image is a compressed gif pixel
of 43 bytes, whereas an uncompressed image – in an alternative format
– would be smaller in size.
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Figure 4 Trace of the sign-out procedure for Google services

1. GET https://accounts.google.com/Logout?continue=https://www.google.com/webhp

Response: 302 - Moved Temporarily, Location[http://www.google.com/accounts/Logout2?ilo=1&ils=mail,s.FR&
ilc=0&continue=https://www.google.com/webhp?zx=1388193849]

2. GET http://www.google.com/accounts/Logout2?ilo=1&ils=mail,s.FR&ilc=0&continue=https://www.

google.com/webhp?zx=1388193849

Response: 200 - OK; HTML payload:

<body onload="doRedirect()">

<script type="text/javascript">

function doRedirect() {

location.replace("http://www.google.fr/accounts/Logout2?

ilo=1&ils=s.FR&ilc=1&continue=https://www.google.com/webhp?zx=1076119961");

}

</script>

<img width="0" height="0" alt="Sign Out"

src="https://mail.google.com/mail?logout=img&zx=-2531125006460954395">

</body>

3. GET https://mail.google.com/mail?logout=img&zx=-2531125006460954395

Response: 200 - OK; a one pixel gif.

4. GET http://www.google.fr/accounts/Logout2?ilo=1&ils=s.FR&ilc=1&continue=https://www.google.com/

webhp?zx=1076119961

Response: 200 - OK; HTML payload:

<body onload="doRedirect()">

<script type="text/javascript">

function doRedirect() {

location.replace("https://www.google.com/webhp");

}

</script>

<img width="0" height="0" alt="Sign Out"

src="https://accounts.google.fr/accounts/ClearSID?zx=-1920517974">

</body>

5. GET https://accounts.google.fr/accounts/ClearSID?zx=-1920517974

Response: 200 - OK; a one pixel gif.

6. GET https://www.google.com/webhp

Response: 200 - OK

4.2 Our attack

Google’s decentralised sign-out procedure is not secure,
because an adversary can drop request 3 (the request for
an image from Gmail) by truncating a TLS connection
using a TCP reset, thereby preventing Gmail from ter-
minating the user’s session. The TCP reset will prevent
the image from loading and the user’s browser will dis-
play the alternative “Sign Out” text. Nonetheless, due
to poor handling of TLS termination modes, the browser
will consider all content to be loaded and will execute
the doRedirect() Javascript function, which allows the
browser to proceed without notifying the user that Gmail
has failed to terminate the user’s session. Moreover, the
final request gives the user feedback that her sign-out re-
quest has succeeded. The adversary can then use the

shared computing terminal to access the user’s Gmail ac-
count; access is limited to approximately five minutes,
due to server-side housekeeping.

Launching the attack in practise. We have success-
fully demonstrated the attack in a supporting video [21],
using the setup described in Section 2.2. (In the video
we visit google.it before visiting Gmail, this step is not
necessary.) In advance of the attack, we used basic traffic
analysis techniques to observe that request 3 (the image
request to mail.google.com) is between 1165 and 1195
bytes in length, and we configure the network to reject
packets in this range, using the following command:

iptables -A OUTPUT -m length --length 1165:1195

-p tcp -j REJECT --reject-with tcp-reset

7



The rule ensures that request 3 is dropped during Google’s
sign-out procedure and the TCP reset causes the browser
to abort loading the image and immediately process the
Javascript code, thus executing request 4.

Variants of our attack. As can be observed from our
trace (Figure 4), we can truncate TLS connections which
are used to fetch images and thus other Google services
are also affected, in particular, we have successfully at-
tacked Search and YouTube.

Vulnerability disclosure. We disclosed our findings to
Google on 18 December 2012 under Google’s Vulnerabil-
ity Reward Program and Google provided (10 June 2013)
the following response for publication.

We thank the authors for sharing their research
with us - Google encourages and supports se-
curity research in the community. Practically,
an adversary with physical access to a victim’s
computer is very hard to stop, and this attack
requires physical access as well as control over
the network connection.

Using a computer in a shared or public space
(e.g., Internet kiosks) has a different threat
and risk model compared to using your own
computer. Most operating systems can be
configured in a guest mode that protects or
deletes the users’ cookies and other profile
information on [sign-out]. The guest mode
in ChromeOS addresses this concern by
design out of the box, or you can configure
a ChromeOS device for Public Sessions
(http://support.google.com/chrome/a/
bin/answer.py?hl=en&answer=3017014).
For other operating systems, there are several
methods that can be used to address this risk.
If you have no control over the computing
environment, we recommend using a browsing
mode that does not retain cookies (such as
Chrome’s Incognito mode or similar modes in
other browsers).

We agree that it is difficult to defend against an adversary
that has physical access to a victim’s computer, nonethe-
less, we consider this difficulty a challenge rather than an
insurmountable problem. Moreover, we have shown that
Google could defend against the attacks we highlight, un-
der the assumption that the victim’s computer cannot be
compromised by the adversary. Furthermore, we believe
that web applications should be secure against adversaries
that control the network connection, as per our discussion
in Section 1.3. Google have confirmed (16 June 2013)
that no financial reward will be issued on the basis that:

when this paper was presented to us, there were
already efforts underway that would stop this
type of attack. As we can only reward issues
that we were previously unaware of, this report
was ineligible for reward.

Google have not clarified precisely which issues they
were previously aware of nor what efforts are un-
derway to stop this type of attack (other than the
solutions included in their above response). Our efforts
have been acknowledged in Google’s Hall of Fame
(http://www.google.com/about/appsecurity/
hall-of-fame/distinction/). At the time of
publication, Google have not fixed the vulnerability.

4.3 Discussion: TLS termination modes

The absence of a distinction between TLS termination
modes is crucial for our attack, in particular, we rely on
the browser ignoring the fatal connection closure which
is generated by dropping request 3 and our attack would
be thwarted if the browser refused to execute the onload
event upon such errors. Nevertheless, we believe that the
vulnerability can be eliminated by modifying the applica-
tion logic, as we shall discuss in the next section.

4.4 Countermeasures

As per Section 3.3, we recommend that all authentica-
tion is managed centrally (this could perhaps be achieved
by triggering the server-side housekeeping process upon
receipt of a sign-out request) or the sign-out procedure
could be handled by chaining a sequence of HTTP redi-
rects over TLS. In addition, as a weaker, short-term so-
lution, which is faster to deploy, we observe that adding
an onerror Javascript handler to the images included in
HTML pages could mitigate the attack: if the image fails
to load, then an error message can be displayed to the user
and the sign-out procedure can be interrupted.

5 Conclusion

We show how an adversary can exploit flaws in the sign-
out procedures used by Helios, Google and Microsoft
Live to prevent active sessions from terminating, whilst
giving the user feedback that her sign-out request suc-
ceeded. Moreover, if the adversary can access the user’s
computer after the user believes she signed out, then we
show that the adversary can cast votes on behalf of hon-
est voters, take full control of Microsoft Live accounts,
and gain temporary access to Google accounts. We stress
that the attack does not rely on compromising the victim’s
computer (e.g., by installing malware). Consequently,
shared computers – even uncompromised computers –
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cannot guarantee secure access to Helios, Microsoft (in-
cluding Account, Hotmail, and MSN), nor Google (in-
cluding Gmail, YouTube, and Search). In addition, we
observe that Google and Microsoft do not protect all re-
quests with HTTPS during the sign-out procedure and
thus trivial attacks are possible; these trivial attacks can
be prevented by using HTTPS, rather than HTTP, but this
fix does not prevent our main attack.

Our attack vector is quite simple, but, nevertheless, the
underlying vulnerability is present in the three systems
that we have studied and has not been publicly disclosed.
We believe this is due to a poor understanding of the se-
curity guarantees that can be derived from TLS and the
absence of robust web application design guidelines. In
publishing our results, we hope to raise awareness of these
issues before more advanced exploits, based upon our at-
tack vector, are developed.

Conceptually, our attacks are due to a desynchroniza-
tion between the user’s and server’s perspective of the ap-
plication state: the user receives feedback that her sign-
out request has been successfully executed, whereas, the
server is unaware of the user’s request. It follows intu-
itively that our attack vector could be exploited in other
client-server state transitions. Nonetheless, we believe
that attacks can be avoided by reliably notifying the user
of server-side state changes. Unfortunately, the HTTP
protocol is unsuited to this kind of notification and we
advocate the inclusion of such notification mechanisms
in future standards, e.g., SPDY. Alternatively, notification
mechanisms could be developed at the application level
using technologies such as AJAX.
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