
Rare event sampling with stochastic growth algorithms

Thomas Prellberg1,a

School of Mathematical Sciences, Queen Mary University of London
Mile End Road, London E1 4NS, United Kingdom

Abstract. We discuss uniform sampling algorithms that are based on stochastic growth
methods, using sampling of extreme configurations of polymers in simple lattice mod-
els as a motivation. We shall show how a series of clever enhancements to a fifty-odd
year old algorithm, the Rosenbluth method, led to a cutting-edge algorithm capable of
uniform sampling of equilibrium statistical mechanical systems of polymers in situa-
tions where competing algorithms failed to perform well. Examples range from collapsed
homo-polymers near sticky surfaces to models of protein folding.

1 Introduction

A large class of sampling algorithms are based on Markov Chain Monte Carlo methods [1]. Here
we shall introduce an alternative method of sampling based on stochastic growth methods. Stochastic
growth means that one attempts to randomly grow configurations of interest from scratch by succes-
sively increasing the system size (usually up to a desired maximal size).

For simplicity, we shall restrict ourselves to the setting of lattice path models of linear polymers,
that is, models based on random walks configurations on a regular lattice, such as the square or the
simple cubic lattice. If we impose self-avoidance, i.e. if we forbid those random walk configurations
that repeatedly visit the same lattice site, we obtain the model of Self-avoiding Walks (SAW), used to
describe polymers in a good solvent. Monte-Carlo Simulations of SAW have been proposed as early
as 1951 [2]. Extensions of SAW have been used to study a variety of different phenomena, such as
polymer collapse, adsorption of polymers at a surface, and protein folding.

While this setting is rich enough to allow for the simulation of physically relevant scenarios, it
is also simple enough to serve as the ideal background for the description of the particular class of
stochastic growth algorithms which we shall describe here.

In Section 2 we briefly discuss simple sampling of SAW, review Rosenbluth sampling as the basic
algorithm, and by combining this with pruning and enrichment strategies, discuss the Pruned and
Enriched Rosenbluth Method (PERM), and its extension to uniform sampling, flatPERM. In Section 3
we conclude with a description of an extension of stochastic growth methods to settings beyond linear
polymers, called Generalized Atmospheric Rosenbluth Method (GARM).

2 Sampling of Self-Avoiding Walks

In this section we want to consider the simulation of self-avoiding random walks (SAW), i.e. random
walks obtained by forbidding any random walk that contains multiple visits to a lattice site. SAW is the
canonical lattice model for polymers in a good solvent. Moreover, it forms the basis for more realistic
models of polymers with physically and biologically relevant structure, as indicated in Figure 1.

a e-mail: t.prellberg@qmul.ac.uk

EPJ Web of Conferences
DOI: 10.1051/
C© Owned by the authors, published by EDP Sciences, 2013

,
epjconf 201/

01001 (2013)44
34401001

 This is an Open Access article distributed under the terms of the Creative Commons Attribution License 2.0, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Article available at http://www.epj-conferences.org or http://dx.doi.org/10.1051/epjconf/20134401001

CORE Metadata, citation and similar papers at core.ac.uk

Provided by CiteSeerX

https://core.ac.uk/display/24060019?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.epj-conferences.org
http://dx.doi.org/10.1051/epjconf/20134401001

EPJ Web of Conferences

adsorbed monomerroot monomer

force

nn-interaction

Fig. 1. A lattice model of a polymer tethered to a sticky surface under the influence of a pulling force.

However, the introduction of self-avoidance turns a simple Markovian random walk without mem-
ory into a complicated non-Markovian random walk; when growing a self-avoiding walk, one needs
to test for self-intersection with all previous steps, leading to a random walk with infinite memory.

2.1 Simple Sampling

Algorithm 1 Simple Sampling of Self-Avoiding Walk
s· ← 0
S amples← 0
while S amples < MaxS amples do

S amples← S amples + 1
n← 0, Start at origin
s0 ← s0 + 1
while n < MaxLength do

Draw one of the neigboring sites uniformly at random
if Occupied then

Reject entire walk and exit loop
else

Step to new site
n← n + 1
sn ← sn + 1

end if
end while

end while

It is straight-forward to generate SAW by simple sampling. Generating an n-step self-avoiding
walk with the correct statistics, i.e. such that every walk is generated with the same probability, is
equivalent to generating n-step random walks and reject those random walks that self-intersect. Al-
gorithm 1 accomplishes this by generating two-dimensional random walks and rejecting the complete
configuration when self-intersection occurs.

At each step, the walk has four possibilities to continue, and chooses one of these with probability
p = 1/4. Therefore an estimator for the total number of n-step SAW after S samples have been
generated is given by 4nsn/S .

01001-p.2

Generating SAW with simple sampling is very inefficient. There are 4n n-step random walks, but
only about 2.638n n-step self-avoiding walks on the square lattice. The probability of successfully
generating an n-step self-avoiding walk therefore decreases exponentially fast, leading to very high
attrition1. Longer walks are practically inaccessible, as seen in Figure 2.

 0

 200000

 400000

 600000

 800000

 1e+06

 0 10 20 30 40 50

S
am

pl
es

Size

Fig. 2. Attrition of started walks generated with Simple Sampling. From 106 started walks none grew more than
35 steps.

2.2 Rosenbluth Sampling

A slightly improved sampling algorithm was proposed in 1955 by Rosenbluth and Rosenbluth [3].
The basic idea is to avoid self-intersections by only sampling from the steps that lead to self-avoiding
configurations. In this way, the algorithm only terminates if the walk is trapped in a dead end and can-
not continue growing. While this still happens exponentially often, Rosenbluth sampling can produce
substantially longer configurations than simple sampling.

While simple sampling generates all configurations with equal probability, configurations gener-
ated with Rosenbluth sampling are generated with different probabilities. To understand this in detail,
it is helpful to introduce the notion of an atmosphere of a configuration; this is the number of ways
in which a configuration can continue to grow. For one-dimensional simple random walks the atmo-
sphere is always two, for two-dimensional simple random walks on the square lattice the atmosphere
is always four (and if one forbids immediate self-reversals, the atmosphere is always three except
for the very first step). However, for self-avoiding walks on the square lattice the atmosphere is a
configuration-dependent quantity assuming values between four (for the first step) and zero (for a
trapped configuration that cannot be continued). We shall denote the atmosphere of a configuration φ
by a(φ). If it is clear from the context, we will drop the argument and speak about the atmosphere a.

If a configuration has atmosphere a, this means that there are a different possibilities of growing
the configuration, and each of these can get selected with probability p = 1/a. To balance this, the

1 The algorithm can be improved somewhat by forbidding immediate reversals of the random walk, but the
attrition remains exponential

01001-p.3

1st International Conference on Numerical Physics

EPJ Web of Conferences

weight of this configuration is therefore multiplied by the atmosphere a. An n-step walk grown by
Rosenbluth sampling therefore has weight

Wn =

n−1∏
i=0

ai ,

where ai are the atmospheres of the configuration after i growth steps. This walk is generated with
probability Pn = 1/Wn, so that PnWn = 1 as required. Algorithm 2 shows a pseudocode implementa-
tion of Rosenbluth sampling.

Algorithm 2 Rosenbluth Sampling of Self-Avoiding Walk
s· ← 0, w· ← 0
S amples← 0
while S amples < MaxS amples do

S amples← S amples + 1
n← 0, Weight ← 1, Start at origin
s0 ← s0 + 1, w0 ← w0 + Weight
while n < MaxLength do

Create list of neighboring unoccupied sites, determine the atmosphere a
if a = 0 (walk cannot continue) then

Reject entire walk and exit loop
else

Draw one of the neigboring unoccupied sites uniformly at random
Step to new site
n← n + 1, Weight ← Weight × a
sn ← sn + 1, wn ← wn + Weight

end if
end while

end while

Figure 3 shows the improvement gained by Rosenbluth sampling over simple sampling.

2.3 Pruned and Enriched Rosenbluth Sampling

It took four decades before Rosenbluth sampling was improved upon. In 1997 Grassberger augmented
Rosenbluth sampling with pruning and enrichment strategies, calling the new algorithm Pruned and
Enriched Rosenbluth Method, or PERM [4]. There are a variety of pruning and enrichment strategies
that are possible, and the strategies used in [4] were somewhat different from the ones we shall describe
now. For alternate versions and enhancements we also refer to [5] and references therein.

Suppose a walk has been generated that has weight w as opposed to a target weight W. In the ideal
situation w is equal to W as desired. If that is not the case, either the weight w is to small, i.e. the ratio
R = w/W < 1, or the weight w is too large, i.e. R = w/W > 1. In the first case we will employ pruning,
i.e. we will probabilistically remove walks.

– If R = w/W < 1, continue growing with probability R and weight w set to W, and stop growing
with probability 1 − R.

In the second case we will employ enrichment, i.e. we will continue to grow multiple copies of the
walk.

– If R = w/W > 1, make bRc+ 1 copies with probability p = R− bRc and bRc copies with probability
1 − p. Continue growing with the weight of each copy set to W.

01001-p.4

 0

 200000

 400000

 600000

 800000

 1e+06

 0 50 100 150 200 250

S
am

pl
es

Size

Fig. 3. Attrition of started walks generated with Rosenbluth Sampling compared with Simple Sampling. Walks
with a few hundred steps become accessible.

While we chose to describe pruning and enrichment as different strategies, note that enrichment pro-
cedure is actually identical to the pruning procedure if R < 1: when bRc = 0 then enrichment reduces
to making 1 copy with probability R and 0 copies with probability 1 − R, which is just the pruning
procedure.

Whereas in simple (or Rosenbluth) sampling the generated walks are each grown independently
from length zero, pruning and enrichment leads to the generation of a large tree-like structure of more
or less correlated walks grown from one seed. We call the collection of these walks a tour of the
algorithm. The tree structure of a tour allows for successively growing all copies obtained during the
enrichment in a natural way.

Pruning and enrichment can be incorporated quite easily as follows.
repeat

if zero atmosphere or maximal length reached then
set number of enrichment copies to zero

else
prune/enrich step: compute number of enrichment copies

end if
if number of enrichment copies is zero then

prune: shrink to previous enrichment
end if
if configuration shrunk to zero then

start new tour
store data for new configuration

else
decrease number of enrichment copies
if positive atmosphere then

grow new step
store data for new configuration

end if
end if

until enough data is generated

01001-p.5

1st International Conference on Numerical Physics

EPJ Web of Conferences

Note that in case of constant atmosphere this reduced precisely to the pruned and enriched sam-
pling for simple random walks encountered earlier. Algorithm 3 contains a more detailed pseudo-code
version of PERM for self-avoiding walks.

Algorithm 3 Pruned and Enriched Rosenbluth Sampling of Self-Avoiding Walks
s· ← 0, w· ← 0
Tours← 0, n← 0, Weight0 ← 1
Start new walk with step size zero
a← 0, Copy0 ← 1
s0 ← s0 + 1, w0 ← w0 + Weight
while Tours < MaxTours do {Main loop}

if n = MaxLength or a = 0 then {Maximal length reached or atmosphere zero: don’t grow}
Copyn ← 0

else {pruning/enrichment by comparing with target weight}
Ratio← Weightn/wn

p← Ratio mod 1
Draw random number r ∈ [0, 1]
if r < p then

Copyn ← bRatioc + 1
else

Copyn ← bRatioc
end if
Weightn ← wn

end if
if Copyn = 0 then {Shrink to last enrichment point or to size zero}

while n > 0 and Copyn = 0 do
Delete last site of walk
n← n − 1

end while
end if
if n = 0 and Copy0 = 0 then {start new tour}

Tours← Tours + 1,
Start new walk with step size zero
a← 0, Copy0 ← 1
s0 ← s0 + 1, w0 ← w0 + Weight

else
Create list of neighboring unoccupied sites, determine the atmosphere a
if a > 0 then

Copyn ← Copyn − 1
Draw one of the neigboring unoccupied sites uniformly at random
Step to new site
n← n + 1, Weightn ← Weightn × a
sn ← sn + 1, wn ← wn + Weightn

end if
end if

end while

Figure 4 shows the significant improvement gained by adding pruning and enrichment strategies
to Rosenbluth Sampling.

2.4 Flat Histogram Rosenbluth Sampling

The next advance was made by two groups in 2003/4. Motivated by work of Wang and Landau on uni-
form sampling [6], Bachmann and Janke, using ideas from Berg and Neuhaus [7], implemented Mul-

01001-p.6

 0

 200000

 400000

 600000

 800000

 1e+06

 0 100 200 300 400 500

S
am

pl
es

Size

Fig. 4. Attrition of started walks with PERM compared with Rosenbluth Sampling. In the case of PERM, a
virtually constant number of samples is obtained.

ticanonical PERM [8]. This was followed by Prellberg and Krawczyk [9], who designed flatPERM, a
flat-histogram version of PERM estimating directly the microcanonical density of states.

Within the context of the algorithms developed here, incorporating uniform sampling into PERM
is straightforward. First we note that PERM already is a uniform sampling algorithm in system size.
This is not apparent at all from the algorithm, as the guiding principle has been to adjust pruning and
enrichment with respect to a target weight, not with respect to any criterion of poor local sampling.
It is rather that uniform sampling is a consequence of adjusting pruning and enrichment around the
desired target weight.

Fig. 5. An interacting self-avoiding walk on the square lattice with n = 26 steps and m = 7 contacts.

01001-p.7

1st International Conference on Numerical Physics

EPJ Web of Conferences

It is therefore reasonable (and very much in the spirit of the previous section) to extend PERM to
a microcanonical version, in which configurations of size n are separated with respect some additional
parameter. One simply determines this parameter when growing the configuration and stores the data
by binning with respect to this additional parameter. Then, when considering pruning and enrichment,
the target weight is computed from the binned data. More precisely, if the additional parameter is
called m, storing the data is changed from

sn ← sn + 1, wn ← wn + Weightn
to

sn,m ← sn,m + 1, wn,m ← wn,m + Weightn
and computing enrichment ratio is changed from

Ratio← Weightn/wn

to
Ratio← Weightn/wn,m

and this is about it.
In the previous section this additional parameter has been the end-point position of the random

walk. Here, we shall consider by example the case of interacting self-avoiding walks, where each walk
configuration has an energy proportional to the number of non-consecutive nearest-neigbour contacts
between occupied lattice sites.

 1

 100000

 1e+10

 1e+15

 1e+20

 1e+25

 0 5 10 15 20 25 30 35 40

S
am

pl
es

 a
nd

 N
um

be
r

of
 S

ta
te

s

Energy

Fig. 6. Number of States of Interacting Self-Avoiding Walks with 50 steps at fixed energy estimated from 106

flatPERM tours. The lower graph shows the number of actually generated samples for each energy.

Figure 6 shows the simulation results of a simulation of interacting self-avoiding walks of up to
50 steps using 106 tours starting at size zero. This led to the generation of about 106 samples for each
value of m at n = 50 steps, and enabled the estimation of the number of states over ten orders of
magnitude.

Figure 7 shows the corresponding simulation results for all intermediate lengths from the same
run. While the histogram of samples is not as flat as in the case of random walks discussed above,
especially for large values of m, it is reasonably flat on a logarithmic scale and leads to sufficiently
many samples for each histogram bin. Reference [9] contains results of a simulation of interacting

01001-p.8

 0 5 10 15 20 25 30 35 40 0
 10

 20
 30

 40
 50

 10000

 100000

 1e+06

 1e+07

Samples

Energy
Size

 0 5 10 15 20 25 30 35 40 0
 10

 20
 30

 40
 50

 1
 100000
 1e+10
 1e+15
 1e+20
 1e+25

Number of States

Energy
Size

Fig. 7. Interacting Self-Avoiding Walks with up to 50 steps generated with flatPERM. The upper figure shows
that a roughly constant number of samples is obtained across the whole range of sizes and energies, and the lower
figure shows the estimated number of states for a given Size n and Energy m.

self-avoiding walks with up to n = 1024 steps, where the density of states ranges over three hundred
orders of magnitude, all obtained from one single simulation.

3 Extensions

In the excellent review article [5] the algorithms of Section 2 and several extensions are discussed.
Extensions of algorithms are usually motivated by the need to simulate systems inaccessible with

established algorithm. For example, algorithms based on Rosenbluth sampling are well-suited to the

01001-p.9

1st International Conference on Numerical Physics

EPJ Web of Conferences

simulation of objects that can be grown uniquely from a seed. In the case of linear polymer models,
this is accomplished by appending a step to the end of the current configuration2.

However, if one wants to simulate polymers with a more complicated structure, such as branched
polymers, there no longer is an easy way to uniquely grow a configuration. A lattice model for a two-
dimensional branched polymer is given by lattice trees, i.e. trees embedded in the lattice Z2. For a
given lattice tree it is no longer clear how it has been grown from a seed; this could have happened in
a variety of ways.

3.1 Generalized Atmospheric Rosenbluth Sampling

It turns out that there is an extension to Rosenbluth sampling, called Generalized Atmospheric Rosen-
bluth Method, or GARM [10], that is suitable for these more complicated growth processes. The key
idea is to generalize the notion of atmosphere by introducing an additional negative atmosphere a−
indicating in how many ways a configuration can be reduced in size. For linear polymers the nega-
tive atmosphere is always unity, as there is only one way to remove a step from the end of the walk.
However, for a given lattice tree the removal of any leaf of the tree gives a smaller lattice tree, and the
negative atmosphere a− can assume rather large values.

Algorithm 4 Generalised Atmospheric Sampling
s· ← 0, w· ← 0
S amples← 0
while S amples < MaxS amples do

S amples← S amples + 1
n← 0, Weight ← 1, Start with seed configuration
s0 ← s0 + 1, w0 ← w0 + Weight
while n < MaxS ize do

Create list of growth possibilities, determine the atmosphere a
if a = 0 (no growth possible) then

Reject entire configuration and exit loop
else

Draw one of the growth possibilities uniformly at random
Grow configuration
n← n + 1, Weight ← Weight × a
Compute negative atmosphere a−

Weight ← Weight/a−

sn ← sn + 1, wn ← wn + Weight
end if

end while
end while

Surprisingly there is a very simple extension to the Rosenbluth weights discussed above. If a
configuration has negative atmosphere a−, this means that there are a− different possibilities in which
the configuration could have been grown. An n-step configuration grown by GARM therefore has
weight

Wn =

n−1∏
i=0

ai

a−i+1
, (1)

where ai are the (positive) atmospheres of the configuration after i growth steps, and a−i are the negative
atmospheres of the configuration after i growth steps. It can be shown that the probability of growing
this configuration is Pn = 1/Wn, so again PnWn = 1 holds as required.

2 In a more abstract setting, Rosenbluth sampling has for example been used to study the number of so-called
pattern-avoiding permutations. Permutations can be grown easily by inserting the number n + 1 somewhere into a
permutation of the numbers {1, 2, . . . , n}, allowing for easy implementation of Rosenbluth sampling.

01001-p.10

The implementation of GARM is not any more complicated than the implementation of Rosenbluth
sampling. Algorithm 2 gets changed minimally by inserting the lines

Compute negative atmosphere a−
Weight ← Weight/a−

immediately after having grown the configuration.
While implementing GARM is quite straightforward, there generally is a need for more com-

plicated data structures for the simulated objects, and one needs to find efficient algorithms for the
computation of positive and negative atmospheres.

It is now possible to add pruning and enrichment to GARM, and to extend this further to flat
histogram sampling, just as has been described in the previous section for Rosenbluth sampling.

For further extensions to Rosenbluth sampling, and indeed many more algorithms for simulating
self-avoiding walks, as well as applications, see [5].

References

1. D. P. Landau and K. Binder, A Guide to Monte Carlo Simulations in Statistical Physics, Cambridge
University Press, 2005

2. G. W. King, in Monte Carlo Method, volume 12 of Applied Mathematics Series, National Bureau
of Standards, 1951

3. M. N. Rosenbluth and A. W. Rosenbluth, J. Chem. Phys. 23 356 (1955)
4. P. Grassberger, Phys. Rev E 56 3682 (1997)
5. E. J. Janse van Rensburg, J. Phys. A 42 323001 (2009)
6. F. Wang and D. P. Landau, Phys. Rev. Lett. 86 2050 (2001)
7. B. A. Berg and T. Neuhaus, Phys. Lett. B 267 249 (1991)
8. M. Bachmann and W. Janke, Phys. Rev. Lett. 91 208105 (2003)
9. T. Prellberg and J. Krawczyk, Phys. Rev. Lett. 92 120602 (2004)
10. A. Rechnitzer and E. J. Janse van Rensburg, J. Phys. A 41 442002 (2008)

01001-p.11

1st International Conference on Numerical Physics

