
GSO: Designing a Well-Founded Service Ontology to Support Dynamic Service
Discovery and Composition

Luiz Olavo Bonino da Silva Santos∗, Giancarlo Guizzardi†, Renata Silva Souza Guizzardi†,
Eduardo Gonçalves da Silva∗, Luı́s Ferreira Pires∗ and Marten van Sinderen‡

∗Software Engineering Group
University of Twente, Enschede, The Netherlands

Email: (l.o.bonino, e.m.g.silva, l.ferreirapires)@ewi.utwente.nl
†Department of Computer Science

UFES, Vitória, Brazil
Email: (gguizzardi, rguizzardi)@inf.ufes.br

‡Information Systems Group
University of Twente, Enschede, The Netherlands

Email: m.j.vansinderen@ewi.utwente.nl

Abstract—A pragmatic and straightforward approach to
semantic service discovery is to match inputs and outputs
of user requests with the input and output requirements of
registered service descriptions. This approach can be extended
by using pre-conditions, effects and semantic annotations
(meta-data) in an attempt to increase discovery accuracy.
While on one hand these additions help improve discovery
accuracy, on the other hand complexity is added as service
users need to add more information elements to their service
requests. In this paper we present an approach that aims at
facilitating the representation of service requests by service
users, without loss of accuracy. We introduce a Goal-Based
Service Framework (GSF) that uses the concept of goal as an
abstraction to represent service requests. This paper presents
the core concepts and relations of the Goal-Based Service
Ontology (GSO), which is a fundamental component of the
GSF, and discusses how the framework supports semantic
service discovery and composition. GSO provides a set of
primitives and relations between goals, tasks and services.
These primitives allow a user to represent its goals, and a
supporting platform to discover or compose services that fulfil
them.

Keywords-Service-Oriented Computing; ontology; service
discovery; service composition;

I. INTRODUCTION

Service-Oriented Computing (SOC) has been gaining
momentum in recent years with an increase in industry
adoption and research efforts. In industry, SOC has been
seen as an approach to integrate legacy and new systems
with an standardized set of protocols and interfaces in a dis-
tributed manner. Among the research efforts we can include
the pursuit of supplying semantics to service descriptions,
message exchanges and service requests. The addition of
semantics aims at supporting semantic interoperability for
heterogeneous systems. Ontologies are being used in the
realm of SOC for providing this semantic richness [1], [2],
[3].

Even when semantically enriched, service client’s re-
quirements are expressed in terms of inputs, outputs, pre-
conditions and effects, also known as IOPE. End-users, i.e.,
human service clients, may have difficulties to express such
requirements as they would have to deal with technical
issues such as the request’s language, and the type, format
and coding of the IOPE. Additionaly, if we consider the
use of services in a Pervasive Computing environment
where the end-users would have to deal with a significant
number of services, computing devices, sensors, interfaces
and actuators, the problem of expressing service require-
ments and providing the service inputs increases. To tackle
application scenarios where end-users are not technology
literate and are immersed in an environment populated by
a plethora of services, computing devices, sensors, etc., we
propose the use of goals to express what the end-user wants
accomplished by services. The use of goals aims at raising
to a higher abstraction level the definition of service client’s
requirements and, therefore facilitating its use by end-users.
Goal-based analysis has been used in different areas of

Computer Science to identify stakeholders’ objectives, deter-
mine requirements for software systems and guide system’s
behavior. As a representation of a service client’s objectives,
goals are used in Service-Oriented Computing to indicate
the desired outcome of a service. In the Service-Oriented
Computing literature we can find initiatives for service
discovery and composition based on goals such as the Web
Service Modeling Ontology (WSMO) [1], GoalMorph [4]
and the approach presented by Zhang et al in [5]. However,
besides not agreeing on a goal definition, these initiatives
either do not clarify how goals are gathered and modeled
([4] and [5]) or mix the goal definition with the service that
should fulfill it ([1]).
In this paper we present an ontology-based approach to

support dynamic service discovery and composition. Our

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/24060002?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Goal-Based
Service

Ontology

Goal-Based
Service

Metamodel

<<representedBy>>

Domain Specification

Domain
Ontologies

Task
Ontologies

<<usedBy>>

CA Service
Platform

Service

<<interactsWith>>

<<instance>>

<<usedBy>>

<<annotates>>

Figure 1. Main components of the Goal-Based Service Framework

Goal-Based Service Ontology (GSO) defines a language that
supports domain specialists to define domain specifications.
These domain specifications are composed by a set of
ontologies providing a common knowledge about an specific
domain and are used to semantically annotate services and
the exchanged messages between service clients, service
providers, context providers and the supporting platform.
Therefore, this paper aims at addressing the following re-
search questions: (i) how to provide a more intuitive way
for (non-technical) service clients express service requests?;
and (ii) how to provide dynamic service discovery and
composition from these service requests?
This paper is further structured as follows. Section II gives

an overview of the architecture of the Goal-Based Service
Framework. Section III discusses the main concepts and
relations of the proposed Goal-Based Service Ontology and
explains the rationale behind the definition of these concepts.
Section IV presents the supporting service platform and the
matching and composition algorithm. Section V presents an
example usage scenario of GSF in the Home Health Care
domain. Section VI presents some final considerations and
identifies topics for future work.

II. GOAL-BASED SERVICE FRAMEWORK (GSF)

In our work we consider a scenario of Pervasive Com-
puting associated with SOC technologies and concepts. In
this scenario we have human agents surrounded by and
interacting with a plethora of computational devices and
services. This motivates the need of a platform support to
tackle with the issues of service discovery and composition
in an unobtrusive way.
Our framework to support dynamic service discovery and

composition is based on goal modeling and assumes that
the involved stakeholders (service clients, service providers,
context providers, supporting platform) share the same con-
ceptual models, i.e., the same set of domain ontologies.
This requirement is necessary because the approach relies
on the availability of domain-specific ontologies. Figure 1
depicts the main elements that comprise our framework. The
elements of this Goal-Based Service Framework (GSF) are
described as follows:

• Goal-Based Service Ontology (GSO). This ontology

defines domain- independent concepts such as service,
service client, service provider, goal, task and their
relations, among others. This domain independency is
however limited to domains and applications within the
scope of the aforementioned scenario of Pervasive and
Service-Oriented Computing.

• Goal-Based Service Metamodel (GSM). Generated
from Goal-Based Service Ontology, this metamodel
represents the concepts defined in GSO and defines the
language used by domain specialists to create domain
specifications.

• Domain Specification. GSF can be used in different ap-
plication domains such as Health Care, Ambient Intelli-
gence, etc. For each of these application domains a do-
main specialist defines a domain specification, namely
the concepts and relations relevant to the domain, goals
that users can have, valid tasks in the application, etc.
GSM, representing GSO concepts, provides a modeling
language that enables domain specialists to define do-
main specifications allowing a shared knowledge about
particular domains. A domain specification is composed
of: (i) a domain ontology including domain-specific
concepts, the relations among these concepts and valid
goals that users of that domain can have; and (ii) a task
ontology which uses the concepts defined in the domain
ontology and provides domain-specific definitions of
valid tasks and how they can be related to user’s goals
fulfillment.

• Context-Aware Service platform. The context-aware
service platform supports the interaction between ser-
vice providers and service clients. From the service
provider’s perspective, the platform supports the publi-
cation of service descriptions. From the service client’s
perspective, the platform provides mechanisms for ser-
vice discovery, composition, invocation and monitoring,
among others. Moreover, the context-aware components
of our supporting platform provide user’s contextual
information that is used (i) to select which of the tasks
that support a given goal will be used in the service
discovery and composition procedures and, (ii) as input
data for the discovered services. The context informa-
tion gathering reduces the need of direct user input
and, thus, reduces also the need of user’s interaction
supporting a more autonomic behavior of the platform.

A normal deployment of GSF consists in the GSO, GSM
and the CA Service Platform. A second step is the addition
of domain specifications by domain specialists. Service
providers can start to semantically annotate their services
and service descriptions based on the concepts present on
these domain specifications. The service descriptions are
added to the CA Service Platform by the service providers.

A set of domain specifications are being developed in
the scope of this work for the purpose of validating the

use framework as a whole and to check the suitability of
GSO and GSM to specify domains. In this paper we present
excerpts of these domain specifications as usage examples
of GSO.

III. GOAL-BASED SERVICE ONTOLOGY

The Goal-Based Service Ontology (GSO) includes con-
cepts and relationships that (represented by the Goal-Based
Service Metamodel) allows domain specialists to define
their goal-based service-oriented domain models. Clarity
and an appropriate formalization of semantics are impor-
tant requirements for ontologies. These requirements are
especially relevant in Service-Oriented Computing (SOC)
to enable complex tasks involving multiple agents. The
focus of GSO is to provide ontologically sound concepts
relating concepts of SOC such as Service Provider, Service
Client and Service, with concepts pertinent to our goal-
based approach, such as Goal and Task. Nevertheless, these
concepts are not sufficient for a complete domain speci-
fication. More domain-independent concepts and relations
are necessary to characterize a domain such as Descrip-
tion, Agent, Intention, Material Relation, among others. In
order to provide these concepts and relations and at the
same time supply formalization and semantic clarity we
use a foundational ontology namelly Unified Foundational
Ontology (UFO) [6] which is based on formal principles
derived from linguistics, philosophy and mathematics. A
foundational ontology is an axiomatic system of domain-
independent real-world categories [6], [7]. A foundational
ontology provides a conceptual modeling language to be
used to express other ontologies (such as GSO). In our work
GSO builds upon some of the concepts and relations of
UFO and adds SOC and goal (and task) related concepts
and relations.

A. Goal definition

The concept of goal has several different definitions
depending on the domain the term is used, e.g., Philosophy,
Sports, Economy, among others. Narrowing down to the
Computer Science domain, a variety of definitions of the
goal concept can also be found. In the Artificial Intelligence
(AI) realm, goal is defined as a “description of a world state
that is expected to be realized” [8]. Among the several defi-
nitions for goal in the agent-oriented computing community,
in [9] goal is defined as a “state with highest utility and an
agent must choose the course of action to reach that goal”
and in [10] goal is defined as a “final state that the agent
tries to achieve by moving from its initial state through a
defined and finite sequence of intermediary states”.
In the community of Semantic Web, WSMO [1] defines

the concept of Goal as “representations of an objective
for which fulfillment is sought through the execution of a
Web service” and that “goals can be descriptions of Web
services that would potentially satisfy the user desires”.

From these definitions we have that WSMO ties goal closely
to Web services, i.e., a commitment is done already in the
ontological level w.r.t. the specific technology to realize
services. An example of this close tie between a WSMO
goal and Web services is in WSMO’s goal description
model which includes the interface of the Web service the
user would like to interact with. In our work we consider
Web services as one possible technological solution for
implementing services and do not limit our approach to this
specific technology.
For the purposes of this framework, we adopt and extend

the goal definition presented in [11] and define goal as
the propositional content of a service client’s intention. In
other words, a service client (an intentional agent) has an
intentional moment of the type Intention. We use moment
in its ontological sense of being an individual that can only
exists in other individual, i.e., moments are existentially
dependent of other individuals. Here, the term moment
has no relation with the intuitive notion of time instant
in natural language. For instance, moments such as color,
intention and commitment can only exist if a bearer of those
moments exists, namely, a colored thing, an intentional agent
and a committed individual, respectively. Every intentional
moment has a type and a propositional content. The propo-
sitional content is an abstract representation of a class of
situations referred by that intention.
The other types of intentional moments are Belief and

Desire. Belief is defined in UFO as any knowledge an
agent has about the world. Examples include my belief
that the Moon orbits the Earth and, my belief that Paris
is the capital of France. Desire and intention express a
will of an intentional agent towards a state of affairs in
reality. The difference between intentions and desires is that
by intending something, an intentional agent commits at
pursuing it, i.e., an intention is a desire plus an internal
commitment. Therefore, a service client commits to pursue
the fulfilment of his goals. This definition allows that many
alternative situations can satisfy (in the logical sense) the
goal. For instance, if one has a goal of having a vehicle to
go to work, a situation where he has a car satisfies the goal
as well as (if no other constraints are defined in the goal) a
situation where he has a bicycle.

B. Tasks, goals and services

Figure 2 presents a model of types depicting the Goal
concept of GSO and how it is related to UFO concepts
(grayed boxes). In GSO we added that a Goal is owned
by a Service Client Type. This ownership relation defines
a meta-commitment making that individual instances of the
Service Client Type have a goal of certain kind, i.e., let
S be a service type a g a goal, we have that S owns g
iff for every instace x of S there is an intention I which
is an intrinsic property of x (inheres in x) and g is the
propositional content of I. Therefore, goals can be used

AgentType

Proposition ActionType

UFO: Goal

GoalServiceClientType
owns

1..* 1..*

Task

AtomicTask ComplexTasksupports

*

1..*

2..*
Service

ServiceProviderType

offers 1..*

1..*

* *
performs

Figure 2. Goal definition

to characterize Service Client Types during the domain
specification phase. For instance, a domain specialist can
determine that in a Supply Chain domain Customer (a
Service Client Type) is characterized as having the goals
of HavingRawMaterialWhenNeeded and OptimizeInventory
while Supplier (another Service Client Type) is characterized
as having the goal SupplyRawMaterialWhenRequested.
Task in GSO is a specialization of the UFO concept of

Action Type. An Action in UFO is an intentional event,
i.e., an event performed by one or more agents in order to
accomplish a goal. In figure 2, the relation Performs between
Service and Task (again, an Action Type) represents that
instances of Task are executed by the Service Provider when
the associated service is executed, i.e., a service is executed
when the task it is committed to perform is executed. Finally,
the relation Supports between Task and Goal represents that
a successful execution of that task satisfies that goal, i.e.,
the situation derived from the outcome of a task execution
matches a situation that satisfies the goal.
As depicted in Figure 3 (a model of instances), a Goal

can be structured in two different ways, namely, in a
decomposition structure (GoalANDDecomposition) and in a
specialization structure (GoalORDecomposition). These two
structures have different implications on goal fulfillment. In
the decomposition structure, the fulfillment of the high-level
goal is accomplished with the fulfillment of all the sub-
goals. For instance, a high-level goal GetMedicalTreatment
(from the Health Care domain) is fulfilled when its sub-
goals GetMedicalConsult and GetMedicinePrescription have
been fulfilled. Conversely, in the specialization structure, the
fulfillment of a sub-goal implies the fulfillment of the high-
level goal. For instance, the same hypothetical high-level
goal GetMedicalTreatment is fulfilled when either one of
the sub-goals GetHomeMedicalTreatment and GetHospital-
izedMedicalTreatment is fulfilled.
Figure 3 also shows the causal chain of goal satisfaction.

An intention (of which a goal is its propositional content)
causes an action (an instance of a Task) to be performed,
i.e., since the agent is committed to the goal satisfaction,
he acts accordingly to pursue its satisfaction. The action
creates a situation that satisfies the goal. The use of situations
to satisfy goals opens the possibility of using a Fuzzy
mechanism to assess partial satisfaction (if necessary) of
goals. Depending on the domain being specified using GSO,

Agent

Action

IntentionalMoment

Intention

Proposition

Goal

GoalDecomposition

FormalRelation

GoalANDDecomposition GoalORDecomposition

1

* *

2..*

< propositional content of

1

11..*

*

1 1..*

< inheres in

1..*

*

participates in

1..*

Situation
1

creates

satisfies

*

*

1..*

causes

1..*

Figure 3. Goal satisfaction and composition

the domain specialists can define different goal satisfaction
degrees.
In GSO, the ownership relation entitles the owner agent,

i.e., a particular agent instantiating an specific Service Client
Type, to delegate the fulfillment of the goal to another agent.
Moreover, by delegating a goal to an agent, the delegatee
commits to the fulfillment of that goal. Therefore, the
delegation relationship implies also a commitment between
the delegator and the delegatee in relation to a goal. In GSO,
this delegation relationship occurs when a service client
delegates the fulfillment of a goal to a service provider. In
the scope of this paper we focus on the open delegation
[11] of a goal. In an open goal delegation, a service client
delegates the satisfaction of a goal to a service provider
but does not prescribe any specific way of reaching this
satisfaction. In other words, the service client only wants
the goal satisfied without caring about how it is going to
be satisfied. In contrast, in a close delegation the service
provider should satisfy the service clients goal by means
of a specific task. The relations of ownership, (close and
open) delegations and satisfaction relations in GSO are also
reflected in common goal-based requirements engineering
languages such as i* and Tropos [12].
Although the supporting service platform (CASP) in-

termediates the discovery, composition and invocation of
services on behalf of the service client, we consider that
the goal delegation occurs between the service client and
the service provider and not between the service client
and CASP. Having the goal delegation established from
the service client to the service provider allows CASP to
determine and enforce trust relationships (when necessary)
between service clients and providers, i.e., when required,
the platform can only allow service discovery, composition
and execution to services whose providers are trusted by the
service client.

C. Service

GSF and (more specifically) CASP are targeted to support
the discovery and composition of computational services.
However, at the ontological level we also consider services
at the social level. This separation between social and

computational services allows us to cope with situations
where a computational service can be related to a social
service and contribute to the fulfillment of a client goal.
For instance, in a traveling scenario, John has the goal of
spending his holiday in Paris. One social service that fulfills
this goal is the air transportation service by means of flying
John from Rome to Paris. In the case John decides to use
a computational platform (such as GSF) to have its goal
fulfilled, an electronic flight ticket booking service is one
computational service related to the mentioned social service
that can fulfill his goal.
In GSO we define service as a temporal entity related

to the commitment (a service agreement) that a Service
Provider will perform a task (a type of action) on behalf of
a Service Client whose outcome satisfies a Service Client’s
goal. This definition of service is based on the analysis of
social services presented in [13].
Our definition encompasses some of the main character-

istics of service as defined in the Marketing and Economics
fields, namely, intangibility (as being a temporal entity)
and the inseparability of production and consumption. As
opposed to a product, when a service is delivered (the
equivalent to the product’s production) its outcome, which
may satisfy the client’s goal, is immediately perceived by the
service client (the consumer). In [14], the authors state that
the service’s value “is always uniquely and phenomenologi-
cally determined by the beneficiary”. In our framework this
statement remains valid as the service client (the beneficiary)
determines the service’s value by the fulfillment of his goal,
i.e., the added-value of a service from the service client’s
perspective is perceived when the service fulfills a client’s
goal.
In our definition two related but distinct aspects can be

considered, the service execution and the service agreement.
Both have time-limited lifespan but represent different con-
cepts. While the former represents that actual execution
and consequent service provisioning, the later represents
the conditions and validity for the service provisioning. For
instance, when a bank’s client cashes out money from an
ATM, the money withdraw service execution lasts for the
time that the operation to request and receive the amount
of money lasts. However, the agreement for the money
withdraw service is valid for as long as the client has an
account in his bank. This makes explicit that a service is
not only an execution of a certain task (or process) but also
encompasses a set of meta-commitments, e.g., commitments
to commit to execute actions of a certain type under certain
conditions [15].
Tying a service with a client’s goal makes explicit the

added-value of the service, and the analysis of the purpose
of a service and its selection; namely, a service is selected
because of its role on fulfilling a client’s goal. Moreover,
the relation between a goal and a service supports dynamic
service discovery by comparing situations that could satisfy

ActionType EventType

SocialRelatorType

ServiceProvisioningActionType

Service Provisioning
Event Type

ServiceActivationType

Service

ServiceProviderType

Goal

ServiceAgreementType

ServiceClientTypeServiceNegotiationType

1..*

1..*

offers

1..* 1

hasServiceType

owns
1..* 1..*

hasClientType 1

*

1

*

hasProviderType

activatesServiceIn >
1..*

1..*

creates

1..*

1..*

Figure 4. Service negotiation and activation

a goal with the situations generated by services’ outcomes.
In other words, it is possible to discover which services
fulfill a goal by verifying if the situation generated by the
service’s outcome is equivalent to a situation that can satisfy
a goal.
Figure 4 depicts the relations between Service, Service

Client Type and Service Provider Type. The Service Provi-
sion Event Type represents types of events that can partici-
pate in service provision such as Service Negotiation Type
and Service Activation Type. When a service client discovers
and selects a service, a negotiation takes place to determine
the conditions and constraints for the service provisioning.
A successful negotiation creates a service agreement type
which is a social relator binding the service client and
service provider and can be potentially composed of a set of
commitments and claims, e.g., the commitment of providing
the service under certain conditions and for an specified
cost. This social relator (the Service Agreement Type) can
be described in a contract (not depicted in the figure) which
is a normative description [11].
Figure 5 depicts the service components, namely Input,

Output, Pre-Condition and Effect. In this figure we also
make explicit the aforementioned distinction between a
Service (that can be a social service) and a Computational
Service. In GSO a service performs a Service Task. This
Service Task is what a Service Provider commits to perform
on behalf of the Service Client. In GSO we distinguish
the Service Provider which is the agent responsible for the
service from the Service Executor which is the agent that
actually performs the Service Task.
In some situations, Service Executor and Service Provider

can refer to the same agent individual but in other situations
can be a different agent individual that has been delegated
the service execution. For instance, one can hire a clean-
ing company to provide a cleaning service. However, this
cleaning company can hire free lancers to actually clean the
client’s offices, i.e., the actual executor of the service is not
the same (or a member of the) entity that has been hired for
the service but a third-party. For simplicity, in this paper we
assume that the Service Provider is the one performing the
Service Task.

Service

ComputationalService ComputationalServiceTask

Service Task
performs

performs

1..*

1..*

1

1

Task

ServiceAgreement

1..*

1hasService

TriggeringEvent

specifies 1..*

1

Pre-Condition

Service Activation Event

enables 1

1

Service Execution

triggers 1..*

1..*

UFO: Situation

Effect

produces1

1

Input

Output

requires

produces

0..*

0..*

has 0..*

respondsTo
0..*1

1

1

Figure 5. Service IOPE

The Service ActivationEvent enables the Triggering Event
associated with the service. We defined the Service Activa-
tion to cope with situations where a service is contracted
(i.e., negotiated, agreed and committed) but the actual ex-
ecution of the service occurs in a different point in time.
For instance, when a client opens an account in a bank and
receives his account card, the service of withdrawing money
in authorized ATMs is enabled but it is actually executed
only when the client requests the money withdraw at the
ATM.
The Pre-Condition represents a situation that should occur

prior to the service execution. The Triggering Event responds
to pre-conditions, i.e., when a certain situation represented
by the service task’s pre-condition occurs, the Triggering
Event triggers the Service Execution. For instance, in a
wake-up service the pre-condition is defined by the wake-
up time. When the wake-up time is reached, the execution
of the wake-up service is triggered. However, some services
do not have pre-conditions defined, namely, can be executed
regardless any situation. In these cases, the Triggering Event
triggers the service execution immediately after being en-
abled by the Service Activation Event.
Input represents the information required by the service

task for its execution. For instance, a flight booking service
requires the information about the origin and destination of
the flight. Output represents the information produced by
the execution of a service task such as the reservation code
or the e-ticket number for the flight booking service. While
every service task execution produces an effect this is not
true for inputs and outputs. Services such as TV broadcast
or money transfer do not require an input or produce an
output, respectively.
Figure 6 depicts how a service is described. In GSO

we consider that different parts of a service have different
descriptions. The Service Profile provides an overview of
the service for advertisement purposes. It describes what the
service does, its requirements and conditions. Also, service-

Service

ComputationalService ComputationalServiceTask

Service Task
performs

performs
Service Interface

has

1..*1

Service Description

has 1..*

1

Service Profile Service Model Service Grounding

describes1..*

1

describes1..*

1..*

1..*

1

1

1

Figure 6. Service negotiation and activation

level agreement parameters can be included and used in the
service negotiation. The Service Model describes the Service
Task and provides information about the activities involved
in the Service Task execution. The Service Model is used to
assess the service’s behavior, i.e., what set of activities the
service performs. The Service Model can be used for service
monitoring and orchestration (not discussed in this paper).
Moreover, the Service Model can be described in different
granularity levels allowing a more superficial or more in-
depth view of the Service Task. The Service Grounding
describes the Service Interface of the Computational Service
Task. The Service Interface defines the technology-specific
information necessary to invoke the service, namely, the
communication protocol, parameters’ types, URI, etc. GSO
does not commit to any particular language to describe
services, such as WSDL, OWL-S or SAWSDL. Any of these
languages could be used to instantiate the concepts defined
in GSO.

IV. CONTEXT-AWARE SERVICE PLATFORM

The Context-Aware Service Platform aims at supporting
non-technical service clients (end-users) in finding a suitable
service, i.e., a service that fulfills requested goals. The CASP
also provides support to service providers on the process of
service publication. A service provider offers their services
to the clients through the CASP by registering the service
descriptions to the platform. The service descriptions are
semantically annotated (e.g., its IOPEs, behavior description,
quality properties, etc.) using the concepts defined in the
domain specifications ontologies. These semantic annota-
tions are used by the platform for the service discovery,
composition and invocation.
Figure 7 depicts the main architectural components of

the CASP. Domain Specialists are responsible for providing
domain specifications to the platform. Domain specifications
are used to provide shared semantics to the terms used
amongst the stakeholders and the platform, e.g., Service
Providers semantically annotate their service descriptions
using the concepts defined in the domain specifications.
The domain specifications are created using the modeling
language defined by the Goal-Based Service Metamodel
(GSM). A GSM-based editor provides to domain special-

Context-Aware Service Platform

Provider
Interface

Service
Registry

Service
Finder

Client
Interface

Service
Requester

Service
Composer

Service
Invoker

CA
Components

Service
Provider
Service
Provider
Service
Provider

Service
Provider
Service
Provider
Service
Client

Service
Provider
Service
Provider
Context
Source

Ontologyy
Registry

Domain
Specialist
Interface

Service
Provider
Service
Provider
Domain

Specialist

Registry
Manager

Figure 7. Context-aware service platform

ists the support to define domain specification. A Domain
Specialist, through the Domain Specialist Interface, can
submit or update a domain specification that is stored in
the Ontology Registry.
The Provider Interface offers to Service Providers the

facilities for registering and maintaining their service de-
scriptions. The Provider Interface allows Service Providers
to access the available domain specifications stored in the
Ontology Registry to semantically annotate their service
descriptions.
The service discovery algorithm of CASP tries to es-

tablish that a service s performs a task t that supports a
goal g. Therefore, this algorithm tries to assess an indirect
goal fulfillment chain (service-task-goal). However, when
a service is registered to CASP, the service provider can
provide to the platform a direct (service-goal) or indirect
goal fulfillment information (service-task-goal). The direct
goal fulfillment information indicates to the platform which
goal(s) the service fulfills. The indirect goal fulfillment
information indicates which tasks defined in the domain
specifications the service performs. Since these tasks have
already been defined as supporting goals, knowing that an
specific service supports a task and that the task supports
a goal, gives the platform the information that the service
fulfills the goal.
When the direct goal fulfillment information is provided

to the platform by the service provider, CASP tries to re-
construct the service-task-goal chain by matching the service
task against the tasks that have been defined in the domain
specification as supporting the goal. In other words, when
the service s is indicated as fulfilling the goal g, the platform
tries to match service task st (specified in the related service
description) against the set of tasks that support goal g
(defined in the domain specification). When there is a match,
a link is established by the platform informing that the
service performs the related task(s). If there is not a match,
the platform automatically updates the domain specification
by adding the service task of the given service as a task that
supports the goal.
Regardless of having provided by the service provider the

direct or indirect goal fulfillment information, for each reg-

istered or updated service the platform tries to assess which
(additionally) task(s) defined in the domain specifications the
service performs and, consequently, which goals it fulfills.
This automatic update associated with the support for

modifications and extensions to be performed by domain
specialists creates the possibility of an expressive growth
of the domain specifications. For instance, it is desirable
to avoid the insertion of duplicate goals, or to avoid that
goals are inserted in incorrect hierarchies. To help cope with
the increasing numbers and complexity of goals and tasks,
techniques and approaches of the Knowledge Management
(KM) field can be used. In our work we use an adapted
version of KARe [16]. KARe uses taxonomies to classify
documents. Each node of the hierarchy is represented by the
node description (name), and also by the most relevant terms
of all documents classified by the taxonomy. In our adjusted
version of KARe, when the service provider inserts a new
service, the platform informs the closest goals based on the
service’s description, i.e., the goals that a more likely to be
fulfilled by this service. Then, the service provider select the
goal(s) that the service is actually designed to fulfill.
The platform allows a service client to express his service

request as a goal to be fulfilled. The client-defined goal
is then matched against the set of goals defined in the
domain specifications. The platform tries to determine the
tasks in the task ontology that support the goal. Provided
with this set of tasks, the platform creates an internal service
request. The service request contains the properties that
define the different tasks, consisting on a set of inputs,
outputs, preconditions, effects, goals, and non-functional
properties. Not all these properties have to be always present
in a service request. In our framework the service request
is further optimized, by means of the context information
available regarding the service client. This optimization
consists of filtering the previously created service request
inputs and preconditions, considering only the inputs and
preconditions that can be delivered by context sources of the
service client. This allows shielding the user from directly
supplying to the service, by delegating the gathering of the
required information to the platform, through the available
context sources. When the available context information is
not enough to supply all of the required inputs, the platform
requests the information to the service client.
Provided with this service request, the Finder component

is invoked to discover (and possibly compose) services
that match the specified service request. The first action
performed by the Service Finder component is to discover
services that match the service request’s goals. The compo-
nent queries the Registry Manager for all the services that
have exact semantic match with the service request goals.
Furthermore, services with goals semantically related to the
service request goals, namely goals that are subsumed by the
requested goals, given the domain goal ontology, are also
retrieved. This allows to increase the set of retrieved and

meaningful services, i.e., increase the probability of find a
service that fulfills the user request. The set of discovered
services is organized in a matrix, where input/preconditions
and output/effect semantic concepts define the rows and
columns of the matrix. In case none of the retrieved services
fully match the user service request, a further step is taken
in the Service Composer component and the set of retrieve
services are composed aiming at creating a composite ser-
vice that fully delivers all the user services request goals. To
reduce the need for service composition, once a composite
service is created, Service Composer creates a description
for it and stores in the Service Registry. In this way if
that same service request is resubmitted Service Finder can
discovers this new composite service and do not need to
compose is again.
The process of service composition is performed by a

graph-based algorithm for automatic service composition
[17]. In the graph a node represents a service and an edge
represents an output-input semantic relation. The algorithm
starts by creating a graph with services that provide the
service request outputs and effects. Then, in each iteration
the algorithm matches the inputs of the graph’s services with
the outputs of the services from the set of discovered services
organized in the matrix. The process continues until the ser-
vice request’s inputs, preconditions and goals are fulfilled by
the composite service. Whenever multiple services provide
a matching output for a graph service input, new graphs
are created representing an alternative service composition.
Input-output matching, and goal matching, are performed
using the domain ontologies. This allows exact, plugin and
subsume semantic matchings. Given that alternative service
compositions can be created, a selection phase takes place
after the composition phase. In this phase the user service
request, his preferences and possibly his context are used to
select the most appropriate service composition. Afterwards
the selected service composition is transformed into an
executable format, e.g., BPEL, and deployed in an execution
engine, so it can be executed to deliver the requested service
to the user.
Service clients use the Client Interface component to

submit their goals to the platform. These goals can be
defined either by choosing and customizing goals previously
defined in the domain specifications or by creating new
goals. New goals are specified in terms of situations that
can satisfy the goals, i.e., the service client defines the
parameters configuring a situation that fulfills his goal. For
instance, in a Smart Home domain, a householder (a service
client in this domain) has the goal of having ambient comfort
customized to his preferences. In this example, the house-
holder can submit his goal to the platform by specifying a
situation where the lights are adjusted to his favorite color
and intensity, and the temperature is set to 22 degrees Celsius
whenever he enters a room of his house. Figure 8 depicts
an example of the goal selection and customization GUI.

Home security

Health

Ambient comfort

Light intensity

Light color

22Temperature

light yellow

Adjust when in a room

Figure 8. Goal selection and customization

V. EXAMPLE SCENARIO

In this section we present an example scenario using GSF
in the area of Home Health Care aiming at illustrating the
feasibility and applicability of our approach. In this example
we model the domain using GSO/GSM. The scenario is
described as follows:
“John is a remote patient that receives health treatment

at home. His house is equipped with several sensors that
provide contextual information about his health condition
such as weight, heart beat rate, blood pressure and glucose
level. Moreover, movement sensors allow the determination
of the householders’ location and to assess whether their
are in a responsive condition or not (e.g., asleep, fainted,
etc). The main goal of John is to remain healthy. The house
is equipped with the Context-Aware Service Platform, the
Home Health domain has been specified and this domain
specification is available to the platform. Several health-
related services are available to the platform.”
Figure 9 shows a fragment of the Home Health care

domain specification. In this figure a Remote Patient which
is a type of service client owns the two goals Have
Medical Attention and Keep Remote Patient Healthy. The
Have Medical Attention goal is supported by two tasks,
namely, Calls Doctor and Calls Ambulance. Here we have
an example of a goal being supported by two distinct tasks.
The Keep Healthy goal is supported by the Monitors Health
Condition complex task. This complex task is composed by
the sub-tasksMonitors Blood Pressure, Monitors Weight and
Monitors Heart Beat.
Figure 10 shows an UML object model of the instantia-

tion of our illustrative domain specification. In this object
model, John becomes a Remote Patient (a type of ser-
vice client) when he pursues the fulfillments of his goals
through services. Since Keep Remote Patient Healthy is a
proposition, we have that Keep John Healthy represents a
binding between an instance of Remote Patient and a generic

<<Goal>>
Keep Remote Patient Healthy

<<ComplexTask>>
Monitors Health Condition

<<supports>>
supports1

<<ServiceClient>
RemotePatient

<<owns>>
owns1

<<AtomicTask>
MonitorsBloodPressure

<<AtomicTask>
MonitorsWeight

<<AtomicTask>
MonitorsHeartBeat

<<Task>
Calls Doctor

<<Task>
Calls Ambulance

<<Goal>>
Have Medical Attention

<<owns>>
owns2

<<supports>>
supports2

<<supports>>
supports3

<<sub-task>>
sub-task1

<<sub-task>>
sub-task2

<<sub-task>>
sub-task3

Figure 9. Domain specification fragment

John: RemotePatient
KeepJohnHealthy:

KeepHealthy

MonitorsHeartBeatInst:
MonitorsHeartBeat

owns1

MonitorsHealthConditionInst:
MonitorsHealthCondition

supports1

MonitorsWeightInst:
MonitorsWeight

MonitorsBloodPressureInst:
MonitorsBloodPressure

subtask1 subtask2 subtask3

HeartBeatMonitoringSrvInst:
HeartBeatMonitoringSrv

WeightMonitoringSrvInst:
WeightMonitoringSrv

performs2performs1

BloodPressureMonitoringSrvInst:
BloodPressureMonitoringSrv

performs3

Figure 10. John’s instance model

proposition. However, for the sake of simplicity, we use a
uniform representation for genuine instantiation and instance
binding in a generic proposition.
Having John’s goal, the GSF’s Context-Aware Service

Platform searches for instances of tasks that support John’s
goal Keep John Healthy. The supporting platform found
that the complex task instance Monitors Health Condition
Inst and its sub–classes Monitors Weight Inst, Monitors
Blood Pressure Inst and Monitors Heart Beat Inst support
John’s goal. Having found the supporting tasks, the platform
proceeds to search for services performing these tasks. In
Figure 10 the platform found the services Weight Moni-
toring Srv, Blood Pressure Monitoring Srv and Heart Beat
Monitoring Srv that perform the tasks Monitors Weight Inst,
Monitors Blood Pressure Inst and Monitors Heart Beat Inst,
respectively.
The Context-Aware Service Platform, acting on behalf

of the service client negotiates a service agreement. In
this example, this agreement stipulates the frequency of
the monitoring activities and the threshold for emergency
warnings in the case of abnormal health indicators’ values,
e.g., a blood pressure measurement above 200/160 or below
90/40.

VI. CONCLUSIONS AND FUTURE WORK

This paper presented the Goal-Based Service Ontology
that aims at providing the means for domain specialists de-
fine domain models. GSO is part of a framework (the Goal-
Based Service Framework) for goal-based dynamic service
discovery and composition. This framework is primarily

target on application on scenarios where the service clients
are end-users without technological training and scenarios
where the service clients require reduced interaction with
the services. For this purpose we propose the use of goal
to express the service clients’ requirements and the use of
context-awareness to gather information to be used as inputs
for the services. In this manner the service clients have a
higher level of abstraction way of expressing what they want
to be accomplished by the services (by using goals) and a
reduced need to interact with the services (by using context
information).
Moreover, we presented and discussed the ontological

foundations of the main terms defined in the framework,
i.e., goal, task, service client, service provider and service
platform. This ontological foundation provides a solid under-
lying conceptualization and supports the semantic definition
of the terms used throughout our framework.
The framework assumes the previous existence of domain

and task ontologies defined by domain specialists. This
assumption makes the framework suitable for environments
where the domain is clear and well known. Examples of suit-
able domains for our framework are Ambient Intelligence
(AmI), health care and mobile pervasive applications where
users are not able to interact often with the computational
devices. Additionally, the CA Service Platform has been
presented together with an overview of the service discovery
and composition algorithm. An example scenario has been
discussed to illustrate the usage of the framework and the
feasibility of the approach.
Currently, the first version of GSO/GSM has been de-

signed together with the Home Health Care domain speci-
fication. Also, a prototype of the platform has been imple-
mented and tested with a limited amount of services and
concepts of the ontologies.
As future work we have: (i) definition of techniques,

guidelines and tool support for client’s goal specification
and domain specification based on GSO; (ii) use of model
transformation techniques for automatic transformation of
goals and tasks models into service requests; (iii) definition
of more domain specifications to assess the appropriate-
ness of GSO in more domains; (iv) test the platform with
more complex domains and larger amount of services; (iv)
definition of evaluation criteria for the framework and; (v)
comprehensive evaluation of the framework based on the
defined criteria.

ACKNOWLEDGMENT

The present work is partly funded by the Freeband
Communication project A-Muse (http://a-muse.freeband.nl),
sponsored by the Dutch government under contract BSIK
03025 and by a CNPq (Brazilian National Research Council)
Productivity Grant (second author).

REFERENCES

[1] J. de Bruijn, C. Bussler, J. Domingue, D. Fensel,
M. Hepp, M. Kifer, B. König-Ries, J. Kopecky, R. Lara,
E. Oren, A. Polleres, J. Scicluna, and M. Stollberg, “Web
service modeling ontology (wsmo),” October 2006. [Online].
Available: http://www.wsmo.org/TR/d2/v1.3/20061021/

[2] D. Martin, M. Burstein, J. H. O. Lassila, D. McDermott,
S. McIlraith, S. Narayanan, M. Paolucci, B. Parsia, T. Payne,
E. Sirin, N. Srinivasan, and K. Sycara. (2004, November)
Owl-s: Semantic markup for web services. W3C. [Online].
Available: http://www.w3.org/Submission/OWL-S/

[3] “Service-oriented architecture ontology,” The Open
Group, http://www.opengroup.org/projects/soa-
ontology/uploads/40/16940/soa-ontology-200-draft.pdf,
Draft Technical Standard 2.0, July 2008.

[4] M. Vukovic and P. Robinson, “Goalmorph: Partial goal sat-
isfaction for flexible service composition,” in Proc. Interna-
tional Conference on Next Generation Web Services Practices
NWeSP 2005, 22–26 Aug. 2005, p. 6pp.

[5] K. Zhang, Q. Li, and Q. Sui, “A goal-driven approach
of service composition for pervasive computing,” in Proc.
1st International Symposium on Pervasive Computing and
Applications, 3–5 Aug. 2006, pp. 593–598.

[6] G. Guizzardi, “Ontological foundations for structural concep-
tual models,” Ph.D. dissertation, University of Twente, 2005.

[7] L. Schneider, “Designing foundational ontologies: the
object-centered highlevel reference ontology ochre as
a case study,” in in Conceptual Modeling – 2003,
22nd International Conference on Conceptual Modeling,
I.-Y, ser. Lecture Notes in Computer Science, I.-
Y. Song, S. Liddle, T. Ling, and P. Scheuermann,
Eds., vol. 2813/2003. Springer Berlin / Heidelberg,
October 14 2003, pp. 91–104. [Online]. Available:
http://www.springerlink.com/content/5x3x7twxgkb5q03d

[8] S. Russel and P. Norvig, Artificial Intelligence: A Modern
Approach, 2nd ed. Prentice Hall, 2002.

[9] M. N. Moghadasi, A. T. Haghighat, and S. S. Ghidary,
“Evaluating markov decision process as a model for decision
making under uncertainty environment,” in Proceedings of
the 2007 International Conference on Machine Learning and
Cybernetics, vol. vol. 5, 19-22 Aug 2007, pp. p.p. 2446–2450.

[10] J. S. Rosenschein and G. Zlotkin, Rules of Encounter:
Designing Conventions for Automated Negotiation among
Computers, ser. Artificial Intelligence series. MIT Press,
July 1994.

[11] G. Guizzardi, R. Falbo, and R. S. S. Guizzardi, “Grounding
software domain ontologies in the unified foundational ontol-
ogy (ufo): The case of the ode software process ontology,” in
1th Iberoamerican Workshop on Requirements Engineering
and Software Environments (IDEAS’2008), Recife, Brazil,
2008.

[12] P. Bresciani, P. Giorgini, F. Giunchiglia, J. Mylopoulos, and
A. Perini, “Tropos: An agent-oriented software development
methodology,” Autonomous Agents and Multi-Agent Systems,
vol. 8, no. 3, pp. 203–236, 2004. [Online]. Available:
http://citeseer.ist.psu.edu/bresciani02tropos.html

[13] R. Ferrario and N. Guarino, “Towards an ontological founda-
tions for services science,” in Proceedings of Future Internet
Symposium 2008, D. Fensel and P. Traverso, Eds. Springer
Verlag, 2008.

[14] R. F. Lusch and S. L. Vargo, The service-dominant
logic of marketing: dialog, debate, and directions.
Armonk, N.Y.: M.E. Sharpe, 2006. [Online]. Available:
http://www.loc.gov/catdir/toc/ecip0518/2005024992.html

[15] R. Silva Souza Guizzardi, “Agent-oriented constructivist
knowledge management,” Ph.D. dissertation, University of
Twente, February 2006.

[16] R. S. S. Guizzardi, P. G. Ludermir, and D. Sona, Agent and
Web Service Technologies in Virtual Enterprises. Idea Group
Publishing, July 2007, ch. A Recommender Agent to Support
Knowledge Sharing in Virtual Enterprises, pp. 115–134.

[17] E. Silva, J. Martinez Lopez, L. Ferreira Pires, and M. van
Sinderen, “Defining and prototyping a life-cycle for dynamic
service composition,” in Proceedings of the 2nd International
Workshop on Architectures, Concepts and Technologies for
Service Oriented Computing (ACT4SOC 2008), July 2008.

