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Abstract

The main research question in this paper is whether the installation rate of solar PV tech-
nology is affected by social spillovers from spatially close households. The installed base,
defined as the cumulative number of solar PV installations within a neighbourhood by the
end of a particular month, serves as a measure for the social effects of interest. Motivated
by the technology-specific time lag between the decision to adopt a solar PV panel and the
completion of the installation, the third lag of the installed base serves as main regressor of
interest in the panel data model employed. The results suggest small, but positive and sig-
nificant social effects that can be exploited to promote adoption: at the average installation
rate of 7 installations per 10,000 owner-occupied households, one more solar PV panel in the
postcode district increases the installation rate three months later by one percent. At the
average number of 6,629 owner-occupied households within a postcode district, this implies
an increase in the number of new installations in the neighbourhood by 0.005. Projects
involving a high number of installations could hence promote diffusion. A major limitation
of the model is that social spillovers are assumed to spread within defined neighbourhoods,
only. Spatial econometric methods could allow for social effects across these borders.
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1 INTRODUCTION

1 Introduction

The determinants of new technology adoption have been addressed in the economic literature
for several decades. Among others, they matter for the design of policies to promote the ex-
pansion of the respective new markets. A recent example is the market for micro-generation
technologies that can be installed by households, communities and small commercial sites.
The installed capacity of those small-scale installations goes up to 50kW for electricity and
300kWth for heat generation (The Green Energy Act 2009). In a context of the EU target to
increase the share of renewable electricity generation beyond 15 percent by 2020 and given
the legally binding domestic energy policy goals to decrease national carbon emissions by 80
percent by 2050 compared to 1990, the UK government intends to encourage households to
adopt micro-generation technologies and produce their own low-carbon electricity. But not
only for policy design, also for economic and business reasons, the analysis of the diffusion of
micro-generation technologies is particularly interesting: decentralised electricity generation
has the potential to change the (energy) consumer - producer relationship, to alter the eco-
nomic relations between customers and energy suppliers and to lead to new ownership and
energy business models (Snape and Rynikiewicz, 2012, Watson and Devine-Wright, 2011).

So far, feed-in-tariffs (FiT) are the major instrument to promote adoption of small-scale
electricity generation. In the UK they have been paid since April 2010 to mitigate the
relatively high costs and uncertainties of solar PV, wind, hydro and anaerobic digestion
technology. The FiT is paid for each kWh of electricity generated and the rate paid depends
on the size of the system, the technology and the date of completion of the installation1. In
addition, there is an export tariff that is paid if the micro-generated electricity is exported
to the grid.

This paper focuses on solar PV technology. Firstly, because it a single technology rather
than the choice between different technologies is of interest. Secondly, because solar PV
technology is the most established micro-generation technology in the UK.2 However, as the
government’s 2015 Micro-generation Strategy claims, financial incentives are not enough to
guarantee sustained growth of micro-generation technologies. There are major non-financial
barriers to be addressed (e.g. related to insurance and warranties or skills and knowledge).
Besides those barriers, non-financial drivers of growth should be in focus and exploited
in future policy and market strategy design towards a low-carbon decentralized electricity
system. In particular, social effects from others might impact the adoption decision and hence
drive diffusion. As suggested by Weber and Rode (2012), solar PV panel installations in a
neighbourhood are visible for passers-by, reducing uncertainty surrounding this technology.
Observational learning from spatially close households might thus lead to a correlation of
adoption decisions within neighbourhoods. If the adoption behaviour of others significantly
affects the adoption of solar PV technology, targeted interventions could serve as attention
catching projects that, if placed in the key areas, could promote diffusion effectively and at
lower cost than FiT.

The main research question in this paper therefore is, whether the installation rate of
solar PV technology is affected by social effects as measured by the installed base in the
immediate local environment. The installed base thereby refers to the cumulative number of

1The completion date is crucial for the determination of the FiT. The FiT valid at the installation date
is paid for 20 years.

2By March 2013, 98.55 percent of all micro-generation installations were solar PV systems. Wind con-
tributed only 1.22 percent and anaerobic digestion and hydro even smaller shares of 0.01 and 0.11 percent.
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1 INTRODUCTION

solar PV installations within a neighbourhood the end of a particular month and serves as a
measure for social effects, such as observational learning, from spatially close households. The
analysis is based on installation data that has been collected by Ofgem since the introduction
of the FiT in April 2010. The main econometric panel data model specifies the postcode
district-month as the smallest unit of observation. Identification of the suggested social
effects within neighbourhoods is challenged by multiple endogeneity issues. To address these
and to consistently estimate the installed base effect as a measure of social effects from
spatially close households, the installation rate within a postcode district is modelled as
being affected by the installed base three months prior. This is motivated by the technology-
specific time lag between the decision to adopt a solar PV panel and the completion of the
installation. Besides the lagged installed base and month dummies, the main panel equation
includes time-varying fixed effects to account for potential self-selection into neighbourhoods
and for correlated unobservable neighbourhood characteristics that are constant within a
neighourhood but vary over time. A first difference estimation strategy then yields unbiased
and consistent estimates. Further model specifications allow for a time-varying installed base
effect and consider different lags of the installed base as well as different outcome variables
and different geographical areas for robustness. In a last specification differences of the social
effects across distinct groups of the population are analysed.

The paper contributes to previous literature in performing the first econometric analysis
of the diffusion of solar PV technology within the UK. In particular, it delivers empirical
evidence, in how far the adoption behaviour of others drives diffusion. The analysis is based
on a remarkably recent and granular solar PV installation dataset of the UK. The results
can be exploited for targeted marketing and resource allocations for the stimulation of future
adoption. Nevertheless, the analysis has its limitations. Firstly, social effects are assumed
to spread within neighbourhoods as defined by the neighbourhoods, only, while spillovers
across neighbourhood borders are ignored. Spatial econometric methods, for example, could
be employed to allow for more diverse spillover effects. However, it is a useful first highly
disaggregated approach to explore the impact of social effects on solar PV adoption, that can
be extended in future research. Another limitation is the aggregation to the neighbourhood
level. Future research should make use of household level covariate data to further analyse
the mechanisms underlying the adoption behaviour. In context of the National Energy
Efficiency Database (NEED) the Department for Energy and Climate Change (DECC) is
currently creating a database that matches the solar PV installation data with household
characteristics.

This paper is organised as follows. Section 2 reviews literature on solar PV technology
diffusion, on social effects in technology adoption and on social effects in the diffusion of solar
PV technology more specifically. Moreover, the installed base approach and its previous
applications and challenges are introduced. Section 3 specifies the econometric model and
justifies the third lag of the installed base as measure for social effects in solar PV technology
adoption. Section 4 presents endogeneity issues that can challenge the estimation of the social
effects as measured by the installed base and highlights the identification strategy exploited in
the paper. Section 5 introduces the estimation strategy and derives conditions for consistent
estimation of the social effects. Section 6 presents the data. The main results and the results
of several robustness checks are presented in section 7 and section 8, respectively. To get an
idea to what extent social effects vary across postcode district characteristics, the impact of
contextual factors on social effects is considered in section 9. Finally, section 10 points out
the major limitations of the analysis and section 11 concludes.
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2 LITERATURE REVIEW

2 Literature Review

2.1 Diffusion of Solar PV Technology

The determinants and dynamics of technology adoption and diffusion have been addressed
in the economic literature for several decades. The diffusion of micro-generation technolo-
gies, solar photovoltaic (PV) technology more specifically, is of particular economic inter-
est. Micro-generation technologies have the potential to change the energy consumer - pro-
ducer relationship, to alter the economic relations between customers and energy suppliers
and to lead to new ownership and energy business models (Snape and Rynikiewicz, 2012,
Rynikiewicz, 2010, Watson and Devine-Wright, 2011).

So far, micro-generation technologies have been growing mainly in countries that provide
financial incentives to encourage installation and to achieve the required economies of scale
to compete with traditional electricity generation technologies. According to the Interna-
tional Energy Agency (IEA), in 2012 the five countries with the highest installed capacity of
solar PV technology worldwide were Germany (32,411 MW), Italy (16,250 MW), USA (7,221
MW), Japan and China (both 7,000 MW). In all these countries, the governments provide
financial incentives for adoption. As a matter of fact the existing literature on the diffusion
of solar PV technology mainly examines the effect of subsidy policies and cost reductions
and consistently finds a significant positive impact. Early studies tend to use aggregate data
and to pursue cross-country comparisons. Beise (2004), for example, analyses whether PV
technology diffuses across countries by exploiting a panel dataset covering 13 countries (1992-
2002). He finds that government interventions have a significant positive impact on diffusion
within countries. For sustainable international success of solar PV, however, he suggests
that it would be essential to demonstrate that the adoption of PV systems is continuing
without subsidies. Comparably, Guidolin and Mortarino (2010) provide insights on adop-
tion dynamics of solar PV technology in various countries. They perform a cross-country
analysis using panel data covering 11 countries over the period from 1992 through 2006.
They find, too, that government policy incentives promote solar PV technology diffusion.
Wüstenhagen (2006) addresses the impact of government policies on the renewable energy
market in Germany and concludes that the high adoption rates of solar PV systems were
primarily driven by the implementation of public policies, most significantly by the feed-in-
tariff (FiT). Zhang et al. (2011) are among the first to use more highly disaggregated data:
they analyse regional differences in solar PV technology diffusion using panel data on 47
Japanese prefectures from 1996 to 2006. Their results suggest that adoption rates are pos-
itively influenced by regional government policies and negatively influenced by installation
costs. They particularly emphasize the importance of regional diffusion policies that reflect
the residents′ degree of environmental awareness.

While cost reductions and subsidy policies have thus consistently been found to be critical
for the diffusion of solar PV technology, research on the role of further, non-financial barriers
(such as insurance and warranty issues) and non-financial drivers (such as social effects,
supply-side customer service programmes or a structural awareness change) is still scarce.
This paper focuses on the role of social effects such as observational learning from the
adoption behaviour of others, as one potential further driver of adoption and diffusion of
solar PV technology.

3



2 LITERATURE REVIEW

2.2 Social Effects in Technology Diffusion

The idea of social effects is consistent with classical models of technology diffusion. There
are several reasons why agents might care about the adoption behaviour of others. Agents
might have social preferences (i.e. others′ utility directly affects their utility), there may be
word-of-mouth effects (i.e. feedback from others affects beliefs directly) or network effects
(i.e. adoption by others affects the users′ valuations of the product) (e.g. Narayanan and
Nair, 2011). Moreover, there might be observational learning from peers (i.e. learning upon
the observation of others’ decisions and outcomes as suggested by Snape and Rynikiewicz
(2010)).

Due to limited data availability it is often hard to pin down the precise channel of so-
cial spillovers, but multiple economic models of social effects are consistent with the idea
of observational learning. In particular, Rogers’ traditional theory of ’Diffusion of Innova-
tions’ (1962) considers observability as one of five major influential factors of an individual′s
decision to adopt. He argues that an innovation that is more visible will enhance communi-
cation among the individuals peers and personal networks and will in turn create positive or
negative social multipliers (Rogers, 1962). According to this theory, segments of potential
adopters have different attitudes towards the innovation and hence adopt at different points
in time, which is consistent with the empirical fact that many diffusion processes over time
can be described as an S-curve (increasing diffusion rate to start with, then decreasing diffu-
sion rate due to satiation over time). In Rogers’ model observational learning is of relatively
minor importance for the rather risk-loving, early adopters, while it matters more for the
technology adoption of the more risk-averse, late adopters.

Another example for a model of technology adoption that is consistent with observational
learning is Rasul′s (2002) model of social learning. In contrast to previous models, in which
social learning takes place only after the new technology has been adopted, Rasul′s model
allows social learning to lead to a correlation of the initial adoption decisions within social
networks. Rasul′s model is applicable to any situation in which a lack of information is a
barrier to adoption and potential adopters can communicate with, or observe each other. In
his empirical application, Rasul estimates farmers’ propensity to adopt as a function of the
number of adopters among family and friends. The results suggest that social network effects
are increasing when the number of adopters is low, only to fall when this number reaches a
certain level. On top of this, Rasul finds that social effects are heterogeneous. They depend
on the farmers’ characteristics and on the definition of the reference group. In particular, the
social effects differ depending on whether the reference group is defined in a social, cultural
or a geographical sense. Although the study does not distinguish between social learning and
other causes of social effects (e.g. marketing externalities), it distinguishes between causal
social effects and contextual effects as sources of spurious correlation. This distinction is
important from a policy perspective: while social effects lead to a social multiplier, contextual
effects do not.

In multiple models the existing stock of a technology within a reference group thus plays
a crucial role for diffusion. The so-called ‘installed base’ of the technology in question is
frequently used as a measure for social effects: the installed base refers the cumulative
number of solar PV systems within a defined reference group at a specific point in time and
arguably impacts the adoption behaviour of others within this group. This installed base
approach, though frequently used in the existing literature, has recently been criticised by
Narayanan and Nair (2011). They show that in the presence of endogenous group formation
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2 LITERATURE REVIEW

and correlated unobservables the traditional within estimator in combination with the first
lag of the installed base leads to biased and inconsistent estimates of the installed base
effect. They present two approaches to address the endogeneity: an instrumental variable
(IV) approach and a bias correction approach.3 They apply their theory to the adoption of
the Toyota Prius Hybrid car in California using individual vehicle registrations from 2001
through 2007 and find that a one percent increase in the installed base of the Prius Hybrid
in the zip code area of an individual increases the installation rate of a purchase significantly
by 5.3 percent.

2.3 Social Effects in Solar PV Diffusion

As mentioned above, in context of micro-generation technologies, research addressing drivers
of diffusion other than subsidies and cost-reductions is still scarce. This paper therefore
focuses on social effects such as observational learning from the adoption behaviour of others,
as one potential further driver of adoption and diffusion of solar PV technology. To the best
of the author′s knowledge, two main studies have previously addressed this issue: Bollinger
and Gillingham (2012) estimate peer effects in the diffusion of residential solar PV systems
in California and Weber and Rode (2012) analyse information and knowledge spillovers in
the diffusion of solar PV technology in Germany. Both papers use the installed base as a
measure for social spillovers: Bollinger and Gillingham (2012) model the propensity of solar
PV technology adoption in a Californian zip code as a function of the installed base in that
zip code, i.e. the number of panels that have already been installed. They work with a sample
of 80,046 residential solar PV installations that were requested in the period from 2001 to
2011 within three investor-owned utility regions in California. Within this framework, their
identifying assumption is that social interactions do not have an effect until the solar PV
installations have actually been completed. I.e. the time lag between adoption decision and
the beginning of the social spillovers is crucial in their model. They find that peer effects
are increasing in magnitude over time, are greater for larger installations and on a more
localized level. They infer that visibility of the panels and word-of-mouth contribute to
social interactions and lead to further adoptions. Their results suggest that at the average
number of owner-occupied homes in a zip code, a marginal solar power installation increases
the installation rate in that zip code by 0.78 percentage points. Weber and Rode (2011) also
find support for the argument of social effects in the adoption of solar PV technology. They
establish an epidemic diffusion model that includes a spatial dimension and test whether
localized imitation drives the adoption of solar PV technology. They argue that solar PV
systems are easily visible to passers-by and that learning is possible without direct social
interaction. As such, they assume information flows between spatially close neighbours and
find that imitative adoption behaviour is highly localized and plays a significant role in the
diffusion of solar PV technology.

Even if previous studies suggest the existence of social effects in solar PV technology
adoption, further empirical evidence is needed. In particular, analyses should be based on
more granular data and should be pursued for different countries.

3They solve for the bias as a function of the variance of the errors and the variance of the installed base,
but a disadvantage of their analysis is that the bias adjustment requires no autocorrelation in the errors.
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3 Econometric Model

Consider the following linear dynamic panel model to analyse the impact of social effects on
the adoption and diffusion of solar PV installation.

yzt = αt + β · bzt−3 + αzq + εzt︸ ︷︷ ︸
uztq

(1)

where bzt−3 =
t−3∑
τ=1

Yzτ∀z, t (2)

The model features three dimensions: firstly, there are the neighbourhoods z in the cross-
section dimension. These are geographically defined neighbourhoods, as solar PV systems
are visible to passers-by and learning is possible for anyone spatially close. By defining the
reference groups in a geographical sense rather than on the basis of family or friends, the
social effects identified are consistent with the idea of observing solar PV installations of
spatially close households. Secondly, there are the months t in a first time-dimension and
thirdly the quarters q in a second time-dimension. The months t = 1, 2, 3 pertain to quarter
q = 1, the months t = 4, 5, 6 to q = 2 and so forth.

The outcome variable yzt is an aggregation of individual choices. It is defined as the
number of new solar PV installations Yzt per owner-occupied household within a neighbour-

hood z in month t, yzt =
Yzt
Nzt

and measures the degree of adoption and diffusion of solar

PV technology. This installation rate as a measure of diffusion is preferred over a count
variable Yzt, as the number and the tenure type of households within a neighbourhood might
vary considerably across neighbourhoods and a positive correlation between the number of
owner-occupied households and the number of installations within a neighbourhood is likely.
Dividing the count variable Yzt by the respective number of owner-occupied households in
the neighbourhood, Nzt, can control for this variation. yzt is hence fractional, yzt ∈ [0, 1] and
in the given application of solar PV technology likely to be very small.

For the normalisation the number of owner-occupied households is preferred over the
total number of households in the neighbourhood, as the decision to install solar PV is likely
to be made by households that own their property rather than by households that rent it.
Even if tenants can benefit from the installed solar PV panels as well (e.g. they get some
electricity for free), it is the landlord who receives the FiT and who decides whether to install
a panel.4

Let Yzt count the number of new installations in neighbourhood z in month t. Equation
2 defines the third lag of the installed base, bzt−3, as the cumulative number of solar PV
installations within a neighbourhood z by the end of time period t−3. The (lagged) installed
base of domestic solar PV panels within a neighbourhood is used as a measure of social
effects within this neighbourhood: installed solar PV systems are visible for passers-by and
reduce uncertainty regarding the technology. Via the installed base, social effects such as
observational learning can thus impact the adoption behaviour within the neighbourhood.
The model uses the third lag of the installed base to capture the technology specific time
lag between the decision to adopt a solar PV panel and the completion of the installation:
according to quotas of the main solar PV suppliers in the UK, the lead time between the

4The number of tenants inducing their landlords to install solar PV is assumed negligible.
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3 ECONOMETRIC MODEL

first contact with the supplier (which can be seen as a measure of a household′s decision to
adopt) and the completion of the installation usually lies between two and three months.
Hence, the inclusion of the third lag of the installed base, bzt−3 =

∑t−3
τ=1 Yzt, is justified. All

adoptions of solar PV panels up to t− 3, i.e. Yzt−τ∀τ ≥ 3 thus enter the right hand side of
the equation. The parameter of interest is β.

Apart from the installed base no further regressors are explicitly included in the equa-
tion. Instead, the right hand side of equation 1 includes three kinds of unobserved variables
to capture the factors impacting the adoption rate within a neighbourhood, including in
particular those characteristics that are correlated with the installed base. There are two
types of fixed effects, αt and αqz, and there is an unobservable error term εzt:

The αt are 35 month dummies5, capturing month specific effects that are constant across
neighbourhoods and could confound the estimation of the social effects. An example for
such month-specific effects are nationwide policy announcements regarding the FiT. Histor-
ically, announcements to decrease the FiT have often been correlated with higher numbers
of adoptions right before and with a lower number of adoptions after the effectivity date of
the policy. Such events should be controlled for.

Compared to a standard panel model that includes time-constant fixed effects, αz, to con-
trol for unobserved heterogeneity on the neighbourhood level, equation 1 is more general:6

the model is specified with time-varying fixed effects. However, since the installed base bzt−3

is defined on the neighbourhood-month level, i.e. is by definition the same for all households
within neighbourhood in a particular month, a specification with neighbourhood-month ef-
fects, αzt, is not feasible - these would be perfectly collinear with the installed base and hence
prohibit identification of the installed base effect β. Neighbourhood-quarter effects, αzq, on
the other hand, avoid this collinearity problem and allow to control for neighbourhood char-
acteristics that are constant within a neighbourhood and a quarter, but vary over time, i.e.
across quarters. Those fixed effects control for time-varying neighbourhood specific charac-
teristics that are relevant for the installation rate in the neighbourhood. In particular they
control for factors that are correlated with the lagged installed base in the neighbourhood
and with the outcome variable yzt. Those factors, if omitted from the equation, would lead to
omitted variable bias of the installed base effect β. The neighbourhood-quarter effects could
capture time and location-specific activities such as advertising or marketing campaigns.
Changes of neighbourhood characteristics within a quarter are assumed to be negligible in
the sense that existing variations do not significantly impact the decision to install solar
PV. As an example, marginal changes in average income within a neighbourhood-quarter
are assumed to be negligible for the installation rate, since the decision to invest in a solar
PV panel is rather a question of accumulated capital than of marginally higher income.

Finally, εzt is an i.i.d. unobserved error term that captures random neighbourhood and
month specific effects. In particular E(bzt−3εzt) = 0

5April 2010 being the reference category
6The model has also been specified with time-constant fixed-effects, αz, only. The results are consistent

with the theory of OVB and can be found in the Appendix.
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4 Endogeneity and Identification

The econometric panel model relies on the third lag of the installed base, bzt−3, to measure
social effects within geographically defined neighbourhoods. The large number of fixed effects
controls for observable and unobservable characteristics that could confound the estimation.

First of all, there might be self-selection into neighbourhoods. This problem has its
origins on the household level, but implies non-randomness on the neighbourhood level as
well: if factors driving households to live in a specific neighbourhood are also correlated
with the adoption rate, yzt, spurious correlation results. For example, energy conscious
households might prefer to live in ‘green’, environmentally friendly neighbourhoods and this
unobserved preference might also make them behave similarly regarding the adoption of
solar PV technology. If so, an observed correlation of the installed base with the adoption
decisions within the neighbourhood can be misleading. On the neighbourhood level this
self-selection into neighbourhoods implies that c.p. a higher share of households with ‘green’
preferences lives in the same neighbourhood: pronounced ‘green’, environmental awareness
within the neighbourhoods might increase the installed base and the adoption rate within
the neighbourhood. Hence, some of the observed correlation between installed base and
adoption rate is likely to be spurious, resulting from the correlation of unobserved tastes
with the adoption rate rather than from social effects.

Secondly, unobservable neighbourhood characteristics, such as solar PV supplier activities
or local advertising campaigns, can result in a correlation of adoption behaviour within the
neighbourhoods and lead to spatial clustering, i.e. to spurious correlation of the installed-
base with the adoption rate.

Manski′s (1993) well-known ‘reflection problem’ on the other hand is not a problem
in the case of solar PV technology. The reflection problem refers to a phenomenon that
frequently challenges the identification of social effects. It occurs if an individual′s adoption
decision depends on the behaviour of others within her reference group and simultaneously
impacts the adoption decisions of the others in that group. In case of solar PV technology
adoption, this characteristic simultaneity is not a problem: the decision to adopt takes place
on average three months before the completion of the solar PV system. Households installing
solar PV panels in month t made their decision to adopt three months prior and it was the
installed base in month t − 3, bzt−3, that affected their behaviour. The lag implies that a
household′s decision to adopt solar PV technology might be impacted by the installed base
in her neighbourhood, but social effects can only impact others once the panel is installed
(i.e. approximately 3 months later).

Summing up, the technology specific time-lag between the decision to adopt a solar
PV panel and the completion of the installation is crucial for identification and consistent
estimation of the installed base effect. While the reflection problem is not an issue in the
application of solar PV technology, self-selection and correlated unobservables are likely to
be problematic and must be considered for identification and consistent estimation of the
social effects.
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5 Estimation Strategy

5.1 Pooled OLS Estimation

Consider equation 1. To consistently estimate the installed base effect, β, by pooled OLS
(POLS), the following contemporaneous exogeneity assumption would need to hold:

E(bzt−3uztq) = 0 ∀z, t, q (3)

As ε is i.i.d by assumption, this implies in particular that:

E(bzt−3αzq) = 0 ∀z, t, q (4)

As equation 4 states, for consistent estimation all neighbourhood-quarter specific character-
istics, αzq, must be uncorrelated with the installed base. This condition is unlikely to hold:
firstly, because the model omits all neighbourhood characteristics apart from the installed
base and controls for them with the αzq. There are almost surely neighbourhood character-
istics that are correlated with both, the dependent variable and the included installed base -
omitting them would lead to omitted variable bias (OVB). Secondly, there are diverse endo-
geneity concerns, such as self-selection and correlated unobservables, that would justify the
inclusion of fixed effects even if all relevant observable neighbourhood characteristics were
included. It is therefore likely that there exist observable and unobservable neighbourhood
and neighbourhood time specific characteristics that are correlated with the installed base
and the installation rate. This can be summarized as follows:

∃ αzq s.t. E(bzt−3αzq) 6= 0 ∩ E(yztαzq) 6= 0

If so, then the exogeneity condition in 3 breaks down and POLS results in biased and
inconsistent estimates of the installed base effect, β.

5.2 Within-Group Estimator

Since equation 1 includes neighbourhood-quarter effects αziq, mean differencing must be
performed on the neighbourhood-quarter level to eliminate these effects and estimate the
equation by a within-group estimator. More precisely, these are the means taken over all
observations of αt, yzt, bzt−3 and εzt within reference group z and quarter q. Let αq, yzq, bz3q
and εzq be the neighbourhood-quarter means of the time-dummies, the installation rate, the
lagged installed base and the idiosyncratic error, respectively. For example, bz3q is the mean
of the third lag of the installed base, taken over the three months that pertain to quarter q
of month t. Mean differencing on the neighbourhood-quarter level then yields:

(yzt − yzq) = (αt − αq) + β · (bzt−3 − bz3q) + (εzt − εzq) (5)

The resulting within-group estimator is given by:

β̂WG =

∑
z(

˜bzt−3 − bz3q)(yzt − yzq)∑
z(

˜bzt−3 − bz3q)2

(6)
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Where ( ˜bzt−3 − bz3q) is the residual from a regression of the mean-differenced installed base
on the mean-differenced time-dummies. Further, substituting in the equation for yzt and
rearranging yields:

(β̂WG − β) =

∑
z(

˜bzt−3 − bz3q)(εzt − εzq)∑
z(

˜bzt−3 − bz3q)2

(7)

It follows by the Slutsky Theorem, the Continuous Mapping Theorem and the Weak Law of
Large Numbers that:

lim
Z→∞

(β̂WG − β) =
E[( ˜bzt−3 − bz3q)(εzt − εzq)]

E[( ˜bzt−3 − bz3q)2]
=
A

B
(8)

Where Z refers to the number of neighbourhoods. Since the denominator B is non-zero
by assumption, the nominator A must be considered carefully. In contrast to the case
illustrated by Narayanan and Nair (2011) that is based on the first lag of the installed
base, the neighbourhood-quarter mean of the installed base bz3q includes future and past
observations of adoptions within quarter q− 1. On the contrary, the neighbourhood-quarter
mean of the errors εzq includes all future and past errors within quarter q.

lim
Z→∞

(β̂WG − β) =
E[bzt−3εzt]− E[bz3qεzt]− E[bzt−3εzq] + E[bz3qεzq]

E[(bzt−3 − bz3q)2]
=
A

B
= 0 (9)

Multiplying out equation 8 yields equation 9, which allows to consider the terms in the
nominator A separately. limZ→∞E[bzt−3εzt] = 0 as bzt−3 is by construction correlated with
all previous εzt−l∀l ≥ 3: all previous installations Yzt−l∀l ≥ 3 enter bzt−3. However, bzt−3 is
uncorrelated with all future errors, as εzt is i.i.d by assumption. Further, the second term,
limZ→∞E[bz3qεzt] = 0. This is because the considered lag length is l = 3 and in all three
months of quarter q the observations entering bz3q thus lie in quarter q− 1, while εzt lie in q.
All observations of the installed base that enter bz3q are uncorrelated with the error terms in
quarter q. In month 4, for example (pertaining to the first month in the second quarter), bz3q
is calculated as average of the third lag of the installed base in month 4, 5 and 6. All these
lags refer to the installed base in months 1, 2 and 3 respectively and hence lie in quarter 1.
The third term converges to zero as well, i.e. limZ→∞E[bzt−3εzq] = 0. This term consists of
the third lag of the installed base and the neighbourhood-quarter mean of the error. In all
3 months of a quarter q, bzt−3 lies in q − 1 while εzq is calculated based on errors in q and
all these errors are assumed to be uncorrelated with prior observations of the installed base.
Lastly, limZ→∞E[bz3qεzq] = 0. This term refers to the correlation of the neighbourhood
quarter mean of the lagged installed base with the neighbourhood quarter mean of the error
term. In all 3 month of any quarter q, bz3q is calculated based on observations in q − 1.

Overall, if there is no autocorrelation across quarters, the mean differenced lagged in-
stalled base, (bzt−3 − bz3q), is uncorrelated with the mean differenced error, (εzt − εzq), and
A converges to zero.7 More generally, as proven in the Appendix, for lags of a length
larger than 2, i.e. exceeding the length of a quarter, within-estimators aiming to eliminate
neighbourhood-quarter fixed effects, can yield consistent estimates.

7For the full proof of bias and inconsistency in case of the first lag of the installed base see Narayanan
and Nair (2011). They assume no autocorrelation of the error terms and suggest that the bias is negative.
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Proposition 1. For lags of the installed base that exceed the length of a quarter, i.e. lags
larger than 2, mean-differencing on the neighbourhood-quarter level eliminates the neighbour-
hood quarter effects and allows to consistently estimate the installed base effect by POLS on
the mean-differenced equation.

This contrasts with the model including the first lag of the installed base as considered
by Narayanan and Nair (2011). They formalise that in the presence of self-selection and
correlated unobservables, standard within-group estimators are biased and inconsistent, if
there are installed base effects. In their model this is due to the correlation of the mean
differenced installed base with the mean differenced errors, a problem relating closely to
standard random or fixed effects estimators in dynamic panels. Due to a correlation of
the transformed regressor(s) with the transformed errors, random effects GLS and fixed
effects estimators (within-group estimators and first difference estimators) are biased and
inconsistent. In dynamic panels, estimators as suggested by Anderson and Hsiao (1982) or
by Arellano and Bond (1991) are required.

For the within-group estimator presented above, the time-lag of three months is essential
for consistency. The estimator is not robust regarding the lag length of the installed base: for
a lag length of two, l = 2, for example, the estimator is inconsistent due to a correlation of
the mean-differenced installed base with the mean-differenced error. Hence, as consistency
of the within-group estimator is based on relatively demanding conditions, such as a lag
length of at least three months, this paper follows a first differencing estimation strategy
as proposed by Bollinger and Gillingham (2012). For both estimation strategies, however,
the natural time lag between adoption decision and installation is essential for identification
and consistent estimation of the social effects. The following section illustrates that given
the identification strategy above, the chosen first differencing strategy allows the consistent
estimation of the installed base effect for any lag length as long as certain conditions regarding
the autocorrelation ν of the error term are met.

5.3 First Difference Estimator

Comparable to the case of the within-group estimator, first differencing on the month level
does not fully eliminate the neighbourhood-quarter effects. Rather, first differencing of the
first month of a quarter yields a residual term of the size of the change of the neighbourhood-
quarter effects from one quarter to the next. To eliminate this residual and hence the
neighbourhood-quarter effects, the first month of each quarter is dropped after first differ-
encing (see Bollinger and Gillingham, 2012). This leads to equation 10 and POLS on the
differenced equation can follow.

(yzt − yzt−1) = (αt − αt−1) + β · (bzt−3 − bzt−4) + (εzt − εzt−1) (10)

∆yzt = ∆αt + β∆bzt−3 + ∆εzt (11)

The required exogeneity condition for consistent estimation of β is hence:

E(∆bt−3∆εzt) = 0 (12)

As ∆bzt−3 = ∆
∑t−3

τ=1 Yzt = (
∑t−3

τ=1 Yzt −
∑t−4

τ=1 Yzt) = Yzt−3, condition 12 can be written as:

E(Yzt−3∆εzt) = E(Yzt−3εzt)− E(Yzt−3εzt−1) = 0 (13)
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By construction of equation 1 Yzt−3 is not only correlated with its contemporaneous error
εzt−3, but also with all previous errors, i.e. E(Yzt−3εzt−τ ) 6= 0∀τ ≥ 3. However, if εzt−3 is
uncorrelated with εzt−1, i.e. if the order of autocorrelation of εzt, is smaller than 2 (ν < 2)
the consistency condition given in 12, holds.

Taking this to the example of solar PV technology adoption, the suggested first differenc-
ing estimation strategy thus yields consistent estimates, if the lead time between adoption
decision and installation is large enough. More specifically, given the natural time lag be-
tween adoption decision and installation of three months, the inclusion of the third lag of the
installed base allows for a first differencing estimation strategy that yields a consistent esti-
mate of the installed base effect, as long as the order of autocorrelation is smaller than 2, i.e.
ν < 2. This argument can be generalized: if the considered lag of the installed base is l, then
E(Yzt−lεzt−τ ) 6= 0∀τ ≥ l and consistent estimation is feasible as long as E(εzt−lεzt−1) = 0,
i.e. the order of autocorrelation ν of the error ε must be smaller than (t−1)− (t− l) = l−1.

Proposition 1. Let the lag of the installed base be l and let the order of autocorrelation of ε
be ν. Then, if ν + 1 < l, i.e. the order of autocorrelation ν is smaller than l − 1, consistent
estimation of the installed base effect is feasible.

5.3.1 Testing for Autocorrelation

The previous section established the condition for consistent estimation of the installed base
effect: when including the third lag of the installed base, bt−3, the order of serial correlation
of ε must be smaller than 2 (ν < 2). The tests for autocorrelation of ε are based on the first
differenced equation, as the errors uztq = αzq + εzt in the level equation 1 are by construction
serially correlated through the fixed-effects αzq. However, the errors ∆ε in the differenced
equation 10 are by construction serially correlated as well (εt−1 enters ∆εt as well as ∆εt−1),
which is why AR(2) of ∆εt is usually tested to make inference on AR(1) of εzt. Equation 14
illustrates that AR(1) of εzt can lead to AR(2) in ∆εzt, if E(εzt−1εzt−2) 6= 0.

E(∆εzt∆εzt−2) = E(εztεzt−2 − εztεzt−3 − εzt−1εzt−2︸ ︷︷ ︸
AR(1) of ε can lead to AR(2) in ∆ε

+εzt−1εzt−3) (14)

Hence, AR(2) of ∆ε does not necessarily, result from AR(2) of ε. On the other hand,
AR(3) in ∆ε must result from serial correlation of at least order 2, i.e. ν ≥ 2.

E(∆εzt∆εzt−3) = E(εztεzt−3 − εztεzt−4 − εzt−1εzt−3︸ ︷︷ ︸
AR(2) of ε can lead to AR(3) in ∆ε

+εzt−1εzt−4) (15)

Equation 15 illustrates that AR(2) of ε can lead to AR(3) in ∆ε, if E(εzt−1εzt−3) 6= 0. In
the empirical application of this paper and motivated by the reasoning above, ν < 2 of ε
is hence tested based on the differenced equation 10. As expected, AR(1) of ∆ε is high by
construction of the differenced equation. Second, third and fourth order autocorrelation are
found to be much lower. The test for AR(3) in the differenced model can reject the H0 on
a 1 percent significance level (see Appendix table A.3). It thus appears that the suggested
identification and estimation strategy yields consistent estimates of the installed base effect.
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6 Data

This paper focuses on social effects within geographically defined reference groups. Since
solar PV panels are visible for passers-by, no social bonding in the sense of friendship, family,
culture or religion is required for social effects such as observational learning. This motivates
the spatial definition of the reference group.

6.1 Postcodes and LSOAs

To highlight the granularity of the analysis, consider the different geographic area definitions
in the UK. A postcode district is identified by the first three to four digits of a full UK
postcode, e.g. by CB3 in case of the postcode CB3 9DD. Each full UK postcode is divided
by a space into two parts: the first part indicates the postcode area and the postcode
district, e.g. CB and CB3 respectively. The second part begins with a single digit for the
postcode sector within each district, e.g. 9 in case of CB3 9DD. In August 2012, there were
124 postcode areas, 2,987 postcode districts, approximately 11,000 postcode sectors and
1.78 million unit postcodes in the UK (including Channel Islands and Isle of Man)(Royal
Mail, 2013). While postcodes are mainly used for postal services, the Office for National
Statistics (ONS) defined so-called ‘Output Areas’.‘Lower Layer Super Output Areas’(LSOA),
in particular, were designated to provide a geographical hierarchy with the intention of
improving the reporting of small area statistics in England and Wales. Each LSOA has its
unique code and can be assigned to a postcode in England and Wales.8 There are 32,844
LSOAs in England and 1,909 in Wales (ONS, 2013). The analysis is performed on the
postcode district rather than the LSOA level, as the number of solar PV installations within
LSOAs is often small or zero, implying (too) little variation of the variables of interest for
identification of the main effect. Moreover, a main feature of the model is the focus on social
effects within neighbourhoods. No cross-border spillovers are taken into account.

6.2 Neighbourhood Statistics

For England and Wales the ONS provides Census statistics, such as on tenure for example,
for multiple geographical aggregation levels, among others for the postcode district level. An
LSOA has a size between a full postcode and a postcode district area: the LSOAs consist of
400 to 1,200 households and make up approximately 2,269 postcode districts in England and
Wales. Each postcode district consists, on average, of 10,297 households, with just under 65
percent of these owner-occupied (ONS, 2013). The number of owner-occupied households
is of particular relevance for the installation of solar PV panels, as the decision to install
a solar PV panel is more likely to be made by households who own their property than by
households who rent it.9 Even if tenants can benefit from the panels as well (e.g. by being
provided with some free electricity), it is the landlord who receives the FiT and who decides
whether to install the panel. The number of tenants inducing their landlords to install solar
PV are assumed negligible for this analysis.

8A pseudo code is available for Scotland, Northern Ireland, Channel Islands and the Isle of Man, but the
definitions and the geographical size, in particular, are neither entirely consistent nor provided by the ONS.

9ONS tenure data provides information about whether a household rents or owns the accommodation
that it occupies and, if rented, combines this with information about the type of landlord who owns or
manages the accommodation.
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Figure 1 shows the distribution of the number of households (top) and the number of
owner-occupied households (bottom) within the postcode districts.

Figure 1: Distribution of the number of households (top) and
of owner-occupied households (bottom) within postcode districts
in England and Wales. The average number of households in
a postcode district is 10,297. The average number of owner-
occupied households in a postcode district is 6,546 (own calcula-
tion based on ONS, 2013).

Table A.2 in the Appendix lists the summary statistics, so called contextual factors, for
the considered postcode districts as retrieved from the ONS. The table lists the characteristics
for those 2,239 postcode districts that, by the end of March 2013, had at least one domestic
solar PV installation. Tests of mean differences for adopting and non-adopting postcode
districts do not show significant differences between the considered characteristics.

The ONS only provides neighbourhood statistics for England and Wales. Future research,
however, could match the neighbourhood statistics of the Scottish Census with the postcode
districts, using the pseudo LSOA code and the look up tables provided by the Scottish
government. As the solar PV installation dataset does not include the LSOA pseudo code
and in order to stick to a single definition of neighbourhoods10, installations in Scotland were
excluded from the main analysis. It is remarkable that even in Scotland around 93 percent
of the postcode districts had at least one domestic solar PV installation installed by the end
of March 2013, although the number of sunshine hours is 22 percent lower than in England
(Met Office, 2007).

10The existing data zones in Scotland are smaller in population size than their LSOA counterparts in
England and Wales. They have a minimum population of 500, compared to a minimum of 1000 in LSOAs.
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6.3 Solar PV Installation Data

The econometric analysis in this paper is based on solar PV installation data from April 2010
through March 2013. The dataset is published by Ofgem and updated quarterly. It includes
all domestic, commercial and communal micro-generation systems in the UK that have been
registered to receive the FiT since its introduction in April 2010 (i.e. systems with up to
50kW capacity). By the end of March 2013, 379,531 installations were registered. Besides
an individual identifier for each installation, the dataset includes geographic location of the
installation down to the LSOA level, the corresponding postcode district (i.e. the first four
digits of the postcode the LSOA code is associated with), the day at which the installation
was commissioned, i.e. completed, as well as the installed capacity (in kW).

Of all 379,531 installations that were registered in April 2013, just under 83 percent were
commissioned in England, 7.3 percent in Wales and 6.9 percent in Scotland. Solar PV tech-
nology dominates the market for micro-generated energy: 98.6 percent of all micro-generation
installations are solar PV systems. Wind contributes only 1.2 percent and anaerobic diges-
tion and hydro even smaller shares of 0.01 and 0.11 percent. Moreover, the share of domestic
installations lies above 96 percent (96.5 of all micro-generation technologies and 96.9 percent
of the solar PV installations are domestic installations). As this paper aims to analyse the
diffusion of a single technology rather than the choice between different kinds of technolo-
gies and focuses on social effects within neighbourhoods, all non-solar and non-domestic PV
technology installations are excluded from the analysis. 4,945 solar PV installations were not
associated with any locational information on LSOA or postcode district and hence excluded
from the analysis, too. Finally, for the reasons mentioned above, the analysis considers solar
PV installations in England and Wales, only. The cleaned data set counts 332,216 domestic
solar PV installations in England and Wales by the end of March 2013. These are associated
with 2,239 postcode districts with an average of 10,427 households each, with on average 63.5
percent of this (6,629) owner-occupied. Only districts with at least one domestic solar PV
system commissioned between March 2010 and 2013 are considered, which are striking 98.7
percent of all postcode districts in England and Wales. The 30 postcode districts that had
not installed any domestic solar PV panels were mainly districts in the centre of big cities
such as Manchester (M1, M17, M50, M60), Liverpool (L2), Birmingham (B1, B2, B3), Leeds
(LS1) and London (20 postcode district areas around the Tower Bridge, Westminster, Le-
icester Square for example). Moreover, Heathrow Airport (TW6) is among the non-adopting
postcode districts. It is thus not at all striking that there are no domestic solar PV installa-
tions in those areas as these non-adopting postcode districts obviously differ significantly in
major neighbourhood characteristics. While the average number of households and owner-
occupied households is significantly lower for example (1,412 compared to 10,417 households
and 360 compared to 6,629 owner-occupied households), the share of households without car
and the share of households using public transport to travel to work is significantly higher
in non-adopting postcode districts.

The main variable of interest is the installed base of solar PV panels on a postcode
district level. The installed base, as suggested above, serves as a measure of social effects
and refers to the cumulative number of solar PV installations within a reference group z
at a particular point in time t. For the remainder of this paper, z refers to the postcode
district (interchangeably used with ’zip code’) and t refers to the month. More precisely,
the installed base, bzt in postcode district z in month t is defined in equation 16. Where Yzt
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refers to the number of new installations Y in zip code z in month t.

bzt =
t∑

τ=1

Yzt (16)

These variables are derived exploiting the postcode district identifier and the commission
date of each installation. The resulting postcode district level panel data set consists of
80,604 data points: for 2,239 zip codes in England and Wales and for each of the 36 months
there is an observation for the installed base and the count of new installations .

Figure 2: Average installed base in the postcode district (April 2010 -

March 2013).
1

2, 239

∑2,239
z bzt∀ t = 1 · · · 36. Source: Ofgem, own calcula-

tions.

Figure 2 illustrates the increase in the average installed base from 2.3 solar PV systems
within a postcode district in April 2010 to 148.4 domestic solar PV installations by the end
of March 2013. Figure 3 illustrates how the installed base varies across postcode districts.
For each zip code the graph plots all 36 installed base observations.

Figure 4 plots the average number of monthly installations per owner-occupied household
within the 2,239 considered postcode districts for the 36 considered months. The average
adoption rate increased from 0.071 installations per 1000 households to 0.192, i.e. almost
tripled within the considered two years. Moreover, the adoption rate has never fallen below
the rate of March 2010 and peaked in month 20, i.e. in November 2011, with 4.065 in-
stallations per 1000 owner-occupied households.11 The peaks of the adoption rate are most
pronounced during the months before cuts of the subsidies came into effect. In December

11One could argue that these peaks in adoption rates lead to a decreasing pool of potential adopters
within the zip code. However, as multiple installations of a household are possible, this paper assumes
the pool of potential adopters to be unaffected by the number of installations. I.e. the number of owner-
occupied households within a zip code as reported in the Census 2011 (ONS, 2013) is used for normalisation
throughout.
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Figure 3: Installed base by postcode district (April 2010 - March 2013).
For each zip code the graph plots the 36 installed base observations, i.e.
bzt∀ t by postcode district. Source: Ofgem, own calculations.

2011, for example, the UK Government announced rigorous cuts of the FiT, which led to a
visible demand response shortly before this change became effective. This reflects the fact
that it is the commission date (i.e. the date of completion of the panel) that matters for the
level of FiT paid. If a panel is installed before the official date of the subsidy change, the old
FiT is paid throughout the 20 years of support. Such kinds of policy announcements must
be controlled for, e.g. by the inclusion of time fixed effects in the econometric equation, as
they impact the installed base as well as the adoption rate and can confound the estimation
of the installed base effect.

17



7 RESULTS

Figure 4: Average adoption rate (April 2010 - March 2013), i.e.
1

2, 239

∑2,239
z=1 yzt∀t = 1 . . . 36. To control for the variation of owner-occupied

households across postcode districts, the installation counts are normalised
with the number of owner-occupied households in the postcode district. The
resulting adoption rate serves as the main outcome variable of interest, yzt.
Source: Ofgem, ONS, own calculations.

7 Results

Table 1 lists the estimates of the social effects resulting from the suggested pooled OLS
(POLScl), within-group (WGcl) (de-meaned on the postcode district-quarter) and first dif-
ference estimations (FDcl) based on equation 1. To account for serial correlation within a
postcode district over time, the estimates allow for clustering on the postcode district level.
The results suggest small, but positive and significant social effects.

The estimates are consistent with the theory: the POLS estimate (POLScl) is strongly
downwards biased. This corresponds to the expected omitted variable bias, as the only
regressor included in equation 1, apart from the month dummies, is the lagged installed
base. The αzq are unobserved, but as it is likely that there are several neighbourhood
characteristics that are correlated with the installed base and the outcome variable, the
omitted variable bias (OVB) results. The within-group estimator (WGcl) is slightly lower
than the first difference estimate (FDcl). As illustrated above, for a lag of at least three,
the within-group estimator of the installed base coefficient β can yield consistent estimates.
For shorter lag lengths (i.e. shorter lead time between adoption decision and installation)
the within-group estimator is inconsistent due to a correlation of the mean-differenced error
with the mean-differenced installed base. As consistency of the first difference estimate
(FDcl) is conditional on weaker assumptions than those required for a consistent within-
group estimate, the first difference estimate is the one of interest.

According to the first difference estimate (see FDcl in table 1) one more solar PV panel in
a postcode district increases the number of new installations per owner-occupied households
three months later by 7.48e−06. At the average installation rate of 0.0007, this increase is
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equivalent to a one percent increase of the average installation rate. This is obviously and
as expected a very small effect. At the average number of 6,629 owner-occupied households
within a postcode district, it implies that one more solar PV panel in the neighbourhood
increases the number of new installations in the neighbourhood by 0.005.12 It would hence
require around 200 additional solar PV panels in a postcode district, for social effects alone
to be strong enough to cause one further installation within the neighbourhood three months
later. The installed base elasticity at the average installed base of 68 installations within a
neighbourhood and the average installation rate of 0.0007 is 0.71, implying a rather inelastic
demand response. At the median installed base of 27 and the average installation rate of
0.0007, the installed base elasticity is with 0.29 even lower. These results illustrate that the
social effects as measured by the installed base are very small, but exist and can promote
adoption. Particularly larger scale projects might hence lead to observational learning from
spatially close installations. It is tempting to compare the results to the study of Bollinger
and Gillingham (2012), who find an increase of the installation rate of 1.567e−06 for any
additional solar PV installation in a neighbourhood.13 However, due to differences in the
definition of neighbourhoods, the granularity of the data and the model assumptions, such
comparisons should be treated with caution.

Table 1: The table shows the estimates of the installed base effect on the installation
rate within a postcode district. Estimations are clustered on the postcode district level.
The first difference estimate suggests small, but positive and significant social effects.
One more solar PV panel in a postcode district increases the number of installations
per owner occupied household (that is on average at 0.0007) by significant 7.48e−06.

Variable POLScl WGcl FDcl

Installed Base (L.3) 1.93e-06*** 6.59e-06*** 7.48e-06***
(1.20e-07) (2.44e-06) (2.66e-06)

Observations 73,887 73,887 49,258
R-squared 0.145 0.080 0.075

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

8 Robustness Checks

For robustness, the analysis is additionally performed for model specifications that allow for
a non-constant installed base coefficient, for different lags of the installed base and for a dis-
tinct geographical level, namely the local authority level. Moreover, besides the installation
rate, the installed capacity per owner-occupied household (in kW) is considered as outcome
variable.

12The average third lag of the installed base was 60.93 and the average number of new adoptions within
a neighbourhood was 4.07.

13Their neighbourhoods contain on average 4,959 households and are geographically larger.
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8.1 Non-Constant Installed Base Effect

To allow for non-constant social-effects, the model in equation 1 is extended by the squared
lagged installed base.

yzt = αt + β1 · bzt−3 + β2 · (bzt−3)2 + αzq + εzt︸ ︷︷ ︸
uztq

(17)

Estimating equation 17 by POLS, within-group and first difference strategies, the bias of the
POLS and the within-group estimator remain their order and direction. All three estimates
suggest, however, a positive installed base effect that decreases with the size of the installed
base. The resulting estimates (POLScl, WGcl and FDcl) are listed in table 2. This positive
but decreasing effect of the installed base on the installation rate is consistent with the idea
of satiation within neighbourhoods. When the installed base is low, the solar PV panels
might be particularly attention catching as they are perceived as especially innovative. If
so, social spillovers are likely to be most pronounced in the early stages and decrease with
the number of installations then.

Table 2: Testing for a heterogeneous installed base effect suggests positive and
significant social effects that decreases with the size of the installed base.

Variable POLScl WGcl FDcl

Installed Base (L.3) 4.65e-06*** 6.78e-06*** 1.45e-05***
(3.34e-07) (2.45e-06) (3.88e-06)

Installed Base Squared (L.3) -5.56e-09*** -4.83-11*** -1.17e-08***
(6.73e-10) (1.45-11) (3.10e-09)

Observations 73,887 73,887 49,258
R-squared 0.148 0.080 0.075

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

yzt = αt + β1 · bzt−3 + β2 · (Dq · bzt−3) + αzq + εzt︸ ︷︷ ︸
uztq

(18)

Another, comparable, specification allows for a variable installed base effect over time.
Equation 18 specifies the model with interactions of 12 quarter dummies, Dq, with the lagged
installed base. The results suggest a time-varying installed base effect that overall decreases
over time. The coefficient varies throughout the year (see Figure ?? in the Appendix ).14

Table A.4 in the Appendix lists the respective coefficients. Interestingly, the social effects are
particularly pronounced during times of policy announcements to decrease the FiT. In the
seventh quarter (Q7) for example, i.e. from October to December 2011, the social effects were
significantly higher than in the initial months. This could be due to higher media presence
that caused higher awareness of the technology and higher perception of the installed panels,

14Testing the coefficients of the first differenced equation for equality, the H0 must be rejected, which is
consistent with a time varying installed base effect. The test results in an F-statistic of 32.23 and a p-value
of 0.000.

20



8 ROBUSTNESS CHECKS

for example: in October 2011 the UK government announced a remarkable decrease of the
FiT for December 2011. This policy change was then postponed until March 2011. Since
all registrations until March 2011 were eligible to the higher FiT, strong and positive social
spillovers before the effectivity date do make sense. Towards the end of the considered 12
quarters, the marginal impact of the installed decreased from the tenth quarter onwards.
These are known to be months of relative policy uncertainty, during which adoptions in
general were particuarly low. Social effects not only decreased, but turned negative as well
during this time.

These regressions show that the linear model is misspecified and a richer nonlinear model
could improve the analysis. However, the main findings regarding the installed base effect
are preserved. Future research could explore this further by testing the model against a
dynamic specification that takes some kind of dynamic adjustment into account.

8.2 Testing Different Lags

The estimates of social effects are based on the presumption that the lead time between the
adoption decision and the completion of the installation is three months. This is obviously
just an average. On the one hand the lead may vary across suppliers, on the other hand the
lead may vary over time. In particular, during times before the effectivity dates of the FiT
cuts, the time between decision to adopt and actual installation might have varied. It makes
thus sense to consider different time-lags of the installed base for robustness.

The coefficients of the contemporaneous and the first lag of the installed base show the
expected downwards bias. This is due to the correlation of the first differenced installed
base with the first differenced error (see section on identification). The second and third
lag have a positive and significant impact on the installation rate. Given the quoted two
to three months regarding the lead time between adoption decision and installation, sign
and significance of the coefficient of the second and third lag make sense. The coefficient of
the fourth lag is negative, but not significant. This could indicate a ‘time threshold’ for the
installed base effect. It might be, that even if households already perceive and learn from the
panels, they are not actually deciding that early. These findings might suggest that social
effects exist, but are only effective in a rather narrow time window. Table 3 shows the first
difference estimates (FDcl) for the specifications with different lags of the installed base.

Table 3: First difference estimates for different lags of the installed base. The results are
consistent with the quoted time lead between adoption decision and installation. The estimates
suggest that social effects exist, but are only effective in a rather narrow time window.

Variable FDcl FDclL.1 FDbclL.2 FDclL.3 FDclL.4

Installed Base 5.75e-05*** -3.63e-05*** 3.81e-06** 7.48e-06*** -2.15e-06
(3.18e-06) (3.78e-06) (1.78e-06) (2.66e-06) (1.69e-06)

Observations 51,497 51,497 49,258 49,258 47,019
R-squared 0.104 0.082 0.074 0.075 0.074

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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8.3 Installed Base Effect on the Local Authority (LA) Level

For robustness the main regressions are run at the Local Authority (LA) level. This approach
tests for social effects within broader defined geographical neighbourhoods than in the case of
the postcode districts. The average number of owner-occupied households in the considered
local authorities is 42,602, the average installed base 409 solar panel installations. The
analysis on the LA level allows for spillovers within larger geographical units and hence
across the borders of the postcode districts. This can matter, for instance, if the mobility
within a LA is rather high. The estimations based on equation 17, but with z referring to
the local authority, yield the results listed in table 4. As expected, the installed base effect

Table 4: Installed base effect in local authoritie. The results suggest that
the impact of social effects, as proxied by the installed base, are stronger on
a more local level than in broader defined neighbourhoods.

POLScl WGcl FDcl

Installed Base (L.3) 3.14e-07*** 1.60e-06* 1.77e-06*
(5.71e-08) (8.24e-07) (9.21e-07)

Observations 11,451 11,451 7,634
R-squared 0.396 0.341 0.346

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

on the LA level is smaller than on a postcode district level. The first difference estimates
are 1.77e−06* for the installed base effect within local authorities and 7.63e−06*** for the
effect within postcode districts. This is consistent with the argument that social effects are
stronger on a more localised level. The coefficient 1.77 implies that at the average number
of owner-occupied households within a local authority (42,602), one more domestic solar PV
installation increases the number of new installations in the local authority by 0.075.

8.4 Modelling the Installed Capacity

The main specification considered in equation 1 models the installation rate of owner-
occupied households (defined as the number of installations per owner-occupied household)
as the outcome variable. However, the average impact of the installed base on the installed
capacity (in kW) per owner-occupied household can serve as robustness check of the results
presented in section 7.

Table 5 lists the POLS, within-group and first-difference estimates for the installed base
effect on the new installations when measuring both, installed base and the new installations
in terms of capacity (i.e. in kW). According to the first difference estimate, a marginal
increase in the installed capacity within a postcode district increases the installed capacity
per 1000 owner-occupied households by significant 0.00739 kW (see Table 5). At the average
number of 6,629 households within a postcode district, that implies that the installed capacity
increases by 0.0049 kW. The installed base elasticity at the average installed base of 210kW
and the average installation rate of 13kW per owner-occupied household is 0.67, which is
close to the elasticity of 0.71 found at the average installed base and installation rate in the
main specification that is based on installation counts. This holds also true for the installed
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9 CONTEXTUAL FACTORS AND THE INSTALLED BASE EFFECT

base elasticity at the median installed base. When specifying the model in terms of capacity
the elasticity is 0.23, while being 0.28 when specifying the model in terms of installation
counts. These results are hence consistent with positive and significant social effects.

Table 5: Installed base effect on the installed capacity (kW) per owner-
occupied household. In this specification the installed base and the outcome
variable are measured in kW.
Variable POLScap WGcap FDcap

Installed Base (L.3) 2.40e-06*** 7.48e-06*** 7.39e-06***
(1.27e-07) (1.40e-06) (1.50e-06)

Observations 73,887 73,887 49,258
R-squared 0.156 0.090 0.081

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

9 Contextual Factors and the Installed Base Effect

For the UK, the Department for Energy and Climate Change (DECC) provided a descrip-
tive analysis of the trends in the deployment of domestic solar PV technology under the
FiT scheme (DECC, 2012). In this study the effect of contextual factors (e.g. of income,
education, gas and electricity consumption within a neighbourhood) is considered and the
report suggests that more affluent, higher energy consuming neighbourhoods are more likely
to install solar panels. On top of this, areas with a high proportion of detached housing,
a low proportion of social housing and a low proportion of low value housing tend to have
a higher amount of solar PV installations. Moreover, rural areas have a higher density of
solar PV installations than urban areas. Given that several neighbourhood characteristics
crucially matter for the adoption rate, the relative importance of social effects, hence of the
installed base effect, for different groups of the population should be explored further. Social
spillovers in affluent neighbourhoods, for example, might differ from social spillovers within
deprived neighbourhoods. As suggested by DECC, higher income neighbourhoods tend to
be more likely to adopt than lower income neighbourhoods. Social effects, on the other hand,
might be ceteris paribus of more importance in less educated or less affluent neighbourhoods,
as higher income households tend to adopt early and observational learning might therefore
play a less important role (Rogers, 1962). An argument that could support negative social
effects, for example, could be that of snob effects within rich neighbourhoods.

9.1 The Use of ONS Neighbourhood Statistics

To estimate the installed base effect for different types of neighbourhoods, interactions of
contextual factors with the installed base are incorporated into the model. However, while
the installation data is available in panel form, the postcode district neighbourhood charac-
teristics are only available for the cross-section of March 2011, the date of the last Census
in England and Wales. It is hence assumed that any changes of the postcode district char-
acteristics over the considered time frame (2010-2013) are negligible for the installed base
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9 CONTEXTUAL FACTORS AND THE INSTALLED BASE EFFECT

effect. This is clearly a strong assumption and simplification, but allows for first insights
into heterogenous installed base effects.

Furthermore, most of the ONS neighbourhood characteristics are continuous variables.
To allow for more meaningful interpretation of the coefficients of the interaction terms (i.e.
the interactions of contextual factors with the installed base), the postcode districts are
grouped into quintiles, i.e. categories. Dummy variables indicate whether the respective
postcode district characteristic lies above the 60th percentile or not. As an example, the
dummy Share Social Class AB indicates whether the share of households in social class AB
within the postcode district lies above the 60th percentile. If so, the remainder of this paper
classifies such a neighbourhood as ‘high social class’ neighbourhood. Likewise, the dummy
Population Size indicates whether the population in the neighbourhood is particularly high
compared to other neighbourhoods, i.e. lies in the upper 40th percentiles. Equation 19 spec-
ifies the model that includes the installed base, bzt−3, the dummies indicating the contextual
factors, Xz

15 and their interactions with the installed base.

yzt = αt + β1 · bzt−3 + β2 ·Xz + β3 · (Xz · bzt−3) + αzq + εzt︸ ︷︷ ︸
uzt

(19)

First differencing equation 19 results in equation 20. POLS on this differenced equation
(clustered on the postcode district level and dropping, again, the first month of each quar-
ter s.t. the neighbourhood-quarter effects drop out) is performed. The main effects of the
contextual factors are not identified as all time-constant variables drop out when first dif-
ferencing. However, the coefficients of the interaction effects can indicate differences of the
installed base effect across neighbourhoods with different contextual characteristics.

∆yzt = ∆αt + β1 ·∆bzt−3 + β3 ·∆(Xz · bzt−3) + ∆εzt (20)

9.2 Results for Contextual Factors and The Installed Base

The coefficients of interest are the ones of the interaction terms resulting from the first dif-
ference estimation. The results suggest significantly stronger peer effects in neighbourhoods
with a high population (in the sense of a population size above the 60th percentile as ex-
plained above). In neighbourhoods with a high share of unshared houses social effects are
less pronounced, which might result from the higher likelihood to interact with neighbours
in the immediate living environment (e.g. in the case of attached houses). Interestingly,
relatively affluent (non-deprived) neighbourhoods and neighbourhoods with a high share of
high social class households, show a less pronounced installed base effect. As Rogers (1962)
suggests, this might result from the fact that those households are early adopters and hence
the learning from others is less important. Higher educated neighbourhoods on the other
hand show stronger installed base effects than neighbourhoods with on average lower edu-
cated populations. In neighbourhoods with a high ratio of economically active people, social
effects are relatively low, which can result from the fact that those people spend less time in
their neighbourhood. Finally, social effects in neighbourhoods with a high share of people
travelling to work by bike or foot are less strong while private transport in a car increases
the installed base effect.

15As contextual factors are assumed to be constant over the considered time frame, the dummies only
have a z index and no time index.
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9 CONTEXTUAL FACTORS AND THE INSTALLED BASE EFFECT

Table 6: Coefficients of the First Difference Estimation with Covariate-Installed Base Interactions (Table
only shows the coefficients relevant for interpretation. Month dummies and installed installed base main
effect are ommitted.)

FD covXb
Variable fd new norm

Installed Base (L.3) -4.91e-06
(6.73e-06)

Population Size X L.3 Base 6.69e-06**
(2.92e-06)

Unshared Houses X L.3 Base -6.10e-06**
(2.73e-06)

Share Male X L.3 Base 8.65e-06***
(2.40e-06)

Share White X L.3 Base 3.03e-06
(3.81e-06)

Share 20 to 45 X L.3 Base 8.07e-06**
(3.86e-06)

Share 65 plus X L.3 Base 4.06e-06*
(2.43e-06)

Share Deprived in 0 Dim X L.3 Base -4.06e-06
(3.71e-06)

Share No Car X L.3 Base 4.31e-06
(4.70e-06)

Share Social Class AB X L.3 Base -5.20e-06*
(3.10e-06)

Share University Degree X L.3 Base 1.14e-06
(2.57e-06)

Share Economically Active X L.3 Base -4.23e-06
(3.68e-06)

Share No Travel to Work X L.3 Base 9.41e-06***
(2.24e-06)

Share Public Travel X L.3 Base -4.32e-06
(2.93e-06)

Share Private Travel X L.3 Base 4.68e-06
(3.69e-06)

Share Bike or Foot X L.3 Base -2.09e-06
(2.30e-06)

Constant 2.29e-05**
(9.02e-06)

Observations 49,258
R-squared 0.076

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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10 Limitations and Suggestions for Further Research

The presented analysis, which is at a relatively disaggregated level, has several limitations.
Still, the results serve as a useful first indicator for the impact of social effects on solar PV
technology adoption in England and Wales. The model could be extended in future research.

The first major constraint of the model employed in this paper is that social effects are
assumed to spread within predefined neighbourhoods only, while spillovers across the neigh-
bourhood borders are ignored. Spatial econometric methods, for example, could be employed
to allow for more diverse spatial effects. Another related limitation is the aggregation of the
installations to the neighbourhood level. Household level data could improve the analysis
and, in particular, shed light on the exact mechanisms of social interactions. Unfortunately,
such data is currently not available.

Moreover, the approach to measure social effects with the lagged installed base has some
drawbacks: as has been emphasised throughout this paper, the quarter lagged specification is
important for the estimation method. The lag reflects the assumption that social spillovers
such as observational learning only come into effect once the solar PV panel is installed.
This is a reasonable and justifiable assumption, but one can imagine some social effects
coming into effect before the completion already. For example, there might already be social
effects once the solar PV panel supplier van shows up at the neighbour′s house to discuss
the further procedure, or there might be word-of-mouth through the neighbours once they
have set-up the contract with the supplier. These kind of spillovers are not captured by
the lagged installed base. Additionally, friends, family and colleagues might contribute to
social spillovers other than those captured by the lagged installed base. The consideration
of different lags and the wider definition of neighbourhoods are an attempt to get an idea of
the relevance of such effects, but further methods such as IV-strategies or a bias-correction
approach, as suggested by Narayanan and Nair (2011), could be considered for comparison
of the results and could help to pin down the mechanisms underlying the social effects more
precisely.

A further concern could be that the model obscures any possible partial adjustment
processes resulting from inertia in the decision process. An increase in the lagged installed
base bzt−3 might have an effect on the installation rate in t, but due to adjustment costs,
a part of the intended increase might be postponed to the next period. If so, the causal
interpretation of the installed base effect comes into question. As an example, there might
be households who decide to install in a particular month, but are not able to do so in time
due to lacking financial resources. If this is the case, then the observed installation rate,
yzt, might be a compromise between the previous installation rate, yzt−1, and the lagged
installed base, bzt−1, (and other exogenous variables). This idea can be captured in a partial
adjustment model. Let y?zt be the true, but unobserved installation rate in t and assume the
true relationship between the installed base and this ‘intended’ installation rate is given as
follows:

y?zt = γt + δbzt−3 + vztq (21)

γt are month dummies, δ is the causal installed base effect of interest and vztq is an error
term equivalently defined as in the main specification given in equation 1. Now, assume that
there is inertia in the system such that the econometrician does not observe the ‘intended’
installation rate, y?zt, but due to the inertia observes the realised installation rate, yzt, instead.

(yzt − yzt−1) = λ(y?zt − yzt−1) (22)
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Equation 22 reflects the idea of partial adjustment. In this framework the actual (observed)
change in the outcome variable, (yzt−yzt−1), is assumed proportional to the ‘intended’ change
(y?zt − yzt−1). Rearranging equation 22 yields an equation that suggests that the observed
adoption rate yzt is a weighted average of the ‘intended’ installation rate y?zt and the lagged
observed installation rate yzt−1. λ measures the speed of adjustment:

yzt = λy?zt + (1− λ)yzt−1 (23)

Substituting equation 21 into equation 23 yields an equation in terms of the observable
variables included in equation 23.

yzt = λγt + λδ︸︷︷︸
β̃

bzt−3 + (1− λ)yzt−1 + λvztq (24)

Equation 24 exemplifies how a partial adjustment process could challenge the identification
of the causal installed base effect. Firstly, if there is indeed partial adjustment, the model
given in equation 1 above, would be misspecified. Even when estimating equation 24, the
installed base coefficient is β̃ = λδ. The actual causal installed base effect, δ, is thus not

separately identified from λ. Rather, δ =
β̃

λ
where λ can be derived from the estimated

coefficient of the lagged dependent variable yzt−1.
To get an idea how relevant the concern regarding partial adjustment is, one could com-

pare the diffusion of solar PV technology with the diffusion process of a technology with a
comparable time-lag between adoption decision and installations but of which observability
of the installation per se is not a main feature. An example could be the installation of
domestic internet connections in the early days of this technology. In summary, if there is
partial adjustment in the application of solar PV technology adoption, the estimated coeffi-
cients of the lagged installed base might be biased and likely to indicate correlation rather
than causation.

A final concern to mention here is the specification as a linear probability model. The
regression results show that although the main findings regarding the installed base effect
are preserved, the linear model is misspecified and a richer non-linear model could improve
the analysis. Future research could test the model against a dynamic specification that takes
some kind of dynamic adjustment into account. Also, it could be considered to use transform
the outcome variable to F−1(yzt) ∈ R where F is a cdf that potentially could have heavy
tails like a Cauchy distribution.
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11 Conclusion

The main research question in this paper is, whether the installation rate of solar PV tech-
nology is affected by social effects as measured by the installed base in the immediate local
environment. The installed base thereby refers to the cumulative number of solar PV instal-
lations within a neighbourhood by the end of a particular month and serves as a measure
of social effects from spatially close households. The analysis is based on installation data
that has been collected by Ofgem since the introduction of the FiT in April 2010. The
econometric panel data model specifies the postcode district-month as the smallest unit of
observation. Besides the lagged installed base and month dummies, the main panel equation
includes time-varying fixed effects to account for potential self-selection into neighbourhoods
and for correlated unobservables that are constant within neighbourhood, but vary over time
(i.e. across quarters). Exploiting the time lag between adoption decision and installation, a
first difference estimate yields unbiased and consistent estimates of the social effects of inter-
est. Further model specifications allow for a time-varying installed base effect and consider
different lags of the installed base as well as different outcome variables and different geo-
graphical areas for robustness. In a last specification differences of the social effects across
distinct groups of the population are analysed.

The results suggest small, but positive and significant social effects: one more solar
PV panel in a postcode district increases the number of new adoptions per owner occu-
pied households in a given month by 7.48e−06. At the average installation rate within the
neighbourhoods, this is equivalent to a one percent increase in the rate to install a solar PV
panel. At the average number of 6,629 owner-occupied households within a postcode district,
it implies that one more solar PV panel in the neighbourhood increases the number of new
installations in the neighbourhood by 0.005. This is obviously and as expected a very small
effect. It would require around 200 additional solar panels in a postcode district, for social
effects alone to be strong enough to cause one further installation within the neighbourhood.
The installed base elasticity at the average installed base of 68 installations within a neigh-
bourhood and the average installation rate of 0.0007 is 0.71. These results illustrate that the
social effects as measured by the installed base are very small, but exist and can promote
adoption. Especially community projects that involve a high number of installations could
hence promote diffusion.

The social effects vary across months and overall diminish over time. Moreover, social
spillovers on the postcode district level are found to be stronger than on a higher geographi-
cal level, the local authority level. Remarkably, relatively affluent (non-deprived) neighbour-
hoods show a less pronounced installed base effect. This might result from the fact that
those households are early adopters and hence the learning from others is less important.
Higher educated neighbourhoods on the other hand show stronger installed base effects than
neighbourhoods with on average lower educated populations.

This paper contributes to previous literature in performing the first econometric analysis
of the diffusion of solar PV technology within the UK. In particular, it delivers empirical
evidence, in how far the adoption behaviour of others drives diffusion. The analysis is based
on a remarkably recent and granular solar PV installation dataset of the UK. The results can
be exploited for targeted marketing and resource allocations for the stimulation of future
adoption. For example, increasing the visibility of the panels could increase the rate of
adoption and the use of demonstration sites could have positive effects on the adoption of
green technologies.
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Nevertheless, the analysis has its limitations. Firstly, social effects are assumed to spread
within neighbourhoods as defined by the postcode districts or local authorities, only, while
spillovers across the neighbourhood borders are ignored. Spatial econometric methods, for
example, could be employed to allow for more diverse spillover effects. Another limitation is
the aggregation to the neighbourhood level. Future research should make use of household
level covariate data to further analyse the mechanisms underlying the adoption behaviour
and thus the installed base effect. In context of the National Energy Efficiency Database
(NEED) the Department for Energy and Climate Change (DECC) is currently creating a
database that matches the solar PV installation data with household characteristics. Lastly,
if there is inertia in the decision process, the consideration of a partial adjustment process
in the model might be useful. However, overall, this paper delivers a useful first highly
disaggregated analysis of the impact of social effects on solar PV adoption, that can be
extended in future research.
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A Appendix

Model with Time-Constant Unobserved Heterogeneity αz

For robustness, random effects GLS and fixed effects within-group estimations are performed
based on a standard panel model with time-constant fixed effects as specified in equation 25.
As the analysis is performed on the postcode district level, postcode district effects, αz, are
included. A Hausmann test leads to the rejection of the random effects assumption with a
χ2 statistic of 515.56 and p-value of 0.000.

yzt = αt + β · bzt−3 + αz + εzt (25)

Table A.1: Results withtime-constant unobservables. As before, POLS and the within-
gropu/fixed-effects estimator seem downwards biased. However, the first difference estimate
seems downwards biased now, too, which supports the argument, that controlling for time-
constant unobservables is not enough to address the confoundedness resulting from correlated
unobservables.

Variable POLS RE WG FD

Installed Base (L.3) 1.93e-06*** 5.64e-07*** -1.43e-06*** 3.96e-06*
(1.20e-07) (8.98e-08) (1.24e-07) (2.35e-06)

Observations 73,887 73,887 73,887 71,648
R-squared 0.145 0.154 0.087
Number of zips 2,239 2,239

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

As before, POLS and the within-group/fixed-effects estimator seem downwards biased.
The bias of the within-group estimator is now more pronounced, as the mean-differenced
third lag of installed base is now correlated with the mean differenced errors (the average
of all variables is now calculated across all time periods, not only across the observations
within one quarter). This is similar to the standard problem of within-group estimators in
dynamic panels.

The first difference estimate is lower than in the specification with postcode district quar-
ter fixed effects. This supports the argument, that controlling for time-constant unobserv-
ables is not enough to address the confoundedness resulting from correlated unobservables.
Therefore, the specification with quarter-zip code effects seems to be more suitable.
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Consistency of the Within-Group Estimator

Proposition 1. The within-group estimator is consistent, if the time lag l between adoption
decision and the installation of the solar PV panel is larger than 2, i.e. l > 2.

Consider the general form of the within-group estimator after rearranging.

lim
N→∞

(β̂WG − β) =
E[( ˜bzt−l − bzlq)(εzt − εzq)]

E[( ˜bzt−l − bzlq)2]
(26)

Where ( ˜bzt−3 − bz3q) is the residual from a regression of the mean-differenced installed base
on the mean-differenced time-dummies. Multiplying out and omitting the tilde for simplicity,
yields:

lim
N→∞

(β̂WG − β) =
E[bzt−lεzt]− E[bzlqεzt]− E[bzt−lεzq] + E[bzlqεzq]

E[(bzt−l − bzlq)2]
=
A

B
(27)

Now consider the terms in the nominator separately.Firstly, limN→∞E[bzt−lεzt] = 0∀l ≥ 1
as bzt−l is by construction correlated with all previous errors, εzt−L∀L ≥ l: all previous
installations Yzt−L∀L ≥ l enter bzt−l. However, bzt−l is uncorrelated with all future errors, as
εzt is i.i.d by assumption. Therefore, as long as the lag length l ≥ 1, the first term converges
to zero. Further, the second term, limN→∞E[bzlqεzt] 6= 0∀l < 3. If the considered lag length
is l < 3, not all the observations entering bzlq lie in quarter q − 1. If l = 2, for example,
the second lag of the installed base in month 3 of any quarter q falls into q. All εzt lie in
q. In month 4, for example (pertaining to the first month in the second quarter), bz2q is
calculated as average of the second lag of the installed base in month 4, 5 and 6. All these
lags refer to the installed base in months 2, 3 and 4 respectively and hence lie in quarter
1 and 2. The neighbourhood quarter mean hence includes the installed base observation of
the first month of the quarter and bz2q is correlated with the error in the first month of q.
For comparable reasons the third term does not converge to zero either, if the lag length is
smaller than 3. limN→∞E[bzt−3εzq] 6= 0∀l < 3. This term consists of the third lag of the
installed base and the neighbourhood-quarter mean of the error. If l < 3, not all lags of the
installed base, bzt−l, lie in q− 1. However, εzq is calculated based on the errors in q. If l = 2
for example, in any third month of a quarter q, bzt−l2 pertains to the first month of q and
is hence correlated with εzq that includes the errors of all past and future errors within the
quarter q. Lastly, limN→∞E[bz3qεzq] 6= 0∀l < 3. This term refers to the correlation of the
neighbourhood quarter mean of the lagged installed base with the neighbourhood quarter
mean of the error term. For l < 3 bz3q is calculated based on observations in q − 1 and q,
while εzq is based on εzt within q. As an example, consider month three of any quarter. The
postcode-quarter mean includes all error observations of this quarter, i.e. also the error of
the first month of this quarter. Consider the postcode district mean of the lagged installed
base. If l = 2, for example, in month 3 of the quarter the mean includes hence an installed
base observation of month 1 of the quarter, which is correlated with the contemporaneous
error in this month.
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Average Neighbourhood Statistics

Table A.2: Summary statistics for the 2,239 considered postcode districts. Percentages refer to the per-
centage of households in case of number of cars, deprivation, education, social class and to people otherwise.

Variable Obs Mean Std. Dev. Min Max 60th Percentile
Population Size 2239 25006.94 16331.41 136 154233 27992
Area in Hectars 2239 6743.75 9798.42 2.33 85165.67 4247.69
Population Density 2239 18.91 27.29 0.1 233.9 13.2
# HH 2239 10417.01 6676.33 54 62010 11498
# owner-occupied HH 2239 6629.24 4176.46 12 32132 7158
Ratio active/inactive 2239 0.81 0.05 0.49 0.99 0.82
Mean age 2239 40.64 4.22 22.4 55.2 41.7
Median age 2239 41.08 6.21 20 62 43
% aged 24 to 45 2239 0.32 0.08 15.03% 80.39% 32.28%
% aged 65 plus 2239 0.18 0.06 0.43% 43.07% 19.14%
% 0 car 2239 22.93% 0.14 2.50% 81.73% 22.73%
% 1 car 2239 41.84% 0.05 14.42% 54.61% 43.39%
% 2 cars 2239 26.61% 0.09 1.46% 48.99% 30.22%
% 3 cars 2239 6.27% 0.03 0.00% 15.67% 7.01%
% 4 cars 2239 2.36% 0.01 0.00% 8.96% 2.54%
% Deprived in 0 Dim 2239 43.29% 0.09 17.66% 64.66% 46.11%
% Deprived in 1 Dim 2239 32.81% 0.03 24.86% 57.27% 33.12%
% Deprived in 2 Dim 2239 18.70% 0.05 7.61% 34.93% 19.74%
% Deprived in 3 Dim 2239 4.74% 0.03 0.00% 18.29% 4.78%
% Deprived in 4 Dim 2239 0.46% 0.00 0.00% 3.05% 0.43%
% Education 0 2239 22.38% 0.07 1.39% 48.64% 23.63%
% Education 1 2239 13.14% 0.03 2.76% 21.16% 14.07%
% Education 2 2239 15.49% 0.02 3.33% 24.77% 16.41%
% Education 3 2239 3.71% 0.01 0.00% 9.52% 4.09%
% Education 4 2239 27.83% 0.10 7.20% 77.03% 29.22%
% Apprenticeship 2239 12.24% 0.03 5.85% 53.91% 12.07%
% No travel to work 2239 4.30% 0.03 0.36% 25.58% 4.42%
% Public Transport 2239 8.52% 0.09 0.00% 53.84% 6.98%
% Private Transport 2239 42.64% 0.11 2.61% 63.33% 47.48%
% Travel with Bike/Foot 2239 8.70% 0.05 0.63% 50.00% 8.37%
% Males 2239 49.18% 0.01 44.71% 64.24% 49.15%
% Social Class AB 2239 23.57% 0.10 3.22% 71.50% 24.90%
% Social Class C1 2239 30.57% 0.04 12.86% 65.62% 31.43%
% Social Class C2 2239 21.74% 0.06 1.05% 43.24% 23.44%
% Social Class DE 2239 24.12% 0.09 1.05% 67.14% 25.13%
# Unshared Dwellings 2239 10381.51 6639.54 54 61589 11451
# Detached Houses 2239 2371.65 1821.74 0 11279 2491
# Semi-Detached Houses 2239 3262.12 2545.94 0 17843 3373
# Flats 2239 2139.19 2978.58 0 34053 1687
# Shared Dwellings 2239 35.49 95.22 0 1293 9
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Table A.3: Testing autocorrelation in the First Difference Model. The
results suggest that the order of autocorrelation in equation 17 is low enough
for consistent estimation of the installed base effect. * indicates significance,
no indicates the autocorrelation is not significant.

Tested lag of ∆ε̂ Autocorrelation α= 0.05 α= 0.01
L. -0.7523 * *

L2. 0.0295 * *
L3. -0.004 no no
L4. -0.0200 * no

Table A.4: Time-Varying Installed Base Effect (interactions with quarter
dummies). The results suggest a time-varying installed base effect. While
social effects appear to increase initially, they decrease towards the end of
the considered period and eventually even get negative

Variable FDcl

Installed Base (L.3) -2.32e-05**
(9.12e-06)

Q3 x Installed Base (L.3) -1.46e-06
(9.99e-06)

Q4 x Installed Base (L.3) 2.42e-05*
(1.28e-05)

Q5 x Installed Base (L.3) 3.21e-05***
(9.04e-06)

Q6 x Installed Base (L.3) 4.96e-05***
(9.55e-06)

Q7 x Installed Base (L.3) 4.81e-05***
(1.09e-05)

Q8 x Installed Base (L.3) 4.87e-05***
(9.11e-06)

Q9 x Installed Base (L.3) 2.78e-05***
(9.09e-06)

Q10 x Installed Base (L.3) -3.39e-05***
(1.02e-05)

Q11 x Installed Base (L.3) -1.01e-05
(1.12e-05)

Q12 x Installed Base (L.3) -1.53e-05
(1.12e-05)

Constant 6.19e-05***
(1.20e-05)

Observations 49,258
R-squared 0.007

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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