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1 Introduction
The unification problem in a logical system L can be defined in the following way:
given a formula φ(x1, . . . , xα), determine whether there exists formulas ψ1, . . ., ψα
such that φ(ψ1, . . . , ψα) is in L. The research on unification for modal logics was
originally motivated by the admissibility problem for rules of inference: given a rule
of inference φ1(x1, . . . , xα), . . . , φm(x1, . . . , xα)/ψ(x1, . . . , xα), determine whether
for all formulas χ1, . . ., χα, if φ1(χ1, . . . , χα), . . ., φm(χ1, . . . , χα) are in L then
ψ(χ1, . . . , χα) is in L [1]. Within the context of description logics, the main motiva-
tion for investigating the unification problem was to propose new reasoning services in
the maintenance of knowledge bases like, for example, the elimination of redundancies
in the descriptions of concepts [2].
Combining algebraic and model-theoretic methods, Rybakov [7] demonstrated that the
admissibility problem and the unification problem in intuitionistic propositional logic
and modal logic S4 are decidable. Later on, Ghilardi [4], proving that intuitionis-
tic propositional logic has a finitary unification type, yielded a new solution of the
admissibility problem, seeing that determining whether a given rule of inference pre-
serves validity in intuitionistic propositional logic is equivalent to checking whether
the finitely many maximal unifiers of its premises are unifiers of its conclusion. These
results incited researchers to determine whether there exists finitely many admissible
rules of inference of intuitionistic propositional logic and modal logic S4 so that the
remaining admissible rules of inference would be derivable from them [5].
With respect to the issue of computational complexity, the admissibility problem and
the unification problem were mostly unexplored before the work of Jerábek [6] who
established the coNEXPTIME-completeness of the admissibility problem for sev-
eral intuitionistic and modal logics extending K4 such as S4 and GL, in contrast with
the satisfiability problem for these logics which is usually PSPACE-complete and
in contrast with the unification problem for modal logics contained in K4 which is
undecidable if one considers a language with the universal modality [8]. One may ask
whether the situation is getting better if the language is restricted in one way or another.
Recently, the admissibility problem in the negation-implication fragment of intuition-

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/24059975?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


istic propositional logic was proved to be PSPACE-complete [3].
Nevertheless, very little is known about the unification problem in some of the most
important description and modal logics considered in Computer Science and Artificial
Intelligence. For example, the decidability of the unification problem for the following
description and modal logics remains open: description logic ALC, modal logic K,
multimodal variants of K, sub-Boolean modal logics. In the ordinary modal language,
the modal logic Alt1 is the least normal logic containing the formula 3x → 2x. It
is also the modal logic determined by the class of all frames (W,R) such that R is
functional on W , i.e. for all s, t, u ∈W , if sRt and sRu, then t = u. In this paper, we
demonstrate that the unification problem in Alt1 is in PSPACE.

2 Definitions
Syntax Let AF be a countable set of atomic formulas (denoted x, y, etc). The set F
of all formulas (denoted φ, ψ, etc) is inductively defined as follows:

• φ ::= x | ⊥ | ¬φ | (φ ∨ ψ) | 2φ.

We define the other Boolean constructs as usual. The formula 3φ is obtained as an
abbreviation: 3φ ::= ¬2¬φ. We adopt the standard rules for omission of the paren-
theses. The degree of a formula φ, in symbols deg(φ), and its atom-set, in symbols
var(φ), are inductively defined as follows:

• deg(x) = 0, var(x) = {x},

• deg(⊥) = 0, var(⊥) = ∅,

• deg(¬φ) = deg(φ), var(¬φ) = var(φ),

• deg(φ ∨ ψ) = max{deg(φ), deg(ψ)}, var(φ ∨ ψ) = var(φ) ∪ var(ψ),

• deg(2φ) = deg(φ) + 1, var(2φ) = deg(φ).

We shall say that a formula φ is atom-free iff var(φ) = ∅. Let AFF be the set of all
atom-free formulas.

Semantics For all n ∈ N, an n-valuation is an (n+ 1)-tuple (U0, . . . , Un) of subsets
of AF . We inductively define the truth of a formula φ in an n-valuation (U0, . . . , Un),
in symbols (U0, . . . , Un) |= φ, as follows:

• (U0, . . . , Un) |= x iff x ∈ Un,

• (U0, . . . , Un) 6|= ⊥,

• (U0, . . . , Un) |= ¬φ iff (U0, . . . , Un) 6|= φ,

• (U0, . . . , Un) |= φ ∨ ψ iff (U0, . . . , Un) |= φ, or (U0, . . . , Un) |= ψ,

• (U0, . . . , Un) |= 2φ iff if n 6= 0, then (U0, . . . , Un−1) |= φ.
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Obviously, (U0, . . . , Un) |= 3φ iff n 6= 0 and (U0, . . . , Un−1) |= φ. A formula φ is
said to be n-valid, in symbols |=n φ, iff for all n-valuations (U0, . . . , Un), (U0, . . . ,
Un) |= φ. The modal logic Alt1 is the least normal logic containing the formula
3x → 2x. It is also the modal logic determined by the class of all frames (W,R)
such that R is functional on W , i.e. for all s, t, u ∈ W , if sRt and sRu, then t = u.
Obviously, Alt1 is equal to the set of all formulas φ such that for all n ∈ N, |=n φ.

Unification In the sequel, we use φ(x1, . . . , xα) to denote a formula whose atomic
formulas form a subset of {x1, . . . , xα}. We shall say that a formula ψ(x1, . . . , xα) is
unifiable iff there exists φ1, . . . , φα ∈ F such that ψ(φ1, . . . , φα) ∈ Alt1. The unifi-
cation problem is the decision problem defined as follows: given a formula ψ(x1, . . . ,
xα), determine whether ψ(x1, . . . , xα) is unifiable.

3 Lemmas
Let ψ(x) be a formula. The reader may easily verify that

Lemma 1 For all k ∈ N, the following conditions are equivalent: (1) ψ(x) is unifi-
able; (2) there exists φ ∈ AFF such that ψ(φ) ∈ Alt1; (3) there exists φ ∈ AFF
such that 2k⊥ → ψ(φ) ∈ Alt1 and 3k> → ψ(φ) ∈ Alt1.

Remark that Lemma 1 still holds when one considers a formula ψ(x1, . . . , xα) with
more than one atomic formula. In this case, simply replace the “there exists φ . . .” by
“there exists φ1, . . . , φα . . .”. Concerning the remainder of the paper, the same remark
is on as well. Hence, without loss of generality, we will always consider that ψ is a
formula with at most one atomic formula. In this case, for all n ∈ N, an n-valuation
is comparable to an (n + 1)-tuple of bits. Let k ∈ N be such that deg(ψ(x)) ≤ k.
For all φ ∈ AFF and for all n ∈ N, if k ≤ n, then let Vk(φ, n, i) = “if |=n−k+i
φ, then 1, else 0“ for each i ∈ N such that i ≤ k.

Lemma 2 For all φ ∈ AFF and for all n ∈ N, if k ≤ n, then |=n ψ(φ) iff
(Vk(φ, n, 0), . . . , Vk(φ, n, k)) |= ψ(x).

Proof: By induction on ψ(x). a

Lemma 3 For all φ ∈ AFF , 3k> → ψ(φ) ∈ Alt1 iff for all n ∈ N, if k ≤ n, then
(Vk(φ, n, 0), . . . , Vk(φ, n, k)) |= ψ(x).

Proof: Let φ ∈ AFF . The following conditions are equivalent: (1) 3k> → ψ(φ) ∈
Alt1; (2) for all n ∈ N, |=n 3k> → ψ(φ); (3) for all n ∈ N, if |=n 3k>, then
|=n ψ(φ); (4) for all n ∈ N, if k ≤ n, then (Vk(φ, n, 0), . . . , Vk(φ, n, k)) |= ψ(x). The
reasons for these equivalences to hold are the following: the equivalence between (1)
and (2) follows from the definition of Alt1, the equivalence between (2) and (3) fol-
lows from the fact that φ ∈ AFF and the equivalence between (3) and (4) follows
from Lemma 2. a
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For all φ ∈ AFF and for all n ∈ N, if k ≤ n, then let ~Vk(φ, n) = (Vk(φ, n, 0), . . . ,
Vk(φ, n, k)). For all φ ∈ AFF , let fk(φ) = {~Vk(φ, n): n ∈ N is such that k ≤ n}.
The atom-free formulas φ′ and φ′′ are said to be k-equivalent, in symbols φ′ ≡k φ′′,
iff fk(φ′) = fk(φ′′).

Lemma 4 ≡k is an equivalence relation on AFF possessing finitely many equiva-
lence classes.

Proof: By definitions of ≡k and fk, knowing that for all φ ∈ AFF , fk(φ) is a
nonempty set of (k + 1)-tuples of bits. a

Lemma 5 For all φ′, φ′′ ∈ AFF , if φ′ ≡k φ′′, then 3k> → ψ(φ′) ∈ Alt1 iff
3k> → ψ(φ′′) ∈ Alt1.

Proof: By definitions of ≡k and fk and Lemma 3. a

For all φ ∈ AFF and for all n ∈ N, let ~ak(φ, n) = ~Vk(φ, n · (k + 1) + k). For all
φ ∈ AFF , let gk(φ) = {(~ak(φ, n),~ak(φ, n+1)): n ∈ N}. We shall say that the atom-
free formulas φ′ and φ′′ are k-congruent, in symbols φ′ ∼=k φ

′′, iff gk(φ′) = gk(φ′′).

Lemma 6 ∼=k is an equivalence relation on AFF possessing finitely many equiva-
lence classes.

Proof: By definitions of ∼=k and gk, knowing that for all φ ∈ AFF , gk(φ) is a
nonempty set of pairs of (k + 1)-tuples of bits. a

Lemma 7 For all φ′, φ′′ ∈ AFF , if φ′ ∼=k φ
′′, then φ′ ≡k φ′′.

Proof: Let φ′, φ′′ ∈ AFF . Suppose φ′ ∼=k φ
′′ and φ′ 6≡k φ′′. Hence, gk(φ′) = gk(φ′′)

and fk(φ′) 6= fk(φ′′). Thus, there exists n′ ∈ N such that k ≤ n′ and ~Vk(φ′, n′) 6∈
fk(φ′′), or there exists n′′ ∈ N such that k ≤ n′′ and ~Vk(φ′′, n′′) 6∈ fk(φ′). With-
out loss of generality, assume there exists n′ ∈ N such that k ≤ n′ and ~Vk(φ′, n′) 6∈
fk(φ′′). By the division algorithm, there exists m, l ∈ N such that n′ = m · (k+1)+ l
and l < k + 1.
Case m = 0. Since k ≤ n′, n′ = m · (k + 1) + l and l < k + 1, then n′ = k. Hence,
~Vk(φ′, n′) = ~ak(φ′, 0). Since gk(φ′) = gk(φ′′), then there exists n′′ ∈ N such that
(~ak(φ′, 0),~ak(φ′, 1)) = (~ak(φ′′, n′′),~ak(φ′′, n′′ + 1)). Since ~Vk(φ′, n′) = ~ak(φ′, 0),
then ~Vk(φ′, n′) = ~Vk(φ′′, n′′ · (k + 1) + k).
Case m 6= 0. Since gk(φ′) = gk(φ′′), then there exists n′′ ∈ N such that (~ak(φ′,m−
1),~ak(φ′,m)) = (~ak(φ′′, n′′),~ak(φ′′, n′′+1)). Hence, Vk(φ′, (m−1)·(k+1)+k, i) =
Vk(φ′′, n′′ ·(k+1)+k, i) and Vk(φ′,m·(k+1)+k, i) = Vk(φ′′, (n′′+1)·(k+1)+k, i)
for each i ∈ N such that i ≤ k. Since n′ = m · (k + 1) + l and i ≤ k − (l + 1) and
Vk(φ′,m · (k+ 1) + l, i) = Vk(φ′, (m− 1) · (k+ 1) + k, i+ (l+ 1)), or k− l ≤ i and
Vk(φ′,m · (k+1)+ l, i) = Vk(φ′,m · (k+1)+k, i− (k− l)) for each i ∈ N such that
i ≤ k, then i ≤ k − (l + 1) and Vk(φ′, n′, i) = Vk(φ′′, n′′ · (k + 1) + k, i+ (l + 1)),
or k − l ≤ i and Vk(φ′, n′, i) = Vk(φ′′, (n′′ + 1) · (k + 1) + k, i − (k − l)) for each
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i ∈ N such that i ≤ k. Thus, Vk(φ′, n′, i) = Vk(φ′′, (n′′ + 1) · (k + 1) + l, i) for each
i ∈ N such that i ≤ k. Therefore, ~Vk(φ′, n′) = ~Vk(φ′′, (n′′ + 1) · (k + 1) + l).
In both cases, ~Vk(φ′, n′) ∈ fk(φ′′): a contradiction. a

Lemma 8 For all φ′, φ′′ ∈ AFF , if φ′ ∼=k φ′′, then 3k> → ψ(φ′) ∈ Alt1 iff
3k> → ψ(φ′′) ∈ Alt1.

Proof: By Lemmas 5 and 7. a

We shall say that a nonempty set B of pairs of (k + 1)-tuples of bits is modally defin-
able iff there exists φ ∈ AFF such that B = gk(φ). For all nonempty sets B of pairs
of (k + 1)-tuples of bits, let .B be the domino relation on B. A path in the directed
graph (B, .B) is said to be weakly Hamiltonian iff it visits each vertex at least once.
Let ~1k+1 be the (k + 1)-tuple of 1 and ~0k+1 be the (k + 1)-tuple of 0.

Lemma 9 For all nonempty sets B of pairs of (k + 1)-tuples of bits, B is modally
definable iff the directed graph (B, .B) contains a weakly Hamiltonian path ending
with (~1k+1,~1k+1), or ending with (~0k+1,~0k+1).

Proof: Let B be a nonempty set of pairs of (k + 1)-tuples of bits.
If. Suppose the directed graph (B, .B) contains a weakly Hamiltonian path ending
with (~1k+1,~1k+1), or ending with (~0k+1,~0k+1). Hence, there exists s ∈ N and there
exists (b′0, b

′′
0), . . . , (b′s, b

′′
s ) ∈ B such that ((b′0, b

′′
0), . . . , (b′s, b

′′
s )) is a weakly Hamil-

tonian path ending with (~1k+1,~1k+1), or ending with (~0k+1,~0k+1). Let (β0, . . . ,
βs·(k+1)+k) be the sequence of bits determined by the sequence (b′0, , . . . , b

′
s) of (k+1)-

tuples of bits.
Case (b′s, b

′′
s ) = (~1k+1,~1k+1). Let φ =

∨
{3i2⊥: i ∈ N is such that i < s · (k +

1) and βi = 1} ∨3s·(k+1)>.
Case (b′s, b

′′
s ) = (~0k+1,~0k+1). Let φ =

∨
{3i2⊥: i ∈ N is such that i < s · (k +

1) and βi = 1}.
In both cases, the reader may easily verify that for all n ∈ N, if n ≤ s, then Vk(φ, n ·
(k + 1) + k, i) = βn·(k+1)+i for each i ∈ N such that i ≤ k. Hence, for all n ∈ N,
if n ≤ s, then ~Vk(φ, n · (k + 1) + k) = b′n. Thus, for all n ∈ N, if n ≤ s, then
(~ak(φ, n),~ak(φ, n+ 1)) = (b′n, b

′′
n). Therefore, B = gk(φ).

Only if. Suppose B is modally definable. Hence, there exists φ ∈ AFF such that
B = gk(φ). Obviously, there exists n0 ∈ N such that for all n ∈ N, if n0 ≤ n,
then ~ak(φ, n) = ~1k+1, or for all n ∈ N, if n0 ≤ n, then ~ak(φ, n) = ~0k+1. Thus,
((~ak(φ, 0),~ak(φ, 1)), . . . , (~ak(φ, n0),~ak(φ, n0 + 1))) is a weakly Hamiltonian path
ending with (~1k+1,~1k+1), or ending with (~0k+1,~0k+1). a

4 Algorithm
We are now in a position to formulate the main result of this paper.

Proposition 1 The unification problem in Alt1 is in PSPACE.
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Proof: Using the above Lemmas, when k is such that deg(ψ(x)) ≤ k, the given
formula ψ(x) is unifiable iff there exists a modally definable set B of pairs of (k + 1)-
tuples of bits from which, by means of its domino relation, an infinite sequence of bits
respecting ψ(x) and ending with 1s, or ending with 0s can be constructed. Hence, it
suffices to consider the following procedure:

procedure UNI(ψ(x))
begin
k := deg(ψ(x))
guess a tuple (b(0), . . . , b(k)) of bits of size k + 1
bool := >
i := 0
while bool ∧ i ≤ k do

begin
bool := MC(b(0), . . . , b(i), ψ(x))
i := i+ 1
end

if ¬bool, then reject
while (b(0), . . . , b(k)) 6= ~0k+1 ∧ (b(0), . . . , b(k)) 6= ~1k+1 do

begin
guess a tuple (b(k + 1), . . . , b(2k + 1)) of bits of size k + 1
bool := >
i := 0
while bool ∧ i ≤ k do

begin
bool := MC(b(i+ 1), . . . , b(i+ k + 1), ψ(x))
i := i+ 1
end

if ¬bool, then reject
(b(0), . . . , b(k)) := (b(k + 1), . . . , b(2k + 1))
end

accept
end

The function MC(·) takes as input a tuple (b(i), . . . , b(i + j)) of bits and a formula
ψ(x) and returns the Boolean valueMC(b(i), . . . , b(i+j), ψ(x)) = “if (b(i), . . . , b(i
+j)) |= ψ(x), then >, else ⊥“. It can be implemented as a deterministic Turing ma-
chine working in polynomial time. The procedure UNI(·) takes as input a formula
ψ(x) and accepts it iff, when k = deg(ψ(x)), there exists a modally definable set
B of pairs of (k + 1)-tuples of bits from which, by means of its domino relation,
an infinite sequence of bits respecting ψ(x) and ending with 1s, or ending with 0s
can be constructed. By Lemma 9, the procedure UNI(·) accepts its input ψ(x) iff
ψ(x) is unifiable. It can be implemented as a nondeterministic Turing machine work-
ing in polynomial space. Hence, the unification problem is in NPSPACE. Since
NPSPACE = PSPACE, the unification problem is in PSPACE. a

Still, we do not know whether the unification problem in Alt1 is PSPACE-hard.
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5 Conclusion
Much remains to be done. For example, one may consider the unification problem
when the ordinary modal language is extended by a set AP of parameters (denoted
p, q, etc). In this case, the unification problem is to determine, given a formula
ψ(p1, . . . , pα, x1, . . . , xβ), whether there exists formulas φ1, . . . , φβ such that ψ(p1,
. . . , pα, φ1, . . . , φβ) ∈ Alt1. For each k ≥ 2, one may also consider the unifica-
tion problem inAltk, the least normal logic containing the formula 3(x1∧¬x2∧ . . .∧
¬xk−1∧¬xk)∧. . .∧3(¬x1∧¬x2∧. . .∧¬xk−1∧xk)→ 2(x1∨x2∨. . .∨xk−1∨xk).
In other respects, one may consider the unification problem when the ordinary modal
language is replaced by its multimodal variant. Finally, what becomes of these prob-
lems when the ordinary modal language is extended by the universal modality?
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