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Abstract

The visualization of simulation trajectories is a well-established approach to analyze simulated processes. Likewise, the visu-
alization of the parameter space that configures a simulation is a well-known method to get an overview of possible parameter
combinations. This paper follows the premise that both of these approaches are actually two sides of the same coin: Since the
input parameters influence the simulation outcome, it is desirable to visualize and explore both in a combined manner. The main
challenge posed by such an integrated visualization is the combinatorial explosion of possible parameter combinations. It leads
to insurmountably high simulation runtimes and screen space requirements for their visualization. The Visual Analytics approach
presented in this paper targets this issue by providing a visualization of a coarsely sampled subspace of the parameter space and
its corresponding simulation outcome. In this visual representation, the analyst can identify regions for further drill-down and thus
finer subsampling. We aid this identification by providing visual cues based on heterogeneity metrics. These indicate in which
regions of the parameter space deviating behavior occurs at a more fine-grained scale and thus warrants further investigation and
possible re-computation. We demonstrate our approach in the domain of systems biology by a visual analysis of a rule-based model
of the canonical Wnt signaling pathway that plays a major role in embryonic development. In this case, the aim of the domain
experts was to systematically explore the parameter space to determine those parameter configurations that match experimental
data sufficiently well.
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1. Introduction

Exploring the parameter space as well as exploring simula-
tion trajectories both struggle with the question, which respec-
tive regions should be observed for interesting behavior. And
even if these regions were known, it is still open at which level
of granularity to look at these regions in order to guarantee that
all crucial information is captured. The first question relates
to the extent of the observation, while the second relates to the
grain of observation – together they define the observation’s
scale [1, pp.55-65]. When analyzing the mere outcome of a
single simulation, the problem of finding the right scale of ob-
servation is already challenging [2]. As one can independently
drill down in the two aspects of input parameters and simu-
lation output, their combined exploration increases the search
space for a suitable scale dramatically. As a result of this, screen
space requirements and computation times increase as well, be-
cause it requires to precompute simulations for the multitude of
parameter combinations to be able to show them in concert.

In this paper, we contribute a Visual Analytics approach
that addresses this challenge and aims to achieve such an in-
tegrated visualization of parameter space and resulting simula-
tion trajectories. This approach is based on a coarsely sampled
parameter space to address the challenge of high computation
times, for which the simulation output is visualized at an even
coarser scale to address the challenge of high screen space re-

quirements. To aid in navigating this multi-scale setup, we fur-
ther provide means to inform the analyst in a coarse-grained
overview where it is worthwhile to drill down towards more
fine-grained scales. At first, such a drill-down will show the
more fine-grained simulation results at lower levels that have
already been computed. When the drill-down has exhausted
the computed results, it can be used to make an informed deci-
sion on whether to run additional simulations for a more fine-
grained subsampling. This way, only those regions that actu-
ally exhibit behavior of interest are re-simulated at a more fine-
grained scale. Through this close tie-in between computation
and visual exploration, we effectively avoid an impossible ex-
haustive simulation, visualization, and exploration of the entire
parameter space.

The following Section 2 will briefly discuss the existing
approaches for parameter space visualization, before we will
introduce our overall Visual Analytics approach in Section 3.
This approach is given as a generic workflow that is applicable
as a domain-independent solution strategy and then detailed for
our specific context that yields time-series data (1-dimensional
trajectories) as outcome of a stochastic simulation. Our realiza-
tion of this approach is further exemplified by a use case from
the domain of systems biology in Section 4. This example in-
vestigates an 11-dimensional continuous parameter space for
which stochastic simulations with 4096 sampled time steps and
50 replications each are performed. The advantages that our ap-
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proach has over traditional approaches for inspecting such data,
as well as its inherent limitations are discussed in Section 5, be-
fore giving some concluding remarks and an outlook on future
work in Section 6.

2. Related Work

The dependency between input parameters and computation
outcome has been subject of visualization research for quite
some time. The simplest kind of parameter visualization poses
a concrete parameter combination and seeks to visualize the
corresponding computation outcome. Examples for such vi-
sualizations range from early ones, such as the Influence Ex-
plorer [3], to more recent and more sophisticated ones, such
as the system described in [4]. While the earlier example fea-
tures most prominently a number of interactive sliders to set the
desired parameter combination, the setting of parameters is al-
ready more advanced in the later example, in which variations
of control parameters are shown in histograms, scatterplots and
alike. Some techniques even integrate the computation outcome
into the parameter setting interface as with Image Graphs [5] or
spreadsheet interfaces [6].

Computationally and visually more challenging are tech-
niques that have the opposite take on the problem: given a
desired computation outcome, they want to determine and vi-
sualize combinations of input parameter values that will (ap-
proximately) lead to this outcome. To ask the question this way
around is a more recent challenge that has led to the develop-
ment of a number of novel visualization approaches. Among
them are result-driven explorations of visual effects [7, 8, 9],
the accuracy-driven exploration of simulation results [10], and
the multi-dimensional optimization of quantification indicators
proposed in the Vismon system [11].

All of these approaches have in common, that they aim at
individual parameter combinations of simulation results. Thus,
visualizations of the entire parameter space that show the sim-
ulation outcome for a large number of parameter combinations
fall into a third category of parameter visualization. Examples
for this category are the parameter space visualization for im-
age analysis [12] and the 2-dimensional embedding of high-
dimensional parameter spaces for navigation and interaction
[13]. This third category faces the same challenges of high
computation time and high screen space requirements as we
have outlined them in Section 1. In most cases, visualizations
of this category thus apply a sampling of the parameter space as
well, in order to cope with these challenges. One solution that
enables the user to focus on known regions of interest and pre-
vents him from spending time exploring meaningless parame-
ter combinations is the use of presets, as it has been utilized
by [13]. Beyond presets, first approaches like [14] or the Tuner
system [15] aim to point the user towards locations in the pa-
rameter space that might be of interest but are not yet covered
by the current parameter sampling. They use estimation and ob-
jective functions to compute these locations, albeit noting that
this may not be possible to extend to all application domains –
in particular not to those that underlie random processes, like
stochastic simulation does.

Drilling down and refining an initial sampling of the pa-
rameter space without any estimation – as our approach aims
to achieve it – is an application of the domain of multi-scale
visualization. There are several approaches that aim to provide
solutions for investigating data at different scales. These can be
divided into approaches that permit their interactive exploration
by switching between scales and approaches that mix different
scales by partially embedding high resolution data into coarser
scales.

The interactive approaches rely on common hierarchical nav-
igation techniques, such as drill-down and roll-up [16], to switch
seamlessly between different scales. Sophisticated examples
utilizing this navigation scheme are the SignalLens [17],
ChronoLenses [18], or the Stack Zooming approach [19]. As
such an interactive approach requires some time to fully explore
the data, one can employ methods that detect and show regions
or points of interest where a drill-down might be worthwhile.
For example, the approach of [2] computes the local differences
between subsequent scales and depicts them in so-called het-
erogeneity bands alongside the visualization. These alert users
where deviating behavior from the currently shown time-plot
can be observed by drilling down into scales that are currently
below pixel-size and thus not discernable.

The embedding approaches use often very similar measures
to the interscale differences described above, but they utilize
this information differently by embedding the detected patterns
on the finer scale into the coarser scale of the overall behavior
of the data [20]. Depending on what patterns these measures
detect and subsequently embed, these approaches are called,
for example, outlier-preserving [21] or peak-preserving [22].
Others techniques, such as the Clustering Visualization Spread-
sheet [23] try to reintroduce data characteristics that may have
been missed due to masking effects back into the visualization.

So far, to the best of our knowledge, both approaches – pa-
rameter space visualization and multi-scale visualization – have
not been brought together. Yet we see a clear need to do so, as
multi-scale visualization can be used to address the challenges
that parameter space visualization poses beyond the mere sup-
port via presets. They can aid the human analyst in choosing
just the right scale to run the simulations at and to look at the
resulting outcome, so that computation time and screen space
can be allotted to exactly those regions in the parameter space
and those parts of the simulation results that show behavior of
interest. The next section outlines how we propose to combine
these two visualization approaches in order to achieve this.

3. Our Principal Approach and Visual Analytics Setup

Our principal approach consists of three stages which each
relate to a different aspect of the Visual Analytics process –
the data, the visualization, and the insight gained by the human
analyst. This overall approach is described in the following sec-
tion, before the three stages and their realization in our visual
analytics setup are introduced in detail in the sections thereafter.
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3.1. Our Principal Approach

Visual Analytics is all about the back and forth between
computational analysis, visual exploration, and the human in
the loop who is steering this process. In our case, the subject of
analysis is a model of a real system and its multi-dimensional
parameter space, whereas the computational method of analysis
is its simulation. While its purely computational analysis would
be too runtime-intensive to be practical, the combination of (I)
computational analysis, (II) visual exploration, and the (III) de-
cision making abilities of the human in the loop can actually
generate meaningful insights even in such a complex setting.
This is achieved by iteratively carrying out the following three
stages:

Stage I: Computational Analysis. This stage performs the re-
quired computations. It encompasses the three steps of (1) sam-
pling the parameter space, (2) running the simulation for each
sampled parameter combination, and (3) recording the simu-
lation results for a given duration at given intervals. The main
concept of this stage is that it only runs the time-intensive simu-
lations for a coarse-grained subdivision of the parameter space
and logs their output at rather coarse time intervals, so that it
can be carried out in reasonable time.

Stage II: Visual Exploration. This stage depicts the generated
coarse-grained simulation trajectories by combining methods
from parameter space visualization and multi-scale visualiza-
tion. To first generate and then interactively explore this vi-
sualization, we follow the three steps of (1) delineating the
multi-dimensional parameter space, (2) choosing a sequence
of scales, and performing a (3) targeted drill-down along the
chosen scales. The core idea of this stage is that it allows the
human analyst to systematically identify those regions of the
input parameter space and those time intervals of the simula-
tion trajectory that exhibit behavior of interest and thus warrant
further investigation.

Stage III: Decision Making. This stage captures the informed
choices the analyst can make based on his observations to fur-
ther refine the simulation of future configurations. As the ana-
lyst can reconfigure the simulation with respect to the parameter
space and to the simulation trajectories, two independent deci-
sions have to be made on (1) refining the input parameter space
and (2) refining the recorded simulation output. The aim behind
this stage is that the analyst can narrow down the extent of the
parameter space to scan and of the time interval to observe, in
order to be able to increase their grain in the next iteration of
these three stages.

Different application scenarios require different simulation
approaches, which in turn require different sets of parameters
and produce different kinds of outputs. As a result, the prin-
cipal approach presented above must be tailored to each indi-
vidual scenario and its particular parameters and simulation re-
sults by instantiating it with concrete analysis and visualization
methods. The outcome is a procedure that follows the overall
workflow of the principal approach, but is customized to the

case at hand. The following sections detail our particular real-
ization of the principal approach for 1-dimensional simulation
trajectories produced by stochastic simulation runs.

3.2. Stage I: Computational Analysis

This stage assumes a model with n parameters and an upper
limit of s simulations to be run. As the used simulation method
is stochastic, it is repeated for r simulation runs whose results
are recorded for the duration of p time points.

1. Sampling the Parameter Space. Since we are only able to
run a limited number s of simulations, yet have to take into ac-
count that each simulation is repeated r times due to the stochas-
ticity, effectively only s ÷ r simulations of different parameter
combinations are possible. Nevertheless, we want these simu-
lations to be evenly distributed across the parameter space, so
that their combined outcome captures the array of all potential
outcomes as best as possible.

Naı̈vely, one can sample the n-dimensional parameter space
evenly at k points per parameter to yield kn simulations to be
run. Yet, depending on the number of repetitions r, this often
leads to the effect that too few simulations can actually be per-
formed to adequately cover the parameter space – i.e., with only
1 or 2 samples per parameter. To resolve this issue, we instead
use an alternative sampling method based on Latin Hypercubes
(LHS) [24, 25]. It aims to pick c parameter combinations from
the n-dimensional parameter space, so that an even coverage is
achieved and at the same time, c ≤ s ÷ r is ensured.

2. Running the Simulation. For each of the combinations deter-
mined in the first step, a simulation is performed. To speed-up
their computation, we can parallelize the simulation to be run
across multiple machines. For the particular case of stochastic
simulation, we can subdivide the computational load by the rep-
etitions [26] or by the parameter combinations [27]. For great-
est flexibility, we utilize a combined approach that takes both
variants into account.

3. Recording the Simulation Trajectory. Considering that stor-
ing the output data from a simulation may require a substantial
part of the overall simulation time warrants to single out this
step [28]. We record the simulation trajectories of all simula-
tion runs at a fixed time interval that defines the temporal grain
of our observation and yields p points in time at which the sim-
ulation state is captured. It is important that the time intervals
are fixed across all simulation runs, so that the repetitions of
the simulations are recorded at the same time points and can
thus be averaged into a single resulting trajectory to even out
the effects of the stochasticity. In this context, one has to note
that even though a simulation may run for a certain duration
at a certain level of granularity (e.g., step size), the duration
and granularity that are required for later analysis may be only
a subset of these. For example, in many cases the simulation
state is not recorded during an initial setting time of a given
duration as it bears no meaning until the simulation becomes
reasonably stable [29, p.101].
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Figure 1: 2D visualization of simulation runs. After sorting the simulation
trajectories, each trajectory is color-coded into a pixel row and then stacked to
form a 2D image.

After processing these three steps, we have a data basis of
c simulation trajectories that were averaged from their r repeti-
tions, each consisting of p time points. The next stage addresses
the issue of their visualization and interactive exploration.

3.3. Stage II: Visual Exploration
This stage aims to make the data resulting from Stage I in-

teractively available in a visual analysis setup. In the following
discussion, we assume that c and p each exceed by far the num-
ber of horizontally or vertically available pixels in the visual
setup, as it is not only the worst case, but also the most com-
mon case.

1. Delineating the Parameter Space. Since the parameter space
is n-dimensional, but we want to depict it on the screen, it has to
be transformed/projected into 2-dimensional space. Such a pro-
jection is a key part of all parameter space visualizations, which
use different ways to do so. For example, in [12] a tree structure
is used to map the different parameter combinations to a linear
sequence represented by the tree’s leaves, whereas [13] uses a
2-dimensional embedding. In our case, we use a 1-dimensional
embedding (i.e., linear sorting) that keeps the second dimen-
sion for displaying the simulation trajectories. While the order
of the time points of these trajectories is given by their inher-
ent temporal sequence, the order of the parameter combinations
can be freely arranged (see Figure 1).

To arrange them in a manner that will permit the user to per-
ceive regularities and relationships in the visualization, we seek
to define an order that places parameter combinations close to-
gether either according to the simulation trajectories or accord-
ing to the parameters themselves. The first sorting option allows
for analyzing the influence of parameters, while the second or-
dering focuses on the detection of interesting behavior and on a
subsequent refinement of the sampling.

For both orderings, we have experimented with several de-
lineation approaches among which are Euclidean distance, gra-
dient distances, space-filling curves, Hausdorff distance, and
Fréchet distance. In the end, we achieved the best results by
using an averaged squared distance (cp. [30]) for sorting by the

simulation trajectories and an averaged Euclidean distance for
the parameter sorting. Nevertheless, to handle alternative setups
the user can interactively select between the above distances
and chose the simulation trajectories, a certain interval of them,
the parameters or an according parameter subset to be the base
of sorting.

2. Choosing a Sequence of Scales. As a result of the last step,
we have a 1-dimensional embedding of the parameter space
mapped to the vertical axis as well as the simulation trajectory
for each sampled parameter combination mapped to the hori-
zontal axis. As c and p exceed the dimensions of the viewing
area, we need to show an overview at a coarser scale first, in
which the analyst can then drill down to look at more detailed
scales. For this coarsening, we apply a bisection of the resolu-
tion, which is performed by recursively sampling the parameter
combinations and recursively aggregating the temporal scale.

As both aspects can be navigated independently (i.e., we
can change the scale of the parameters separately from the scale
of the simulation trajectories), this results in a 2-dimensional
array of all possible scale combinations (see Figure 2(a)). A
zoom-in/drill-down operation would usually scale both aspects
simultaneously – i.e., when the temporal granularity of the sim-
ulation trajectory doubles, one would also expect the resolution
of the parameter space to double. This means, that such a tra-
ditional drill-down would only use the scales on the diagonal
of that array and thus limit the exploratory analysis to viewing
only these. To increase the flexibility of this process, we allow
the user to interactively define his own drill-down path through
that array (see Figure 2(b)).

In order to support the user by hinting at the most promis-
ing paths across the scales, we utilize the heterogeneity-based
approach from [2]. Its main idea is, to use heterogeneity in-
formation between neighboring scales (see Figure 2(a)) as an
indicator for noteworthy information at the more fine grained
scales. This heterogeneity information can be generated by var-
ious metrics – each of which capturing different notions of dif-
ference or divergence between subsequent scales. We provide
a number of such metrics (e.g., the absolute difference and the
gradient) for the user to interactively choose from. We aggre-
gate the computed, detailed heterogeneity information between
neighboring scales and encode it into the so called scale selec-
tion matrix (see Figure 2(b)). Using a color-coding, high het-
erogeneities are represented by saturated colors along the bor-
ders between the matrix’ entries. Based upon this interactive
matrix, the user can select a sequence of scales (see Figure 2(b))
to be used for the exploratory drill-down of the data (see Fig-
ure 2(c)). This selection is supported by means that allow the
user to select column-wise sequences, row-wise sequences, and
arbitrary sequences along straight lines drawn onto the matrix.
Figure 3(a) shows the matrix display within our application.

3. Targeted Drill-down along the Chosen Scales. Once the
path through the scales is chosen, we show the actual numer-
ical values of the simulation trajectories by mapping them onto
color by using a bivariate color scale from [31] (cp. Figure 1).
It encodes positive (red) and negative (blue) deviation from a
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Figure 2: The main conceptual components of our approach. Different heterogeneities H1...n between neighboring scales are calculated (a). To determine an
exploration path through the scale combinations, one of the computed heterogeneities is selected, aggregated, and displayed between neighboring cells of the
scale selection matrix (b). Selecting a path in the matrix determines a sequence of scales combined with the corresponding interscale heterogeneities (c). That
heterogeneity information H1...n is projected row- and column-wise (d) to depict it in heterogeneity bands along the main view of the currently selected scale (e).
These bands, as well as an interactively displayable line chart, overplotting indicators, and further details on demand support the exploration of the multiple scales.

reference value measured in the lab. The result can be seen in
Figure 3(b), showing areas of the parameter space that lead to
positive deviations at the bottom and areas that lead to values
lesser than the measured reference at the top. Outcomes that
match the reference value and show no deviation at all are lo-
cated close to the lower border colored entirely in yellow.

The analyst can then start to drill into the data along the se-
quence of scales he has chosen. As always the same number of
pixels are available, a drill-down into a more fine-grained scale
will automatically require to reduce the extent the analyst is in-
vestigating. To aid the analyst in making an informed choice on
where to drill down (extent) and how far to drill down (grain),
we compute and show measures of interestingness to indicate

possible exploration targets. As before with the scale selec-
tion matrix, we make use of interscale heterogeneities, which
quantify how much data on a more fine-grained scale deviates
from a more coarse-grained scale according to [2]. As there
is no screen space to show all 2-dimensional heterogeneities
in full resolution, we accumulate the calculated heterogeneities
between all consecutive scales vertically and horizontally (see
Figure 2(d)). To provide guidance according to multiple metrics
at once (e.g., the absolute difference or gradient), this procedure
is repeated for each of them. The results are color-coded het-
erogeneity bands on both sides of the main view that shows the
stacked trajectories (see Figure 2(e)). For a clear differentia-
tion, each metric is represented in its own color scale, mapping
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Figure 3: Instance of our Visual Analytics setup. The setup consists of several interlinked components: (a) The matrix of scales for selecting a drill-down order.
The colored bands between neighboring matrix cells indicate the interscale heterogeneity between them and thus hint at promising candidates to zoom into. The
currently chosen order is indicated by filling the corresponding cells gray. In the shown case, the drill-down order is defined only across temporal scales (from left
to right), whereas the scale of the parameters remains at the finest resolution (top row). (b) The main view that depicts the vertically aligned simulation trajectories.
The actual numerical value along the trajectory is color-coded according to the bivariate color palette shown in (c). The view can be read horizontally from left
to right tracing the simulation trajectories over time for the parameters associated with each row. Yet, it can also be looked at vertically to compare the different
simulation states across the parameter space at the simulation time that is associated with each column. The currently shown scale in the main view is indicated in
the matrix (a) with a dark gray inset in the corresponding matrix cell. (d) The vertical heterogeneity view indicates with colored bands where in the parameter space
a drill-down or roll-up would uncover deviating behavior from the currently shown scale of the simulation outcome. Each band (red/blue) stands for a different
heterogeneity metric. Additional metrics can be added, so that a user can base his decision on multiple metrics at the same time. (e) The horizontal heterogeneity
view indicates the same for the temporal scales. Both heterogeneity views make use of the algorithm presented in [2] to compute and visualize these bands. (f) The
parameter space view encodes each parameter as a band of black-and-white stripes. The brighter they are, the higher is their parameter value in a given parameter
combination. The highlighted data aspects 〈1〉 through 〈3〉 are detailed further in Sections 3.4 & 4.3.

a zero heterogeneity to white and high heterogeneity values to
saturated colors.

In our current analysis setup, we are interested in parame-
ter settings, whose simulation trajectories represent local out-
liers concerning numerical values as well as the trajectory’s
trend. Thus, we use a point-wise absolute Euclidian distance
and a 1D-gradient as heterogeneity metrics. The 1D-metric cap-
tures trend differences only in the horizontal direction as we are

more interested in changes in the temporal direction at different
scales, than trends along neighboring parameter combinations.
Moreover, the latter vertical trends depend on the applied sort-
ing and thus are of less meaningful.

The purpose of all these heterogeneity metrics is to point
the user towards more fine-grained data that diverges from the
currently shown coarse-grained overview, so that he can tar-
get his drill-down to these regions (e.g., between the intervals
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of Figure 3〈1〉). For this purpose, we provide common navi-
gation techniques like fisheye distortions, pan and zoom, drill-
down and roll-up along the selected traversal order of scales,
as well as direct scale selection in the selection matrix. Dur-
ing the interactive exploration process, indicators next to the
heterogeneity bands (Figure 1(e)) continuously inform the user,
if the current view is affected by overplotting to advise a fur-
ther reduction of the extent (zoom, cp. [2]). As all views are
tightly interconnected, such actions update all other views im-
mediately. To provide conclusive information for the Decision
Making-stage, we further show details on demand for selected
parameter settings. These give the precise numerical parame-
ter values for a parameter combination of interest and depict its
simulation trajectory along the reference data in a more conven-
tional time-value-plot above the main view (Figure 1(e)).

Equipped with such an interactive exploratory technique to
investigate the simulation outcome across the parameter space
on several scales, the analyst can make observations from the
data that lead to decisions for future simulation runs.

3.4. Stage III: Decision Making
The drill-down can only be repeated as long as simulation

results are available for the more fine-grained levels. If at some
point during the exploration of the data the user wants to drill
down further, more simulations at finer temporal scales and a
finer sampling of the parameter space have to be run for the
region of interest. Informed by the visual exploration of the pa-
rameter space, the user can now decide on suitable refinements
for such future simulation runs.

1. Refining the Input Parameter Space. After investigating how
the current simulation results behave across the parameter space,
the analyst may observe differing degrees of influence for dif-
ferent parameters. One parameter may not influence the simu-
lation outcome much and can either be sampled more coarsely
or it can even be left out completely in the future. Whereas an-
other parameter may exhibit interesting behavior that could not
be fully explored at its current sampling rate and thus demands
a more fine-grained subsampling in future simulation runs. If
both cases are observed in conjunction, the analyst can shift
computing time from one parameter to the other in order to bet-
ter balance future simulation experiments.

For example, in the parameter space view in Figure 3(f),
parameter kAsyn has predominantly high values in the regions
that exhibit a positive deviation from the measured reference
value, whereas the parameters kWsyn, kbetasyn, and kAdeg ap-
pear to have the opposite effect. Hence, they seem to play a
major role in how the simulation trajectories behave and would
be worthwhile to be subsampled further in future simulation
runs to confirm this observation and to investigate it in more
detail. Yet other parameters do not exhibit such a clear pattern
with their values being almost randomly distributed. As appar-
ently these other parameters do not have a significant effect on
the simulation outcome, they can either be neglected entirely
in future simulation runs (i.e., set to some constant value) or
they can be sampled more coarsely. This way, the analyst can
shift computing time from parameters that show no effect on the

simulation outcome to others that do in order to better balance
future simulation experiments towards parameters of interest.

2. Refining the Recorded Simulation Trajectory. Likewise, the
analyst could observe time intervals in the simulation trajecto-
ries, in which not much behavior of interest occurs, while other
intervals show such behavior and would thus be interesting to
look at more closely. Hence, intervals of the simulation trajec-
tory that do not exhibit much dynamics can either be recorded
more coarsely or omitted altogether in the recording.

In Figure 3〈1〉 for example, no changes appear before 70min,
as well as between 150min and 300min of the simulated time
span. Thus, the resources can be reallocated to run region-
specific simulations on more or less fine-grained scales, accord-
ing to the dynamic behavior that was observed.

Having gained this knowledge about which of the param-
eters and which intervals of the simulation trajectories are of
high interest, any subsequent simulation can be targeted directly
at them, while leaving out those of lesser interest. Thus, another
analysis cycle starting with Stage I would be carried out, but
this time taking the gained knowledge into account and shifting
the initially even subdivision of the parameter space and evenly
recorded simulation trajectories so that they better capture the
identified areas of high interest. The following section illus-
trates with a use case example, how such an iterative analysis is
performed in order to gain insight in a real-world scenario.

4. Use Case: Exploring Temporal and Parameter Scales

This section demonstrates our approach with an example
from the domain of systems biology. Based on a biological
model, which is described in Section 4.1, simulation runs are
executed for a few thousand different parameter combinations
in order to get a good grasp of the model’s overall behavior.
From these simulation runs, the concentration of a key molecule
is recorded and matched against experimental lab data.

There exist several different approaches to calculate the pa-
rameter configuration that fits available lab data best [32, 33].
For the computational model that we use for simulation, such
approaches have been used in the past to compute and provide
parameter values (initial molecule counts and reaction rate con-
stants) that lead to plausible trajectories [34]. However, for de-
veloping new hypotheses and regarding potential model exten-
sions, an automated optimization method does not suffice and a
detailed exploratory analysis of alternative parameter configu-
rations in regard to deviations from the measured reference data
is desired. As the following sections illustrate, with our Visual
Analytics setup, the parameter space can be explored accord-
ingly and lead to parameter configurations that give concrete
guidance on where to refine future simulation runs to yield fur-
ther insights.

4.1. Biological Background
The main focus of the study lies on neuronal differentiation

in human stem cells, in particular progenitor cells. Progeni-
tor cells are already more specialized than stem cells, but they
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still have the ability to transform (differentiate) into different
cell types. For example, neuronal progenitor cells can still dif-
ferentiate into various neuronal cell types, such as neurons or
glial cells. Interestingly the fraction of neurons evolving from
a set of progenitor cells increases significantly, when the cells
are treated with Wnt molecules. This process might play an
essential role in the treatment of neurodegenerative diseases,
like Alzheimer’s disease. Therefore it is important to know the
detailed cellular mechanisms that take place when stimulating
progenitor cells with Wnt molecules (Wnt signaling). Addi-
tionally, Wnt signaling is also connected to a number of human
cancers and developmental disorders.

To study Wnt signaling in neuronal progenitor cells, a com-
putational stochastic model has been established, based on ex-
perimental data. The model is defined in the modeling formal-
ism ML-Rules [35]. It comprises 3 hierarchical levels (cell,
nucleus, protein), 6 (attributed) molecules, and 13 reaction rate
constants and is based upon [34]. The model describes major
components of the canonical Wnt signaling pathway and their
intracellular dynamics.

The key component of Wnt signaling is a protein called
β-catenin. It is mainly located in the intracellular fluid (cy-
tosol). When progenitor cells are stimulated by extracellular
Wnt molecules, a cascade of chemical reactions is triggered
inside the cytosol. As a result, β-catenin is transported into
the cell nucleus, where it activates specific genes. The reloca-
tion of β-catenin into the nucleus is the main indicator for the
pathway activation. However, the detailed mechanism by which
Wnt mediates β-catenin relocation is still poorly understood and
subject of intensive study [36].

4.2. Stage I: Computational Analysis

The data set is produced by simulating the previously de-
scribed model using a τ−leaping implementation of the stochas-
tic simulation algorithm [37].

Sampling the Parameter Space. For the sampling of the param-
eter space, we used a subset of n = 11 parameters that are sup-
posed to have the strongest impact on the signaling pathway.
Typically these parameters are “bottlenecks” in the pathway
and characterized by a low molecule count or a slow reaction
rate. Consequently, already small changes in these parameter
values may have a major impact on the simulation outcome.
Sampling the 11 parameters, each with 10 values, results in
c = 1011 possible parametrizations when doing a full factorial
parameter scan. Due to time constrains, we chose to perform
only c = 4096 configurations, performing r = 50 replications
for each configuration, which results in a total of s = 204800
simulation runs. The number of possible samples per param-
eter would thus be 2.13 → k ∼ 2 in this setting, basically
meaning that only the min and max of each parameter range
would be used as sample points. Thus, we chose the Latin Hy-
percube Sampling combined with permutations: In our setting
each parameter has 10 samples, which in return would result in
only 10 configurations generated by a classical LHS approach.
To achieve 4096 configurations and therefore a better coverage

of the parameter space, we further generated unique configura-
tions by randomly permuting the generated LHS design.

Running the Simulation. Having generated 4096 configurations
in the previous step, the actual simulations for each of those
configurations were performed. All the simulations were cal-
culated on a single multi-core processor machine, distributing
the calculation across available processors. For the particular
case of stochastic simulation, we distributed the computation
by repetitions [26] and parameter combinations [27].

Recording the Simulation Trajectory. Each replication of
each configuration is simulated until the simulation time reached
720min (12h), which is the approximate time span to determine
the cell’s fate, i.e., its prospective cell type (“cell fate commit-
ment”). To aggregate replications, it is important to sample
each replication at the same time points. Therefore, we sampled
the molecule count (trajectories) using a fixed time interval of
0.17578125 simulation time, yielding 4096 sample points. For
each of these sample points, we recorded the critical molecule
count of the β-catenin in the nucleus (nβnuc) and averaged them
on a per configuration basis, resulting in one averaged simula-
tion trajectory per parameter configuration.

4.3. Stage II: Visual Exploration

This stage deals with the visualization and exploration of
the recorded simulation trajectories for β-catenin. Note that we
do not visualize β-catenin’s molecule count directly, but as a
difference value as compared to the experimental data from the
lab. As the visual exploration itself is an interactive process, we
address the steps of this stage twice to make their interplay in
an iterative refinement more explicit.

1st Iteration: Delineating the Parameter Space. The visual ex-
ploration started with delineating the parameter combinations
according to the trajectory data (Figure 3). The used aver-
age squared distance results in a smooth transition between the
different outcome trajectories that allows for the detection of
correlations concerning the parameters. As observed in Sec-
tion 3.4, the deviation towards the reference data seems to be
correlated to the following four reaction rate constants: kAsyn,
kWsyn, kbetasyn, and kAdeg.

1st Iteration: Choosing a Sequence of Scales. Delineating the
parameter combinations according to the trajectory data results
in an alignment of trajectories, where the heterogeneities be-
tween consecutive trajectories are rather small as a result of
the sorting. Thus, a coarsening of the parameter space (verti-
cal axis) and the accordingly calculated heterogeneities mainly
capture sorting artifacts as well as the continuously increasing
distances between trajectories due to coarser sampling. This
effect becomes visible in the scale selection matrix, by continu-
ously increasing heterogeneities towards the coarsest parameter
scale (Figure 3〈2〉). Consequently, an investigation of different
scales in parameter space will yield no insight on the parame-
ters themselves.
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For this reason, we first chose to investigate the temporal
scales. In order not to miss outstanding simulation trajecto-
ries concerning the temporal behavior, we first chose the finest
available parameter space sampling (Figure 3(a)) although it is
affected by overplotting. The according overplotting indicators
(Figure 3〈3〉) remind us to reduce the extent for a faithful data
representation. In this case, any recorded heterogeneity is only
due to a reduced temporal resolution providing insight on tem-
poral scales for future simulation trajectory recordings. The re-
spective sequence of scales – the top row of the scale selection
matrix – is selected interactively.

1st Iteration: Targeted Drill-down along the Chosen Scales.
Figure 3(d) & (e) show the calculated heterogeneities absolute
Euclidean distance (dark blue) and 1D-gradient distance (dark
red). Our first observation (later referred to as O1) is, that
absolute numerical differences between consecutive temporal
scales are close to zero, after the sixth finest temporal scale –
becoming visible by white heterogeneity bands in Figure 3(d)
& (e). The same holds true for the 1D-gradient metric. But
we also see, that gradient changes slightly increase again to-
wards the finest temporal resolution. In combination with the
low Euclidean distances in these areas of increase, this suggests
a slight shifting of the curves along the temporal axis, which is
only due to a more precise sampling at highest temporal resolu-
tions. As a second observation (O2), we can also determine
temporal regions where the data is constant and no changes
seem to appear at all – the white regions inside the dark red
heterogeneity bands (Figure 3〈1〉).

Drilling down to a temporal scale of high resolution, zoom-
ing into the specific regions (e.g., into Figure 3〈1〉) as well as
the interactively displayable line chart (cp. Figure 4〈7〉) con-
firm both observations, the very slight shifting of curves and the
practical absence of changes before 70min and between 150min
and 300min. As a first result, O1 suggests to limit further anal-
ysis investigations to the sixth finest temporal scale. Moreover,
both observations are supposed to affect future simulation runs
as they recommend to reconfigure the recording resolution of
the simulation trajectories.

2nd Iteration: Delineating the Parameter Space. According to
the correlation hypothesis, the sorting is altered in the second
exploration run. Since kWsyn, kbetasyn, and kAdeg seem to in-
fluence the deviation in a combined manner, we focus on these
parameters and sort the data according to them (Figure 4). By
doing so, the heterogeneity bands should point to outliers in
the simulation trajectories that deviate from surrounding sim-
ilar parameter settings. Again the correlation between those
parameters and the difference to the measured reference values
becomes visible, whereas the remaining parameters are masked
out.

2nd Iteration: Choosing a Sequence of Scales. As we already
determined the essential temporal resolution, we now focus on
the different parameter space sampling scales. For this reason,
we interactively select all entries of the scale selection matrix,

along the 6th column from the right to match the aforemen-
tioned temporal scale from O1 below which no more changes
can be observed.

2nd Iteration: Targeted Drill-down along the Chosen Scales.
Figure 4 shows the visualization during the second iteration.
In this case, all captured heterogeneities are due to the coars-
ening of the parameter space sampling and points to changes
between consecutive parameter settings at the different scales.
At a first glance, the dark red heterogeneity bands (Figure 4〈1〉)
reveal the uniform sampling of the parameter space, as well
as a uniform distribution of gradient changes up to the highest
resolutions. In contrast, the Euclidean distance metric hints at a
non-uniform distribution of heterogeneities, as most of them are
located at the top (Figure 4〈2〉). Using an adapted local color
scale supports this observation (O3) of heterogeneities correlat-
ing with the chosen three parameters in particular at the finer
scales (Figure 4〈3〉). Figure 4〈4〉 again shows the uneven distri-
bution of changes along the temporal axis (see O2).

Beside these first impressions, the slightly darker blue bars
within the heterogeneity bands (Figure 4〈5〉) indicate the exis-
tence of outliers due to bigger differences between subsequent
simulation outcomes although their three parameters are deemed
to be nearly equal. An interactive grain refinement (drill-down)
and extent reduction (zoom) to the scales and intervals where
those bars appear, finally confirm this observation (Figure 4〈6〉).
To support the stage of decision making, we interactively select
these parameter settings that yield outliers. This brings up their
details on demand by showing their concrete numerical param-
eter values as well as their behavior over time in the time-value-
plot to ease their comparison with neighboring simulation tra-
jectories (Figure 4〈7〉). As a result, both observations O3 and
O4 advise a reconfiguration of the parameter sampling towards
a non-uniform sampling focusing the found high heterogeneity
intervals.

4.4. Stage III: Decision Making

Basically, the computed 4096 configurations already achieve
a good coverage of the parameter space. We observed approx-
imately the same fraction for higher (red) and lower (blue) and
some equivalent values for nuclear β-catenin concentration when
comparing the simulation trajectories to the experimental data
(Figure 3(b)). Based on our new visual exploration approach,
we were able to further distinguish between sensitive and non-
sensitive parameters, identifying potential regions for subse-
quent refinements – with respect to parameter space and the
temporal scale – and to find remarkable parameter configura-
tions that motivate further fine-grained evaluation.

Refining the Input Parameter Space. The automated sensitiv-
ity analysis performed by Mazemondet et al. [34] determined
nβnuc, nAxin, and kbetasyn as the most significant parame-
ters. Even though kbetasyn is the only parameter which ex-
actly matches the correlated parameters identified by our visual
approach (kAsyn, kWsyn, kbetasyn, and kAdeg), the results are
still plausible, when considering the biological context. The pa-
rameter nβnuc determines the number of β-catenin molecules
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Figure 4: Result of sorting the data according to a reduced set of parameters to explore the parameter sampling scales at the sixth finest temporal resolution. Details
on the highlighted data aspects 〈1〉 through 〈7〉 are given in Section 4.3.

and is regulated by synthesis and degradation as well as the
transport between nucleus and cytosol. Since transport param-
eter values have been kept constant, the parameter with high-
est impact on the amount of nβnuc is kbetasyn. The same ap-
plies to nAxin, which defines the number of another important
molecule of the pathway – Axin. The count nAxin directly de-
pends on the parameters kAsyn and kAdeg, as they define the
synthesis and degeneration rates of Axin. Consequently, kAsyn
and kAdeg directly influence the number of Axin molecules in
the system. Therefore the automated analysis of Mazemondet
et al. coincides very well with our insights gained from visual
exploration.

However, the parameter space view allows not only to de-
termine parameter sensitivity, but also parameters having a pro-
moting and repressing effect. As seen in Figure 3, kWsyn,
kbetasyn, and kAdeg obviously have promoting effects, i.e.,
high parameter values lead to higher simulated values as com-

pared to the reference. On the other hand, kAsyn has the op-
posite effect, which is exactly the case in Wnt signaling. The
choice of the three parameters kWsyn, kbetasyn, and kAdeg
is therefore not only consistent with the visual cues but also
matches the biological background.

Based on the sorting of the three most significant parame-
ters, regions of higher heterogeneity could be revealed. In these
regions, neighboring trajectories vary more, even though the
parameter configurations are generally similar. In our model,
the heterogeneity is particularly high when all three parameters
have high values and vice versa (O3). Accordingly, the parame-
ter space is not sufficiently covered here and thus prompts for a
more fine-grained sampling or a non-uniform sampling to keep
the simulation efforts constant.

On the other hand, similar parameter settings lead to differ-
ent/opposite simulation outcomes in certain cases (O4). These
parameter configurations need further evaluation as well, as
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they imply outliers that are not associated with the main set
of significant parameters. A reconfiguration of sampling can be
useful to determine, whether this effect is due to the selected
parameters themselves or to the remaining (masked) parame-
ters. If finer parameter samplings in these parameter intervals
result in a smooth transition between neighboring configura-
tions without outliers, the parameter sampling in that interval
was too coarse. The masked parameters may be the cause, if
the outliers remain. Therefore such areas are also prominent
candidates for further fine-grained parameter samplings.

Refining the Recorded Simulation Trajectories. The τ−leaping
implementation of the stochastic simulation algorithm, that has
been used to carry out the simulations, naturally employs the
best temporal resolution in terms of accuracy and speed [37].
However, the (horizontal) heterogeneity also sheds light on the
dynamics of the signaling pathway under study. The experi-
mental data in [34] indicates a biphasic signal after stimulating
the cells. That means the cell response is characterized by a
first, short (transient) activation, which is followed by a con-
tinuous, long-term activity. The activity of the pathway is indi-
cated by high nβnuc values. Therefore the very low heterogene-
ity values observed between 150min and 300min correspond to
the time lag (delay) between the first and the second activation
of the pathway. Thereby the visualization remarkably exposes
that this delay is parameter independent (O2), which allows for
a coarser temporal recording in this case.

Even more significantly, we make use of observation O1.
It exposes, that 128 samples at the temporal scale suffice to re-
flect the behavior of the simulation trajectories neglecting mi-
nor temporal shifting. This results in a temporal resolution of
approximated 5.5min which in our scenario is fine enough to
capture changes in a cell’s Wnt pathway. Consequently, data
recording of the simulation trajectories can be dramatically re-
duced to 3% of the former highest resolution without losing any
crucial information.

5. Discussion and User Feedback

By following our approach in such an interactive iterative
manner, as it was described in the above use case, a user gains
an understanding of the data on all levels – from a global over-
view via interesting local regions to seeking individual points
in the data. The overview is supported by the initial coarse-
grained, color-coded trajectories per configuration shown in the
main view. Given a suitable delineation of the parameter space,
this view alone conveys already a “big picture” that gives in-
sights in how the different courses that the trajectories take are
distributed across the parameter space – which kinds of trajec-
tories occur often and which are rare. After having investigated
the overall extent of the data at a coarse scale, the heterogene-
ity displays provide the means to look into regions of interest.
They help to target a drill-down towards interesting regions in
the parameter space and in time by indicating the extent of such
regions (i.e., where to drill down) and the grain of such re-
gions (i.e., how far to drill down). Drilling down further, the
user would finally be presented with individual configurations

and be able to single them out. If one is looking for individ-
ual parameter configurations, for example, as it is the case in
parameter fitting, this is the level that would allow the user to
identify a result. While applying an automatic method, as it is
the state-of-the-art in this field, would most likely yield such a
result equally well, this result would be an isolated point in the
parameter space generated by an algorithm that remains largely
a “black box” to the user. With our interactive visual approach,
the user knows exactly how the result came about, why he chose
which delineation and which scales on the way to this result,
and how this result relates to the whole of the parameter space.
This yields a result that makes sense, that the user trusts in, and
that he can argue for. This result can of course always be veri-
fied with an automated method if needed.

This added benefit over purely automatic analysis approach-
es was also reflected in the feedback that we gathered in eval-
uation sessions with our application partners from the Systems
Biology domain. At first our approach with all its required in-
teractivity did not appeal to the domain experts as much as sim-
ply running an algorithmic analysis. Yet, once they understood
that for instance different delineations will result in entirely dif-
ferent views of the parameter space, each with its own seman-
tics and insights to be found, they were very positive about it, as
this clearly surpasses what they can learn from their data with
automatic approaches. The need to explore visualizations and
to interact with them is simply the price that has to be paid for
gaining this additional understanding instead of an isolated, sin-
gular result. Thus, it may not be surprising that soon after this
realization, our users actually demanded more interactivity and
more visualizations to be added. For example, as they are very
accustomed to time-value-plots, they suggested to include the
possibility to select an individual color-coded trajectory in the
main view and to show its behavior in detail in a linked time-
value-plot. As a result of this feedback, we have added this
particular feature, as it was shown in Figures 1(e) & 4〈7〉.

Another suggestion that will be highly useful and that is
conceptually well within reach is a direct integration of our ap-
proach as a steering interface into their simulation software.
This way, new simulation experiments could be triggered di-
rectly from within our visualization – a certainly tempting pro-
spect for future work that shows that our approach goes actually
further than a mere analysis of simulation results. The users
suggested furthermore to show data different from the simu-
lation trajectories, which might be useful in other scenarios
– e.g., the explicit simulation processing times or the uncer-
tainty inherent in the used simulation method. Such an integra-
tion, for example of uncertainty visualization, can be realized
in a straightforward manner by simply displaying each trajec-
tory’s accuracy in the main view, as it was already implemented
in [10].

As our approach was specifically constructed to scale to a
large number of trajectories and time points by using methods
from multi-scale visualization, its limitations lie not so much
on the side of the visual representation, but rather on the time
spent to compute the steps that lead up to it. Despite the fact
that we only sample the parameter space at a coarse scale, its
simulation and subsequent delineation nevertheless take a con-
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siderable amount of time. These long-running computing times
stand in contrast to the high amount of interactivity that we aim
to provide. For example, simply switching to a different delin-
eation will trigger the appropriate sorting algorithms and possi-
bly lock the Visual Analytics setup for several hours, depending
on the number of parameter combinations to be sorted and the
number of time points of the trajectories according to which to
sort them. As this challenge is inherent to the problem we deal
with, we only have the options of either reducing the computa-
tional load by reducing the number of samples, or of shifting it
to a pre-computation. We circumvent this problem by utilizing
the latter approach and pre-computing all the different delin-
eations to have them stored and readily available as soon as the
user wants to switch. While this adds to the computing time
before the visualization can be shown, it keeps the visualization
interactive once it is ready.

6. Conclusion

With the presented general approach for bringing together
parameter space visualization and multi-scale visualization, we
have taken a first step towards giving an overview of large pa-
rameter spaces and the resulting simulation trajectories at the
same time. Passing through the 3-stage approach allows the
user to make well-founded decisions that take into account the
entirety of the sampled parameter combinations and simulation
results with a confidence that is directly related to the granu-
larity of the sampling. The user can increase his confidence
in the simulation result by sampling regions showing unclear
and ambiguous behavior on a more fine-grained scale in future
simulation runs.

Further analytical means could be employed to additionally
strengthen the user’s confidence in his decisions. On the one
hand, if a parameter appears to have no influence on the sim-
ulation result, this could be confirmed analytically by running
a sensitivity analysis for this particular parameter, before de-
ciding whether to eliminate it from future simulations. On the
other hand, if a parameter seems to have a high influence on the
outcome, a parameter estimation could be run to narrow down
the interval in which the sought after parameter value must lie
according to the measurements from the lab. This would cut
down on the extent of this parameter’s scale and thus free re-
sources to increase its grain in future scans of this parameter’s
value range. While being highly desirable for performing such
an informed optimization, such a tighter integration with confir-
matory methods remains a subject for future work in this area.
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tive visual analysis of multiple simulation runs using the simulation model
view: Understanding and tuning of an electronic unit injector. IEEE
Transactions on Visualization and Computer Graphics 2010;16(6):1449–
57. doi:10.1109/TVCG.2010.171.

[5] Ma KL. Image graphs - a novel approach to visual data exploration.
In: Proceedings of IEEE Vis’99. IEEE Press; 1999, p. 81–8. doi:
10.1109/VISUAL.1999.809871.

[6] Jankun-Kelly T, Ma KL. A spreadsheet interface for visualization ex-
ploration. In: Proceedings of IEEE Vis’00. IEEE Press; 2000, p. 69–76.
doi:10.1109/VISUAL.2000.885678.

[7] Marks J, Andalman B, Beardsley PA, Freeman W, Gibson S, Hodgins
J, et al. Design galleries: A general approach to setting parameters for
computer graphics and animation. In: Proceedings of SIGGRAPH’97.
ACM Press; 1997, p. 389–400. doi:10.1145/258734.258887.
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