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The Berrick-Casacuberta plus-construction space

is a wedge of gropes

Matija Cencelj!

Berrick and Casacuberta have recently constructed a space W such that for every space X its
plus construction X is homotopically equivalent to Py X, the W-nullification of X. We show
that W is the wedge of an infinite family of gropes.

AMS Subj. Class. (1991): 19D06, 55P60.
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1 Introduction

Berrick and Casacuberta have recently constructed a space W such that for every space
X its plus construction X T is homotopically equivalent to Py X, the W-nullification [5]
of X. The space W is an Eilenberg-MacLane complex K (F,1) where the group F is
defined as follows (cf. [1], Example 5.3, where this group is denoted by F’). For each
sequence n = (ny,ng,...) of positive integers and each r > 1 let F}, , be the free group on
2"ny ...n, symbols:

{zr(e1y o yerin, .o yip)ier € {0,111 <iip < ny}.

For r = 0 define Fy to be infinite cyclic with generator zy. Define homomorphism
op : Fnyp — Fopqq for r >0 by

Tp(Exy e v ey Erylly ey lp) —
Npr41
H [$T+1(€1,...,ST,O;?;l,...,ir,?;T+1), $r+1(€1,---,€r,1;i1,---,ir,ir+1)] y
ir+1:1

where [z, y] denotes the commutator of z and y.

Let F, be the direct limit of the direct system (Fy,,, ¢,) and let F be the free product
of the groups (Fy,, ¢r), where n ranges over all increasing sequences of positive integers.
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2 The construction

Let D be a disk with one handle. It is the identification space of a square with a hole
where we identify the edges o and f3, respectively, as shown in Fig. 1 below. The space
D has an obvious CW decomposition with two 0-cells, four 1-cells and one 2-cell.

Figure 1: Disk with a handle (left) and disk with n-handles (right).

Using the notation of Fig. 1, using the symbols «, 3, v and 9D also for the paths
given by the natural parametrization of the respective edges and denoting o” = yay™1,
we see the following fact.

Claim: The inclusion
i:0D=K(z,1)— K(zx7,1)=D
induces a homomorphism
ig:m(0D) — m(D),  [0D]+—[[a"], [B7]],
where 0D is a free generator of 71 (0D) and « and (3 freely generate (D). O

Let D, be a disk with n handles, it is the quotient space of a disk with n holes as
shown in Fig. 1.

Let v; be paths in D,, from the basepoint * to the initial points of the paths «; and ;
as in Fig. 1. Taking into account that there is a homotopy equivalence

i=n

D,—\/ D}
i=1
from D, onto the wedge of n disks with one handle, mapping handles to handles, we
obtain the following fact.

Claim: The inclusion

i:0D, =K(z,1)— K(Zx*xZx...x7,1) =D,



induces a homomorphism
m(0D,) — m(Dyn),  [0Dn] > [[af'], [B'] ] -+ - [[an"], (8] ]
where [0D,,] freely generates m(0D,) and ], 5], 1 < i < n, freely generate m(D,,). O

Let us construct K(Fy,1) for the increasing sequence n = (ny,ng,...). Let Gy =
St = K(Fnyo,1) and let G; = D,,, (which is a K(F,1,1) space). Denote a generator of
m1(Go) = Fno by o and the generators of m(G1) = Fy1 by 1(0,4;) and z4(1,4y), where
1 < k <ny. Then the homomorphism of 7; induced by the inclusion

GO = 8Dn1 — Dn1

maps
n1

Tog — H [ml(O, il), .Z'l(l, ’61)] .
i1=1
Let G2 be the CW complex obtained by attaching a copy of D,,, onto each loop «; and f3;
of Gi. Then Gy = K(F,2,1) and the inclusion of G; into G5 induces the homomorphism
of the fundamental groups mapping the generators of the fundamental group according
to the construction of Berrick and Casacuberta.

Assume we have constructed G,,, ;. The complex G,, is obtained by attaching a copy
of D, onto each loop a; and j3; of the disks with handles in G,,_1 \ Gjp—2. Let G be
the direct limit of GG,,. Using the fact that every compact subset of G is contained in a
subcomplex G, it is not difficult to check that

G=K(Fp1).

Clearly the desired space W = K(JF,1) is the wedge of gropes K(F,,1) as above, over
the family {n} of all increasing sequences of positive integers.

Figure 2: A grope.

Every space obtained in terms of the construction like the one above for G, but with
the numbers of handles of all the attached disks being arbitrary, is called a grope. Gropes
appear to have originated in [6], they have been used mainly in geometric topology [2],
and more recently in some aspects of cohomological dimension theory [3], [4].
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