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Abstract. Optimization of access patterns using collective I/O imposes
the overhead of exchanging data between processes. In a multi-core-based
cluster the costs of inter-node and intra-node data communication are
vastly different, and heterogeneity in the efficiency of data exchange poses
both a challenge and an opportunity for implementing efficient collective
I/O. The opportunity is to effectively exploit fast intra-node communi-
cation. We propose to improve communication locality for greater data
exchange efficiency. However, such an effort is at odds with improving
access locality for I/O efficiency, which can also be critical to collective-
I/O performance. To address this issue we propose a framework, Orthrus,
that can accommodate multiple collective-I/O implementations, each op-
timized for some performance aspects, and dynamically select the best
performing one accordingly to current workload and system patterns. We
have implemented Orthrus in the ROMIO library. Our experimental re-
sults with representative MPI-IO benchmarks on both a small dedicated
cluster and a large production HPC system show that Orthrus can sig-
nificantly improve collective I/O performance under various workloads
and system scenarios.

1 Introduction

Petascale HPC systems are current, and issues critical to the delivery of exas-
cale systems in the next decade are being actively identified and studied [1].
A fundamental approach to reaching very high compute capacity is to employ
increasingly large numbers of compute nodes, each with increasingly more CPU
cores. A major challenge on such a technical path is application scalability. For
parallel programs or system facilities that need global communication and coor-
dination, the benefit of increased system scale cannot be fully realized if locality
in the operations is not carefully exploited. In this paper we take collective I/O,
a widely-used and performance-critical facility in the MPI I/O library, as a rep-
resentative case for studying how to introduce communication locality into its
implementation, and to demonstrate a strategy to effectively exploit locality.
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1.1 Potential Challenges in the Performance of Collective I/O

Collective I/O is a technique commonly employed in MPI programs to coordinate
and reorganize requests from the multiple processes of a program before sending
them to the data nodes. The idea is simple: if each process needs to access one
or a number of segments of data in a file domain, and collectively these processes
access all or a major part of the domain, it is more efficient to have each of (a
subset of) the processes access a large and mostly contiguous segment of data in
the domain. In this way there can be fewer requests to the data nodes for higher
data access efficiency.

There are two factors that may compromise performance. One is the poten-
tially high cost of the data exchange that is central to collective I/O. In collective
I/O a process, the aggregator, is responsible for access to non-overlapping sec-
tions of a file, which is called the aggregator’s file realm. An aggregator’s file
realm may include data requested by other processes, so a data exchange phase
is required in addition to the I/O phase. For reads the data exchange happens
after the aggregators have retrieved the data into their respective buffers. Data
exchange for writes, wherein the aggregator collects data for writing, precedes the
I/O phase. The overhead of data exchange can be significant if a large amount of
data needs to be exchanged, especially when these aggregators and the processes
communicating with them are on different compute nodes. If there are multiple
cores on each node—the common case in today’s HPC systems—the ideal sce-
nario in terms of minimizing the cost of data exchange is to have each aggregator
only be responsible for accessing data for processes on the same node and so have
all data exchange occur within individual nodes. However, this assignment of file
realms to aggregators may compromise the efficiency of I/O operations on the
data nodes—the second factor that affects collective-I/O performance.

When data is stored on hard disks—currently the dominant storage devices
in HPC systems—disk efficiency determines I/O efficiency, especially for requests
that are not very large. For a disk to efficiently serve a set of temporally proximal
requests, the order in which they reach the disk, which largely determines the
order in which they are served, is a major factor in the disk’s efficiency. Because
a hard disk relies on disk-head seek and disk-platter rotation to reach requested
data, arrival of requests in ascending disk order minimizes its mechanical opera-
tions and maximizes its throughput. However, if the requests to a disk are issued
from different aggregators, there is no way to ensure ascending order unless the
involved aggregators synchronize their issuance, which can be excessively expen-
sive, especially in a large-scale system. The ideal scenario in terms of maximizing
disk efficiency is to have all requests to a disk (or data node) be issued by one
aggregator that can send them in the ascending order according to requested
data’s offsets in the file [35].

1.2 Data Exchange Efficiency vs. Disk Service Efficiency

As described, a strategy for assigning file realms to aggregators to achieve high
efficiency for data exchange is at odds with one for achieving high disk service
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efficiency. For example, data on a disk can be requested by processes on different
compute nodes, and if an aggregator’s file realm is only the data requested by
processes on the same node to avoid inter-node data exchange, the hard disk
would receive requests from different aggregators and so risk loss of efficiency.

It is not clear how to define a file realm assignment that is optimized for both
disk access and data exchange, and an implementation of one strategy or the
other is not expected to perform well for collective I/O with diverse patterns.
However, we can dynamically determine how biasing the trade-off will affect
collective-I/O service time and accordingly apply the appropriate strategy to
improve efficiency.

We propose a general framework that allows multiple collective-I/O imple-
mentations, each optimized for one or more performance aspects, e.g. I/O pattern
or relative hardware performance characteristics, to co-exist in a library. Based
on a prediction of which would perform best for the current I/O pattern and
system load, and applying it, the framework essentially provides MPI program-
mers a collective-I/O library that adapts to access pattern changes and other
dynamic system characteristics. This framework, named Orthrus, extensibly ac-
commodates multiple collective-I/O implementations.

1.3 The Challenge and our Contributions

A major challenge for the framework to achieve effectiveness is in the dynamic
prediction of the performance of the various candidate implementations in a
given scenario. Both off-line modeling and on-line simulation are unlikely to
provide predictions accurate enough to distinguish the candidates. One reason
is that both modeling and simulation need not only the workload information
(such as number of aggregators, request count, volume and distribution of re-
quested data across data nodes) but also the system information, especially that
about data nodes, such as number of data nodes, type of storage devices, and
actual data layout on the devices. Furthermore, the information may change
from one run to another. In general there will be system dynamics that are im-
possible to predict such as communication traffic generated by other programs
on the compute-node side, or streams of I/O requests from unrelated programs
sharing the same data nodes. Some information, such as data layout, is simply
not available to user-level programs, including the MPI libraries. Much of the
information is hard to accurately capture in an on-line manner, let alone for the
modeling or simulation facilities to use for accurate and on-the-fly prediction.

We propose a simple, efficient, accurate, and portable method for selecting
the best performer for a collective-I/O operation. To this end it does not take
any workload or system information as input and does not involve any complex
modeling or simulation for performance prediction. The key technique is to use
performance examination, rather than performance modeling, in the prediction.
Each candidate collective-I/O implementation is given opportunities to demon-
strate its performance, which is recorded for comparison and selection. In this
way all of the hard-to-capture information is distilled in the actual performance
of a candidate’s examination run, which provides an accurate prediction of the
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performance that would be exhibited should the candidate be selected for exe-
cuting the collective I/O in the near future. In summary we make the following
contributions.

– We propose a framework for accommodating multiple collective I/O imple-
mentations, each optimized for some class of I/O patterns, that dynamically
selects from them for best performance, and is thus adaptive to changing
workloads and system dynamics.

– We develop an efficient mechanism to evaluate the performance of collective-
I/O implementations so that the best performer can be identified and de-
ployed on the fly. With this mechanism parallel I/O developers need not
commit to compromising trade-offs in a collective-I/O implementation. In-
stead, they can implement schemes optimized for specific workloads or sys-
tem characteristics and simply plug them into the framework, where their
performance advantages would be realized whenever their targeted charac-
teristics appear.

– We experimentally evaluate our implementation of the Orthrus framework
in the ROMIO library, and provide a detailed analysis of the results. Our ex-
perimental results with representative MPI-IO benchmarks on both a small
dedicated cluster and a large production HPC system show that Orthrus can
significantly improve the I/O throughput of storage systems.

2 The Design of Orthrus

The objective of Orthrus is to provide a framework for implementing a high-
performance collective I/O library that can adaptively achieve high I/O effi-
ciency with various workload patterns and system setups. It represents a devia-
tion from the traditional practice of attempting to build a single, highly-versatile
implementation to efficiently handle different kinds of workloads. Realizing that
a monolithic design tends to lack flexibility through extensibility, we subdivide
the effort. A key element is the design of a framework ready for multiple imple-
mentations to plug into. The other elements are the provision of collective-I/O
implementations. One advantage of this approach is making the second effort
open to other practitioners in the HPC community. For workloads that are of
particular importance to them but not handled well by existing implementa-
tions, they can develop new implementations specific to their workloads (and
machine architectures) and plug them into the framework without the concerns
associated with the traditional approach, such as compromising the existing im-
plementation or complicating the design. In this section, we describe our efforts
on these two fronts.

2.1 The Orthrus Framework

The crux of the Orthrus strategy is knowing how each candidate implementation
would likely perform if it were used to execute a collective-I/O function call.
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do i = 1, nvar 
         record_label = unklabels(i) 
 
         unk_buf(1,1:nxb,1:nyb,1:nzb,:) = 
unk(i,nguard+1:nguard+nxb, 
     +        nguard*k2d+1:nguard*k2d
+nyb, 
     +        nguard*k3d+1:nguard*k3d
+nzb, :) 
     … 
         call h5_write_unknowns(file_id, 
     +                          1, 
     +                          1, 
     +                          nxb, 
     +                          nyb, 
     +                          nzb, 
     +                          0, 
     +                          maxblocks, 
     +                          unk_buf, 
     +                          record_label, 
     +                          lnblocks, 
     +                          tot_blocks, 
     +                          global_offset) 
      … 
      enddo 

Flash-io  
 

do istep=istart,mstep 
     do irk=1,2 
 
… 
 
! push ion 
      !  CALL PUSHI 
        CALL PUSHION 
 
       … 
 
! I/O operations 
       CALL SNAPSHOT 
 
       
…       
 
enddo      !    MAIN TIME 
LOOP 

GTS  
 

Fig. 1. Flash-io periodically writes out checkpointing data using the function
h5 write unknowns(). In the GTS code, both checkpoint and visualization data are
written back to the disks by the SNAPSHOT function. Thousands of iterations are
typically taken in their execution in production HPC runs. Different I/O transports
can be specified, e.g. MPI collective I/O, in the code when the ADIOS [25] library is
used.

As mentioned, Orthrus examines the performance of each candidate. Certainly
in the library one application-level call cannot be executed more than once:
the overhead would be excessive and the caching effect would invalidate the
performance results of all but the first call. However, with different candidates
executing different calls we would need to ensure that their performance results
were comparable by invoking these candidates within the same workload, i.e.,
have the data requested by the calls have the same pattern. In addition, the
performance examination period must constitute only a small fraction of the
total collective-I/O time because many candidates might not provide efficient
I/O service.

Our solution is based on the assumption that a collective-I/O function call
is usually in a loop of many iterations. For our purpose this is a reasonable as-
sumption, otherwise the call would be executed only one or a few times, either
generating requests for a small aggregate amount of data, whose I/O perfor-
mance would likely be insignificant for the entire program’s performance, or
generating a few large requests, each for a large amount of data, whose I/O
performance is generally not at issue. Through experimental observations, we
also find that many scientific applications, such as Flash-io [15] and GTS [28],
use loop statements to carry out I/O operations for checkpointing or dumping
visualization data during their entire execution periods. Their I/O patterns are
outlined in Figure 1.

We also assume a consistent access pattern across the loop iterations in the
execution of a collective I/O function call. The iteration’s data access can be
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characterized by a number of factors, including name of accessed file, num-
ber of processes issuing I/O requests, number of requests, request sizes, and
their offsets in the file. While offsets of requests issued in different iterations
cannot be compared directly, for characterization we define a so-called rela-
tive offset and use this as a signature to identify similar spatial access pat-
terns quickly. Suppose that in the execution of iteration k of a loop, a collec-
tive I/O call produces n I/O requests that sorted according to the offsets of
their requested data are [R1, R2, . . . , Rn]. If the size and file offset of request
Ri are Sizei and Offset i, respectively, the relative offset of these requests is

rel offset =
∑n

i=2[Offseti−(Offseti−1+Sizei−1 )]

n−1 . We refer to these values collectively
as the call’s signature. Two collective I/O calls are deemed to have the same
pattern and comparable performance results only when their signatures are the
same. I/O signature-based pattern identification has been effectively used in
previous works, for example in data prefetching [4].

The assumption of consistency provides us with two capabilities. One is that
we can use the observed performance of one execution of a collective I/O call as
an estimate of its performance in subsequent executions. Second, it allows us to
identify calls from the same program statement—we do not assume the avail-
ability of the program’s source code or the ability to instrument it to explicitly
notify the ROMIO library in which Orthrus is implemented.

Under these assumptions Orthrus carries out its operations as follows. When
a collective-I/O call is made, first its signature is compared to the signature of
the previous call. If they are not the same, a new candidate examination period is
started. If they are the same, then either the system is in a candidate examination
period, in which case Orthrus keeps testing a candidate implementation, or the
system uses the currently selected candidate implementation to execute the call.
When a new candidate examination period is started, calls are serviced by the
candidates in rotation, each for a fixed number of times (three by default),
as long as the signature does not change. The throughput of each candidate
is computed as an average to minimize the effects of transient changes in the
execution environment. When the examination period ends without a change in
signature, the candidate with the highest throughput is selected to execute the
calls until the signature changes.

During a regular execution period, even if the collective-I/O calls do not
change their access pattern, the dynamic system environment, such as commu-
nication and I/O request traffic initiated by other programs, could change, and
accordingly the best performing candidate might change. To detect such sys-
tem variations we monitor throughput of the selected candidate. If its deviation
exceeds a certain threshold (15% by default) of the average recorded in the
examination period the system returns to the examination mode.

2.2 Candidate Collective-I/O Implementations

To test our idea we implemented two simple, contrasting strategies. One, core-
first, constrains data exchange to be intra-node. In the current implementation of
core-first there is one aggregator per compute node to represent all the processes
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running on that node. We choose as the aggregator the process in that node
requesting the largest amount of data. The processes’ I/O requests are collected
by the aggregator, which then sorts them in the ascending order according to
the offsets of the requested data. When the number of cores in each node is
relatively small (e.g. less than 100) using one aggregator is sufficient to handle
the data management. With more cores multiple aggregators might be needed
and a more sophisticated algorithm could be developed to distribute the load.

The second strategy, disk-first, is designed to maximize disk efficiency. It sets
up the same number of aggregators as the number of data nodes, each collecting
and sending requests to one data node, sorting the requests as core-first does.
However, disk-first ensures that each data node receives requests in well-ordered
sequences, while in core-first each data node receives requests from multiple
(possibly all) aggregators, and the order of requests from different aggregators is
essentially random. While maintaining an equal number of aggregators as data
nodes allows the data nodes to receive fully sorted sequences of requests, it may
limit the I/O bandwidth if the number of data nodes is small. One solution is
having multiple aggregators coordinated to access a data node [35].

Though the existing collective-I/O implementation in the ROMIO library
does not attempt to reduce communication or maximize disk efficiency, it does
reduce the number of requests. One method used is to designate a contiguous file
domain to each aggregator. As an I/O request to operating system must be for a
contiguous segment of data, this helps reduce the number of requests. However,
in ROMIO such a contiguous file domain may contain holes, or gaps in the
domain that are not requested. Such holes break the contiguity, and also breaks
a potentially large request into multiple smaller ones. To remedy this ROMIO
uses data sieving [22] to remove the holes to yield one large request. The benefits
of having a smaller number of large requests include reduced request processing
overhead and increased disk efficiency. As the core-first and the disk-first schemes
do not use list I/O [10] to pack requests, the number of requests to the kernels
of the data nodes is not reduced. When the requests are very small (even if they
are well ordered), ROMIO’s increased disk efficiency through data sieving can
be still substantial in comparison. Therefore, as a third strategy we plug the
ROMIO implementation into the Orthrus framework. For fair comparison we
set up only one aggregator per compute node in this ROMIO instantiation.

We emphasize that we are not attempting to provide a comprehensive or
near-optimal set of strategies in this paper. Rather, the purpose of our choices
is to provide a simple set of contrasting strategies to demonstrate the effective
adaptivity of the Orthrus framework. We include the ROMIO implementation
as a candidate strategy as a touchstone of realism—if the performance of these
three strategies can exceed that of ROMIO alone, our case is much stronger than
it might be if only synthetic strategies were used.

3 Performance Evaluation

The Orthrus framework was implemented as an extension of ROMIO in mpich2-
1.4.1, a widely used MPI-IO implementation. It currently hosts three collective-



8

I/O implementations: core-first, disk-first, and ROMIO’s implementation (ROMIO
hereafter). In this section we evaluate the framework with these three self-
contained and independent collective-I/O implementations. We specifically an-
swer three questions: (1) When does Orthrus outperform the existing ROMIO
implementation? (2) How effective is Orthrus in identifying the best perform-
ing candidate implementation? (3) Does Orthrus work as expected when the
execution environment changes dynamically?

3.1 Experimental Setup

To evaluate the performance of Orthrus we used a dedicated cluster allowing full
control of the running environment. This allowed collection of low-level perfor-
mance statistics and controlled injection of interference. The cluster consisted of
11 compute nodes and six data nodes. Each compute node was equipped with an
8-core L5410 2.33 GHz Intel Xeon CPU and 64 GB DRAM. Each data node had
a 2.13GHz Intel Core 2 CPU, 2 GB DRAM, and one 500 GB SATA hard disk
(WDC WD5000AAKS). We used PVFS2 version pvfs-2.8.2 for parallel storage
management with its default 64KB striping configuration [19]. All of the nodes
were connected through a 1 Gbps Ethernet network. We used MPICH2-1.4.1 [27]
compiled with ROMIO to generate MPI executables. The processes were evenly
distributed across the nodes and their respective cores. Each node ran a CentOS
Linux distribution with kernel-3.3.6. The CFQ I/O scheduler [5] was used for
the disks as is standard practice.

We used four benchmarks in the evaluation: Matrix, Noncontig, Hpio, and
Flash-io. The first one simulates a common pattern of matrix access in scien-
tific applications. The next two have access patterns that may pressure both
the disks and the communication, having non-contiguous I/O patterns and the
need to access a substantial amount of data that may be involved in the data
exchange (usually more than 10 MB in one collective operation). Flash-io peri-
odically writes checkpoint and visualization data using HDF5 [17] with parallel
I/O. Following we describe experiments with each benchmark.

3.2 Matrix

In the Matrix benchmark data are viewed as elements of a two-dimensional
matrix with columns evenly distributed among processes. The matrix is serialized
by row-major order. Each process accesses a set of contiguous columns, and the
data in one row of these columns constitutes a block as illustrated in Figure 2. In
each collective-I/O operation all processes access the same number of contiguous
blocks, the access depth, in their respective columns. If ROMIO is used, the total
amount of data accessed in a single collective-IO operation is the product of
the block size, access depth, and number of processes. Because any two blocks
accessed in an operation by a process are not adjacent, they are in two separate
requests if core-first or disk-first is applied.

We first run the benchmark with 64 processes and 4-block access depth and
vary the block size between 4 KB to 4096 KB. Figures 3(a) and 3(b) show the I/O
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Fig. 2. The access pattern of the Matrix benchmark. Data in a dotted rectangle com-
prises a block, and the set of blocks in a solid rectangle are accessed by a process (P0,
P1, or P2) in each collective operation when the access depth is 3. The three contigu-
ous rows in a shaded area are the total amount of data accessed by one collective I/O
operation.

throughputs of the benchmark for read and write access, respectively. Orthrus
increases the throughputs on average by 21% and 36% for reads and writes
respectively, compared to the stock ROMIO library. This increase is greater up
to a block size of 64 KB because the file striping unit size is 64 KB and blocks
(requests) no greater than 64 KB give disk-first more opportunity to improve disk
efficiency. Once blocks are larger than 64 KB the request size usually stays at
64 KB and improvement does not increase. Interestingly, the throughputs of both
ROMIO and Orthrus are reduced for block sizes of 256 KB and 1024 KB. This is
caused by unsynchronized service of a large request that is spread over multiple
data nodes. Figure 3 also shows the throughputs with disk-first and core-first.
When the block size is small disk-first performs better than core-first because it
improves disk access locality. However, with increasing block (request) size this
advantage is less significant because the inter-node communication cost increases
with the increase of the total amount of accessed data. Thus the performance
gap between disk-first and core-first is reduced with increase of block size either
before or after it reaches 64 KB. Finally, with 4096 KB blocks core-first performs
better than disk-first, and Orthrus chooses disk-first over core-first.

In the second experiment we vary the access depth from 4 blocks to 128 blocks
with a fixed block size of 16 KB and process count of 64. Figure 4 shows the re-
sults of Orthrus selecting different schemes for executing collective I/O. When
the access depth is four blocks the amount of data accessed in one collective I/O
operation is only 4 MB. In such a scenario the order of requests issued to the
data nodes determines the I/O efficiency, making disk-first outperform ROMIO
by 20%. However, when the access depth is 128 blocks, the data communication
volume is increased to 128 MB and the cost of data exchange increases accord-
ingly. For example, for one ROMIO collective I/O with an access depth of 4
blocks the data exchange time accounts for 28% of its service time. When data
exchange accounts for 41% with an access depth of 128 blocks, Orthrus selects
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Fig. 3. Throughput of Matrix as a function of block size, which is also request size for
disk-first and core-first, increasing from 16 KB to 4096 KB.
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Fig. 4. Throughputs of the Matrix benchmark with different access depths.

core-first and reduces this to 17%. Using core-first compromises I/O efficiency,
which is why its throughput is not significantly greater than that of disk-first.

3.3 Noncontig

Noncontig was developed at Argonne National Laboratory [29, 23]. In the exper-
iments we configure the benchmark to simulate noncontiguous data access using
the vector MPI derived data type. Noncontig uses elmtcount to describe size of
a contiguously accessed data chunk. Each element is an MPI INT, which is four
bytes on our system, so the request size without using ROMIO collective I/O
is 4*elmtcount. We adjusted veclen, a parameter which describes the number of
data chunks in a vector, so that the total accessed data size is less than 20 GB.
We ran Noncontig with 64 processes and elmtcount ranging from 16 to 16384.
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2 KB 4 KB 8 KB
Random Read (MB/s) 1.0 4.1 10.2

Random Write (MB/s) 0.7 0.8 2.0
Table 1. Hard disk throughputs with random read and write requests of various sizes.

Figures 5(a) and 5(b) show read and write throughputs, respectively, with
increasing elmtcount for each of the schemes when the data are accessed from
the hard disks. Orthrus consistently tracks the highest achievable throughputs
produced by the three candidate implementations. When request sizes are 16, 64,
and 256 times elmtcount, i.e. the effective request sizes are 64, 256 and 1024 bytes,
which are smaller than the memory page size (4 KB), issuing such small random
requests to disks significantly compromises disk efficiency. This explains the low
throughput with core-first which does not form large requests or ensure that
data nodes receive sorted request streams. Interestingly, when the request size
is small, i.e. elmtcount is 16/64/256 bytes for reads and 16/64/256/1024 bytes
for writes, the throughput of ROMIO is greater than that of disk-first which
is specifically optimized to produce fully sorted requests at each data server.
ROMIO achieves the performance advantage by transforming a large number of
small requests into one large one, which can be more effective when the request
count is very large and requests are very small. As elmtcount increases to 1024
for read (4096 for write), the amount of accessed data in one collective-I/O
operation is very large and the data exchange cost becomes significant. For read
at 1024*elmtcount, 67% of the operation’s service time is spent on data exchange.
By using core-first this is reduced to 6% and we observe that the throughput
of core-first starts to exceed that of ROMIO. When elmtcount reaches 16,384
the data exchange time is 90% of the service time while for core-first it is only
2%. Core-first has a clear performance advantage over both ROMIO and disk-
first, and Orthrus is accordingly represented by core-first. Figure 5 also shows
that in general read has higher throughput than write. This is because hard-disk
write bandwidth is lower than read bandwidth when the request size is not large
(Table 1), and the fact that the benchmark does I/O synchronization after every
I/O operation, which effectively disables the optimization of system write-back.

3.4 Flash-io

We used macro-benchmark Flash-io to further evaluate Orthrus. Flash-io is de-
signed to provide a controlled environment for tuning the I/O performance of
the multi-scale multi-physics simulation code FLASH [20], so the benchmark
has an identical data access pattern to the original code and the performance
improvements made to the benchmark can be realized by the FLASH applica-
tion. In the benchmark three data files are generated using HDF5 and MPI-IO
libraries—a checkpointing file (chk), a plot file with centered data (plt cnt), and
a plot file with corner data (plt crn). Table 2 gives the times for the collective
I/O operations for each of the files. The I/O characteristics of the benchmark
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Fig. 5. Throughput of the Noncontig benchmark with increasing elmtcount when data
is accessed from the hard disks.

can be changed by setting the maximum number MAXBLOCK of blocks per
processor, the number IONMAX of fluids to track, and the size nxb/nyb/nzb
of the grid blocks. Two configurations are used in experiments. Configuration
A has MAXBLOCK=1500, IONMAX=100, and nxb/nyb/nzb=1; Configura-
tion B has MAXBLOCK=600, IONMAX=100, and nxb/nyb/nzb=8. We ran
the benchmark with 64 processes. As shown in Table 2, the I/O times of chk
are reduced in both Configurations A and B by 47.2% and 26.4%, respectively.
Although the performance improvements are significant in both scenarios, the
explanations are different. For Configuration A the average request size is 10 KB
because of the small size of grid blocks. As a result, requests issued by each of
the collective I/O aggregators are not large enough, and I/O performance hinges
on the service order of the requests on the disks. By choosing disk-first Orthrus
allows each data node to receive the requests in ascending order, ameliorating
the performance bottleneck of disk efficiency. Unlike Configuration A, processes
in Configuration B issue much larger requests (2 MB), making the communi-
cation cost a dominant performance issue. By choosing core-first, Orthrus can
effectively reduce the amount of inter-node communication. Another observation
is that Orthrus incurs about 5.2% and 9.8% overhead for accessing plt cnt and
plt crn, respectively, in Configuration A. We determined that this is because
there are only four loop iterations when writing the plot files, more than nul-
lifying the performance advantage of Orthrus with the overhead of examining
collective I/O candidates.

3.5 Orthrus in a Dynamic Execution Environment

To analyze how Orthrus responds to changes in the run-time environment during
a program’s execution we ran Matrix with 32 processes and 64 KB block size
to read a 10 GB file and injected a high volume of inter-node communication
during its execution. Specifically, from the 60th second of Matrix’s execution
we ran the FT program (discrete 3D fast Fourier Transform) from the NAS
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Exp Policy chk(s) plt cnt(s) plt crn(s)

Configuration A
ROMIO 22.8 0.38 0.51
Orthrus 12.03 0.4 0.56

Configuration B
ROMIO 174 4.2 5.9
Orthrus 128 3.3 3.7

Table 2. Collective I/O times for two different configurations of Flash-io. Con-
figuration A: MAXBLOCK=1500, IONMAX=100, and nxb=1; Configuration B:
MAXBLOCK=600, IONMAX=100, nxb=8. chk represents I/O times for checkpoint-
ing, plt cnt and plt crn are times for writing centered and corner plot file, respectively.
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Fig. 6. Instantaneous throughput measured for the schemes after execution of every
250 iterations. The FT program starts executing at the 60th second.

Parallel Benchmarks (NPB) [30, 16] with 32 processes to generate inter-node
all-to-all communication. Figure 6 shows the instantaneous I/O throughput of
Matrix, at each multiple of 250 iterations, using each of the four strategies.
Initially Orthrus selects disk-first as it did in the experiment in Section 3.2. With
the injection of the external communication traffic the inter-node bandwidth
available to Matrix is reduced and its data exchange becomes more expensive.
Accordingly the throughputs of ROMIO and disk-first are reduced by up to
46% and 60%, respectively, and core-first shows its advantage. As shown in
Table 3, core-first generates a much smaller number of IP segments as reported
by /proc/net/snmp. When Orthrus detects the throughput degradation with
disk-first it re-evaluates the candidates and responsively switches to core-first.

4 Related Work

Orthrus considers both the efficiency of storage devices and the heterogeneity of
process communication, whereas most of other extant works consider only one of
them. We classify these works into two categories, one seeking to optimize I/O
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Schemes ROMIO core-first disk-first

# of In Segs. 701,600 337,257 701,056

# of Out Segs. 1,385,008 322,884 1,412,066
Table 3. Average number of incoming and outgoing IP segments transmitted at each
compute node during the execution of Matrix with different collective-I/O schemes.
Statistics are collected by reading networking stats from /proc/net/snmp.

streams for greater spatial locality, the other to reduce inter-node communication
but preserve intra-node communication in multi-core clusters.

Optimizing Request Pattern to Improve Spatial Locality. Storage
systems, especially those using hard disks for direct data access, usually cannot
sustain high I/O throughput with small requests for random data from a large
number of parallel processes. Many techniques have been proposed to improve
requests’ spatial locality by transforming them into large sequential requests,
such as data sieving [11] in ROMIO. There are variants of collective I/O recently
proposed to take account of on-disk data layout, including Resonant I/O [35]
and reducing locking overhead [24] during request transformation. As Orthrus
is a framework for dynamically selecting the best performing implementation,
these variants are ready to be ported into Orthrus which would then inherit their
performance attributes. In fact, disk-first is a simplified version of Resonant I/O.

To provision a framework with adaptivity to accommodate workload and
system dynamics to maximize performance an effort has been made using data
sieving [8]. Instead of conducting actual test runs to select the best performer
among multiple candidates they a model is used to predict the performance
of candidates in various settings. The model takes system/workload specifics
such as disk seek time, system call time, request size, and network bandwidth
as inputs. In this endeavor not only is constructing an accurate model itself a
significant challenge, but also the required inputs can change and may not be
(immediately) available.

Parallel I/O Optimization for Multi-core CPUs. Adoption of multi-
core processors in clusters introduces non-uniform communication costs [2, 13].
In such a cluster the cost of inter-node communication can be an order of mag-
nitude higher than for intra-node communication. Furthermore, communication
between cores on the same chip can be much faster than communication between
chips on the same socket. Zhang et al. proposed to use the ratio of inter-node
and intra-node communication costs to represent the performance effects of pro-
cess affinity, which determines how processes are mapped to cores on the same
or different nodes [32]. Because the implementation of ROMIO collective I/O
incurs expensive all-to-all communication in the data exchange phase, Cha et
al. studied the effect of aggregator assignment in the collective-I/O implemen-
tation and proposed to optimize the placement of aggregators to reduce both
inter-node and intra-node communication costs [12]. Chaarawi et al. proposed a
scheme for selecting the number of aggregators based on consideration of pro-
cess topology, file view, and the actual amount of data requested [14]. A study
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by Zou et al. found that parallel I/O performance can be compromised by lack
of affinity between the core receiving an I/O interrupt and the process serving
the interrupts [34]. Their proposed interrupt-scheduling scheme recovers the loss
of data locality on private caches of multi-core CPUs. In the design of Orthrus
we also consider affinity by having the option of aggregators only serving data
requested by processes on the same nodes.

Self-adapting Techniques. Orthrus essentially adopts a self-adapting tech-
nique for improving I/O performance. Similar techniques have been used in other
domains. For example, the load balancer of CHARM++ takes both computation
and communication patterns into account at run-time to inform object migra-
tion for improving application scalability [6, 33]. To match DRAM page size and
CPU cache size, the CMSSL library contains routines for automatic selection
of optimal parameters, such as loop order and operator alignments, for matrix
multiplication in both local and global scopes [18]. Benkert et al. uses an em-
pirical approach for MPI communication auto-tuning with ADCL library [3]. In
comparison, Orthrus introduces a self-adapting technique to improve collective
I/O performance and demonstrates its feasibility and effectiveness, which may
inspire more innovative applications of the technique to address I/O issues in
large-scale HPC systems.

5 Conclusion

We have presented the design and implementation of Orthrus, a framework for
hosting multiple collective-I/O implementations and adaptively selecting the one
that provides the highest I/O throughput according to current workload and
system dynamics. Instead of attempting to optimize an existing collective-I/O
implementations, or develop a new one from scratch, we demonstrate an open
framework allowing multiple implementations to compete with, and complement,
each other. This represents a unique approach that we have shown to be effec-
tive in the context of a multi-core cluster that has both I/O and communication
efficiencies to optimize. More abstractly, it suggests a general approach for dy-
namic selection of multiple performance-optimization strategies where accurate
modeling or simulation would be infeasible or non-portable. Experiments with
the prototyped Orthrus in the ROMIO library show that it can improve the
throughput of collective I/O under various workloads and system scenarios by
up to several times.
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