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Linear Difference Equations with Transition Points

Z. Wang† and R. Wong‡

Abstract

Two linearly independent asymptotic solutions are constructed for the second-order linear
difference equation

yn+1(x) − (Anx + Bn)yn(x) + yn−1(x) = 0,

where An and Bn have power series expansions of the form

An ∼
∞∑

s=0

αs

ns
, Bn ∼

∞∑

s=0

βs

ns

with α0 6= 0. Our results holds uniformly for x in an infinite interval containing the transition
point x+ given by α0x+ + β0 = 2. As an illustration, we present an asymptotic expansion for
the monic polynomials πn(x) which are orthogonal with respect to the modified Jacobi weight
w(x) = (1 − x)α(1 + x)βh(x), x ∈ (−1, 1), where α, β > −1 and h is real analytic and strictly
positive on [−1, 1].

Key words and phrases. Difference equation, transition points, three–term recurrence relation,
orthogonal polynomials.

1 Introduction

Ever since Deift and Zhou [7] introduced the steepest descent method for Riemann-Hilbert
problems, there has been a considerable amount of activities in the study of asymptotics of
orthogonal polynomials by using this approach. For instance, in [5] Deift et al studied the
asymptotics of orthogonal polynomials with respect to the weight w(x) = e−Q(x) on the real line,
where Q(x) is a polynomial of even degree with positive leading coefficient, and obtained uniform
Plancherel-Rotach-type asymptotics in the entire complex plane. Also, in [11] Kuijlaars and
McLaughlin used this method to investigate the asymptotic behavior of Laguerre polynomials
L

(αn)
n (x), where αn is a sequence of negative numbers such that −αn/n tends to a limit A > 1

as n → ∞. Furthermore, Kuijlaars et al [12, 13] considered the asymptotics of the polynomials
that are orthogonal with respect to the modified Jacobi weight

w(x) = (1 − x)α(1 + x)βh(x), x ∈ (−1, 1), (1.1)
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where α, β > −1 and the extra factor h is real analytic and strictly positive on [−1, 1]. For other
investigations of similar nature, we refer to [3, 4, 6, 10, 18]. An advantage of this new approach
over the more classical asymptotic methods is that it is applicable to orthogonal polynomials
which do not have an integral representation or satisfy a second-order differential equation.
Examples of such cases are provided by the two sets of orthogonal polynomials mentioned
above, namely those associated with (i) the exponential weight and (ii) the modified Jacobi
weight. However, so far this new method has not been able to produce results as strong as
those obtainable from the classical approaches when an integral representation is available, or
when the differential equation theory can be applied. For instance, in the case of Meixner-
Pollaczek polynomials Mn(x; δ, η), one can use a Cauchy integral representation to derive an
infinite asymptotic expansion for Mn(αn; δ, η), which holds uniformly for −M ≤ α ≤ M , where
M can be any positive number; see [14]. Also, when the polynomial Q(x) = x2m + · · · in the
weight function w(x) = e−Q(x) is even and convex, one can use the turning point theory for
differential equations to obtain an asymptotic formula for the polynomials pn(x) orthogonal
with respect to w(x), which holds uniformly in the unbounded interval 0 ≤ x ≤ O(n1/2m); see
[16].

In our view, a desirable approach to derive asymptotic expansions for orthogonal polynomials
now is to develop an asymptotic theory for linear second-order difference equations, just like what
Langer, Cherry, Olver and others have done for linear differential equations; see the definitive
book by Olver [15]. Our view is based on the fact that any sequence of orthogonal polynomials
satisfies the three-term recurrence relation

pn+1(x) = (anx + bn)pn(x) − cnpn−1(x), n = 1, 2, · · · , (1.2)

where an, bn and cn are constants. If we define a sequence {Kn} recursively by Kn+1/Kn−1 =
cn, with K0 and K1 depending on the particular sequence of polynomials, and put An ≡
anKn/Kn+1, Bn ≡ bnKn/Kn+1 and Pn(x) ≡ pn(x)/Kn, then (1.2) can be written as

Pn+1(x) − (Anx + Bn)Pn(x) + Pn−1(x) = 0. (1.3)

We shall assume that the coefficients An and Bn are real, and have asymptotic expansions of
the form

An ∼ n−θ
∞∑

s=0

αs

ns
and Bn ∼

∞∑

s=0

βs

ns
, (1.4)

where θ is a real number and α0 6= 0. If x is a fixed number, then asymptotic solutions to (1.3)
can be obtained from existing results in the literature; see, e.g., the papers by Birkhoff [1] and
Birkhoff - Trjitzinsky [2]. These papers, however, have been considered far too complicated and
even impenetrable. For a more accessible account of the asymptotic behavior of the solutions
to equation (1.3), we refer to the two more recent papers by Wong and Li [21, 22]. When x
is a parameter and allowed to vary, then not much work has been done in this area until just
recently. In [20], we have studied a case in which the exponent θ in (1.4) is not zero. This
case corresponds to the turning-point problem for second-order linear differential equations; and
the asymptotic expansions derived for the solutions involve the Airy functions Ai(·), Bi(·) and
their derivatives; see also [19]. In this paper, we shall consider the case θ = 0 in (1.3). The
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approximants of the asymptotic solutions turn out to be Bessel functions or modified Bessel
functions. As an illustration, we shall present an infinite asymptotic expansion for the monic
polynomials which are orthogonal with respect to the modified Jacobi weight given in (1.1).
Our expansion will hold uniformly for x in [−1 + δ,∞), δ > 0. Although we will make use of a
result of Kuijlaars et al [12] on the coefficients of a relevant recurrence relation, our result for
the modified Jacobi polynomials is stronger than those given in their papers [12, 13].

The presentation of this paper is arranged as follows. In Sec. 2, we show how the Bessel
functions arise in the asymptotic solutions. In Sec. 3, we give a preliminary lemma which is
crucial to the derivation of the asymptotic expansions. The construction of the formal solutions
is presented in Sec. 4. In Sec. 5, we establish the asymptotic nature of the expansions. The final
section is devoted to a study of the orthogonal polynomials with the modified Jacobi weight.

2 Motivation Leading to the Expansion

Returning to (1.3), we try a solution of the form Pn(x) = λn and replace the coefficients
An and Bn by their respective asymptotic expansions given in (1.4) with θ = 0. Upon letting
n → ∞, this yields the characteristic equation

λ2 − (α0x + β0)λ + 1 = 0. (2.1)

The roots of this equation are

λ± =
1
2

[
α0x + β0 ±

√
(α0x + β0)2 − 4

]
, (2.2)

and they coincide when x = x±, where x± satisfy

α0x± + β0 = ±2. (2.3)

The points x+ and x− are called transition points in [20]. Throughout this paper, we shall
assume that

α1 = β1 = 0 (2.4)

This assumption naturally implies the condition

α1x+ + β1 = 0, (2.5)

which was used in our previous paper on turning point theory; see equation (2.7) in [20]. It
is interesting to note that in a paper on WKB methods for difference equations, Dingle and
Morgan [8, 9] also assumed this condition. In fact, they assumed the stronger condition that all
coefficients αs and βs in (1.4) with odd indices vanish. (We believe that under assumption (1.4),
condition (2.4) for the three–term recurrence relation (1.3) is probably satisfied by all orthogonal
polynomials in the Szegö class. This possibility is currently under investigation.) Note that since
P̃n(x) ≡ (−1)nPn(x) satisfies the recurrence relation P̃n+1(x)+(Anx+Bn)P̃n(x)+ P̃n−1(x) = 0,
we may, without loss of generality, assume α0 > 0.
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Now let τ0 := −(α3x+ + β3)/2(α2x+ + β2); cf. (4.20) below. Define N := n + τ0 and recast
the expansions in (1.4), with θ = 0, in terms of N . This gives

An ∼
∞∑

s=0

α′
s

N s
and Bn ∼

∞∑

s=0

β′
s

N s
(2.6)

with α′
0 = α0 > 0 and α′

1 = β′
1 = 0. Since the transition points x+ and x− in (2.3) are distinct,

we may restrict ourselves to just the case x = x+. As in [20], we try a formal solution of the
form

Pn(x) =
∞∑

s=0

Xs(ξ)N−s (2.7)

for x near x+, where ξ depends on x and N . In this paper, we choose ξ = Nζ1/2(x), where ζ(x)
is an increasing function with ζ(x+) = 0. Clearly,

Pn+1(x) =
∞∑

s=0

Xs[(N + 1)ζ1/2(x)](N + 1)−s

=
∞∑

s=0

Xs

[(
1 +

1
N

)
ξ

]
N−s

(
1 +

1
N

)−s
.

By expanding Xs

(
ξ + ξ

N

)
into a Taylor series and using the binomial expansion, we obtain

Pn+1(x) =
∞∑

l=0

1
N l

l∑

s=0

[ l−s∑

j=0

X(j)
s (ξ)

ξj

j!

(
−s

l − j − s

)]
. (2.8)

Similarly,

Pn−1(x) =
∞∑

l=0

1
N l

l∑

s=0

[
(−1)l−s

l−s∑

j=0

X(j)
s (ξ)

ξj

j!

(
−s

l − j − s

)]
. (2.9)

Since ξ = Nζ1/2(x), we also have

x = ζ−1(ξ2/N2) =
∞∑

j=0

1
j!

(Djζ−1)(0)
ξ2j

N2j
, (2.10)

where Dj denotes the j–th derivative of ζ−1. From (2.6) and (2.10), it follows that

Anx + Bn =
∞∑

s=0

Qs(ξ)
N s

, (2.11)

where Q0(ξ) = α′
0x+ + β′

0 = 2, Q1(ξ) = α′
1x+ + β′

1 = 0 by (2.5), and

Qs(ξ) = β′
s +

∑

2j≤s

1
j!

(Djζ−1)(0)α′
s−2j ξ2j , s = 2, 3, · · · . (2.12)
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Upon substituting (2.7), (2.8), (2.9) and (2.12) into (1.3), we find that X0(ξ) satisfies the Bessel
equation

d2X0

dξ2
=

(
α′

0

ζ ′(0)
+

α′
2x+ + β′

2

ξ2

)
X0. (2.13)

Thus, it follows that X0(ξ) can be expressed in terms of either the Bessel functions Jν(ξ) and
Yν(ξ), or the modified Bessel functions Iν(ξ) and Kν(ξ). That is, there are constants C1 and C2

such that
X0(ξ) = C1ξ

1/2Jν(ξ) + C2 ξ1/2Yν(ξ) if α′
0 < 0

and
X0(ξ) = C1ξ

1/2Iν(ξ) + C2 ξ1/2Kν(ξ) if α′
0 > 0,

where

ν = ±
(

α′
2x+ + β′

2 +
1
4

)1/2

. (2.14)

Under the assumption in (2.4), it is easily verified that α′
2 = α2 and β′

2 = β2. In view of the
wellknown identities

J−ν(z) = cos νπJν(z) − sin νπYν(z), I−ν(z) = Iν(z) +
2 sin νπ

π
Kν(z),

Y−ν(z) = sin νπJν(z) + cos νπYν(z) and K−ν(z) = Kν(z),

we may, without loss of generality, take the square root with the + sign in (2.14). Moreover, each
of the subsequent coefficient functions Xs(ξ), s = 1, 2, · · · , in (2.7) satisfies an inhomogeneous
Bessel equation. This suggests that instead of (2.7), we might as well try the formal series
solution

Pn(x) = Zν(Nζ1/2)
∞∑

s=0

As(ζ)

N s− 1
2

+ Zν−1(Nζ1/2)
∞∑

s=0

Bs(ζ)

N s− 1
2

(2.15)

motivated from the differential equation theory. In (2.15), Zν(ξ) can be any solution of the
modified Bessel equation

y′′ +
1
x

y′ −
(

1 +
ν2

x2

)
y = 0. (2.16)

The main result of this paper is given in the following theorem.

THEOREM 1. Assume that the coefficients An and Bn in the recurrence relation (1.3) are
real, and have asymptotic expansions given in (1.4) with θ = 0. Let x± be the transition points
defined in (2.3), ζ1/2 = cosh−1(α0x + β0)/2 and τ0 = −(α3x+ + β3)/2(α2x+ + β2). Then, for
each nonnegative integer p, equation (1.3) has a pair of linearly independent solutions

Pn(x) =
(

4ζ

(α0x + β0)2 − 4

) 1
4
[
N

1
2 Iν(Nζ

1
2 )

p∑

s=0

As(ζ)
N s

+ N
1
2 ζ

1
2 Iν−1(Nζ

1
2 )

p∑

s=0

Bs(ζ)
N s

+ εp(N, x)
] (2.17)
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and

Qn(x) =
(

4ζ

(α0x + β0)2 − 4

) 1
4
[
N

1
2 Kν(Nζ

1
2 )

p∑

s=0

As(ζ)
N s

− N
1
2 ζ

1
2 Kν−1(Nζ

1
2 )

p∑

s=0

Bs(ζ)
N s

+ δp(N, x)
]
,

(2.18)

where N = n + τ0 and ν is given in (2.14). The error terms satisfy

|εp(N, x)| ≤
Mp

Np+ 1
2

[
|Iν(Nζ

1
2 )| + |Iν−1(Nζ

1
2 )|

]
(2.19)

and
|δp(N, x)| ≤

Mp

Np+ 1
2

[
|Kν(Nζ

1
2 )| + |Kν−1(Nζ

1
2 )|

]
(2.20)

for x− + δ ≤ x < ∞, where Mp is a positive constant. The coefficients As(ζ) and Bs(ζ) can be
determined successively for any given A0(ζ) and B0(ζ); see (4.11) and (4.12).

To see how the function ζ(x) and the constant τ0 in the above theorem are chosen, we refer
to § 4; see, in particular, (4.8) and (4.20).

3 A Preliminary Lemma

When we replace n by n+1, the two functions Zν(Nζ1/2) and Zν−1(Nζ1/2) in (2.15) become
Zν [(N + 1)ζ1/2] and Zν−1[(N + 1)ζ1/2]. An important connection between the second two
functions and the first two is given in the following lemma, which plays a crucial role in the
derivation of the formal series solution (2.15).

LEMMA 1. Let Zν(x) be any solution of the modified Bessel equation (2.16), which satisfies

Zν−1(x) = Z ′
ν(x) +

(
ν

x

)
Zν(x). (3.1)

We have
(

1 +
θ

N

)1/2

Zν [(N + θ)ζ1/2] = Zν(Nζ1/2)G(N ; θ, ζ) + ζ1/2Zν−1(Nζ1/2)H(N ; θ, ζ) (3.2)

and
(

1 +
θ

N

)1/2

Zν−1[(N + θ)ζ1/2] = ζ1/2Zν(Nζ1/2)L(N ; θ, ζ) + Zν−1(Nζ1/2)K(N ; θ, ζ), (3.3)

where

G(N ; θ, ζ) ∼
∞∑

s=0

Gs(θ, ζ)
N s

, H(N ; θ, ζ) ∼
∞∑

s=0

Hs(θ, ζ)
N s

, (3.4)
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L(N ; θ, ζ) ∼
∞∑

s=0

Ls(θ, ζ)
N s

, K(N ; θ, ζ) ∼
∞∑

s=0

Ks(θ, ζ)
N s

, (3.5)

the expansions being uniformly valid with respect to bounded θ and all real ζ.

Proof. Let w(θ, ζ) = (1 + θ/N)1/2Zν [(N + θ)ζ1/2]. Straightforward calculation gives

∂w

∂θ
=

1
2 − ν

N

(
1 +

θ

N

)− 1
2

Zν +
(

1 +
θ

N

) 1
2

ζ
1
2 Zν−1 (3.6)

and
∂2w

∂θ2
=

(
ζ +

ν2 − 1
4

(N + θ)2

)
w. (3.7)

The last equation can also be obtained directly from (2.16) by eliminating the term involving
the first derivative. From Taylor’s expansion,

w(θ, ζ) = w(0, ζ) +
∂w

∂θ
(0, ζ)θ +

1
2!

∂2w

∂θ2
(0, ζ)θ2 + · · · · · · .

In view of (3.6) and (3.7), this series can be rearranged as

(
1 +

θ

N

) 1
2

Zν [(N + θ)ζ
1
2 ] = Zν(Nζ

1
2 )G(N ; θ, ζ) + ζ

1
2 Zν−1(Nζ

1
2 )H(N ; θ, ζ), (3.8)

where G(N ; 0, ζ) = 1, H(N ; 0, ζ) = 0,

∂G

∂θ
(N ; 0, ζ) =

1
2 − ν

N
and

∂H

∂θ
(N ; 0, ζ) = 1.

Differentiating (3.8) with respect to θ yields

∂2G

∂θ2
=

(
ζ +

ν2 − 1
4

(N + θ)2

)
G, G

∣∣∣∣
θ=0

= 1,
∂G

∂θ

∣∣∣∣
θ=0

=
1
2 − ν

N
(3.9)

and
∂2H

∂θ2
=

(
ζ +

ν2 − 1
4

(N + θ)2

)
H, H

∣∣∣∣
θ=0

= 0,
∂H

∂θ

∣∣∣∣
θ=0

= 1. (3.10)

The solutions to these two differential equations have formal asymptotic solutions

G =
∞∑

s=0

Gs(θ, ζ)
N s

and H =
∞∑

s=0

Hs(θ, ζ)
N s

, (3.11)

where the coefficients can be determined recursively by the equations




∂2G0

∂θ2
− ζG0 = 0, G0

∣∣∣∣
θ=0

= 1,
∂G0

∂θ

∣∣∣∣
θ=0

= 0,

∂2H0

∂θ2
− ζH0 = 0, H0

∣∣∣∣
θ=0

= 0,
∂H0

∂θ

∣∣∣∣
θ=0

= 1,

(3.12)
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



∂2G1

∂θ2
− ζG1 = 0, G1

∣∣∣∣
θ=0

= 0,
∂G1

∂θ

∣∣∣∣
θ=0

=
1
2
− ν,

∂2H1

∂θ2
− ζH1 = 0, H1

∣∣∣∣
θ=0

= 0,
∂H1

∂θ

∣∣∣∣
θ=0

= 0,

(3.13)





∂2Gs

∂θ2
− ζGs =

(
ν2 − 1

4

) s∑

j=2

(−1)j(j − 1)θj−2Gs−j ,

Gs

∣∣∣∣
θ=0

=
∂Gs

∂θ

∣∣∣∣
θ=0

= 0,

(3.14)

and 



∂2Hs

∂θ2
− ζHs =

(
ν2 − 1

4

) s∑

j=2

(−1)j(j − 1)θj−2Hs−j ,

Hs

∣∣∣∣
θ=0

=
∂Hs

∂θ

∣∣∣∣
θ=0

= 0

(3.15)

for s ≥ 2. These equations can be solved explicitly, and we have

G0 =
1
2
(
e
√

ζθ + e−
√

ζθ
)
, H0 =

1
2
√

ζ

(
e
√

ζθ − e−
√

ζθ
)
, (3.16)

G1 =
1
2 − ν

2
√

ζ

(
e
√

ζθ − e−
√

ζθ
)
, H1 = 0, (3.17)

and




Gs =
ν2 − 1

4

2
√

ζ

∫ θ

0

( s∑

j=2

(−1)j(j − 1)φj−2Gs−j

)
(e

√
ζ(θ−φ) − e

√
ζ(φ−θ)) dφ,

Hs =
ν2 − 1

4

2
√

ζ

∫ θ

0

( s∑

j=2

(−1)j(j − 1)φj−2Hs−j

)
(e

√
ζ(θ−φ) − e

√
ζ(φ−θ)) dφ

(3.18)

for s ≥ 2, where
√

ζ = i
√
−ζ if ζ < 0. Using the inequalities

coshx sinh y ≤ y cosh(x + y) and sinh x sinh y ≤ y sinh(x + y),

it can be proved by induction that for ζ < 0

|Gs(θ, ζ)| ≤ (|ν| + 1)s|θ|s and |Hs(θ, ζ)| ≤ (|ν| + 1)s|θ|s+1, (3.19)

and that for ζ > 0

|Gs(θ, ζ)| ≤ (|ν| + 1)s|θ|sG0(θ, ζ), |Hs(θ, ζ)| ≤ (|ν| + 1)s|θ|s |H0(θ, ζ)|. (3.20)

Thus, the formal series in (3.11) are uniformly convergent for any bounded θ and sufficiently
large N , and (3.2) follows.
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Let Ls(θ, ζ) and Ks(θ, ζ) be given as in (3.5). By the same argument, we have

K0(θ, ζ) =
1
2
(
e
√

ζθ + e−
√

ζθ
)
, L0(θ, ζ) =

1
2
√

ζ

(
e
√

ζθ − e−
√

ζθ
)
, (3.21)

K1(θ, ζ) =
ν − 1

2

2
√

ζ

(
e
√

ζθ − e−
√

ζθ
)
, L1(θ, ζ) = 0. (3.22)

Furthermore, for ζ < 0

|Ks(θ, ζ)| ≤ (|ν| + 1)s|θ|s, |Ls(θ, ζ)| ≤ (|ν| + 1)s|θ|s+1, (3.23)

and for ζ > 0

|Ks(θ, ζ)| ≤ (|ν| + 1)s|θ|sK0(θ, ζ), |Ls(θ, ζ)| ≤ (|ν| + 1)s|θ|s |L0(θ, ζ)|. (3.24)

This demonstrates the uniform convergence of the formal series in (3.5) for sufficiently large N ,
and completes the proof of the lemma.

From the recursive formula (3.16) - (3.18), it can be readily shown that

Gs(−θ, ζ) = (−1)sGs(θ, ζ) and Hs(−θ, ζ) = (−1)s−1Hs(θ, ζ). (3.25)

Choosing θ = ±1 in (3.2), we have

(
1 ± 1

N

) 1
2

Zν [(N ± 1)ζ
1
2 ] = Zν(Nζ

1
2 )G

(
ζ,± 1

N

)
± ζ

1
2 Zν−1(Nζ

1
2 )H

(
ζ,± 1

N

)
, (3.26)

where

G

(
ζ,± 1

N

)
:= G(N ;±1, ζ) :=

∞∑

s=0

(±1)s Gs(ζ)
N s

(3.27)

and

H

(
ζ,± 1

N

)
:= ±H(N ;±1, ζ) :=

∞∑

s=0

(±1)s Hs(ζ)
N s

. (3.28)

Similarly, it follows from (3.3) that

(
1 ± 1

N

) 1
2

Zν−1[(N ± 1)ζ
1
2 ] = ±ζ

1
2 Zν(Nζ

1
2 )L

(
ζ,± 1

N

)
+ Zν−1(Nζ

1
2 )K

(
ζ,± 1

N

)
, (3.29)

where

L

(
ζ,± 1

N

)
:= ±L(N ;±1, ζ) :=

∞∑

s=0

(±1)s Ls(ζ)
N s

(3.30)

and

K

(
ζ,± 1

N

)
:= K(N ;±1, ζ) :=

∞∑

s=0

(±1)s Ks(ζ)
N s

. (3.31)
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By (3.16) and (3.21), we also have

G0(ζ) = K0(ζ) = cosh ζ
1
2 (3.32)

and

H0(ζ) = L0(ζ) =
sinh

√
ζ√

ζ
. (3.33)

Later in our discussion, we also need the values G
(
0,

1
N

)
, H

(
0,

1
N

)
, L

(
0,

1
N

)
and K

(
0,

1
N

)
.

To this end, we note that using (3.26) with Zν = Iν and Zν = eiνπKν , we have, respectively,

G

(
ζ,

1
N

)
=

(
1 +

1
N

) 1
2 Kν [(N + 1)ζ

1
2 ]

Kν(Nζ
1
2 )

+
ζ

1
2 Kν−1(Nζ

1
2 )

Kν(Nζ
1
2 )

H

(
ζ,

1
N

)

and

H

(
ζ,

1
N

)
=

(
1 +

1
N

) 1
2 Iν [(N + 1)ζ

1
2 ]

ζ
1
2 Iν−1(Nζ

1
2 )

− Iν(Nζ
1
2 )

ζ
1
2 Iν−1(Nζ

1
2 )

G

(
ζ,

1
N

)
.

From the asymptotic relations

Iν(z) ∼ (z/2)ν

Γ(ν + 1)
and Kν(z) ∼ 1

2
Γ(ν)

(
z

2

)−ν

as z → 0, it follows that

G

(
0,

1
N

)
=

(
1 +

1
N

)−ν+ 1
2

, (3.34)

H

(
0,

1
N

)
=

N

2ν

[(
1 +

1
N

)ν+ 1
2

−
(

1 +
1
N

)−ν+ 1
2
]
. (3.35)

In a similar manner, we obtain

K

(
0,

1
N

)
=

(
1 +

1
N

)ν− 1
2

, (3.36)

L

(
0,

1
N

)
=

N

2(ν − 1)

[(
1 +

1
N

)ν− 1
2

−
(

1 +
1
N

)−ν+ 3
2
]
. (3.37)
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4 Formal Asymptotic Solutions

Let ζ(x) be an increasing function with ζ(x+) = 0. We try a formal series solution to (1.3)
in the form

Pn(x) = N
1
2 Zν(Nζ

1
2 )

∞∑

s=0

As(ζ)
N s

+ N
1
2 ζ

1
2 Zν−1(Nζ

1
2 )

∞∑

s=0

Bs(ζ)
N s

; (4.1)

cf. (2.15). For convenience, we put

A

(
ζ,

1
N

)
:=

∞∑

s=0

As(ζ)
N s

, B

(
ζ,

1
N

)
:=

∞∑

s=0

Bs(ζ)
N s

(4.2)

and

Ψ
(

x,
1
N

)
:= Anx + Bn =

∞∑

s=0

α′
sx + β′

s

N s
; (4.3)

cf. (1.3) and (2.6). By Lemma 1, we have

Pn±1(x) =N
1
2 Zν(Nζ

1
2 )

{
G

(
ζ,± 1

N

)
A

(
ζ,

1
N ± 1

)
± ζL

(
ζ,± 1

N

)
B

(
ζ,

1
N ± 1

)}

+ N
1
2 ζ

1
2 Zν−1(Nζ

1
2 )

{
K

(
ζ,± 1

N

)
B

(
ζ,

1
N ± 1

)
± H

(
ζ,± 1

N

)
A

(
ζ,

1
N ± 1

)}
.

(4.4)

Substituting (4.1) and (4.4) into the recurrence relation (1.3) and matching the coefficients of
Zν and Zν−1, we obtain

G

(
ζ,

1
N

)
A

(
ζ,

1
N + 1

)
+ G

(
ζ,− 1

N

)
A

(
ζ,

1
N − 1

)
− Ψ

(
x,

1
N

)
A

(
ζ,

1
N

)

+ ζL

(
ζ,

1
N

)
B

(
ζ,

1
N + 1

)
− ζL

(
ζ,− 1

N

)
B

(
ζ,

1
N − 1

)
= 0

(4.5)

and

H

(
ζ,

1
N

)
A

(
ζ,

1
N + 1

)
− H

(
ζ,− 1

N

)
A

(
ζ,

1
N − 1

)
− Ψ

(
x,

1
N

)
B

(
ζ,

1
N

)

+ K

(
ζ,

1
N

)
B

(
ζ,

1
N + 1

)
+ K

(
ζ,− 1

N

)
B

(
ζ,

1
N − 1

)
= 0.

(4.6)

By letting N → ∞, the last two equations give

G0(ζ) = K0(ζ) =
α′

0x + β′
0

2
. (4.7)

Coupling (3.16) and (4.7) yields

ζ
1
2 = cosh−1

(
α′

0x + β′
0

2

)
. (4.8)
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Equating coefficients of like powers of 1/N in (4.5) and (4.6), we get

∑

2s≤p

[
Ap−2s

2s∑

i=0

(
2s − p

2s − i

)
Gi

]

+
∑

2s+1≤p

[
Bp−2s−1

2s+1∑

i=0

(
2s + 1 − p

2s + 1 − i

)
ζLi

]
−

∑

s≤p

α′
sx + β′

s

2
Ap−s = 0

(4.9)

and

∑

2s≤p

[
Bp−2s

2s∑

i=0

(
2s − p

2s − i

)
Ki

]

+
∑

2s+1≤p

[
Ap−2s−1

2s+1∑

i=0

(
2s + 1 − p

2s + 1 − i

)
Hi

]
−

∑

s≤p

α′
sx + β′

s

2
Bp−s = 0.

(4.10)

From (4.9) and (4.10), it follows that

(p − 1)H0Ap−1 =
∑

1≤2s≤p

[
Bp−2s

2s∑

i=0

(
2s − p

2s − i

)
Ki

]

+
∑

2≤2s+1≤p

[
Ap−2s−1

2s+1∑

i=0

(
2s + 1 − p

2s + 1 − i

)
Hi

]
−

∑

2≤s≤p

α′
sx + β′

s

2
Bp−s

(4.11)

and

(p − 1)ζL0Bp−1 =
∑

1≤2s≤p

[
Ap−2s

2s∑

i=0

(
2s − p

2s − i

)
Gi

]

+
∑

2≤2s+1≤p

[
Bp−2s−1

2s+1∑

i=0

(
2s + 1 − p

2s + 1 − i

)
ζLi

]
−

∑

2≤s≤p

α′
sx + β′

s

2
Ap−s,

(4.12)

where we have made use of the fact that H1 = L1 = 0. Thus, for each p ≥ 1, Ap(ζ) and Bp(ζ)
can be determined successively from the above two equations for any given A0(ζ) and B0(ζ) .

LEMMA 2. Let ζ(x) be given as in (4.8), and suppose that |A0(ζ)| and (1 + |ζ|1/2)|B0(ζ)| are
bounded for x ≥ x− + δ. Further, let As(ζ) and Bs(ζ) be successively defined as in (4.11) and
(4.12). Then there exists a positive constant Ns independent of x such that

|As(ζ)| ≤ Ns, |Bs(ζ)| ≤ Ns

(1 + |ζ|1/2)
, s = 1, 2, · · · , (4.13)

for all x ≥ x− + δ, δ > 0.
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Proof. Using (3.32) and (3.33), it can be shown that

|G0| ≤ C|H0|(1 + |ζ|1/2) (4.14)

for x ≥ x− + δ, where C is a positive constant. From (3.19), (3.20), (3.23) and (3.24), it also
follows that there exists a constant Cs, independent of x, such that

|Ks| + |Gs| ≤ Cs|H0|(1 + |ζ|1/2). (4.15)

Thus, if the functions Ap(ζ) and Bp(ζ) given successively in (4.11) and (4.12) are well-defined
(i.e., Bp(ζ) is bounded at ζ = 0), then the estimates in (4.13) can be readily verified by induction.
To show that Bp(0) is bounded, we divide our discussion into three cases : (i) 2ν 6= 0, 1, 2, · · · ;
(ii) 2ν = 1, 2, 3, · · · , and (iii) 2ν = 0.

In case (i), we first consider the second-order linear difference equation

yN+1 + yN−1 − Ψ
(

x+,
1
N

)
yN = 0, (4.16)

where Ψ(x+, 1/N) is given in (4.3). The results in [21] infer that (4.16) has two linearly
independent asymptotic solutions of the form

y
(1)
N ∼ N−ν+ 1

2

∞∑

s=0

cs

N s
, y

(2)
N ∼ Nν+ 1

2

∞∑

s=0

ds

N s
, (4.17)

where c0 = d0 = 1,

c1 =
α′

3x+ + β′
3

1 + 2ν
and d1 =

α′
3x+ + β′

3

1 − 2ν
(4.18)

on account of (2.14). We shall show that for all p ≥ 0,

Ap(0) = cp and Bp(0) =
dp+1 − cp+1

2ν
. (4.19)

To this end, note that

α′
3x+ + β′

3 = α3x+ + β3 + 2τ0(α2x+ + β2).

Since 2ν 6= 0, 1, 2, · · · in this case, we can choose τ0 to be

τ0 = − α3x+ + β3

2(α2x+ + β2)
= −α3x+ + β3

2(ν2 − 1
4)

, (4.20)

so that B0(0) = 0. Note that ν 6= 1/2 in the present case, and that the last equality follows
from (2.14).

Returning to (4.5) and (4.6), we set ζ = 0. This yields

G

(
0,

1
N

)
A

(
0,

1
N + 1

)
+ G

(
0,− 1

N

)
A

(
0,

1
N − 1

)
− Ψ

(
x+,

1
N

)
A

(
0,

1
N

)
= 0 (4.21)
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and

H

(
0,

1
N

)
A

(
0,

1
N + 1

)
− H

(
0,− 1

N

)
A

(
0,

1
N − 1

)
− Ψ

(
x+,

1
N

)
B

(
0,

1
N

)

+ K

(
0,

1
N

)
B

(
0,

1
N + 1

)
+ K

(
0,− 1

N

)
B

(
0,

1
N − 1

)
= 0.

(4.22)

To see that (4.21) can be written in the form of (4.16), we put

xN := N−ν+ 1
2 A

(
0,

1
N

)
. (4.23)

From (4.21) and (3.34), it is clear that xN satisfies

xN+1 + xN−1 − Ψ
(

x+,
1
N

)
xN = 0

and we have

N−ν+ 1
2 A

(
0,

1
N

)
= y

(1)
N ∼ N−ν+ 1

2

∞∑

s=0

cs

N s

on account of (4.17). This gives the first equation in (4.19). Analogously, we put

x̂N = Nν− 1
2

[
NA

(
0,

1
N

)
+ 2νB

(
0,

1
N

)]
. (4.24)

Then, by using (3.35) and (3.36), it can be shown that x̂N satisfies (4.16) and

Nν− 1
2

[
NA

(
0,

1
N

)
+ 2νB

(
0,

1
N

)]
= y

(2)
N ∼ Nν+ 1

2

∞∑

s=0

ds

N s
,

from which it follows
As(0) + 2νBs−1(0) = ds (4.25)

and we obtain the second equation in (4.19).
In case (ii), i.e., 2ν = 1, 2, · · · , the two linearly independent asymptotic solutions of (4.16)

are

y
(1)
N ∼ N−ν+ 1

2

∞∑

s=0

cs

N s
, y

(2)
N ∼ Nν+ 1

2

∞∑

s=0

ds

N s
+ Cy

(1)
N log N, (4.26)

where C is a constant; see Wong and Li [21]. In a similar manner, we have

N−ν+ 1
2 A

(
0,

1
N

)
= y

(1)
N ∼ N−ν+ 1

2

∞∑

s=0

cs

N s

and

Nν− 1
2

[
NA

(
0,

1
N

)
+ 2νB

(
0,

1
N

)]
= 0
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on account of (4.26). Coupling these together gives

As(0) = cs for s = 0, 1, · · · (4.27)

and
2νBs(0) = As+1(0) for s = 0, 1, · · · . (4.28)

When ν 6= 1/2, we can still choose τ0 as in (4.20) so that B0(0) = 0. When ν = 1/2, there is no
singularity at ξ = 0 in (2.13), and the functions Zν and Zν−1 in (4.1) can be expressed in terms
of hyperbolic cosine and hyperbolic sine. So ν = 1/2 is a simple case, and we can choose τ0 to
be any real number.

In case (iii), ν = 0 and the results in [21] infer that (4.16) has two linearly independent
asymptotic solutions of the form

y
(1)
N ∼ N

1
2

∞∑

s=0

cs

N s
, y

(2)
N ∼ N

1
2

∞∑

s=0

ds

N s
+ y

(1)
N log N, (4.29)

where c0 = d0 = 1 and c1 = −d1 = (α′
3x+ + β′

3). Similarly, we have

N
1
2 A

(
0,

1
N

)
= y

(1)
N ∼ N

1
2

∞∑

s=0

cs

N s

and

N− 1
2

[
(N log N)A

(
0,

1
N

)
+ B

(
0,

1
N

)]
= y

(2)
N − y

(1)
N ∼ N

1
2

∞∑

s=1

ds − cs

N s
+ y

(1)
N log N,

from which it follows

As(0) = cs and Bs(0) = ds+1 − cs+1 for s = 0, 1, · · · . (4.30)

In the case of ν = 0, we can also choose τ0 as in (4.20) so that B0(0) = 0. The proof of the
lemma is now complete.

5 Proof of the Theorem

Since x is a fixed number in the recurrence relation (1.3), we may take

Zν(Nζ
1
2 ) = H

− 1
2

0 (ζ)Iν(Nζ
1
2 ) and Zν(Nζ

1
2 ) = eiπνH

− 1
2

0 (ζ)Kν(Nζ
1
2 )

in (4.1). In view of (3.33) and (4.8), we obtain two formal solutions

Pn(x) =
(

4ζ

(α′
0x + β′

0)2 − 4

) 1
4
[
N

1
2 Iν(Nζ

1
2 )

∞∑

s=0

As(ζ)
N s

+ N
1
2 ζ

1
2 Iν−1(Nζ

1
2 )

∞∑

s=0

Bs(ζ)
N s

] (5.1)
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and

Qn(x) =
(

4ζ

(α′
0x + β′

0)2 − 4

) 1
4
[
N

1
2 Kν(Nζ

1
2 )

∞∑

s=0

As(ζ)
N s

− N
1
2 ζ

1
2 Kν−1(Nζ

1
2 )

∞∑

s=0

Bs(ζ)
N s

]
.

(5.2)

Here, Iν and Kν are the modified Bessel functions.
For convenience, we introduce the notations

Ap

(
ζ,

1
N

)
:=

p∑

s=0

As(ζ)
N s

, Bp

(
ζ,

1
N

)
:=

p∑

s=0

Bs(ζ)
N s

, (5.3)

rp
n(x) :=

(
4ζ

(α′
0x + β′

0)2 − 4

) 1
4
[
N

1
2 Iν(Nζ

1
2 )Ap

(
ζ,

1
N

)

+ N
1
2 ζ

1
2 Iν−1(Nζ

1
2 )Bp

(
ζ,

1
N

)] (5.4)

and

sp
n(x) :=

(
4ζ

(α′
0x + β′

0)2 − 4

) 1
4
[
N

1
2 Kν(Nζ

1
2 )Ap

(
ζ,

1
N

)

− N
1
2 ζ

1
2 Kν−1(Nζ

1
2 )Bp

(
ζ,

1
N

)]
.

(5.5)

By Lemma 1, we have

rp
n+1(x) − (Anx + Bn) rp

n(x) + rp
n−1(x) =

Rp
n(x)

Np+ 3
2

, (5.6)

where the nonhomogeneous term is given by

Rp
n(x)/Np+ 3

2 =
(

4ζ

(α′
0x + β′

0)2 − 4

) 1
4
[
N

1
2 Iν(Nζ

1
2 )F1,n(x)

+ N
1
2 ζ

1
2 Iν−1(Nζ

1
2 )F2,n(x)

] (5.7)

with

F1,n(x) =G

(
ζ,

1
N

)
Ap

(
ζ,

1
N + 1

)
+ G

(
ζ,− 1

N

)
Ap

(
ζ,

1
N − 1

)

− Ψ
(

x,
1
N

)
Ap

(
ζ,

1
N

)
+ ζL

(
ζ,

1
N

)
Bp

(
ζ,

1
N + 1

)

− ζL

(
ζ,− 1

N

)
Bp

(
ζ,

1
N − 1

)
(5.8)
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and

F2,n(x) =H

(
ζ,

1
N

)
Ap

(
ζ,

1
N + 1

)
− H

(
ζ,− 1

N

)
Ap

(
ζ,

1
N − 1

)

− Ψ
(

x,
1
N

)
Bp

(
ζ,

1
N

)
+ K

(
ζ,

1
N

)
Bp

(
ζ,

1
N + 1

)

+ K

(
ζ,

1
N

)
Bp

(
ζ,

1
N − 1

)
.

(5.9)

Recall that the series

A

(
ζ,

1
N

)
=

∞∑

s=0

As(ζ)
N s

and B

(
ζ,

1
N

)
=

∞∑

s=0

Bs(ζ)
N s

in (4.2) are formal solutions of (4.5) and (4.6). Since Ap

(
ζ, 1

N

)
and Bp

(
ζ, 1

N

)
can be written as

Ap

(
ζ,

1
N

)
=

∞∑

s=0

A∗
s(ζ)
N s

and Bp

(
ζ,

1
N

)
=

∞∑

s=0

B∗
s (ζ)
N s

with A∗
s(ζ) = As(ζ), B∗

s (ζ) = Bs(ζ) for s ≤ p and A∗
s(ζ) = B∗

s (ζ) = 0 for s ≥ p + 1, terms with
powers of 1/N less than or equal to p + 1 in the expansions of F1,n(x) and F2,n(x) all vanish.
(Note: the recurrence relations (4.11) and (4.12) were obtained when we equated coefficients
of 1/Np in (4.5) and (4.6) to zero.) Hence, using Lemma 2, it can be proved that there is a
constant Cp such that

|F1,n(x)| ≤ Cp(1 + |x|)/Np+2 (5.10)

and
(1 +

∣∣ζ 1
2

∣∣)
∣∣F2,n(x)

∣∣ ≤ Cp(1 + |x|)/Np+2 (5.11)

for all x ≥ x− + δ. From (5.7), it follows that

|Rp
n(x)| ≤ C̃p

(
4ζ

(α′
0x + β′

0)2 − 4

) 1
4

(1 + |x|)
[∣∣Iν(Nζ

1
2 )

∣∣ +
|ζ|

1
2

1 + |ζ|
1
2

∣∣Iν−1(Nζ
1
2 )

∣∣
]

(5.12)

for all x ≥ x− + δ and for some positive constant C̃p. Similarly, we have

sp
n+1(x) − (Anx + Bn)sp

n(x) + sp
n−1(x) =

Sp
n(x)

Np+ 3
2

, (5.13)

where

∣∣Sp
n(x)

∣∣ ≤ C̃p

(
4ζ

(α′
0x + β′

0)2 − 4

) 1
4

(1 + |x|)
[∣∣Kν(Nζ

1
2 )

∣∣ +
|ζ|

1
2

1 + |ζ|
1
2

∣∣Kν−1(Nζ
1
2 )

∣∣
]
. (5.14)

We now establish the existence of two solutions Pn(x) and Qn(x) of (1.3) satisfying

Pn(x) ∼ r0
n(x) and Qn(x) ∼ s0

n(x) (5.15)
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as n → ∞ for any fixed x > x−. It is easily verified that

r0
n(x) ∼ 1√

2π

(
4

(α′
0x + β′

0)2 − 4

) 1
4

eNζ
1
2 (A0 + ζ

1
2 B0), x > x+, (5.16)

r0
n(x) ∼ 1√

2π

(
4

(α′
0x + β′

0)2 − 4

) 1
4
[
e−Nζ

1
2 +(ν+ 1

2
)πi(A0 − ζ

1
2 B0)

+ eNζ
1
2 (A0 + ζ

1
2 B0)

]
, x− + δ ≤ x < x+,

(5.17)

and

s0
n(x) ∼

√
π

2

(
4

(α′
0x + β′

0)2 − 4

) 1
4

e−Nζ
1
2 (A0 − ζ

1
2 B0), x ≥ x− + δ, (5.18)

as n → ∞. If Pn(x) and Qn(x) are two linearly independent solutions of (1.3) satisfying (5.15),
then it follows from (5.16), (5.17) and (5.18) that

Pn+1(x)Qn(x) − Pn(x)Qn+1(x) = Pn+2(x)Qn+1(x) − Pn+1(x)Qn+2(x)

and

Pn+1(x)Qn(x) − Pn(x)Qn+1(x) = lim
m→∞

[
r0
m+1(x)s0

m(x) − r0
m(x)s0

m+1(x)
]

= A2
0 − ζB2

0 6= 0.

Without loss of generality, we may assume A2
0 − ζB2

0 = 1. From this, it follows that there exists
a smooth function Γ(ζ) such that (1 + |ζ|1/2)Γ(ζ) is bounded for x ≥ x− + δ and

A0 = cosh
(√

ζΓ(ζ)
)
, B0 =

sinh
(√

ζΓ(ζ)
)

√
ζ

; (5.19)

see the assumption in Lemma 2. With these choices, we have

Pn+1(x)Qn(x) − Pn(x)Qn+1(x) = 1. (5.20)

This, in particular, shows that Pn(x) and Qn(x) are two linearly independent solutions.
Now define

εp
n(x) := Pn(x) − rp

n(x) and δp
n(x) := Qn(x) − sp

n(x). (5.21)

We first show that the existence of Qn(x) to (1.3) satisfying (5.15) is equivalent to the existence
of δp

n(x) to the summation formula

δp
n(x) =

∞∑

j=n+1

[rp
n(x)sp

j (x) − sp
n(x)rp

j (x)]Sp
j (x)

[rp
n+1(x)sp

n(x) − rp
n(x)sp

n+1(x)](j + τ0)p+ 3
2

+
∞∑

j=n+1

[rp
n(x)Sp

j (x) − sp
n(x)Rp

j (x)]δp
j (x)

[rp
n+1(x)sp

n(x) − rp
n(x)sp

n+1(x)](j + τ0)p+ 3
2

.

(5.22)
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From (1.3) and (5.13), we obtain

δp
n+1(x) − (Anx + Bn)δp

n(x) + δp
n−1(x) = −Sp

n(x)

Np+ 3
2

. (5.23)

Coupling (5.6) and (5.23) gives

rp
n(x)δp

n+1(x) − rp
n+1(x)δp

n(x) = rp
n+1(x)δp

n+2(x) − rp
n+2(x)δp

n+1(x)

+
Sp

n+1(x)rp
n+1(x) + Rp

n+1(x)δp
n+1(x)

(N + 1)p+ 3
2

.
(5.24)

In exactly the same manner, we also have

sp
n(x)δp

n+1(x) − sp
n+1(x)δp

n(x) = sp
n+1(x)δp

n+2(x) − sp
n+2(x)δp

n+1(x)

+
Sp

n+1(x)sp
n+1(x) + Sp

n+1(x)δp
n+1(x)

(N + 1)p+ 3
2

.
(5.25)

and

rp
n+1(x)sp

n(x) − sp
n+1(x)rp

n(x) = rp
n+2(x)sp

n+1(x) − sp
n+2(x)rp

n+1(x)

+
Sp

n+1(x)rp
n+1(x) − Rp

n+1(x)sp
n+1(x)

(N + 1)p+ 3
2

.
(5.26)

Repeated application of the last three equations yields, respectively,

rp
n(x)δp

n+1(x) − rp
n+1(x)δp

n(x) = rp
m+1(x)δp

m+2(x) − rp
m+2(x)δp

m+1(x)

+
m+1∑

j=n+1

Rp
j (x)δp

j (x) + Sp
j (x)rp

j (x)

(j + τ0)p+ 3
2

.
(5.27)

sp
n(x)δp

n+1(x) − sp
n+1(x)δp

n(x) = sp
m+1(x)δp

m+2(x) − sp
m+2(x)δp

m+1(x)

+
m+1∑

j=n+1

Sp
j (x)sp

j (x) + Sp
j (x)δp

j (x)

(j + τ0)p+ 3
2

(5.28)

and

rp
n+1(x)sp

n(x) − sp
n+1(x)rp

n(x) = rp
m+2(x)sp

m+1(x) − sp
m+2(x)rp

m+1(x)

+
m+1∑

j=n+1

Sp
j (x)rp

j (x) − Rp
j (x)sp

j (x)

(j + τ0)p+ 3
2

.
(5.29)

If Qn(x) satisfies (5.15), then δ0
n(x) = o

(
s0
n(x)

)
as n → ∞. Since δp

n(x) = δ0
n(x) + s0

n(x) − sp
n(x)

by (5.21), and since As(ζ) and (1 + |ζ|
1
2 )Bs(ζ) are bounded for s = 0, · · · , p by Lemma 2, we

also have δp
n(x) = o

(
s0
n(x)

)
as n → ∞. In view of (5.16), (5.17) and (5.18), we have

rp
m+1(x)δp

m+2(x) − rp
m+2(x)δp

m+1(x) → 0, (5.30)
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sp
m+1(x)δp

m+2(x) − sp
m+2(x)δp

m+1(x) → 0 (5.31)

and
rp
m+2(x)sp

m+1(x) − sp
m+2(x)rp

m+1(x) → 1 (5.32)

as m → ∞. By letting m → ∞ in (5.27) - (5.29), we obtain

rp
n(x)δp

n+1(x) − rp
n+1(x)δp

n(x) =
∞∑

j=n+1

Rp
j (x)δp

j (x) + Sp
j (x)rp

j (x)

(j + τ0)p+ 3
2

, (5.33)

sp
n(x)δp

n+1(x) − sp
n+1(x)δp

n(x) =
∞∑

j=n+1

Sp
j (x)sp

j (x) + Sp
j (x)δp

j (x)

(j + τ0)p+ 3
2

(5.34)

and

rp
n+1(x)sp

n(x) − sp
n+1(x)rp

n(x) = 1 +
∞∑

j=n+1

Sp
j (x)rp

j (x) − Rp
j (x)sp

j (x)

(j + τ0)p+ 3
2

. (5.35)

Upon solving (5.33) and (5.34), we obtain (5.22). The existence of a solution {δp
n(x)}∞n=1 to

(5.22) is proved by using the successive approximation method. Starting with δp
n,0(x) = 0, we

define δp
n,k(x) by

δp
n,k(x) =

∞∑

j=n+1

[rp
n(x)sp

j (x) − sp
n(x)rp

j (x)]Sp
j (x)

[rp
n+1(x)sp

n(x) − rp
n(x)sp

n+1(x)](j + τ0)p+ 3
2

+
∞∑

j=n+1

[rp
n(x)Sp

j (x) − sp
n(x)Rp

j (x)]δp
j,k−1(x)

[rp
n+1(x)sp

n(x) − rp
n(x)sp

n+1(x)](j + τ0)p+ 3
2

(5.36)

for k ≥ 1. We shall show that for fixed p and sufficiently large but also fixed n, the sequence
{δp

n,k(x)}k≥0 is convergent as k → ∞. Since As(ζ) and (1+|ζ|
1
2 )Bs(ζ) are bounded for x ≥ x−+δ,

it follows from (5.3) - (5.5) that

∣∣rp
n(x)

∣∣ ≤ CN
1
2

(
4ζ

(α′
0x + β′

0)2 − 4

) 1
4
[∣∣Iν(Nζ

1
2 )

∣∣ +
|ζ

1
2 |

1 + |ζ
1
2 |

∣∣Iν−1(Nζ
1
2 )

∣∣
]

(5.37)

and

∣∣sp
n(x)

∣∣ ≤ CN
1
2

(
4ζ

(α′
0x + β′

0)2 − 4

) 1
4
[∣∣Kν(Nζ

1
2 )

∣∣ +
|ζ

1
2 |

1 + |ζ
1
2 |

∣∣Kν−1(Nζ
1
2 )

∣∣
]

(5.38)

for some positive constant C. Furthermore, by virtue of the behaviors of Iν and Kν , we have
from (5.12) and (5.14)

∣∣Rp
n(x)sp

n(x)
∣∣ ≤ M ′N

1
2

(
1 + |ζ

1
2 |

1 + N |ζ
1
2 |

)
≤ M ′N

1
2 (5.39)
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and
∣∣Sp

n(x)rp
n(x)

∣∣ ≤ M ′N
1
2

(
1 + |ζ

1
2 |

1 + N |ζ
1
2 |

)
≤ M ′N

1
2 , (5.40)

where M ′ is a positive constant. Thus, from (5.35) we obtain
∣∣∣∣r

p
n+1(x)sp

n(x) − sp
n+1(x)rp

n(x) − 1
∣∣∣∣ ≤

2M ′

p
· 1
Np

,

which in turn gives

rp
n+1(x)sp

n(x) − sp
n+1(x)rp

n(x) >
1
2

(5.41)

for large n, say n > 4M ′ − τ0. A combination of (5.36), (5.37), (5.38) and (5.41) yields

∣∣δp
n,1(x)

∣∣ ≤ 2
∞∑

j=n+1

[|rp
n(x)sp

j (x)| + |sp
n(x)rp

j (x)|]|Sp
j (x)|

(j + τ0)p+ 3
2

≤ M ′′
(

4ζ

(α′
0x + β′

0)2 − 4

) 1
4
( ∞∑

j=n+1

N
1
2

(j + τ0)p+1

)[∣∣Kν(Nζ
1
2 )| + |Kν−1(Nζ

1
2 )|

]

for some constant M ′′ > 0, where we have also used (5.40) and the monotonicity properties of
Iν and Kν . Hence

∣∣δp
n,1(x)

∣∣ ≤ M ′′

p
· 1

Np− 1
2

(
4ζ

(α′
0x + β′

0)2 − 4

) 1
4
[∣∣Kν(Nζ

1
2 )| + |Kν−1(Nζ

1
2 )|

]
. (5.42)

Similarly, we can prove by induction that

∣∣δp
n,k(x) − δp

n,k−1(x)
∣∣ ≤

(
M ′′

p
· 1
Np

)k( 4ζ

(α′
0x + β′

0)2 − 4

) 1
4

N
1
2

[
|Kν(Nζ

1
2 )| + |Kν−1(Nζ

1
2 )|

]
,

(5.43)

from which it also follows that

δp
n,k(x) =

k∑

m=1

[
δp
n,m(x) − δp

n,m−1(x)
]

(5.44)

converges, as k → ∞, for all n ≥ 2M ′′ − τ0. Clearly, the limit function δp
n(x) satisfies (5.22).

Thus, Qn(x) = sp
n(x) + δp

n(x) is a solution of (1.3) satisfying (5.15). Furthermore, we have from
(5.42), (5.43) and (5.44) that

∣∣δp
n(x)

∣∣ ≤ M ′
p

(
4ζ

(α′
0x + β′

0)2 − 4

) 1
4 [
|Kν(Nζ

1
2 )| + |Kν−1(Nζ

1
2 )|

]
/Np− 1

2 .
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Note that As(ζ) and (1 + |ζ
1
2 |)Bs(ζ) are bounded for x ≥ x− + δ. By taking an extra term in

the expansion (5.5), we have

∣∣δp
n(x)

∣∣ ≤ |δp+1
n (x)| + M ′

p

(
4ζ

(α′
0x + β′

0)2 − 4

) 1
4
[
|Kν(Nζ

1
2 )|

∣∣Ap+1(ζ)

Np+ 1
2

∣∣

+ |ζ
1
2 Kν−1(Nζ

1
2 )|

∣∣Bp+1(ζ)

Np+ 1
2

∣∣
]

≤ Mp

(
4ζ

(α′
0x + β′

0)2 − 4

) 1
4 [
|Kν(Nζ

1
2 )| + |Kν−1(Nζ

1
2 )|

]
/Np+ 1

2

for some positive constants M ′
p and Mp, and (2.20) follows; see also (5.21).

The proof of (2.19) is very similar. Like (5.34), we have

Qn(x)εp
n+1(x) − Qn+1(x)εp

n(x) =
∞∑

j=n+1

Rp
j (x)Qj(x)

(j + τ0)p+ 3
2

.

Since Pn(x)εp
n+1(x) − Pn+1(x)εp

n(x) = rp
n(x)εp

n+1(x) − rp
n+1(x)εp

n(x), it follows from (5.6) that

Pn(x)εp
n+1(x) − Pn+1(x)εp

n(x) = rp
m(x)εp

m+1(x) − rp
m+1(x)εp

m(x)

−
n∑

j=m+1

Rp
j (x)rp

j (x) + Rp
j (x)εp

j (x)

(j + τ0)p+ 3
2

,

where n > m; cf. (5.28). We may choose m = [n/2]. Upon solving the last two equations, we
get from (5.20)

εp
n(x) = [rp

m+1(x)εp
m(x) − rp

m(x)εp
m+1(x)]Qn(x)

+
∞∑

j=n+1

[rp
n(x) + εp

n(x)]Rp
j (x)Qj(x)

(j + τ0)p+ 3
2

+
∞∑

j=m+1

[Rp
j (x)rp

j (x) + Rp
j (x)εp

j (x)]Qn(x)

(j + τ0)p+ 3
2

.

The estimate

∣∣εp
n(x)

∣∣ ≤ Mp

(
4ζ

(α′
0x + β′

0)2 − 4

) 1
4 [
|Iν(Nζ

1
2 )| + |Iν−1(Nζ

1
2 )|

]
/Np+ 1

2

is again proved by using the successive approximation method.

6 An Example

As an illustration, we consider monic polynomials πn(x) that are orthogonal on [−1, 1] with
respect to a modified Jacobi weight w(x) = (1 − x)α(1 + x)βh(x), where α, β > −1 and h is
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real analytic and strictly positive on [−1, 1]. These polynomials satisfy a three-term recurrence
relation

πn+1(x) = (x − bn)πn(x) − a2
nπn−1(x), (6.1)

where the coefficients an and bn have asymptotic expansions of the form

an ∼ 1
2

+
∞∑

k=2

Ck

nk
, (6.2)

bn ∼
∞∑

k=2

Dk

nk
. (6.3)

The first few coefficients Ck and Dk are given by

C2 = −4α2 − 1
32

− 4β2 − 1
32

, (6.4)

C3 =
4α2 − 1

32
(α + β + c0) +

4β2 − 1
32

(α + β + d0), (6.5)

D2 = −β2 − α2

4
, (6.6)

D3 = −β2 − α2

4
(1 + α + β) + c0

4α2 − 1
16

− d0
4β2 − 1

16
, (6.7)

where
c0 =

1
2πi

∫

γ

log h(t)√
t2 − 1

dt

t − 1
, (6.8)

d0 =
1

2πi

∫

γ

log h(t)√
t2 − 1

dt

t + 1
, (6.9)

and γ is a closed contour encircling the interval [−1, 1] once in the positive direction; see
Kuijlaars et al [12], where an asymptotic expansion for the polynomials πn(x) has also been
given, which holds uniformly in compact subsets of C \ [−1, 1]. Moreover, in another paper [13],
Kuijlaars and Vanlessen have presented a uniform asymptotic expansion for πn(x) in the
interval (−1 + δ, 1 − δ), which agrees with the one given by Szegö [17, p.298, Theorem 12.1.6
and footnote 59]

πn(x) =
√

2D∞

2nw
1
2 (x)(1 − x2)

1
4

[
cos(n arccosx + γ(x)) + o(1)

]
, (6.10)

where

D∞ = exp
(

1
2π

∫ 1

−1

log w(t)√
1 − t2

dt

)
(6.11)

and

γ(x) =
(1 − x2)

1
2

2π
PV

∫ 1

−1

log[
√

1 − t2w(t)]√
1 − t2

dt

t − x
. (6.12)
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Here the integral is taken in the Cauchy principal–value sense. Note that the weight function
w(x) satisfies the Szegö condition

∫ 1

−1

log w(x)√
1 − x2

dx > −∞,

and that we have

lim
n→∞

2nπn(z)
ϕn(z)

=
D∞
D(z)

ϕ
1
2 (z)

√
2(z2 − 1)

1
4

, (6.13)

holding uniformly for z in compact subsets of C \ [−1, 1], where

ϕ(z) = z +
√

z2 − 1, z ∈ C \ [−1, 1] (6.14)

and

D(z) = exp
(
−(z2 − 1)

1
2

2π

∫ 1

−1

log w(t)√
1 − t2

dt

t − z

)
. (6.15)

In (6.14) and (6.15), we take that branch of (z2 − 1)1/2 which is analytic in C \ [−1, 1] and
behaves like z as z → ∞. The function ϕ(z) in (6.14) is the familiar Joukowski or aerofoil map
that maps the exterior of [−1, 1] conformally onto the exterior of the unit ball, and the function
D(z) is the so-called Szegö function associated with the weight w(x); see [17, p.277].

Returning to the three-term recurrence relation (6.1), we let

Kn = 2−n
∞∏

m=0

(2an+2m+1)−2.

It can be readily verified that Kn+1/Kn−1 = a2
n and Pn(x) := πn(x)/Kn satisfies the recurrence

relation (1.3)
Pn+1(x) − (Anx + Bn)Pn(x) + Pn−1 = 0

with An = Kn/Kn+1 and Bn = −bnKn/Kn+1. From (6.2)–(6.7), it follows that the coefficients
An and Bn satisfy

An ∼ 2 +
∞∑

s=2

αs

ns
and Bn ∼

∞∑

s=2

βs

ns
, (6.16)

where
α2 =

1
4
(2α2 + 2β2 − 1), (6.17)

α3 = −4α2 − 1
8

(α + β + 1 + c0) −
4β2 − 1

8
(α + β + 1 + d0), (6.18)

β2 =
α2 − β2

2
(6.19)

and

β3 = −4α2 − 1
8

(α + β + 1 + c0) +
4β2 − 1

8
(α + β + 1 + d0). (6.20)
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In terms of the notations in (2.3), (2.14) and (4.20), we have

x+ = 1, x− = −1, ν = α

and
N = n + τ0 = n +

α + β + 1 + c0

2
.

By our main theorem, there are two linearly independent solutions

Pn(x) ∼
(

ζ

x2 − 1

) 1
4
[
N

1
2 Iα(Nζ

1
2 )

∞∑

s=0

As(ζ)
N s

+ N
1
2 ζ

1
2 Iα−1(Nζ

1
2 )

∞∑

s=0

Bs(ζ)
N s

]
(6.21)

and

Qn(x) ∼
(

ζ

x2 − 1

) 1
4
[
N

1
2 Kα(Nζ

1
2 )

∞∑

s=0

As(ζ)
N s

− N
1
2 ζ

1
2 Kα−1(Nζ

1
2 )

∞∑

s=0

Bs(ζ)
N s

]
(6.22)

for x ≥ −1 + δ, where
ζ

1
2 (x) = log ϕ(x) = log(x +

√
x2 − 1) (6.23)

for x ≥ 1 and
ζ

1
2 (x) = e

π
2
i arccosx (6.24)

for −1 < x < 1; see (4.8) and (6.14). Since πn(x)/Kn is also a solution of (1.3), there exist two
functions C1(x) and C2(x), which are independent of n, such that

πn(x)/Kn = C1(x)Pn(x) + C2(x)Qn(x). (6.25)

To determine these two functions, we first choose the function Γ(ζ) in (5.19) as

Γ(ζ) =
(

z2 − 1
ζ

) 1
2 1
4πi

∫

γ

log h(t)√
t2 − 1

dt

t − z
− c0

2
z ∈ C \ (−∞,−1], (6.26)

where ζ is the analytic function of z given in (6.33) and γ is a closed contour encircling the
interval [−1, 1] in the positive direction and also the given point z. Obviously, Γ(ζ) is analytic
in z ∈ C \ (−∞,−1]. From (6.12) and (6.26), it is clear that

Γ(ζ(x)) arccosx = γ(x) +
απ

2
+

π

4
− 1

2
(α + β + 1 + c0) arccosx (6.27)

for −1 < x < 1. From (5.21) and (5.22), we have

Pn(x) ∼
√

2
π

(1 − x2)−
1
4 eαπi/2 cos

[
(N + Γ(ζ)) arccosx − απ

2
− π

4
]

(6.28)

and

Qn(x) ∼
√

π

2
(1 − x2)−

1
4 e−(α+1)πi/2

{
cos

[
(N + Γ(ζ)) arccosx − απ

2
− π

4
]

− i sin
[
(N + Γ(ζ)) arccosx − απ

2
− π

4
]} (6.29)
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as n → ∞, for −1 < x < 1. Letting n → ∞ in (6.25), it follows from (6.10) and (6.27)

πn(x)/Kn ∼
√

2D∞w− 1
2 (x)(1 − x2)−

1
4 cos

[
(N + Γ(ζ)) arccosx − απ

2
− π

4
]
. (6.30)

A combination of (6.25), (6.28), (6.29) and (6.30) gives

C1(x) =
√

πD∞w− 1
2 (x)e−

απ
2

i and C2(x) = 0 (6.31)

for −1 < x < 1. Thus, we obtain

πn(x)/Kn =
√

πD∞(1 + x)−
β
2 h− 1

2 (x)
[
e−

απ
2

i(1 − x)−
α
2 Pn(x)

]
(6.32)

for −1 < x < 1. Note that e−απi/2(1−x)−α/2Iα(N(−ζ)1/2i) can be written as (x−1)−α/2Iα(Nζ1/2),
where

ζ
1
2 (z) := log(z +

√
z2 − 1), z ∈ C \ (−∞, 1], (6.33)

and that all functions (z−1)−α/2Iα(Nζ1/2), (z−1)−α/2Pn(z) and (z+1)−β/2h−1/2(z) are analytic
in z ∈ C \ (−∞,−1]. By analytic continuation, we have from (6.32)

πn(z)/Kn =
√

πD∞(z + 1)−
β
2 h− 1

2 (z)
[
(z − 1)−

α
2 Pn(z)

]
(6.34)

for z ∈ C \ (−∞,−1]. In particular, when z = x = cos θ, θ ∈ (0, π − δ), we obtain the uniform
asymptotic expansion

w
1
2 (cos θ)

(
sin θ

θ

) 1
2

πn(cos θ) ∼ Kn

√
πD∞

[
N

1
2 Jα(Nθ)

∞∑

s=0

As(−θ2)
N s

− N
1
2 θJα−1(Nθ)

∞∑

s=0

Bs(−θ2)
N s

]
,

(6.35)

where Jα is the Bessel function of first kind.
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