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A COMBINATORIAL IDENTITY
FOR STUDYING SATO-TATE TYPE PROBLEMS

Abstract. We derive a combinatorial identity which is useful in stutyithe distribution of
Fourier coefficients of-functions by allowing us to pass from knowledge of momefite®
coefficients to the distribution of the coefficients.

1. Introduction

Recently M. Ram Murty and K. Sinha [7] proved effective edstitbution results
showing the eigenvalues of Hecke operators on the spacespffoums of weighk
and levelN agree with the Sato—Tate distribution. Their proof reliedbounding the
discrepancy through an application of the Erdos—Turantiakty and estimates of ex-
ponential sums. In [6] the first two authors generalizedrttezihniques to the Fourier
coefficients of families of elliptic curves. The purpose bistnote is to describe an
interesting combinatorial identity needed in that analysi

We first describe the problem that motivated this work. Rehbat if
E:y*=x+ax+b

with a,b € Z is an elliptic curve ovef), the associated-function is

< ae(n) ( 2(p) m(p))l
1 L(E,s) = = 1-—=—"""4 ;
(1) (E,s) nzl s |;| s ps 1
with A = —16(4a%+ 27b?) the discriminant o, o the principal character modully
and

a(p) = p—#{(xy) e (Z/pL)*:y*=x>+ax+bmod p}
X3 +ax+b

@ - -5 )

x mod p p

By Hasse’s bound we knoyag (p)| < 2,/p, SO we may writeg (p) = 2,/pcosbe (p),
where we may choosee(p) € [0,1]. The distribution of theag(p)’s is related to
numerous problems of interest; for example, by the Birch &wihnerton—Dyer con-
jecture the order of vanishing &f(E,s) at the central poins = 1/2 is conjecturally
equal to the group of rational solutions Bf See [16, 17, 18] for more on elliptic
curves.
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In the analysis in [6], one needs to understand sums ¢fs, with nranging
over a family ofL-functions. Such estimates exist [3, 4, 8], and have beed bge
others to prove effective equidistribution results for tparameter families of elliptic
curves [1, 14, 15]. It is possible to avoid these estimatéssitad one uses results of
Birch [2] for sums of the moments, i.e. sums of ‘q@). While typically these lead to
worse results, as there may be situations in future resedrele only the moments are
known, we describe how one may prove effective equidistidburesults concerning
the distribution of the Fourier coefficients bffunctions using just the moments and
combinatorics.

The key combinatorial ingredientin [6] is the following, igh is the main result
of this paper.

THEOREML1. Let m be an integer greater than or equal to 1. Then

o S e - (o Tmes

The purpose of this paper is to highlight the various metludggoving combi-
natorial identities and their applications. We give twoqfeoof Theorem 1 in Section 2,
and discuss alternative methods of proving this and retadetbinatorial identities. We
conclude with a discussion of its application to effectigaigistribution in Section 3.

Acknowledgments We thank Tewodros Amdeberhan, Christian Krattenthalerthe referee
for comments on an earlier draft. The first named author wtikédto thank Cameron and
Kayla Miller for quietly sleeping on him while many of the calations were done. Much of this
paper was written when the first two authors attended the WatadNorkshop om.-functions
and Random Matrix Theory at Utah Valley University in 2008dat is a pleasure to thank the
organizers.

2. Combinatorial Identities

Below we give two different proofs of Theorem 1, each hightigg a different ap-
proach to proving combinatorial identities. We first statene needed properties of

the binomial coefficients. Fom,r non-negative integers we sé}) = Wlk), We
generalize to real andk a positive integer by setting
n nn—1)---(n—(k—1))
4 =
@) (%) e ,

which clearly agrees with our original definition fara positive integer and vanishes
whenn is a non-negative integer less tharFinally, we set(f)) = 1 and(y) =0 if kis
a negative integer.

To prove our main result we need the following two lemmas; aléow the
proofs in [20].
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LEmMMA 1 (Vandermonde’s Convolution Lemmalet r,s be any two real num-
bers and km, n integers. Then

®) Z(mik) (nsk) B (r:wii)

Proof. Note that the summand is zero if either-k > r orn—k > s, and thus it is a
finite sum ovek. It suffices to prove the claim whers are integers. The reason is that
both sides are polynomials, and if the polynomials agreafoinfinitude of integers
then they must be identical. By changingandk, we see it suffices to consider the
special casen= 0, in which case we are reduced to showing

© 265 - (30

Consider the polynomial
(7 (x+Y) (x+y)° = (x+y)""

If we use the binomial theorem to expand the left hand sid&@)pf{e get the coefficient
of thex"y" s " is the left hand side of (6); this follows from looking at dietways we
could get anx™y"+S-", which involves summing over the coefficientsx§ ¥ times
the coefficients ok™Kys—™k_ Similarly, if we use the binomial theorem we find the
coefficient ofx"y"*S~" is the right hand side of (7). This proves (6), which comete
the proof. O

LEMMA 2. Let/,m s be non-negative integers. Then

SR TR A [ R

Proof. Using (§) = (,2,), we rewrite(&;k) as(sflﬁfn), and we then rewrit &fkrfn) as
(fl)Hk*“(éijﬁ) by using the extension of the binomial coefficient, where \aeeh

pulled out all the negative signs in the numerators. The midgge of this simplification
is that the summation index is now only in the denominataitier, the power of-1
is now independent df. Factoring out the sign, our quantity is equivalent to

©® (D77 Z (mfL k) (S:Lnk_ln) = =97 Z (f - fi* k) (S:rnk_ln) ’

where we again us@) = (afb). By Vandermonde’s Convolution Lemma, this equals

(=1 (o). Using(, 5™ ) = (5-7) and collecting powers of 1 completes
the proof (notg —1)¢~™ = (—1)“m). O

Using the above two lemmas, we can now prove our main result.
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First Proof of Theorem 1The casan = 1 follows by direct evaluation. Consider now
m> 2. We have

s ()( r ) )1(m+r)
(e ("r ) e
- rZo(_ )r(mJ'r:;Jrrllrzwl m«lkl (rr]?;rgr(w:nle:L)!) mir

_ i(l)r<m+1) <m1+r> 1
e r+1 r m(m+ 1)
1 o m+21\ /m—1+r
10 = — 5 (-1 .
(10) m(m+1)r;( )(r+1>< m-—1 )
We change variables and setr + 1; asr runs from O tom, u runs from 1 tom+ 1.
To have a complete sum, we wanto start at O; thus we add in the= 0 term, which

is (m l) Asm > 2, this is 0 from the extension of the binomial coefficieniqtis the
first of two places where we uge> 2). Our sunS,, thus equals

e g () ()

We now use Lemma 2 witk=u, m= 0,/ =m+1,s=m—2 andn=m-— 1; note the
conditions of that lemma requisto be a non-negative integer, which translates to our
m> 2. We thus find

(12) Sn = —7)(—1)”'”(”“2) ~ 0,
which completes the proof. O

We give another proof of Theorem 1 below using hypergeométrictions,
highlighting other approaches to proving combinatoriafitities.

Second Proof of Theorem Tonsider the hypergeometric function

o 111 —t)c P gt
(13) 2Fi(ab,cz) = r(b)r(c—b)/o (1-tz2

The following identity for the normalization constant oktBeta function is crucial in
the expansions:

(14) / = 1 y 1dt _ rr(x)r(y)
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We can use the geometric series formula to expand (13) as ergawnes irzinvolving
Gamma factors,

(15) oFi(ab,cz) = ;(C) ir(a+ nr(+n 2

r(ar(b) I(c+n) n’

Rewriting (™) as(—1)" ("™ 1), Sy can be written
B 1 S (r—-m-LI(r+m-1)!'1
(16) R TE T N R

where we have formally extended the seriesot@s the coefficients will vanish for
r > m+ 1. By comparing the two infinite series and using the fact that ' (z+ 1),
we see that if we take= —m,b=m, c=2,n=r andz= 1, after some simple algebra
we obtain

(M)2F (—mm,2;1) I (m)
r(2)r(1+m) C TA+mr2+mr2-m)’

17)  Sm= L

where the last step uses

Mcyr(c—a—hb)

(18) 2Fi(a,b,c;1) = Tlc—ar(c_b)’

which follows from the normalization constant of the Betadtion. Note that the
right hand side of (17) equaly’2 whenm =1 and 0 form > 2 because for sucim,
1/T'(2—m) = 0 due to the pole of (2— m). O

REMARK 1. It is also possible to prove Theorem 1 through symboliciman
lations. Using the results from [10, 9], one may input thie ia Mathematica package,
which outputs a proof. The reasoning behind this automaieafmethod is described
in [11], and many of the identities for hypergeometric fuoes can be interpreted in a
very computational manner. These results are also usefahitiom walk calculations
in physics (quantum and classical), and reduction to theetggometric function is a
convenient first step towards continuum limits or long-tiasgmptotics.

REMARK 2. We thank the referee for pointing out another approachdeipg
Sn=0. LetAandB be two vector spaces with= C™?* andB = C™. Their difference
A—Biis a virtual vector space whose exterior powers can be etua a consistent

fashion as
m

A™A-B) = P(-1)' A" "Ax SB,
r=0
whereS B denotes the symmetric product. As dinf"A) = (') and din(S'B) =
(™ 117), we obtain the expansion in (10). The proof is completed lijngdA — B has

virtual dimension 1, so the dimension of it exterior power is zero ifn > 1 and 1 if
m=1.
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REMARK 3. The combinatorial identity in Theorem 1 is a special cdsth®
Chu-Vandermonde summation formula (see [19]):

(19) R (a—cnl) _ “;%C)

We thank Christian Krattenthaler for pointing this out to us

3. Effective Equidistribution

For a sequence of numbegsmodulo 1, a measuneand an interval C [0, 1], let
(20) W) = [uod

The discrepanc, v, (1) is

(21) Divp(W) = [Ni(Vp) =Vpu(l)[;

with this normalization, the goal is to obtain the best polesestimate for how rapidly
Div, (1) /Vp tends to 0. A standard approach is to use exponential suntbamkados—
Turan theorem. Modifying the ideas in [7] (see [6] for theadls), one finds
THEOREM 2. Let {X,} C [0,1] and let the notation be as above. Ugtn}
be a sequence of numbers such thgt [cm| < . Let|[|u|| = suBc(oq |F(X)| with
m=—o ’
p= F(—x)dx. Then for any Yand M the discrepancy satisfies

Vp

V
ol S e(me) —Vyen
n=1

1 . 1
(22) Div, (W) < M+1+1S%M (M—H+mm(1’M))

Letpst = F (—x)dxbe the normalized Sato—Tate distribution[0ri]. Its density

is

(23) 2sirf(x) = 1— 2 (e(x) +e(—x)), where e(x) := ™,

NI

which implies that the coefficients p§;areco =1,c.1 = —1/2 andcy =0 for |m| > 2.

We consider the family of all elliptic curves modupdor p > 5. We may write
these curves in Weierstrass formyds= x3 — ax—bwith a,b € Z/pZ and 43 # 270°.
The number of pairga, b) satisfying these conditiohss

(24) Vp == p(p—1).

1If a= 0 then the onlyb which is eliminated i$ = 0. If ais a non-zero perfect square there are bwo
that fail, while ifais not a square than rofail. Thus the number of bad pairs @, b) is p.
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We use Birch’s [2] results on the moments of the family of dib&c curves mod-
ulo p (there are some typos in his explicit formulas; we correes¢hin [6]); un-
fortunately, these are results for quantities sucmzasr)cosen)m, and the quantity
which naturally arises when applying Theorem 2(sx,). Here thexy’s are running
over the normalized anglés ,(p)/Tt Recall from Section 1 that for an elliptic curve
E : y? = x® + ax+ b (with a,b € Z) we haveag(p) = 2,/pcosH, h(p), where we may
choose,(p) € [0, 1. We are thus led to study

Vp
> e(mx,) —Vpem
=1

(25)

By applying some combinatorial identities we are able toriwour sum in terms of
the moments, which allows us to use Birch’s results. Thetgafithis section is not to
obtain the best possible error term but rather to highligitt bne may generalize and
apply the framework from [7].
We first set some notation. Lei(Tp) denote the trace of the Hecke operator

Tp acting on the space of cusp forms of dimensie2k on the full modular group.
We haveoy 1(Tp) = O(pk+c*€), where from [12] we see we may take= 3/4 (there
is no need to use the optimel as our final result, namely (42), will yield the same
order of magnitude result far= 3/4 orc = 0). Leta/(2R) denote the R" moment
of 2cog6;,) = 2cogTx,) (as we are concerned with the normalized values, we use
slightly different notation than in [2]):

10 2R
(26) Mp(2R) = v > (2cogmxn))™.

Pn=1

LemMA 3 (Birch). With notation as above, we have

27) p(2R) = %1 (2; ) +0 (22Rvp 1_2_) :

we may take e 3/4 and so there is a power saving (as the exponenpdﬁﬂegative)z.
Proof. The result follows from dividing the equation f8(p) on the bottom of page
59 of [2] by pR, as we are looking at the moments of the normalized Fourigfficeents

of the elliptic curves, and then using the bownd 1(Tp) = O(p*T¢*¢), with ¢ = 3/4
admissible by [12]. Recall, = p(p— 1) is the cardinality of the family. We have

_ 1 /2R\p(p—-1)
Mp(2R) = R+1(R) Vp

R 2k+1 2R pl+C+s p
+O<kle+k+1<R+k) Vo PV,

28) _ ﬁ (2: ) 40 (22Rvp 1_2_)

°Note ﬁ (2§) is the R Catalan number. The Catalan numbers are the moments of ftiecisele
distribution, which is related to the Sato—Tate distribntby a simple change of variables.
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sinceVy = p(p—1). O
A simple argumeritshows that the normalized angles are symmetric abut 1
This implies

Vp Vp Vp Vp
29 - 2 i 'y sin(2 - 2mBn),
(29) n;e(mm) nZlcos( Tlmx1)+|n;sln( ™M, ) n;cos( )

where the sine piece does not contribute as the angles areetyimabout 2. Thus
it suffices to show we have a power saving in

Vo

(30) Z cog2mBn) — VpCm| -
n=1

By symmetry, it suffices to consider> 0.

LEMMA 4. Letgp =1, cr1 = —1/2and gy, = 0 otherwise. There is some<cl
such that
Vp
> cog2mbhn) — VpCm

n=1

(31)

< (mzz3”\/p 158) :

by the work of Selberg [12] we may take=c3/4.

Proof. The casen=0is trivial. Form= 1 we use the trigonometric identity q@8,,) =
2c0€(6n) — 1. Ascyy = —1/2 we have

Zcos(zen —7’3 = i[(ZCogen—l)jté]

Zcosen -1)

< 2,/p cosen) 1)

Note the sum 0(2\/r)cosen)2 is the second moment of the number of solutions modulo
p. From [2] we have that this ip + O(1); the explicit formula given in [2] for the
second moment is wrong; see [6] for the correct statemefstiuting yields

V
3
Vp
(32) - 32

5
lg
2

Vp

Z cog26,) — \%

n=1

(33) < 0O(1).

3To see that we may match the angles as claimed for the famibll aflliptic curves, consider the
elliptic curvey? = x3 — ax— b with 4a3 # 27b?. Let ¢ be any non-residue modulg and consider the curve
y? = x3 — ac®x— bc3. Using the Legendre sum expressionsdg(p) andag (p), using the automorphism
X — cx we see the second eque(%) times the first; as we have chosemo be a non-residue, this means

2,/pcogBg(p)) = —2,/PcogBe(p)), or B/ (p) = 11— B (p) as claimed.
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The proof is completed by showing thﬁil coq2mB,) = Om(Vp ) provided
2<m< M. In order to obtain the best possible results, it is impdrtarunderstand
the implied constants, &8 will have to grow withV, (which is of sizep?). While it is
possible to analyze this sum for amby brute force, we must hawé growing withp,
and so we need an argument that works in generat;As# 0 butcy, = 0 for |m| > 2,
we expect (and will see) that the argument below does break eden/m| = 1.

There are many possible combinatorial identities we carnruggler to express
cog2mB,) in terms of powers of cd8,). We choose the following (for a proof, see
Definition 2 and equation (3.1) of [5]):

m
(34) 2co$2moy,) = chzm(z coshn)?,
&

wherecy = (2r)!/2,¢00 =0, Como = (—1)™2 form> 1, and for 1< r < mset
—1)r+mr_L (=)™ m- (m+r—1)!
Cor (m—r)!

(35) Comar = (mz_ 12) =

Cor -

We now sum (34) ovan and divide byV,, the cardinality of the family. In the argument
below, at one point we replacé'an an error term with 2012 (%) - n?; this allows

us to pull ther™ Catalan numberrurl( "), out of the error ternf. Using Lemma 3 we
find that

m

1
oo > 2c082mBn) = 5 Comar - S (2c0$n)”
z rz VP n= l

Dnl
m 1 /2 1
- O 22I’V 2
(752(7) o (2% ) ) eomar
1

_ 5 @) (=D™'2  m-(m+r)!
- (r+1 it (2r)! (m— )I.(m+r))

m m- (m+r)! 1
2mzo< (m—r) mir! (r+1)(m+r))

.<1+o<mzvp_2_£ >
~careny (0 ) () wvimen)
(36) <1+O<mz\/p N )>

4The reason this is valid is that the largest binomial coeffitis the middle (or the middle two when
the upper argument is odd). Thu& 2= (1+1)* < (2r +1)(¥) < 2(m+1)(?) (asm < r), and the claim

follows from 2(?131112 >2(m+1)form>2and 0<r<m.
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We first bound the error term. For our range pf™ ") < (2nT) <22 The sum of(T)
overr is 2™, and we get to divide by at least+r > m. Thus the error term is bounded

by

37) 0 (mzz?’m\/p 155) .

We now turn to the main term. It it jugt-1)"2mtimes the sum in Theorem 1, which
is shown in that theorem to equal O for dmy > 2. Note that without Theorem 1, our
combinatorial expansion would be useless. O

REMARK 4. It is possible to get a better estimate for the error terma yore
detailed analysis of - (7) (""); however, the improved estimates only change the
constants in the discrepancy estimates, and not the savihgsis because this sum is
at least as large as the term whre m/2, and this term contributes something of the
order 2 /m by Stirling’s formula. We will see that any error term of sig&" for a
fixed a gives roughly the same value for the best cutoff choiceModiffering only by
constants. Thus we do not bother giving a more detailed aisaly optimize the error
here.

We now prove effective equidistribution for the family of alliptic curves.

THEOREM3. For the family of all elliptic curves modulo p, as-p « we have

Vp
<
(38) D1y, (Hst) < Clogvp

for some computable C.

Proof. We must determine the optimisl to use in (22):

Vp 1 1 3 —17(2:78
Divp(Hst) < M1 > (M+1+m)(mzzm\/p )

1<m<M

V, _l-ce
< Mp + M23MVp 2
(39)

asyit < & andymem 25 < 2°M. For allc > 0 we find the minimum error by setting
the two terms equal to each other, which yields

3—c—¢

(40) Vp 2 = M22M,

For ease of exposition we replab23V with e; this worsens our constant slightly,
but does not qualitatively change the result. Equatingstleeors means we are looking
for M such that

3m 8=C=¢|ogV,
(41) eM = e 2z 9%,
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which implies

3—-c—¢
42 M= ——
(42) 6

We thus see that we may find a const@rstuch that

logVp.

Vp
<
(43) D1 v, (Hst) < Clogvp'

This yields a logarithm savings in the discrepancy, and gs@ffective equidistribu-
tion. O
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