
Rend. Sem. Mat. Univ. Politec. Torino
Vol. 68, 4 (2010), 337 – 348

S. J. Miller∗, M. Ram Murty ∗∗ and F. Strauch

A COMBINATORIAL IDENTITY

FOR STUDYING SATO–TATE TYPE PROBLEMS

Abstract. We derive a combinatorial identity which is useful in studying the distribution of
Fourier coefficients ofL-functions by allowing us to pass from knowledge of moments of the
coefficients to the distribution of the coefficients.

1. Introduction

Recently M. Ram Murty and K. Sinha [7] proved effective equidistribution results
showing the eigenvalues of Hecke operators on the space of cusp forms of weightk
and levelN agree with the Sato–Tate distribution. Their proof relied on bounding the
discrepancy through an application of the Erdös–Turan inequality and estimates of ex-
ponential sums. In [6] the first two authors generalized their techniques to the Fourier
coefficients of families of elliptic curves. The purpose of this note is to describe an
interesting combinatorial identity needed in that analysis.

We first describe the problem that motivated this work. Recall that if

E : y2 = x3+ax+b

with a,b∈ Z is an elliptic curve overQ, the associatedL-function is

(1) L(E,s) =
∞

∑
n=1

aE(n)
ns = ∏

p

(
1− aE(p)

ps +
χ0(p)
p2s−1

)−1

,

with ∆ =−16(4a3+27b2) the discriminant ofE, χ0 the principal character modulo∆,
and

aE(p) = p−#{(x,y)∈ (Z/pZ)2 : y2 ≡ x3+ax+b mod p}

= − ∑
x mod p

(
x3+ax+b

p

)
.(2)

By Hasse’s bound we know|aE(p)| ≤ 2
√

p, so we may writeaE(p) = 2
√

pcosθE(p),
where we may chooseθE(p) ∈ [0,π]. The distribution of theaE(p)’s is related to
numerous problems of interest; for example, by the Birch andSwinnerton–Dyer con-
jecture the order of vanishing ofL(E,s) at the central points= 1/2 is conjecturally
equal to the group of rational solutions ofE. See [16, 17, 18] for more on elliptic
curves.
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In the analysis in [6], one needs to understand sums of cos(mθn), with n ranging
over a family ofL-functions. Such estimates exist [3, 4, 8], and have been used by
others to prove effective equidistribution results for two-parameter families of elliptic
curves [1, 14, 15]. It is possible to avoid these estimates ifinstead one uses results of
Birch [2] for sums of the moments, i.e. sums of cosr(θn). While typically these lead to
worse results, as there may be situations in future researchwhere only the moments are
known, we describe how one may prove effective equidistribution results concerning
the distribution of the Fourier coefficients ofL-functions using just the moments and
combinatorics.

The key combinatorial ingredient in [6] is the following, which is the main result
of this paper.

THEOREM 1. Let m be an integer greater than or equal to 1. Then

(3)
m

∑
r=0

(−1)r
(

m
r

)(
m+ r

r

)
1

(r +1)(m+ r)
=

{
1/2 if m= 1

0 if m≥ 2.

The purpose of this paper is to highlight the various methodsof proving combi-
natorial identities and their applications. We give two proofs of Theorem 1 in Section 2,
and discuss alternative methods of proving this and relatedcombinatorial identities. We
conclude with a discussion of its application to effective equidistribution in Section 3.

Acknowledgments. We thank Tewodros Amdeberhan, Christian Krattenthaler and the referee
for comments on an earlier draft. The first named author wouldlike to thank Cameron and
Kayla Miller for quietly sleeping on him while many of the calculations were done. Much of this
paper was written when the first two authors attended the Graduate Workshop onL-functions
and Random Matrix Theory at Utah Valley University in 2009, and it is a pleasure to thank the
organizers.

2. Combinatorial Identities

Below we give two different proofs of Theorem 1, each highlighting a different ap-
proach to proving combinatorial identities. We first state some needed properties of
the binomial coefficients. Forn, r non-negative integers we set

(n
k

)
= n!

k!(n−k)! . We
generalize to realn andk a positive integer by setting

(4)

(
n
k

)
=

n(n−1) · · ·(n− (k−1))
k!

,

which clearly agrees with our original definition forn a positive integer and vanishes
whenn is a non-negative integer less thank. Finally, we set

(n
0

)
= 1 and

(n
k

)
= 0 if k is

a negative integer.

To prove our main result we need the following two lemmas; we follow the
proofs in [20].
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LEMMA 1 (Vandermonde’s Convolution Lemma).Let r,s be any two real num-
bers and k,m,n integers. Then

(5) ∑
k

(
r

m+ k

)(
s

n− k

)
=

(
r + s
m+n

)
.

Proof. Note that the summand is zero if eitherm+ k > r or n− k > s, and thus it is a
finite sum overk. It suffices to prove the claim whenr,sare integers. The reason is that
both sides are polynomials, and if the polynomials agree foran infinitude of integers
then they must be identical. By changingn andk, we see it suffices to consider the
special casem= 0, in which case we are reduced to showing

(6) ∑
k

(
r
k

)(
s

n− k

)
=

(
r + s

n

)
.

Consider the polynomial

(7) (x+ y)r(x+ y)s = (x+ y)r+s.

If we use the binomial theorem to expand the left hand side of (7), we get the coefficient
of thexnyr+s−n is the left hand side of (6); this follows from looking at all the ways we
could get anxnyr+s−n, which involves summing over the coefficients ofxkyr−k times
the coefficients ofxn−kys−n+k. Similarly, if we use the binomial theorem we find the
coefficient ofxnyr+s−n is the right hand side of (7). This proves (6), which completes
the proof.

LEMMA 2. Let ℓ,m,s be non-negative integers. Then

(8) ∑
k

(−1)k
(

ℓ

m+ k

)(
s+ k

n

)
= (−1)ℓ+m

(
s−m
n− ℓ

)
.

Proof. Using
(a

b

)
=
( a

a−b

)
, we rewrite

(s+k
n

)
as
( s+k

s+k−n

)
, and we then rewrite

( s+k
s+k−n

)
as

(−1)s+k−n
(−n−1

s+k−n

)
by using the extension of the binomial coefficient, where we have

pulled out all the negative signs in the numerators. The advantage of this simplification
is that the summation index is now only in the denominator; further, the power of−1
is now independent ofk. Factoring out the sign, our quantity is equivalent to

(−1)s−n∑
k

(
ℓ

m+ k

)( −n−1
s+ k−n

)
= (−1)s−n∑

k

(
ℓ

ℓ−m− k

)( −n−1
s+ k−n

)
,(9)

where we again use
(a

b

)
=
( a

a−b

)
. By Vandermonde’s Convolution Lemma, this equals

(−1)s−n
( ℓ−n−1
ℓ−m−n+s

)
. Using

( s−m
ℓ−m−n+s

)
=
(s−m

n−ℓ

)
and collecting powers of−1 completes

the proof (note(−1)ℓ−m = (−1)ℓ+m).

Using the above two lemmas, we can now prove our main result.
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First Proof of Theorem 1.The casem= 1 follows by direct evaluation. Consider now
m≥ 2. We have

Sm :=
m

∑
r=0

(−1)r
(

m
r

)(
m+ r

r

)
1

(r +1)(m+ r)

=
m

∑
r=0

(−1)r
(

m
r

)
m+1
m+1

(
m+ r

r

)
1

(r +1)(m+ r)

=
m

∑
r=0

(−1)r m!(m+1)
(r +1) · r!m!

1
m+1

(m+ r)(m+ r −1)!
r!m· (m−1+ r)!

1
m+ r

=
m

∑
r=0

(−1)r
(

m+1
r +1

)(
m−1+ r

r

)
1

m(m+1)

=
1

m(m+1)

m

∑
r=0

(−1)r
(

m+1
r +1

)(
m−1+ r

m−1

)
.(10)

We change variables and setu= r +1; asr runs from 0 tom, u runs from 1 tom+1.
To have a complete sum, we wantu to start at 0; thus we add in theu= 0 term, which
is
(m−2

m−1

)
. As m≥ 2, this is 0 from the extension of the binomial coefficient (this is the

first of two places where we usem≥ 2). Our sumSm thus equals

Sm = − 1
m(m+1)

m+1

∑
u=0

(−1)u
(

m+1
u

)(
m−2+u

m−1

)
.(11)

We now use Lemma 2 withk= u, m= 0, ℓ= m+1, s= m−2 andn= m−1; note the
conditions of that lemma requires to be a non-negative integer, which translates to our
m≥ 2. We thus find

(12) Sm = − 1
m(m+1)

(−1)m+1
(

m−2
−2

)
= 0,

which completes the proof.

We give another proof of Theorem 1 below using hypergeometric functions,
highlighting other approaches to proving combinatorial identities.

Second Proof of Theorem 1.Consider the hypergeometric function

(13) 2F1(a,b,c;z) =
Γ(c)

Γ(b)Γ(c−b)

∫ 1

0

tb−1(1− t)c−b−1dt
(1− tz)a .

The following identity for the normalization constant of the Beta function is crucial in
the expansions:

(14) B(x,y) =

∫ 1

0
tx−1(1− t)y−1dt =

Γ(x)Γ(y)
Γ(x+ y)

.
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We can use the geometric series formula to expand (13) as a power series inz involving
Gamma factors,

(15) 2F1(a,b,c;z) =
Γ(c)

Γ(a)Γ(b)

∞

∑
n=0

Γ(a+n)Γ(b+n)
Γ(c+n)

zn

n!
.

Rewriting
(m

r

)
as(−1)r

(r−m−1
r

)
, Sm can be written

(16) Sm =
1

m!(−m−1)!

∞

∑
r=0

(r −m−1)!(r +m−1)!
(r +1)!

1
r!
,

where we have formally extended the series to∞ as the coefficients will vanish for
r ≥ m+1. By comparing the two infinite series and using the fact thatz! = Γ(z+1),
we see that if we takea=−m, b= m, c= 2,n= r andz= 1, after some simple algebra
we obtain

(17) Sm =
Γ(m)2F1(−m,m,2;1)

Γ(2)Γ(1+m)
=

Γ(m)

Γ(1+m)Γ(2+m)Γ(2−m)
,

where the last step uses

(18) 2F1(a,b,c;1) =
Γ(c)Γ(c−a−b)
Γ(c−a)Γ(c−b)

,

which follows from the normalization constant of the Beta function. Note that the
right hand side of (17) equals 1/2 whenm= 1 and 0 form≥ 2 because for suchm,
1/Γ(2−m) = 0 due to the pole ofΓ(2−m).

REMARK 1. It is also possible to prove Theorem 1 through symbolic manipu-
lations. Using the results from [10, 9], one may input this into a Mathematica package,
which outputs a proof. The reasoning behind this automated proof method is described
in [11], and many of the identities for hypergeometric functions can be interpreted in a
very computational manner. These results are also useful inrandom walk calculations
in physics (quantum and classical), and reduction to the hypergeometric function is a
convenient first step towards continuum limits or long-timeasymptotics.

REMARK 2. We thank the referee for pointing out another approach to proving
Sm= 0. LetA andB be two vector spaces withA∼=Cm+1 andB∼=Cm. Their difference
A−B is a virtual vector space whose exterior powers can be evaluated in a consistent
fashion as

∧m(A−B) =
m⊕

r=0

(−1)r ∧m−r A⊗SrB,

whereSrB denotes the symmetric product. As dim(∧m−rA) =
(m+1

r+1

)
and dim(SrB) =(m−1+r

m−1

)
, we obtain the expansion in (10). The proof is completed by noting A−B has

virtual dimension 1, so the dimension of itsmth exterior power is zero ifm> 1 and 1 if
m= 1.
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REMARK 3. The combinatorial identity in Theorem 1 is a special case of the
Chu-Vandermonde summation formula (see [19]):

(19) 2F1

(
a,−n

c
;1

)
=

(−a+ c)n

(c)n
.

We thank Christian Krattenthaler for pointing this out to us.

3. Effective Equidistribution

For a sequence of numbersxn modulo 1, a measureµ and an intervalI ⊂ [0,1], let

NI (Vp) = #{n≤Vp : xn ∈ I}

µ(I) =

∫
I
µ(t)dt.(20)

The discrepancyDI ,Vp(µ) is

DI ,Vp(µ) = |NI (Vp)−Vpµ(I)| ;(21)

with this normalization, the goal is to obtain the best possible estimate for how rapidly
DI ,Vp(µ)/Vp tends to 0. A standard approach is to use exponential sums andthe Erdös–
Turan theorem. Modifying the ideas in [7] (see [6] for the details), one finds

THEOREM 2. Let {xn} ⊂ [0,1] and let the notation be as above. Let{cm}
be a sequence of numbers such that

∞
∑

m=−∞
|cm| < ∞. Let ‖µ‖ = supx∈[0,1] |F(x)| with

µ= F(−x)dx. Then for any Vp and M the discrepancy satisfies

(22) DI ,Vp(µ)≤
Vp‖µ‖
M+1

+ ∑
1≤m≤M

(
1

M+1
+min

(
1,

1
π|m|

))∣∣∣∣∣
Vp

∑
n=1

e(mxn)−Vpcm

∣∣∣∣∣ .

Letµst=F(−x)dxbe the normalized Sato–Tate distribution on[0,1]. Its density
is

(23) 2sin2(πx) = 1− 1
2 (e(x)+e(−x)) , where e(x) := e2πix,

which implies that the coefficients ofµst arec0 = 1,c±1 =−1/2 andcm= 0 for |m| ≥ 2.

We consider the family of all elliptic curves modulop for p≥ 5. We may write
these curves in Weierstrass form asy2 = x3−ax−b with a,b∈ Z/pZ and 4a3 6= 27b2.
The number of pairs(a,b) satisfying these conditions1 is

(24) Vp := p(p−1).

1If a= 0 then the onlyb which is eliminated isb= 0. If a is a non-zero perfect square there are twob
that fail, while if a is not a square than nob fail. Thus the number of bad pairs of(a,b) is p.
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We use Birch’s [2] results on the moments of the family of all elliptic curves mod-
ulo p (there are some typos in his explicit formulas; we correct these in [6]); un-
fortunately, these are results for quantities such as(2

√
pcosθn)

2R, and the quantity
which naturally arises when applying Theorem 2 ise(mxn). Here thexn’s are running
over the normalized anglesθa,b(p)/π. Recall from Section 1 that for an elliptic curve
E : y2 = x3+ax+b (with a,b∈ Z) we haveaE(p) = 2

√
pcosθa,b(p), where we may

chooseθa,b(p) ∈ [0,π]. We are thus led to study

(25)

∣∣∣∣∣

Vp

∑
n=1

e(mxn)−Vpcm

∣∣∣∣∣ .

By applying some combinatorial identities we are able to rewrite our sum in terms of
the moments, which allows us to use Birch’s results. The point of this section is not to
obtain the best possible error term but rather to highlight how one may generalize and
apply the framework from [7].

We first set some notation. Letσk(Tp) denote the trace of the Hecke operator
Tp acting on the space of cusp forms of dimension−2k on the full modular group.
We haveσk+1(Tp) = O(pk+c+ε), where from [12] we see we may takec= 3/4 (there
is no need to use the optimalc, as our final result, namely (42), will yield the same
order of magnitude result forc= 3/4 or c= 0). LetM p(2R) denote the 2Rth moment
of 2cos(θn) = 2cos(πxn) (as we are concerned with the normalized values, we use
slightly different notation than in [2]):

(26) M p(2R) =
1

Vp

Vp

∑
n=1

(2cos(πxn))
2R.

LEMMA 3 (Birch). With notation as above, we have

(27) M p(2R) =
1

R+1

(
2R
R

)
+O

(
22RV

− 1−c−ε
2

p

)
;

we may take c= 3/4and so there is a power saving (as the exponent of Vp is negative).2

Proof. The result follows from dividing the equation forS∗R(p) on the bottom of page
59 of [2] by pR, as we are looking at the moments of the normalized Fourier coefficients
of the elliptic curves, and then using the boundσk+1(Tp) = O(pk+c+ε), with c = 3/4
admissible by [12]. RecallVp = p(p−1) is the cardinality of the family. We have

M p(2R) =
1

R+1

(
2R
R

)
p(p−1)

Vp

+ O

(
R

∑
k=1

2k+1
R+ k+1

(
2R

R+ k

)
p1+c+ε

Vp
+

p
pRVp

)

=
1

R+1

(
2R
R

)
+O

(
22RV

− 1−c−ε
2

p

)
(28)

2Note 1
R+1

(2R
R

)
is theRth Catalan number. The Catalan numbers are the moments of the semi-circle

distribution, which is related to the Sato–Tate distribution by a simple change of variables.
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sinceVp = p(p−1).

A simple argument3 shows that the normalized angles are symmetric about 1/2.
This implies

(29)
Vp

∑
n=1

e(mxn) =
Vp

∑
n=1

cos(2πmxn)+ i
Vp

∑
n=1

sin(2πmxn) =
Vp

∑
n=1

cos(2mθn),

where the sine piece does not contribute as the angles are symmetric about 1/2. Thus
it suffices to show we have a power saving in

(30)

∣∣∣∣∣

Vp

∑
n=1

cos(2mθn)−Vpcm

∣∣∣∣∣ .

By symmetry, it suffices to considerm≥ 0.

LEMMA 4. Let c0 = 1, c±1 =−1/2 and cm = 0 otherwise. There is some c< 1
such that

(31)

∣∣∣∣∣

Vp

∑
n=1

cos(2mθn)−Vpcm

∣∣∣∣∣ ≪
(

m223mV
− 1−c−ε

2
p

)
;

by the work of Selberg [12] we may take c= 3/4.

Proof. The casem= 0 is trivial. Form= 1 we use the trigonometric identity cos(2θn)=
2cos2(θn)−1. Asc±1 =−1/2 we have

Vp

∑
n=1

cos(2θn)−
Vp

2
=

Vp

∑
n=1

[(
2cos2 θn−1

)
+

1
2

]

=
1
2

Vp

∑
n=1

(
(2cosθn)

2−1
)

=
1
2

Vp

∑
n=1

(
(2
√

pcosθn)
2

p
−1

)
.(32)

Note the sum of(2
√

pcosθn)
2 is the second moment of the number of solutions modulo

p. From [2] we have that this isp+O(1); the explicit formula given in [2] for the
second moment is wrong; see [6] for the correct statement. Substituting yields

∣∣∣∣∣
Vp

∑
n=1

cos(2θn)−
Vp

2

∣∣∣∣∣ ≪ O(1).(33)

3To see that we may match the angles as claimed for the family ofall elliptic curves, consider the
elliptic curvey2 = x3−ax−b with 4a3 6= 27b2. Let c be any non-residue modulop, and consider the curve
y2 = x3 −ac2x−bc3. Using the Legendre sum expressions foraE(p) andaE′ (p), using the automorphism
x → cx we see the second equals

(c
p

)
times the first; as we have chosenc to be a non-residue, this means

2
√

pcos(θE′(p)) =−2
√

pcos(θE(p)), or θE′ (p) = π−θE(p) as claimed.
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The proof is completed by showing that∑
Vp
n=1cos(2mθn) = Om(V

1/2
p ) provided

2 ≤ m≤ M. In order to obtain the best possible results, it is important to understand
the implied constants, asM will have to grow withVp (which is of sizep2). While it is
possible to analyze this sum for anymby brute force, we must haveM growing withp,
and so we need an argument that works in general. Asc±1 6= 0 butcm = 0 for |m| ≥ 2,
we expect (and will see) that the argument below does break down when|m|= 1.

There are many possible combinatorial identities we can usein order to express
cos(2mθn) in terms of powers of cos(θn). We choose the following (for a proof, see
Definition 2 and equation (3.1) of [5]):

(34) 2cos(2mθn) =
m

∑
r=0

c2m,2r(2cosθn)
2r ,

wherec2r = (2r)!/2, c0,0 = 0, c2m,0 = (−1)m2 for m≥ 1, and for 1≤ r ≤ mset

(35) c2m,2r =
(−1)r+m

c2r

r−1

∏
j=0

(m2− j2) =
(−1)m+r

c2r

m· (m+ r −1)!
(m− r)!

.

We now sum (34) overn and divide byVp, the cardinality of the family. In the argument
below, at one point we replace 22r in an error term with 20121

r+1

(2r
r

)
·m2; this allows

us to pull ther th Catalan number,1
r+1

(2r
r

)
, out of the error term.4 Using Lemma 3 we

find that

1
Vp

Vp

∑
n=1

2cos(2mθn) =
m

∑
r=0

c2m,2r
1

Vp

Vp

∑
n=1

(2cosθn)
2r

=
m

∑
r=0

(
1

r +1

(
2r
r

)
+O

(
22rV

− 1−c−ε
2

p

))
c2m,2r

=
m

∑
r=0

(
1

r +1
(2r)!
r!r!

(−1)m+r2
(2r)!

m· (m+ r)!
(m− r)! · (m+ r)

)

·
(

1+O

(
m2V

− 1−c−ε
2

p

))

= (−1)m2m
m

∑
r=0

(
(−1)r m!

r!(m− r)!
(m+ r)!

m!r!
1

(r +1)(m+ r)

)

·
(

1+O

(
m2V

− 1−c−ε
2

p

))

= (−1)m2m
m

∑
r=0

(
(−1)r

(
m
r

)(
m+ r

r

)
1

(r +1)(m+ r)

)

·
(

1+O

(
m2V

− 1−c−ε
2

p

))
.(36)

4The reason this is valid is that the largest binomial coefficient is the middle (or the middle two when
the upper argument is odd). Thus 22r = (1+1)2r ≤ (2r +1)

(2r
r

)
≤ 2(m+1)

(2r
r

)
(asm≤ r), and the claim

follows from 2012m2

r+1 ≥ 2(m+1) for m≥ 2 and 0≤ r ≤ m.
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We first bound the error term. For our range ofr,
(m+r

r

)
≤
(2m

m

)
≤ 22m. The sum of

(m
r

)

overr is 2m, and we get to divide by at leastm+ r ≥ m. Thus the error term is bounded
by

(37) O

(
m223mV

− 1−c−ε
2

p

)
.

We now turn to the main term. It it just(−1)m2m times the sum in Theorem 1, which
is shown in that theorem to equal 0 for any|m| ≥ 2. Note that without Theorem 1, our
combinatorial expansion would be useless.

REMARK 4. It is possible to get a better estimate for the error term bya more
detailed analysis of∑r≤m

(m
r

)(m+r
r

)
; however, the improved estimates only change the

constants in the discrepancy estimates, and not the savings. This is because this sum is
at least as large as the term whenr ≈ m/2, and this term contributes something of the
order 33m/2/m by Stirling’s formula. We will see that any error term of size3am for a
fixeda gives roughly the same value for the best cutoff choice forM, differing only by
constants. Thus we do not bother giving a more detailed analysis to optimize the error
here.

We now prove effective equidistribution for the family of all elliptic curves.

THEOREM 3. For the family of all elliptic curves modulo p, as p→ ∞ we have

(38) DI ,Vp(µst) ≤ C
Vp

logVp

for some computable C.

Proof. We must determine the optimalM to use in (22):

DI ,Vp(µst) ≪ Vp

M+1
+ ∑

1≤m≤M

(
1

M+1
+

1
m

)(
m223mV

− 1−c−ε
2

p

)

≪ Vp

M
+M23MV

− 1−c−ε
2

p

(39)

as 1
M+1 ≪ 1

m and∑m≤m23m≪ 23M. For allc> 0 we find the minimum error by setting
the two terms equal to each other, which yields

(40) V
3−c−ε

2
p = M223M.

For ease of exposition we replaceM223M with e3M; this worsens our constant slightly,
but does not qualitatively change the result. Equating these errors means we are looking
for M such that

(41) e3M = e
3−c−ε

2 logVp,
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which implies

(42) M =
3− c− ε

6
logVp.

We thus see that we may find a constantC such that

(43) DI ,Vp(µst) ≤ C
Vp

logVp
.

This yields a logarithm savings in the discrepancy, and proves effective equidistribu-
tion.
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