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S U M M A R Y
A multitaper estimator is proposed that accommodates time-series containing gaps without
using any form of interpolation. In contrast with prior missing-data multitaper estimators
that force standard Slepian sequences to be zero at gaps, the proposed missing-data Slepian
sequences are defined only where data are present. The missing-data Slepian sequences are
frequency independent, as are the eigenvalues that define the energy concentration within
the resolution bandwidth, when the process bandwidth is [−1/2, 1/2) for unit sampling and
the sampling scheme comprises integer multiples of unity. As a consequence, one need only
compute the ensuing missing-data Slepian sequences for a given sampling scheme once, and
then the spectrum at an arbitrary set of frequencies can be computed using them. It is also
shown that the resulting missing-data multitaper estimator can incorporate all of the optimality
features (i.e. adaptive-weighting, F-test and reshaping) of the standard multitaper estimator,
and can be applied to bivariate or multivariate situations in similar ways. Performance of the
missing-data multitaper estimator is illustrated using length of day, seafloor pressure and Nile
River low stand time-series.

Key words: Fourier analysis; Numerical approximations and analysis; Statistical methods;
Time-series analysis.

1 I N T RO D U C T I O N

The analysis of time-series where the data are sampled at constant
intervals in time (or space) is well understood, and constitutes a core
capability in many fields of science and engineering. A major issue
in time-series analysis is devising a spectral estimator that operates
on a finite sample such that the estimate is not dominated by bias, is
statistically consistent, has a measurable variance and is relatively
immune to small departures from the underlying assumptions. This
problem becomes especially acute when the time-series is short
(i.e. when the required resolution is of order the inverse of the
time-series length), is a mixture of stochastic and deterministic
components or when the spectral dynamic range is large. Under
these circumstances, the multitaper estimator of Thomson (1982)
is the gold standard; see also Percival & Walden (1993, §7–9). The
advantages of the multitaper method include (1) it is a small sample
theory with sample size explicit, (2) its bias is quantifiable, (3) the
resolution bandwidth is well-defined, (4) the variance efficiency is
high, (5) it is data adaptive, so yields a low bias result even where the
spectrum is weak, (6) deterministic or spectral line components can
be accommodated in a straightforward manner and (7) for Gaussian
data, it is approximately maximum likelihood (Stoica & Sundin
1999). In this context, bias primarily means spectral leakage from
frequencies where the spectrum is large to those where it is small,
the resolution bandwidth defines the ability to resolve closely spaced
spectral features, and high variance efficiency refers to the ability

to make use of most of the data. A maximum likelihood estimator
has desirable statistical optimality properties. For a more detailed
review of these statistical concepts, see Chave (2017, §5.2 and 5.4).

The analysis of time-series with missing data (i.e. gaps) is less
well understood. Most of the literature concerns time-series with
one or more periodic components contained in noise. For example,
the Lomb–Scargle periodogram (Lomb 1976; Scargle 1982) was
introduced to analyse astronomical data containing gaps for periodic
components. However, it has been known since the time of Schuster
(1898) that the periodogram is badly biased; see Thomson & Haley
(2014, Fig. 1a) for a spectacular example. Other parametric and
resampling methods have been introduced to accommodate missing
data, as recently reviewed by Babu & Stoica (2010). None of these
provides the performance required for general applications.

However, power spectra of stochastic processes, or mixtures of
stochastic and deterministic processes, are more commonly of inter-
est in the earth and ocean sciences. Fodor & Stark (2000) modified
the standard multitaper estimator by forcing the ordinary Slepian
sequences (OSSs) for a complete time-series to be zero where there
are data gaps. Smith-Boughner & Constable (2012; hereafter SC12)
investigated this approach more deeply, and will be used for com-
parisons in this paper, where it will be shown that such an approach
yields suboptimal data tapers, in the sense that the spectral window
main lobe shape is not substantially square and the sidelobes are
significantly elevated relative to those of the estimator proposed
here.
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Figure 1. The first 15 missing-data Slepian sequences for a time-bandwidth of 12 and 12 400 data derived from a regular sampling scheme 14 500 long. From
top to bottom, the panels show the tapers for indices of 0–4, 5–9 and 10–14. The curve colour sequence is blue, red, green, magenta and cyan, so that for the
top panel blue = 0, red = 1, green = 2, magenta = 3 and cyan = 4.

As an alternative, the extension of the multitaper method to irreg-
ular sampling introduced by Bronez (1985, 1988) is re-examined.
A significant problem with the Bronez approach is that the gen-
eralized Slepian sequences that it yields are analogous to the
point-by-point product of an OSS and the complex exponentials
in the Fourier transform. This makes the generalized Slepian se-
quences frequency-dependent, and poses numerical issues at high
frequencies. It will be shown that a simple transformation of
Bronez’s result yields frequency-independent Slepian sequences,
along with frequency-independent eigenvalues that define the en-
ergy concentration within the resolution bandwidth, whenever the
process bandwidth is [−1/2, 1/2) for unit sampling and the sam-
pling scheme comprises integer multiples of unity. As a conse-
quence, one need only compute the resulting missing-data Slepian
sequences (MDSSs) for a given sampling scheme once, and then the
spectrum at an arbitrary set of frequencies can be computed using
them. It will also be shown that the resulting missing-data multi-
taper estimator can incorporate all of the optimality features (i.e.
adaptive-weighting, F-test and reshaping) of the standard multitaper
estimator, and can be applied to bivariate or multivariate situations
in similar ways.

The following section outlines the standard multitaper estimator
and the Bronez extension to irregular sampling, ending by show-
ing that a simple transformation results in missing-data Slepian
sequences that are frequency independent. Section 3 utilizes length
of day data with missing values as analysed by SC12, illustrating
the superior performance of the present approach. Section 4 de-
scribes the effect of varying lengths of data gaps using seafloor
pressure data that have a high dynamic range, showing that perfor-
mance with a single long gap is typically superior to many gaps for
the same number of missing data. Section 5 analyses a ∼1300 yr
long time-series of the Nile River low stands that contains several
gaps. Section 6 is a discussion of the results, and Section 7 contains
conclusions.

2 S P E C T RU M E S T I M AT I O N

Let a time sequence having a sample interval of one be given by
xt , t = 0, ...N − 1. Assuming that {xt } is derived from a harmo-
nizable random process (i.e. a process that can be represented as
the superposition of random, infinitesimal harmonic oscillators)

implies a spectral representation (Cramér 1940)

xt =
1/2∫

−1/2

ei2π ξ t dX (ξ ) , (1)

whereX ( f ) is an unobservable increments process whose statistical
moments are of interest. If the process is weakly stationary, the
increments are orthogonal, so that for distinct frequencies f1 and
f2

E [dX ( f1) dX∗ ( f2)] = S ( f1) δ ( f1 − f2) d f1d f2, (2)

where E denotes the expected value, S( f ) is the true or population
power spectral density and δ(x) is the Dirac function.

The discrete Fourier transform of the time sequence is given by

y ( f ) =
N−1∑
t=0

xt e
−i2π f t (3)

whose inverse is

xt =
1/2∫

−1/2

ei2π f t y ( f ) d f. (4)

Frequency f is a continuous rather than discrete variable because
the Fourier transform is an entire function of frequency.

Convert (1) and (3) to a time-centred form by replacing t with
t − (N − 1)/2, and combine them to yield the fundamental equation
of spectral analysis

y ( f ) =
1/2∫

−1/2

sin Nπ ( f − ν)

sin π ( f − ν)
dX (ν) . (5)

The essence of multitaper spectral analysis is treatment of (5) as
a Fredholm integral equation of the first kind, with dX ( f ) as the
unknown function whose moments are to be estimated, andy( f ) as
the data. It is well known that first kind integral equations do not
have unique solutions, and thus the ‘best’ solution in some specified
sense is sought. The criterion used in the multitaper estimator is
minimization of the bias (i.e. spectral leakage) outside an interior
domain [−W, W ), where W is a free parameter that specifies the
resolution bandwidth 2W of a multitaper estimate. W is typically
chosen to be a few times the Rayleigh resolution 1/N. In other
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Multitaper spectral estimator 2167

Table 1. MDSS and OSS eigenvalues for LoD data.

Index 15 per cent MDSS eigenvalue 30 per cent MDSS eigenvalue OSS eigenvalue

0 0.999999999999692 0.999999999983198 1.000000000000000
1 0.999999999975732 0.999999998473752 1.000000000000000
2 0.999999999437882 0.999999900175601 1.000000000000000
3 0.999999998932286 0.999999454849053 1.000000000000000
4 0.999999991499431 0.999997362604173 1.000000000000000
5 0.999999936867818 0.999986527805390 1.000000000000000
6 0.999999854130043 0.999956480699381 1.000000000000000
7 0.999999316879772 0.999905584824261 1.000000000000000
8 0.999993727855227 0.999365644651816 1.000000000000000
9 0.999989586069465 0.998939918841159 1.000000000000000
10 0.999964956826422 0.997782028780468 1.000000000000000
11 0.999901751191980 0.996739055257954 1.000000000000000
12 0.999778843706515 0.986104098451560 1.000000000000000
13 0.999219282505405 0.983280719474481 0.999999999999990
14 0.998449788311167 0.950649184136669 0.999999999999822
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Figure 2. The spectral window, or power spectrum of the Slepian sequences, obtained from the average of the absolute square of the Fourier transforms of 15
ordinary Slepian sequences (blue) and 5 (red), 10 (green) and 15 (magenta) missing-data Slepian sequences as shown in Fig. 1. The half bandwidth is 0.00097
d-1 for all cases.

words, the multitaper estimator yields the integrated average of the
power over a user-specified bandwidth.

The kernel function in (5) is the Dirichlet kernel whose eigenfunc-
tions are the Slepian functions Uk(N , W ; f ) that are orthonormal
on the process domain [−1/2, 1/2) and orthogonal on the interior
domain [−W, W ) (Slepian 1978). The Dirichlet kernel eigenvalues
{λk(N , W )} give the fractional energy concentration in the interior
domain.

The first �2N W� eigenvalues are near 1, and then fall off expo-
nentially to zero. The Fourier transforms of the Slepian functions
are the Slepian sequences vk

t (N , W ) that serve as data tapers in
multitaper estimates, and are the solutions to

N−1∑
s=0

sin 2πW (t − s)

π (t − s)
vk

s (N , W ) = λk (N , W ) vk
t (N , W ) (6)

for t = 0, ...N − 1. As is apparent from (6), both the eigenvalues
and eigenvectors are independent of frequency. The matrix form
of (6) has a Toeplitz structure that makes its numerical solution

fast and accurate, although Slepian (1978) presents an equivalent
tridiagonal form that has even better numerical properties, and is
typically used computationally.

The derivation of the multitaper power spectrum estimator using a
Slepian function basis is described in Thomson (1982) and Percival
& Walden (1993, §7). The form used in this work for the high
resolution spectral estimator averaged over the interior domain is

S̄ ( f ) =
∑K−1

k=0 d2
k ( f ) Ŝk ( f )∑K−1

k=0 d2
k ( f )

, (7)

whereK ≤ �2N W�. The eigenspectra {Ŝk( f )}are direct estimates
using a Slepian sequence as the data taper, and are obtained by
taking the absolute square of

âk ( f ) =
N−1∑
n=0

vk
n (N , W ) xne−i2π f (n− N−1

2 ). (8)
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Figure 3. The energy concentration given by the sum of the squares of the 15 missing data Slepian sequences (blue) from Fig. 1 and 15 ordinary Slepian
sequences (red) for a half-bandwidth of 0.00097 d-1.
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Figure 4. The base 10 logarithm of power spectral density for the length of day data in ms2 d–1 plotted against the base 10 logarithm of frequency in d–1

using an adaptively weighted standard multitaper estimator (red) having about 30 degrees of freedom per frequency and an adaptively weighted 15 per cent
missing-data multitaper estimator (blue) having about 26 degrees of freedom per frequency. The resolution bandwidth for both estimates is 0.0019 d-1. The
vertical red and blue lines at the centre of the figure are double-sided 95 per cent confidence limits on the spectra.

The data-adaptive weights are given by

dk ( f ) = λk S ( f )

λk S ( f ) + σ 2 (1 − λk)
, (9)

where σ 2 is the population variance and the second term in the
denominator is an upper bound on the bias outside of the interior
domain, or broad-band bias. The adaptive weights (9) are nearly
unity at frequencies where the broad-band bias is small, and become
small when the broad-band bias is dominant. When the broad-band
bias is negligible, (7) is the arithmetic average of the eigenspectra. A
spectrum estimate is obtained by substituting (9) into (7), replacing

the population entities S( f ) and σ 2 with estimates, assuming that
dk( f ) is constant across the interior domain and iteratively solving
the resulting non-linear equation. Once the weights are determined,
the degrees of freedom is given by

η ( f ) = 2
∑K−1

k=0
d2

k ( f ). (10)

In practice, better performance is achieved after prewhitening,
typically using a short autoregressive filter.
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Figure 5. The base 10 logarithm of power spectral density for the length of day data in ms2 d-1 plotted against frequency over the band 0.0–0.2 d-1 using an
adaptively-weighted standard multitaper estimator (red) having about 30 degrees of freedom per frequency and an adaptively-weighted 15 per cent missing-data
multitaper estimator (blue) having about 26 degrees of freedom per frequency. The resolution bandwidth for both estimates is 0.0019 d-1. The vertical red and
blue lines at the centre of the figure are double-sided 95 per cent confidence limits on the spectra.
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Figure 6. The multitaper F-test (14) for the complete length of day time-
series (top panel) and for the 15 per cent missing data length of day time-
series using the sampling scheme of Figs 1–3 (bottom panel). The F statistic
has been truncated at 100 for clarity. The horizontal dashed lines show the
0.9999 significance level for the F statistic with 2,28 (top) and 2,24 (bottom)
degrees of freedom.

The presentation to this point has focused on the second moment
of the estimate of the orthogonal increment process dX ( f ). A sig-
nificant advantage of the multitaper method is that it provides both
a method to estimate the complex amplitude of deterministic or line
components, and a statistical test for their presence. The Slepian
functions define the shape that a harmonic component will have in
a multitaper power estimate, and because of their properties, line
components will appear smeared out over a band of width 2W that
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Figure 7. The reshaped power spectrum for the entire length of day record
(red) and for the 15 per cent missing data example (blue). The power removed
from the stochastic spectrum is shown by the red and blue asterisks assuming
the corresponding bandwidth is the Rayleigh resolution. The vertical red and
blue lines at the centre of the figure are doublesided 95 per cent confidence
limits on the spectra assuming 30 (red) and 26 (blue) degrees of freedom
per frequency.

has a nearly rectangular shape. The expected value of (8) is

E [âk ( f )] =
L∑

i=1

μ̂i ( f ) Uk (N , W ; f − fi ) , (11)

where there are L line components and μ̂i ( f ) is a complex line
amplitude. The least squares estimator for the line amplitude is

μ̂ ( f ) =
∑K−1

k=0 Uk (N , W ; 0) âk ( f )∑K−1
k=0 U 2

k (N , W ; 0)
. (12)

The power in the line at a given frequency is |μ̂( f )|2 and has 2
degrees of freedom. The residual power spectral estimator with the
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Figure 8. The base 10 logarithm of power spectral density for the length of day data in ms2 d-1 plotted against frequency over the band 0.0–0.2 d-1 using an
adaptively-weighted standard multitaper estimator (red) having about 30 degrees of freedom per frequency and an adaptively-weighted 30 per cent missing-data
multitaper estimator (blue) having about 23 degrees of freedom per frequency. The resolution bandwidth for both estimates is 0.0019 d-1. The vertical red and
blue lines at the centre of the figure are double-sided 95 per cent confidence limits on the spectra assuming 30 (red) and 23 (blue) degrees of freedom per
frequency.
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Figure 9. The base 10 logarithm of power spectral density for the length of
day data in ms2 d-1 plotted against frequency over the band 0.0–0.2 d-1 using
an adaptively-weighted standard multitaper estimator (red) having about 30
degrees of freedom per frequency and an adaptively-weighted 30 per cent
missing-data multitaper estimator (blue) having about 23 degrees of freedom
per frequency. The resolution bandwidth for both estimates is 0.0019 d-1.
The vertical red and blue lines at the centre of the figure are double-sided
95 per cent confidence limits on the spectra assuming 30 (red) and 23 (blue)
degrees of freedom per frequency.

line removed is

S̄′ ( f ) =
K−1∑
k=0

|âk ( f ) − μ̂ ( f ) Uk (N , W ; 0)|2 (13)

and has η( f ) − 2 degrees of freedom. The process of removing a
line component from the spectrum is called reshaping, and (13) is
also called the reshaped spectrum. Thomson (1982, §XIII) defines
an F statistic

F̂ ( f ) = [η ( f ) − 2] |μ̂ ( f )|2 ∑K−1
k=0 U 2

k (N , W ; 0)

2 S̄′ ( f )
(14)

that is asymptotically distributed as F2, η( f )−2 to test for the presence
of a line component, and can be assessed in the standard way. For
example, one might choose to reshape the spectrum at the 0.999
probability level by assessing (14) against the critical values for
a F2, η( f )−2 distribution, computing (13) at those frequencies where
they are exceeded, and then replacing the power in the line as |μ̂( f )|2
under the assumption that it has the Rayleigh resolution bandwidth
1/N .

Bronez (1985, 1988) extended multitaper analysis to irregularly
spaced data in one or more dimensions. He suggested that the quan-
tity of interest in spectral analysis is the integrated spectrum over
a user-specified bandwidth; this is effectively the same as in (7)
where the analysis band is the interior domain about any frequency
of interest. Bronez proposed a quadratic spectral estimator

S̄W = x∗QW x, (15)

where QW is an N × N positive semidefinite Hermitian matrix that
depends on the analysis half bandwidth W. It may be decomposed

as

QW = wW w∗
W , (16)

where wW is N × K with rank K. The weights in (16) are chosen
using a minimum bias criterion. Considering only the 1-D problem
for simplicity, define the process half bandwidth β which is not
necessarily 1

2 . For the parameters W and β, compute the eigenvalues
λk and eigenvectors wk at a given frequency for the generalized
eigenvalue problem

Awk = λkBwk (17)

where

Anm =
f +W∫

f −W

ei2π f (tn−tm )d f (18)
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Figure 10. The base 10 logarithm of power spectral density for the length of day data in ms2 d-1 plotted against frequency over the band 0.0–0.2 d-1 using an
adaptively-weighted standard multitaper estimator (red) having about 30 degrees of freedom per frequency and an adaptively-weighted 45 per cent missing-data
multitaper estimator (blue) having about 16 degrees of freedom. The resolution bandwidth for both estimates is 0.0019 d-1. The vertical red and blue lines at
the centre of the figure are double-sided 95 per cent confidence limits on the spectra assuming 30 (red) and 16 (blue) degrees of freedom per frequency.
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Figure 11. The base 10 logarithm of seafloor pressure power spectral density in Pa2 hr-1 plotted against the base 10 logarithm of frequency in hr-1 using an
adaptively weighted standard multitaper estimator (red) having a time-bandwidth of 13 and an adaptively weighted missing-data multitaper estimator (blue)
having a time-bandwidth of 10 for 2580 missing values in the centre of the time-series. The resolution bandwidth for both estimates is 0.0014 hr-1. The vertical
black line at the centre of the figure is a double-sided 95 per cent confidence limit on the spectra assuming 24 degrees of freedom per frequency.

and

Bnm =
β∫

−β

ei2π f (tn−tm )d f (19)

and wk is a column of wW . The time vector is not necessarily equally
spaced. The integrated spectrum is then obtained as

S̃ (W, β; f ) = 1

K

K−1∑
k=0

∣∣∣∣∣
N−1∑
i=0

wk
i xi

∣∣∣∣∣
2

(20)

Note the analogy to (7): in the absence of broadband bias from
spectral leakage, the weights (9) become unity, and (7) is just the
arithmetic average of the raw estimates using the kth Slepian se-
quence as a data taper. For uniformly sampled data, the eigenvec-
tors from (17) used in (20) are the point-by-point product of an
ordinary Slepian sequence with a complex exponential term in the
Fourier transform at a given frequency. More generally, they are
frequency-dependent eigenfunctions that have a similar character,
and the eigenvalues may also be frequency-dependent. This creates
numerical issues, particularly as the frequency approaches extremes
within the process band.
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Table 2. MDSS Eigenvalues for pressure data.

Index 1 Gap MDSS eigenvalue 5 Gap MDSS eigenvalue 12 Gap MDSS eigenvalue

0 0.999999999999946 0.999985910962565 0.986074561310057
1 0.999999999999850 0.999937210577215 0.979481224911075
2 0.999999999986706 0.999929729565371 0.979481224911060
3 0.999999999983828 0.999929589064199 0.979481224910006
4 0.999999999181086 0.999887583322106 0.979481224863396
5 0.999999998426710 0.999866809438120 0.979481223360637
6 0.999999971435184 0.999207423450190 0.979481186467767
7 0.999999907433297 0.996240475367617 0.979480477405569
8 0.999999146195923 0.991757457909191 0.979468852020767
9 0.999997248750588 0.991622177978471 0.979310358130167
10 0.999975945028074 0.990914514532513 0.977293857744475
11 0.999950940641856 0.990453321407156 0.959517073933613
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Figure 12. The 0.9999 level reshaped base 10 logarithm of seafloor pressure
power spectral density in Pa2/hr-1 plotted against the base 10 logarithm of
frequency in hr-1 using an adaptively weighted standard multitaper estimator
(red) having a time-bandwidth of 13 and an adaptively weighted missing-
data multitaper estimator (blue) having a time-bandwidth of 10 for 2580
missing values in the centre of the time-series. The resolution bandwidth for
both estimates is 0.0014 hr-1. The vertical black line at the centre of the figure
is a double-sided 95 per cent confidence limit on the spectra assuming 24
degrees of freedom per frequency. The extracted line energy is represented
by the red and blue asterisks under the assumption that their bandwidths are
the Rayleigh resolution of the estimates.

This problem can be minimized by writing wk =
υk exp[−i2π f (tn − tm)], yielding the new eigenvalue prob-
lem

A′υk = λkB′υk (21)

where

A′
nm = sin 2πW (tn − tm)

π (tn − tm)
(22)

and

B ′
nm = e−i2π f (tn−tm ) sin 2πβ (tn − tm)

π (tn − tm)
(23)

General solutions to (21) are obtained by computing the Cholesky
factors B′ = RRT

, and transforming (21) into a standard eigenvalue
problem

R−1A′(RT
)−1

RT υk = λkRT υk (24)

where the RT υk are orthonormal. It is straightforward to show that
(23) reduces to the identity matrix when β = 1/2 and tn − tm = k,
where k is any integer, and so the Cholesky factors in (24) are also

identity matrices and hence become irrelevant. Consequently, the
eigenvalue problem (24) becomes frequency independent for any
regularly sampled time sequence that contains arbitrary gaps, so that
the transformed tapers υk need only be computed once for a given
sampling scheme. However, the Toeplitz structure of the regularly
sampled version of (22) is lost in the presence of time-series gaps.

The power spectrum analogous to (20) is

S̃ ( f ) = 1

K

K−1∑
k=0

∣∣∣∣∣
N−1∑
i=0

υk
i xi e

−i2π f ti

∣∣∣∣∣
2

(25)

and is similar to (7) when the broadband bias is negligible.
The frequency-independent tapers υk are missing-data Slepian se-
quences (MDSSs) for the time variable ti and time sequencexi that
contain gaps, and reduce to the OSSs that are the solutions to (6)
when gaps are absent. It follows directly that the same principles
used to obtain the gap-free adaptively weighted spectrum (7), the
F-test (14), estimates for line components (12) and the reshaped
power spectrum estimator (13) pertain equally to time sequences
containing gaps.

SC12 modified (6) to account for time-series gaps by adding a
multiplicative indicator function on both sides of the eigenvalue
problem that takes on a value of 0 when data are absent and 1 when
they are present; these will be called indicator function Slepian
sequences (IFSSs) in the sequel. In other words, they assumed that
a missing-data Slepian sequence is an OSS that is forced to be
zero when data are absent. However, the MDSSs from (21) are
only defined where data are present in the time sequence, hence are
distinct from IFSSs, as is further demonstrated below.

3 L E N G T H O F DAY DATA

In this section, the characteristics of the MDSSs and IFSSs are
compared using the example presented in SC12 §3. The sampling
scheme comprises 14 500 points with a sample interval of unity, but
with gaps at 4745–5447, 8378–9545 and 12 823–13 051, or ∼15
per cent missing data. Fig. 1 shows the first 15 MDSSs using a
time-bandwidth of 12 with 12 400 data, or a half bandwidth W of
0.00097 d−1. This is the same as for the IFSS result in Fig. 1 of
SC12. It is immediately apparent that the MDSSs and IFSSs bear
little resemblance to each other. The IFSSs in SC12 are spread more
widely across the sections where data are present, and all descend
to zero at the data gap boundaries. By contrast, the MDSSs in Fig. 1
are more concentrated in the longest data sections for small order k,
with the shortest data section showing up only for higher values of
the order. For example, the two lowest order MDSSs resemble the
two lowest order OSSs over only the first data section, with small
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Figure 13. The base 10 logarithm of seafloor pressure power spectral density in Pa2 hr-1 plotted against the base 10 logarithm of frequency in hr-1 using an
adaptively weighted standard multitaper estimator (red) having a time-bandwidth of 13 and an adaptively weighted missing-data multitaper estimator (blue)
having a time-bandwidth of 10 for 2580 missing values distributed into five intervals spaced evenly along the time-series. The resolution bandwidth for both
estimates is 0.0014 hr-1. The vertical black line at the centre of the figure is a double-sided 95 per cent confidence limit on the spectra.
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Figure 14. The base 10 logarithm of the reshaped seafloor pressure power
spectral density in Pa2 hr-1 plotted against the base 10 logarithm of frequency
in hr-1 using an adaptively weighted standard multitaper estimator (red)
having a time-bandwidth of 13 and an adaptively weighted missing-data
multitaper estimator (blue) having a time-bandwidth of 10 for 2580 missing
values distributed into five intervals spaced evenly along the time-series. The
resolution bandwidth for both estimates is 0.0014 hr-1. The vertical black
line at the centre of the figure is a double-sided 95 per cent confidence limit
on the spectra assuming 24 degrees of freedom per frequency. The extracted
line energy is represented by the red and blue asterisks under the assumption
that their bandwidths are the Rayleigh resolution of the estimates.

but nonzero amplitudes over the remaining three data sections. In
addition, the MDSSs are not constrained to descend to zero at data
gap boundaries, as is most apparent for order values above 10.
Table 1 compares the MDSS eigenvalues with the OSS eigenvalues
for a time-bandwidth of 14 with 14 500 data, which yields the same
resolution bandwidth as for the MDSS example. There is obviously
a penalty to be paid for gaps in a time-series, as reflected in the
smaller MDSS eigenvalues. SC12 specify that the first ten IFSS
eigenvalues are nearly one, which is also true for the MDSSs in
Table 1.

The observed differences between the IFSSs and MDSSs provide
little insight into their relative performance. Fig. 2 compares the
average spectral windows for the first 15 OSS tapers with a time-
bandwidth of 14 and a time-series length of 14 500 and the first 5, 10
and 15 MDSS tapers with a time-bandwidth of 12 and a time-series
length of 12 400. The OSS spectral window has at least 140 dB
of sidelobe protection. By contrast, the MDSSs provide at least
100, 70 and 40 dB of sidelobe protection for the average of 5, 10
and 15 tapers, which is substantially poorer. However, the MDSS
spectral windows display the square main lobe and slow falloff
with frequency characteristic of Slepian functions. Comparing to
Fig. 3 in SC12 shows sidelobe protection of about 50, 50 and 30 dB
for the average of 5, 10 and 15 IFSSs, and a main lobe that is
not as square as for the MDSSs. Consequently, the MDSSs offer
a substantial performance advantage compared to the IFSSs for
comparable bandwidths, without accounting for adaptive-weighting
that was not utilized in SC12.

Fig. 3 compares the energy concentration
∑K−1

k=0 (vk
n)

2
for the

OSSs and
∑K−1

k=0 (υk
n )

2
for the MDSSs at the same resolution band-

width with K = 15. This result is very similar to Fig. 2 in SC12. It is
notable that the MDSSs pick up more energy at long data sections
as compared to short sections, which is also reflected in the absence
of individual MDSS amplitudes in the shortest section except for
large order values in Fig. 1. The absence of sensitivity of the OSSs
at the ends of the data sequence reflects the fact that only 15 out of
28 useful data tapers were used.

SC12 utilized the first 14 500 values of changes in the length
of day obtained from the International Earth Orientation Refer-
ence System as an exemplar. These data extend from 01.01.1962
to 12.09.2001 (and not through 2009 as SC12 state), and data were
removed corresponding to the sampling scheme of Figs 1–3. Fig. 4
compares the base 10 log frequency-log power utilizing adaptive-
weighting for the complete time-series using OSSs and the missing
data time-series using MDSSs with identical resolution bandwidths.
Fig. 5 shows the 0.0–0.2 d−1 interval as linear frequency versus log
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Figure 15. The base 10 logarithm of seafloor pressure power spectral density in Pa2 hr-1 plotted against the base 10 logarithm of frequency in hr-1 using an
adaptively weighted standard multitaper estimator (red) having a time-bandwidth of 13 and an adaptively weighted missing-data multitaper estimator (blue)
having a time-bandwidth of 10 for 2580 missing values distributed into twelve intervals spaced evenly along the time-series. The resolution bandwidth for both
estimates is 0.0014 hr-1. The vertical black line at the centre of the figure is a double-sided 95 per cent confidence limit on the spectra.
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Figure 16. The base 10 logarithm of the power in cm2 yr-1 against the base
10 logarithm of frequency in yr-1 for the entire Cairo nilometer data set
using a missing-data multitaper estimator with a time bandwidth of 10 and a
regular multitaper estimator using the data from 622 to 1470 CE with a time
bandwidth of 8, in both cases utilizing 12 missing-data or ordinary Slepian
sequences. The resolution bandwidth for both estimates is 0.0097 yr-1. The
vertical black line shows the double sided 95 per cent confidence interval
on the estimate assuming 24 degrees of freedom per frequency.

power for both estimates. The double-sided 95 per cent confidence
intervals based on a scaled chi square distribution are shown at the
centre of each figure. The missing-data spectrum is statistically in-
distinguishable from that obtained over the complete record in both
figures. The peaks seen in the figures are due to the long period
tides. Fig. 5 is similar to the inset in SC12 Fig. 9.

Fig. 6 shows the F statistic (14) over 0.0–0.2 d−1 for both the stan-
dard and missing-data multitaper methods, along with the 0.9999
probability threshold based on the F distribution. Both F-tests easily
detect the major long period tides, but performance of the missing-
data F-test is somewhat weaker than for the complete data set. For
example, the Sta tidal species at ∼120 d (0.0083 d−1) is barely sig-
nificant in the complete data F-test at the 0.9999 level, and absent
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Figure 17. The missing-data multitaper F test for the complete nilometer
data set (top) and the regular multitaper F test for the 622–1470 CE nilometer
data (bottom) using the same parameters as in Fig. 16. The horizontal black
dashed lines show the 0.99 and 0.999 probability thresholds for an F2,22

distribution.

in the missing-data F-test. Since the multitaper F-test is sensitive
to the signal-to-noise ratio within the interior domain about a fre-
quency of interest, it is not surprising that gaps in the time-series
will change it.
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Figure 18. The missing-data multitaper spectrum for the nilometer data
reshaped at the 0.998 level, along with the resulting line components inserted
under the assumption that their bandwidths are the Rayleigh resolution. The
vertical black bar shows a double-sided 95 per cent confidence interval on
the spectrum assuming 24 degrees of freedom per frequency.

Fig. 7 contains the reshaped power spectrum estimate (13) after
removing line components that are significant at the 0.9999 proba-
bility level, along with the power in the lines under the assumption
that each has the Rayleigh resolution bandwidth. As for Fig. 5, the
reshaped power spectra are statistically indistinguishable except at
a few frequencies where the missing-data F test failed to detect a
line component, such as ∼0.038, ∼0.0105 and ∼0.14 d−1. The fort-
nightly tide at 0.073 d−1 is actually two lines spaced more closely
than the Rayleigh resolution that the single frequency F-test (14)
cannot resolve for either the complete or missing-data multitaper
approach.

Fig. 8 compares the multitaper spectrum of the complete and a
30 per cent missing data example obtained by doubling the length
of the gaps in the previous examples. Table 1 shows the eigenvalues
for the 30 per cent missing-data MDSSs, which are smaller than for
the 15 per cent missing data example. The spectra are statistically
indistinguishable where the power is high, but there is the suggestion
of downward bias in the missing-data spectrum above ∼0.1 d−1.

Fig. 9 shows the reshaped power spectrum estimate (13) for the
30 per cent missing data example after removing line components
that are significant at the 0.9999 probability level, along with the
power in the line under the assumption that each has the Rayleigh
resolution bandwidth. Comparing to Fig. 7, the missing-data F-
test is significant at p = 0.9999 only below ∼0.08 d−1 such that
no reshaping occurs above that point. This could be obviated by
reducing the probability threshold.

Fig. 10 compares the multitaper spectrum of the complete and a
45 per cent missing data example obtained by tripling the length of
the gaps in the initial case. The missing-data spectrum is statistically
indistinguishable from the complete data one below ∼0.08 d−1,
but is increasingly downward biased relative to the complete data
spectrum above that point.

4 S E A F L O O R P R E S S U R E DATA

Seafloor pressure data were collected as a component of the Hawaii
Ocean Mixing Experiment (HOME) in 2001–2; see Pinkel et al.
(2000) for details about HOME. The time-series in this study is
from site PN2 located at 26o52.5′N, 161o56.7′W, north–northwest
of the island of Kauai at 5235 m water depth. The data were sampled
at 64/hr, and the record length is 389 d beginning in late April 2001.

The data were decimated by a factor of 100, yielding a sample
interval of 2812.5 s, or about 0.78 hr. These data have a high dynamic
range due to the presence of the diurnal and semidiurnal tides, hence
bias control during their spectral analysis is important.

A section of data 2580 long was removed from the middle of
the pressure time-series comprising 21.6 per cent of the record.
Fig. 11 compares the multitaper spectrum of the entire pressure
time-series with a time-bandwidth of 13 against the missing-data
multitaper spectrum with a time-bandwidth of 10, in both cases
using 12 tapers and no prewhitening. The eigenvalues for the OSSs
are all one, while Table 2 gives the smaller eigenvalues for the
MDSSs in the second column, all of which are at least 0.9999. The
two spectra in Fig. 11 are statistically identical, being dominated by
the diurnal and semidiurnal tides, along with the overtides. Both of
the estimates easily resolve the high frequency roll off caused by low
pass filtering prior to decimation. Fig. 12 compares the multitaper
spectra after reshaping at the 0.9999 probability level, with the
line energy shown as asterisks replaced under the assumption that
their bandwidth is the Rayleigh resolution of the estimate. The
two spectra are very similar, although there is a tendency for the
missing-data line amplitudes to be slightly smaller than those for
the complete time-series.

The same number of missing data was changed into five gaps 516
values long evenly distributed along the time-series. Fig. 13 com-
pares the standard multitaper estimate for the whole time-series with
the missing-data estimate using the same parameters as for Fig. 11.
The eigenvalues are given in the middle column of Table 2, and
are substantially smaller than for a single gap. The spectra are sta-
tistically identical, although there is a suggestion for upward bias
in the missing-data spectrum between the diurnal and semidiurnal
bands and in the high frequency roll off. The degrees of freedom
are reduced for the missing-data spectrum at high frequencies, as
seen in the increased variability above ∼0.25 hr−1. Fig. 14 com-
pares the complete and missing-data spectrum after reshaping at
the 0.9999 probability level, along with the line energy inserted
with the Rayleigh resolution as its bandwidth. There is more evi-
dence for bias between the diurnal and semidiurnal tidal bands as
compared to Fig. 13, and underestimation of the line power by the
missing-data estimator is enhanced compared to Fig. 12. In addi-
tion, the missing-data estimator does not detect line components
at periods shorter than 4 hr due to the presence of gaps, but the
standard multitaper estimator does in their absence.

The missing data were then distributed into 12 gaps 215 points
long distributed evenly along the time-series; this corresponds to a
week of data per 30-day month being absent. Fig. 15 compares the
complete time-series multitaper estimate with the missing-data one
using the same parameters as for Fig. 11. The eigenvalues for the
MDSSs are given in the last column of Table 2, and are decidedly
smaller than for the other examples, suggesting that bias problems
may ensue even in the presence of adaptive weighting. The missing-
data spectrum confirms this, as the spectrum is upward biased at all
frequencies save those of the spectral peaks. The degrees of freedom
are high (∼24) only at very low frequencies and over the diurnal
and semidiurnal tide bands, dropping to ∼10 in their vicinity and
to nearly zero above 0.1 hr−1. Reshaping fails for this spectrum due
to pervasive spectral leakage.

5 C A I RO N I L O M E T E R DATA

A final example will utilize the arguably longest instrumental time-
series in existence from the Cairo nilometer which measures the
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Figure 19. The first ten irregular sampling Slepian sequence eigenvalues for time sampling ti = i1.05, i = 1, 1000 and a resolution half bandwidth of 0.008.
The eigenvalue index increases from right to left.
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Figure 20. The first five irregular sampling Slepian sequences for time sampling ti = i1.05, i = 1, 1000 and a resolution half bandwidth of 0.008 at a frequency
of 0 (top panel) and 0.2 (bottom panel). The colour sequence is blue, red, green, maroon and cyan correspond to the 0, 1, 2, 3 and 4 indexes. The solid and
dotted lines in the lower panel are the real and imaginary parts, respectively.

height of the Nile River that is thoroughly described by Popper
(1951) based on medieval Arabic source documents. Popper out-
lines many potential issues with these data and provides summary
statistics, but it is frustrating that he did not gather his preferred

values together into a single data set. Instead, the data given by
Toussoun (1925) extending from 622 to 1921 CE will be utilized,
although there are several long gaps beginning in 1470 CE. The data
give the level of the Nile River near Cairo in late June of each year
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that is taken as its annual low stand. After interpolating across a few
1–2 yr gaps and eliminating a few isolated values, the time-series
comprises the years 622–1470, 1587–1623, 1703–1738, 1749–1771
and 1836–1921 CE. Descriptions and the principles of the nilome-
ter are described in Borchardt (1906) and Popper (1951), and will
not be given here. Several papers about hydrological and climatic
inferences from these data are available, but will not be reviewed
as the present purpose is illustrating the value of a missing-data
estimator for their study.

Fig. 16 compares a regular multitaper spectrum of the data over
622–1470 CE with a time-bandwidth of 8 and a missing-data mul-
titaper spectrum with a time-bandwidth of 10 for the entire data
set. The resolution bandwidth of each spectrum is 0.0097 yr−1.
The missing-data spectrum is higher than the regular multitaper
spectrum below 0.1 yr−1 or for periods longer than ∼10 yr. It also
contains potentially interesting spectral features over the same fre-
quency range. By contrast, the regular spectrum is quite featureless
over the same band.

Fig. 17 compares multitaper F statistics for the regular and
missing-data multitaper estimators, along with the 0.99 and 0.999
thresholds for an F2,22 distribution. The F statistics are larger for the
missing-data estimator, with 8.8, 6.3 and 3.3 yr exceeding the 0.999
threshold, and 18.4 yr reaching a probability of 0.99989 and hence
nearly as significant. The latter is very close to the lunar nodal cycle
of 18.6 yr. The regular multitaper F statistic exceeds the 0.99 level
at only four frequencies, and never reaches the 0.999 level.

Fig. 18 shows the missing-data spectrum reshaped at the 0.998
probability level, along with the energy in the spectral lines under
the assumption that their bandwidths are the Rayleigh resolution
of the estimate. Each of the line components is about 1.5 decades
higher than the residual spectrum. In addition, reshaping the DC
value results in a substantial peak emerging at ∼90 yr period, which
is very close to the Gleissberg cycle period of 88 yr (Peristykh &
Damon 2003).

6 D I S C U S S I O N

The three examples in Sections 3–5 demonstrate the utility of the
missing-data multitaper estimator defined in Section 2. The length
of day and seafloor pressure examples illustrate two different types
of bias that can occur. The first is the pervasive downward bias seen
in Figs 9 and 10 as the number of missing values in the length of
day data rises to 30 and 45 per cent, respectively. This is not due
to spectral leakage, which produces upward bias at low points in
the spectrum, as seen in Fig. 15. The downward bias is due to an
inability to obtain a meaningful spectral estimate from a limited
data set that increases with the fraction of missing data.

Fig. 3 demonstrates the well-known phenomenon for standard
multitaper estimators where the ends of a data set are included
more fully in high order tapers than in low order ones. Truncating
the number of tapers below �2N W� reduces the influence of the ends
of a time sequence. This is less of an issue with the missing-data
estimator, as seen in Fig. 3. The differences between the standard
and missing-data spectra in Fig. 16 are due to a combination of
the truncation effect on the standard estimator and the inclusion of
data from after 1470 CE in the missing-data estimator. Since the
differences are primarily at frequencies under 0.1 yr−1, the addition
of the 1836–1921 CE data in the missing data result has the most
effect, and in fact the missing-data tapers ‘favor’ this data section
over the shorter data segments between 1470 and 1836 CE.

This paper has investigated the missing data problem where (23)
reduces to the identity matrix, and (21) becomes a standard eigen-
value problem with frequency-independent eigenvalues and eigen-
vectors. However, (21)–(23) are valid for a more general class of
irregularly sampled data where gaps are not integer multiples of
a fundamental sample interval, or when the process bandwidth is
other than [−1/2, 1/2). In these instances, four important distinc-
tions are observed: (1) the eigenvalues and eigenvectors become
frequency dependent, (2) the eigenvectors for nonzero frequency
are complex, (3) the eigenvectors υk in (21) are not orthogonal, al-
though their product with the Cholesky factor of B given by RT υk

in (24) are and (4) the concept of a Nyquist frequency becomes
ill defined, while aliasing becomes complicated. The first three of
these will be illustrated, while further work is needed to understand
the last point.

A somewhat contrived example where time is defined as ti =
i1.05, i = 0, ...N − 1 serves to illustrate these phenomena. Fig. 19
shows the first ten eigenvalues as a function of frequency over
[0, 0.3) for a resolution half-bandwidth of 0.008 under the assump-
tion that the process bandwidth is [−1/2, 1/2). The eigenvalues are
nearly 1 at frequencies up to ∼0.18, and then fall off, asymptoting
to a value of 0.5. The higher order eigenvalues fall off at lower fre-
quencies than the lower order ones. The behaviour in Fig. 19 is quite
different than for the MDSSs, where the eigenvalues are constant
across frequency.

Fig. 20 shows the first five eigenvectors RT υk in (24), or irreg-
ular sampling Slepian sequences (ISSSs), at a frequency of 0 (top
panel) and 0.2 (bottom panel) for the same parameters as used for
Fig. 19. The zero frequency ISSSs extend across the time support,
and undersample at the ends relative to the middle of the time in-
terval, as expected for low order tapers. By contrast, the higher
frequency ISSSs are concentrated at early time, and are complex.
The concentration at early time is easy to understand, as higher
frequencies are determined by the more closely sampled data at
early time as compared to the more widely spaced data at later
time.

The concepts introduced in this paper easily extend to bivariate
or multivariate missing-data multitaper entities by analogy to the
standard multitaper estimator. Further, since frequency is a con-
tinuous rather than discrete variable in (3), it is not necessary for
the sampling scheme to be identical for all of the time-series un-
der analysis. However, major differences in sampling may not yield
meaningful results; computing the cross spectrum of disjoint time-
series does not make much sense. The ISSSs are also well defined
for two dimensional problems, yielding an optimal array process-
ing solution in wavenumber space. The F test in wavenumber is a
test for the presence of a plane wave, and since the multitaper F
test has the Rayleigh resolution that is much better than that of the
multitaper estimator, this will yield superior results as compared to
beam forming, which has the resolution bandwidth. Further work is
needed to understand this application.

7 C O N C LU S I O N S

This paper has presented a multitaper estimator that accommodates
time-series containing gaps without using any form of interpolation.
The missing-data multitaper estimator is an extension of the irreg-
ular sampling multitaper approach introduced by Bronez (1985,
1988). It has been shown that a simple transformation of Bronez’s
result yields frequency independent Slepian sequences, along with
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frequency independent eigenvalues that define the energy concen-
tration within the resolution bandwidth, whenever the process band-
width is [−1/2, 1/2) for unit sampling and the sampling scheme
comprises integer multiples of one. As a consequence, one need
only compute the resulting missing-data Slepian sequences for a
given sampling scheme once, and then the spectrum at an arbitrary
set of frequencies can be computed using them. It was also shown
that the resulting missing-data multitaper estimator can incorporate
all of the optimality features (i.e. adaptive-weighting, F test, re-
shaping) of the standard multitaper estimator, and can be applied to
bivariate or multivariate situations in similar ways. The extension
to higher dimensional (i.e. array) data is also straightforward.

Three time-series containing gaps were examined in the paper.
The first is length of day data as utilized by Smith-Boughner &
Constable (2012) in an alternative multitaper approach that forces
standard Slepian sequences to be zero where data are missing. It
was shown that the missing-data Slepian sequences behave quite
differently from their result, and that the ensuing spectral window
has a much squarer shape and substantially higher sidelobe pro-
tection. The proposed multitaper estimator accurately measures the
spectrum with up to 30 per cent missing data, and then becomes
downward biased.

The second example utilized seafloor pressure data that have a
large dynamic range due to the signature of diurnal and semidiurnal
tides. Using a fixed ∼21 per cent fraction of missing data, it was
shown that the performance of the missing-data multitaper estimator
is degraded as the number of gaps rises from one to five and then
twelve due to increasing spectral leakage.

The final example used the arguably longest instrumental time-
series in existence, the low stand of the Nile River covering 622–
1921 CE, with substantial gaps after 1470 CE. For a fixed number of
Slepian tapers, the missing-data estimator resolved several features
that were missed by a standard multitaper estimator operating only
on the 622–1470 CE interval.
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