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Abstract

This thesis is concerned with the development of an artificial neural network based 

control scheme (ANNBCS) to improve the performance of a combined anaerobic and 

aerobic treatment process for textile industrial effluents. The ANNBCS acquired the 

required input data from on-line sensors, processed this information and when necessary, 

suggested suitable remedial action(s) for the treatment process. The objective of the 

ANNBCS was to take remedial actions that would ensure consistent treatment efficiency 

whilst meeting discharge consents and reducing operation costs.

The most appropriate types of artificial neural networks (ANNs) were selected for use in 

the control scheme from tests on a range of ANNs. The analysis was carried out with data 

that was obtained from a fluidised bed anaerobic digester fed with a synthetic baker's 

yeast wastewater (from another project). The data reflected various operating conditions 

of the digester such as: steady state, sudden changes in the organic load and sensor failure 

conditions. The networks that were investigated included the linear, backpropagation 

(BP), radial basis function (RBF), Elman, and self-organising map (SOM). The following 

criteria were used to select the best performing ANN: (i) accuracy of the network 

predictions; (ii) time required for the necessary training; (iii) the size of the training data. 

The off-line predictions made by each ANN were accurate enough to be used although a 

feedforward (FF) multi-layer Perceptron (MLP) network trained with a BP algorithm 

proved to be the most suitable candidate. The control scheme also incorporated a SOM 

whose function was to classify the incoming data before passing the information to an 

appropriately trained BP network.

A comprehensive set of experiments were conducted on a 30 1 up-flow anaerobic sludge 

blanket (UASB) reactor, in conjunction with a 20 1 aerobic tank, and a 3.75 1 aerobic 

settler using a cotton simulated textile effluent (STE). The STE included among other 

components, a sizing agent (potato starch) and a reactive red azo dye. The experiments 

were designed to define the most appropriate on-line measurements and also remedial 

actions to be taken by the ANNBCS. The experiments consisted of operating both 

processes systematically under varying organic and colour load conditions.

IV



Part of the data gathered from the described experiments was used to train and test off­ 

line, in a computing environment, four control schemes in a progressive manner in order 

to see which one would better cope with sensor loss. Preliminary results demonstrated that 

a hybrid structure containing a learning vector quantization (LVQ) (replacing the SOM) 

followed by a series of BP networks was the most efficient of those tested at dealing with 

different load conditions whilst being least influenced by sensor failure.

Subsequent to the comprehensive set of experiments described above, the ANNBCSs 

were tested on-line. One experiment controlled a colour step change in load and BA for 

the UASB reactor (i.e. LVQ + BPs) and the second controlled an organic step change in 

load for the aerobic stage, hi the last case only BP networks were used since there was no 

need for a classification network. Further evaluation of the ANNBCS capabilities, namely 

the response to an organic step change in load, took place in simulation using neural 

network auto-regressive exogenous (NNARX) models built to represent the UASB reactor 

during particular organic and colour loads. This testing further demonstrated the 

robustness of the ANNBCS.
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Nomenclature

ADMI American Dye Manufacturers' Institute
AI Artificial Intelligence
ANN(s) Artificial Neural Network(s)
ANNBCS(s) Artificial Neural Network Based Control Scheme(s)
APHA American Public Health Association
ARX Auto-Regressive exogenous
ASM(s) Activated Sludge Model(s)
ASSE(s) Average Sum Squared Error(s)
b Bias matrix
BA Bicarbonate Alkalinity
BOD Biological Oxygen Demand (standard 5 days measurement)
BODS, Short-time BOD
BP Back-Propagation
BS British Standard
Bv Volumetric loading rate
CI Colour Index
COD Chemical Oxygen Demand
CSTR Completely Stirred Tank Reactor
DI Delonised
DNA DeoxyriboNucleic Acid
DO Dissolved Oxygen
ES(s) Expert System(s)
EU European Union
F Transfer function of the neurones in each network layer
F:M ratio Food to Microorganisms Ratio
FAS Ferrous Ammonium Sulphate
FF Feed-Forward
FFN(s) Feed-Forward Network(s)
FID(s) Flame lonisation Detector(s)
GAC Granular Activated Carbon
GC Gas Chromatograph
GMI Gas Measurement Instruments
HPLC High Performance Liquid Chromatography
HRT(s) Hydraulic Retention Time(s)
IAWQ International Association on Water Quality
1C Inorganic Carbon
ICA Instrumentation, Control and Automation
LVQ Learning Vector Quantization
MIMO Multi-Input Multi-Output
MISO Multi-Input Single-Output
MLP Multi-Layer Perceptron
MLSS Mixed Liquor Suspended Solids
MS Mass Spectrometry
n number of samples
na Number of past ouput data
nb Number of past input data
NDIR Non-Dispersive Infra Red
nk Number of delay(s) associated with an input
NNARX Neural Network Auto-Regressive exogenous
NSSE Normalised Sum Squared Error
OD(s) Optical Density(s)
OECD Organisation for Economic Cooperation and Development
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ORP Oxidation Reduction Potential
OUR(s) Oxygen Uptake Rate(s)
p Partial pressure
PAC Powered Activated Carbon
PC(s) Personal Computer(s)
PID Proportional Integral Derivative
PRBS Pseudo Random Binary Signal
RAS Return Activated Sludge
RBF Radial Basis Function
RBFN Radial Basis Function Network
RN(s) Recurrent Network(s)
RODTOX Rapid Oxygen Demand and Toxicity Tester
RPM Revolution(s) Per Minute
RTC Real Time Control
SCA Specific Catalase Activity
sd Standard Deviation
SEM Scanning Electron Microscopy
SISO Single-Input Single-Output
SOM Self Organising Map
SOUR Specific Oxygen Uptake Rate
SRT Sludge Retention Time
SS Suspended Solids
SSE(s) Sum Squared Error(s)
STE(s) Simulated Textile Effluent(s)
STP Standard Temperature and Pressure
SVI Sludge Volume Index
t Time expressed in terms of the sampling period
TA Total Alkalinity
TC Total Carbon
TCD(s) Thermal Conductivity Detector(s)
TCU True Colour Units
TOC Total Organic Carbon
TOD Total Oxygen Demand
TS Total Solids
TSS Total Suspended Solids
TVA Total Volatile Fatty Acids Alkalinity
TVFA Total Volatile Fatty Acids
u Input vector of the network architecture
UASB Upflow Anaerobic Sludge Blanket
UV Ultra Violet
VFA(s) Volatile Fatty Acids(s)
VI Virtual Instrument
VS Volatile Solids
VSS Volatile Suspended Solids
w Weight matrix
WAS Waste Activated Sludge
WW(s) WasteWater(s)
WWT Waste Water Treatment
WWTP(s) Waste Water Treatment Plant(s)
y Output vector of the network architecture
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1. INTRODUCTION

This Chapter contains four sections. It describes what are the main problems, which are 

evident from the literature, and draws the main objectives of the work in order to try to 

minimise the difficulties encountered in such areas of study. It also summarises the context 

of this work within the European Union (EU) project. Finally, it summarises the structure of 

the thesis.

1.1. Problem Definition

Increasing industrial and domestic water consumption is leading to potential water shortages 

and consequently increasing costs within many European countries. A particularly good 

example is the textile industry where large volumes of water are used (Burkinshaw and 

Graham, 1995) and discharged to the environment. This has, in part, led to the need for 

higher effluent standards by the EU. This makes the textile industry a good candidate for the 

development of water recycling and emission abatement systems.

In many textile factories the wastewater (WW) flow is variable and intermittent and may 

only occur during weekdays. The composition of the WW from the textile industry is 

determined by the processes (Correia et al, 1994), fibre type and chemicals used and 

therefore varies considerably, making this waste difficult to characterise. Generally, it 

consists of large volumes containing high concentrations of organic and inorganic chemicals 

and is typically coloured due to the presence of dyes (Altinbas et al, 1995).

Colour removal from textile WWs is one of the most difficult problems for environmental 

engineers when designing a treatment process (Lin and Lin, 1993). This is because the 

wastewater treatment (WWT) process is designed for steady loads and changes that occur in



the colour concentration lead to the inefficient treatment of the WW, which is very visible 

(McCurdy et al, 1992).

Biotreatment processes, namely anaerobic and aerobic, have been successfully used to treat 

WW from this industry (e.g. Basibuyuk and Forster, 1997). Anaerobic digestion is useful in 

the treatment of textile WW as it removes some organic pollution and decolourises the 

commonly used azo dyes (Delee et al., 1998). Azo dyes are reduced in the anaerobic stage 

while acting as electron acceptors in the degradation of other WW compounds. Usually the 

starch commonly used in sizing cotton textiles provides the electron (Carliell et al., 1995). 

An aerobic stage is needed to remove more organic compounds including aromatic amines 

generated from azo bond reduction in the anaerobic stage.

There are three main advantages to be gained from controlling biotreatment processes. 

Reduction of capital costs, running costs and consistent compliance with discharge consents. 

However, there are some difficulties that are encountered when controlling these systems:

1. Lack of on-line reliable sensors for the WWT industry and fast remedial actions to be 

applied in case of treatment failure have been experienced. The unreliability of on-line 

sensors comes from their need for on-line sampling and filtration, and quite large 

maintenance requirements (Jaconbsen and Jensen, 1998; Steyer et al., 2002).

2. It is well known that anaerobic digesters as a biological process are difficult to control 

over long periods of time, largely because of the complex and poorly known, non-linear, 

time varying dynamics (Emmanouilides and Petrou, 1997; Moletta et al, 1994). However, 

parameters such as the mixing rate, the bacterial culture, nutrients, pH and buffering 

capacity must be maintained in order to ensure the treatment efficiency (Speece, 1996). 

Similarly, activated sludge processes have also encountered control problems due to their 

non-linear and dynamic nature (Tyagi et al, 1993; Spanjers et al, 1998).

A conventional on-off or proportional integral derivative (PID) control system would fail 

catastrophically if the sensor monitoring the controlled variable, such as pH, fails and special 

provision should be made for this. In many applications sensors are reliable but as mentioned 

earlier, in WWT sensor failure can be a regular occurrence and so the control system must be



robust enough to continue operating in such circumstances. Ideally the control system would 

perform at the same efficiency, however, with some information lost to the input of the 

controller when a sensor fails. What should be possible to achieve is for the control system 

performance to degrade smoothly, thus allowing some time for plant personnel to repair or 

replace the failed sensor and so restore the monitoring capability.

An Artificial Neural Network (ANN) should be an ideal candidate to control such a 

biological system due to such features as non-linear transfer functions, no need for a full 

knowledge of the biochemistry process, ability to generalise thus permitting training by 

specific examples and some toleration to sensor loss. An ANN uses a distributed 

representation of the external world and exhibits graceful degradation in performance when 

the network encounters a problem outside the range of experience. The ANN approach 

requires no explicit encoding of knowledge as in an Expert System (ES), which makes a 

neural approach well suited to applications in which knowledge extraction is difficult or in 

cases where the interrelationships between process parameters are hard to model. Despite the 

potential of ANNs they are still not widely used in biotechnology (Collins, 1990) partly 

because it is not possible to ask the network how it arrived at a particular conclusion. The 

'black-box' approach is often criticised especially when used as a model, although the nature 

of a mathematically based model may also have deficiencies. Mathematical models can also 

be empirical when they need to include 'correction factors' to make them fit reality more 

closely.

ANNs have been successfully used for a number of chemical engineering applications 

including sensor data analysis and fault detection. There is evidence in the literature that 

ANNs could be ideal for use in WWTPs, both anaerobic and aerobic systems, as reviewed in 

the Chapter 2.

1.2. Aims and Objectives of the Work

The main aim of the work presented in this thesis was to develop an ANN based control 

scheme (ANNBCS) to improve the performance of two biological treatment processes (i.e. 

anaerobic and aerobic) for textile industrial effluents including situations of colour and



organic overloads and also sensor failure conditions. This ANNBCS would use data from 

appropriate on-line instrumentation and would output suitable remedial actions to the 

treatment process(es). Other objectives were inherent to this project, such as:

  Undertake a detailed investigation of the plant by monitoring on-line and off-line the 

performance when treating a simulated textile effluent (STE). These include the 

assessment of a few parameters.

  Define appropriate remedial actions.

  Test a range of different ANNs in order to select the most appropriate one(s) to be 

applied in an ANNBCS.

  Test on-line the performance of an ANNBCS when controlling the biological treatment 

processes.

1.3. EU Based Project

This work was undertaken as part of a much larger EU project entitled 'Integrated water 

recycling and emission abatement in the textile industry'. The project included the 

participation of nine main partners from six European countries (i.e. Austria, Belgium, Italy, 

France, Portugal, and the UK). The overall project objectives were to develop an integrated 

process for the provision of recycled water of assured quality with minimum emissions. 

Three treatment modules, which could be used individually or together were developed, 

namely a: combined sorption/anaerobic digestion stage for heavy metal and dye removal; 

sensor protected aerobic stage; and finally a module for holistic polishing (granular activated 

carbon (GAC) adsorption or membrane filtration). The project also included an assessment 

of the economic and environmental aspects of the process in the different member states. The 

main goal of the project was to attain a reduction in clean water intake to the textile industry 

by as much has 50-75 %, and of final discharge of sludge to landfill by up to 60 % in 

addition of a recovery of heavy metals of up to 80 %. This was to minimise emission 

discharge and significantly reduce the water brought in from outside the company. The work 

presented in this thesis contributed to the development of an ANNBCS for the industrial 

textile WWT using two biological treatment processes: anaerobic and aerobic.



1.4. Structure of the Thesis

Chapter 2 of this thesis provides a critical review of the literature published on areas of the 

treatment process biochemistry, instrumentation, conventional control approaches versus 

artificial intelligence (AI) for the modelling and control of biological treatment systems, and 

ANNs applied for the detection of failure conditions. Chapter 3 describes the apparatus and 

procedures used to carry out the work and also includes the experimental design for the five 

Experimental Phases. Chapter 4 presents the data collected during four Experimental Phases 

and the importance of each monitoring parameter when applied in a control scheme is 

highlighted. Chapter 5 discusses the selection of an appropriate ANN for control, the 

development of the ANNBCS and its application on-line to the anaerobic and aerobic stages. 

Chapter 6 presents the use of neural network auto-regressive exogenous (NNARX) models 

that represent the upflow anaerobic sludge blanket (UASB) reactor in a computer simulation. 

It also includes a further evaluation of the ANNBCS when controlling the UASB reactor 

models for situations not viable to be tested in the real laboratory scale plant. Finally, 

Chapter 7 draws the main conclusions and defines areas for further work.



2. LITERATURE REVIEW

This Chapter reviews WW pollution from the textile industry and the importance of pollution 

control and biological treatment methods. The biochemistry and microbiology of anaerobic 

and aerobic processes are briefly described, covering also a review on the main monitoring 

parameters used in order to control such treatment processes. Finally, the use of AI mostly 

ANNs as a tool to model and control such processes is also reviewed.

2.1. Pollution from the Textile Industry

It was estimated that in Europe the textile industry consumed 2 - 5 % of the total industrial 

water consumption and was therefore among the world's ten largest industrial consumers of 

water (Dung, 1981). Water consumption for industrial processes varied between 3-91 kg" 1 

for cotton desizing to 334 - 835 1 kg" 1 for wool washing (Correia et al., 1994). Considering 

both volume and effluent composition, the WW discharged by the textile industry was rated 

the most polluting among all industrial sectors (Reid, 1996). This makes it a good candidate 

for the development of water recycling and emission abatement systems.

Cotton is the world's principal fibre type, it accounts for approximately 50 % of the 40 

million tonnes world fibre consumption (Holme, 1997). Collishaw et al. (1992) cited that the 

cotton consumption in 2000 would increase to 23 million tonnes. It can be assumed that dye 

usage would rise in proportion, increasing the discharge of colour and other related pollution.

A history of dyes in the textile industry can be found on the Internet (Druding, 1998). Some 

3000 dyes have been used, however, the total number of formulations was approximately 

7000 (Laing, 1991). Modern textile dyes are required to have a high degree of chemical and 

photolytic stability (Easton, 1995) so that it maintains its structure and colour and to resist 

breakdown due to time and exposure to sunlight, water, soap (McCurdy et al., 1992),



washing, bleach and perspiration (Travis, 1993) among other factors. Dyes may be classified 

according to their chemical structure (e.g. azo and anthaquinone), or by their usage or 

application method (e.g. reactive and disperse) (Kirk-Othmer, 1993). Very often, both 

terminologies are used. However, classification by application is the principal system 

adopted by the Colour Index (CI) (Renfrew and Taylor, 1990). A generic name and then a CI 

constituent number based on the chemical structure is assigned e.g. CI Acid Blue 80. Dyes 

can also be named by their commercial trade name, which is usually made up of three parts; 

a trademark to designate the manufacturer and the dye class, colour, and a series of letters 

and numbers used as a code for precise definition e.g. Procion Red H-E7B. There are about 

12 classes of chromogenic groups, the most common being the azo type (Kirk-Othmer, 1993) 

accounting for 60-70 % of all textile dyestuffs produced (Carliell et al., 1995). Therefore, the 

importance of this chemical class in textile dyeing is apparent. Azo dyes are coloured 

chemical compounds containing one or more azo chromogens (-N=N-). Reactive dyes, which 

belong to the azo chemical type combined with different types of reactive groups, made 

possible to achieve extremely high 'washfastness' properties by relatively simple dyeing 

methods (Kirk-Othmer, 1993). Their chemical structures are much simpler, their absorption 

spectra show narrower absorption bands, and the effects of the dye are brighter (Siegel, 

1972). Reactive dyes are the most used e.g. in Loughborough Catchment and Wanlip 

Catchment 60.8 and 66.7 % of the dyes were reactive from 8 different classes of dyes, 

respectively (Churchley, 1994).

The dyeing of cotton with reactive dyes occurs by exhaustion of the dye onto the cloth in the 

presence of an electrolyte such as salt (sodium chloride or sodium sulphate) at neutral pH; 

fixation of the dye to the fibres at an alkaline pH; and washing of the cloth to remove 

electrolyte, alkali and unfixed dye (Shamey and Nobbs, 1997). The degree of fixation for 

different dye and fibre combinations varies considerably. For the reactive class, cellulose 

fibre there is a 50 - 90 % of fixation and 10 - 50 % loss to the effluent (Easton, 1995), 

comparing with 98 % of dye fixation in wool. Also, as mentioned earlier in many textile 

factories the WW flow is variable and intermittent and may only occur during weekdays and 

the textile WW is difficult to characterise (Correia et al, 1994). The textile process includes 

normally sizing and desizing, weaving, scouring, bleaching, mercerising, carbonising, 

fulling, dyeing and finishing. The large number of compounds contained in textile effluent 

was demonstrated by Alaimo et al. (1990) who identified 314 compounds. Cotton processing



effluents are highly coloured and have high concentrations of total dissolved solids (high 

concentration of salts), high biological oxygen demand (BOD) and high chemical oxygen 

demand (COD) (Correia et al, 1994). Most dyes exhibit low BOD and low toxicity, and thus 

tend to be less polluting than substances such as sizing agents (mainly modified starch) and 

waxes and impurities from raw cotton (Dung, 1981). The use of acetic acid does not 

contribute to increased salinity but this component can account for 50-90 % of the dyehouse 

organic load (Laing, 1991). The major pollutant types identified in the textile WW, along 

with their main origin in the textile manufacturing process were summarised by Delee et al. 

(1998) (Table 2.1). Their general impact on the biological treatment is also presented.

Table 2.1 - Major pollutant in textile WWs, their origin and major impact in biological

treatment (from Delee et al., 1998)

Pollutants Major chemical types Main origin Impact on biological 
treatment

Organic load

Colour

Nutrients 
(N,P)

pH and salt 
effects

Sulphur

Toxicants

Refractory 
organics

Starches, enzymes, fats, 
greases, waxes, surfactants

Acetic acid
Dyes; scoured wool impurities

Ammonium salts, urea, 
phosphate-based buffers and 
sequestrants

NaOH, mineral/organic acids, 
sodium chloride, silicate, 
sulphate, carbonate

Sulphate, sulphide and 
hydrosulphite salts, sulphuric 
acid
Heavy metals, reducing agents 
(e.g. sulphide), oxidising 
agents (e.g. chlorite, peroxide, 
dichromate, persulphate), 
biocides, quaternary 
ammonium salts 
Surfactants, dyes, resins, 
synthetic sizes, chlorinated 
organic compounds, carrier 
organic solvents

Desizing
Scouring
Washing
Dyeing
Dyeing
Scouring
Dyeing

Scouring
Desizing
Bleaching
Mercerizing
Dyeing
Neutralisation
Dyeing

Desizing 
Bleaching 
Dyeing 
Finishing

Scouring
Desizing
Bleaching
Dyeing
Washing
Finishing

High demand on aeration systems. 
Activated sludge bulking problems

Insufficient removal in bioreactors

Not removed in anaerobic processes 
Increased complexity and sensitivity 
of aerobic processes (biological 
nutrient removal required) 
Inhibition/collapse of bioreactors

Sulphate-reduction in anaerobic 
reactors

Inhibition of sensitive microbial 
groups (nitrifiers, methanogens) in 
bioreactors

Insufficient removal in bioreactors. 
Possible accumulation in biomass 
aggregates/films, leading to inhibition

High dye concentrations in watercourses can affect the transmittance of light and thus may 

affect aquatic flora and fauna (Diaper et al., 1996). Dyes exhibit low toxicity to mammals



and aquatic organisms (Churchley, 1998). However, they may be of concern when the treated 

effluent is used as a supply of drinking water (Lloyd et al, 1992). Also, the eye can detect 

concentrations of 0.005 mg I" 1 of reactive dye in clean river water, hence consent levels for 

the discharge of colour to receiving waters are normally applied for aesthetic reasons and not 

for prevention of toxicity (Durig, 1981). Most complaints from the public concerning colour 

tend to refer to water containing red dyes (Smith, 1996), usually linked to the presence of 

reactive azo dyes in the water (Carliell et al., 1995).

All textile companies are under pressure from increasing legislation and higher water and 

sewage charges both to clean up their effluents and to minimise water usage (Watson, 1991). 

Most water companies have been passing the problem of dye removal back to the dyehouse 

operator (Diaper et al., 1996). This trend is likely to increase, as the legislation becomes 

stricter. For all these reasons on-site effluent treatment is more attractive. Holme (1997) 

stated that within the dyeing and finishing industry Germany had the highest environmental 

costs (10.1 % of total cost from which 50 % were attributed to the effluent treatment) 

followed by the UK (6.9 %).

2.2. Treatment Methods for Textile Effluents

Several textile WWT methods have been reviewed (Laing, 1991; Steenken-Richter and 

Kermer, 1992; Correia et al., 1994; Cooper et al., 1994; Hazel, 1995; Perkins, 1996; 

Churchley, 1998). These authors have compared the different treatment technologies based 

on parameters such as: performance according to standards, capital and running costs, 

volume capability, speed of decolourisation, potential for reutilisation of the effluent, and the 

various limitations and drawbacks, namely the impact on the environment.

Colour is one of the hardest compounds, in the textile WW, to remove (Lin and Lin, 1993; 

Boe et al., 1993; Cowey, 1998). Therefore, recycling of exhausted dyebaths offers potential 

for reduced dyeing costs by lowering the consumption of water, chemicals and energy as 

well as reduced treatment costs. However, recycling is difficult in the case of the reactive 

dyeing of cotton as the dyeing behaviour of the residual dye differs from that of the fresh 

reactive dye (Burkinshaw and Graham, 1995). Removal of dyes and their intermediates can



often be achieved only through a combination of treatments (McCurdy et al, 1992). Hazel 

(1995) studied 30 different treatments and concluded that no simple technique would remove 

colour from a complex dye waste mixture to meet consent conditions. Thirty different 

methods of colour removal were also evaluated, and it was concluded that many of the 

techniques available required technological improvement and cost reduction to become 

commercially viable, although decolourisation is achievable using one or a combination of: 

adsorption, filtration, precipitation, chemical degradation, photodegradation, and 

biodegradation (Willmott et al., 1998). Vandevivere et al. (1998) reviewed the performance 

using different treatment methods (Table 2.2).

Table 2.2 - Evaluation of various technologies for the treatment of textile effluents (from

Vandevivere et al., 1998)

Process
Fenton oxidation

Electrolysis

Foam flotation

Filtration

Biodegradation
Activated sludge

Sequential
anaerobic/aerobic

Fixed-bed

Fungi/H 2O2
Coagulation/flocculation

Ozone

Sorption
(carbon, clay, biomass)

Photocatalysis

Stage
Pre-treatment

Pre-treatment

Pre-treatment

Main or post-
treatment

Main
treatment

Main
treatment

Main
treatment
Main treat.
Pre- main or
post-treatment

Post-treatment

Pre- or post-
treatment

Post-treatment

Status
Several full-scale
plants in S. Africa

Pilot-scale

Laboratory-scale

Extensive use in S.
Africa

Widely used

Very few reports

Some pilot trials in
China
Laboratory-scale
Extensive use

Full-scale

Laboratory or full-
scale, depending on
sorbent type
Pilot-scale

Performance
Full decolourisation;
low capital and
running costs
Full decolourisation;
cheap
Removes 90% colour
and 40% COD;
cheap, compact
High performance;
reuse of water, salts
and heat

Removes bulk COD,
N

Better removal of
COD, colour, and
toxicants
Better removal of
COD, colour
Full decolourisation
Full decolourisation;
water reuse

Full decolourisation;
water reuse
New sorbents are
effective and cheap;
water reuse
Near-complete colour
removal; detoxication

Limitations

Foaming and
electrode lifespan

Handling and
disposal of
concentrate stream

High residual
COD, N, colour,
surfactants
High residual
colour and COD

Not always
effective; sludge
disposal
Expensive;
aldehydes formed
High disposal or
regeneration costs

Only as final
polishing step
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2.3. Biological Treatment of Textile Effluents

Vandevivere et al. (1998) stated that since dyes are intentionally designed to resist 

degradation, it is no surprise that little dye degradation occurs in activated sludge systems. 

Many anaerobic bacteria, but only a few aerobic bacteria, were capable of azo dye reduction 

(Chung and Stevens, 1993). Several WWTPs based upon anaerobic and aerobic bacterial 

action have been developed to treat textile industry WW. Also the combination of biological 

treatments has been considered e.g. sequential anaerobic-aerobic degradation. Only bio- 

technological solutions can offer complete destruction of the dyestuff, with a co-reduction in 

BOD and COD (Willmott et al., 1998). Athanasopoulos (1990) cited that acclimatisation 

describes the bacteria 'getting used to' a particular waste and as the time passes, the biomass 

may become active towards the waste with the generation of enzymes and/or metabolic 

pathways. However, biomass can also lose acclimatisation during plant shutdowns. Pre- 

treatment of textile wastes before biological treatment could include any or all of the 

following: screening, sedimentation, equalisation, neutralisation, chrome reduction, 

coagulation or any of the other physical-chemical treatments. The performance of biological 

treatment depends on the BOD:COD ratio.

2.3.1. Treatment of Textiles Effluents Using Anaerobic Systems

Despite numerous laboratory-scale trials demonstrating the potential of anaerobic treatment 

for colour removal, large-scale installations equipped with anaerobic pre-treatment do not 

generally achieve full decolourisation (Vandevivere et al., 1998; Cowey, 1998; Delee et al., 
1998). Using an anaerobic fixed bed reactor an almost complete decolourization of many 

dyes, an efficient COD removal and a digestion of substances that were refractory under 

aerobic conditions were obtained by Minke and Rott (1999). WW from cotton yarn and 

fabric finishing was treated in an anaerobic expanded bed reactor at 35 °C up to a COD 

loading of 0.63 kg m"3 day" 1 (Athanasopoulos, 1992). The COD removal varied from 50 to 

87 % with a CH4 production of 70-80 %. A full-scale plant for full recycling of scouring 

water in operation at a Spanish wool combing plant consists of an anaerobic plant with 80 % 

COD removal followed by a distillation process (Wool Record, 1996).
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COD removal can be easily inhibited by textile effluents (Athanasopoulos, 1992). Some 

anaerobic decolourisation of dyes may be due to adsorption of the dyes to the biomass. 

However, most decolourisation of dyes by anaerobic treatment is considered to occur by 

means of biological degradation. Anaerobic decolourisation was found to range from 0 to 

over 99 % (Delee et al., 1998). Some dyes in the same class gave very different results in 

terms of anaerobic colour removal, which may be explained in terms of dye structure. Azo 

dyes are reduced and hence decolourised i.e. the chromophore is destroyed when acting as 

electron acceptors for the microbial electron transport chain. This is a four electron process 

which proceeds through two stages (Carliell et al., 1994). The first reaction gives rise to a 

colourless compound which is unstable and may revert to its original coloured form under 

oxidising conditions, or it can be further reduced under anaerobic conditions to form stable 

colourless compounds i.e. stable aromatic amines (see equation below). It is believed that in 

many cases decolouration of reactive azo dyes under anaerobic conditions is due to the action 

of azo reductase enzymes (Willmott et al., 1998).

R,-N=N-R2 + 4e' + 4H+ Azoreduc'ase > R,-NH2 + R2NH2 

Where R, and R2 are aromatic components in dye molecules

A source of labile carbon is required as a source of reduction equivalents for dye 

decolourisation to occur (Carliell et al., 1996; Razo-Flores et al., 1997). Concentrations of 

5 g I" 1 of glucose, glycerol and lactose have been found to give colour removals of 82, 71 and 

71 % respectively of 0.5 g I" 1 Remazol Black B, while starch gave rise to 52 % 

decolourisation (Nigam et al., 1996). However, starch is the only one of these co-substrates 

typically found in cotton effluent. Razo-Flores et al. (1997) stated that Mordant Orange 1 and 

Azodisalicylate were completely reduced and decolourised in continuous UASB reactors in 

the presence of co-substrates.

Carliell et al. (1994) proposed a range of anaerobic degradation products for Procion Red H- 

E7B which might theoretically be formed. It was confirmed by Carliell et al. (1995) that 

2-aminonaphthalene-l,5,-disulphonic acid was present after anaerobic digestion of the dye 

thus showing that the azo bond had been cleaved. Brown and Hamburger (1987) confirmed 

that the aromatic primary amine metabolites from the reductive cleavage of azo bonds were 

formed. Dyes are not normally cytotoxic, mutagenic or carcinogenic, but the amines formed
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by anaerobic digestion may possess these characteristics (Zaoyan et al, 1992; FitzGerald and 

Bishop, 1995). Therefore, further treatment is essential prior to discharge e.g. aerobic stage.

2.3.2. Treatment of Textiles Effluents Using Aerobic Systems

The aerobic treatment methods applicable to textile WW follow in order of increasing 

retention time: (1) trickling filters; (2) activated sludge; (3) rotating biological disks; (4) 

extended aeration; (5) lagoons; and (6) aquatic plants (Athanasopoulos, 1990).

Dyes do not inhibit activated sludge in the concentrations normally found in WW (Durig, 

1981). The removal of dyes by sorption during biological treatment is referred to as 

bioelimination (Laing, 1991), the adsorbed dyes being destroyed during sludge disposal 

(Pierce, 1994). Sorption is influenced by factors such as pH but the extent of removal varies 

from dye to dye (Laing, 1991). Churchley (1994) explained that it is likely that on plants 

continuously or regularly treating dyewaste the adsorption sites will be rapidly occupied if 

the dye is strongly adsorbed. Renewal of adsorption sites will be by creation of new sludge 

floes, de-sorption of the dye or biodegradation of the dye. With normal sludge ages the 

creation of new floes is too slow to remove dyes adequately, and de-sorption leads to re- 

solubilisation of colour. Therefore, biodegradation of dyes in a sewage treatment activated 

sludge plant is slow (Churchley, 1994). Field et al. (1995) reported that some authors found 

that aerobic bacteria took 100 to 400 generations to adapt to the cleavage of carboxylated azo 

dyes. Goronszy and Tomas (1992) stated that the ability to remove azo dyes by activated 

sludge depends on the molecular structure and on the type, number and position of the 

substitution radicals in the ring structures. Reactive dyes are not readily degraded under 

aerobic conditions (Easton, 1995; Waters, 1995) and therefore the effluents are in most cases 

coloured upon leaving the plant. Laing (1991) reported that colour removal from textile 

effluents by activated sludge processes ranged from 10 to 80 %, typically being below 50 %. 

A number of authors reported elimination of reactive dyes by adsorption onto sludge ranging 

from 0-30 % (e.g. Pierce, 1994; Waters, 1995). Therefore treatment of reactive dyes in 

activated sludge plants results in highly coloured waste passing through the activated sludge 

plant to the receiving waters.
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The by-products of the azo bond cleavage, aromatic amines, which are not further 

metabolised under anaerobic conditions are readily biodegraded in an aerobic environment 

(Field et al., 1995). Domestic sewage buffers the pH of industrial effluent, dilutes inhibitory 

materials (Kroiss and Muller, 1999), and provides nutrients such as N and P which may be 

too low in the trade effluent to allow adequate bacterial activity (Churchley, 1994) and can 

therefore enhance degradation of textile effluents. One study found that textile effluent 

should be mixed with at least 50 % domestic sewage to compensate for nutrient deficiency in 

the former and hence produce a good quality final effluent by means of activated sludge 

treatment (Abo-Elela et al., 1988).

2.3.3. Combined Anaerobic-Aerobic Treatment for Textile Effluents

Delee et al. (1998) concluded that the anaerobic stage requires aerobic post-treatment in 

order to complete the mineralisation of some pollutants (azo bond reduction products - 

aromatic amines, surfactants, residual BOD and remove nutrients). On the other hand, this 

aerobic post-stage benefits from the anaerobic pre-treatment in several ways, including the 

protection against BOD and toxic shock loads, the possibility of reductive decolourisation 

and dechlorination, the minimisation of foaming (Bortone et al., 1995) and bulking problems 

and the reduction of aeration and sludge disposal costs. Anaerobic pre-treatment offers 

several potential advantages such as better removal of colour, adsorbable organic halogens, 

and heavy metals (Rigoni-Stern et al., 1996).

Combinations of anaerobic and aerobic treatment have been carried out by a number of 

authors including Boe et al. (1993) and Basibuyuk and Forster (1997). Jianrong et al. (1994) 

achieved 90 % COD reduction and 96 % colour reduction in a laboratory-scale UASB 

reactor (8 h hydraulic retention time (HRT)) followed by an activated sludge reactor (6 h 

HRT) fed with a deeply coloured high strength effluent. The greatest fraction of the colour 

and COD reduction occurred in the UASB reactor. FitzGerald and Bishop (1995) 

implemented a laboratory scale sequential anaerobic-aerobic system to study mineralisation 

of three sufonated azo dyes. Results indicated good dye decolourisation levels greater than 

65 % in the first stage and there was very little additional decolourisation in the second stage. 

COD removal in all three reactors of approximately 85 % in the first stage, with very little
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additional COD removal in the second stage. Zaoyan et al. (1992) operated a large pilot plant 

(anaerobic followed by an aerobic stage) at a textile dyeing mill which used reactive and 

other dye classes on polyester/cotton fabric. The sequential system achieved a higher colour 

removal (72 %) than the aerobic system alone (<60 %) but the final effluent was still deeply 

coloured. A sequential anaerobic-aerobic full-scale plant was operating at a major dyehouse 

in Hong Kong (Easton, 1995).

O'Neill et al. (2000a) used a combined anaerobic-aerobic treatment (overall HRT 1.8 days) 

to treat a STE with a reactive azo dye (Procion Red H-E7B) and starch. Most colour removal 

occurred in the UASB reactor and the BOD:COD ratio of the reactor effluent increased by up 

to 47 %. A maximum of 77 % colour removal overall was achieved with starch and dye 

concentrations of 3.8 and 0.15 g I" 1 , giving a final true colour of 0.21 true colour units 

(TCU). However, at 3.8 g I" 1 starch, volatile fatty acid (VFA) levels in the UASB reactor 

rose, while at 2.9 g I" 1 starch they did not. O'Neill et al. (2000a) recommended that if colour 

removal efficiency decreases, carbohydrate should be added to the anaerobic reactor at a 

maximum sludge loading rate between 0.11 and 0.15 kg COD kg" 1 volatile solids (VS) d" 1 . 

The results obtained by O'Neill et al. (2000b) showed that azo-dye degradation actually 

occurred in the anaerobic stage forming aromatic by-products, which were removed by 

subsequent aerobic treatment. Some aerobic COD removal was likely to be attributable to 

degradation of these products. Similarly, Field et al. (1995) found that the anaerobic 

treatment could provide 97 % decolourisation and 60 % COD removal, and subsequent 

aerobic treatment removed an additional 30 % COD, thought to be due to the removal of 

aromatic amines.

2.4. Biological Wastewater Treatment - Need for Monitoring and 

Control

The use of on-line monitors providing information on key process parameters is crucial if 

WWTPs are to be operated more effectively. 'Sensors are the eyes and ears of the control 

system' as they tell us what is the process doing (Olsson and Newell, 1999). Information 

from such monitors would allow refinement of models and the application of process control 

strategies. A monitoring system for a biotreatment process must combine available on-line
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data, intermittent off-line measurements and the best available understanding of the 

mechanisms controlling process behaviour. The control system interfaces with the plant 

through sensors and actuators (e.g. valves and pumps). Sensors are the weakest part of the 

chain in real time control (RTC) of WWTPs, they are behind the hard and software 

technology (Lynggaard-Jensen et al, 1996). Steyer et al. (2002) stated that the WWT field 

suffers from a major lack of sensors both reliable and highly informative. For example TOC, 

COD and VFA sensors are recognized as fragile measuring devices. Steyer et al. (2001) used 

a modified Fourier Transform Infrared spectrometer connected to an ultra-filtration 

membrane to provide precise measurements of soluble COD, TOC and VFA concentration 

as well as total alkalinity (TA) and partial alkalinity. Although sensor technology is 

improving (e.g. Vanrolleghem, 1995; Steyer et al, 2002), in the harsh environment, 

maintenance will always be of concern (Nyberg et al., 1996). Many of the commercially 

available sensors require sampling and filtration (Lynggaard-Jensen et al., 1996). Also, 

sensors transmit noisy signals and therefore advanced signal processing and estimation are 

required. Desirable features of an on-line sensor are: measure a significant parameter; be low 

cost; need infrequent maintenance, not foul, periodic automatic re-calibration and internal 

diagnostics.

2.4.1. Anaerobic Digestion

Gujer and Zehnder (1983) suggested that the process of anaerobic digestion has six main 

metabolic stages, however, Mosey (1983) simplified the process into three main 

bioconversions: hydrolysis and acidogenesis, acetogenesis and methanogenesis. Hydrolysis 

of high molecular weight carbohydrates, fats and/or proteins into soluble polymers by means 

of the enzymatic action of hydrolytic fermentative bacteria and the conversion of these 

polymers into organic acids, alcohols, H2 and CO2 . Organic acids and alcohols are then 

converted to acetic acid by the H2-producing acetogenic bacteria and finally methanogenic 

bacteria convert acetic acid and H2 gas into CO2 and CH4 . The acetoclasic methanogens are 

the most important, since acetic acid is the principal VFA formed by anaerobic digestion 

(Rozzi et al., 1997) and approximately 70 % of CH4 production is attributable to acetic acid 

degradation and the rest via the reduction of CO2 by hydrogen (Jeris and McCarty, 1965). 

Methanogens are often considered the key class of microorganisms in anaerobic
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biotechnology, as they are the most sensitive ones. The theoretical CH4 production is 

0.35 1 CH4 g" 1 COD removed at standard temperature and pressure (STP) (Olthof and 

Oleszkiewicz, 1982). The quantity of COD converted to CH4 depends on factors such as the 

food to microorganisms (F:M) ratio, temperature, the organisms present and HRT (Speece, 

1996) among others. Imbalances of the bacterial populations can lead to build-up of 

degradation products, which can cause inhibition of the process (Chynoweth et al., 1994). 

The stability and efficiency of the industrial anaerobic digestion process relies upon the 

balance between the degradation of organic waste to hydrogen, formate, acetate, and C3 to 

C5 VFAs and the conversion of these fermentation products to CH4 and CO2 (Cord-Ruwisch 

et al., 1997). Converti et al. (1993) proved the existence of an organic loading rate threshold 

for any effluent, beyond which local surpluses of substrate cause consistent increases in the 

concentration of VFAs, which may behave as competitive inhibitors of anaerobic digestion. 

Factors such as residence time, bicarbonate alkalinity (BA), influent substrate concentration, 

digested sludge return and loading frequency affect reactor stability (Graef and Andrews, 

1974). Digester stress conditions (e.g. hydraulic or organic overload and entry of toxic 

compounds) can cause an imbalance between VFA production and consumption resulting in 

the accumulation of VFA (e.g. Harper and Pohland, 1986). In poorly buffered digesters, this 

eventually results in digester acidification (pH < 6.2), and in the inhibition of the 

methanogenic bacteria (Mosey, 1983; Switzenbaum et al., 1990). This can result in total 

digester failure and death of the methanogenic bacterial population. Several weeks to several 

months are necessary for the reactor to recover (Steyer et al., 2000). Such failures cause 

severe environmental and economic problems for the WWT authority. Therefore, there is a 

need for a sensitive, accurate process control parameter which can act as an early warning 

indicator of potential digester failure under conditions of small perturbations of organic 

overload and gradual overloading conditions (Cord-Ruwisch et al., 1997).

Anaerobic treatment has been used since the beginning of the 20th century for the treatment 

of organic solids from domestic sewage, as it is a treatment process that achieves a high 

degree of waste stabilisation (Holder et al, 1975). The main barrier to the use of anaerobic 

treatment of industrial waste was said to be the lack of experience with the process 

(Switzenbaum, 1995). Advances in reactor design (i.e. high rate reactors with an 

immobilised biomass - Mousa and Forster, 1999) and increased understanding of the process 

(Moletta, 1995), among other things, have led to the more widespread use of anaerobic
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digestion, which is increasingly being used to treat industrial wastes. The start-up of new 

full-scale installations can be made within a few weeks, sometimes even a few days 

(Lettinga, 1995). However, these high-rate systems became highly sensitive to toxic 

materials and have a general tendency for instability (Speece, 1996; Lester and Birkett, 1999) 

and its control is even more challenging when operating at short HRT where early detection 

of failure becomes a prime objective, hi industrial situations, few indicators of digester 

performance are usually monitored on-line (Hawkes et al., 1994; Steyer et al., 2002). Most 

anaerobic digesters avoid instability by retaining the maximal amount of bacterial biomass 

and operating below their design limits, thus trading relative stability off against reduced 

cost-effectiveness (Hawkes and Hawkes, 1994). Also, Vanrolleghem (1995) stated that there 

was also a lack of manipulation variables and actuators. Heinzle et al. (1993) reviewed 

control actions that have been applied to the anaerobic process. Plant operators have used 

control actions for anaerobic digesters such as reduction of the digester feed, addition of a 

base, recycling the sludge back to the digester, biogas stripping of CC>2 (Graef and Andrews, 

1974) and H2 S (for high sulphate WWs) and re-circulate the scrubbed gas to the digester 

(Weiland and Rozzi, 1991). The choice of the control action depends on the characteristics of 

the WW stream to be treated and possibly on the reactor configuration.

2.4.2. Activated Sludge Process

Activated sludge treatment was developed in the UK in 1914 (Crites and Tchobanoglous, 

1998) and is the most widely used biological system for WWT (Lester and Birkett, 1999). 

The system must be continuously aerated to ensure survival of the microorganisms, which is 

an energy-intensive process. Lester and Birkett (1999) observed that many different species 

have been reported to be present namely, heterotrophs, autotrophs, yeasts, algae, fungi, 

filamentous bacteria and protozoa. The existence of the microbial cells in the form of floes 

permits them to be consolidated in a separate secondary sedimentation tank. The mixture of 

biomass and WW is maintained in suspension by the turbulence created by mechanical 

aerators or diffusers for air or pure oxygen. The process can be considered to be a single- 

stage continuous culture system employing biomass feedback (Lester and Birkett, 1999).
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Aerobic treatments are suitable for treatment of effluents with a COD of 40 - 4000 mg 1"' 

(Thampi, 1998). According to Lin and Peng (1995), activated sludge processes are 

inadequate for treatment when the COD of textile effluent exceeds 1200 mg I" 1 . Effluent 

from well operated activated sludge plants usually have a BOD and total suspended solids 

(TSS) concentrations of < 10 mg I" 1 . Nutrients may need to be added to industrial effluents to 

enable biological treatment (Laing, 1991). Generally they need BOD:N:P of 100:5:1 or 

100:3.5:0.6 if dosage control has been used (Mobius, 1991). Other nutrients are required by 

most biological systems such as: substantial quantities of sodium, potassium, calcium, 

chloride, sulphate and bicarbonate and trace quantities of iron, copper, manganese, boron, 

molybdenum, cobalt, and iodine (Metcalf and Eddy, Inc., 1991).

One of the most common problems encountered in the operation of an activated sludge plant 

is the development of bulking sludge with poor settling characteristics and poor 

compatibility (Metcalf and Eddy, Inc., 1991). Over 50 % of UK plants have experienced 

bulking conditions (Lester and Birkett, 1999). The most predominant form of sludge bulking 

is caused by the growth of filamentous organisms or organisms that can grow in a 

filamentous form under adverse conditions related namely to (1) the physical and chemical 

characteristics of the WW (nature, flow, strength, pH, temperature and nutrient content); (2) 

design limitations (air supply capacity, clarifier design, return sludge-pumping capacity 

limitations, or poor mixing); (3) plant operation (low dissolved oxygen (DO) in the aeration 

tank, insufficient nutrients, widely varying organic waste loading, low F:M ratio, and 

insufficient soluble BOD gradient) (Metcalf and Eddy, Inc., 1991). These authors stated that 

at high F:M ratios high growth is achieved resulting in growth of filamentous 

microorganisms - substances such as starch and acetic acid, which have high BOD, may lead 

to bulking problems. Also, at low F:M ratios bacterial growth cannot be sustained and 

endogenous metabolism or auto-oxidation occurs where weaker cells die and become a 

source of food for the remaining cells. The non-biodegradable cell capsules and viable cells 

then form a pin-point floe which does not settle properly (Lester and Birkett, 1999). 

Therefore, a balance between the two extremes must be achieved. Chlorine and hydrogen 

peroxide may be used to provide temporary help to control the filamentous organisms 

(Metcalf and Eddy, Inc., 1991).
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When properly designed and operated, the activated sludge process is capable of high-quality 

performance and can meet or exceed most effluent requirements. However, it has the 

reputation of being difficult to operate and can exhibit process failure. As well it requires 

more energy than the other biological processes used in WWT. To control the activated 

sludge process, quality variability should be minimised and the effluent quality maintained 

below effluent standards, followed by minimisaton of costs (Andrews, 1992). The principal 

factors used in activated sludge process control are 1) maintaining DO levels in the aeration 

tank(s), (2) regulating the amount of return activated sludge (RAS), and 3) controlling the 

waste activated sludge (WAS). RAS is important in maintaining the mixed liquor suspended 

solids (MLSS) concentration and the WAS is important in maintaining a constant F:M ratio 

and in controlling the mean cell residence time, often referred to as the sludge age (Low and 

Chase, 1999). Andrews (1992) referred also to the addition of carbon source and chemical 

dosage for pH adjustment. Control of nutrient addition has also been performed (Lynggaard- 

Jensenef al., 1996).

2.5. Monitoring the Anaerobic Treatment Process

An anaerobic digester must be considered as a complex system where mechanical, 

microbiological and physicochemical aspects are closely linked to form a viable unit. Kotze 

et al. (1969) stated that no single parameter can be used as a control measure of the process 

of anaerobic digestion as the degradation of organic matter is brought about by a 

heterogeneous microbial population. Process variables to be used in anaerobic process 

control can be defined as (a) stability indicators - those parameters which should be 

monitored to assure an early warning of oncoming unstable conditions; and (b) control 

variables - those parameters which should be monitored to keep or restore stable operating 

conditions. Graef and Andrews (1974) evaluated the following parameters as potential 

stability indicators: rate of CH4 production, substrate concentration, total VFAs (TVFA), 

CO2 partial pressure (p), pH, BA, organism concentration, specific growth rate, dry gas flow 

rate, total VFA alkalinity (TVA):TA, dissolved CO2 and unionised acetic acid. They selected 

the first four as these offered the greatest potential from the standpoint of indicating stability, 

however, none of these variables were effective in predicting process failure i.e. the rate of 

CH4 production decreased along with a simultaneous decrease in pH or increase in %CO 2
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and TVFA concentration, for hydraulic, organic and toxic overloading. Two or more of these 

four variables could provide information needed for monitoring digesters in the field. Archer 

(1983) stated that the performance of digesters can only be assessed by interpretation of 

measurable parameters such as />H2 , redox potential, pH, VFAs, temperature, gas production, 

biomass content and feed rate composition. Heinzle et al. (1993) stated that the reactor may 

be characterised by its VFA levels, CH4 :CO2 ratio and total gas production rate.

Switzenbaum et al. (1990) observed that some of the more commonly used indicators were 

VFAs:BA ratio; gas production rates and gas composition (CH4 and CO2); pH, and VS and 

COD reductions. The authors stated that usually several of these have been monitored 

together for supplementary information. Commonly used indicators such as VFA:BA ratio, 

CH4 productivity, pH, usually detect process upsets once they are underway (Guiot et al., 

1995). Switzenbaum et al. (1990) reviewed the off and on-line measurable variables with 

special emphasis for trace intermediate gas monitoring which has shown some potential to be 

an ideal indicator i.e. it should be correlated to the metabolic status of the process, function 

on-line in real-time and be possible to monitor with a reliable, robust and 'easy-to-handle' 

instrument. The anaerobic digestion process was pictured as a three-phase process (solid- 

liquid-gas) where each phase is closely related to the other two (Figure 2.1).

Giraldo et al. (1990) presented the theoretical relaxation time for different substances such as 

H2 in the biogas, CO2 , CH4, CO, acetate and propionic. The authors found that H2 had a 

relaxation time of only 14 seconds, which made it the fastest response parameter together 

with CO. CO2 , acetate and propionate came after with a relaxation time of 1, 2 and 4 h, 

respectively and only after CH4 with 2 days. Moletta et al. (1994) found that an organic 

overload was associated with an accumulation of VFAs, a decrease in pH, an increase in 

gaseous H2 ; an increase in the %CO2 and corresponding decrease in CH4 , an increased rate 

of gas production, and a decrease in total organic carbon (TOC) removal. They also found 

that the detection time of H2 , TOC and VFAs variations was less than 30 minutes, while that 

of the pH, gas production rate and composition was ~1 hour after the beginning of the 

increased loading. These authors suggested a combination of pH, biogas production and H2 

as indicators. While Mathiot et al. (1992) proposed for an automatic control system the 

following parameters: liquid phase - VFAs, pH, BA, COD, TOC and dissolved H2 ; gaseous 

phase - production rate and composition of gas (CH4 , CO2 , H2 , CO).
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Figure 2.1 - Characterisation tests for the 3-phases of anaerobic digesters (modified from

Switzenbaum et al. (1990))

Temperature - Environmental factor affecting digester operation

Temperature represents one of the essential factors affecting the WW fermentation rate 

(Lester and Birkett, 1999). Anaerobic digesters can be operated optimally within mesophilic 

(25-40 °C) or thermophilic (50-70 °C) temperature ranges (Lester and Birkett, 1999). 

Methanogens grow optimally at temperatures of 35 °C (Switzenbaum et al., 1990) or 37 °C 

(Soto et al., 1992). Clearly that a change in operation temperature of a digester will 

significantly affect the performance, due partly to a change in kinetic parameters but also to 

changes in the microbial population (Lawrence and McCarty, 1969). After an increase in 

temperature, Ahring et al. (1995) found that CH4 production almost ceased and did not 

resume even 10 days later. Peck et al. (1986) showed that individual VFA concentrations
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responded differently during a decrease in the operating temperature of a mesophilic reactor. 

An order of sensitivity was established: i-butyrate i-valerate i-caproate > propionate > 

n-valerate n-caproate > acetate n-butyrate. Those to the left accumulated most rapidly in the 

temperature stressed digester, and were removed least quickly during the recovery period. 

They recommended that the temperature should be raised back up to the normal operating 

temperature as soon as possible. Mathiot et al. (1992) noted that after the temperature had 

returned to its normal value, gas production increased immediately, but its CC>2 and CH4 

content took a slightly longer time to go back to their normal values.

2.5.1. Solid Phase Characterisation

Solid phase is the combination of non-soluble materials immersed in the liquid phase. This 

mixture is composed of organic (inert organic solids and cells) and inorganic solids. 

Switzenbaum et al. (1990) stated that active cell measurements and their metabolic status 

were very important parameters in defining control strategies as chemical parameters in the 

liquid phase provide little information about the metabolic status of the microorganisms. 

However, solid mesurement techniques shown in Figure 2.1 are generally elaborate, time 

consuming and difficult to use in RTC (Switzenbaum et al., 1990; Fell, 1999), therefore only 

reference to total solids (TS) and VS measurements is performed here.

Solids

In general, TS or VS measurements are most often used to estimate active biomass, but they 

do not distinguish between living and dead organisms (Chung and Neethling, 1988). VS 

have been shown to be significantly related to the deoxyribonuccleic Acid (DNA) contained 

by living cells (Hattingh and Siebert, 1967). By increasing the VS content of a digester, the 

amount of substrate may be increased with a resulting overall digestion capacity (Kotze et 

al., 1969). VS are not a suitable method for determination of reactor performance during 

rapid changes in substrate strength or composition due to the slow growth rate of anaerobic 

bacteria.

Turbidity has been used to measure SS in anaerobic digestion (Vanrolleghem, 1995). Three 

measuring principles have found application: optical measurements, absorption of ultrasound
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and gamma rays. Vanrolleghem (1995) stated that attention must be granted to fouling, to the 

gas bubbles as they may contribute significantly to light scattering, and to colour in the water 

as it may contribute to the light absorption. For which Vanrolleghem offered some advice on 

sensor location and usage of pulsing ER-light instead of white light, to help eliminating 

colour interference.

2.5.2. Liquid Phase Characterisation

Parameters used to characterise the chemical status of the liquid phase are commonly used. 

Control variables should, preferably, refer to the liquid phase, instead of the gas phase, as the 

environment to be controlled is the mixed liquor, which contains the anaerobic 

microorganisms (e.g. Rozzi et al., 1985). On-line monitoring of most of the liquid phase 

parameters can be implemented, but calibration and maintenance problems make their long- 

term performance difficult. Chemical or optical probes in the digester effluent can foul, in 

some cases rapidly, as reported for standard pH probes by Hawkes et al. (1992). 

Conductivity is a measure of the ability of a solution to carry an electric current. Oxidation- 

reduction potential (ORP), or redox potential, is an indication of the oxidation state of a 

specific monitored system. ORP should reportedly be below -450 to -500 mV for azo dye 

reduction to occur (Carliell et al., 1995). ORP measurements are relatively simple and quite 

accurate (Olsson and Newell, 1999). However, according to FitzGerald (1994), it is 

insensitive and slow to react, and therefore unsuitable as a measurement for rapid digester 

control.

Bicarbonate Alkalinity (BA)

It is essential to understand the buffering action since many chemical and biological 

reactions in WWT are pH dependent and rely on pH control. Alkalinity of a WW is a 

measure of its capacity to neutralise acids, in other words to absorb hydrogen ions without a 

significant pH change (Olsson and Newell, 1999).

The incentive to measure the dissolved COa and bicarbonate content of the mixed liquor is 

because imbalance of anaerobic digesters (due to accumulation of VFAs) cannot easily be 

detected on the basis of pH measurements alone, especially when the alkalinity of the mixed
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liquor is high (Rozzi et al., 1994; Hawkes et al., 1992) as alkalinity must be destroyed to a 

large extent before pH drops significantly. Neither the off-gas CO2 fraction nor the digester 

pH changes respond quickly with the onset of digester stress (Ripley et al., 1986). If VFA 

production/consumption balance becomes too severe the buffering capacity will become 

inadequate, the pH drops and the reactor 'sours' and methanogenic bacteria become inhibited 

(Hawkes et al., 1993). Since the alkalinity is mainly due to the bicarbonate buffer (sodium 

and calcium bicarbonate), it has been proposed since the early sixties that its measurement 

can be used in control strategies for anaerobic digestion (McCarty et al., 1964). The 

development of models of the anaerobic system by Graef and Andrews (1974) to investigate 

the merits of various parameters in process control showed that BA had a significant effect 

on the stability of the anaerobic bacteria. Rozzi et al. (1994) described the start-up and 

operation of anaerobic digesters with automatic bicarbonate control. The system without 

control became unstable and sour conditions developed. The advantages of BA monitoring 

have been reported by Rozzi et al. (1985) and a review of the methods/instruments, which 

have been used to determine BA in complex solutions, was given by Guwy (1995). BA is the 

buffer capacity provided through neutralisation of CC>2 by the cations released from the 

breakdown of VFAs forming bicarbonate. The decrease in BA concentration during 

overloading or inhibition is proportionate to the increase in TVFA concentration provided 

other weak anions are either negligible or constant, i.e. every mol I" 1 of VFA that is allowed 

to build up will destroy (and replace) an equivalent concentration of bicarbonate.

The bicarbonate ion provides buffer capacity over an approximate pH range from 5.3 to 7.3 

(Stumm and Morgan, 1981). For historic reasons alkalinity is measured as mg of CaCOs I" 1 

to a specified pH. Suggested concentrations of bicarbonate range from a recommended 

minimum of 1000 up to 5000 mg I" 1 as CaCO3 (Holder et al., 1975; Hobson and Wheatley, 

1993) to maintain the reactor pH above 7, while for Jenkins et al. (1983) the safe BA level is 

between 2000-5000 mg CaCO3 I" 1 . Brovko and Chen (1977) recommended even a BA of 

3500-5000 mg CaCO3 I" 1 . The naturally occurring buffering capacity in anaerobic digesters 

can vary considerably depending on the waste type, hi an anaerobic digester that is working 

well the VFArBA is normally 0.3 or less (Ross et al., 1992). If the ratio increases above this, 

the system is deemed to be unstable (Carliell et al., 1996).
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The pH endpoint in the alkalinity titration is the subject of some dispute, values of 5.75 

(Jenkins et al., 1983), 4.3 (Ripley et al., 1986), and 4.0 (McCarty et al., 1964) have been 

suggested in the past. The definition of alkalinity is somewhat circular since selection of a 

pH endpoint and, consequently, the value obtained for the alkalinity of a sample depends 

upon prior knowledge of the alkalinity (Powell and Archer, 1989). The buffering capacity of 

acetic and propionic acids is a useless part of the alkalinity in anaerobic digestion that 

operates in the pH range 6.5-7.5 (Jenkins et al. 1983). Therefore, the distinction between BA 

and TA is of critical importance. BA refers to the TA minus the TVA. It is common practice 

in the operation of an anaerobic reactor to use the VFA:TA ratio as a control parameter 

(Speece, 1996).

The on-line monitoring of BA has had a crucial bearing on the use of BA (and conversely, 

with the difficulty in monitoring VFAs) as an automatic control variable. Only recently 

automated bicarbonate monitors have been developed and applied in practice. Guwy et al. 

(1994) described a BA measuring prototype device where a continuous stream of substrate 

was saturated with gaseous CO2, acidified by the addition of excess acid, and the rate of CC>2 

evolution, proportional to the concentration of bicarbonate/carbonate in the liquid flow, 

continuously measured by a sensitive gas meter. The instrument was robust and its response 

was satisfactory for WWT process control applications, with linearity and accuracy of the 

order of 7 % in the range 5 to 50 mM HCOj and a response time in the order of 30 minutes.

Later, Hawkes et al. (1995) concluded that the on-line BA monitor was successfully used to 

monitor and to control an anaerobic digester operating on molasses WW, during organic 

overloads, using 'on-off and ANN strategies.

McCarty et al. (1964) advised the use of sodium bicarbonate for pH control as it is relatively 

in-expensive, it does not react with CO2 to create a vacuum in the digester, and there is little 

danger that it will raise the pH to undesirable levels. It is also quite soluble and can be 

dissolved prior to addition to the digester for more effective mixing. Di Pinto et al. (1990) 

used a proportional control law to maintain constant bicarbonate concentration in the effluent 

by addition of sodium carbonate addition.
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Volatile Fatty Acids (VFAs) concentration

All organic acids contain the carboxyl group written as -COOH, they are weak, ionise poorly 

and all have sharp penetrating odours (Olsson and Newell, 1999). Acids with up to nine 

carbons are liquids but those with longer chains are greasy solids, hence the common name 

fatty acid. VFAs are the most important intermediates in the anaerobic digestion process. 

VFA concentrations have been monitored for a long time as potential process performance 

indicators (i.e. acetic, propionic, iso and n-butyric and iso and n-valeric acids). In principle, 

the concentration of an individual VFA (especially acetic, propionic and butyric acid) can be 

considered as the best control parameters in the liquid phase, as they give indications about 

the metabolic state of two among the most delicate microbial groups: the obligate t^ 

producing acetogens and the acetoclastic methanogens (Weiland and Rozzi, 1991). For 

example Dinsdale et al. (1997) defined 'steady state' when during at least 3 HRTs TVFA 

levels remained at a constant low level. In a well equilibrated process, VFAs should either 

not exist or at least not accumulate. The accumulation of VFAs in digestion mixed liquors 

never appeared beneficial either to the CH4 productivities or to the reliability with time of the 

digestion system. The accumulation of acetate, either transient or stable with time, usually 

appears harmless. Acetic acid is usually considered to be the predominant VFA present, 

comprising 50 to 90 % of the total (DiLallo and Albertson, 1961). A high VFA level is the 

result and not the cause of the digester imbalance (McCarty et al., 1964). Although, VFAs 

response is not as rapid as that of H2 (FitzGerald, 1994), monitoring the individual VFA 

concentration would be a good basis for a process control strategy. A mathematical model 

developed by Mosey (1983) proposed that the increase mpH2 as a result of overloading the 

system would produce a larger increase in propionic acid than acetic acid. The precise cause 

of high VFAs can be difficult to determine as for example the symptoms of toxicity and of 

trace metal deficiency are often relatively similar (Speece, 1996).

Anaerobic digestion has been monitored off-line for the determination of the VFA content of 

the digester supernatant, using several laboratory/instrumental procedures. This is either by 

titrimetry or colorimetric analysis of TVFA (Montgomery et al., 1962), gas chromatography 

determination of the individual VFAs (Barnfield et al., 1978), mass spectrometry (MS) or 

high performance liquid chromatography (HPLC). Using the GC technique, VFAs are 

normally measured using thermal conductivity detectors (TCDs) or flame ionisation 

detectors (FIDs). For on-line monitoring the effluent injected must be free from SSs, which
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is seldom true. Automation of filtration or extraction is difficult, expensive and requires 

regular maintenance. VFAs can also be measured accurately using MS but the cost is usually 

prohibitive. Gas chormatography and HPLC methods are complex and require skilled 

personnel and therefore they are unsuited to automation for on-line monitoring and control of 

the process (Collins and Paskins, 1987). Various researchers have developed on-line 

techniques for TVFA measurements e.g Dilallo and Albertson (1961); Powell and Archer 

(1989); Rozzi et al. (1985), but no full success was achieved. Cruwys et al. (2002) developed 

an optimised procedure for the routine analysis of VFAs in WWs using static headspace gas 

chromatography with a FID. Nordberg et al. (2000) used electronic gas sensors and near 

infrared spectroscopy for determination of volatile compounds in the head space with 

success.

Asinari di San Marzano et al. (1981) suggested that individual VFA concentration increased 

disproportionately during process instability. Propionate was suggested as the best indicator 

by Kaspar and Wuhrmann (1978). Propionate and butyrate are important intermediates in the 

anaerobic degradation of complex matter (Schmidt and Ahring, 1993). Propionic acid is 

believed to be the most toxic VFA appearing in anaerobic digestion (Hanaki et al., 1994). 

Methanogenic populations were demonstrated to be inhibited at propionic acid 

concentrations in excess of 1000 mg I" 1 , while they could tolerate acetic and butyric acids up 

to 10 000 mg I" 1 (cited by Inane et al., 1999). High concentrations of acetate and Hb inhibit 

the conversion of propionic acid to those end products. Such inhibition leads to a build-up of 

VFAs, which leads to a decrease in pH if the buffering capacity of the system is exceeded, 

and inhibition increases with decreasing pH. Additionally, the unionised VFAs are able to 

enter the cytoplasmic membrane of the bacteria and uncouple the process of adenosine 

triphosphate synthesis (Zoetemeyer et al., 1982). VFA accumulation therefore reflects a 

kinetic uncoupling between acid production and consumption and is typical for stress 

situations (Ahring et al., 1995). Any transient state must be stopped and replaced by a 

steady-state where the F:M ratio should not be exceeded. Propionic acid control may be very 

useful and can be equivalent for example to control for pH and dissolved H2, depending on 

the conditions (Ryhiner et al., 1993). Monitoring propionic acid concentration has been used 

for controlling overloads of a completely stirred tank reactor (CSTR) anaerobic reactor fed 

on WWs of a citric acid factory (Renard et al., 1991). TVFA concentration monitoring,
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although it does not discriminate the behaviour of the different bacterial populations, can 

also be exploited for process control.

It is not feasible to define an absolute VFA level indicating the state of the process. 

Anaerobic systems have their own normal levels of VFA, determined by the composition of 

the substrate digested or by operating conditions (initial pH and alkalinity) (Lester and 

Birkett, 1999). Buswell (1959) stated that the overall upper limit of 2000 mg VFA r 1 was 

over emphasised. He preferred the use of sudden changes in a constant value of the VFA 

content, as a control parameter, rather than setting levels for 'safe' digestion. Ahring et al. 
(1995) suggested that the relative change in VFA, not the absolute concentrations as the way 

forward with a combination of iso and n-butyrate being the best indicator of stress caused by 

hydraulic and organic loading and temperature increase. Hill (1982) suggested that a 

propionate: acetate ratio < 1.4 was an indicator of stability. Schroder and de Haast (1988) 

stated that in a normally operating anaerobic system the concentration of VFA within the 

reactor, expressed as acetic acid, should not exceed 500 mg I" 1 and should normally be less 

than 250 mg I" 1 . However, Pullammanappallil et al. (1998) found that VFA and pH levels 

cannot be used reliably to predict digester imbalance as the microbial consortia was able to 

tolerate propionic acid concentration of 3000 mg I" 1 and pH levels of 6.1.

The parameters pH, alkalinity and VFA content are closely inter-related (Kotze et al., 1969). 

Actually, pH control is in effect really BA control. pH control is significant as methanogens 

growth is severely inhibited below a pH of 6.2 with an optimum growth rate in the range 6.6 

to 7.6, and tolerance up to pH 8 (McCarty et al., 1964). pH of 7.0±0.1 has been traditionally 

recommended. The occurrence of low pH is the result of a well developed imbalance and as 

such is not useful as an early warning indicator (Switzenbaum et al., 1990).

If acidogenesis proceeds too rapidly compared with acetoclastic methanogenesis, for 

example following a rapid change in load, H2 and VFAs accumulate and the fermenter may 

fail. Inhibition of methanogenesis by acidification can be prevented by efficient pH control in 

the digester and so under conditions of shock loading coupled to pH control production of 

organic acids will exceed methanogenesis and the excess acids will appear in the digester 

effluent until the system becomes balanced again. Without pH control, fermenter failure is
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the consequence of continued overproduction of VFAs which gives rise to a 'stuck' or 'sour' 

reactor. pH controls also the fraction of undissociated fatty acids that are thought to freely 

permeate the cellular membrane of microorganisms after permeating the membrane, the fatty 

acids internally dissociate, thus lowering the cytoplasmic pH and affecting bacterial 

metabolism (Zoetemeyer et al., 1982). Therefore, immediate action to add alkalinity is 

required. Bubbling with N2 in a pH controlled system enhances methanogenesis due to 

reduction in inhibition by CO2 (Hansson, 1979). Removal of CO2 from carbonate-buffered 

systems could also be used to rectify mild acidification and might be considered as an 

alternative to addition of alkali where cation toxicity is a problem (Archer, 1983).

In-line pH monitoring of an anaerobic digester would be more useful in the operation process 

than off-line due to the loss of CC^. If the sample is allowed to stand exposed to the air for a 

few minutes CC>2 will escape, causing the pH to rise (Speece, 1996). pH measurements are 

simple and inexpensive (pH electrode). Brovko and Chen (1977) stated that the measurement 

of pH does not itself constitute an adequate control procedure in digester maintenance 

because it is a logarithmic rather than arithmetic function, pH is not sufficiently sensitive to 

rather large fluctuations in alkalinity concentrations. For example, while alkalinity decreased 

from 3600 to 2250 mg I" 1 , the pH value moved only from 7.1 to 6.9 hardly more than the 

error involved in its measurement. Also drift of the signal requires frequent re-calibration 

and fouling makes necessary frequent washing and other cleaning (e.g. ultrasonic) systems or 

multiple probe systems.

The most commonly used type of pH probe is a combination electrode that consists of a glass 

and a reference electrode. The nature of the reference junction within the reference electrode 

limits the use of pH probes in anaerobic digester environments to wastes with low fat and 

protein concentrations, which could otherwise contaminate the reference junction. The 

problem is exacerbated by the high solid content and dissolved sulphide compounds present 

in an anaerobic digester and therefore, conventional combination electrodes operate in a 

reactor for only a short time before failure. Xerolyte combined pH electrodes (Ingold, BHD 

Poole, UK) are less susceptible to fouling as they have a stiff polymer mass containing KC1 

but free from AgCl. They also have an aperture diaphragm, which allows accurate operation 

for 10 days without need for calibration. Guwy et al. (1997b) found that with the up flow 

velocity in the reactor the Ingold Xerolyte electrodes performed well.
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Control of digester stability using pH as a control variable was shown to be effective by for 

example Rozzi (1984), Denac et al. (1990), Di Pinto et al. (1990) and Hawkes et al. (1995). 

The pH control of the feed is still used in many digesters, and this is typically a wrong 

application of control procedures (Weiland and Rozzi, 1991).

Dissolved H2 concentration

Hydrogen is formed during the breakdown of complex organic matter to VFAs and again 

during the further conversion of these acids to acetic acid and CO2 (Mosey and Fernandes, 

1989). Because of the unfavourable energetics, oxidation of propionate and butyrate is only 

possible if products are removed efficiently by the methanogens, resulting in a low pH2 

(Thauer et al., 1977). A pH2 below ca. 10"4 atm is necessary for degradation of propionate 

and butyrate, respectively (McCarty and Smith, 1986). Such low pH2 in methanogenic 

systems are achieved by 'interspecies H2 transfer' from H2-producing bacteria to H2- 

oxidising methanogens (Wolin, 1975). A rise inpH2 is inhibitory to production of more H2 

and acetate from VFAs so that organic acids could then only be removed if their 

concentrations relative to acetate were very high, but as acetate removal is rate limiting this 

is prevented and fermenters fail due to acidogenesis. Fluctuations in H2 or levels of VFAs 

occur normally in fermenters. For instance, a rise in acetate concentration should not be 

detrimental (Asinari di San Marzano et al., 1981) provided that the operational pH is 

maintained. Hydrogen is rarely detected in fully functional methanogenic digesters unless the 

system has been disturbed by an increase in feed load (Archer, 1983), for e.g. a pulse 

addition of organic toxicants (Hickey et al., 1987) and a pulse addition of heavy metals 

(Hickey et al., 1989). Various researchers have stated that in general, the behaviour of H2 

appears to depend heavily on the energetic content of the substrate(s), reactor type (and 

feeding regime) and how well the system was buffered and type of upset (Hickey et al., 

1991).

It was initially thought that H2 transfer occurred between the bacteria and a H2 -pool. 

However, from the H2 turn over rates and the H2-pool (dissolved H2) size it was calculated 

that up to 95 % of the H2 was passed directly to the H2 utilising bacteria (Conrad et al., 

1985). These researchers then proposed that the transfer mechanism was dependant on the 

juxtaposition of the syntrophic bacterial association (H2 producing acetogens and 

methanogens) and that the H2 produced is utilised before it is able to equilibrate with the H2 -
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pool. This transfer would require close contact and it would be an advantage for the 

anaerobic bacteria to adhere together in floes, biofilms or granules for this to occur. The high 

bacterial cell densities in the granules minimise the distances between bacteria and maximise 

interspecies transfer of acetate, formate, and H2 between syntrophic fatty acid degraders and 

methanogens (Conrad et al., 1985; Pauss et al., 1990). These syntrophic reactions generate a 

very low ORP in the digester, which favours the anaerobes (Fell, 1999).

Hydrogen is being considered as an ideal indicator preceding a noticeable build up of VFAs 

thus anticipating the failure (Switzenbaum et al. 1990). Concentrations and pressures of H2 

are reported in a variety of units. Wolin and Miller (1982) concluded that H2 was not only a 

product and a substrate in anaerobic fermentations, but also an important regulator. 

Hydrogen is a key intermediate in methanogenesis and since the beginning of the 1980s 

several researchers investigated how to use H2 concentration (either in the gas phase or 

dissolved in solution) in anaerobic process control (e.g. Archer et al., 1986; McCarty and 

Smith, 1986; Collins and Paskins, 1987; Whitmore et al., 1987; Dochain et al., 1991; Guiot 

et al., 1995). A control strategy using H2 concentration, VFA and BA have been proposed by 

Powell and Archer (1989).

According to kinetic considerations based on the Michaelis-Menten model the relationship 

between the loading rate and the H2 concentration is expected to be non-linear, based on the 

assumption that there is a maximum H2 uptake capacity of the H2 consuming methanogenic 

bacteria (Cord-Ruwisch et al., 1997). However, these authors found a quasi-linear 

relationship between H2 concentration and loading rate that could possibly be due to the 

lower energetics of the homoacetogenic H2 consumption, which need higher H2 

concentrations than methanogenic bacteria for efficient H2 uptake (Cord-Ruwisch et al., 

1988). According to traditional kinetic models, the H2 concentration without loading should 

be zero. The reason for the residual /?H2 of 2 to 3 Pa at a feed rate of zero can be explained 

by the fact that a threshold value for H2 consumption exists below which methanogenic 

bacteria are incapable of H2 degradation (Cord-Ruwisch et al., 1988) and is dependent on the 

energetic conditions (such as product concentrations, pH, and temperature) (Hoh and Cord- 

Ruwisch, 1996). Furthermore, as long as the sludge is active, there will be some H2 

production (Cord-Ruwisch et al., 1997).
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A number of methods of measuring H2 in a gas phase or as a gas dissolved in a liquid have 

been developed, and a review of these methods, in the context of anaerobic digesters, has 

been published by Pauss et al. (1990). Pauss et al. (1990) and Pauss and Guiot (1993) 

emphasised the need to measure H2 concentration in the liquid rather than the gas phase. This 

is because H2 mass-transfer coefficients in anaerobic digesters are much smaller than those 

typically found in aerobic fermentations (Pauss and Guiot, 1993). However, as long as the H2 

mass-transfer rate satisfactorily correlates with the operating conditions of the reactor, H2 

could be monitored through measurement of its gas content, which is cheaper and more 

pragmatic than measurement in the bulk liquid (Pauss et al., 1990). Dissolved H2 in an 

anaerobic digestion process was continuously measured by a voltametric membrane 

electrode (Kuroda et al., 1991). The sensor was not affected by several compounds in the 

anaerobic digestion media except for sulphide. Strong and Cord-Ruwisch (1995) used an 

inexpensive amperometric dissolved H2 probe to determine the onset of digester failure by 

substrate overloading. Later, Cord-Ruwisch et al. (1997) used an on-line method for 

measuring dissolved H2 in a semi-permeable membrane, situated within the biomass of the 

laboratory anaerobic digester, using trace reduction gas analysis. The advantages of this new 

technique over the previous H2-electrode based control system (Strong and Cord-Ruwisch, 

1995) are greater sensitivity, robustness, no interference by other gases, and a stable 

monitoring baseline.

2.5.3. Gas Phase Characterisation

Anaerobic digester gas from a well functioning unit will always contain CO2 and CH4 ; the 

ratio is significant as it eliminates the effect of other gases. It will also contain varying 

concentrations of H2 and CO, depending on the health of the system. If compounds 

containing organic or inorganic N and S are present, these will result in production of N2 and 

H2 S, respectively. Approximately 70 % of the WW organic component is anaerobically 

degraded to CH4 while the remaining 30 % consists of CO2 with associate trace 

concentrations of H2 , CO and H2 S gas (Gujer and Zehnder, 1983). The gas concentrations in 

the biogas constitute a sensitive diagnostic tool, indicating the biochemical condition of the 

fermentation. The total volume of gas produced is also significant. This will vary depending 

on the organic loading, biomass capability at a given time and also the operating temperature.
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Much of the work performed over the past decade for on-line control, has focused on gas 

phase characterisation (Hickey et al., 1991). The use of gas phase indicators for real-time 

data acquisition have been investigated as they have the advantage of significantly faster 

response times to stress of the anaerobic microorganisms than liquid phase indicators as well 

as being less susceptible to probe fouling (Switzenbaum et al., 1990; Hickey and 

Switzenbaum, 1991). Ryhiner et al. (1993) and Ehlinger et al. (1994) referred that gas phase 

analysis gave the most reliable and inexpensive results in an industrial environment. 

However, Ehlinger et al. ( 1994) found that no single gas phase parameter was sufficient for 

control, only in combination, toxic and organic events could be detected. Mathiot et al. 
(1992) stated that gaseous H2 , CH4, CO2 and gas production rate could be used in 

conjunction as an algorithm for the control of a digester. The following two sections describe 

the monitoring of gas production rate and gas composition.

Biogas production rate

The methanogenic bacteria have the highest doubling time and therefore are the slowest to 

adapt to overloadings. This causes a rise in VFAs, accompanied by a drop in total gas 

production. However, the gas flow rate response to inhibitors is inconsistent because it 

depends on the type of toxicant (Pullammanappallil, 1993). If the toxicant inhibits the 

growth rate of the acidogens and methanogens then gas production rate would drop, but if it 

inhibits only methanogens the gas production rate increases because the COa consumption 

rate by the methanogens is decreased (Pullammanappallil, 1993). In FitzGerald (1994) work 

the irregularities in the gas flows correlated with the feed running out; foam blocking lines; 

and a split in the peristaltic pump tube.

Results of temperature shocks to anaerobic digesters, carried out by Peck et al. (1986) 

showed biogas production rate to be a good indicator of process stability. Kidby and Nedwell 

(1991) showed that the rate of biogas production responded rapidly to increased hydraulic 

loading in anaerobic digesters operating on raw settled primary sludge. However, they also 

stated that gas production rate was not a useful stand alone process control variable, as 

without the knowledge of organic input to the system or biogas composition for example, the 

cause of the process instability would be difficult to determine. As the initial increase in gas 

production during overloading is a function of the COa produced by the destruction of
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bicarbonate, therefore it is more appropriate to monitor variations in BA or %CC>2 rather than 

the gas production rate (Rozzi et al., 1985).

A variety of gas measurement systems are currently available for measuring gas production 

in anaerobic digestion at laboratory scale. Guwy (1995) reviewed some of the gas flow 

monitoring techniques. For example, Guwy et al. (1995) developed a precise low flow gas 

meter using the more sensitive pressure transducer at that time available and a valve of 

known characteristics. They developed an on-line high precision gas meter giving 

reproducible and accurate measurements (0.5 %) at low (<5 cm3 min' 1 ) and irregular gas 

flows with a low back pressure, and with an analogue output interfacing to a data acquisition 

system.

Gas composition

The response time for gas composition monitoring depends on the head-space volume, rate 

of biogas production and gas solubility (Hawkes et al. 1995). The composition of the biogas 

is possibly a more useful indication of the anaerobic digester status than the biogas 

production rate as it reveals information about the methanogenic activity. The major and 

trace gas components of biogas are reviewed in the following.

Biogas CH4 and CO2 concentrations

Theory indicates that the rate of CH4 production is directly related to the condition of the 

digestion process. In cases of hydraulic, organic and toxic loading the rate drops sharply as 

failure ensues. However, Graef and Andrews (1974) reported from their simulations that the 

rate of CH4 production exhibited a temporary increase for both hydraulic and organic 

overloading, yet in the case of toxic overloading it demonstrated a definite decline, which 

suggested that this rate may be a diagnostic of toxic failure. Ryhiner et al. (1993) stated also 

that when the pH drops, this would initially result in an apparent decrease in CH4 production 

caused by an increase in gas-liquid mass transfer, caused by the release of CO2 . Methane 

concentration depends on the liquid flow rate which makes its control in the gas phase 

unsuitable for anaerobic digestion and it could only be used as a controlled variable if the set 

point was to be varied depending on CH4 content corrected for the liquid feed rates (Ryhiner 

et al., 1993). The CH4 produced does not undergo any chemical reaction and being slightly 

soluble is transported quantitatively into the gas phase (Andrews and Graef, 1971). Also, von
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Sachs et al. (2000) showed that CH4 production rate response was fast because of the low 

solubility of CH4 in water.

Graef and Andrews (1974) findings indicated that the CO2 composition can fluctuate 

substantially even when the increase do not approach digester failure. This fluctuation results 

from the dual sources of COa and the rate of gas transfer between the liquid and gas phase. 

They explained that the balance either remains in solution as dissolved CO2 and carbonic 

acid or reacts with a base to form bicarbonate ions. The solubility of CO2 is a function of its 

partial pressure, however, the quantity of CO2 converted to bicarbonate and carbonate ions 

depends on its partial pressure as well as the pH and base concentration of the solution. If the 

partial pressure and/or pH decreases, CO2 will enter the gas phase because of chemical and 

physical release from the solution (Graef and Andrews, 1974). The suitability of %CO2 as a 

control variable is questionable, as significant variations in pCO2 are dependant on the CO2 

'stored1 in the liquid phase as bicarbonates. For this reason, Rozzi et al. (1985) reported that 

although /?CC>2 can be a good instability parameter, a control system using the addition of 

alkali, based on the/?CC>2 would be detrimental if it were to postpone and amplify the 'surge' 

of CO2 due to bicarbonate decomposition. Variations in biogas CO2 concentration due to 

organic overloads have been determined by Denac et al. (1988), Hawkes et al. (1992) and 

Guwy et al. (1995). Unfortunately, CC>2 and CH4 variations are significant only after the 

imbalance is well developed (Switzenbaum et al., 1990). More recently, Merkel and Krauth 

(1999) studied the mass transfer of CO2 in anaerobic reactors under dynamic substrate 

loading conditions and found that it was governed by the liquid phase resistance with the 

volumetric mass transfer coefficient being a function of the actual biogas production rate. 

The authors stated that equilibrium of CO2 concentration between the two phases could not 

be assumed, so that in carbon balances even under steady-state conditions of oversaturation 

must be considered, in which the pH in the reactor is shifted towards lower values. For 

control of anaerobic digestion, the CH4 :CO2 ratio presents a rapid and sensitive parameter, 

however, no dogmatic rule can be laid down concerning a definite ratio or the volume of gas, 

which should be produced (Kotze et al., 1969). Any decline in rate of gas production from a 

constant value accompanied by a change in the CH4 :COa ratio is indicative of unbalanced 

conditions (Kotze et al., 1969) and must be immediately investigated. A change in this ratio 

is partially caused by the referred increase in CO2 concentration.
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Specific gas analysers monitor the content of a component directly. Typically, infrared 

absorption on-line measurements are used to determine CO2 and CH4 (Mathiot et al., 1992), 

which are less expensive than gas chromatography techniques described by Denac et al. 

(1988) and TOC methods of CO2 determinations (Rozzi and Brunetti, 1980). Calorimetry 

can quantify CH4, which is a relatively inexpensive detection method that can provide in-line 

analysis (Fell, 1999).

Biogas trace gases - 7/2, CO and //^S

Hickey et al. (1987) examined the response of the anaerobic digestion process to inhibition 

induced by the pulse addition of four organic toxicants. CO2 , CH4 and H2 in the gas were 

monitored with a gas chromatograph (GC). Severe inhibition of CH4 production (> 70 % 

CH4 reduction) resulted in a rapid accumulation of H2 in the gaseous headspace. Their results 

indicated that monitoring H2 in conjunction with conventional process indicators should 

improve digester monitoring and could provide more rapid indication of process upsets due 

to toxic shocks.

There has been an increasing level of interest in measuring H2 concentration in the gas space 

of anaerobic digesters as a possible method of controlling the substrate loading rate (Archer 

et al., 1986; Harper and Pohland, 1986; Kidby and Nedwell, 1991; Mosey, 1983; Whitmore 

et al., 1987). This is because H2 is believed to be responsible for 1/3 of the electron transfer 

between fermenting and methanogenic bacteria (Archer et al., 1986). It has been shown that 

gaseous H2 is extremely sensitive, and responds strongly to any disturbance to the system, 

and also to increases in organic loading rate (FitzGerald, 1994). An increase in gaseous H2 

has been observed only 10 minutes after shockloading (Mathiot et al., 1992). After an 

organic overload, H2 concentration in the gas increased by 350 % in 30 minutes which makes 

it a very important parameter for the control of anaerobic digestion of highly degradable WW 

(Moletta et al., 1994). Punal et al. (1999) found H2 concentration a quite sensitive variable, 

and also a very fast response variable, but it must be analysed together with parameters such 

as CH4 composition or gas flow rate. Fell (1999) has chosen biogas H2 as a control parameter 

for his research because it could rapidly detect fluctuations in toxicant concentration of 

instant coffee processing effluent (pyrazine), it was non-invasive and had the advantage of 

not being susceptible to probe fouling. Furthermore, equipment to measure H2 in biogas was 

commercially available at low-cost. However, he found that H2 concentration decreased to
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normal operational levels before the digester had achieved steady-state operation according 

to parameters such as the VFA:BA balance. He concluded that H2 concentration was 

advantageous as a rapid detection control parameter and could be useful in combination with 

other parameters, such as COD and VFA which did not respond as quickly to inhibition, but 

were better indicators of longer term digester instability.

The H2 concentration in the biogas is usually determined by a GC using specific detectors 

e.g. the mercuric-mercuric oxide detector. However, on-line GC analysis is sophisticated and 

expensive which restricts the use of such technique. Accurate, inexpensive and rapid on-line 

measurement of low H2 concentration (detection limit 0.1 ppm) has been made possible by 

the development of an instrument, the Gas Measurement Instruments (GMI) Exhaled 

Hydrogen Monitor (GMI Ltd. Renfrew, Scotland), for investigation of inborn mal-adsorption 

of sugars in humans. The instrument has been widely used since its introduction in 1980 to 

investigate the H2 concentration in the biogas of anaerobic digesters as originally suggested 

by Mosey (1982). The instrument usage in anaerobic digestion was reviewed by Collins and 

Paskins (1987). It is a polarographic instrument and is cross sensitive to H2S and mercaptans 

that can occur in biogas from anaerobic digester. Its cross sensitivity to H2S makes it 

essential to strip the H2S from the biogas before introducing it into the monitor. Different 

chemicals have been used for scrubbing H2S from the biogas before entering the GMI 

Exhaled Hydrogen Monitor: copper sulphate (Mosey and Fernanades, 1989; Guwy et al., 

1997a); lead (Mosey and Fernandes, 1984) and zinc (Fell, 1999) acetate crystals. 

Measurement of H2 in the biogas has the attraction of simplicity compared to the dissolved 

H2 but with the disadvantage of the transfer rate of H2 from liquid to the gas phase (Archer et 

al., 1986).

Mosey and Fernandes (1989) concluded that for digesters treating milk sugars H2 served as 

an excellent 'event marker'. With industrial waste digesters it might also prove to be of use 

to detect fluctuations in WW strength at constant flow rate, as an alarm indicator for toxicity, 

or as feedback control signal to adjust the speed of the pump to suit the strength of the WW. 

Although it responded quickly (<10 minutes) to changes in the substrate flow rate and 

composition, its increase did not necessarily mean that inhibition of the process has reached a 

critical point (Mosey and Fernandes, 1989). These researchers showed that large changes in 

H2 concentration could occur without any significant changes in bacterial performance.
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Various researchers have proposed various H2 management schemes (such as stripping) to 

improve reactor performance (e.g. Poels et al., 1985). Some studies with artificial elevation 

of H2 concentration in anaerobic reactors did not show any noticeable effect on propionic 

acid accumulation (fixed bed reactor - Denac et al., 1988; CSTR - Inane et al., 1999).

During an overload of an anaerobic filter, /?H2 in the biogas and gas flow rate were the first 

parameters to change and the coefficients varied around 50 and 4-5, respectively (Moletta, 

1989). During the same experiment, pH variations were small and TOC was multiplied by 3, 

however both occurred later. The variations in gas composition, in VFAs and BA were the 

last factors detected. Guwy et al. (1997a) concluded that the use of biogas H2 as a control 

parameter would be questionable especially if the pre-acidification of the feed to the digester 

was variable. However, they did also state that the rapid response and ease of on-line 

measurement of H2 support its use in digester control along with other parameters, which can 

be measured on-line. This agreed with Switzenbaum et al. (1990) who stated that H2 is 

limited as a stand-alone indicator as it is not always apparent why its concentration has 

changed. Kidby and Nedwell (1991) used the GMI instrument on a CSTR sewage sludge 

digester to determine whether H2 concentration could provide advanced warning of digester 

failure for a HRT reduction from 20 to 8 d. At the onset of digester failure a marked decrease 

in the volume and CH4 content of the biogas was accompanied by an increase in VFA 

production and a concomitant decrease in pH. During this period, H2 accumulation in the 

biogas was not evident. An increase in H2 was noted, however, well after reactor failure had 

occurred. Therefore, they considered that H2 concentration in the biogas could not be used as 

an indicator of incipient digester failure, at least when volumetrically overloaded. However, 

in a pilot-scale anaerobic contact system, H2 concentration measured with the GMI 

instrument rose rapidly in response to volumetric shocks even when no VFA accumulation 

was observed (Archer et al., 1986).

Hickey et al. (1989) found that CO demonstrated a characteristic response to heavy metal 

and organic toxicant induced inhibition. Hickey and Switzenbaum (1990) found that CO 

concentrations in the biogas were regulated by ORP and that an increase in CO happened in 

response to increased acetate or organic loading. They used GC for CO and H2 

determination. CO was found to vary between 300 to 2000 ppb and H2 ranged from 

14-100 ppm. They noted that the levels of gaseous CO in anaerobic digester samples were
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directly related to the acetate concentrations and inversely related to CH4 concentration. They 

concluded that analysis of H2 and CO together should give information on the metabolic 

status of both of the terminal methanogenic steps in the degradation process. Pufial et al. 

(1999) concluded that the monitoring of CO concentration did not permit the prediction of 

destabilisation of the bioreactor.

Little has been published on HaS monitoring. Sulphide volatilisation is a function of many 

digester operational parameters including pH, sulphate loading rate, metal concentration and 

biogas production rate (McFarland and Jewell, 1989). The incorporation of H2S gas as a 

parameter into a control strategy may be of use for wastes, which contain high concentrations 

of influent sulphur. Sarner et al. (1988) used a gas washing system, containing sodium 

sulphide and sodium carbonate, to scrub H2S from biogas produced from a full scale 

anaerobic digester, which was able to maintain H2 S levels below 100 ppm. H2 S measurement 

in the gas phase may be performed by monitoring the reaction of sulphide with Pb-strip, 

subsequently, the black PbS that is produced, is quantified by colorimetry (Escoffier et al., 

1992).

2.6. Monitoring the Aerobic Treatment Process

The activated sludge process is required to meet effluent standards while keeping investment, 

sludge production and energy consumption as low as possible (Spanjers et al., 1998). A 

problem inherent in achieving the aims apart from the monitoring difficulties is that the 

activated sludge process is highly dynamic because of variations in influent flow rate, 

concentration and composition and sometimes the presence of toxic substances. Therefore, 

control strategies must be applied that can cope with the dynamic character of the activated 

sludge process and with the following objectives: growing the right biomass population, 

maintaining good mixing, adequate loading and DO concentration, adequate airflow, good 

settling properties, avoid clarifier overload and avoid denitrification in clarifier (International 

Association on Water Quality - IAWQ, 1995). Consequently, common control strategies 

manipulate the WAS, RAS and aeration capacity. Such strategies have been based on 

measurements of MLSS, DO and more recently respirometry.
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2.6.1. pH

Nitrification releases protons, which must be buffered by sewage as excess acid destroys 

activated sludge (Teichgraber, 1990). Remedies are enhancing denitrification, reducing 

influent nitrogen, limiting nitrification and/or dosage of alkali for which exact dosage control 

and careful choice of alkali are required (Teichgraber, 1990). Conversely, Beaubien and 

Jolicoeur (1985), controlled pH at around 8 using sulphuric acid, as the influent was very 

alkaline.

2.6.2. Dissolved Oxygen (DO)

DO is one of the most important and useful measurement in activated sludge processes and is 

also the basis for the BOD and oxygen uptake rate (OUR) tests. Olsson and Andrews (1978) 

demonstrated that the DO profile reflected both, the hydraulic and organic loadings, reaction 

rate, and degree of completion of the reactions in the activated sludge process. Metcalf and 

Eddy, Inc. (1991) discussed the role of oxygen in the activated sludge process. They stated 

that the oxygen supply must be adequate to 1) satisfy the BOD of the waste, 2) satisfy the 

endogenous respiration by the sludge organisms, 3) provide adequate mixing, and 4) 

maintain a minimum DO concentration throughout the aeration tank. To meet the sustained 

peak organic loadings, it is recommended that the aeration equipment be designed with a 

safety factor of at least two times the average BOD load. In practice, the DO concentration in 

the aeration tank should be maintained at about 1.5 to 4 mg I" 1 in all areas of the aeration 

tank; 2 mg I" 1 is a commonly used value. Values above 4 mg I" 1 do not improve operations 

significantly (Low and Chase, 1999), but increase the aeration costs considerably (Lee et al., 

1998). Aeration accounts typically for more than 50 % of the total plant energy requirements 

(Groves et al, 1992).

The solubility of oxygen in water is directly proportional to the pressure it exerts on the 

water. At a given pressure solubility of oxygen varies greatly with water temperature and to a 

lesser degree with salinity. A typical DO saturation value is 9.2 mg I" 1 at 20 °C (assuming 

zero chloride concentration) (Olsson and Newell, 1999). DO is widely measured on-line 

using a DO probe (membrane electrode) composed of two solid metal electrodes in contact
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with a salt solution that is separated from the water sample by a selective membrane. The 

probe has also a sensor for measuring temperature. With membrane-covered electrode 

systems the problems of impurities are minimised because the sensing element is protected 

by an oxygen-permeable plastic membrane that serves as a diffusion barrier against 

impurities (Olsson and Newell, 1999). DO automatic control strategies are being employed 

in many full-scale activated sludge WWTPs, with success. DO dynamics are fast, reliable 

sensors exist for measuring DO, and the manipulated variable (air flow rate) can be easily 

adjusted (Barnett, 1992).

2.6.3. MLSS, Volatile Suspended Solids (VSS), Turbidity and Settling 

Properties

The concentration of biomass in the aeration tank has been expressed as the MLSS. Since 

MLSS incorporates inorganic solids, a closer approximation to the biotic component may be 

obtained by using VSS. Between 40 and 85 % of the MLSS is typically volatile. Neither the 

MLSS nor the VSS are necessarily directly related to the number or mass of viable microbial 

cells present i.e. they include both live and dead cells, suspended volatile matter, etc. (Lester 

and Birkett, 1999). Beaubien and Jolicoeur (1985) maintained MLSS around 3.5 g I" 1 .

Turbidity, the scattering and absorption of light by particulate matter, is one of the most 

commonly measured physical parameters in WWTPs (Johnson, 1998). Turbidimeters fall 

into two basic categories i.e. absorptiometers, which measure the absorption of light through 

a sample, and nephelometers, which measure the amount of light scattered at one or more 

angles to the incident beam (Briggs and Grattan, 1992). Some of the turbidimeters have 

built-in compensation for colour of the sample, fouling of optical surface, and/or mechanical 

means of cleaning the surfaces, and in some instances the optical elements are not in contact 

with the sample at all (Briggs and Grattan, 1992).

Increasing attention is being drawn to final clarification as the unit operation in activated 

sludge WWT that is critical to overall treatment performance. Vanrolleghem et al. (1996) 

reviewed a number of automated systems for quantification of settling properties. Different 

measuring principles are used in these so-called settlometers (Severin et al., 1985). The
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traditional way of quantifying sludge settleability was by measuring the sludge volume index 

(SVI). Various approaches to designing on-line settlometers have been reported. One 

approach is to install a measuring system that tracks the sludge blanket or concentration 

profiles in the full scale clarifier. Another methodology consisted of using a down-scaled 

version of the final settler in a measuring system and performing experiments in this model 

reactor using a moving optical system (Vanrollenghem et al., 1996). Parallel work was 

carried out using image analysis to reveal the relation between sludge floe structure and 

settling properties (Grijspeerdt and Verstraete, 1996). Using image processing a bulking 

index has been proposed to predict the occurrence of bulking phenomena in the activated 

sludge (Olsson and Newell, 1999).

2.6.4. Respirometry

hi aerobic suspended growth effluent treatment systems, the level of MLSS is maintained by 

recycling at a level sufficient to treat the incoming organic load, but there is a lack of reliable 

on-line information on which to control the RAS. Respirometry is the measurement and 

interpretation of the respiration rate of activated sludge and it has been generating much 

interest for monitoring and control of activated sludge plants (Baeza et al., 2002). The 

respiration rate or the OUR is the amount of O2 consumed by the microorganisms measured 

per unit volume and unit time, and can be taken as a measure of the biological activity. High 

OURs indicate high biological activity, and vice-versa. OUR is most valuable for plant 

operations when combined with VSS data as the specific oxygen uptake rate (SOUR). OUR 

reflects two of the most important biochemical processes in a WWTP: biomass growth and 

substrate consumption (Olsson and Newell, 1999). The types of respirometer in common use 

to measure OUR depend on oxygen electrodes, infrared detection of evolved oxygen, gas 

flow or pressure measurements. The measuring principles and the significance of the results 

are reviewed by Mahendraker and Viraraghavan (1995) and Spanjers et al. (1996). OUR is 

known to reflect the extent of microbial activity in breaking down organic matter and SOUR 

for a given sludge type has been shown to be a good indicator of active cell biomass and to 

vary with substrate concentration according to the Michaelis-Menten equation, thereby 

allowing prediction of final effluent quality to be made during transient loading conditions 

(Huang and Cheng, 1984). On-line applications of respirometry have been reported. The
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respirometric methods are relatively simple, fast, and economical (Mahendraker and 

Viraraghavan, 1995). To collect respiration rate data several respirometric measuring 

principles developed in the past are at the disposal of the modeller. These principles can be 

classified into a limited number of basic principles according to only two criteria: (1) the 

phase where O2 is measured, gas or liquid; (2) the flow regime of either gas or liquid phase, 

flowing or static (Spanjers et al., 1996). In all cases, the respiration rate is obtained from C>2 

mass balances over these phases. The work described by Vanrolleghem and Spanjers (1998) 

concerned a new hybrid respirometric principle obtained by combining the two different 

respirometric principles mentioned above, which was found to be particularly suited to 

sludge and WW characterisation in the context of activated sludge process models. On-line 

respirometry can be used to estimate the organic load to the plant (Brouwer et al., 1994), 

warn of incoming toxicity (Vanrolleghem et al., 1994), predict biodegradability of WWs, and 

predict effluent quality. Sometimes the term BOD monitor is used for respirometers, 

however, this is not to be confused with 5 days standard BOD since the monitor measures 

oxygen consumption using a biomass adapted to the WW typically during a few minutes 

(Olsson and Newell, 1999). The rapid oxygen demand and toxicity tester (RODTOX) can 

determine potential toxicity towards the aerobic process stage (Rozzi et al. 1999) and also 

the strength of the influent as short-term BOD (BODst) (Grijspeerdt et al., 1995). More 

details about the RODTOX can be found elsewhere (Vanrolleghem et al., 1994). 

Respirometric techniques can be used for simulation of process models and be used for on­ 

line control of activated sludge plants (Mahendraker and Viraraghavan, 1995). Low and 

Chase (1999) found OUR a useful control variable, however, there has been some 

controversy as to the utility of this variable. This is due partly to inadequate measuring 

techniques, difficulties in locating the instrument in the process and partly to a lack of 

understanding of the information content of respirometric data (IAWQ, 1995). Currently 

about 50 % of the commercial respirometer brands are based on a DO sensor (Spanjers et al., 

1998). Spanjers et al. (1998) published a book on the principles of respirometry in control of 

the activated sludge process. The work described in detail subjects such as the measuring 

principles, modelling respiration, the controller structures and manipulated variables. Typical 

examples of control objectives are: keep the MLSS concentration at 3 g I" 1 , let the DO follow 

a changing desired value and keep the actual respiration rate at 42 mg I" 1 h" 1 . Recently, Baeza 

et al. (2002) stated that their control system using in-line fast OUR measurements and ANN 

models was able to increase 10 % of the N removal in a nutrient removal plant.
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2.6.5. Biomass Activity

In activated sludge plants, the ratio of active to inactive solids can change through changes in 

raw waste characteristics or sludge retention time (SRT) as such biomass can be separated 

into vital biomass and necromass. Thus both MLSS and VSS may misrepresent the active 

biomass concentration (Austin et al., 1994). Viable cells can be stained with vital dyes and 

thus be differentiated from dead cells, allowing an on-line estimation of viable biomass and 

the cell morphology can also be analysed (Bittner et al., 1998). Sonnleitner et al. (1992) 

presented a review on biomass determination and stated that on-line estimation of the 

biomass concentration is no longer a matter of comfort but it is essential for control. On-line 

measurements of the activity of activated sludge biomass may allow efficient operation of 

WWTPs. For off-line determination techniques such as sonication followed by microscopic 

analysis, cytometry and also by indirect methods such as degydrogenase activity have been 

used. However, some methods do not provide the viability of the cells and/or they are very 

laborious, time-consuming, difficult to calibrate and questionable to validate. A series of 

sensors and methods that can be automated have appeared in the last decades. Many of them 

rely on optical measuring principles, others exploit filtration characteristics, density changes 

of the suspension as a consequence of cells, or (di)electrical properties of suspended cells 

and even exploiting the heat generated during growth and other metabolic activities of 

organisms, which is also proportional to the amount of active cells in a reaction system (cited 

by Sonnleitner etal., 1992).

A relationship between activities of enzymes, particularly those important to oxidative 

substrate removal, in activated and microbial numbers has been suggested. Biochemical 

activities of oxidation pond contents sampled throughout a year showed that variation in the 

activity of catalase and phosphatase seemed to be directly related to bacterial number 

(Hosetti and Patil, 1988). Also Richards et al. (1984) demonstrated good correlations 

between various enzymatic activities and respiration rate in studies on 14 activated sludge 

plants. Catalases are a type of hydroperoxidase which scavenges H2 O2 and protect cells from 

damage caused by reactive oxygen species. Catalase is an iron porphyrin protein, which is 

reduced by H2 O2 and reoxidised by O2 . This enzyme is produced in living cells and 

decomposes the toxic excretory product H2O2 into water and oxygen (Hosetti and Frost, 

1998). Catalase activity is widespread in plants (Kimborough et al., 1997) and animal cells,
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with its detection being a parameter in bacterial classification schemes. Catalse activity is 

routinely monitored as disappearance of H2O2 followed spectrophotometrically (Aebi, 1974) 

or by titration (Scott and Hammer, 1961). The measurement of catalase activity indicates the 

biological activity and organic strength of the wastes. A study by Hosetti and Frost (1998) 

revealed that the catalase measurement can be used as an alternative to BOD in monitoring 

activated sludge plant effluents. Catalase tests require only a short period of time for 

completion and are effective over a wide range of temperature and pH. A novel monitor by 

Guwy et al. (1998) for measuring biomass catalase activity, which can be used on-line 

follows oxygen evolution from H2 O2 by catalase activity in activated sludge. During studies 

performed by the authors, the biomass activity determined by the monitor correlated well 

with the respiration rates and should provide a simple and robust alternative to OUR 

measurements in activated sludge plants. The monitor provided a robust, low maintenance 

and non-invasive on-line measurement of a parameter related to active aerobic cell mass, 

unaffected by fouling of a sensor, colour of the medium or the presence of inert particulate 

matter.

2.7. Performance Related Parameters for Biotreatment Processes

This section reviews parameters normally associated with the performance of the 

biotreatment processes i.e. organic strength, colour and aromatic amines. These paramaters 

are common to both biotreatment processes: anaerobic and aerobic.

2.7.1. Organic strength

The main aim of biological treatment processes is to reduce the organic content of the WW 

in order to be discharged to the environment and not violate discharge requirements set by 

the regulatory authorities. The oxygen demand is an extremely important measurement of 

WW quality as it measures the potential for oxygen depletion in the water, and therefore is 

an important indicator of organic pollution. Deoxygenation of water can seriously adversely 

affect the ecosystem, and is often used to define the level of pollution in the water 

(Stephenson and Judd, 1995). It is necessary to assess the overall efficiency of biotreatment
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processes as this has a direct bearing on the quality of the final effluent and the economy of 

the process. A decrease in efficiency would be indicative of failure of the process and can 

therefore serve as a control parameter. However, for example a low COD removal efficiency 

may be recorded for an effluent which is not giving rise to inhibition, but which simply has a 

large component of non-biodegradable though chemically oxidisable material. Another 

parameter of the efficiency is the percentage conversion of the organic content to biogas in 

anaerobic digestion. A description of the main measurements of organic content in WWs will 

follow. For each parameter off-line assays and on-line instrumentation is briefly described.

Biological Oxygen Demand (BOD)

BOD is the classical parameter to define the 'strength' of a WW. BOD is a measure of the 

biodegradable organics levels using suspended microorganisms (Stephenson and Judd, 

1995). Measured amounts of a WW diluted with prepared water are placed in a bottle. The 

dilution water contains a nutrient solution and is saturated with DO. The DO is measured at 

the start usually with a DO probe. Seed microorganisms are supplied to oxidise the waste 

organics if sufficient microorganisms are not already present in the WW sample. The 

primary reaction is metabolism of the organic matter and uptake of DO by bacteria releasing 

COz and producing an increase in bacterial population. The secondary reaction represents the 

oxygen used by the protozoa, which consume bacteria in a predator-prey relationship. The 

standard test has an incubation period of five days (BODs) or in some countries seven days 

(BOD7) at 20 °C (Olsson and Newell, 1999) and then the DO is measured again and recorded 

in mg I" 1 . Depletion of oxygen in the test bottle is directly related to the amount of degradable 

organic matter. Considering the time for the analysis the BOD test is certainly not suitable 

for operation/control purposes. Furthermore, BOD is not a single point value but is time 

dependent, also is not a precise measurement and the reproducibility is quite poor. Tests on 

real WWs normally show standard deviations of 10-20 % (Olsson and Newell, 1999). 

However, the regulatory authorities still use the BOD test to assess the organic content of 

WWs (Stephenson and Judd, 1995). Vanrolleghem et al. (1990) developed the RODTOX, an 

aerobic biosensor for rapid determination of the BODst (30 minutes) and correlated closely 

with the standard BOD5 value at 20 °C.
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Chemical Oxygen Demand (COD)

COD is widely used to characterise the organic strength of WWs. The test measures the 

amount of oxygen required for chemical oxidation of organic matter in the sample to CO2 

and H2O. The laboratory test procedure is to add a known quantity of standard potassium 

dichromate solution, sulphuric acid reagent containing silver sulphate, and a measured 

volume of sample to a flask. This mixture is vaporised at 150 °C and condensed for 2 hours. 

Most types of organic matter are destroyed in this boiling mixture of chromic and sulphuric 

acid. After the mixture has been cooled and diluted with distilled water and the condenser 

has been washed down the dichromate remaining in the specimen is titrated with standard 

ferrous ammonium sulphate (FAS) using ferroin indicator. Ferrous iron reacts with 

dichromate ion with an end point colour change from blue-green to reddish brown. A blank 

sample of distilled water is carried through the same COD testing procedure as the WW 

sample in order to compensate for any error that may result due to the presence of extraneous 

organic matter in the reagents. There is no uniform relationship between the COD and BOD 

of WWs except that the COD value must be greater than the BOD (Olsson and Newell, 

1999). An empirical correlation of COD to BOD for a particular WW can be determined 

(American Public Health Association - APHA, 1989) which is useful as this method takes 

only ~3 hours.

The COD test, however, cannot distinguish between biodegradable and inert organic matter 

(Germirli et al., 1991). The COD:BOD ratio provides an estimate of the proportion of 

biodegradable organic matter present in WWs (Gray, 1989). Baker et al. (1999) referred to 

the several interferences and potential sources for error in the COD test e.g. the volatile 

compounds are only oxidised to the extent with which they stay in contact with the liquid 

media (APHA, 1995) and the heat generated from adding sulphuric acid to the flask may 

drive volatile compounds out of the solution (Wolff, 1975). 'Even a trace of organic matter 

on the glassware or from the atmosphere may cause gross errors'. Standard Methods 

recommend that samples should have a COD greater than 50 mg I" 1 and lower than 

250 mg I" 1 . There are various commercial on-line COD monitors. For example, the RTM 

Arkon GIMAT COD monitor (RTM Ltd., Cheltenham, UK) that works based on an 

oxidation by H2O2 with a ± 5 % accuracy and a range of 0 - 5000 mg I" 1 . The short-time 

Phoenix on-line COD instrument (Envitech Ltd., Cardiff, UK) is similar in principle to the 

operation of the BIOX 1000. The On-line COD Analyser CT100 (Data Link Instruments)
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uses ultra violet (UV) spectroscopy and shows good correlations with manually performed 

COD, it does not need reagent, it works on unfiltered WW, it needs low maintenance, and 

the results are provided in 30 seconds.

Total Organic Carbon (TOC)

TOC measures the organically bound carbon in a WW sample. Unlike BOD or COD, TOC is 

independent of the oxidation state of the organic matter and therefore, it does not provide the 

same kind of information. TOC does not measure other organically bound elements such as 

nitrogen, hydrogen and inorganics that can contribute to the oxygen demand measured by 

BOD and COD (Queeney and Hoek, 1989). If an empirical relationship is established 

between TOC and BOD or COD then it can be used to estimate the accompanying BOD or 

COD. TOC is an instrumental analytical method, and its central principle is to convert 

organic carbon to CO2 and measure this product in the evolving gas phase. Commercially 

available TOC analysers oxidise organic carbon to CO2 and work based on the following 

principles: high temperature catalytic conversion (650-800 °C), UV radiation, chemical 

oxidants (e.g. persulphate), or combinations of these (Olsson and Newell, 1999). The CO2 

can be measured directly by a non-dispersive infrared (NDIR) analyser or it can be reduced 

to CH4 and measured by a FID in a GC. Inorganic carbon (1C) must be eliminated or 

compensated for since it is usually a very large portion of the total carbon (TC) in a WW 

sample. The determination of TC and 1C with the estimation of TOC by difference is a 

common procedure. Particulate matter is to be avoided because the retention time in the 

reaction chamber is insufficient to allow complete combustion. Moreover clogging may be a 

problem. Pre-filtration of the samples is therefore essential for proper operation. The trend is 

to replace COD and BOD with TOC measurements, considering that is a rapid technique, 

requiring less than 8 minutes and produce highly reproducible results (Laing, 1991). Wilson 

(1997) found a good correlation between TOC and COD for fresh influent (food WW) but 

lower correlations with 24 hour old influent and a poorer correlation still with effluent COD. 

However, the relationship between TOC and BOD showed a high correlation for all three 

types of samples: fresh influent, 24 hour old influent and effluent. Stephenson and Judd 

(1995) stated that COD:TOC ratios varied from 6.66 to 1.75 for different types of WWs. 

El-Rehaili (1994) measured TOC using a Dohrmann DC 190 TOC analyser and the author 

found the following relationship: BOD<TOC<COD.
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Total Oxygen Demand (TOD)

TOD is a more recently developed high-temperature (900 °C), rapid (5 minutes) combustion 

method, which makes use of zirconium oxide or platinum lead fuel cell. A constant amount 

of oxygen is added to a nitrogen carrier gas via a permeation chamber. Within the 

temperature controlled (60 °C) chamber, oxygen permeates through a length of permeable 

tubing carrying the nitrogen, yielding a constant oxygen concentration. The sample is 

introduced to the reaction oven through a valve. During the oxidation of the sample, oxygen 

is consumed, resulting in a lowering of the oxygen concentration of the carrier stream, which 

is sensed by the detector. TOD offers the advantage of simplicity of hardware because the 

analysis requires no reagents and is not affected by 1C concentration and does not require 

acidification or sparging. TOD also offers the advantage of determination of non-carbon 

substances e.g. ammonia, nitrates, sulphites, iron, and purgeable organics in the sample 

(Queeney and Hoek, 1989), which can also be a disadvantage. TOD reflects the oxidation 

state of the chemical compound (Lueck et al., 1981). Stephenson and Judd (1995) stated that, 

in general, TOD was higher than COD. Queeney and Hoek (1989) used the Ionics Model 

7800 TOD Analyser (Ionics, Inc., Watertown, Massachussetts) and were able to derive linear 

relationships relating TOD to both BOD and COD providing effective on-line control. 

However, the sample needed filtration and tight maintenance requirements.

Optical Sensing for Measuring Organic Strength

Absorption at particular wavelengths (such as 254 and 280 nm) has been found to correlate 

well with BOD, COD and TOC values. The UV absorbance at a wavelength of 254 nm has 

been found by most authors to provide a good correlation with the dissolved organic matter 

(e.g. MacCraith et al., 1994). hi principle, the absorption technique should provide a non- 

invasive and real-time method for the monitoring of the TOC, which can be correlated to the 

BOD (cited by Ahmad and Reynolds, 1999). However, instruments based upon absorption 

require optical components to be in constant contact with the sample, hi addition such 

instrumentation usually requires pre-sample filtration and frequent washing leading to 

increased maintenance. Ahmad and Reynolds (1999) stated that efforts to utilise this 

technique for industrial process monitoring have been frustrated by the rapid fouling of the 

light transmitting windows of the cell. A brief cross-comparison study, focusing upon several 

optical techniques including UV (254 nm) absorption spectrometry and optical fluorescence 

(excitation at 340 nm, emission measurement at 420 nm), together with established chemical
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methods for estimating TOC in a small range of water samples, has been made by MacCraith 

et al. (1994). The work has shown a useful correlation between proprietary measurements 

and both the near-UV absorption and fluorescence measurements made. The benefits of 

optical methods for the monitoring of TOC are many, as absorption and fluorescence do not 

require the addition of reagents or any special preparation of the sample and the processes 

involved in the monitoring are rapid (MacCraith et al., 1994). Spectroscopic techniques are 

well established and it has been applied to WW for on-line non-invasive monitoring of WW 

quality. Ahmad and Reynolds (1999) study have shown that there is a correlation between 

the BOD value of a WW sample and the fluorescence intensity at 440 nm from the same 

sample, however, the correlation is expected to be plant site-selective.

2.7.2. Colour

The visible spectrum contains regions' recognised by the human visual system in terms of 

colour e.g. between 490 and 500 nm is the colour red (cited by Warren, 1994). Since the 

issue of colour pollution became a major problem and in-depth research into dyehouse 

effluent treatment started, numerous methods of quantifying the extent of dye pollution have 

evolved. Here only two methods are referred: the method based on the British Standard (BS) 

6068 (1995) and the American Dye Manufacturers' Institute (ADMI) method.

There are a few important colour terms referred to in the BS 6068 (1995). Colour of water: 

optical property that causes the changing of the spectral composition of transmitted visible 

light. Apparent colour of water: colour due to dissolved substances and suspended matter not 

dissolved; determined in the original water sample without filtration or centrifugation. True 

colour of water: colour due to only dissolved substances; determined after filtration of the 

water sample through a membrane filter of pore size 0.45 jam. For the determination of the 

'true colour' using an optical instrument e.g. spectrophotometer (with an approximately 

range from 330 to 780 nm), the WW shall be examined for 3 wavelengths in the visible 

spectrum (436, 525 and 620 nm) and the result is an average of these three. Different colours 

cause maximum absorption at different wavelengths of the incident radiation. Strongly 

coloured water samples may need to be diluted before determination. Colours often depend 

on temperature and pH, therefore, the temperature and pH of the water sample are regularly
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determined in parallel with optical measurements and these results are reported with the 

other findings.

Different authors reported the use of distinct wavelengths for measurements, for example 

Lopez et al. (1999) used the 426, 558 and 660 nm wavelengths and Pak and Chang (1999) 

only the 410 nm as it is the maximum wavelength for absorbance of reactive dye yellow 

H-E4R. The Environmetal Agency in UK uses a methodology for defining consent limits and 

assessing compliance. It consists of the following: after filtration the absorbance values of 

the sample measured in a 1 cm cell normally at 50 nm intervals across the visible spectrum 

i.e. 400 - 700 nm. However, exceptions occur if intermediate peaks are present (Waters, 

1995). From these absorbance values, percentage removals at each wavelength can be 

calculated, and from this the mean colour removal can be calculated for a particular 

treatment technique. Consent limits are usually expressed as absolute limits for the 

wavelength within a particular range. The permitted colour of the discharge is calculated as 

cited in O'Neill et al. (1999a).

Munsell's approach forms the basis for another colour measurement method, the ADMI 

method (Alien et al., 1973; Laing, 1991). The ADMI colour numbering system has the 

principle that a light colour has a low value and a darker shade have a higher value. Different 

colours can have the same value since the Munsell number refers to colour strength rather 

than any colour in particular (i.e. two different colours could have the same value if they 

were both different from pure white by the same degree). This ADMI system is more 

accurate than other colour systems because it is somewhat independent of hue, but most 

sensitive to red (Michelsen et al., 1993). Therefore, the main advantage to this system is that 

it accounts for human perception of colour, and therefore it is practical for aesthetic 

applications. Wavelengths outside the visible spectrum are not considered since they are 

invisible to the human eye. Carliell et al. (1996) attempted to apply ADMI colour 

measurements to anaerobically digested textile wastes but, due to residual turbidity, the 

measurements proved unsuccessful. Ganesh et al. (1993) successfully applied the ADMI 

method to textile wastes, reporting decreases from influent to effluent of 1197 and 877 

ADMI units in one day in two separate digesters respectively. Other researchers have also 

used this method for colour monitoring e.g. O'Neill et al. (1999a) and Michelsen et al. 

(1993). However, both laboratory procedures and data calculations of the ADMI method are
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considered very tedious, so it has not been applied to field practice except in laboratory 

studies. However, the method has already been automated and used for feedback control to 

adjust the chemical dosing of oxidant for colour removal.

2.7.3. Aromatic Amines

Knowledge of qualitative and quantitative measurements of aromatic amines is important as 

the efficiency in the biotreatment stages can be assessed. Aromatic amines analyses were 

performed by HPLC by various authors e.g. Zissi and Cybertos (1996) and O'Neill et al. 

(2000b). HPLC-MS was used by Straub et al. (1992) to analyse and characterise azo and 

diazo dyes. However, other methods have been used. Schmidt et al. (1998) used solid phase 

extraction followed by derivatisation of the analytes to their corresponding iodobenzenes 

which were then analysed by means of a GC and electron-capture detection. Razo-Flores et 

al. (1997) analysed aromatic amine mixture by GC-MS and also colorimetrically at 440 nm 

after reacting with 4-dimethylaminobenzaldehyde-HCl according to a method previously 

described.

2.8. Modelling and Control of Biological Treatment Processes

Garrett (1998) cited that John Andrews, Professor Emeritus at Rice University, has often said 

'The course, which is usually titled Design of Water and WW Treatment Plants should 

instead be titled Design and Operation of Water and WW Treatment Plants with it being 

understood that operations include the quantitative description of dynamic behaviour and the 

use of control systems to convert unsatisfactory dynamic behaviour to satisfactory 

behaviour'. Control of biological processes is a multidisciplinary subject and it is reasonable 

to expect different approaches to mastering and practising it. Both, a strictly theoretical point 

of view and an ad hoc approach relying on intuition and hands-on experience are needed 

when designing advanced control systems (Steyer et al., 1995, 2000). Olsson and Newell 

(1999) published an excellent book on modelling, diagnosis and control of WWTPs. An 

IAWQ workshop on Instrumentation, Control and Automation (ICA) in WWT (Olsson, 

1993) listed the following incentives for ICA: tighter effluent quality standards and charges
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according to the effluent pollution; possibility for water recycling; decrement in landfill of 

sludge; constant improvement of sensors; and need for operational models. The same 

workshop listed also constraints such as: automation has been considered costly and has not 

been part of the initial design; there is a lack of reliable on-line sensors today; most sensors 

today do not allow long periods without extensive maintenance and calibration; most 

software systems are proprietary and are often quite unfriendly for the user.

Dynamic modelling of biotreatment processes has been largely studied and has shown to be a 

very powerful tool to improve monitoring and control of WWTPs (e.g. Steyer et al., 1995). 

Forecasting also plays an essential role in the control of dynamic systems (Harremoes et al., 

1993). Olsson and Newell (1999) stated that predictive controllers are the most successful of 

the advanced multivariable controllers in use in the process industries. Raychaudhuri et al. 

(1996) reviewed the growth and development of control engineering, leading to modern 

adaptive methods and finally to autonomous intelligent control. Methods to model and 

control plants with linear characteristics and unchanging parameters already exist. However, 

non-linear plants with time-varying internal parameters are more challenging and the so- 

called 'adaptive' methods have been developed to address this issue. Also other techniques 

have evolved with the abundance of powerful personal computers (PCs) that can 'learn' by 

using Al techniques such as ESs, fuzzy logic, search and genetic algorithms, ANNs, among 

others. 'Intelligent control' and 'neurocontrol' are terms that are recognised in the literature 

today as methods distinct from the more 'conventional' control methods, which included 

'adaptive' and 'stochastic' approaches for designing control systems (Raychaudhuri et al., 
1996). Some researchers believe that a mixture of the so-called 'intelligent' and 

'conventional' methods may be the best way to implement autonomous systems.

Adaptive means that a model is capable of adjusting to changes in both input and behaviour 

of the system (Novotny et al, 1990). Adaptive linear control of a non-stationary biological 

process is possible, however, the stability is only guaranteed for a defined set-point (Weiland 

and Rozzi, 1991). A non-linear adaptive control strategy overcomes the problems related to 

the non-linear behaviour of the biological process by external linearisation. It makes possible 

the construction of linear systems made of the controller and the process, where the non­ 

linear characteristics of each other are 'neutralised' (Weiland and Rozzi, 1991). This type of 

model works on a similar principle to a moving average (Fell, 1999). The variance allowed
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in the average is determined using previous data. This way the model is able to differentiate 

between background variability and significant disturbances likely to damage system 

performance (Fell, 1999). The key idea of the adaptive control design is to take advantage of 

what is well known about the dynamics of bioprocesses (basically reaction network and mass 

balances) while accounting for the uncertainty (mainly the kinetics) (Steyer et al, 1995).

RTC for WWTPs is nowadays considered a desirable goal for medium- to large-sized 

utilities for attaining better treatment efficiencies and improved compliance with discharge 

permit limitations (Capodaglio, 1994a). Control techniques such as deterministic models, 

stochastic models, ESs, fuzzy logic and ANNs were compared by Capodaglio (1994b) (i.e. in 

terms of speed, accuracy, confidence, adaptability and others) and evaluated against the RTC 

requirements (i.e. robustness, implementability, cost-factoring, and others).

Deterministic mathematical models rely on differential equations and kinetic parameters and 

coefficients to describe the process. Although, they may be useful for design and off-line 

simulation of treatment facilities, they are generally slow, require recalibration if system 

parameters change, and may be hard to reconfigure if the physical system is modified 

(Capodaglio, 1994b). Stochastic modelling (synonymous of time series analysis) is the 

methodology that deals with the study of a set of observations generated sequentially in time 

(Harremoes et al., 1993). Time series analysis processes of the Box-Jenkins type can be 

employed with good results for the identification of models of dynamic systems in a RTC 

scenario (Capodaglio, 1994a). Several applications of stochastic models to forecasting and 

control of treatment process time series have been reported in the literature. Univariate and 

multivariate processes were applied to predict daily values of several operational variables at 

the Green Bay (Wisconsin, USA) WWTP with good results (Capodaglio et al., 1992). These 

concepts have been incorporated into a prototype RTC system for the control of an activated 

sludge plant during hydraulic transients (Novotny and Capodaglio, 1992). Stochastic models 

are fast, forecasts are fairly accurate and confidence bands are provided, may be self-adapting 

to changing system conditions, depending upon implementation; 'black-box' type of models 

but they may provide insight of the physical behaviour of the system (Capodaglio, 1994b).

Capodaglio (1994b) evaluated ESs as follows: speed depends on the implementation 

(magnitude of database and number of rules); depends on the assembling expert's

55



experience; may not be generally applicable to every system or easily adaptable depending 

on specific software; robust, unless programming is incomplete; it is generally difficult to 

collect the expert's knowledge. Capodaglio (1994b) concluded that the fuzzy set theory is as 

follows: robust; more difficult to understand than ESs; easily adaptable if software is user 

friendly; priorities must be specified as functions; useful for approaching objective at a 

global level. The same author observed that ANN models have a fast speed of execution; 

good accuracy and confidence if adequate 'learning' is provided; self-adapting; impossible to 

extract additional information other than simulation results; and generally robust.

2.9. Conventional Modelling and Control for Biotreatment Systems

This section contains a brief review of the 'conventional' modelling and control systems 

applied to anaerobic and aerobic treatment systems.

2.9.1. Conventional Modelling and Control for Anaerobic Treatment 

Systems

The 'tools of the mathematical modeller's trade are the kinetic equations, rate constants, 

mass-balances and conversion coefficients that he/she uses to describe the process' (McCarty 

and Mosey, 1991). Mathematical modelling has gained increasing importance for better 

understanding of anaerobic degradation and assisted in design and operation of anaerobic 

reactors. Several dynamic anaerobic digestion models exist in the literature (e.g. Graef and 

Andrews, 1974; Costello et al., 1991a,b; Marsili-Libelli and Beni, 1996), which account in 

depth for biological degradation of organic matter, pH-calculation and BA balancing. 

Reference to various mathematical models has already been made in earlier sections.

Mechanistic dynamic models of the anaerobic treatment process have evolved from models 

based on a single group of bacteria converting a single substrate to CH4 (Andrews and Graef, 

1971), to models based on complex metabolic pathways mediated by several different groups 

of bacteria that convert degradable organic molecules to a variety of intermediate and end 

products (e.g. Mosey, 1983; Rozzi et al., 1985). Costello et al. (1991a) derived a dynamic
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model of a single-stage high-rate anaerobic reactor, based on the work of Mosey (1983) and 

included six groups of bacteria, by defining the biological make-up of the anaerobic 

ecosystem, the physico-chemical system, and the reactor process. The model included the 

accumulation of lactic acid under specific process conditions. Product inhibition and pH 

inhibition of each group of bacteria were represented in the model. Costello et al. (1991b) 

verified the developed model by comparing its predictions with previously reported 

experimental data.

The classical Michaelis-Menten model is widely used as the basis for modelling of a number 

of biological systems. Hoh and Cord-Ruwisch (1996) proposed a kinetic model, which 

allowed for the effects of substrate inhibition without the need to determine a large number 

of parameters experimentally. A simplified mathematical model for the behaviour of 

anaerobic digesters under shock loading conditions was derived by Marsili-Libelli and Beni 

(1996) with a special emphasis in BA. The model was then used with success to simulate 

other kinds of shock and to assess the design of a bicarbonate dosing PID controller.

Anderson and Yang (1992) mathematical model was able to predict the pH, the 

concentration of bicarbonate in the effluent, and the percentages of Q-U, CO2, and H2S in the 

biogas from several laboratory-scale reactors of different configurations treating different 

types of influent. The model showed that the composition of the WW, such as the 

concentration of VFA, sulphate, nitrogenous compounds, and COD had a profound effect on 

the chemical demands for pH control in anaerobic digestion.

Modelling and simulation of the anaerobic treatment of whey WW was performed by 

Ryhiner et al. (1993). A model including five groups of organisms, whey substrate, butyric, 

propionic, and acetic acids, CO2 , H2 and CH4 was developed for single- and two-stage 

anaerobic fluidised bed reactors. It included thermodynamic limitations for the acetogenesis 

reaction, acid-base equilibria of dissociating compounds (organic acids and CO2) for variable 

and constant pH situations, gas-liquid phase mass transfer, and measurement dynamics. The 

model was adequate to describe both the steady-state and dynamic behaviour of the reactors. 

Controls of pH, dissolved H2 , and organic acids, by manipulation of the feed flow rate, were 

successful in simulation and experiment. Simulations were used to determine optimal control 

parameters for conventional PI or PID control. Simple control using gas analysis results did
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not give stable control, either in the simulation or in the experiment. A comparison of PI and 

PID controls showed that because of the negligible delay time the differential part did not 

give any improvement.

Merkel et al. (1999) studied the population dynamics in anaerobic reactors. The effects of 

changing WW composition and SRT on an anaerobic mixed population were modelled and 

compared with the results from continuous degradation studies of a lactic, butyric, propionic 

and acetic acid containing WW. The mathematical model was successful in simulating 

organic substrate degradation, pH in the reactor, liquid-gas transport of gaseous products and 

the long-term development of the anaerobic consortia.

A review of control studies applied to real processes can be found in the excellent paper by 

Heinzle et al. (1993). The controller type on-off, P, PI, PID, adaptive, and generic model 

control were used by various researchers (Heinzle et al., 1993). However, as reviewed by 

Heinzle et al. (1993), most of the applied control algorithms were conventional PID type and 

comparisons of experimental data with simulation results were rather scarce. A PID 

algorithm is much more sophisticated than the simple on-off controller and has normally a 

much improved performance to match. Several questions must be addressed when 

implementing the controller such as a proper sampling interval and tuning (Olsson, 1992). It 

is necessary to determine values for the three constants and this determination requires a 

three-dimensional search in the feature space of the variables to be performed (Wilcox et al., 
1994). hi some instances it is not always necessary to utilise all the controller terms. Denac et 

al. (1990) successfully regulated the effluent quality of an anaerobic fluidised bed reactor, 

expressed in TVFA concentration, using an on-off control algorithm, with alkaline 

consumption as the controlled variable and feed rate as the manipulated variable during an 

organic overload, and found it gave a reasonably constant effluent quality level. However, 

the authors stated that in the case of WWs of widely varying composition and alkalinity, an 

adaptive algorithm may be necessary. Because anaerobic processes are complex, non-linear 

and non-stationary, conventional control is often unable to regulate this type of process, in a 

simple and stable manner (Polit et al., 1995). von Sachs et al. (2000) proposed a control 

strategy, a 'conducted' PI algorithm, for the two-stage anaerobic digestion of textile WW 

containing sodium chloride. The conduction was performed by certain logical rules for 

specific constraints on the dilution rate. The control law used the relative specific CH4
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production rate as control variable and the dilution rate as manipulated variable and it was 

successfully tested on a laboratory scale digester.

Non-linear adaptive control algorithms have been developed by various researchers e.g. 

Bastin and Dochain (1988), Renard et al. (1988) and van Breusegem et al. (1990). Bastin and 

Dochain (1990) reviewed the principles of adaptive control methods and their application to 

bioreactors. Dochain et al. (1988) proposed algorithms that did not require any analytical 

expression for the fermentation parameters (like the specific growth rates) and assumed that 

the dilution rate was the manipulated variable. They have adaptively controlled the substrate 

concentration, the BA and the H 2 concentration. They used VFAs, BA and H2 concentration 

(also considered by Dochain et al., 1991) as control variables in simulation. As the model is 

generally non-linear, the model-based control design will result in an adaptive linearising 

controller (Bastin and Dochain, 1990), in which the on-line estimation of the unknown 

variables (component concentrations) and parameters (reaction rates and yield coefficients) 

are incorporated. An adaptive linearising controller based on COD measurements has been 

designed, theoretically analysed and experimentally validated on pilot anaerobic digesters 

(e.g. Renard et al., 1988), however, this control solution need on-line COD (or equivalent 

substrate concentration) measurements. Alternatively, Dochain et al. (1991) suggested the 

use of H2 as a controlled variable. In this control scheme a four organism Mosey type model 

was used and the H2 level was controlled by measuring the inflow glucose, the outflow H2 

gas and the liquid phase H2 concentration on-line and by manipulating the inflow rate. 

Numerous simulations tested the controller under a range of conditions, including a 

comparison with simple PI control and this approach appeared to be a promising way of 

including some of the model complexities into an adaptive controller design (Heinzle et al., 

1993). Adaptive linearizing control strategy has also been tested by van Breusegem et al. 

(1990) through simulations, indicating that BA control would be desirable and successful, by 

manipulation of the dilution rate. This control allowed maintaining the VFAs level within 

admissible bounds. Perrier and Dochain (1993) evaluated adaptive non-linear controller 

designs for various controlled variables for the operation of the anaerobic digestion process. 

The selected control variables were the COD, propionate concentration and dissolved H2 

concentration, being the manipulated variable the dilution rate. In addition the controller 

required knowledge of the CH4 flow rate and influent substrate concentration. Their
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simulation results have shown that each controller was able to maintain the controlled 

variable at the desired set-point after a step change in influent substrate concentration.

Polihronakis et al. (1993) developed three non-linear adaptive control algorithms for a CSTR 

type of anaerobic reactor, for control of: substrate concentration, CH4 production rate and a 

strategy which is a combined method of the two previous control schemes. They measured 

gas flow rate, CTU and CC>2 % in the gas, pH, and temperature. These algorithms were 

applied on a municipal WWTP with success. Johnson et al. (1995) described the application 

of an adaptive algorithm for the monitoring and control of industrial effluent fed laboratory- 

scale anaerobic filters during shock loads. They used deduced on-line COD (from on-line 

conductivity and turbidity measurements), gas flow and CH4 to vary the influent pumping 

rate. The control model used was based on that reported by Renard et al. (1988). Fell (1999) 

later developed an adaptive control strategy for coping with organic load fluctuations and the 

toxicity effect from some fractions of the instant coffee production WW. The control strategy 

involved the same on-line measurements as in Johnson et al. (1995). The control system was 

shown to be effective at smoothing out organic load fluctuations to the digesters by 

controlling the feed pump. However, severe inhibition and failure of the digestion process 

was demonstrated to occur in the presence of a toxic substance.

Monroy et al. (1996) presented the design and implementation of an adaptive controller for 

anaerobic digesters using a general non-linear model and an uncertainties estimation scheme. 

The resulting controller was similar in form to standard adaptive controllers and could be 

tuned analogously. It does not require biogas flow rate measurements only the substrate 

COD. Implementation of such control strategy was carried out in a pilot-scale digester under 

changing environmental (temperature, pH) and feed load conditions. They compared the 

control results with those obtained with a conventional adaptive strategy and found good 

performance and robustness against changes in the feed load even though gas measurements 

were not used.

60



2.9.2. Conventional Modelling and Control for Aerobic Treatment Systems

Dynamic models of enhanced complexity have been developed in order to incorporate a 

more detailed description of the reactions and phenomena taking place in activated sludge 

reactors. In comparison there has been a lack of structure in many thickener/clarifier models 

(Jeppsson and Olsson, 1993). Activated sludge models (ASMs) range from the simple 

steady-state models (e.g. Eckenfelder, 1980), which are widely utilised, to the more complete 

and complicated dynamic models, that take into account changes of flowrate, composition 

and concentration of the influent WW (El-Rehaili, 1994). ASMl allows for the dynamic 

simulation of nitrification-denitrification in a variety of activated sludge flow schemes 

(Henze et al., 1987). It has been proven to be a successful model in many applications for 

BOD and N removal. However, the complexity of the model and the detailed WW and 

microorganisms growth and decay data required by the model made it unappealing in the 

past for utilisation by process designers and operators. ASMl requires determination of 

about 35 parameters, coefficients and variables and a large number of them are not routinely 

measured even by large WW disposal utilities (Grady, 1989) or are of uncertain 

determination. Chen and Beck (1993) described the development of a multiple-species model 

(modified from the ASMl) of the activated sludge process (reactor and settler). The model of 

the system incorporated within a Kalman filter was for on-line forecasting i.e. for predicting 

the likelihood of bulking occurring; and on-line estimation of the composition of the biomass 

and the relative growth rates of the floe-forming and filamentous bacteria. Cheng and 

Ribarova (1999) investigated the feasibility of upgrading a conventional activated sludge 

process for biological N removal. They used the ASMl as a base for modelling of the 

activated sludge system with calibration with data from the plant operation. Very good 

correlations between measured data and simulation results were achieved, however, they 

found that characterisation of the actual WW was necessary. Vanrolleghem et al. (1999) 

presented a concise overview of respirometric experiments for the calibration of ASMl.

The ASM2 further accounted for biological phosphorus removal (Henze et al., 1995; Zhao et 

al., 1999). This model provided detailed biological kinetics and reflected the state of art on 

the understanding of nitrification, denitrification and biological P removal. The ASM2D, an 

extension of ASMl and ASM2, is a model for biological P removal with simultaneous
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nitrification-denitrification in activated sludge systems (Henze et a/., 1999). The ASMS can 

predict oxygen consumption, sludge production, nitrification and denitrification of activated 

sludge systems (Gujer et al., 1999). ASMS includes storage of organic substrates as a new 

process and the lysis (decay) process was exchanged for an endogenous respiration process. 

It is provided in a form, which can be implemented in a PC code without further adjustments. 

It does not include biological P removal as it is contained in the ASM2.

One of the major reasons for developing dynamic models is for use in process control 

systems, which are designed to convert unsatisfactory to satisfactory dynamic behaviour. The 

types of conventional controllers applied to the activated sludge process are on-off, PID, 

cascade, self tuning, and adaptive (Andrews, 1992). The author also stated that it is usually 

not necessary to apply complex multi-input multi-output (MEVIO) controllers, as the plant 

can be controlled by many simple controllers instead.

DO concentration is regarded as the most important control parameter in the activated sludge 

process. Today, DO control is the standard at Scandinavian plants and DO sensors are used 

in almost 100 % of the full scale plants (Olsson et al., 1998). The control of the pH process 

plays also an important role in activated sludge process. However, pH control has been a 

difficult problem due to its non-linearities and time-varying properties (Shinskey, 1994). 

Many authors proposed non-linear pH control strategies to overcome these drawbacks (Lee 

et a/., 1998). These researchers developed an automatic control for DO and pH. A discrete 

type auto-tuned PI controller using an auto-regressive exogenous (ARX) model as a process 

model was developed to maintain the DO concentration in aeration tanks by controlling the 

speed of surface aerators. Also a non-linear pH controller using the titration curve was used 

to control the pH of influent WW with NaOH addition. They stated that both controllers 

were successful and that the electric power consumption of surface aerators was reduced up 

to 70 % with respect to the full operation when the DO set point was 2 mg I" 1 and overall 

improvement of the effluent water quality was achieved by DO control.

Klapwijk et al. (1993) presented an integral control strategy for a maximum respiration rate 

in activated sludge plants for the following control tasks i.e manipulation of the influent flow 

rate and of the WAS. It also monitored the instantaneous respiration rate for performance 

information. They concluded that the control strategy based on respiration rate measurements
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could be used: to have an optimal biomass concentration; to treat the maximum WW; with a 

minimum amount of air; while at every moment the effluent quality should meet the 

standards. Later, Brouwer et al. (1994) developed a control system for an activated sludge 

plant based also on respirometry (Spanjers and Klapwijk, 1990). They concluded, by 

simulations, that controlling the respiration rate by manipulating the WW flow rate was a 

satisfactory method preventing huge fluctuations in the COD load of the carrousel, and on 

the WAS flow rate, and a day/night control of the aerators would result in energy cost 

savings between 11 and 21 % (at night - lower energy costs, the respiration rate was 

controlled at a higher value).

Lindberg and Carlsoon (1996) stated that the use of adaptive controllers was appropriate to 

identify unknown or time-varying parameters and to compensate for the lack of direct 

process measurements. They developed non-linear and set-point control of the DO 

concentrations in an activated sludge process. Simulations illustrated that a non-linear PI DO 

controller outperformed a standard PI controller, which was also confirmed in a pilot-scale 

plant experiment.

2.10. The Use of AI Techniques for Modelling and Control of 

Biotreatment Processes

The potential of AI was first described in the 1940s, but the computational power required to 

use it as an on-line control technique was unavailable at that time. Since then the 

extraordinary advances in the computing field has resulted in the ability to utilise AI 

technology more thoroughly. However, it was only since 1980s that there has been a large 

increase in the number of publications on AI applications in a multitude of fields. According 

to Russel and Norvig (1995), there are numerous definitions of AI and are organised into two 

different approaches, hi a human-centred approach it must be an empirical science, involving 

hypothesis and experimental confirmation. In a rationalist approach involves a combination 

of mathematics and engineering. Among AI tools and techniques are data base search 

techniques, logic and deduction methods, ESs, fuzzy logic, qualitative simulation, and 

ANNs. The recent development of these approaches in the design and operation of biological 

processes is reviewed by Shioya et al. (1999). The primary attraction of AI techniques is that
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they are able to represent systems with non-linear characteristics, without the (often) difficult 

task of dealing with deterministic non-linear mathematics.

Existing modelling strategies may be divided into three categories, namely, 'white-box', 

'black-box' and 'grey-box', based on the type of knowledge used for the model development 

(Bailey, 1998). In the 'white-box' modelling strategy, the model development is mainly 

driven by the knowledge of the relevant mechanisms and balances. The 'black-box' model is, 

on the other hand, mainly driven by measured data obtained from the process e.g. ANN 

models (Shioya et al., 1999). However, ANN based models are only as good as the data that 

was used to calibrate them (Maier and Dandy, 1997). Since 'black-box' models such as 

ANNs are not believed to have any extrapolation properties, one has to obtain a large body of 

data for process identification by employing the relevant input variables with a range of 

fluctuations. A 'grey-box' model may be defined as a suitable combination of 'black-box' 

and a 'white-box' model, with the expectation of obtaining good interpolation and 

extrapolation properties (Shioya et al., 1999). An example is shown in Cote et al. (1995).

ESs and fuzzy logic rely on rules which have very intuitive basis such as if<condition> 

then<outcome>, although there are significant differences in implementation. Advantages 

and disadvantages of rule-based systems were already referred to in Section 2.8. Fuzzy rules 

can be defined just as conventional rules. However, the value portion of the attribute-value 

pairs are defined by fuzzy sets using fuzzy membership function, which usually has values 

between 0 and 1 (Andrews, 1992). Fuzzy models are a compromise between the vague 

statements which humans often use and the strict logic of ESs and quantitative answers 

provided by other mathematical models. No complex mathematical relationships are required 

in the construction of fuzzy logic applications. Besides, it is conceptually easy to understand, 

flexible and tolerant of imprecise data allowing the modelling of complex non-linear 

functions (Punal et al., 2000). Fuzzy control theory can easily be extended with additional 

heuristic rules when for example information on the expected influent or sludge 

characteristics is to be applied (Kalker et al., 1999). The same author stated that a drawback 

of fuzzy control is that tuning may be time consuming since there are many tuning 

parameters. Also, the main difficulty is to define the number of necessary rules which can be 

wording rules or functional rules (numerical laws) (Jauzein, 1998). Fuzzy logic may also be 

mixed with conventional control techniques.
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The most commonly used tool in WWT is the ES (Andrews, 1992). Since the middle of the 

1980s, several demonstration and research projects using ESs for control of WWTPs have 

been started in different countries such as Canada, USA, Japan, Sweden and Denmark 

(Harremoes et al., 1993). Known examples of intelligent control of WWTPs are in the city of 

Vienna, which has been using fuzzy control since 1992. Hoechst has used fuzzy control in 

the aerobic processing step in WW recycling plants in Germany (Manesis et al, 1998). 

Muller et al. (1997) described a RTC scheme to cope with input disturbances in WWT 

processes, based on a fuzzy control system. The plant treated baker's yeast and consisted of a 

buffer tank, a fluidised bed reactor, aerobic tank, settler, nitrification, settler, denitrification 

and settler. The control system was designed and tested using a pilot plant, to which a toxic 

disturbance was applied. The influent flow could be straightly directed to the aerobic stage 

and the final effluent could be used for dilution of the incoming WW. For this purpose the 

fuzzy process control system was subdivided into a diagnosis and a control unit. The fuzzy 

diagnosis unit was based on a fuzzy pattern recognition algorithm using biogas H2 

concentration and biogas flowrate from the anaerobic pre-taster as process indicators. Four 

typical behaviours (normal, overload, inhibition, toxicity) were selected to train the 

diagnostic, which evaluated the degree of agreement between the incoming data and the 

predefined behaviours, in fuzzy terms.

2.10.1. Al Applications for Modelling and Control of Anaerobic Treatment 

Systems

hi the literature, several approaches can be found where ES technology was applied for the 

anaerobic treatment of WWs. The ES developed by Barnett and Andrews (1992) contained 

knowledge necessary to diagnose and specify control actions properly for correcting 

hydraulic, organic, toxic, and ammonia upsets in anaerobic digestion. The measurements 

were: influent VS, influent flow-rate, pH, VS, VFAs, gas flowrates, %CH4 and rate of CH4 

production. The manipulated variables were the influent flow rate, sludge recycle, dilution, 

acid or base addition. Moletta et al. (1994) developed an ES to control fluidised-bed 

laboratory and pilot scale reactors during several kinds of organic overloads. They monitored 

on-line the pH, biogas production and its concentration of H2 to be used by the ES. The 

automatic control system calculated the flow rate of the feeding pump in order to adjust
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continuously the load applied to the reactor. Hoist et al. (1995) used an algorithm similar to 

an ES called Methaveil to monitor and control a full scale anaerobic fluidised bed reactor. 

Methaveil used the same three on-line sensors as Moletta et al. (1994). The control output 

was either that the reactor was: stable and could accept a higher feed flow rate; stable but 

could not accept a higher feed flow rate; or not stable and the feed flow rate had to be 

reduced. The controller was tested for an organic overload and the H2 was seen to increase 

from a steady base line of 65 ppm to 120 ppm, the control action of slowing feed pump speed 

resulted in H2 decreasing to a new higher steady state of approximately 100 ppm. The 

Methaveil enabled a rapid start-up of the reactor, allowed the immediate detection of 

overloads and other abrupt changes in the effluent quality and increased the stability of the 

reactor by directly controlling the feed flow rate. There were four full-scale anaerobic 

fluidised bed plants using this system, treating a variety of different WWs i.e. starch, paper 

and perfume (Hoist et al., 1997).

Fuzzy control strategies have also been applied to the control of anaerobic processes by 

several authors, all reporting some success. Polit et al. (1995) used a fuzzy logic control 

system for a fluidised bed reactor. They measured CH4 flow rate to control the input flow 

rate. Their results proved that fuzzy control was a good and simple way to improve the 

working of this type of digesters. Estaben et al. (1997) used also a fuzzy logic controller for a 

fluidised bed reactor treating wine distillery WW. The gas flow rate and the pH were used as 

input parameters to the controller and the input flow rate was used as the manipulated 

variable in order to ensure a good COD reduction. The controller was evaluated with success 

on a quantitative model, and on a real process. Pufial et al. (2000) setup a fuzzy system for 

the diagnosis and supervision of anaerobic digesters with data from Dochain et al. (2000). 

They monitored on-line the biogas flowrate, feed flowrate, CH4 and CC>2 concentrations in 

biogas. The system worked properly after tuning, it could predict the future trend in the 

system and estimated the best set points for pumps, the system could also validate the on-line 

results and detect the presence of toxic compounds, which could destabilise the operation, hi 

Bernard et al. (2000), a mass balance based model representing the dynamic behaviour of an 

anaerobic digester served as a basis for the design of software sensors for the concentration 

of COD, alkalinity and VFAs. These predictions were close to the actual off-line 

measurements. The models were then used to design a model-based adaptive linearising 

controller and a fuzzy controller whose objective was to regulate the BA under which the
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process was assumed to remain in stable conditions and avoid VFA accumulation. The fuzzy 

controller acted on the input flow rate. They stated that both controllers proved successful 

and the choice between the two controllers would be imposed by the situation.

2.10.2. AI Applications for Modelling and Control of Aerobic Treatment 

Systems

A discussion of the application of ESs to the activated sludge process has been given by 

Barnett (1992). An ES for automatically adjusting phase lengths (nitrification-denitrification) 

and aeration intensity for an activated sludge nutrient removal was examined by Isaacs and 

Thornberg (1998) using simulations based on the ASM1.

Tsai et al. (1993) used fuzzy control of a dynamic activated sludge process for the forecast 

and control of effluent SS concentration and further predicted the MLSS concentration in the 

aeration tank. They measured COD, MLSS, SS, turbidity and DO. It revealed that the control 

strategy not only enabled one to decrease effluent SS concentration, and hence decrease the 

effluent BOD, but also made it more stable. The varied RAS and influent flow rate were two 

major operational factors of those affecting effluent SS concentration. A fuzzy logic based 

control system was developed and tested by Ferrer et al. (1998) in the main aerobic reactor of 

a process pilot plant and it was compared with one- and two-aeration-level on/off controllers. 

Energy savings of about 40 % over the one-level on/off controller and a more stable closed- 

loop response was obtained. Kalker et al. (1999) developed two types of fuzzy logic 

controllers for intermittent aeration control: a low-level fuzzy controller for DO control and a 

high-level controller for N removal. A model was used to subsequently design and optimise 

the controller and furthermore to compare various control strategies. The results indicated 

that the fuzzy controller allowed improvements in comparison with a PI controller, namely in 

terms of energy consumption and at the same time, resulted in a slightly better effluent 

quality.
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2.11. The Use of ANNs for Modelling and Control of Biotreatment 

Processes

ANNs contain some features that were inspired by biological neural networks (Westland, 

1998) and are comprised of many interconnected neurones or processing elements/units. The 

human brain can learn, recognise, has intuition and can interpret information (Westland, 

1998). The structure of the human brain is extremely complex, with approximately 10 11 

neurones and between 10 14 and 10 15 synapses (Willis et al., 1991). Whilst the function of 

single neurones is relatively well understood, their collective role is less clear and a subject 

of enthusiastic speculations.

A single neurone cannot do very much. However, several neurones can be combined into a 

layer or multiple layers that have great power. An ANN is a massively parallel system 

consisting of large numbers of neurones joined together usually into groups called layers 

(normally the input, hidden and output layer). A typical network consists of a sequence of 

layers with the connection weights between successive layers (Jain et al., 1996). ANNs can 

'learn' (off-line and on-line) from 'training data' and are in reality a form of mathematical 

function approximators. ANNs have emerged as very powerful tools for designing intelligent 

control systems or 'neurocontroF. ANNs have several advantages over expert control 

methods. It requires no explicit encoding of knowledge, which makes them well suited to 

applications where knowledge extraction is difficult or in cases where the interrelationships 

between process parameters are hard to model. ANNs have what is known as distributed 

associative memory, in which an item of knowledge is distributed across many of the 

memory units in the network and is shared with other items of knowledge stored in the 

network. Therefore, ANNs have the ability to learn and build unique structures specific to a 

particular problem, such as the indications of a specific type of shock to an anaerobic system. 

They can generalise, intelligent responses to novel stimuli are possible by the combination of 

knowledge in the network layers. ANNs have fault tolerance, even if a section of the network 

is destroyed it will not result in a total breakdown. The generalisation capability of ANNs, 

along with their adaptive, self-organising, and fault-tolerant characteristics, allow them to 

learn and make reasonable decisions from incomplete or noisy data. Mohan and Keshavan 

(1998) stated that because of the highly connected structure, ANNs exhibit some desirable
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features, such as high-speed via parallel computing, resistance to hardware failure, 

robustness in handling different types of data, graceful degradation, learning and adaptation. 

Once a network is trained to perform a particular task, new information can easily be 

incorporated by re-training and therefore, the ANN becomes a dynamic data analysis tool 

that grows with the data (Collins, 1990). Actually, a regular re-training schedule must be 

established as a check of the ANN validity (Boger, 1992).

Neural computing has experienced three periods of extensive activities. The first peak in the 

1940s was due to the pioneering work by McCulloch and Pitts (1943) in modelling the 

function of a biological neurone (modelling of the first single artificial neurone) followed by 

Hebb (1949) who postulated the learning technique that made a profound impact towards the 

future development of the field. The second phase took place in the 1960s, due to the concept 

of the 'Perceptron' (predecessor of the modem MLP network) and the learning algorithm of 

Rosenblatt (1962) who formulated the first weight adjustment mechanism, followed by the 

work by Minsky and Papert (1969) revealing the limitation of the single layer 'Perceptron' 

network. The learning scheme of Rosenblatt (1962) could not solve problems, which require 

the construction of multi-layer perceptron (MLP) networks in order to deal with complex 

non-linear problems. As a result ANN research lapsed into stagnation for almost two 

decades. Since the 1980s renewed interest motivated more work into the development of 

ANN architecture and the associated learning scheme. Among the many who contributed to 

this resurgence include Hopfield (1984) who introduced the recurrent network (RN) 

architectures; Rumelhart and McClelland (1986) on the popular backpropagation (BP) 

learning algorithm for feed-forward (FF) MLP network or more commonly known as the BP 

network; Kohonen (1989) for work on associative memory for unsupervised learning 

network for feature mapping. Neural computing is nowadays, one of the fastest growing 

areas of AI (Meszaros et al, 1997). hi the future, the combination of ANNs with ESs, 

classical algorithms and complementary tools will generate the more interesting data 

treatment technologies. The fundamental and complementary characteristics of fuzzy and 

ANNs technologies have led researchers to combine them in 'neuro-fuzzy' or 'fuzzy-neuro' 

systems, which are suitable for complex and ill-defined applications (Panigrahi, 1998), for 

control system design (Raychaudhuri et al., 1996). Fundamentals of neural fuzzy modelling 

for anaerobic WWT systems have been presented comprehensively by Tay and Zhang
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(1999). Collins (1990) presented 15 software packages for ANN development from low cost 

ones to the most complex and expensive ones.

ANNs are able to map the complex non-linear input/output relationships in the data (Baxter 

et al., 2001). They are better at interpolating than extrapolating (Boger, 1992). ANNs are 

well suited to situations where sufficient information/data can be gathered for training and 

where the use of linguistic rules to interpret the outcome of the complex non-linear process is 

almost impossible. Careful selection of a data range is needed for training the chosen 

network to avoid erroneous extrapolation (Boger, 1992). The data set should be sufficiently 

rich to excite different modes of the bioprocess being studied, and a compromise must be 

made with respect to the number of parameters, the size of the data set, and the accuracy 

desired (Karim et al. (1997). Boger (1992) advised to have an external program serving as a 

watchdog by comparing the input values against the range of input values in the training data 

set to give some warning if a significant input is outside the learning data range. The relevant 

issues to achieve faster convergence during training and a better trained network are: 

architecture (number of hidden layers and hidden units); network initialisation procedure 

(initialising weights and biases); sufficient amount of representative data; momentum term; 

activation function; and stopping rules (preventing over training). The ability of the network 

to approximate non-linear functions is dependent on the presence of hidden layers with non­ 

linear functions neurones. Some of the frequently used non-linear transfer functions are of 

the type threshold, sigmoid, hyperbolic tangent and gaussian (Hunt et al., 1992). The most 

widely applied non-linearity is a sigmoidal function in the interval (0, +1 or -1, +1) 

(Montague and Morris, 1994). Two hidden layers could be beneficial, but theory indicated 

that more than two provided only marginal benefit in spite of the major increase in training 

time (Ungar et al., 1995). The number of nodes in the hidden layer(s) can be as small or large 

as required, and is related to the complexity of the system being modelled and to the 

resolution of the data fit required. A bias is included in order to be able to modify the 

position of the non-linear function (Montague and Morris, 1994) so that the network can 

represent better the input/output relationships (Demuth and Beale, 1994). It is important to 

choose the number of hidden neurones carefully since too many hidden neurones will cause 

the network to memorise the training examples (and result in poor generalisation) or 

overfitting (Chitra, 1993) while too few hidden neurones will not be able to capture the 

underlying trend in the data (Cote et al., 1995; Tholudur and Ramirez, 1996). Thus resulting
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in learning the noise present in the database used in training (Linko et al., 1998). There is no 

exact rule to specify the optimum number of hidden neurones needed, and as initial 

connection weights are not known in advance, random numbers are chosen (Boger, 1992). 

Overfitting may also be caused by an insufficient database (Boger, 1992).

Network Architectures - ANNs can be grouped into two categories based on the network 

connection architecture, namely feed-forward networks (FFNs) and RNs. In the FFNs 

neurones are organised into layers where information is passed from the input to the final 

output layer in a unidirectional manner whereas in RNs, feed-back connections within the 

network either between layers and/or between neurones can be found (Jain et al., 1996). In 

general, FFNs are static, they are capable of mapping the given set of inputs to the 

corresponding outputs i.e. the output is independent of the previous input and output of the 

network. RNs on the other hand are dynamic, meaning the output at time instant t, is 

dependent on the previous output or state of the neurones within the network as a result of 

the feed-back paths. An excellent introductory material on ANNs, particularly on the various 

ANN architectures, can be found in the publication by Jain et al. (1996). An example of a 

FFN is the MLP (Rumelhart and McClelland, 1986) and of a RN is the Elman network 

(Elman, 1990).

Learning - In general the learning process in an ANN involves updating of the network 

weights and/or architecture in order to efficiently perform a particular function. Very often 

the network must learn from the given examples by iteratively adjusting the connection 

strength in the network so that its performance is enhanced with training. ANN learning can 

be broadly classified into supervised and unsupervised. Supervised learning as the name 

implies, requires an external reference (teacher) to pair each input vector to the network with 

a target vector representing the desired output (Hunt et al., 1992). When an input vector is 

introduced, the network proceeds to calculate the output, and the error (between the target 

and the output) is often used to modify the weights according to an adopted learning 

algorithm that tends to minimise the prediction error. The training input vectors are passed 

sequentially through the network and errors are calculated followed by weight adjustments 

for each training iteration, until the error for the entire set of training vectors reaches an 

acceptable level (as specified by the designer) (Demuth and Beale, 1994; Jain et al., 1996). 

Examples of supervised learning algorithms include the BP algorithm (Rumelhart and
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McClelland, 1986) and the LVQ algorithm (Kohonen, 1989). Unsupervised training requires 

no target vector for the training input vectors presented to the network, hence, no 

comparisons are done to predetermine the ideal responses. The training set consists solely of 

input vectors. The training algorithm modifies the network weights to recognise vectors that 

are consistent. Hence the training algorithm essentially extracts regularities and correlations 

in the input data patterns and adopts the network's future responses to the recognised 

patterns accordingly. Upon the completion of network training, it can also be used to 

recognise unseen data patterns by virtue of the ANNs generalisation ability. Examples of 

unsupervised learning algorithms include the self organising map (SOM) (Kohonen, 1989) 

and adaptive resonance theory (Carpenter and Grossberg, 1987).

ANNs have been trained to perform complex functions in various fields of application 

including pattern recognition, identification, classification, speech, vision and control 

systems. Demuth and Beale (1994) stated some examples of areas where ANNs have been 

applied to: aerospace, automotive, banking, defence, electronics, manufacturing, medical, oil 

and gas exploration, robotics, speech, securities, telecommunications and transportation. In 

the recent years, ANNs have been applied to address real life problems. In the UK, the 

Department of Trade and Industry (DTI) has created a web site (DTI NeuroComputing Web, 

1998) in their effort to encourage ANN implementation by industry. It covers practical issues 

concerning the application of ANNs, highlighting many useful aspects such as the feasibility, 

costs, design, planning and provide pointers as to commercial consulting entities, as well as 

the range of available software and hardware currently available. However, it is believed that 

the field is still in its infancy despite a colourful history and the much celebrated success, and 

much more work will have to be done before this field can realise its full potential (Zurada, 

1992).

The application of ANNs in water and WW treatment engineering has drawn much interest 

to address a variety of issues such as modelling and prediction of a treatment process 

operation (e.g. Barnett and Andrews, 1992; Boger, 1992), water and WW treatment plant 

performance evaluation (Pu and Hung, 1995), plant control and optimisation (Ladiges and 

Monnerich, 1996; Stanley et al., 2000), and plant design (Krovvidy and Wee, 1990). Baxter 

et al. (2002) developed and implemented an ANN model-based advanced process control 

system for the coagulation process at a pilot-scale water treatment facility in Edmonton
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(Alberta, Canada). These authors stated that ANN technology is the most powerful 

modelling tool currently available to the drinking water treatment industry. However, Syu 

and Chen (1998) stated that there are still very limited applications of ANNs on WWT. The 

ES approach is the most prevalent, but difficulties in acquiring and representing knowledge 

of the complex phenomena in these plants have led to the search for additional approaches. 

Boger (1992) modelled operational variables at a WWTP in Israel with an ANN system. In 

this application, it was shown that ANN models' performance was improved by optimising 

the data input set: from an available set of 106 variables, only 15 to 20 significant inputs 

were required to identify the optimal ANN for process simulation. Mohan and Keshavan 

(1998) used a three-layered ANN to model the BOD series of a sewage treatment unit. Time 

and influent BOD concentration were the inputs while effluent BOD concentration was the 

output from the network. Input and target vectors were normalised to the range of [0.2, 0.8] 

before being fed to the network. They found that when the number of hidden neurones was 

increased the convergence was faster and the minimum sum squared error (SSE) was also 

significantly lower as the number of local minima in the error surfaces with more hidden 

layer units is lesser. The training with bias converged faster and resulted in lower values of 

SSE. They showed that with both long series and short series of data, the ANNs have 

produced comparable results. They concluded that ANN models are robust and provide good 

predictions for the performance of the WWTPs. Hamoda et al. (1999) developed an one 

hidden layer BP network to model a municipal WWTP (Kuwait). Results obtained proved 

that ANNs present a versatile tool in modelling full-scale WWTPs and provided an 

alternative methodology for predicting the performance of WWTPs. They stated that the best 

ANN structure did not necessarily mean the most number of hidden layers.

Hunt et al. (1992) published a survey on ANNs for control systems. In process control 

applications ANNs can be incorporated in the controllers in either direct (inverse model) or 

indirect (model) control methods. Shaw (1990) discussed the use of ANNs for process 

monitoring and alarming. The review article by Samad (1991) discussed the application of 

ANNs to various aspects of process control (e.g. modelling and process identification). 

Montague and Morris (1994) published an excellent review of the ANNs contributions 

namely modelling, control and pattern recognition in biotechnology. An ANN based strategy 

outperformed the conventional PID control of a pH neutralisation in a CSTR (Nahas et al., 

1992).
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An argument for not using ANNs is that training time may be long and that the training 

methods are not optimised. Training time can be of the order of days for a complex problem, 

but compared with the time taken to code an ES it is insignificant. Optimised training 

methods and newer ANN topologies can reduce the training time (Collins, 1990). Although 

ANNs basically operate as a 'black-box' model, they can be used to determine the strength of 

the relationship between ANN inputs and outputs (Maier and Dandy, 1997). Therefore, these 

authors disagreed with the statement that 'ANNs are unsuitable for knowledge acquisition 

purposes'. Table 2.3 shows some examples of processes modelled and/or controlled using 

ANNs.

2.11.1. Types of ANNs

According to Hecht-Nielsen (1988), in 1987 there were approximately 50 different types of 

ANNs being studied and/or used in applications. However, here, only the types used in the 

developing the ANNBCS are briefly described.

Linear network

A single-layer linear network can perform linear function approximation or pattern 

association and can be designed directly if all input/target pairs are known and trained with 

the Widrow-Hoff rule (Widrow and Sterns, 1985) to find a minimum error solution. Linear 

networks can be trained adaptively on-line allowing the network to track changes in the 

environment. However, linear networks can solve only linear problems.

BP network

The FF MLP network can be trained with the popular error BP learning rule (Rumelhart and 

McClelland, 1986). The learning paradigm utilises a gradient descent method, which adjusts 

the initial weights assigned to the network, by an amount proportional to the partial 

derivative of the error function with respect to the given weight. More information on this 

can be found in Demuth and Beale (1994) and Jain et al. (1996). The number of elements in 

the input and output layer are solely dependent of the number of features associated with the 

input and output vectors, whilst the neurones in the middle or hidden layer(s) are generally
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subjected to empirical evaluation. The BP learning rule is a typical supervised learning 

procedure and is as follows (Jain et al., 1996):

1. Initialise the weights of the network at random values between 0 and 1;

2. Present input vectors together with the desired target to the network;

3. The network then proceeds to calculate the output based on the input vectors presented, 

and then compares this output with the target, to evaluate the error;

4. Adjust the weights of the network using the error BP learning rule to improve the 

overall network performance so as to achieve the desired target;

5. Repeat steps 2, 3 and 4, and calculate the SSE of the network; If the SSE of the network 

is within an acceptable range, then terminate the training process, if not, go back to 

step 2.

According to Hornik et al. (1989) multilayer FFNs are a class of universal approximators. 

Learning rate is a parameter used to influence the size of adjustments made to networks 

weights during training (Montague and Morris, 1994). Picking the learning rate for a non­ 

linear network is a challenge. A learning rate that is too large leads to unstable learning and if 

it is too small results in incredibly long training times. Fu and Poch (1995) stated that the 

higher the learning rate, the bigger the final total error will be. The function trainbpx uses 

techniques called momentum and an adaptive learning rate to increase the speed and 

reliability of the network. Momentum decreases the sensitivity of the network to small 

details in the error surface, helping the network to avoid getting stuck in shallow minima, 

which would prevent the network from finding a lower error solution. The momentum term 

results in accelerating the weight updating process when the gradient is small (Mohan and 

Keshaven, 1998). However, Fu and Poch (1995) concluded that with a large momentum 

coefficient there will be a faster convergent speed during the initial part of training, but 

finally, divergence will happen. The function trainlm uses Levenberg-Marquardt 

optimisation to make training time shorter (Tholudur and Ramirez, 1996). Levenberg- 

Marquardt optimisation is a more sophisticated training method, its only limitation is that 

trainlm requires a great deal of memory for large problems. BP network is used in perhaps 

80 to 90 % of practical applications (Demuth and Beale, 1994). Figure 2.2 shows a typical 

network topology.
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Table 2.3 - Processes modelled and/or controlled using ANNs

Pub. Process Usage Input(s) Output(s)/Ob.j ective(s)

.0

m

Water and sewage Controller Water quality and Coagulant injection rate for good
treatment plant floe image water quality 

Obs.: 2 BP algorithms (3 layers, 30-10-1) one for normal conditions and another for abnormal 
conditions. Good simulation results.

Model Microbiotests Predict acute toxicity to trout
"2 <^S <^<s ,-,
U *,

& u « •-
O^

Prediction and
classification of trout

toxicity
Obs.: Tested 2 types: SOM and BP. SOM identified relevant 5 classes for predicting toxicity. BP 
analysis yielded two kinds of networks: the I st one was able to predict the actual toxic concentration 
with an overall performance of 65%, while the 2"d one, which was designed to differentiate between 
toxic and non-toxic effluents, exhibited a much better performance (90%)._________________

Enzyme production 
processes

On-line measured 
data

Prediction of consumed sugar, 
biomass, and/or enzyme activity

^ OS 
O Os

C 
J

Model
(software
sensor)

Obs.: BP algorithm with momentum, 1 hidden layer with 7 neurones. Data was set to 0-1 range. Used 
hyperbolic tangent transfer function. 2000 epochs for training of the network. The predictions were 
reliably carried out as far as 10 hours ahead.

DO
w ox
2 os

« a

Model and
Inverse
Model

(controller)
Obs.: BP algorithm for training. Simulation work. 200 input/output pairs training data. Good results.

Continuous flow
bioreactor with baker's

yeast culture

Manipulating air flowrate to
maintain desired cone, of biomass

and DO

I

WWTP (population 
equivalent: 12,000)

Models e.g. pH value, ORP, 
conductivity, etc.

Estimation of process parameters, 
which are temporarily not available

(e.g. ammonium cone.)
Obs.: BP algorithm was used with sigmoid transfer function for the hidden neurones and linear for the 
output layer. Estimations were reliable and could be used for process control.________________

B 
O
C

O

Water treatment plant Models e.g. temp., pH, Predict coagulant dosage
turbidity

Obs.: 3-layer BP algorithm. Bias in the input and hidden layer. 4 neurones in the hidden layer by trial 
and error. Data included 340 OOP elements (i.e. learning, testing and validation data).___________

Fermentation process Models Estimate biomass cone, in lactic 
acid fermentations

OO 
OS 
OS

Lactic acid or
glucose cone., pH
and temperature

Obs.: 4 static and I dynamic model (one step ahead prediction). 3-layer FFNs with a sigmoidal non­ 
linear activation function (for hidden and output neurones). Input data normalised (0-1). The dynamic 
model, performed just as well as the static models but offered more stable responses.

1- OS

S 2

OQ

Adsorption column in a Model e.g. influent cone., Predict the breakthrough time of 
water treatment process GAC depth, etc. adsorption column 
Obs.: 3 layer BP network, momentum (0.45), learning rate (0.9). The number of hidden neurones was 
determined by trial and error. Number of hidden neurones from 1 to 7. Best results were achieved with 
2 hidden neurones, the ANN could explain about 80% of the variability in the data.

B <u

U

Chemical oxidation -
Fenton's method and

coagulation

Control chemical addition (H 2O2
and ferrous chloride) to reach the

required COD <100 ppm

On-line Influent COD, H 2O2 
trained flowrate, effluent 

controller COD and the set
point of COD

Obs.: BP algorithm with momentum term. Time-delayed type with a structure of 7-4-1 (Bias in the 1 st 
and 2nd layers). 15 sets of training data (moving window technique). Good results were obtained.____

OS 
OS

60no
U

Stoker Fired Boiler 
Plant

Predictions of O2 , NOX and CO in
the flue gas

3 ARX Rotary valve, grate
MISO speed, air flows, O2

Models in flue gas
Obs.: FFN MLP type with an ARX structure. The inputs varied with the model from 14 to a maximum 
of 18. Bias for the hidden and output layers. 10 hidden neurones. Some of the models were pruned. 
The resultant models were able to represent the dynamics of the process and delivered accurate one- 
step ahead predictions (30 seconds) over a wide range of unseen data.____________________
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Figure 2.2 - Diagram of a 3-layer FF MLP Network (from Demuth and Beale, 1994)

Where u and y are the input and output vectors of the network architecture, F is the transfer 

function of the neurones, w and b are the weight and bias matrix for the three layers (denoted 

by 1,2 and 3).

Radial Basis Function Network (RBFN)

Local networks, such as RBFN, are particularly suitable for applications where on-line 

control and optimisation is the main goal (Eikens and Karim, 1994), however, they are poor 

at extrapolating (Karim et a!., 1997). hi the RBFN, it is necessary to locate centres among the 

input/output vectors such that the SSE of the distance from the centre to the training data set 

is minimised (Karim et al., 1997). RBFN is quite popular and as the MPL is also an 

universal approximator (Hunt et al., 1992). The activation function in each unit of a RBFN 

uses a distance measure (Euclidian distance) as an argument, instead of the inner product of 

the input vector and the weight vector of that node for the MLP (Haykin, 1994). The RBFN 

is a supervised training algorithm and has two layers, namely the hidden layer (with a non­ 

linear activation function with a parameter termed centre), and the linear output layer. The 

function used to design the RBFN creates one hidden neurone at a time and these are added 

to the network until the SSE falls beneath an error goal or the maximum number of neurones 

has been reached (Demuth and Beale, 1994).
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RBFNs may require more neurones than BP networks, but often they can be designed in a 

fraction of the time. They work best when many training vectors are available. Biases in this 

case are used to adjust the sensitivity of the neurone. The only design decision for RBFN 

(besides picking an error goal) is finding a good value for the spread constant. This constant 

determines how wide the radial basis function (RBF) is and which is normally of gaussian 

form (Montague and Morris, 1994). It is important that the RBF of the hidden layer overlap 

so as to allow good generalisation. However, they should not be so spread out such that the 

radial basis neurones return outputs near 1 for all the input vectors used in design. Ideally, 

the spread constant should be much larger than the minimum distance and much smaller than 

the maximum distance between input vectors (Demuth and Beale, 1994). Since RBFN have 

temporal information built into their formulation, they generally possess better 

'generalisation' capabilities for time variant processes (Karim and Rivera, 1992). Thompson 

and Kramer (1994) modelled chemical processes using prior knowledge and a RBFN.

Elm an Network

hi RNs, the outputs of some neurones are fed back to the same neurones or to neurones in 

preceding layers, thus allowing signals to propagate in opposite directions. RNs are able to 

learn both the non-linear characteristics and the long-term dynamics of the plant although the 

measured data vector only includes a short time horizon in each step (Harremoes et al., 

1993). These networks are preferred both in identification and adaptive control of dynamic 

non-linear systems (Raychaudhuri et al., 1996; Zhao et a/., 1999). In contrast to the standard 

FFN, a RN can be much smaller in size and use fewer parameters (weights). Only a single 

vector of process variables at time t is used to predict the process variables at time t + 1. This 

type of ANN can be further classified into partially or fully recurrent. In partially RNs, the 

main network structure is FF whereas in fully RNs there can be arbitrary FF and feedback 

connection. The feedback connections are formed through a set of 'context' units and are not 

trainable. Examples of RNs include the Hopfield network (Hopfield, 1984) and the Elman 

network (Elman, 1990).

An Elman network is a partially RN which consists of a two-layer structure (Elman, 1990) 

(Figure 2.3). It differs from conventional two-layer FFNs in that in addition to an ordinary 

hidden layer, there is another special hidden layer usually called the 'context' or state layer. 

This layer receives feedback signals from the ordinary hidden layer and the outputs of the
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neurones in the 'context' layer are fed forward to the ordinary hidden layer. The 'context' 

units are used only to memorise previous activations of the hidden units and can be 

considered to function as one-step time delays (Pham and Liu, 1995). The hidden (recurrent) 

layer contains tan-sigmoid transfer function neurones and linear neurones in its output layer 

and with this combination it can approximate any function (with a finite number of 

discontinuities) with arbitrary accuracy, as long as there are enough hidden neurones 

(Demuth and Beale, 1994).

yj

Figure 2.3 - Elman network (from Demuth and Beale, 1994)

Where the r (1 to i) are the 'context' units.

Self-Organising Map (SOM)

Unlike the MLP (in which multiple output neurones can be activated simultaneously), 

'competitive' neurones compete with each other for activation. As a result, only a single 

output neurone in the competitive layer is active at any particular instant - 'winner-take-all' 

learning (Zurada, 1992). Competitive learning is often employed to cluster input data, where 

similar patterns are collectively grouped together based on data correlation and represented 

by a single winning neurone. During this process, only the weight vectors associated with the
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winning neurone are updated. Such learning is unsupervised, and the learning procedure is 

following summarised (Jain et al., 1996):

1. Initialise weights to small random values and set the initial learning rate;

2. Present input vectors and evaluate the network outputs;

3. Select the neurones, which weight best match the input vectors;

4. Update the weights of the winning neurone;

5. Decrease the learning rate by a fractional amount;

6. Repeat steps 2 to 5 until the change in weight values is less than a specified threshold 

or a maximum number of iterations is reached.

The competitive neurones are ordered physically in one or more dimensions (usually 2 

dimensional grid will be more than enough). Each neurone has neighbours. One of the 

limitations of competitive networks is that some neurones may not always get allocated i.e. 

some neurone weight vectors may start out far from any input vectors and never win the 

competition, no matter how long the training is continued. The result is that their weights do 

not get to learn and they never win. These unfortunate neurones, referred to as 'dead 

neurones', never perform a useful function. To stop this from happening, biases are used to 

give neurones, which are only winning the competition rarely an advantage over neurones, 

which are winning often. The biases force each neurone to classify roughly the same % of 

input vectors. Kohonen (1989) presented a competitive network, which produced what he 

called the SOM. It learns to recognise groups of similar input vectors in such a way that 

neurones next to each other in the network learn to respond to similar vectors. The SOM has 

been used in areas such as pattern recognition and robotics (Kohonen et al., 1996), image 

processing (Sabourine and Mitiche, 1993) and economy issues (Martin-del-Brio and Serrano- 

Sinca, 1993). Because SOM can output values of 0, 0.5 and 1, the instar rule must be used 

instead of the Kohonen rule, which assumes only 1/0 values. Neurones next to each other in 

the network learn to respond to similar vectors. The layer of neurones can be imagined to be 

a rubber net, which is stretched over the regions in the input space where input vectors occur. 

As the vector moves from the original winning neurone's classification region, its value 

drops to 0.5, and one of the neighbouring neurone's outputs increases to 1 (Demuth and 

Beale, 1994).
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Learning Vector Quantization (L VQ)

The most popular form of competitive learning is LVQ employed for data compression, 

speech and image processing (Jain et a/., 1996). The structure of the LVQ network bears 

close resemblance to the standard MLP network and consists of two layers. The first layer is 

a competitive layer, which learns to classify input vectors as described above where training 

is performed in an unsupervised mode. The second layer transforms the competitive layer's 

classes into target classifications defined by the user in binary form 0/1 (Demuth and Beale, 

1994). Therefore, the LVQ is a supervised learning network and its structure is shown in 

Figure 2.4. A rule of thumb is to use more competitive neurones than the possible input 

patterns to enable the competitive layer to create sub-classes for the desired target through 

the use of the linear layer. Cooper et al. (1992) compared a LVQ network with a BP network 

as a pattern analysis tool and found that both networks were equally capable with the LVQ's 

ease of training and implicit ability to assess the accuracy of the pattern match as deciding 

factors in network selection.

input 
vector

linear output layer

competitive neurons layer

Figure 2.4 - LVQ Network Structure (from Demuth and Beale, 1994)

Where C denotes the competitive neurones.
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2.11.2. ANNs for Modelling and Control of Anaerobic Treatment Systems

The large volume of literature directed to the control of anaerobic reactors evidences the 

difficulty in establishing mathematical models based on the underlying biochemical 

processes in an anaerobic reactor i.e. with non-linear and time varying characteritics. There is 

some evidence in the literature that ANNs would be ideal for use in WWT systems due to 

their ability to learn and generalise. The use of ANNs appears to be a great value within the 

area of process identification and control (Emmanouilides and Petrou, 1997). Table 2.4 

presents a few examples of studies where ANN alone or in conjunction with other techniques 

have been applied for the modelling and/or control of anaerobic treatment systems.

Premier et al. (1999) compared the ability of 'black-box' models of ARX structure to 

represent a fluidised bed reactor. The models were a linear single-input single-output (SISO) 

model, a linear MDVIO model and a non-linear ANN model (MLP architecture with a single 

hidden layer of non-linear activation function neurones and a linear output layer - N0rgaard, 

1995). The performance of the models were compared using correlation analysis of the 

residuals (one-step ahead prediction errors - 48 h) and it was found that the SISO model was 

the least able to predict the changes in the reactor parameters (BA, gas production rate and 

%CO2 ). They also reported that the MIMO and ANN models both performed reasonably 

well.
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Table 2.4   Applications of ANNs alone or in conjunction with other techniques for 

modelling and/or control of anaerobic treatment systems

Pub. Process Usage Input(s) Output(s)/Ob.iective(s)

r-
Cf, 
<3\

O

Laboratory scale fluidised bed Controller On-line BA Control of NaHCOj dosing pump
reactor operated on a for digester buffering during 

simulated baker's yeast WW organic overloads 
Obs: The on-off controller with a set point at the steady-state level (2700 mg CaCO3 I" 1 ) maintained BA 
cone., but resulted in levels above the upper set point. The ANN controller (BP algorithm with a structure of 
8-8-1 - Wilcox et al. 1995) was configured to take consecutive values from a moving window containing 
the last 8 BA data points trained on BA data from an anaerobic filter operating on ice-cream processing WW 
(BA ~ 1400 mg CaCOj I" 1 ). No re-training was performed. Despite the different steady-state BA levels and 
reactor type, the controller was capable of maintaining stable BA levels during overload without the 
overshoot observed in the operation of the on-off controller. Control of BA during organic overloads did not 
prevent changes in gaseous CO2 , and H 2 and gas flow rate.
Anaerobic digester for coffee 

processing effluent
Controller CH4, COD and

volume of biogas
production

Control influent flowrate to adjust
organic and toxic loading for

constant effluent COD and gas
production with a constant quality

Obs: 3-layer FFN (BP algorithm). The controller performed as well as an adaptive control system, whilst 
required less expert input, accepted more parameters and had a faster response. Little data was required for 

training._____________________________ __ ___ ________

o o o

N 
T3

3 Laboratory scale high-rate
digesters (including an UASB

reactor)

Model Predict anaerobic systems response 
1 h in advance

Liq. Phase: pH, total
and specific VFAs,
BA, COD (or TOC),
COD (TOC or VSS)
reduction, ORP; gas
phase: gas flowrate, 

CH4, CO2, H 2> CO
Obs: In all three cases, the model learned well and exhibited good and fast predictions when the reactors 
were subjected to hydraulic and organic overloads and variations in alkalinity loading rates. The model was 
expected to have a great application potential in RTC.________________________________

I
TT
B

' 

Oc

Simulated anaerobic digester 
using a mathematical model

Data revealing the
operation of the

digester

Manipulate the influent dilution
rate to control the total substrate

cone, and the CH 4 production rate

Model
followed 

by a
controller

Obs: Model: On-line trained to provide one-step ahead predictions (6 h) of the plant response. 48,000 
initial training pairs, normalised (0.1-0.9 for outputs and -1-1 for inputs). BP algorithm allowed adjustments 
of the learning rate and momentum in order to improve convergence. By trial and error a network with 2 
hidden layers with 6 hidden neurones each appeared to be a good compromise between predictive accuracy 
and network size. A moving-time-zone fixed-length training data set was employed for on-line neural model 
training. A maximum allowable number of 200 iterations was imposed for training due to time constraints. 
Controller: Utilised model predictions to minimise a cost function. On-line trained using BP, chemotaxis 
and a random search algorithm, with a maximum number of 500 iterations. The last two techniques appeared 
to be superior then the BP both in terms of speed of convergence and computational simplicity.

CJ

&

Anaerobic digestion fluidised
bed reactor for treatment of

wine distillery

Hybrid pH, temperature, 
Models recirculation flow 

rate, input flow rate
and gas flow rate

Obs: The process variables were pre-processed using fuzzy logic to 
states. The ANN (BP algorithm with 2 hidden layers with 4 and 2 
classify the process states and to identify the faulty or dangerous 
Marquardt method. The hybrid approach was seen to be a complement

Detection and analysis of problems
(e.g. foam forming, sudden changes

in the influent, or bed temp.
changes)

build a vector of features i.e. process
neurones, respectively) was used to
ones. Trained with the Levenberg-

to control systems.__________
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2.11.3. ANNs for Modelling and Control of Aerobic Treatment Systems

Control of the activated sludge process has historically been more art than science. Several 

process parameters are routinely calculated at many plants (e.g. organic loading and sludge 

age). However, the relationship between these parameters and process performance in full- 

scale plants is not well understood and many factors that affect the process are not even 

measured. Although a number of deterministic models exist to describe the activated sludge 

process, their usefulness is primarily for research purposes or for design - not for control 

(Vaccari and Christodoulatos, 1992). This because the models are capable of predicting 

removal of substrate in the feed, but much of the effluent contamination is from biomass that 

escapes the sedimentation stage as SS and no accurate deterministic models exist for that as 

it depends on the physical processes in the sedimentation stage as well as on the biological 

properties of the biomass (Vaccari and Christodoulatos, 1992). A lot of effort has been 

devoted to the modelling of the activated sludge process since the early 1970s (Lessard and 

Beck, 1991). However, even though many models have been proposed to simulate the 

dynamic behaviour of both the biological reactor and the secondary settler, very few studies 

looked at the interactions between these two units (Dupont and Henze, 1992). Moreover, 

very few models have been validated with real field data (Cote et al., 1995). Deterministic 

models require a large number of analytical parameters and are, at large, linear space 

parameters and rates are invariant over long periods of time (Hamoda et al., 1999).

Watanabe et al. (1993) proposed an intelligent operation support system for bulking 

prediction and control of the activated sludge process. It integrated a physical model, image 

processing, knowledge engineering including fuzzy theory and an ANN. A successful 

application utilising the combination of an ANN and the ASM1 was reported by Zhao et al. 

(1997). Cohen et al. (1997) applied a neuro-fuzzy process model for on-line control of a 

sequencing batch reactor. Output data generated by the model was used to assist control its 

cycle duration, sludge wasting, and temporary storage of excessive load in a lagoon. A 

simplified hybrid neural net approach was applied by Miller et al. (1997) for the modelling 

and subsequent analysis of a WWTP in Mizushima, Japan, with success (combination of an 

ANN model, principal component analysis and simple physical or semi empirical 

relationships supported by the available data). The objective was to reduce the occurrences of
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overflow in the clarifier caused by filamentous bulking. Table 2.5 summarise some studies 

where ANNs alone or in conjunction with other techniques have been applied for modelling 

and/or control of aerobic treatment systems.

Table 2.5 - Applications of ANNs alone or in conjunction with other techniques to model

and/or control aerobic treatment systems

Pub. Process_____Usage________Input(s)_______Output(s)/Objective(s)

CO

N

Aerated stabilisation Prediction 10 variables were used Prediction of effluent BOD 
basins for WWT model

Obs.: 3-layer partially RN. The model was updated based on a moving window technique, which made an 
improvement in the prediction accuracy. More accurate when compared with the standard MLP model.

Activated sludge 2 Models for Ml: Substrate concentrations Ml: Predict recycle ratio and 
process control (Ml + and flow rate (simulated data). WAS flow rate.; M2: Predict 

M2) M2: recycle ratio and clarifier MLSS and recycle SS
overflow rate

Obs.: Ml: Standard 3-layer FFN (BP algorithm, 2 hidden neurones with sigmoidal function). M2: Same 
structure but 4 hidden neurones. ANN models performed well in terms of accuracy and prediction capability, 
and better than the traditional regression method.____________________________________

•3

Activated sludge Model Estimate the effluent COD
process

Obs.: 4-layer FFN trained using BP algorithm (5-15-8-1), with generalised sigmoid transfer function for all 
neurones. Several simulations were investigated in order to select suitable learning rates and momentum 

0-1 coefficients. The performance of the one-step prediction (2 h) was the best._____________________
Activated sludge 2 MISO Cone, of active heterotrophic Relate the diffusional effects in 

process Models for biomass, active autotrophic terms of effectiveness factors, for 
analysis biomass, readily biodegradable the processes of carbon oxidation 

substrate, NH 3 nitrogen and DO and nitrification in relation to the
in bulk liquid phase. operating parameters

Obs.: A FFN was developed by employing the BP learning algorithm 3-layer network (18 hidden neurones), 
sigmoidal function was applied in all layers' neurones. Normalised data (0-1). 1000 training sets of data. 10 
sets of validation data and the prediction accuracy was found generally to be over 90%. The ANN greatly 
improved the predictive performance in relation to a multiple linear regression model.

Activated sludge Model BOD:N; N:P; DO; Temp.; and Prediction of SVI value 
o   processes F:M ratio

Obs.: BP algorithm, 25 inputs and 1 output. Each input pattern fed to the system consisted of 5 values (due to 
the sludge age of the system) representing the previous days 1-5 for each of the input parameters previously

o

verified.
described. The output consisted of the one-day ahead prediction of SVI value. 90 % of learning accuracy was

U •o

Activated sludge Controller Difference between substrate Regulate the reflux ratio of an 
process cone, in the effluent and its set activated sludge aerator

point (error); difference 
between the current and

previous errors
Obs.: Trained on-line with a moving-window learning rule (10 samples). 3-layer topology (the best was 
2-5-1). Learning rate of 0.01 was the best by trial and error. Tangential activation function. The controller was 
able to bring the system back to the set point regardless if the system encountered a disturbance due to a 
sudden change of the feed concentration. _______________________________________
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Table 2.5 - Applications of ANNs alone or in conjunction with other techniques to model 

and/or control aerobic treatment systems (Cont.)

Pub. Process_____Usage________Input(s)_______Output(s)/Objective(s)

<Oo

Activated sludge 5 MISO Common inputs: RAS and Predict at (t): M 1) Effluent SS; 
process models (Ml- overflow consolidation tank. In M2) Effluent COD; M3) Effluent 

M5) addition: ammonia; M4) VSS in the RAS; 
M1) SS (/); M2) SS(0 and M5) DO. To improve accuracy of 

COD(t); M3 & M4) NH 4(r-3) a mechanistic model 
and COD(/-3); MS) COD(/) and

COD(M)
Obs.: 3-layer FFN, sigmoid transfer function was used. The coupling of a mechanistic model with the ANN 
error predictor yielded significant improvement in the simulation of all variables for which a linear function of 
the influent flow was clearly inadequate._______________________ __ __ ^^

60 OS 

TO

Activated sludge Neurogenetic Predict effluent SS from an 
process model enhanced biological phosphorus

removal system
Obs.: Genetic search through ANN architecture space (input variables and network architectures) to select the 
optimal-performing ANNs and error BP learning in individual networks to evaluate the selected architectures. 
The neurogenetic model predicted accurately the effluent SS, according to experimental work.__________

a

T3

Activated sludge Modelling + See obs. Control the RAS to remove 
process (primary control with pollutants in the water for 

settler, aeration tank an hybrid Al discharge, to reduce energy 
and clarifier) system (ES + consumption, and to improve the

2 ANNs) efficiency of the treatment
Obs.: The hybrid AI system converted the data collected from the simulation (effluent's BOD, and SS as well 
as microorganisms) using a mathematical model The ES monitored the BOD and MLSS values in the aeration 
tank, and changed the RAS until the level of the BOD or MLSS was acceptable. ANN1 predicted the future 
condition of the aeration tank, and ANN2 arrived at a suitable RAS. The inputs of ANN 1 were the current 
condition of the aeration tank, the inflow and the recycle. ANN2 inputs were the desired value for the BOD or 
the MLSS and the present and past inflow conditions. The hybrid system proved to be a powerful tool for the 
control of WWT processes, which were poorly understood or difficult to model with conventional control 
methods. __

2.12. Use of ANNs for Process Fault Detection and Tolerance

Fault diagnosis problems have been studied very actively during recent years. The literature 

on failure detection and diagnosis is extensive and various approaches have been proposed. 

These include simple limit checking, parameter estimation, analytical redundancy, and AI 

techniques (Liu, 1999). hi many applications sensors are reliable but in WWT sensor failure 

can be a regular occurrence, which makes continuous long-term measurement rather difficult 

and so the control system must be robust enough to continue operating in such 

circumstances. ANNs have been successfully used for sensor data analysis (e.g. Piovoso and 

Owens, 1991) and fault detection (lordache et al, 1991; Ungar et al, 1990). On-line fault 

detection and diagnosis are particularly desirable. Fault detection via a state space approach 

is difficult because the technique assumes that the process model is known quite well. ANNs 

possess an inherent non-linear structure suitable for mapping complex characteristics,
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learning, and optimisation, which have recently been shown to have considerable potential 

for fault detection or diagnosis of the process control systems (Liu, 1999). One added 

advantage of ANNs is that sometimes classification can be accomplished more rapidly than 

classification using statistical packages (Hoskins et al., 1991). Therefore, these authors 

concluded that, given a valid database, fault detection and diagnosis is a promising area for 

the application of ANNs. Ungar et al. (1990) described adaptive ANNs for fault diagnosis 

and process control. Connection strengths representing correlations between inputs (alarms 

and sensor measurements) and outputs (faults, future sensor measurements or control 

actions) were learnt using a BP algorithm. Venkatasubramanian (1990) observed that the 

recall and single-fault generalisation performances of the ANNs (BP algorithm) were very 

good, when they were trained with data covering as much of the fault space as possible and 

more hidden neurones were needed for two-fault than one-fault generalisation performance. 

Bulsari et al. (1991) investigated the use of a state vector estimator based on delayed 

measurements of the control and output vectors and FFNs (Levenberg-Marquardt method) to 

detect sensor faults in biochemical processes (a bias was added to the neurones). Sensor fault 

detection was achieved by examination of the model residuals. Liu (1999) published a fault 

diagnosis strategy for a glutamic acid fermentation based on an extended Kalman filter and 

an ANN classifier (BP algorithm). The author demonstrated the suitability of the strategy 

(i.e. accuracy and speed during real-time implementation). However, the author found 

considerable improvements using an unsupervised trained ANN classifier.

2.13. Important Points Stated in the Literature

1. Textile industry utilises high quantities of water and produce highly polluting effluents - 

Highly stated.

2. Cotton fibre died with reactive dyes - Highly used.

3. Colour removal from textile WWs - Difficult task.

4. Sequential anaerobic-aerobic treatment of textile WWs - Effective.

5. Biotreatment processes have non-linear dynamics and time varying characteristics - 

Highly stated.

6. Lack of reliable sensors and fast remedial actions for biotreatment processes - Present

reality.
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7. The importance given by researchers to certain monitoring parameters for biotreatment 

process operation, modelling and control - Highly variable (depends on the effluent and 

type of reactor used and the modelling and control algorithms utilised).

8. 'Conventional' modelling and control of biotreatment processes - Difficult task.

9. ANNs used for modelling and control of biotreatment processes - Highly recommended.

10. ANN applications for sensor failure detection and data analysis - Used with success.
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3. APPARATUS AND PROCEDURES

This Chapter describes the anaerobic and aerobic stages and also the auxiliary equipment 

used in this work, the methodology adopted for off-line analyses and on-line instrumentation. 

It includes a discussion of the equipment setup and operation for best performance, and 

experimental design to test the monitoring and control strategies.

3.1. Laboratory Biological Treatment Stages and Operation

Data from a previous project (Guwy et al., 1997a) was used to train and test the use of 

different types of ANNs for a control scheme. The reactor setup, on-line instrumentation and 

influent to the laboratory WW treatment system have also been previously described in the 

above work. Therefore, this will not be analysed here, instead a small summary of the 

experimental design and monitoring system will be presented in Section 3.6.1. The next two 

Sections will describe the two biological stages, the respective auxiliary equipment and the 

STE utilised.

3.1.1. Anaerobic and Aerobic Stages

An UASB reactor, an aerobic tank and an aerobic settling vessel were used to carry out the 

experiments described in this thesis. All vessels, made up of perspex, were tested for water 

leaks. The UASB reactor was checked also for gas leaks by filling it with water (i.e. up to the 

working volume) and sealing all the ports except two of them in the lid. Nitrogen gas was 

pumped into the top of the reactor through one of the gas sampling ports at the top of the 

reactor at a low pressure to produce a steady stream of bubbles through the Drexel bottle 

(this attached to the main gas port). A soap solution was placed around all ports and joints so 

that any escape of gas resulted in the production of bubbles. All peristaltic pumps used in
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this series of experiments were from Watson Marlow (Cornwall, UK) being of the type 

505U, 503S and 303A (all controllable pumps were of the 505U type). Silicone rubber 

tubing was used for the transfer of liquids, except in the pump heads. However, for 

Experimental Phases 3, 4 and 5 the silicone rubber tubing was replaced by polyurethane 

tubing for the flow to the BA, TOC, TOD and colour analysers. Marprene double MC 

manifold tubing was used with Watson Marlow 505U and 503S 8-roller multi-channel head 

pumps. This tubing was used for pumping the STE concentrate, HC1 and the OECD waste, 

for dilution of the biogas for the H2 monitor and dilution of the sample to the colour analyser, 

and also for all the pumped substances controlled by the ANNBCS. Watson Marlow 

marprene tubing was used with all other pump heads. The influent to the UASB reactor and 

the aerobic stage is defined in Sections 3.1.2 and 3.6. The liquids were pumped at 

appropriate rates into a common feed line and mixing occurred in-line. Water for dilution of 

the STE was stored in a 200 1 covered tank. T-joints were built into the two main lines (i.e. 

for the UASB reactor and to the aerobic stage) from where samples of influent could be 

extracted for off and on-line analyses.

Anaerobic granules were obtained from BPB Paperboard Davidson Mill, Aberdeen. This is a 

paper pulp processing plant, and therefore the granules were not adapted to degradation of 

dyes. Activated sludge was collected from Coslech, a local sewage treatment plant. This 

plant also treated industrial waste from a local L'Oreal factory and therefore the sludge 

tended to foam greatly after collection. This was counteracted by the use of antifoam. The 

reactor and vessels used here are discussed in more detail below.

UASB reactor

An UASB reactor of 30 1 working volume was used to treat the STE based on the following 

advantages. Lettinga et al, (1980) initiated the development of the first full-scale installation 

of an UASB reactor. It represents 67 % of the total number of digesters worldwide (Barber 

and Stuckey, 1999), which suggests its significant commercial advantages (Laguna et al., 

1999). There were seven UASB reactors in UK industrial sites (e.g. Davidsons Papermill, 

Aberdeen; Coca Cola, Wakefield; Everest Potato Foods, Kidderminster) (Wheatley et al., 

1997). A distinctive feature of successful UASB reactor operations is the very high loading 

rate achieved by the systems (Morgan et al., 1990). No artificial mixing is required as biogas 

circulation and the up flow velocity of feed are sufficient (Hickey et al., 1991). UASB
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reactors are generally used for WWs that have a low SS concentration (Angenent and Dague, 

1995). Granular sludge has a number of advantages over flocculent biomass: it is better 

retained within the reactor due to its superior settleability (Archer, 1983); it has higher 

specific methanogenic activity (Speece, 1996), which is maintained during less favourable 

conditions due to the higher internal pH of the granules (Angenent and Dague, 1995). Dense 

granules in the UASB reactors, with their high settling velocity, avoid the costly 

packing/carrier, which is otherwise necessary in other configurations to provide similar 

conditions (Laguna et al., 1999). Speece (1996) also noted that the UASB reactor shows a 

strong capability to absorb shock loadings. However, there are also a few disadvantages, the 

bed can be disrupted if the flow in is too fast or if the gas production is too vigorous 

(Hawkes and Hawkes, 1994) and at low organic loading rates the contents of the UASB 

reactors are not adequately mixed (Speece, 1996). At extremely high loading rates a 

significant fraction of biomass will become dispersed in the liquid above the biomass bed 

because of high turbulence (caused by high gas evolution in the bed), which causes biomass 

aggregates to float, due to adherent or entrapped gas bubbles (Speece, 1996). Arcand et al. 

(1994) used scanning electron microscopy (SEM) for granules examination and observed a 

clear predominance of fermentative bacteria in the external layer of the granules, acetoclastic 

activities were evenly distributed along the granule depth, the core was almost exclusively 

composed of methanogens. The same researchers used an intragranular kinetic model and 

predicted pH values, 1 mm inside the granule, to be over one pH unit more alkaline than in 

the bulk liquid, which gives a competitive advantage for methanogens to proliferate in the 

granule core. Based on atomic spectrophotometry, Wu (1991) found that the major cations in 

granules were the Na, K, Ca, Mg, Fe, P and S. In UASB reactors changes of pH, nutrient 

balance or the presence of toxic compounds in the substrate could damage the granules 

structure and consequently the process efficiency (Gonzalez et al., 1998).

Being a high-rate reactor it made possible to draw suitable quantities of samples for off and 

on-line analyses and also be able to feed the aerobic stage and cope with the sampling. A 

1 day HRT was chosen to operate the UASB reactor throughout the Experiments. A 

schematic of the UASB reactor is shown in Figure 3.1. The UASB reactor's built-in water 

jacket was attached to a Grant FH15 thermostatically controlled flow heater (Grant 

Instruments, Cambridge, UK), which pumped heated water through the tubing in order to 

maintain an internal temperature of 35 °C. Water coming from the reactor was displaced into
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a ballast bottle and was released above the surface of the water in the bottle. Water was 

removed from underneath the surface to replace it. This arrangement eliminated air bubbles, 

which would cause the flow heater to fail if they gathered, and compensated for the 

evaporation of water over time. Feed was introduced via two ports each leading to a cross- 

shaped outlet at the base of the reactor. This ensured more even distribution of the STE over 

the base of the reactor and meant that there was less likelihood of a serious blockage 

occurring at this point. The base and upper unit containing the 3-phase separator were 

removable and were sealed using o-rings and silicone grease. The separator consisted of 

2 'V shaped perspex pieces, which extended across approximately two-thirds of the width of 

the reactor. The lid of the UASB reactor housed an on-line pH meter. A temperature probe 

was installed through one of the side top ports of the UASB reactor. Various on-line 

monitors (as presented in Sections 3.3 and 3.6) were connected to the other ports. Samples 

for off-line analysis were taken of the STE from a T-joint before it entered the UASB reactor 

and from the recycle port.
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Figure 3.1- UASB reactor
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Aerobic tank

The effluent from the UASB reactor was collected in an Erlenmeyer flask, which acted as a 
mixing vessel. A tube, reaching the bottom of the mixing vessel, was attached to a pump. 
This removed any liquid collecting in the vessel and displaced it to the aerobic vessel. When 
the aerobic stage was not in use, anaerobic effluent was diverted to drain by switching off the 
transfer pump thus causing it to overflow through the arm of the Erlenmeyer flask which was 
attached to a drainage system. During Experimental Phase 5 the STE was fed straight into 
the aerobic tank without previous treatment by the UASB reactor.

The aerobic tank was a cylindrical vessel (41 cm in height and 30 cm in width) resting on a 
square base of 36 cm length. It had a water jacket, which was not used during this project, as 
there were no extremes of temperature in the laboratory. The liquid level in the aerobic tank 
was controlled by altering the depth of a tube within the reactor, which was attached to a 
Watson Marlow pump. A vertical depth controller (RS Components, UK) was also used to 
maintain a depth of 20 1 through control of the aerobic tank influent pump. The HRT was 
16 h except during Phase 5 where it was 17 hours. The lid of the tank had 5 ports which 
served for input of feed, OECD waste and HC1, off-line sampling, pH probe, DO probe, 
output of sludge and return from the settler and from Filter 3 in the case of Experimental 
Phase 5. At the bottom of the tank there was a port where two silicone tubes were inserted 
connecting the two Capex L2C air compressors (Charles Austen Pumps, Lanes., UK) with 
7 1 min"' of capacity (one constantly aerating and another on stand-by) to two air stones glued 
at the bottom of the tank.

Local controls - On-off set-point controllers were built in Lab VIEW™, which sampled the 
pH and DO levels in the aerobic tank and controlled the addition of 1 M HC1 and the stand­ 
by air compressor. The pH controller was operational during Experimental Phases 2, 3 and 5 
and the DO controller only during Experimental Phases 3 and 5. During some of the 
Experiments of Phase 5 pH and DO were controlled by the ANNBCS. Both actuators worked 
with a voltage input of 0 - 5 V. The set point levels were for addition of acid at pH above 7.2 
and to pump extra air at a DO level below 3 mg I" 1 . pH control was necessary as the pH 
within the activated sludge tank would rise to about 8 - 9 pH units and at these levels most 
of the protozoa die (Harold Buckland, Yorkshire Water, pers. comm.). This rise in pH was 
due to the large quantity of NaOH used to hydrolyse the starch (Section 3.1.2). The anaerobic
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digestion process was maintained at a pH of 7 due to the production of VFAs, however, 

under aerobic conditions the VFAs volatilised or were metabolised, resulting in a rise in pH.

Aerobic settling vessel

The aerobic settler dimensions were 36 cm height and 20 cm wide in the top of the funnel. 

The settler working volume was 3.75 1 (3 h HRT except for Phase 5 where it was 3.2 h). A 

slow stirrer (1 revolution per minute - RPM) was fitted in the settler to assist on the settling 

of solids. Liquid was pumped from the aerobic tank to the settler through the influent port at 

the top of the vessel. Effluent was displaced through the effluent port, which went to drain. 

During Experimental Phase 2 the solids were recycled every four hours with the aid of a RS 

139-710 7 day timer (RS, Northants, UK) linked to a pump for controlling the RAS. hi 

Experimental Phases 3 and 5 solids were recycled continually. Sludge could be disposed of 

to waste using the effluent port of the vessel rather than recycled from the bottom of the 

vessel when required.

3.1.2. Influent to the anaerobic and aerobic stages

In this project a mixed cotton production effluent was simulated as cotton dyeing effluent 

and contained already the starch to provide the carbon required for reduction of the azo 

bonds in the UASB reactor. The work presented was focused on reactive dyes as they present 

the greatest environmental problem for three reasons, discussed previously in Section 2.1: 

they represent an increasing market share because they are used to dye cotton; their low 

fixation rate and therefore higher dye loss in the effluent; and conventional WWTPs, which 

rely on sorption and aerobic biodegradation, have a low removal efficiency for reactive dyes, 

which leads to coloured waterways, and public complaints.

Due to the variability in textile WW composition, no artificial waste can be truly 

representative, either of a particular type of waste or even of a particular factory. O'Neill et 

al. (1999a) cited that many researchers have used STEs in the investigation of treatment 

technologies. This is useful as it enables research to be carried out in the absence of a local 

source of effluent and simulated effluents have constant composition and therefore enable 

the effects of treatment to be more readily understood. These should resemble real wastes as
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closely as possible, however it is difficult to replicate the ADMI values, absorbance and 

spectra of real effluents. The concentrations of dye used in simulated effluents examined in 

literature varied from 0.01 g I" 1 to 7 g I" 1 (O'Neill et al, 1999a). The same authors stated that 

dye concentrations of 0.01 g I" 1 up to 0.25 g I" 1 have been cited as being present in dyehouse 

effluent, depending on the dyes and processes used while Steenken-Richter and Kermer 

(1992) reported that up to 0.8 g I" 1 of hydrolysed dye could remain in the bath after 

completion of the reactive dyeing process.

The composition of the STE used in this project was based on some of the principal 

components of real effluent and their contribution to effluent COD and BOD. Components 

such as surfactants, oil and grease contained in real wastes were not included. Therefore, the 

STE contained only the most common pollutants, such as dye, size and salt. Reactive dyes do 

not adhere to glass or perspex, making them ideal for laboratory use. Only one reactive dye 

was chosen, except in Experiments 3.8 and 3.9, so that the processes occurring within the 

reactors would not be complicated by the different characteristics and the wide range of 

breakdown products that would be produced by the use of a mixture of dyes. The potential 

anaerobic breakdown products of PROCION Red H-E7B the dye used were identified 

elsewhere (Carliell et al., 1995). This dye has a double azo bond and it has a low toxicity 

with a 36 h lethal concentration (50 %) to rainbow trout exceeding 100 mg I" 1 . It is said to be 

unlikely to inhibit aerobic bacteria and the manufacturer reported no evidence of inhibition to 

anaerobic treatment at 25 g I" 1 (BASF, Manchester, UK). Approximately 75 % of sizes used 

in textile industry are starch-based (Weber and Strohle, 1997). The starch most commonly 

used in sizing are corn, maize and potato starches (Allied Colloids, UK, pers. comm.). 

Tissalys 150 (Roquette UK, Turnbridge Wells, UK) is a common potato starch widely used 

in the cotton industry.

A colleague in the laboratory prepared the recipe of the STE, except for Phase 4, and also of 

the OECD waste. The STE differed during the experiments, due to the concentrations of 

acetic acid (0.53 - 5.03 g T 1 ), starch (0.95 - 3.8 g 1"') and dye (0.075 - 10 g I" 1 ). These 

concentrations will be found in Section 3.6. The starch used was Tissalys 150 (Roquette, 

Kent, UK) and the dye used was a reactive azo dye PROCION Red H-E7B (CI Reactive Red 

141) (BASF, Manchester, UK). Three other dyes were also used in Experiments 3.8 and 3.9
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(Section 3.6.3). Both starch and dye in the STE were hydrolysed in order to convert them 

into the form in which they are normally found in a 'typical' cotton effluent.

Two methods of starch hydrolysis were adopted. The first method was based on information 

obtained from Institute Superior Tecnico (1ST, Lisbon, Portugal), who based it on desizing 

methods obtained from Hoechst (1991). The starch was hydrolysed by mixing a stock 

solution containing 100 g T 1 of starch and 40 g I" 1 of NaOH and leaving at room temperature 

overnight. The second method of starch hydrolysis was performed by adding an enzyme, 

Amylase 10L (Biocatalysts Ltd., Pontypridd, UK) which was used as recommended by the 

supplier. A stock of 100 g 1"' starch was mixed with 0.2 ml I" 1 of amylase and was maintained 

at 80 °C for 1 hour. A few drops of HC1 were then added to the solution to bring the pH 

below 3 to stop further reaction. The pH of the samples was then adjusted to 5.9 using 

NaOH. The dye was hydrolysed using a method recommended by 1ST who derived it from 

information obtained from Dystar (Portugal). A 50 g I" 1 solution of dye was hydrolysed by 

addition of NaOH to pH 12 and maintained at approximately 80 °C for 1.5 hours.

Speece (1996) reported that the N concentration should be maintained between 40-70 mg I" 1 

to prevent reduction in biomass activity. Alphenaar et al. (1993) found that P deficiency 

reduces methanogenic activity in UASB reactors to 50 %, however, this reduction was found 

to be reversible by dosage of phosphate. Overdosage of phosphate was found by the 

researchers to be unprofitable. It is normally added to the WW to reach concentrations of 2 - 

50 mg I" 1 . Forster (1991) cited a recommended COD:N:P of <350:5:1 for good operation of 

anaerobic systems. Iron, cobalt, nickel, and sulphide have been shown to be obligatory trace 

elements for methanogens to convert acetate to CH4 (Speece et al., 1986). Molybdenum, 

tungsten, and selenium have also been reported as required trace metals (cited by Speece, 

1983). Also, metals such as Zn, Cu, Cd, Cr(vi) and Cr(iii) are required in biological 

processes in minute quantities (Schroder and de Haast, 1988). Archer (1983) stated that 

sodium, potassium and magnesium ions are required by methanogenic bacteria, but very high 

levels of the cations inhibit methanogenic fermentation (Kugelman and Chin, 1971). 

Therefore, the feed also contained 0.15 g I' 1 NaCl, 0.23 g I' 1 NH4C1, trace elements (H2 SO4, 

EDTA.Na, FeSO4.7H2O, ZnSO4.7H2O, MnCl2 .4H2 O, CuSO4.5H2O, Co(NO3)2 .6H2 O, 

NaB4O7.10H2 O and NiCl2 .6H2 O - refer to O'Neill et al. (1999b) for quantities) and nutrients 

((NH4)2S04, 0.28 g T 1 ; Na3PO4 .12H2O, 0.123 g T 1 ; Na2HPO4 .12H2 O, 0.096 g I' 1 ).
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The STE was made in the form of concentrate and was stored in a refrigerator at 6 °C. It was 

diluted with water containing NaHCO3 , which was added in order to maintain the buffering 

capacity of the UASB reactor. An addition of 2.5 g NaHCO3 I" 1 was performed in the STE to 

the UASB reactor, except during Experiment 3.5 and Experiment 4.3 (Sections 3.6.3, 3.6.4 

and 4.3.1), as the natural BA of the STE was 95 mg CaCO3 1"' (standard deviation -sd=S,n 

- 5) indicating that little natural buffering capacity was present. During Experimental Phase 

5 only 0.5 g NaHCO3 I" 1 was added to the STE, which was fed straight to the aerobic stage. 

OECD waste was fed to the aerobic stage during Experiments 3.7, 3.8 and 3.9 and 

throughout Experimental Phase 5. This contained: 4.8 g I" 1 of peptone, 3.3 g I" 1 meat extract, 

0.9 g I" 1 urea, 0.21 g I" 1 sodium chloride, 0.12 g T 1 calcium chloride dihydrate, 0.06 g I" 1 

magnesium sulphate heptahydrate, and 0.84 g I" 1 potassium hydrogen phosphate (OECD, 

1981). The OECD waste simulated the situation where sewage was fed to the activated 

sludge stage in an attempt to mimic a textile effluent treatment plant where almost one third 

of the COD to the aerobic stage comes from domestic sewage and also to help increase the 

MLSS. The OECD waste was made up as concentrate and stored refrigerated for a maximum 

of 7 days (6 °C) and was mixed with the UASB reactor effluent before entering the aerobic 

system.

The STE contained sulphur and sodium, both of which can cause toxicity in anaerobic 

systems. Archer (1983) referred that production of H^S reduces CFLi yields but does not 

affect COD reduction too much. Sulphide concentrations of 1 - 25 mg I" 1 have been cited as 

optimal for methanogens metabolism (Parkin et al, 1990). Concentrations of 2 - 4 g I" 1 

sulphate have been found to be inhibitory to anaerobic processes (O'Flaherty and Colleran, 

1999) and 0.1 - 0.8 mg I" 1 dissolved sulphide has been reported to be toxic to 

methanogenesis. Toxic H2 S concentrations are in the range of 40 - 430 mg I" 1 as S (Parkin et 

al., 1990) with 1 % H2 S corresponding to 26 mg I" 1 H2 S or 52 mg T 1 total sulphide in the 

liquid phase (pH 6.9, 35°C) (Speece, 1996). The total sulphur concentration in the STE (i.e. 

from nutrients and dye) was 0.08 - 0.18 g I" 1 . Some toxicity from the sulphur concentration 

may have occurred with the highest concentration of dye (i.e. Experiments 3.2, 3.4, 3.9, 4.2 

and 4.4). Concentrations of 3.5 - 5.5 g I" 1 Na have been cited as causing moderate inhibition 

of methanogenesis with strong inhibition occurring at 8 g I" 1 (Carliell et al., 1996). 

Methanogens require small concentrations of sodium with a reported optimum of 0.23 - 

0.35 g I" 1 for organisms grown in a low salinity medium and higher for organisms grown in
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high salinity medium (Feijoo et al, 1995). Concentrations of 3 - 16 g I" 1 caused 50 % 

inhibition of methanisation of VFA mixtures in 3 anaerobic sludges in the absence of 

nutrients or other salts (Feijoo et al., 1995). No sludge adaptation to the sodium inhibition 

was observed upon 12 weeks exposure (Rinzema et al., 1988). The highest sodium addition 

was 2.4 g 1" below the value reported for moderate toxicity.

3.2. Off-line analyses

Off-line samples were collected and preserved according to the guidelines specified in the 

Standard Methods (APHA, 1989). Analyses were performed immediately except for the 

measurement of colour and VFAs where sometimes the samples were stored at 4 °C in a 

domestic refrigerator for short periods or frozen at -20 °C in case of prepared samples for 

VFA analysis.

3.2.1. pH analysis

The pH was determined by electrometric measurement as described in the Standard Methods 

(APHA, 1989). A Mettler Toledo 340 pH meter (Switzerland) with a glass electrode was 

used. The pH meter was calibrated daily before use with standard buffer solutions of pH 4.0 

and pH 9.2 (Fisons Ltd., Loughborough, UK). A 25 ml sample was agitated by the use of a 

magnetic stirrer to establish equilibrium between sample and electrodes. The analysis was 

performed within one minute so that minimum interference occurred from the loss of 

dissolved

3.2.2. Bicarbonate alkalinity (titration to a pH of 5.75)

In this work BA was measured by titration with standard 0.05 M HC1 to pH 5.75 as proposed 

by Jenkins et al. (1983). Titration to this end point reflected mainly alkalinity due to the 

presence of bicarbonate. At pH 5.75, 80 % of the bicarbonate will have been titrated and less 

than 20 % of the VFAs will have contributed to the alkalinity measured by this point
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(Jenkins et al, 1983). Even if the VFAs have a concentration of 500 mg CaCO3 I' 1 , and the 

total BA is 2000 mg I" 1 , less than 5 % error is introduced (Jenkins et al, 1983). Therefore, 

even at high concentrations of VFAs an accurate estimate of BA can be obtained. The 

equation used to calculate BA includes a compensation factor to account for the contribution 

of VFAs to the measurement. Titration of 25 ml aliquots was carried out at room temperature 

using the same pH meter and calibrated in the same way as in Section 3.2.1 after the initial 

pH had been noted. Samples were stirred with a magnetic stirrer at 75 RPM while additions 

were made to ensure good mixing. This procedure was done as quickly as possible in order 

to minimise the loss of the dissolved CCh- The 'true bicarbonate alkalinity' (TBA) was then 

calculated using the following equation:

TBA5 .75 (mg CaCO3 1" 1 ) = 1.25 x ALK5 . 75

(.. ATT, Ax MX 50000^! being, ALK 5 75 = ——-———-——
^ ml sample J

Where A = ml of standard acid used; M = molarity of the acid (i.e. 0.05 M); 1.25 = factor 

given by Jenkins et al. (1983) to compensate for alkalinity due to the VFAs; 50000 = to 

express the answer in terms of mg CaCOa I" 1 .

3.2.3. Off-line colour analysis

The spectra of samples were determined off-line using an ATI Unicam UVl-UV/Visible 

Spectrophotometer (ATI Unicam Ltd., Cambridge, UK) with an optical glass visible cell of 

10 mm path length. Samples for true colour measurement were centrifuged at approximately 

(3000 RPM) for 5 minutes to ensure all particulate material had settled. The linear operating 

range was 0 - 2.9 absorbance units, therefore some samples had to be diluted with deionised 

(DI) water. The baseline was zeroed using DI water in both the reference and the sample cell. 

Samples were scanned in the visible spectrum using a 2 nm bandwidth using a tungsten 

halogen lamp for the measurements. The true colour of the samples was determined by 

calculating the average of three measured optical densities (ODs) at 436, 525 and 620 nm on 

the centrifuged sample at a pH of 7.1 - 7.3 in a similar way to BS 6068 (1995). The spectrum 

was scanned for the sample and the absorbance at the required wavelengths read by means of 

tracking. At an absorbance of 1 the manufacturer reported an error of 0.5 %.
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3.2.4. Gas chromatography

Gas chromatography was carried out to determine VFA concentrations in the reactors' liquid 

content and the percentage of CH4 and CO2 in gaseous samples. In a GC, samples were 

injected as either gases or liquids that are consequently vapourised. The gases then move 

through the column at different rates and were detected as they emerge (APHA, 1989).

VFA analysis

VFAs were determined by a GC fitted with a FID after extracting the VFA with diethyl ether 

from acidified samples as described by Peck et al. (1986). VFA samples were measured on a 

Varian Star 3400 CX analyser with a 6 feet x 4 mm packed glass column of 15 % SP1220/1 

% H3PO4 on 100/120 Chromosorb W/AW (Supelco, Poole, UK) as the support phase. The 

analyser's FID was connected to a GC Star Workstation as described by Varian Associates 

Inc. (1993). The system setup and method were those recommended by the manufacturers. 

The sample for measurement was taken from the recycle port of the UASB reactor when the 

recycle pump had stopped for at least 10 minutes. Three 5 ml samples of effluent and 

standard were placed in 13 x 120 mm glass tubes with screw-on solvent-resistant lids (Fisons 

Ltd., Loughborough, UK). The tubes were then placed in a fume cupboard and 0.75 ml of 

orthophosphoric acid (BDH Ltd., Poole, UK) was added. This was followed by an addition 

of 5 ml of a diethyl ether (Fisher Scientific Ltd., Loughborough, UK) solution containing 

0.1 ml I" 1 of 4-methyl-n-valeric acid as an internal standard. The lids were placed on the 

tubes and then inverted them 10 times to mix the solutions. They were then left for three 

minutes before being centrifuged at 4000 RPM for a few seconds so that two liquid layers 

were formed within the tube. The top layer of sample was removed with a pipette and placed 

in a small glass screw-top vial (Alltech Associates, Lanes., UK). The vials lid had a hole in 

the centre and was freshly lined with red Teflon/silicone liners (BDH Ltd., Poole, UK) for 

each analysis with the white side uppermost. This seal was necessary for pressurised filling 

of the injection system. The standards and samples were run in the manner recommended by 

the manufacturers, the nitrogen carrier gas was maintained at a flow rate of 30 ml min" , the 

air and hydrogen gases at a rate of 300 ml min"' and 25 ml min" 1 , respectively to the FID. 

Samples were analysed by an auto-sampler attached to a Varian Star 3400CX analyser. Using 

the peak area the Workstation converted the results into concentrations of VFAs. After use, 

the vials were cleaned, by heating them in a furnace at 500±50 °C for about 30 minutes to
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remove all VFAs. The calibration was verified using a standard every run and re-calibration 

was carried out as necessary. VFAs can adsorb to the column and therefore after injection of 

samples at least one wash containing 10 % formic acid in diethyl ether was injected to clean 

the column. The standard error for this system has been cited as less than 2 % for each VFA 

(Pecketal., 1986).

Biogas composition analysis (CO2 and CH4)

Gas chromatography was also carried out to determine the quantity of COa and CH4 in the 

biogas produced by the UASB reactor. A Varian Star 3400 CX GC (Varian Ltd., Walton- 

upon-Thames, UK) was used with a 2 feet stainless steel column packed with Porapak 

Q80-100 (Supelco Ltd., Poole, UK) and fitted with a TCD. This system can detect a 

minimum gas concentration of 5 nig I" 1 . The Varian Star was linked to a PC, which was used 

to control the analysis (Varian Associates Inc., 1993). Chromatography grade helium (MG 

Gas Products, Cardiff) at a flowrate of 30 ml min" 1 was used as the carrier gas. A single point 

calibration was carried out prior to use, using a standard gas with a CC>2:CH4 ratio of 40:60 

(BOC Gases, Guildford, UK). A three-way valve syringe was used with 10 ml of standard 

and flushed twice before the manual injection to ensure a representative sample. If the 

calibration was satisfactory i.e. sd < 5 %, gas samples from the UASB reactor were then 

analysed. The sample port for gas samples on the UASB reactor was located on the main gas 

line leading from the UASB reactor and was located prior to the Drexel bottle. The 

workstation calculated the percentage of CO2 and CH4 in the sample from the peak area.

3.2.5. Determination of biogas H 2S concentration

The concentration of H2 S in the biogas was determined by collection of approximately 

300 ml of gas in a gas bag and using 0.1 - 0.4 % H2 S Kitagawa precision gas detector tubes 

(Alltech Associates, Lanes., UK) in conjunction with a Matheson Toxic Gas Detector Model 

8014KA (Alltech Associates, Lanes., UK).
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3.2.6. COD determination

For this work, the closed reflux titrimetric method was chosen for the COD analysis and 

adopted according to Standard Methods (HMSO, 1986). Prior to analysis, each sample was 

left to settle for 1 h and then was diluted with DI water as this method can only accurately 

measure up to 250 mg COD I" 1 . 2.5 ml of the diluted sample was pipetted into a Pyrex 

culture tube for Teflon lined screw caps (BDH Ltd., Poole, UK), followed by the addition of 

5 ml of Ficodox Plus standard COD reagent (Fisher Scientific Ltd., Loughborough, UK). 

This reagent contained silver nitrate, chromium III potassium sulphate solution and 

concentrated sulphuric acid. The tube was then sealed and inverted several times to mix 

completely, before it was placed into a Driblock DB-4 heating block (Techne Ltd., 

Cambridge, UK) preheated to 150±3 °C. After 2 hours the tubes were removed and cooled 

to room temperature. The content of the tube was emptied into a 250 ml conical flask and it 

was filled and emptied three times with DI water, placing the water into the flask. Two drops 

of ferroin indicator solution (1, 10-phenanthroline ferrous sulphate (0.025 M)) were added 

and titrated against 0.0125 M FAS solution to the endpoint where the colour changes from 

blue green to orange. This operation was performed whilst constantly mixing the contents of 

the flask. The blank that contained 5 ml of the COD reagent and 2.5 ml of DI water was 

refluxed and titrated in the same manner. Each sample was analysed in triplicate. From the 

titration, the COD was calculated using the following equation:

_„ i-i _ ( (ml FAS (blank titre) - ml FAS (sample litre)} x FAS molarity x 8000^ , , 
m& l ~ ———————————————————————————————————————— x dilution factor 

\ 2.5 ml of sample )

ii7i I-AO i •*, ml dichromate solution titrated x 0.25 Where FAS molarity = ——————————————————————
ml FAS used in titration

Equipment was kept solely for COD measurement to avoid contamination problems. The 

FAS solution was standardised by titration in triplicate against a solution containing ferroin 

indicator, 2.5 ml of 0.0418 M (0.25 N) potassium dichromate, 25 ml of DI water and 7.5 ml 

of concentrated H2 SO4 . Standard deviations of up to 5.6 % have been cited for the closed 

reflux method (APHA, 1995) although HMSO (1986) cited standard deviations of up to
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9.01 % for industrial effluent samples. Guwy (1995) found precision between duplicate 

samples to be ±100 mg COD I" 1 for effluent from an anaerobic digesters operating on ice­ 

cream waste. For example, the sd was found to be 58 mg COD I" 1 (n = 12) in triplicate 

samples of the UASB reactor taken from Experiment 3.1. The mean effluent COD during 

Experiment 3.1 after 3 HRT was 810 mg I" 1 (sd = 96, n = 4). Therefore, a 7.2 % mean error 

was found.

3.2.7. Total solids (TS) and Volatile Solids (VS) for the UASB reactor

The methods used were the ones recommended by the APHA (1995) for measuring TS and 

VS of the UASB reactor biomass and a colleague at the laboratory performed them. TS were 

determined by drying, to constant weight, a known volume of sample at 105 ±2 °C. The 

precision of TS measurements has been cited as ±5 % (APHA, 1989). The level of VS was 

determined by incinerating at 500±50 °C to constant weight a sample which had undergone 

TS analysis (APHA, 1989). An error of 6.5 % has been found for VS (APHA, 1995). TS and 

VS measurements were made in triplicate. For these procedures the following equipment was 

used: volumetric cylinders, 100 ml glass beakers, 'Eurotherm' electric furnace (Carbolite 

Ltd., Sheffield), desiccator, 4 decimal point balance, Gallenkamp Hotbox convection over 

(Grant Instruments Ltd., Cambridge).

3.2.8. Total Suspended Solids (TSS) and Volatile Suspended Solids (VSS) for 

the aerated stage

APHA (1995) recommended the methods used for measuring TSS and VSS of aerobic 

suspended biomass. The TSS measurements for aerobic biomass are referred to as MLSS. 

TSS is the sample component, which cannot pass through a Whatman G/FC filter paper in 

this case with a 70 jjm thickness and then dried at 105 ± 2 °C. Standard deviations of 0.76 - 

33 % have been found in samples containing 15 - 1707 mg I" 1 TSS, increasing with 

decreasing sample size, and the sd of 7.2 % has been found for VSS (APHA, 1995). The 

sample which had undergone TSS analysis was incinerated at 500 ± 50 °C to constant weight 

(APHA, 1995) to measure VSS. Both measurements were made in triplicate. The VSS
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measurement was used to determine how much of the solids were bacterial, as inorganic 

solids are not volatile at 550 °C. The sd for MLSS and VSS between 12 replicates during 

Experiment 5.1 was 0.073 g I" 1 and 0.074 g I" 1 , respectively. This corresponded to a mean 

error of 3 % for MLSS and 3.4 % for VSS. For these procedures all the equipment presented 

in Section 3.2.7 plus the following was used: Whatman G/FC filter paper, Hoffman filter unit 

to hold the paper filter, Buchner flask and a water vacuum pump (Charles Austen Pumps, 

Lanes., UK).

3.2.9. Biomass Catalase Activity

Measurements of catalase activity as a measure of active aerobic biomass were made 

intermittently using an assay method (Guwy et al., 1998). These authors concluded that the 

technique had potential to measure active aerobic biomass in activated sludge plants on-line 

without prior treatment over at least the range of MLSS tested (0.3 - 4.5 g TSS I" 1 ). The 

authors tested it on dilute samples and obtained a linear result according to the dilution 

factor. The measurement could not be performed continuously as there was not enough 

biomass to be taken out from the aerobic stage. The apparatus consisted of a perspex reaction 

chamber with a liquid working volume of 60 ml, mixed by a magnetic stirrer bar. The 

monitor used a solution of 0.485 M F^Oa prepared from a 30 % solution (Fisher Scientific 

Ltd., Loughborough, UK) in 0.1 M sodium dihydrogen orthophosphate buffer at pH 7.0 as 

reagent. Both solutions were prepared daily with ultra pure DI water and were stored in a 

dark bottle. The stirred activated sludge samples and the peroxide reagent were introduced 

into the reaction chamber using a Watson Marlow 505 U peristaltic pump with an 8-roller 

multi-channel pump head each at a rate of 10 ml min" 1 . Each run used up about 150 ml of 

sample and the same quantity of the reagent mixture. The activated sludge samples from the 

aerobic tank were run through the prototype monitor as soon as they were collected. Dilution 

of the sample, although possible, was never required. When the sample was expected to 

foam antifoam was added before the run. During each run the sample was pumped out of the 

volumetric flask where it was being continuously stirred to the reaction chamber where was 

also stirred in conjunction with the reagent. The temperature of the cabinet containing the 

reaction chamber was set to ± 37 °C. The reaction chamber had a gas outlet, which was 

connected to a LFM 300 gas meter (G.H. Zeal, London, UK). The gas meter was connected
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to a portable computer where date/time and volume of Oz produced were logged for about a 
40 minute period. A measurement was recorded every 15 seconds. The volume of oxygen 
evolved was averaged from the steady state period over 15 minutes. During the run there was 
a need for constant supervision as the tubes for pumping the sample and the reagent were 
prone to blockage. A constant drip from the chamber had to exist throughout the 
experimental run. Figure 3.2 shows a photograph and a schematic of the prototype biomass 
activity monitor. During the experimental measurements the gas meter shown in the 
photograph was replaced by the commercial low flow gas meter mentioned above and due to 
its slightly larger dimensions was located outside the cabinet.

The specific catalase activity (SCA) of the samples was related to the VSS of samples taken 
at the same time. It is known that, one unit of catalase activity corresponds to the breakdown 
of 1 umol of H2C>2 per minute under specified conditions, which would produce a gas flow of 
11.2 jal of O2 per minute at STP (Guwy et al, 1998). The following equations were used to 
calculate the SCA related to g of VSS.

Catalase activity (catalase units I" 1 sample) =
lOOOxmlmin ' O, evolved 1000——————————————————£———————— x ——————————

11.2 ml sample

Therefore: SCA (catalase units g" 1 VSS) =
Catalase activity (catalase units 1 ' sample) 

g VSS I" 1 sample

Sample to be analysed

Hydrogen peroxide 
and buffer

Data acquisition 
system

Effluent

Figure 3.2 - Biomass activity monitor
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3.3. On-line Instruments

On-line instruments were used for the monitoring and development of the control scheme for 

the treatment process and to test the application of the TOD and TOC monitors and the 

UV/Visible Spectrophotometer on-line with this type of textile effluent. This section will 

briefly describe the operation, calibration, requirements, settings and data acquisition utilised 

by the on-line monitoring instruments.

3.3.1. Biogas Related Measurements

The operation of on-line monitors such as low flow gas meters and H2 and CO2 monitors will 

be presented in the following three sections.

Gas meters

Two low flow gas meters were used to measure the gas flowrate produced by the UASB 

reactor. One being a prototype and the other a commercial instrument LFM 300 (G.H. Zeal, 

London, UK) (Guwy et al., 1995) (Figure A.9, Appendix A). The first one monitored the gas 

flowrate for Experimental Phase 2 and the second for Experimental Phases 3 and 4. These 

gas meters were designed to measure low flow rates (<5 ml min' 1 ) and operate continuously 

(Guwy et al., 1995). They were not affected by irregular gas production, and did not cause 

sudden large changes in pressure, which could have displaced liquid from the reactors. The 

maximum flowrate for the prototype instrument was variable as it had 4 different size ballast 

chambers to choose from. For the commercial meter the maximum flowrate was 22.2 ml 
min" 1 .

Data acquisition and calibration - Both instruments output a voltage of 0 - 10 V from the 

gas meter to the data logger built in a Lab VIEW™ virtual instrument (VI). The prototype gas 

meter was calibrated using a SAGA 400 bubble flow meter (Ion Science Ltd., UK) at 

different flow rates. The gain and bias were therefore calculated from the relationship 

between the bubble meter readings and the on-line readings. The bubble flow meter was 

attached to a supply of nitrogen gas at a specific flowrate. 10 readings were taken to get a 

reliable mean. The nitrogen gas was then attached to the gas meter with gain set to 1 and bias
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set to 0 on the VI. Once the readings obtained in Lab VIEW™ were steady the values were 

noted. This procedure was repeated with other flowrates. The mean of each point was then 

plotted against the reading required and the equation resulting from a linear regression 

analysis was then used to introduce the new values of gain and bias in the VI. The 

manufacturer calibrated the commercial gas meter yearly and the only calibration needed 

between the instrument and the data logging system was due to the small variance caused by 

electrical noise. Therefore the gain and the bias in Lab VIEW™ were adjusted using the 

relationship between the gas meter displayed readings and the ones in the data logging 

system.

Hydrogen analyser

The GMI exhaled hydrogen monitor (GMI Ltd., Renfrew, Scotland) was only setup to work 

on-line on the 5 th run of Experiment 3.1 with its linear range up to 900 ppm (no 

measurements were performed for Experiment 3.2) (Figure A.3, Appendix A). Flow to the 

H2 meter (normally of 2.2 ml min" 1 ) was performed by a peristaltic pump (503S Watson 

Marlow Ltd., Cornwall, UK) attached to the H2 monitor and was not recycled. To 

compensate, the gas flow measurements using the gas meter were recorded with the 

adjustment of this flowrate. Stripping of the H2 S was accomplished with a perspex tube filled 

with glass beads and a 560 ml saturated solution of copper sulphate (Fisher Scientific Ltd., 

Loughborough, UK) and resulted in a 15 minutes lag. After the 1 st run of Experiment 3.4 

(Section 3.6.3) there was a 2-fold dilution of the biogas as it overloaded. This dilution was 

achieved with air pumped through a 505U Watson Marlow pump making a total flow to the 

analyser of 4.4 ml min" 1 . Collins and Paskins (1987) reported monitor cross-sensitivity to 

oxygen producing a low reading of approximately 1 ppm per 1 % of oxygen present, in this 

work this did not occur. Also, Kidby and Nedwell (1991) showed this error to be 

approximately half that reported by Collins and Paskins (1987), and stated that it may be a 

function of each polarographic cell.

Calibration and data acquisition - For calibration purposes a CH4 :CO2 (60:40) standard 

mixture (BOC Gases, Guilford, UK) and a 96 ppm hydrogen in air standard (GMI Ltd., 

Renfrew, Scotland) were pumped continuously at 2.2 ml min" 1 to the scrubber and then to the 

H2 monitor. Collins and Paskins (1987) showed that the instrument gave no response to the 

CH4 and CO2 mixture and therefore was suitable for use in anaerobic digestion. The H2
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monitor had a 0 - 100 mA output range. The signal was sampled after passed the current 
through 3 resistors and then been amplified 10 times (Section 3.5.1 and Figures A.I and A.4 

of Appendix A), which resulted in a voltage signal of 0 - 5 V being sent to the central 
logging system.

Carbon dioxide analyser

A SB-100 carbon dioxide analyser (ADC Ltd., Hodderson, UK) was used to monitor the 

percentage CO2 in the biogas produced by the UASB reactor (Figure A.3, Appendix A). The 
instrument's response time was dependent on the gas flow through the infrared cell therefore, 

it was important to maintain a constant gas flow. The biogas was continually recycled in a 

closed loop through the analyser, which allowed in-situ measurements to be made. The 
biogas was recycled at a rate of 19 ml min" 1 from the gas space by a 503S peristaltic pump 

(Watson Marlow Ltd., Cornwall, UK). Marprene tubing was used throughout the cycle to 

avoid any permeation of CO2 to the atmosphere. The analyser output was 0 - 5 V (Figure 

A.5, Appendix A) and was calibrated monthly using GC grade nitrogen gas (Messer UK 

Ltd., Reigate, UK) and a standard mixture of CH4 :CO2 (60:40) (BOC Gases, Guilford, UK). 

The accuracy of the instrument was checked regularly with the standard mixture and also 

daily with off-line GC gas analysis (see Section 3.2.4).

3.3.2. On-line pH and DO determination

Both pH and DO measurements were logged via a WP4007 (Solomat Ltd., Herts, UK) and 

therefore they are both covered in this Section.

pH probe - The pH level of a liquid is defined as the negative logarithm of hydrogen ion 
activity, which can be detected by using a glass combination electrode (i.e. with a reference 

electrode). The glass electrode acts as a transducer, converting chemical energy into an 

electrical signal (measured in mV). The glass combination electrodes used to measure pH 'in 

situ' in both the UASB reactor and also the aerobic tank were of the type Ingold Xerolyt 
HA405-DXK-S8 (lengths: 120 mm (UASB reactor) and 225 mm (aerobic tank)) (Mettler- 

Toledo, Ltd., Halstead, UK). They were used in conjunction with a WP4007 instrument 

(Solomat Ltd., Herts, UK) (Figure A.9, Appendix A). This instrument was setup for channels
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and calibration points using the CS6 Software using a serial connection (RS232) (Section 

3.5.1). The results were logged in the central data logging system using the 0 - 10 V signal 

from the MX8000 output multiplexer connected to the WP4007. From this multiplexer 3 

outputs were used (i.e. 2 pH probes and 1 DO probe). Calibration of the pH probes was 

performed every week using the 'single mode' using two freshly prepared standard buffer 

solutions i.e. pH 7 and 4 (Fisons Ltd., Loughborough, UK). When calibrating the high 

reference point for pH, the result of the calibration was displayed as a percentage. If the % 

was within 85-100 % the pH probe was in good condition and was calibrated. The probe 

was replaced if it was less than 85 %. After calibration the WP4007 was set to 'scan mode'.

DO probe - A Capsule 8012170 (ABB Kent-Taylor, Ltd., St. Neots, UK) was used to 

measure the DO in the aerobic tank. This DO probe with automatic temperature 

compensation was also integrated with the WP4007 and MX8000 instruments described 

above. The operating range was 0 - 9.06 mg I" 1 . The DO probe was also calibrated in 'single 

mode'. The calibration was performed using an electrolyte solution, supplied by Solomat 

Ltd., for zero calibration. For the saturation calibration point the probe was immersed in a 

container with 2 1 of water with an air stone connected to an air compressor similar to the 

ones used in the aerobic tank (7 1 min" 1 ). The compressor was left to aerate the water for 2 

minutes and then during the calibration the sensor was allowed to stabilise for 3 minutes. If 

the sensor responded slowly during calibration it was assumed that the membrane was 

clogged, necessitating cleaning with DI water. Every week there was inspection for any tears, 

air bubbles or white residue on the cathode. The capsule was replaced as necessary. The 

oxygen content was set to be displayed in mg 1"'. The data acquisition was performed 

similarly as for the pH probes and after calibration the WP4007 was also set to 'scan mode'.

3.3.3. Intermittent BA analyser

The intermittent BA analyser prototype worked on a similar principle to the continuous BA 

monitor presented in Guwy et al. (1994) and was initially built under another project and it 

was first tested here (Figure 3.3). This novel monitor presented considerable advantages 

mainly when operating on a laboratory scale digester. These were: a small sample was 

required (approximately 50 ml), short analysis time (minimum of 10 minutes, the maximum
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would depend on how many washes and purges were required), it can be set to sample as 

often as needed given the extra flexibility for sampling on small throughput reactors. One to 

two analyses were performed per hour as described in Section 3.6. The monitor measured 

COa liberated from bicarbonate acidification of the sample to pH 4 or below. This pH was 

selected to ensure that all bicarbonate was converted to CC>2. The sample chamber volume 

was 130 ml. Each sample was automatically saturated with COa, and approximately 0.5 ml of 

2.5 M sulphuric acid was added per measurement. For each mole of bicarbonate 

decomposed, one mole of CC>2 is formed. Therefore, the CC>2 concentration in the sample 

after acidification was proportional to the concentration of bicarbonate originally present in 

the sample. Rinsing between samples with tap water was also automated. Gas production 

pressure from the sample was measured from 0 bar to a maximum of 1 bar using a very 

sensitive gauge pressure sensor (manufactured by SenSym SCX15DN and supplied by 

Farnell Components, UK) which provided a voltage output of 0.087 mV per mbar. The 

monitor analysed BA in the range of 100 to 2500 mg CaCOs I" 1 . The system if stopped was 

warmed up for 90 minutes prior to analysis. Refer to Section 3.4 for the description of the 

filtration system for the BA analyser.

The effluent of the UASB reactor was pumped out at 160 ml min" 1 by a 503S Watson 

Marlow pump (Cornwall, UK) through a 5 mm tube connected to a course filter in 

Experimental Phase 2 placed above the plates of the gas disengagement zone. However, this 

funnel/filter arrangement kept blocking and falling from the tube. Consequently, for 

Experimental Phases 3 and 4, the sampling was performed with the same tube but placed just 

underneath the perspex plates i.e. granules clear zone. During the 3 Phases, the effluent was 

recycled from Filter 2 back to the side-port located above the plates. This need for recycle 

was to decrease the time that the samples needed to reach the on-line instruments and at the 

same time not wasting a lot of sample. The large flowrate used was so that not so many 

granules would be able to deposit in Filter 2 (Figure 3.5).

Calibration - The BA analyser was calibrated using three standard solutions of 500, 1000 

and 2000 mg CaCO3 i~' (using sodium hydrogen carbonate (Fisher Scientific Ltd., 

Loughborough, UK)) every week. Calibration of the monitor showed linearity within 94.6 % 

(Figure 3.4).

10



Reaction vessel Acid pipette Temperature sensor

Acid 
valve

Pressure 
sensor

Outlet gas 
valve

Digital 
manometer

Peristaltic
pump for
sample

and acid

Acid bo

Electronic 
circuits

CO, valve

Circulating 
pump

Drain 
valve

Sample valve Cleaning water valve Waste collector

Figure 3.3 — Front of the intermittent BA analyser

Data acquisition - A dedicated computer (Figure A.8, Appendix A) fitted with a 12 bit data 

acquisition board (RTI 815, Analogue Devices Inc., Norwood, MA) was used for local data 

acquisition and display and under this project also to transmit the data to the central 

logging/control computer (Section B.I, Appendix B).
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Figure 3.4 - Calibration graph for the intermittent BA monitor

3.3.4. Temperature probe

A temperature probe was assembled using an inexpensive calibrated thermistor 1C LM35 DZ 

(RS Components Ltd. Corby, UK) (Figure A. 13, Appendix A) a three-terminal integrated 

circuit temperature sensor, which gave a linear voltage output of 10 mV per degree 

centigrade. A signal was sampled with the NB-MIO-16 in the central logging/control 

computer (Section 3.5.1). The operating range of the sensor was 0 - 100 °C and it was 

calibrated against a digital thermometer (Minitherm HI 8757, Hanna Instruments). The 

temperature probe was sealed within a polyurethane tube with permanent glue and inserted 

into the UASB reactor liquid through the side port (Figure 3.1). Due to fouling in the UASB 

reactor the temperature sensor was re-calibrated monthly against the digital thermometer, 

which was inserted through one of the gas ports in the lid of the reactor.
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3.3.5. Organic Strength Monitors

Two commercial organic strength monitors were used to monitor the health and efficiency of 

the two biological treatment stages. The TOD analyser measured the oxygen consumed 

during catalytic combustion of a sample, whereas the TOC analyser measured the difference 

between the TC and the 1C.

Total Oxygen Demand (TOD) Analyser

The commercial Ionics Model 7800 E Total Oxygen Demand Analyser (Ionics UK Ltd., 

Manchester, UK) was designed to continually measure TOD in a sample of water. TOD is 

the amount of oxygen consumed during the catalytic combustion of a sample. The 

momentary depletion of oxygen in the carrier gas was detected by a zirconium oxide fuel cell 

and the voltage was logged (Section 3.5.1). The analyser was configured to have an operating 

range of 0 to 3333 mg I" 1 by changing the length of the silicone rubber tubing through which 

the oxygen from the air permeated. Operation, calibration and maintenance proceedings were 

accomplished accordingly to the manufacturer's manual. The TOD analyser was tested 

during Experimental Phase 2 and used continuously during Experimental Phase 3. The 

sample stream was filtered continuously (Section 3.4) whilst being pumped at 10 ml min" 1 

with 20 ul being drawn off for measurement. Samples were taken approximately every 2.5 

minutes. After every measurement, there was a rinse with DI water and after Experiment 3.4 

this rinse was performed with a solution of 5 % nitric acid (Fisher Scientific Ltd., 

Loughborough, UK) and DI water.

Calibration and data acquisition - The TOD was calibrated using a 3333 mg I" 1 solution 

prepared with 2.8363 g of potassium hydrogen phthalate per 1000 ml of DI water. This TOD 

measurement corresponded to 10 V output using a voltmeter and by adjusting the voltage 

pot. Posterior, a display pot adjustment was performed so that the corresponding value of 

3333 mg I" 1 was obtained. After the monitor was tested with a 1500 mg I" 1 TOD solution. A 

linear voltage output was sent to the central logging/control computer where there was also a 

calibration of the voltages received to the corresponding TOD values (Section 3.5.1). 

Calibration of the monitor was performed every 1 to 2 days.
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Maintenance - The injector was taken apart and cleaned on a regular basis and every 1 to 4 

days the injection tube was replaced. The platinum balls inside the catalyst chamber were 

cleaned with DI water once a month and once they were boiled in concentrated HC1 for 5 

minutes and then washed with DI water and thoroughly dried. The chamber was repacked 

and a fibre frax material was put on top of the catalysts to ensure that the sample was filtered 

slowly onto the catalysts.

Related analysis - since keeping the monitor working for at least 1 week was a problem due 

to blockages of the injection tube, analysis of its contents was performed. Two injection 

tubes were autoclaved and cross-sectioned. Two samples were then gold coated. One of a 

tube section, another of just the residue inside. They were both analysed by X-ray 

microanalysis with a Stereoscan 240 electron microscope (Cambridge Systems, Cambridge, 

UK) fitted with a Link System X-ray analyser (Link Systems, High Wycombe, UK).

Total Organic Carbon (TOC) Analyser

The TOC analyser used was a DC-190 Rosemount Dohrmann (Sartec Ltd., Borough Green, 

UK) (Figure A.8, Appendix A). Its principle of operation was based on the high temperature 

catalytic combustion method followed by NDIR detection of COa. Samples were 

automatically injected into the analyser and an open glass flowcell was used for continuous 

measurements. This instrument measured TOC by determining TC and 1C independently, 

injecting the samples in two columns, with TOC being obtained from the difference between 

TC and 1C. TC was analysed by injecting a sample of the reactor's waste stream into a 

blended air gas stream, which passed through a combustion tube set at a temperature of 

680 °C packed with platinum catalyst. The organic carbon was oxidised to CO2 and 

transported by the carrier gas to a NDIR detector, where it was quantitatively measured. 1C 

was analysed similarly by injecting a sample from the reactor into a separate reaction 

chamber at 150 °C, packed with phosphoric acid-coated quartz beads. The organic carbon 

was prevented from oxidising under acidic conditions. Only the 1C was converted to CO2 , 

which was also measured by the same detector. The 1C and TC sample acquisition of 50 (j.1 

was performed by an automatic injection system, which was then, introduced into the TOC 

analyser. A complete TOC analysis took approximately 6 - 8 minutes from which 3 to 4 

minutes was the time taken from the output of the TC result and the starting of the 1C 

measurement. The operating range of the analyser was of 0.2 - 50,000 (ppmC). The TOC
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monitor was only operated for Experimental Phases 4 and 5 (Sections 3.6.4 and 3.6.5). hi 

Experimental Phase 4 the sample was from the UASB reactor effluent and during Phase 5 

the sample was taken from the middle of the settler to reduce blockage of the filters.

Requirements and settings - The sample was filtered (Section 3.4) and was not recycled to 

the UASB reactor during Phase 4 (Filter 3 and TOC flowcell were open to the atmosphere) 

however, it was recycled back to the aerobic tank during Phase 5. A 60 urn mesh filter from 

Sericol - Industrial Fabrics (Kent, UK) was used with Filter 3.

Calibration - The instrument was calibrated weekly or at the start of a new run, whichever 

came sooner, for TC and 1C. TC stock solution 2.126 g of potassium hydrogen phthalate 

(Fisher Scientific Ltd., Loughborough, UK) was made up to 1000 ml with DI water. The 

final concentration was 1000 mg C I" 1 . Phosphoric acid was added to lower the pH to 3 or 

less. For the 1C stock solution 6.99 g of NaHCO3 (Fisher Scientific Ltd., Loughborough, UK) 

was made up to 1000 ml with DI water, giving a concentration of 1000 mg C I" 1 . Each 

standard was injected 3 times by the auto-sampler. When the sd was greater than 5 % for the 

TC measurement the chamber was cleaned with HC1 and for the 1C measurement the 

chamber was cleaned with two automated injections of phosphoric acid (20 % phosphoric 

acid solution) which was prepared monthly, or even with the replacement of the contents of 

the chamber with DI water primed with phosphoric acid.

Data acquisition - The TOC analyser had software for data acquisition (DC 190 Terminal 

Software - Dohrmann Data Talk II (Sartec Ltd., Borough Green, UK)) installed on a PC 

(Figure A. 10, Appendix A), which transferred data and time via the serial communication 

port (Section 3.5.1). The data was also sampled every 0.5 seconds using a built LabVIEW™ 

VI and a NB-MIO-16X data acquisition card on another computer by using the waveform 

voltage output from the analyser's NDIR detector. The VI integrated the area under the 2 

peaks (i.e. TC and 1C) to calculate the final value of TOC (i.e. TC - 1C) (Figure A. 10, 

Appendix A) (Figure 4.15). The TOC analyser had 1 light-emitting diode - LED for each of 

the two chambers, which radiated in the visible region every time each chamber was in 

operation. Two optical schmitt trigger detectors (IS 436) (RS Components, UK) (Figure 

A. 12, Appendix A) were set above the LEDs and each signal 0 - 5 V was taken by the PC 

that indicated the start and the end of each measured peak. The three input signals were
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filtered using a hardware low-pass filter (i.e. circuit built using a 1 jaF capacitor and a 82 kQ 

resistor from RS Components, UK) (Figure 3.6). After the integration of the peaks the same 

board output the voltage signal of TC and 1C to the central logging computer running another 

LabVIEW™ program and only then the TOC was calculated.

3.3.6. On-line Colour Analysis

An UV/Visible Spectrophotometer using a standard 10 mm quartz flowcell both from 

Unicam Ltd. (Cambridge, UK) were used for on-line colour measurements (Figure A. 11, 

Appendix A). It was set to measure on-line OD of samples at the wavelengths of 436, 525 

and 620 nm (as recommended in BS 6068) within a range of 0 - 2.9 absorbance units. 

Calibration was performed as in Section 3.2.3 using the flowcell instead of the visible cell. 

The sample was filtered prior to measurement to avoid interference by non-dissociated 

matter (as in Sections 3.4, 3.6.3 and 3.6.5). The filtration systems used were thought not to 

cause oxidation reactions, as there was no contact with air except minimal contact in Filter 3. 

The sample flowrate to the flow cell was set to 1.8 and 1.5 ml min" 1 , for Experimental Phase 

3 and 4, and Phase 5, respectively. For efficient operation of the UV/Visible 

Spectrophotometer, the samples were diluted from 3 - 7.5 times depending on the influent 

dye concentration using DI water (to be within the linear range of the instrument).

Extra requirements - The flowcell was getting dirty sometimes after only 3 hours of 

operation and had to be cleaned using acid ethyl-acetate (AnalaR), which disrupted the 

measurements. Residue inside the flowcell was collected and stained using 1 % methylene 

blue for 30 seconds and then was observed using a microscope. As filamentous bacteria were 

observed, the use of a biocide was appropriate. The dosing of this biocide was noticed to be 

even more fundamental after dilution as for two trials the growth of bacteria was even more 

effective suggesting that the UASB effluent was quite toxic but after diluted with water 

bacteria could grow quite effectively. The choice of biocide depended on its physical- 

chemical characteristics. The biocide was first tested and characteristics were found which 

proved to be suitable for the task. A broad spectrum biocide (Panabath M, BDH Chemical 

Ltd., Poole, UK) was added at 0.25 ml I" 1 of DI water used for dilution preventing the growth
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of biofilm. After diluted it presented no absorption for the 3 measured wavelengths, it did not 

alter the pH of the sample and it did not help degradation of the coloured sample.

Data acquisition - A PC program (ASDS - Unicam Ltd., Cambridge, UK) already existed 

for dual communication with the analyser. However, the data was required in the central 

logging computer where the serial links were different than a standard RS-232. Therefore, a 

QuickBasic program was built for communicating in terminal mode with the analyser so that 

the data acquired by the PC via the serial port could be manipulated and sent to the central 

logging system as voltage signals (Section B.2 - Appendix B). Therefore, a digital to 

analogue (D/A) card was assembled using a quad-8-bit converter (RS Components, UK) in 

Interface Box 4 (Figure 3.6, Figures A.6 and A.7 of Appendix A). The inputs to this card 

were values sent out using the PC parallel port and the converter output 4 voltage signals, 

which corresponded to absorbance at the 3 wavelengths and a value for the average. 

However, only the ODs at 525 nm and the average of the three were sent to the central 

computer due to restrictions in the NB-MIO-16 card.

3.4. Filtration systems for on-line instruments

On-line instruments such as the BA, TOD, TOC and colour monitors needed filtered samples 

so as to minimise blockages, hi case of the colour analyser, it was also to approximate the 

reading to the true colour measurements performed off-line as in Section 3.2.3 and not to 

interfere with the measurements of the TOD and TOC analysers. The setup of each filter 

together with the on-line instruments is shown in Section 3.6 for each of the Experimental 

Phases. Two different sizes Saatifil Polyester meshes (Industrial Fabrics - Sericol Ltd., 

Broadstairs, UK) were used by the five different filters. An in-line filter (Filter 1) and a 

cross-filter (Filter 2) were designed and built using perspex for this particular project. A self- 

cleaned cross-filter (Filter 3) built under another project and two reusable plastic filters 

holders (BDH Ltd., Poole, UK) one with funnel (Filter 4) and an in-line filter (Filter 5) were 

also used. Photographs of the filters are presented in Figure 3.5. The liquid volumes for 

Filters 1, 2 and 3 were 261, 650 and 83 ml, respectively. For all the filters the 185 urn mesh 

was utilised except for Filter 3. This last one being a self-cleaned cross-filter (cleaned by a
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rotating brush) had the capability of withstanding without frequently blocking a tighter mesh 

(60 urn).

Flow to monitors Recycled or wasted

Filter 3
~ ut

To witTidYaw biomass ~* Out

Filter 2

Metal ring

Filters 4 and 5

Figure 3.5 - Photograph of filters

In case of Filters 2, 3 and 4, a recycle was included to promote the monitoring of fresh 

samples. The tubes going from the stages to the filters and to the analysers were all 

polyurethane tubing to avoid growth of bacteria on the walls. Silicone rubber tubing 

promoted the growth and deposit of the bacteria on the walls possibly due to its roughness.
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All the filters, had to be taken apart and cleaned regularly as granules, suspended biomass 

and also bacteria which grown in the meshes clogged them. For all the filters except Filter 3 

the operation time was of 1 - 2 days before cleaning, whilst Filter 3 stud 4 days operation 

without being manually cleaned. These polyester meshes were cleaned with tap water and 

reused again. Before assembly the filters had to be filled with tap water for pumping 

purposes and also for Filter 2 and 4 no air was to be pumped to the UASB reactor by the 

recycle line. Filter 4, as it can be seen in Figure 3.5, had a metal ring to sit on top of the mesh 

so that this did not lift up by the vortex force created at the top part of filter.

3.5. Interfacing Hardware and Software for Monitoring and Control

This Section describes the contents of the interface boxes, the central logging/control 

computer in terms of hardware and software and also the software for data transfer between 

LabVIEW™ and MATLAB®. Finally, it presents a description of actuators used for 

controlling the biological treatment process on-line and respective calibration.

3.5.1. Interface Boxes and Central Logging/control Computer

The flow of the on-line instrument signals to the central logging/control computer and the 

respective feedback control signals to the actuators is depicted in Figure 3.6. All the signals 

from the on-line sensors described above were joined in the Interface Box 1 and sent through 

to Interface Box 2 (Figures A.I and A.2, Appendix A). Interface Box 1 had an electronic 

circuit for conversion from current to voltage and also a 10-fold amplification of the signal 

from the H2 analyser (Figure A.4, Appendix A). It had also a circuit built for stability of the 

CO2 analyser signal (Figure A.5, Appendix A). Interface Box 2 included two CB50 (National 

Instruments, Newbury, UK). One of the CB50 was used to connect the signals reaching 

Interface box 2 to the NB-MIO-16H card (National Instruments, Newbury, UK) (16 inputs 

and 2 outputs analogue channels). In this CB50 hardware standard low-pass filters (82 kQ 

resistor and IjiF capacitor) for all the monitored signals were built to attenuate the electrical 

noise. The other CB50 was used to ungroup the output signals from the NB-AO-6 card 

(National Instruments, Newbury, UK) (6 output analogue channels), which were then sent
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back to the Interface Box 1. Interface Boxes 3 and 4 were directly related with the TOC and 

colour analysers (Sections 3.3.5 and 3.3.6). The central computer incorporated the two 

interface cards (NB-MIO-16H and NB-AO-6). A VI developed in Lab VIEW™ was 

configured to scan the on-line sensors every 2 minutes, with the data and time being stored in 

a data file. Data updates for the colour and TOD analyser occurred only every 4 minutes, for 

the TOC analyser every 6-8 minutes and for the BA monitor every 1 hour except during 

Experiment 4.2 where the measurements were performed every 30 minutes. This VI also 

included the on-off pH and DO set-point controllers for the aerobic stage.

Two other Vis included output control signals from the ANNBCS in addition to the 

acquisition of data. One of these Vis was for the control of the UASB reactor during 

Experiment 4.2 and the other for the control of the aerobic stage during Experiment 5.3. A 

screen capture of part of the first VI is shown in Figure 5.8.

Within the central computer there were two other packages, a data storage software which 

served to save sensorial and remedial action information and also used to transfer data from 

Lab VIEW™ to MATLAB® and back, as described in Section 3.5.2. The MATLAB® 

programming package and its associated Neural Network Toolbox®, both supplied by 

Cambridge Control Solutions (Cambridge, UK) were used to build the ANNBCS developed 

in this work. More information on this will be provided in Sections 3.5.2.
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3.5.2. Data Transfer Software for Control

Figure 3.7 shows the data flow in the central computer during experiments controlled by the 

ANNBCSs. From the sequence it can be seen that sensorial information from the plant was 

logged in the central computer using Lab VIEW™ (1). The VI in Lab VIEW™ transferred 

sensory data, date and time to a file (2). MATLAB® in (3) retrieved this information, 

processed it and returned the necessary remedial actions to another data file (4) which was 

subsequently read by LabVIEW™ (5) at the frequency of 2 minutes where it was converted 

to an analogue signal that was used to manipulate plant actuators (6). An example of the 

software for data transfer and control written in MATLAB® is presented in Section B.3 of 

Appendix B.

NB-MIO-16H 
and NB-AO-6

1

i

A

6 

r

i 

2

Sensory data file

Control outputs file

LabVIEW™

Data acquisition 
and control file

MATLAB®

Data transfer file 
and ANNBCS files

Figure 3.7 - Software within the central logging/control computer for use with the

ANNBCSs

3.5.3. Actuators Controlled Via the Central Logging/control Computer

Two types of actuator were controlled via the central computer. These were five peristaltic 

pumps (model 505U, Watson Marlow Ltd., Cornwall, UK) and one air compressor. The five 

peristaltic pumps controlled the pH in the aerobic vessel in an on-off mode at constant speed 

(Experiments in Phase 2 and 3 and Experiment 5.1 and 5.2), and with variable speed the pH
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of the aerobic tank and the extra starch delivery to the aerobic tank (Experiment 5.3), the 

delivery of dye and the adjustment of BA both for the UASB reactor (Experiment 4.2). For 

the last four pumps the calibration was made in 'voltage mode' accordingly to the Watson 

Marlow manual for variable speed output.

An on-off switch was adapted to the back of one air compressor and was connected to the 

central computer. The air compressor was controlled in an on-off manner as described in 

Section 3.1.1 in Experimental Phase 3 and in Experiments 5.1 and 5.2. It was controlled by 

the ANNBCS during Experiment 5.3.

3.6. Experimental Design, Monitoring and Control systems

This Section describes the experimental design, and briefly the monitoring and control 

systems adopted during the five Experimental Phases.

3.6.1. Experimental Phase 1 - Monitoring of a Fluidised Bed Reactor 

(Previous Project)

The reactor setup, on-line instrumentation and influent to the WWT system have been 

previously described (Guwy et al., 1997a). A laboratory scale fluidised bed anaerobic 

digester, consisting of two linked reactors giving a total working volume of 11 litres. It was 

operated for 8 months at an 8 - 9 h HRT on a simulated baker's yeast WW, with a sintered

glass carrier (Siran®). During operation the average volumetric loading rate (Bv) was 

18.87 kg COD m"3 day" 1 , giving a 75 % removal of soluble COD. Percentage CO2 , biogas H2 

concentration, biogas flowrate, BA and pH were measured on-line. The organic loading rate 

could be varied automatically, as concentrated feed and dilution water were supplied via two 

separate pumps. The relationship between the feed delivering into the reactor with the pump 

input voltage was linear. As the rate of flow of the dilution water was considerably larger 

than the rate of flow of the concentrated feed, the HRT in the reactor changed only slightly 

during changes in the organic load. Figure 3.8 shows a typical pattern of the concentrated 

feed into the reactor, which consisted of the three types of input signals. The flow pattern
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was also obtained via the use of a Pseudo Random Binary Signal (PRBS) generator to alter 
the input voltage to the pump.

The data used to train the ANNs was acquired from operating the anaerobic digester for three 

different conditions (Table 3.1). As for the textile effluent treatment project sensory 

information from the plant was logged on a computer with a NB-MIO-16H interface card in 

conjunction with LabVIEW™, both supplied by National Instruments Corporation Ltd. 

(Newbury, UK). The VI was configured to scan the on-line sensors every 2 minutes with the 

data, date and time being logged to data files for off-line processing. The data acquired was 

used to select the most appropriate ANN to control the biological process (Section 5.1).

Big organic step load

b 
S8a o

3"o

PRBS

Normal Normal

10 12 
Time (d)

Figure 3.8 — The three feeding signals to the reactor (not to scale)

Table 3.1 - Organic Loading Rate for the three different operating conditions (Experimental

Phase 1)

Designation
Normal 
PRBS 
Big organic overload

Organic Loading Rate (kg COD m~3 d" 1 )
18.87 

17.89-38.33 
16.41 -70.03
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3.6.2. Experimental Phase 2 - Monitoring of the Combined Anaerobic and 

Aerobic Treatment (A)

The UASB reactor, aerobic tank and settling vessel used here are described in Section 3.1.1. 

The setup, auxiliary equipment and on-line monitors used during this Phase are illustrated in 

Figure 3.9. The gas meter (Guwy et al, 1994) was the prototype presented in Section 3.3.1. 

The CO2 analyser, pH and DO probes, intermittent BA monitor and the temperature probe 

were described in Section 3.3. The sample to the BA monitor was filtered using Filter 2 

(Section 3.4). The TOD analyser was operated sporadically with samples from the side port 

of the UASB reactor. The sample to the TOD analyser was manually filtered using the 185 

um mesh (Section 3.3.5). Off-line analyses were performed for VFAs, pH, BA, CH4, CO2 , 

TS and VS for the UASB reactor biomass, MLSS and VSS for the aerobic tank, and colour 

and COD of the STE, UASB reactor effluent and settler effluent (Section 3.2).

The UASB reactor was seeded with 10 1 of granules from the BPB Paperboard Davidson 

(Aberdeen, UK) (TS of 60 g T 1 (sd = 2.28, n - 6) and a VS of 49 g I' 1 (sd = 1.85, n = 6)), 

whilst the aerobic tank was filled with 10 1 activated sludge from a Welsh Water Sewage 

Treatment Works, UK. The STE described in Section 3.1.2 was fed to the UASB reactor and 

its effluent was fed to the aerobic tank. Aerobic tank effluent was passed to the settling 

vessel prior to discharge. The reactor was operated for 28 days after a 7 day start-up period 

with a similar STE described in Section 3.1.2, except that the NaCl content was 1.5 g I" 1 

instead of 0.15 g I" 1 at a 2.5 d HRT with a starch concentration of 1.9 g I" 1 and azo dye 

1.5 g 1"'. Afterwards the reactor was operated for 26 days at 1.7 d HRT with a reduced salt 

and dye content (both were 0.15 g 1"'). Due to the long HRT a recycle flow from the topside 

port back to the influent line was used to assist mixing within the reactor. Some results 

obtained with these working conditions were presented by O'Neill et al. (1999b). For 

Experimental Phase 2 reported here the UASB reactor HRT was reduced to 1 d and recycle 

was resumed. The influent used was that described in Section 3.1.2. The recipe was changed 

to promote better colour removal; a larger throughput was needed for sampling and the 

feeding of the aerobic stage, and also to reduce the toxicity potential from the salt content. 

During Experimental Phase 2 the aerobic stage was operated at a 19 h HRT and was restarted 

with fresh sludge. The pH was controlled and the sludge was recycled every 4 hours (Section 

3.1.1).
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I CO2 analyser

PERI 9

Drexel bottle
Gas meter atmosphere

waste
PERIS 1

' I Filter 2 ,-f— ̂

L' \
1 
1

\ ^ \

A BA 
monitor

•^ 1_J

Legend: PERI - peristalic pump ———^ flow throughout Exp. Phase 2 • Temp, probe 

A Funnel/filter _____ liquid level | | On-off controlled pump

Figure 3.9 - Schematic of the rig, location of the on-line instruments and local control of

aerobic tank pH (Experimental Phase 2)

A series of four systematic experiments were conducted which consisted of varying both the 

dye and starch concentrations in a series of step changes during a four-week period. The 

objective was to investigate the effect of some feed variations in the dye and starch levels 

(Table 3.2) on the anaerobic process and to determine an optimal set of operating conditions 

about which to control the process. All experiments were conducted at a 1 day HRT for the 

UASB reactor, for 7 days. The data acquired from this Phase was used in Section 5.2 in order 

to develop a Control scheme.
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Table 3.2 - Concentrations of dye and starch (Experimental Phase 2)

Experiments

2.1 
2.2 
2.3 
2.4

Dye
(g r 1 )
0.075 
0.075 
0.15 
0.15

Starch
(g r 1 )

1.9 
0.95 
1.9 

0.95

3.6.3. Experimental Phase 3 - Monitoring of the Combined Anaerobic and 
Aerobic Treatment (B)

Stronger organic and colour loads were designed for Experimental Phase 3 as compared to 
Phase 2. This because the B v for the experiments of Phase 2 was below the recommended 
level by An et al. (1996) of 5 g COD I" 1 d" 1 . Also the maximum Bv of Phase 2 did not stress 
the UASB reactor and the aerobic biomass did not grow, even after pH control, possibly due 
to lack of organic load.

Experimental Phase 3 followed Phase 2 after a non-operating period of 52 days. The granules 
at the end of Phase 2 had a 43.8 % and 46.7 % loss of TS and VS, respectively. The same 
biological treatment stages were used with the same HRT as in Phase 2. The aerobic stage 
was re-started at the beginning of this Phase. Settled sludge was recycled continuously from 
the settler to the aerobic tank. Both pH and DO were controlled in an on-off manner (Section 
3.1.1). The rig was instrumented as shown in Figure 3.10. The on-line monitors of the UASB 
reactor were the low flow gas meter (LFM 300, G.H Zeal, London, UK), CO2 analyser, 
exhaled H2 monitor, pH and temperature probes, intermittent BA monitor, TOD analyser, 
and UV/Visible spectrophotometer. There were 'in situ' on-line pH and DO probes in the 

aerobic tank.

The filtration used for the BA, TOD and colour monitors are shown in Figure 3.10 and more 
information can be found in Sections 3.3.3, 3.3.5, 3.3.6 and 3.4. On-line data was 
supplemented with off-line results. These were pH, BA, gas composition (CH4 and CO2 ), 
VFAs, COD, and true colour measurements, TS and VS concentration and MLSS and VSS 
for the aerobic stage and occasional readings of H2 S in the biogas of the UASB gas space
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were carried out. The two injection tubes for the TOD analyser (i.e. section and residue) 

analysed using X-ray micro analysis were used during this Experimental Phase. Staining 

analysis of the residue inside the UV/Visible Spectrophotometer flowcell was also performed 

during this Phase.

In order to choose the best monitoring parameters and also to train the control scheme 

distinct changes in treatment efficiency and effluent quality (i.e. effluent organic and colour 

residuals) had to be accomplished. Therefore, an experimental programme was designed 

where starch and dye concentrations in the STE were varied. The concentrations chosen were 

based on previous results and literature. Also the maximum concentration of starch was 

determined in order to avoid sodium toxicity in the UASB reactor since the starch was 

hydrolysed, using NaOH. The sodium concentration in the STE was added to by the sodium 

hydrogen carbonate used as a buffer and slightly by components such as: salt, nutrients and 

the salt content within the dye.

Throughout the experiments, the rig was operated at an overall system HRT of 1.8 days. The 

dye and starch concentrations used in this Phase can be seen in Table 3.3. The rig was 

operated on a feed composition of 0.15 g I" 1 dye and 1.9 g I" 1 starch for 22 days (defined as 

'Initial Experiment' in Table 3.3) to obtain steady state values with good effluent quality. To 

collect data under conditions giving varying treatment efficiency in order to train the control 

system, a programme of varying starch/dye contents in the STE was then followed, by 

varying the dye and starch concentrations in 7 day periods in three further experiments 

(Experiments 3.2 - 3.4 in Table 3.3) each followed by a return for 7 days to the initial 

experimental conditions (Experiment 3.1). Each Experiment 3.2-3.4 was repeated. Thus 

Experiment 3.1 spanned seven 1 week periods. In Experiments 3.3 and 3.4 the starch was 

doubled to 3.8 g I" 1 ('high starch'), and in Experiments 3.2 and 3.4 the dye was increased 

5-fold to 0.75 g I" 1 ('high dye'). Also no addition of BA for a period of 25 h (Experiment 3.5) 

and step ups by a factor of 10 of the value of acetic acid in the feed during 4.5 h (Experiment 

3.6) were accomplished using the dye and starch concentrations as in Experiment 3.1. 

Afterwards the Experiment 3.7 of 16 days duration was performed using 0.45 g I" 1 ('medium 

dye') and 2.9 g I" 1 ('medium starch'). During Experiment 3.7 a concentrated supplement of 

OECD simulated sewage waste (OECD, 1981) was fed to the activated sludge stage at a rate 

of 1.4 litres per day. During Experiments 3.8 and 3.9, two colour impulses were performed.
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In the two colour impulses three other reactive dyes were used: PROCION Blue P-GR, 

PROCION Yellow P-3R and PROCION Orange PX-2R. In Experiment 3.8, the extra dye 

concentration was 0.3 g T 1 for a period of 5 hours and 30 minutes while in Experiment 3.9 an 

extra concentration of 0.6 g I" 1 was used for a period of 5 hours. Including the background 

dye concentration of 0.45 g I" 1 (PROCION Red H-E7B) a maximum dye concentration of 

0.75 g I" 1 and 1.05 g I" 1 were achieved for Experiments 3.8 and 3.9, respectively.

Table 3.3 - Influent for the biotreatment stages (Experimental Phase 3)

Exp.(s)

Initial
3.1
3.2
3.3
3.4
3.5
3.6
3.7 
3.8 
3.9

Dye (g 1 -') 
(PROCION Red)

0.15
0.15
0.75
0.15
0.75
0.15
0.15
0.45 
0.45 
0.45

Starch
(g r 1 )

1.9
1.9
1.9
3.8
3.8
1.9
1.9
2.9 
2.9 
2.9

Others

.

.
-
-
-

No addition of BA
Addition of extra acetic acid

Addition of OECD waste 
Addition of 3 extra dyes (0.3 g I" 1 ) and OECD waste 
Addition of 3 extra dyes (0.6 g 1"') and OECD waste

Experimental Phase 3 ran for 8 months with the following sequence of experiments: Initial, 

3.1, 3.2, 3.1, 3.3, 3.1, 3.2, 3.1, 3.3, 3.1, 3.4, 3.1, 3.4, 3.1, 3.5, 3.1, 3.6, 3.1, 3.7, 3.8, 3.7, 3.9, 

and 3.7. All the experiments had a duration of 7 days except Experiments 3.5 - 3.9. The first 

run of Experiment 3.7 had a duration of 2.5 weeks, the second of 1.5 weeks and the third of 5 

days. During this Phase the aerobic sludge was collected 3 times. However it was given 1 

week to adapt at Experiment 3.1 operating conditions. The UASB reactor was not fed (but 

was heated) for 4 weeks after Experiment 3.6. The highest Bv achieved was during 

Experiment 3.4 i.e. 3.9 g COD I" 1 reactor d"'. It was below the recommended value by An et 

al. (1996) however, as described in Chapter 4 some of the experiments in Phase 3 did stress 

the UASB reactor.
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3.6.4. Experimental Phase 4 - On-line Monitoring and Control of the 

Anaerobic Stage Using ANNs

After Experimental Phase 3, the UASB reactor was suffering from problems, which are 

discussed in Section 4.3.1 and therefore no starch step loads could be performed. 

Experimental Phase 4 followed a period of attempts to recover its health of 63 days (also 

summarised in Section 4.3.1) followed by another 16 days period of which the reactor was 

left heated but not fed. There were 6 litres of granules at the beginning of Phase 4 and TS = 

13.1 g I" 1 and VS = 10.6 g I" 1 . A simple set of experiments was designed for Phase 4 in order 

to test the ANNBCS performance on the UASB reactor. The ANNBCS was required to 

control an extra addition of dye (PROCION Red H-E7B) and the addition of BA for 

buffering of the reactor. There was no acquisition of data for an uncontrolled experiment, as 

the reactor would not stand a BA starvation. The starch, dye and BA concentrations are 

defined in Table 3.4. Experiment 4.1 was only monitored and not controlled by the 

ANNBCS. Both experiments were repeated. Experiment 4.2 followed Experiment 4.1 and 

this sequence was repeated. Experiment 4.1 had duration of 37 days and its second run the 

duration of 12 days. During Experiment 4.1, 2.5 g of BA was dissolved in the water, which 

was used for dilution of the concentrated STE. During both runs of Experiment 4.2, the extra 

dye and the BA solution were available for the 7 hours before the extra dye and the BA 

pumps were manually turned off. At the end of this 7 hour period the water was pumped 

from the tank with a BA concentration of 2.5 g I" 1 . Both, the extra dye and BA were stored in 

a concentrated form in bottles at concentrations of 9.925 g I" 1 and 60 g I" 1 , respectively. The 

STE for Experiment 4.1 was the same as for Experiment 2.2 (i.e. the lowest concentrations 

of dye and starch used during the experimental work). The UASB reactor, on-line monitors 

and actuators for this Phase are shown in Figure 3.11.

Table 3.4 - Influent starch, dye and BA concentrations (Experimental Phase 4)

Experiments
4.1 
4.2

Starch (g I 1 )
0.95 
0.95

Dye (g I' 1 )
0.075 
0.075

Extra dye (g F 1 )

Controlled 1

BA(gr')
2.5 

Controlled2

Maximum flowrate = 9.925 g 1 ; Maximum flowrate = 60 g 1
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The UASB reactor was monitored by the LFM 300 gas meter, CO2 analyser, pH and its 

effluent by the UV/Visible Spectrophotometer and TOC analyser. There were also off-line 

analyses: pH, BA, VFAs, gas composition, and the true colour and COD of the influent and 

effluent. The BA analyser, during Experiment 4.2 was set to sample every 30 minutes rather 

than every 1 h as the predictions for BA adjustment made by the ANNBCS were dependant 

on the analyser's measurements and also the pH. There were no measurements of H2 in the 

biogas as the levels of gas production were considerably lower and 2.2 ml min' 1 would have 

to be wasted. The overall lag time for the monitoring system was 16 minutes.

3.6.5. Experimental Phase 5 - On-line Monitoring and Control of the 

Aerobic Stage Using ANNs

The experiments of Phase 5 followed also the Experimental Phase 3 and were performed in 

parallel with the recovery period of the UASB reactor. The experiments here consisted of 

simulating an anaerobic stage failure and therefore raw industrial waste would have to be 

diverted straight to the aerobic stage. Phase 5 comprised 3 experiments of which Experiment 

5.1 was performed 4 times and Experiment 5.3 twice. The sequence for the experiments was: 

new sludge, 5.1 (12 d), 5.2 (5 h), 5.1 (10 d), 5.3 (4 h), 5.1 (3 d), break for 16 days, new 

sludge, 5.1 (7 d), 5.3 (5 h), and 5.1 (13 d). The starch concentrations used during each 

experiment can be seen in Table 3.5. Experiments 5.1 and 5.2 were used to train and test the 

ANNBCS off-line. The ANNBCS controlled the extra starch intake, pH and DO of 

Experiment 5.3.

Table 3.5 — Influent starch concentrations (Experimental Phase 5)

Experiments Starch (g I' 1 ) Extra starch (g I' 1 )
5.1 0.95
5.2 0.95 4.5 

_____5.3_________0.95'_________Controlled2_____ 
' Hydrolysed with NaOH; 2 Maximum concentration 4.5 g I" 1

As the UASB reactor during the recovery period was being fed with starch hydrolysed with 

amylase (Section 3.1.2) to avoid sodium toxicity, the experiments in this Phase were also 

performed with amylase hydrolysed starch, except for one case shown in Table 3.5 due to
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difficulties in the hydrolysis process, hi this case the starch was hydrolysed with NaOH 

(Section 3.1.2). The dye concentration was maintained at 0.075 g I' 1 throughout the 

experiments, and there was also a constant addition of OECD waste (as in Experiments 3.7 - 

3.9). The BA was added at 0.5 g I" 1 and all the other substances were added in the same 

concentrations as those outlined in Section 3.1.2. There was on-off control of pH and DO (as 

in Section 3.1.1) for Experiments 5.1 and 5.2. For Experiment 5.3 these were controlled by 

the ANNBCS using the same actuators. There was continuous recycling of the solids so that 

they could be maintained in the aerobic vessel.

The aerobic stage, on-line monitors and actuators are shown in Figure 3.12. The aerobic tank 

was monitored 'in situ' by 1 pH and 1 DO probes. The TOC monitor measured the effluent 

of the settler and the UV/Visible Spectrophotometer measured the colour changes of the 

STE. The colour of the STE was monitored because the aerobic stage alone did not 

decolourise the waste and therefore, it was better to use the monitor at the influent so that the 

effect of the sample pH could be studied. The sample to this monitor was filtered, diluted 

and included biocide (Section 3.3.6). The flow to the colour analyser was 1.5 ml min" 1 , lower 

than before, so that it would not significantly affect the HRT of the system. In this Phase the 

aerobic stage HRT was 20.2 h instead of the 19 h of Phases 2 and 3. Samples for the TOC 

had to be taken from the settler due to the density of biomass in the aerobic tank, which 

would demand cleaning of Filters 2 and 3, at least every 2 hours disrupting continuous 

measurements.

There were also off-line analyses, these were: influent and effluent COD and true colour, pH, 

MLSS, VSS and biomass activity (Section 3.2). The first three in order to make a 

comparison with similar on-line data and the others to complement knowledge about the 

system. The last three parameters were selected mainly to study how useful a measure of 

biomass activity would be for control of the RAS.
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4. SELECTION OF CONTROL PARAMETERS AND 

REMEDIAL ACTIONS

This Chapter examines the monitored parameters in the laboratory biological WWT system 

treating STE for use in a control scheme. It also compares the on-line measurements with 

off-line analyses where appropriate. The plant was operated according to Experimental 

Phases 2 to 5 (Chapter 3). The Bv and the COD and colour removed from the combined 

anaerobic-aerobic system is presented in Appendix C for Experimental Phases 2 and 3 

(except experiments 3.6-3.9 because they were not 'steady-state' experiments). The results 

presented here were attained mainly from Experimental Phase 3 and the Experiments 5.1 and 

5.2. The other experiments are dealt within Chapter 5 since the results were very much 

related to the on-line testing of the ANNBCSs performance. On-line parameters such as gas 

flowrate, %CO2 , biogas H2 levels, BA, pH, and effluent TOD, TOC, and colour, were 

assessed on-line for the UASB reactor, together with some measurements of SCA and on­ 

line measurements of pH, DO, effluent TOC and influent and effluent colour for the aerobic 

stage. The ability of these parameters to indicate process instability and efficiency, the 

reliability/maintenance of the instrumentation and delay in response were evaluated. The 

intention was to determine the most useful measurements and also useful remedial actions 

for process control.

4.1. Results from Experimental Phases 1 and 2

Results from Experimental Phase 1 have been reported elsewhere (Guwy et al., 1997a). The 

data was collected under another project and was only used here for the purpose of selecting 

the type of the ANN appropriate to use in a control scheme for the textile WWT rig. The rig 

used by Guwy et al. (1997a) was an anaerobic treatment system with equivalent parameters 

being monitored to those used in this work. Therefore, it was thought while data was being
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collected for the textile laboratory scale plant, the fluidised bed reactor data could be used to 

start defining a suitable control scheme for biological treatment processes. The results 

gathered from Experimental Phase 2 will be described in Section 5.2 as they were used to 

train and test four different ANNBCSs in order to select the most appropriate. There will also 

be a comparison in Section 4.3.2 of the results acquired during Experiments 2.2 and 4.1, as 

the influent to the UASB reactor was the same.

4.2. Results from Experimental Phase 3

Figure 4.1 shows a photograph of the laboratory rig for Phase 3 with some of the 

instrumentation. During Experimental Phase 3 on-off control of pH and DO was performed 

on the aerobic stage (Section 3.1.1). The section of the Lab VIEW™ VI diagram for on-off 

control is shown in Figure 4.2. Figure 4.3 shows the panel where graphs of the signals from 

the on-line monitors were displayed. The responses of the UASB reactor biogas flowrate, 

biogas CC>2 and Fk, pH and BA, its effluent TOD and colour and also pH and DO for the 

aerobic tank are discussed below. There is also a brief discussion of the influence of the 

temperature of the UASB reactor on its metabolism and hence biogas production and it

CO Gas Solomat

UASB reactor Aerobic Tank Aerobic Settler

Figure 4.1 - Rig setup for 

Experimental Phase 3
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Figure 4.2 - Section of Lab VIEW™ VI diagram for on-off control of pH and DO in the

aerobic tank

Figure 4.3 - Photograph of the central computer screen showing a section of the LabVIEW™

VI Panel
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4.2.1. UASB Reactor Effluent TOD

During operation on low starch, low dye (Experiment 3.1), the mean TOD of the UASB 

reactor effluent was 1049 mg I" 1 . With an increase in starch concentration from low to high 

with a low dye concentration, the TOD of the UASB reactor effluent increased to a 

maximum of 2250 mg 1 , which was then maintained (Figure 4.4). At medium starch, 

medium dye the TOD achieved was 1800 mg I" 1 . The UASB reactor did not totally degrade 

the additional starch. Although most BOD was removed by the aerobic stage and effluent 

quality maintained, too high a starch level in the feed to the aerobic reactor could give rise to 

sludge bulking problems. The comparison of TOD and off-line COD measurements revealed 

a TOD:COD ratio of 1.4 (sd = 0.23 and n = 25) for the UASB reactor effluent similar to that 

found in other work (e.g. Ionics, 1993).

3000

2500 -
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H
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500 --
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to 'high starch'

8 12 16 24 28 
Time (h)

32 36 40 44 48 52

Figure 4.4 - Effect on UASB reactor effluent TOD of step-up from low to high starch at low

dye

However, the TOD analyser did not operate reliably on the STE used here, due to constant 

blockages of the injection tube. The maximum time period between replacements was 90 

hours, just over 3.5 days, however the normal time period was only 2 days. The injection
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tube was frequently replaced and the analyser calibrated and the different STE recipes did 

not appear to affect the formation of blockages. Figure 4.5 shows a X-ray analysis of a 

blocked injection tube (Section 3.3.5) and also a microphotograph of the same specimen. As 

it can be seen from the spectrum there were traces of Ca, Fe, Cu and Zn, with the Ca mineral 

content dominant. The probable origin of the Fe, Cu and Zn would be the trace element 

solution, which was added at 1 ml I" 1 of the STE, which contained FeSO4.7H2 O (5 g I" 1 ), 

ZnSO4 .7H2 O (0.011 g T 1 ) and CuSO4.5H2 O (0.392 g I' 1 ). There were three possible origins 

of Ca: the water in the STE, the rinse water for the TOD monitor or most probably due to 

degradation of the UASB reactor black granules as the colour of the residue was black which 

resembled broken granules. Dubourguier et al. (1988) used X-ray analysis for observation of 

mineral precipitates of Ca and minor amounts of P or Fe and S. Thaveesri et al. (1995) found 

that measurements of co-enzyme 420 revealed that black granules consisted mainly of 

acetoclastic methanogens and they were particularly rich in Ca, Mn, and Zn minerals.

A few suggestions were made related to the problem encountered with the injection system 

of the TOD analyser apart from the high mineral content of the WW. These were: the use of 

0.2 mm WW suspended solids, the tiny hole diameter of the tube (0.5 mm diameter) in 

conjunction with the use of a metallic ferrule around the injection tube which, at high 

temperature may have expanded and made the hole even smaller. The injection tubes were 

not able to be unblocked as their internal diameter was very small and with the high 

temperature from the oven the residue glued to the internal walls. Every change of the 

injection tube disrupted TOD monitoring for approximately 4 hours (i.e. cooling of the 

ovens, replacement of injection tube, warm-up of the ovens and calibration).

As it would be very difficult to reduce the calcium ions in this system, to diminish the 

blocking frequency a rinse cycle with a 5 % nitric acid solution made up with DI water and 

also a wider injection tube from the manufacturer were tried but to no avail. Even if the 

injection system was reliable the interference of ammonia, nitrates, chlorides and sulphates 

(Ionics, 1993) within the STE with the analyser measurements would have to be analysed 

thoroughly. Perhaps another organic strength analyser for example a TOC analyser could be 

used instead.
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Figure 4.5 - Spectrum (left) and
microphotography (right) of the TOD injection

tube residue

4.2.2. Biogas flow rate,/>CO2 and/»H2

Both increases and decreases in starch concentration were always reflected in gas production 

and %CO2 values. There was no noticeable effect on any of the biogas related measurements 

when the dye concentration was increased 5-fold in the feed. On changing from low to high 

starch concentrations at low dye concentration, the gas production increased from an average 

of 11.2 to an average of 16.5 ml min with a maximum of 21 ml min" 1 achieved 3 h after the 

step change in load. The % CO2 increased from 26 to 32.5 % in 3 h. After a change from low 

starch, low dye to high starch, high dye, gas production increased from 15.2 ml min" 1 to over 

22 ml min" 1 , 7 hours after the step change. This was similar to that achieved at high starch, 

low dye, suggesting the dye was not mineralised anaerobically. The concentration of CO2 

increased from 27 % to a maximum of 34 %. Biogas H2 increased from values around 200 

ppm to over 900 ppm after 29 hours from the step change in starch and dye (Experiment 3.4) 

and only decreased after 6 days when the feed was changed to low starch and low dye 

(Experiment 3.1). Therefore H2 concentration was not only an event marker as claimed by 

various researchers (Mosey and Fernandes, 1989; Ehlinger et al., 1994) but maintained its 

response during the event. Quite high concentrations of H2 were achieved in the reactor 

biogas considering that in healthy, stable anaerobic digesters, very low pH2 usually occur in 

the biogas. Collins and Paskins (1987) found that/?H2 in 20 UK sludge digesters operating 

with HRT of 8 - 20 days, varied between 15-199 ppm. However, quite high pH2 were also

141



found by Guwy et al. (1997a) using the GMI Instrument when operating 2 fluidised reactors 

on simulated baker's yeast WW (steady-state Bv = 27-33 COD m"3 d" 1 ) at 10.2 - 8.7 h HRT 

(the setup of Experimental Phase 1). They measured pH2 levels from 290 to 640 ppm when 

increasing the Bv from 40 to 63 kg COD m"3 d' 1 . They also found that switching from an 

older feed, partly-acidified, to a batch of fresh feed, with the same COD, promoted an 

increase in biogas H2 content from 200 to 800 ppm, probably as the feed was only cooled to 

13-15 °C. In the case of the textile project there was no pre-acidification of the STE as it was 

stored at 5 °C.

During operation on high dye, high starch a malfunction of the pump delivering concentrated 

feed to the UASB reactor occurred giving an irregular feed concentration (period A in 

Figures 4.6 and 4.7). The pump stopped completely during the period between the arrows (B) 

and restarted at the start of period C delivering high starch, high dye. The effects on biogas 

parameters are shown in Figure 4.6.
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Figure 4.6 - Effects of changes in loading concentrations on UASB reactor gas production,

CO2, and H2 biogas concentrations
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As it can be seen in Figure 4.6 biogas flowrate and %CO2 were good indicators of a decrease 

or increase in starch content in the concentrated feed. As high starch, high dye feed was 

started (start of C) the CO2 concentration in the biogas increased to a maximum of 28 % and 

then stabilised at a lower value of 26 %. Hydrogen partial pressure decreased smoothly in B 

from a value over 900 to 24 ppm. According to traditional kinetic models, the H2 

concentration without loading should be zero. The reason for a residual pH2 at a feed rate of 

zero was explained as a threshold value for H2 consumption exists below which 

methanogenic bacteria are incapable of H2 degradation (Cord-Ruwisch et al., 1988) and is 

dependent on the energetic conditions (Hoh and Cord-Ruwisch, 1996). The H2 increased 

sharply straight away when feeding re-started (start of C), and again 10 hours after the 

reactor was fed once more, corresponding this time to a minimum in pH (Figure 4.7) and a 

rise in %CO2 , possibly caused by build up of VFAs.
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Figure 4.7 - Effects of changes in loading concentrations on UASB reactor pH

During Experiment 3.7, pH2 went up to 300 ppm and total gas flow rate to 17.8 ml min" 1 , 

%CO2 rose to a maximum of 30 % but was maintained at an average of 26 %. At the 

medium starch loading rate the UASB reactor value for pCO2 and pH2 did not suggest that 

the reactor was as unstable as during the high starch loading rate. The level of H2 S in the
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UASB reactor biogas at medium starch, medium dye was 0.7 % compared to 1.2 % during 

high starch, high dye. However, this value was below the toxic level of 2 % (Carliell et al, 

1996). The H2 S level of 1.2 % corresponds to 62 mg I" 1 of total sulphide in the liquid phase 

(at pH 6.9 and 35 °C) (Speece, 1996). This value was below the inhibitory levels for 

anaerobic processes of 2 - 4 g I" 1 . After Experiment 3.4 the solution inside the H2 S scrubber 

was black in colour of the CuS formed together with H2 SO4 from the reaction of the copper 

sulphate with the H2 S in the biogas.

Normally, an increase in /?H2 occurred with an increase in starch, however, biogas H2 levels 

appeared to vary also unpredictably. Mosey and Fernandes (1989), operating a 20 d HRT 

laboratory digester on reconstituted skimmed milk, showed that more than a ten-fold change 

inpH2 (10 to 120 ppm) could occur without significant changes in bacterial performance. It 

has been previously suggested that this parameter is not suitable for stand-alone control 

(Guwy et al, 1997a). Supporting this, Figure 4.8 shows a delayed response of biogas H2 

levels to reactor stress. NaHCOs was omitted from the feed (to simulate a BA pump failure) 

at the point shown, leading to a decrease in BA in the UASB to the lowest safe limit of 

1000 mg I" 1 as CaCOs and a fall in pH. There was an unexpected increase in biogas H2 

during this period, with the sharpest increase in biogas H2 only after the BA started to rise. 

During this experiment the reactor acetic acid levels rose from 270 mg I" 1 to a maximum of 

443 mg I" 1 at the end of the period without BA addition. Propionic or butyric acids did not 

increase. Biogas H2 levels only started to fall 50 h after normal levels of BA addition had 

been established. Therefore, the increase in pH2 in this case could not be associated with 

propionic acid as also mentioned by Guwy et al. (1997a).

Another simulation, this time of a spillage of acetic acid, and its effect on the UASB reactor 

can be observed with the addition of an extra 4500 mg I" 1 of acetic acid to the feed for a 4.5 

hour period are shown in Figure 4.9. At the start of the experiment the acetic acid measured 

in the UASB reactor was 320 mg I" 1 and 5 hours later was only 450 mg I" 1 . Propionic acid did 

not increase. An increase in UASB effluent TOD was observed 3 h from the start of the 

experiment, reaching a maximum after 14 h, coinciding with a minimum pH. An increase in 

both CO2 and gas flowrate was observed. Off-line measurements showed only a slight 

decrease in BA from 1750 to 1500 mg CaCO3 1"' 10 h after the start of the experiment. 

During the 4.5 hours of the addition of extra acetic acid, pH2 decreased from 540 ppm to
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values down to 50 ppm (Figure 4.9) and remained below 200 ppm for the next 36 hours. This 
decrease may have been due to the fact that acetate is mainly used by acetoclastic 
methanogens to produce CH4 and CO2 . As CO2 increased it stimulated CH4 formation by the 
methanogens reducing the H2 levels. During the step load of acetic acid, a drop in biogas H2 
content corresponded to a worsening of the UASB reactor effluent quality.
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Figure 4.8 - Effects on gaseous H2 , pH and UASB reactor buffering capacity of BA

deprivation and addition

Figure 4.10 shows that during Experiment 3.9 (between the arrows) where additional dyes 
were added (total dye concentration in the STE = 1.05 g 1"'), the biogas H2 increased from 
170 ppm to a maximum of 415 ppm during the 5 hours of the experiment. After this, biogas 
H2 took 18 hours to return to the previously measured values. The off-line measurements of 
VFAs followed the H2 trend although these only returned to the previous values after over 2 
days from the end of Experiment 3.9. Increased H2 levels inhibit the degradation of propionic 
acid and can also inhibit acetoclastic methanogenesis (Archer et al, 1986). During this 

experiment the BA did not decrease significantly possibly due to the NaOH used in the 
hydrolysis process of the dye and the pH remained constant throughout. Both VFAs and 
biogas H2 did not increase during Experiments 3.2 and 3.8 where the total dye concentration
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was 0.75 g I" 1 . The rise in VFAs and biogas H2 during Experiment 3.9 could be due to the 

higher dye concentration coupled with the non-acclimatisation of the UASB reactor biomass 
to the three extra dyes.
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Figure 4.9 - Effects on UASB reactor pH, biogas H 2 and effluent TOD measurements of the

addition of 4,500 mgl" 1 acetic acid

Both VFAs and biogas H2 increased after 2 hours from the start of Experiment 3.9. 

Therefore, an on-line VFA monitor could also be useful in predicting problems within the 

anaerobic process. A dissolved H2 meter could possibly be more useful than the gaseous H 2 

monitor because of the smaller H2 mass-transfer coefficients in anaerobic digesters (Pauss 

and Guiot, 1993). This limits the rapidity with which an increase in H2 concentration in the 

biomass can be detected in the gas phase of the digester, with the consequence that serious 

overloading may occur before raised H2 concentrations in the gas phase are detected (Strong 

and Cord-Ruwisch, 1995). Therefore, the determination of dissolved H2 concentration from 

the/?H2 using Bunsen's coefficient (0.017 cm3 hydrogen gas dissolves in 1 cm 3 of water at 

1 bar and 37 °C) can result in gross under-estimation of the actual dissolved H2 content. 

Pauss et al. (1990) have shown that dissolved H2 concentration deviated from gas phase 

equilibrium by a factor of 40 to 70. Kuroda et al. (1991) found that dissolved H 2

146



concentration was approximately 60-times higher than the theoretical calculated with biogas 

pH2 . However, as the variation ofpH2 correlated with the operating conditions of the reactor, 

biogas H2 was found to be a useful measurement considering also that it was a cheaper and 

an easier measurement than in the bulk liquid. Also, by knowing the dissolved and the biogas 

hydrogen it might be possible to determine the hydrogen actually held within the cells, which 

could be quite an important parameter for detecting instability.
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Figure 4.10 - Effects on BA, biogas H2 and VFAs within the UASB reactor of

Experiment 3.9

4.2.3. UASB Reactor BA and pH

The pH and BA values measured on-line reflected those measured off-line but on-line 

measurements were slightly lower for pH (by 0.1 - 0.2 pH units) and slightly higher (by 200 

mg CaCO3 I"') for BA. This was probably due to volatilisation of some VFAs and loss of 

C02 during off-line measurements.
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Figure 4.7 shows that the UASB reactor pH, in this work, could be a good indicator of feed 

concentration changes. Figure 4.11 shows that the pH in the UASB reactor rose after a 

change in starch content from high to low starch at low dye concentration. This could be due 

to a decrease in VFAs within the UASB reactor. However, the rise in pH was then 

counteracted because there was less NaOH introduced in the feed at low starch concentration 

(NaOH was used in starch hydrolysis). Hence with this waste, pH alone would not 

necessarily reflect the health and efficiency of the UASB reactor.
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Figure 4.11 - Effects on the UASB reactor pH and aerobic vessel DO by decreasing the 

starch input from high to low starch at low dye concentration

On changing from low starch to high starch at low dye concentration, the pH and BA in the 

UASB reactor initially increased due to the higher NaOH level in the feed, but as VFA levels 

increased pH fell to between 7 and 7.2. The pH in the aerobic vessel also increased and the 

flowrate of neutralising HC1 had to be increased manually to maintain the pH (Section 3.1.1). 

This demonstrated one of the weaknesses of a simple on-off control system, as there was 

need for control of the flowrate of the acid.
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The intermittent BA monitor operated reliably almost continuously for 18 weeks. 

Occasionally values of BA were actually over the range of the instrument, or foaming 

occurred giving false readings (both situations occurred at high starch concentrations). 

Antifoam addition should be considered if this instrument was used in a control scheme. 

During the 'Initial Experiment' and Experiment 3.1 the BA values were between 1800 - 

2000 mg CaCO3 r'.

4.2.4. Aerobic Tank DO

DO in the aerobic tank was around 6 mg I" 1 in the 'Initial Experiment' but increased to 8 - 

9 mg 1 (close to saturation) as the MLSS decreased due to a carbon source shortage in the 

influent to the aerobic stage. On conversion to high starch operation the MLSS increased and 

the DO levels decreased below 3 mg I" 1 , automatically starting the second air compressor. At 

medium starch, medium dye with addition of OECD synthetic sewage an average MLSS of 

2.4 g I" 1 was maintained, with a DO of 6.5 mg I" 1 with only 1 air compressor operating.

It was found that changes in DO readings were a good indicator of changes in the organic 

concentration reaching the aerobic vessel, information useful when optimising the complete 

system. However, absolute values of DO could not be used since it also varied with MLSS. 

hi order to control the MLSS within the aerobic tank, by adjusting the RAS, measurements 

of biomass activity must be performed. Figure 4.11 shows the DO level in the activated 

sludge tank. Six hours after a step from high to low starch concentration the DO values rose 

due to the lower respiration rate promoted by the lack of an organic source. Reverse effects 

on DO were observed within 6 hours when starch concentration was increased to 3.8 g 1 .

4.2.5. UASB Reactor Effluent Colour

Before Experiment 3.7 deposits were observed on the flowcell of the UV/Visible 

Spectrophotometer and the tubing walls within two hours. A microscopic examination 

showed these to be bacterial film (Figure 4.12). The deposits intensified after dilution of the 

sample from the UASB reactor effluent took place. This could indicate that before dilution
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the sample was quite toxic and avoided proliferation of the biofilm, perhaps due to amines 

by-products of azo dye degradation (O'Neill et al., 2000b). All silicone tubing was changed 

to polyurethane tubing and a broad spectrum biocide (Panabath M, BDH Chemicals Ltd., 

Poole, UK) was added (in all the experiments after Experiment 3.6) at 0.25 ml I" 1 made up 

with DI water, which prevented biofilm formation. At this dilution the biocide showed no 

absorbance at the 3 measured wavelengths, it did not alter the pH of the sample and did not 

cause additional foaming. At medium starch, medium dye the colour measurements were 

shifted by 0.83 absorbance units between the on-line and off-line measurements. For off-line 

measurements the sample was centrifuged rather than filtered through 185 (am mesh. This 

suggested turbidity in the on-line samples, requiring a smaller mesh, but physical problems 

in obtaining filtered samples at a sufficient rate at this scale prevented the use of a finer filter.

The shift of on-line measurements (Section 3.3.6) in relation to the off-line or true colour 

measurements (Section 3.2.3) can be seen in Figure 4.13, which records the effect of 

Experiment 3.9 with the addition of PROCION™ Blue, Yellow and Orange. The on-line OD 

measurements were processed using a 4th order low-pass Bessel filter to attenuate the effect 

of particles in the sample that occasionally passed through the filter. At the start of 

Experiment 3.9 the OD at 525 nm was higher than the average OD for 436, 525 and 620 nm, 

as expected since PROCION™ Red absorbed strongly around 525 nm. After the dye 

impulse, the average OD was considerably higher than the OD at 525 nm since the extra 

yellow, orange and blue dyes absorb strongly at 436 and 620 nm. One day after Experiment 

3.9 the average OD was still rather high compared to the start of Experiment 3.9 whilst the 

absorbance at 525 nm was actually lower. This shows the importance of measuring the 

average OD at three wavelengths.

The TOD measurements followed a similar time evolution to the average OD measurements, 

achieving a maximum around 4 h (i.e. changing from 1650 mg I" 1 at the start of the 

experiment to 1940 mg I" 1 at 24 h) and then fell to 1700 mg I" 1 . This increase in UASB 

reactor effluent TOD was not detected by the DO sensor in the aerobic tank.
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Figure 4.12 - Microscopic photograph of 

the stained sample of the flowcell residue 

(lOOx amplification)
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Figure 4.13 - On and off-line average OD and on and off-line OD at 525 nm

4.2.6. Influence of the UASB Reactor Temperature

It is well known that methanogens are more sensitive than acidogens in the anaerobic 

consortium, and unbalanced metabolism can occur at lower temperatures when acidogens 

produce VFAs faster than methanogens convert them to methane (Speece, 1996). During one 

week in the winter the laboratory heating system failed a few times and the flowheater for the
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UASB reactor could not cope with the sudden changes in temperature. Figure 4.14 shows the 

effects of the lower temperature experienced by the UASB reactor and how it affected the 

gas production and the biogas H2 . During Experiment 3.1 the temperature decreased from 35 

°C to a minimum of 31 °C over a period of 23 hours and as expected due to the decrease in 

the bacterial metabolism gas production was lowered and the %CO2 in the biogas followed a 

similar trend. The TOD and colour of the effluent increased slightly during this lower 

temperature period. At the same time the H2 in the biogas rose from an average of 150 ppm 

to a maximum of 860 ppm. As described in Section 4.2.2 the H2 increased every time the 

starch concentration increased and this can also be observed in Figure 4.14. Both the 

hydrogen and gas meter saturated at the end of the period (Figure 4.14). Biogas H2 was able 

to detect UASB reactor distress under these conditions.
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Figure 4.14 - Influence of the UASB reactor temperature on the biogas flowrate andpH2

4.2.7. Discussion of Results and Conclusions from Experimental Phase 3

After a number of changes in operating conditions, the same performance parameters were 

obtained on returning to the conditions of the 'Initial Experiment' (except DO and MLSS).
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Thus the process was not heavily time variant, making process control easier. BA had to be 

added to the STE to maintain buffering capacity, suggesting that BA control would be an 

advantage in industrial biotreatment plants operating on textile effluents. Off-line true colour 

measurements of the UASB effluent at the same dye concentration showed a decrease in 

colour at higher starch concentrations. The ratio of starch and dye concentrations must be 

optimised if good colour removal is to be achieved.

The on-line TOD instrument described may not be used with industrial wastes containing 

significant mineral content because of blockages. Another instrument for monitoring organic 

strength at the influent to the UASB reactor and at the effluent are a priority for RTC.

For a system experiencing organic overloads, %CO2 and gas flow rate are obvious control 

parameters, with a quick (approximately 1 hour) and in some cases quantitative response. 

CO2 levels above 28 % were found to correlate with conditions of anaerobic reactor 

instability. An on-line gas meter may need re-calibration only yearly and a CO2 monitor 

monthly. Both should preferably have a moisture removing step. Biogas hydrogen 

monitoring has a fast response, and correlated always with a change in the organic loading 

rate to the methanogenic reactor, however it varied sometimes unpredictably. BA monitoring 

in anaerobic digesters indicates changes in organic load within approximately 5 hours, in 

some cases faster than the pH response. However, in the case of this type of industrial waste 

could also signal changes in NaOH or other parameters (e.g. organic nitrogen) that can lead 

to changes in the bicarbonate concentration.

Changes in DO in the region above the control set point may quickly indicate a rise in 

organic load. pH control in an aerobic stage which follows an anaerobic stage operating on 

waste containing varying NaOH levels may demand more than a set point controller; a 

proportional controller would be appropriate. A method for colour measurement is a priority 

for textile effluents. Colour should be measured on-line in a well-filtered sample at several 

wavelengths, using a suitable biocide to counter bacterial fouling. A colour measurement can 

be used in the final effluent to warn of breaches of colour discharge consents, but a monitor 

of colour up-stream of the anaerobic stage is also advised in order to take fast remedial 

actions.

153



In order to operate and effectively control a biological treatment process a number of 

parameters must be monitored, providing complementary information and redundancy in 

case of instrument failure. Fast remedial actions must be available in the case of inefficient 

treatment or process instability. Examples of remedial actions are: addition of a buffering 

chemical; influent dilution/diversion; and effluent recycle for re-treatment, hi the case of low 

organics and high azo dye concentrations in the feed, addition of a carbohydrate electron 

source for azo bond breakage to the anaerobic stage would be recommended.

4.3. Results from Experiment 4.1

This section describes briefly the UASB reactor 'health' condition after Experimental Phase 

3 and compares its performance during Experiments 2.2 and 4.1. Finally, the difference 

between off-line or true colour and on-line colour measurements is further analysed. The 

apparatus, instrumentation and control setup for Phase 4 were presented in Section 3.6.4.

4.3.1. 'Health' Condition of the UASB Reactor

After having performed Experimental Phase 3, the UASB reactor was left to operate at 

steady state for 2 weeks at medium starch and dye concentrations (Experiment 3.7). The bed 

granules had decreased from Experimental Phase 2 as the granules had risen and found their 

way through the effluent port. At the end of the two weeks they started to stick together and 

floated to the top of the UASB reactor. After this period, the gas flowrate was inconsistent 

due to the granules floating, the temperature of the UASB reactor was erroneous as there 

were only a few paths between the thick layer of granules chosen by the warmed effluent and 

they did not pass through the temperature probe. The TVFA within the reactor went from an 

average of 380 mg I" 1 to almost 1500 mg I" 1 of which 500 mg I" 1 was propionic acid. The pH 

decreased to 6.9, %CO2 increased from about 26 % to 31 %, the COD reduction decreased to 

20 % from an average of 68 %, and there was only 18 % of colour removal from a previous 

obtained value of 55 %.
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A few attempts to recover its health were performed over a 2 months period: granules were 

stirred to aid gas release; the reactor effluent was recirculated to cause induce mechanical 

stress (Kosaric et al., 1990); granules were washed with water in order to get ride of 

polysaccharides (Shen et al., 1993); the HRT was increased from 1 to 2 days; no salt and dye 

were included in the STE to reduce possible toxicity and only 1.45 g I" 1 of starch was used 

which was hydrolysed with amylase (Section 3.1.2) instead of NaOH also to avoid possible 

toxicity; NaHCO3 was added up to 3.5 g I" 1 ; extra trace element solution was added (Speece, 

1996); the UASB reactor was fed only with water and bicarbonate for 3 times for a period of 

a few days so that any of the effects of an organic or toxic load would be washed out.

None of these recovery attempts were completely successful enough to be able to operate at a 

1 d HRT with the loading conditions of Experiment 3.7. Every time this was tried the gas 

flowrate decreased and was very irregular due to the floating granules, the COa increased to 

almost 40 %, the TVFA increased to 740 - 950 mg I" 1 and pH decreased to 6.8, all indicative 

of reactor instability. Therefore, the STE for Experiment 4.1 was chosen to be the same as 

Experiment 2.2 (0.95 g T 1 starch and 0.075 g I" 1 dye concentrations at a 1 d HRT, the lowest 

organic and dye concentrations used). With this STE the reactor seemed to be stable. The on­ 

line controlled Experiment 4.3 included the ANNBCS controlling a dye step load and the 

addition of BA. The results of this Experiment are presented in Section 5.3.1.

Some researchers have reported sudden granule disintegration without any obvious reason 

(Schmidt and Ahring, 1996). However, the floating of granules was thought to have occurred 

due to one or a combination of three main factors already debated in the literature:

• formation of bacterial aggregates in the UASB reactor because of the production of an 

external layer of extracellular polymers (Shen et al., 1993).

• the granules within the UASB reactor were black and some white in colour, which 

according to Thaveesri et al. (1995) were susceptible to flotation due to biogas adhering 

on the surface. According to the authors, grey granules were found to be less susceptible 

to flotation.
• trapped gas within the granules in a hollow core. SEM examination revealed the 

presence of cavities inside large-sized granules (0 > 1 mm) (Hickey et a/., 1991). The 

origin of the hole has been widely debated:

155



- due to starvation of granules and partial autolisation of biomass (Kosaric et al, 1990). 

They speculated that if the feed penetrated the granules by diffusion, then when the 

size of the granule increased beyond a certain limit the concentration of feed in the 

centre was too small to feed the bacteria resulting in the starvation of the microbes 

and their subsequent autolysis.

- after a rapid change in load, granules lose their ability to settle and float to the top of 

the reactor (Blaszczyk et al, 1994). The experiment conducted Blaszczyk and co- 

workers consisted of a low pH (from 7.5 to 4.7), low temperature (21 °C), high 

loading rate (from 600 to 1600 mg TOC I" 1 ) and a tenfold increase in sulphate 

concentration (30 to 300 mg I" 1 ), over a 2 day period. They theorised that the high 

sulphate concentration decreased the concentration of Ca and other divalent cations, 

which created links between the bacterial walls and thus improved the settling ability 

of the granules. This may have occurred with the granules in the reactor, in the work 

presented here, since the injection tube of the TOD analyser kept blocking due to the 

Ca content during Phase 3.

4.3.2. Comparison of the UASB Reactor Performance During Experiment 

4.1 and Experiment 2.2

The 'Initial Experiment' and the repeats of Experiment 3.1 demonstrated that the UASB 

reactor performance did not vary greatly during Phase 3, which indicated that control should 

be easier. However, Table 4.1 shows the comparison of the UASB reactor results from 

Experiment 2.2 and Experiment 4.1. Both Experiments were performed using the same 

starch and dye concentrations (i.e. 0.95 g 1"' and 0.075 g I" 1 , respectively). Table 4.1 shows a 

decrease in the UASB reactor performance during Phase 4, which was a result of a lower 

biomass concentration within the UASB reactor (decrement of 78 % in TS and VS 

concentration, and the volume of granules was decreased from 10 to 6 litres) and also due to 

the health of the granules. Some of the on-line monitoring results will be presented in 

Section 5.3.1. For Phase 4 on-line measurements of TOD were replaced by TOC 

measurements. The central computer via the Lab VIEW™ VI shown in Figure 4.15 logged 

TOC measurements. How this VI was linked to the analyser and then to the central computer
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was explained in Section 3.5.1. The monitoring results were similar between the two repeats 

of Experiment 4.1.

Table 4.1- UASB reactor monitored parameters (Experiment 2.2 vs. Experiment 4.1)

Parameters
Biogas production (ml min' 1 )
C02 (%)
PH
BA (mg I' 1 )
STE - VFAs (mg I' 1 )
UASB reactor - VFAs (mg I" 1 )

STE - COD (mg I' 1 )
UASB reactor eff. COD (mg 1"')
COD reduction (%)
STE - Colour (TCU)
UASB reactor eff. colour (TCU)
Colour reduction (%)

Experiment 2.2
6.7
25
7.1
1590
746
Total = 360
Acetic = 335 (^=32)'
Propionic = 9 (.«/ = 2) 1
1610 (sd = 120)'
695(sd = 27) 1
57
0.6 («/= 0.03)'
0.24(^ = 0.0 1) 1
60

Experiment 4.1
4.2
24
7.5
1910
724
Total = 470
Acetic = 446 (sd = 45)2
Propionic = 1 2 (sd = 4)2
I409(sd = 96)2
866 (sd = 34) 2
39
0.6(sd = 0.02)2
0.27 (sd = 0.0 1)2
55

Note - ' number of samples = 3; 2 number of samples = 4. In cases where the values do not present a sd, they 
were monitored on-line and they represent the average of the samples during 2 weeks.
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Figure 4.15 - Lab VIEW™ VI code for TOC analyser data acquisition
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4.3.3. Difference Between Off-line and On-line Colour Measurements

As the UV/Visible Spectrophotometer would be on-line during Phase 4 and the accuracy of 

measurements was a priority for the ANNBCS performance the difference between the 
results off and on-line was studied here in depth. Figure 4.16 shows spectrums of the UASB 
reactor influent and effluent during Experiment 4.1. The dye degradation effect can be 

noticed, as there was an absorbance decrease only for some part of the visible spectrum. If 
the colour reduction was felt throughout then it could have been mainly due to adsorption.
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Figure 4.16 - Absorbance spectrum of the UASB reactor influent and effluent

(Experiment 4.1)

The difference between on-line and off-line measurements was found to be 0.83 (sd = 0.003, 
n = 9) absorbance units, for both UASB reactor influent and effluent. The n in this case 

accounted for measurements in 3 repeated spectrums of Experiment 4.1 and the absorbance 

at the 3 considered wavelengths (i.e. 436, 525 and 620 nm). This difference can be observed 

in Figures 4.17 and 4.18. The off-line measurements were performed with centrifuged 

samples and measured with the cell (Section 3.2.3). Also measurements were performed 

using the flowcell and a manually filtered sample using a 185 jam mesh (Industrial Fabrics -
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Sericol Ltd., Broadstairs, UK) in which case there was no effect due to the flow, as the 

sample was placed statically in the flowcell. However, the flow effect did not seem to have 

affected the readings when comparing the off-line and on-line measurements (Figure 4.13) 

during Experiment 3.9 (the difference was 0.83 absorbance units). Therefore, in order to try 

to keep on-line colour measurements the same as the true colour (i.e. acquired off-line) a 

tighter mesh was used during Phase 4 except the first 3 days of Experiment 4.1. The mesh 

had an aperture of 60 |iim supplied also by Industrial Fabrics - Sericol Ltd. (Broadstairs, UK), 

and it was used with the self-cleaned cross-filter (Filter 3) (Section 3.4). The results for 

Experiment 4.2 will be shown in Section 5.3.1, as the UASB reactor was controlled by the 

ANNBCS.
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Figure 4.17 - Comparison between the spectrum of the UASB reactor influent on-line and

off-line (Experiment 4.1)
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Figure 4.18 - Comparison between the spectrum of the UASB reactor effluent on-line and

off-line (Experiment 4.1)

4.3.4. Conclusions from Experiment 4.1

A constant Bv of 3.14 g COD I" 1 reactor d" 1 (medium starch, medium dye) during a period of 

1.5 months with no lower loading rates in between may have caused some 'distress' to the 

UASB reactor biomass, not noticed by the performed on-line measurements.

The UASB reactor demonstrated to be a time varying process due to instability and reducing 

biomass, two situations which must be avoided by a control scheme and should result in a 

less time varying system. A control scheme based on all the on-line sensors used for the 

UASB reactor and even from the off-line analyses (e.g. VFAs and H2 S) could have not 

anticipated the problems, which occurred with the reactor granules. An on-line monitor that 

could measure the biomass within the reactor or the rate of granules loss could have probably 

indicated that something adverse was happening. Over 2 months were spent trying to bring 

the biomass left in the reactor to a healthy state, this meant that if this would have happened
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in an industrial site it would have been catastrophic. Most of all, there were no remedial 

actions that could be taken that could tackle straight away the floating problem. Therefore, 

even the most sophisticated control scheme would have had the same difficulty.

Temperature within the UASB reactor must be maintained at all times to avoid changes in 

metabolism. It would be very important to measure it on-line in different locations of the 

reactor if the measurements would be connected to a close control loop for the UASB 

reactor. Temperature sensors may fail or provide erroneous information.

The sample for on-line colour measurements must be filtered through a tighter mesh than 

185 u.m (possibly 60 u.m), otherwise a difference of 0.83 absorbance units would occur 

between on-line and off-line (i.e. true colour) measurements. The same difference was found 

for the influent and effluent samples of the UASB reactor.

4.4. Results from Experiments 5.1 and 5.2

In order to test the ability of the ANNBCS to control the aerobic stage, an experiment was 

undertaken where the concentrated STE was diverted to the aerobic stage without any pre- 

treatment by the UASB reactor. Data was collected from Experiments 5.1 and 5.2 to allow 

training of the ANNBCS for these particular situations. On-off control of pH and DO was 

performed during these two experiments (Section 3.1.1, Figure 4.2).

The experiments consisted of a step increase in the STE starch concentration from 1.5 g T' to 

5.5 g I' 1 and a step decrease to 1.5 g 1' (Section 3.6.5). There were no advantages in trying to 

perform a colour step load as there was no dye degradation in the aerobic stage without prior 

anaerobic treatment. Throughout the experiment, parameters such as aerobic stage effluent 

TOC, pH and DO in the aerobic vessel and colour of the STE were monitored on-line. Off­ 

line measurements of the colour and COD were performed on the STE and at the outlet of 

the aerobic stage. The on-line average OD was measured only in the STE to evaluate the 

effect of pH changes in the sample on this parameter as the extra starch was hydrolysed with 

amylase and the pH was adjusted to roughly 6 pH units, hi addition, off-line measurements 

of SCA were also carried out.
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4.4.1. Aerobic Stage Effluent TOC and Aerobic Tank DO and pH

The changes in the effluent TOC of the aerobic stage and pH within the aerobic tank during 

the step load and recovery period can be seen in Figure 4.19. As a result of the starch impulse 

loading (arrows indicate 'Start' and 'End' of the impulse) there was a sharp decrease in 

effluent treatment efficiency and therefore, there would be a need to control the biological 

process when similar situations occur in practice. The TOC level rose to 720 ppm in 7 hours 

and decreased to the previous level of 110 ppm 23 hours after the starch load was reduced.

Figure 4.20 displays the response of DO and corresponding air compressor voltage provided 

by the on-off controller constructed in LabVIEW™ (Section 3.1.1). The DO signal has been 

filtered to attenuate noise resulting from large bubbles of air impacting on the DO probe.

It can be seen that the pH and DO measurements responded quicker than TOC for each of the 

organic load changes (i.e. step up and down in starch concentration). This was because the 

two electrode measurements were performed in situ i.e. within the aerobic tank, whilst TOC 

samples experienced a time lag of approximately 16 minutes while measurements were 

made. Moreover, the measurement of pH and DO were taken from the aerobic tank (16 h 

HRT) whilst the TOC sample was taken from the top of the settler (and extra 3 h added to 

the 16 h of HRT). Another reason for the delay in the TOC response was that the aerobic 

bacteria, just after the load change were very active and therefore able to cope with the new 

load until the F:M ratio was too high for further degradation. It can also be observed that 

both DO and pH levels decreased after the load increase and started to rise again with the 

same time lag of 1.5 hours after the load returned to its original level (Figures 4.19 and 4.20). 

The decrease in DO levels supports the increase in bacterial activity. The two most probable 

reasons for the decrease in the pH were that:

• the starch was hydrolysed with amylase instead of NaOH and in order to stop the 

reaction the pH was lowered to 2. However, the solution was pH adjusted with NaOH, 

the pH was not quite at a neutral condition (i.e. pH « 6);

• a build up of long chain acids in the aerobic tank since the anaerobic stage was not 

degrading all the starch in the STE.
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The pH in the aeration tank rose after the end of Experiment 5.2 to values slightly above 
normal (i.e. from 7 to 7.16). When the organic load increased the DO reduced from an 
average of 6.2 to 3.2 mg I" 1 and the extra compressor was switched on as shown by the 
voltage trace (the unfiltered values of DO went below 3 mg I" 1 ). After the end of the impulse 
the DO did not return to the previous average of 6.2 mg I" 1 , but instead was maintained 
around 4.4 mg 1" . This possibly occurred because of biomass growth and an increase in 
biomass activity resulting in a higher oxygen demand. Measurement of the solids 
concentration and also the SCA made before, during and after the starch impulse indicated 
that this was the case.
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Figure 4.19 - TOC of the effluent of the aerobic settler and pH within the aerobic tank
(Experiments 5.1 and 5.2)
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Figure 4.20 - DO within the aerobic tank and air compressor voltage

(Experiments 5.1 and 5.2)

DO proved to respond very quickly although it was concluded that it could not be used to 

control the flow of additional starch, or the RAS (Section 4.4.2). However, the regulation of 

the pH and DO parameters were vital in order to ensure that good treatment conditions 

prevailed. The control of the additional starch flow was thought to be best achieved using the 

TOC measurements. These were performed on-line and responded 3 h from the start of the 

starch step load (Section 5.3.2). However they did not indicate how biodegradable the 

effluent was or any information on the biomass concentration and activity.

4.4.2. Aerobic Tank Solids and Biomass Catalase Activity

As illustrated in Section 3.2.9, SCA was calculated based on two variables: the oxygen 

evolved which was measured using the LFM 300 gas meter within the semi-automated novel 

biomass meter (Guwy et al, 1998) and the VSS of the activated sludge samples which were 

determined off-line (APHA, 1995). Sludge samples were taken from the aerobic tank, 

namely 30 ml for measuring MLSS and VSS and 150 ml for measuring biomass activity.
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Table 4.2 shows that both MLSS and VSS increased after the starch step impulse. The 

MLSS:VSS ratio was 1.14 (sd = 0.0092, n = 6 (6x each triplicate)) and the SCA results were 

obtained based on the VSS. This demonstrated that not only was there biomass growth but its 

specific activity had also increased during the starch impulse. Although, the VSS decreased 

slightly in the 4th measurement, the specific biomass activity was the highest. The SCA 

started to decrease by the 5 th measurement.

Table 4.2 - MLSS, VSS and SCA recorded during Experiments 5.1 and 5.2

Samples
1 
2 
3 
4 
5 
6

MLSS (g I' 1 )
2.42 
2.43 
2.96 
2.78 
2.92 
2.76

vss (g r l )
2.13 
2.15 
2.57 
2.44 
2.59 
2.41

SCA (catalase units g* 1 VSS)
8,240 
8,285 
10,541 
14,203 
12,045 
11,710

Note: Both MLSS and VSS were the average of the triplicates.

Figure 4.21 shows a plot of the SCA against TOC measurements. It can be observed that 

there was an increase in SCA from 8,240 to 14,203 catalase units g" 1 VSS after 21 hours, 

from the starch impulse, which approximately corresponds to the aerobic tank HRT. These 

SCA values obtained were roughly within the average values found from activated sludge 

samples from WWT Plants of Halifax (9,420 catalase units g" 1 VSS) and Owlwood pocket 4 

(12,950 catalase units g" 1 VSS) (Guwy et al., 1998). These results suggest that the biomass 

monitor could provide information related to the organic load applied to the aerobic stage 

since an increase in the measured catalase activity should shadow an increase in the organic 

load. Hence, it could be very useful for controlling the organic loading rate and also the 

RAS.

Figure 4.22 shows that the highest SCA did not correspond to the lowest DO levels within 

the aerobic tank, although the lowest SCA corresponded to the highest DO values. Therefore 

biomass activity has no direct relationship with DO levels. However, the SCA after the 3 r 

sample seems to respond in parallel to the DO values.

165



16000

SCA (catalase units g-1 VSS)

15 18 
Time (h)

24 27 30

Figure 4.21 - Aerobic stage effluent TOC vs. SCA of the aerobic vessel sludge (Experiments

5.1 and 5.2)
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Figure 4.22 - SCA of the biomass vs. DO within the aerobic tank 

(Experiments 5.1 and 5.2)
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4.4.3. On-line Colour Measurement of the Influent to the Aerobic Stage

On-line colour measurements exhibited very little OD variation in the STE. The average OD 

of the STE before and after the end of the starch step load was 0.56 TCU. A value of 0.83 

absorbance units were subtracted from the on-line colour measurements, as the mesh used 

here was the 185 fxm with Filter 1 as Filter 3 was being used with the settler effluent. During 

the starch step change in load the OD was 0.77 TCU possibly due to the extra starch effect 

and not due to pH changes.

4.4.4. Conclusions from Experiments 5.1 and 5.2

DO and pH levels within the aerobic tank must be controlled, however they cannot be the 

only inputs used to control the organic input or the RAS.

A TOC analyser must be placed at the inflow to the aerobic stage if the organic content is 

unknown and at the effluent of the aerobic stage in order to control changes in the load.

Biomass catalase activity reflected plant performance with varying organic load. It responded 

faster than TOC measurements of the aerobic effluent to the starch impulse. The 

measurements of biomass catalase activity also proved that as expected a higher biomass 

activity was possible with lower biomass concentration. Therefore a biomass activity 

monitor, working on-line with an appropriate sampling frequency, could be used to control 

the RAS and off-line measurement of MLSS or VSS would not be needed and also it could 

enable a control scheme to vary the addition of nutrients and other supplements.
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5. DEVELOPMENT AND ON-LINE TESTING OF THE 

CONTROL SCHEMES

This Chapter is divided into three main areas of work. The first Section presents the 

development of the ANNBCS by selecting the most appropriate type of ANN to use. The 

second Section includes the selection of an appropriate hybrid ANNBCS in order to cope 

with sensor failure. Finally, a third section, which includes the on-line testing of two 

ANNBCS (1 and 2) to both stages: aerobic and anaerobic, respectively. In the three Sections 

training and off-line testing of the different ANNs have been performed. All the ANNs that 

make up the Control Schemes were configured, trained and tested using the MATLAB® 

Neural Network Toolbox (Demuth and Beale, 1994).

The suitable configuration of the ANNs was dependant on the data sets (i.e. number of sets 

and their relevance) and the initial values of the weights. However, throughout this Chapter 

where it was thought appropriate information on the number of layers, neurones per layer, 

learning rates, momentum values, and so on, are presented. This information may be useful, 

as a guideline, for people starting to use these ANNs for similar purposes.

5.1. Artificial Neural Network Selection

The best ANN to use in the control scheme was first selected using data gathered during 

another project (Guwy et al, 1997a) defined as Experimental Phase 1, which was briefly 

described in Section 3.6.1.

As presented in Chapter 2 an ANN is characterised by its topology, the connection strength 

between neurones, known as weights, neurone properties including its transfer function, and 

a learning rule (Demuth and Beale, 1994). The arrangement and the nature of the neurones'
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inter-connections determine the structure of a network, whilst the manner in which weights 

are adjusted during training to achieve a desired overall behaviour is governed by its learning 

algorithm.

The following ANNs were configured, trained and tested:

• Linear network (Widrow and Sterns, 1985);

• BP network (Rumelhart and McClelland, 1986);

• RBFN (Chen et al., 1991);

• Elman network (Elman, 1990);

• SOM (Kohonen, 1989).

All the networks are of the FF type except the Elman network, which is partially recurrent. In 

addition, all the network training was supervised except for the SOM.

5.1.1. Network Architectures and Off-line Training

The inputs and outputs of the networks are described below, except for the SOM, since it is 

an unsupervised network. Structure and training conditions for the SOM will be dealt with in 

Section 5.1.2.

The inputs to all five ANNs included the on-line results, which were obtained from the BA, 

pH, H2 , biogas flow and CO2 measurements in four different operating conditions:

• reactor response during 'normal' operation;

• reactor response during step changes in the organic load;

• simulated data for failure of the BA sensor;

• simulated data for fouling of the pH sensor.

The outputs of each supervised network were the two remedial actions, as listed below, 

proposed for the anaerobic digester:
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• increase the bicarbonate buffering when BA is below 1.8 g CaCO3 I" 1 , in order to 

maintain the BA at a safe level for stable bacterial activity (the lowest recommended level 

of BA is 1000 mg CaCOs I" 1 without adversely affecting the bacterial population (Metcalf 

and Eddy, Inc., 1991);

• adjust the feed flow rate if there is an organic overload (it was arbitrarily decided that a 

50 % diversion of the incoming load was necessary, if such condition arises). With normal 

operation the full load (100 %) should be applied. A schematic of this is shown in Figure 

5.1.
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Figure 5.1- Diagrammatic representation of the ANN controller with the sensorial 

information as inputs and remedial actions as outputs (except for the SOM)

Twelve days of sensorial data resulting from the feeding pattern (Figure 5.1) was pre­ 

selected so as to decrease the number of data points to be dealt with by the ANNs. Each 

different type of network was trained using 2 sets of data. The first consisted of 124 data sets, 

which did not include simulated sensor failure conditions and the second consisted of 346 

data sets, which included simulated sensor failure conditions. For the various ANNs the 

'optimum' configuration and the overall error goal of the network in order to minimise the 

training period and at the same time improve the accuracy of the network predictions were 

obtained empirically. For the configuration of the ANNs parameters such as the number of 

layers and hidden neurones, learning rate, transfer and training functions, spread constant 

(i.e. the width of each data cluster for each hidden neurone), used by the RBFN were
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experimentally determined. The final configuration for each of the networks is described 

below.

The linear network had a two neurone single linear layer, due to the use of the Widrow-Hoff 

rule for training. However, the employment of multiple layers does not result in a more 

powerful network, as is generally known linear networks can only solve linear problems 

(Demuth and Beale, 1994). The Widrow-Hoff rule calculates small changes for the neurone's 

weights and biases in a direction that decreases the neurone's error. This rule is then 

implemented by making changes to the weight in the opposite direction and updating the 

learning rate. The initial learning rate was set as 0.9. It was trained, by presenting the inputs 

and the outputs to the network, as in Figure 5.1. It used the linear transfer function resulting 

in a minimum SSE of 1.6 (i.e. the sum squared differences between the network targets and 

actual outputs for both training data sets), after 45 and 50 epochs for the first and second data 

sets, respectively.

The BP network had an input layer of 5, a hidden layer 30 (first data set) and 35 (second data 

set) of arbitrarily chosen neurones and an output layer of 2 neurones (for the two remedial 

actions). The characteristic of the neurones in each layer was of the logarithmic sigmoid 

transfer function and the network was trained with the Levenberg-Marquardt optimisation 

technique (Demuth and Beale, 1994) to speed up learning. The network employed 

momentum (to make it less likely to get caught in a local error minima) with a value of 0.1 

and an initial learning rate of IxlO"4 with adaptive factors. The SSE achieved was 0.01 after 

25 and 37 epochs for the first and second data sets, respectively.

The RBFN employed a 2-layer configuration with the input layer hosting the RBF neurones 

and the output layer consisting of linear neurones. A maximum of sixty neurones was 

selected for the hidden layer and two were used for the output layer. During training, 

neurones were added to the network until the SSE fell beneath an error goal or the maximum 

number of neurones had been reached. In order to determine the strengths of the connection 

between the hidden and the output layer, the generalised least square minimisation was used. 

This consisted of utilising the output vectors of the hidden layer and the desired output target 

(Demuth and Beale, 1994). The SSE achieved after 10 (first data set) and 17 (second data 

set) epochs was 0.1 with the spread constant set to 0.1 for the RBF layer.
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The Elman network reached a SSE of 1.0 while set to use an initial adaptive learning rate of 

0.01. It consisted of 2 layers, one being recurrent using a hyperbolic tangent sigmoid transfer 

function and the other an output layer with a linear transfer function. The ratio used to 

increase the learning rate was 1.05 whilst the ratio to decrease the learning rate was 0.7, the 

error ratio was 1.04 and the momentum constant was 0.95. The SSE achieved was 0.1 after 

22 and 50 epochs for the first and second data sets, respectively.

5.1.2. Results and Discussion

Each ANN was validated with data not presented during training. The validation of the 

network consisted of classifying the 4 different Scenarios (Table 5.1), which aimed to 

simulate the following events:

Scenario 1 - 'normal' operation;

Scenario 2 - organic overload condition;

Scenario 3 - faulty operation of BA analyser;

Scenario 4 - pH probe fouling.

Ten data vectors for each of the Scenarios (a total of 40 data sets) were used to validate each 

of the ANNs. For Scenarios 3 and 4 (sensor failure) five data sets where related to normal 

operation and the other five to an organic load increase.

Table 5.1 - Typical values, of the four different Scenarios, used to test the ANNs

Scenarios

1 Normal 
2 Organic load increase 
3 BA analyser fault 
4 pH probe fault

BA
(a r 1 )

1.8 
1.2 
0.0
1.8

H2
(ppm)

150 
400 
150 
150

CO2
(%)
32 
55 
32 
32

Biogas Flow 
(ml miii0)

48 
50 
48 
48

pH

7.0 
6.6 
7.0 
4.0

Table 5.2 shows the remedial actions suggested by each network for Scenarios 1 to 4. It must 

be noted here that each network was only trained with data covering Scenarios 1 and 2, 

therefore its predictions for Scenario 3 and 4 can be treated as a validation exercise, namely 

for generalisation. It can be seen that each network acted quite appropriately by making
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sensible decisions, and did not respond catastrophically in any of the validation situations. 

For example, in Scenario 2 where the organic load was increased, all networks activated the 

addition of BA, which had fallen below 1.8 g CaCO3 1" 1 and decreased the incoming load. In 

practice, some load would be temporarily diverted to a buffer tank with the flow to the 

digester perhaps being diluted with treated effluent. In Scenario 3 the actual BA in the 

reactor was 1.8 g CaCO3 I" 1 despite the false sensor reading, which was simulated to provide 

a much lower reading to the networks.

Table 5.2 - Comparison of the different ANNs predictions to the desired targets when not

trained for sensor failure (%)

Type of 
Network

Linear
BP
RBF
Elman
Target

Scenario 1
BA Load

Add.
6
6
11
0
0

Adj.
101.9
99.9
94.1
92,5
100

Scenario 2
BA Load

Add.
57
60
40
56
60

Adj.
58.2
46.5
56.2
62.8
50

Scenario 3
BA Load

Add.
-13

6
24
-60

0

Adj.
89.79
83.5
76.0
92.3
100

Scenario 4
BA Load

Add.
126
125
25
97
0

Adj.
66.8
64.9
76.2
90.2
100

However, the performance of all networks for Scenarios 3 and 4 was unsatisfactory. For 

example, in Scenario 4 the Linear, BP and Elman networks all resulted in the maximum 

addition of BA even though the BA reading was normal. It was felt that by including fault 

conditions of BA and pH in the training data that the performance of the controller would be 

improved. This can be seen in Table 5.3 where there was an improvement in all the networks 

for Scenario 1. In Scenario 2, remedial action of BA addition at a rate of 60 % of the 

maximum and a deviation of 50 % of the incoming load to a buffer tank were proposed. 

These remedial actions were achieved most closely by the Linear and BP networks while the 

Elman network did not propose any addition of BA. hi Scenario 3, the Linear, BP and RBF 

networks have an improved performance but the Elman network predictions had deteriorated 

with respect to BA addition, although improvement with respect to load adjustment was 

demonstrated. The Elman network as expected was the least able to cope with sharp changes 

in the data such as a sudden sensor failure due to the network's inherent need for a smoother 

temporal pattern. In Scenario 4 all networks had improved performance, and had delivered 

satisfactory results.
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Table 5.3 - Comparison of the various ANN predictions to the targets when trained for sensor

failure (%)

Type of
Network

Linear
BP
RBF
Elman
Target

Scenario 1
BA

Add.
0
4
8

-14
0

Load
Adj.
102.9
100.0
94.4
101.2
100

Scenario 2
BA

Add.
50
68
34
5

60

Load
Adj.
57.7
50.3
60.0
50.2
50

Scenario 3
BA

Add.
-7
0
8

21
0

Load
Adj.
92.0
100.0
91.1
98.4
100

Scenario 4
BA

Add.
20
0
4
27
0

Load
Adj.
103.0
98.4
93.3
98.1
100

The ability of a linear network and a multi-layered FF network, MIMO, in modelling the 

identical data set was studied by Premier et al. (1999). These authors showed that even a 

linear network obtained reasonable performance. These linear models were able to follow the 

behaviour of the reactor by utilising a piece wise linear approximation of the non-linear 

process. In this study there was no data 'window' that could be altered as necessary so all the 

data sets were presented to the linear network and the results were satisfactory. However, the 

BP network in general was more capable, suggesting more accurate remedial actions than the 

linear network, which is to be expected since the network itself is more capable in 

representing non-linear relationships (Hornik et al., 1989).

The selected ANN must also be able to cope with the data from the four Scenarios, as the 

performance of the ANN is vital to maintain satisfactory operation of the plant, hi order to 

assess the suitability of each network, it was decided to aggregate the errors for both ANN 

outputs (i.e. BA and load adjustments) and express the error as the percentage achieved for 

each Scenario to give a final overall error (Table 5.4). As can be seen, the percentage error of 

the predictions were, for each of the networks, reasonably small although the best 

performance was given by the BP network with a total overall error of 13.9 %, from which 

60 % arises from Scenario 2. This could be possibly further reduced if more data relating to 

this Scenario was presented to the network during training.
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Table 5.4 - Aggregated network error expressed as a percentage

Type of Network

Linear
BP
RBF
Elman

Scenarios
1

2.9
4.0
13.6
15.2

2
17.7
8.3

36.0
55.2

3
15.0
0.0
16.9
22.6

4
23.0
1.6

10.7
28.9

Total Error

58.6
13.9
77.2
121.9

In practice sensor failure may go unnoticed by a conventional controller and the process 
might be uncontrolled for several days, during which time, severe reactor breakdown could 
occur. For the data used here, the BP network considerably outperformed the other networks. 
It can also be concluded from this work that in order to deal with a wider range of sensor 
failure conditions, a large training data set would be necessary thus leading to excessive 
training time (Demuth and Beale, 1994) and lower accuracy due to contradicting sensorial 
information. A better approach would be to employ a pre-processing stage which classified 
the data prior to feeding the sensorial information to an appropriately trained BP network, in 
this case the 'specialised' network would be the most able to recognise the situation.

The SOM, being an unsupervised ANN, could easily be used to classify different operating 
scenarios including sensor failure conditions. It has been found to be superior for the 
classification of faulty conditions, to the standard BP network (Silva, 1997). The use of the 
SOM does not readily lend itself to taking control actions rather, the network is best suited to 
the classification of incoming data into distinct classes. This is due to the nature of the 
network's output, as it is a single output which define classes e.g. 1, 2, to n and not 
continuously variable outputs which are needed for the remedial actions (e.g. voltage 
outputs). An SOM could be used to pre-process the incoming information in order to select 
the most appropriate BP network to take the necessary control actions. This pre-processing 
ability would perhaps become quite significant when there was a combination of faulty 
sensorial information that could persist for an extended period of reactor operation. Figure 
5.2 demonstrates the ability of the SOM at classifying the two loading states of the reactor 
accurately using a simplistic one-dimensional Kohonen layer with 2 neurones. The larger 
circle denotes the dominant (or the winning neurone), and the smaller circle denotes the 

neighbour neurone.
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Steady-state conditions

1.8gl-'(BA) 
150ppm(H2 ) 
32 % (CO2) 
48 ml min" 1 (biogas) 

_Z (pH) CLASS 1

Organic overload conditions

1.2gT'(BA)
400 ppm (H 2 )
55 % (C02)
50 ml min"' (biogas)
6.6 (pH) CLASS 2

Figure 5.2 - SOM classification of loading conditions to distinguish Scenario 1 from

Scenario 2

Figure 5.3 demonstrates that the use of a two-dimensional SOM can independently classify 

the two loading conditions (Scenarios 1 and 2). It can also classify conditions of BA failure 

as in Scenario 3, although faulty pH sensor conditions were confused with Scenario 2. This 

may have resulted from the limited data set that was available to represent the conditions of 

failure in the pH probe failure, something that should be remedied with more training data. 

However, Figure 5.3 shows that the SOM recognised a fourth class that represents the 

intermediate loading condition demonstrating its ability to generalise.

Steady-state conditions

~1.8 g r'(BA) 
150 ppm (H2 ) 
32 % (CO2 ) 
48 ml min" 1 (biogas) 
7(pH) CLASS 1

BA analyser faulty

O.Ogr'(BA)
150 ppm (H2 )
32 % (C02 )
48 ml min" 1 (biogas)
7(pH) CLASS 3

Organic overload conditions

400 ppm (H2)
55 % (CO2)
50 ml min" 1 (biogas)
6.6 (pH) CLASS 2

pH probe fouling

150 ppm (H2)
32 % (CO2)
48 ml min" 1 (biogas)
4(pH)

CLASS 2

Intermediate
conditions 

between steady- 
state and organic 

overload
CLASS 4

Figure 5.3 - SOM classification of loading and fault conditions to distinguish Scenarios 1 - 4

and an intermediate loading Scenario
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5.1.3. Conclusions from the ANN Selection

For the Linear, BP, RBF and Elman networks with the increase in the number of training 

data sets the number of training epochs have increased in order to maintain a constant SSE.

There are benefits from using ANNs to control the biological treatment process, however, 

training can be exhaustive with the determination of the optimum configuration of the 

network is highly empirical. All the tested network configurations were arrived at 

experimentally in order to improve predictions and decrease the training time.

All the ANNs were structured as MEVIOs. The most suitable network to be employed for the 

purpose of controlling the plant would be the fast BP algorithm. However, the network 

would then have to be trained for a series of conditions and combinations of sensor failure if 

it was to be robust enough to act as a 'controller'. The SOM was able to classify clusters of 

data from various operating conditions and situations of sensor loss and would therefore be a 

useful tool for pre-processing sensory information before passing it to the BP network for 

devising suitable remedial actions.

Therefore, a control strategy based on the combination of two ANNs, the SOM and BP, 

should provide the best solution for the development of a 'simple' ANNBCS for the WWTP. 

This control scheme would take spot checks on the conditions of the biological process and 

decide on the appropriate remedial actions ignoring the dynamics of the process. This could 

result in a general control scheme that could be applied to a range of different processes. The 

advantage of this would be that instead of training one ANN with all the possible data and 

fault conditions, a group of smaller ANNs would be trained for classes of data suggested by 

the SOM classification network.

5.2. Control Scheme Development

The development of the ANNBCS was performed using data gathered from the textile WWT 

rig during Experimental Phase 2 (Section 3.6.2). The ANNBCS aimed to maintain the BA 

level, so as to maintain the health of the reactor with a suitable organic and colour loads to
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the reactor for stable operation and also for discharge compliance. The development of this 

ANNBCS, for future on-line application, is detailed below under Control Schemes 1 to 4.

5.2.1. Introduction, Data Gathering and Selection

The Control Schemes consisted of one or two ANNs this last being a hybrid structure. They 

were based on the FFN trained with the BP algorithm alone or coupled with a classification 

network such as SOM or LVQ network (Pham and Oztemel, 1994). The inputs to the 

network were the data collected from the sensors, and the outputs were the suggested 

remedial actions that would be needed for the proper functioning of the reactor.

The four Control Schemes were designed to improve the predictive performance, in terms of 

the remedial control actions, and also to minimise the training time. Table 5.5 shows six 

suggested combined remedial actions, which are based on different associations of the four 

single remedial actions presented in Figures 5.4 to 5.7. The data used to train and test the 

networks off-line consisted of representative data sets collected during the non-steady state 

experiments of Experimental Phase 2 (Section 3.6.2). Normal operating conditions were 
associated with Experiment 2.2, organic step change with Experiment 2.1, colour step 

change with Experiment 2.4 and organic and colour step changes with Experiment 2.3 (Table 
3.2). In addition, there was also simulation of data for the following conditions: reactor 
instability and low organic and colour loads. The reactor's BA should be maintained above 

1000 mg I" 1 , as CaCOs, to prevent reactor failure together with a pH level between 6.8 and 

7.8 (Speece, 1996). These two levels of BA and pH are inter-linked as the bicarbonate ions 

represent the main pH buffering species in anaerobic digesters (Speece, 1996).

Table 5.6 presents 6 operating conditions with an example of validation data sets. The same 

validation data was used to test the performance of the four Control Schemes. Thirty-six data 

sets (sensorial data and remedial actions) concerning non-failure conditions were used. An 

additional thirty six data sets, which included sensor failure conditions were used (e.g. 3 data 

sets for operating condition 1 with failure of the BA monitor and three other data sets for 

operating condition 2 with a failing BA monitor). Similar sets of data were included for pH 

failure and the other operating conditions.
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Table 5.5 - Six suggested remedial actions

Scenarios Remedial actions

i) a temporary increase in organic load with 
which the digester can just cope

ii) reactor instability due to an organic overload

iii) a sustained increase in organic and colour 
loads that would make the digester unstable

iv) treatment of any WW previously diverted to a 
temporary storage tank during periods of high 
load

v) low starch to dye ratio for successful 
decolourisation of the WW

vi) sensor failure: BA monitor and pH meter

i) BA adjustment if this was below 1200 mg CaCO3 1"' 
and/or pH was 6.8 or below

ii) BA adjustment and load reduction

iii) reduction of organic and colour loads if these were 
above 1200 mg TODOU| I' 1 (UASB effluent) and the 
average OD at 436, 525 and 620 nm was above 0.3

iv) load increase from a textile WW holding tank when 
both levels of organic strength and colour were below 
the set limits above

v) addition of a carbon source if the TODout was below 
1000 mg 1"' and the average OD was higher than 0.3

vi) advise on the fault, ignore it when predicting by 
taking into consideration only reliable information____

Table 5.6 - Representative data of the 6 operating conditions

Operating Conditions

1 Normal operation 
2 Organic step load 
3 Colour step load 
4 Organic & colour step load 
5 Reactor instability 
6 Low organic & colour load

BA
(mgl' 1 )

1500 
1700 
1450 
1650 
950 
1460

TOD
(mgf 1 )

1100 
1900 
1050 
1900 
2000 
1000

Inputs to the ANNs
CO2 Gas flowrate pH 
(%) (mlmin" 1 ) (pH units)
25 
32 
25 
31 
33 
25

7 7.0 
11 7.2 
8 7.1 

13.5 7.2 
10 6.8 
6 7.1

Av. OD
(TCU)
0.27 
0.30 
0.37 
0.40 
0.30 
0.26

Operating condition 5, represents reactor instability which led to the production of VFAs and 

a consequent drop in the BA level below the safe limit (Speece, 1996). The TOD measured 

at the outlet of the UASB reactor rose together with the % CO2 in the biogas, whilst the gas 

flow rate and the pH decreased. Condition 5 can be distinguished from the case of an organic 

step load (operating condition 2) where the VFA levels remained low, which was 

accompanied by an increase of BA levels due to the NaOH content of the influent. This was 

also followed by an increase in the gas flow rate, although the % CO2 remained fairly 

constant. A colour step load (operating condition 3) mainly increased the OD, which is 

undesirable if compliance to environmental legislation is to be maintained. The effect of
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operating condition 4 (organic and colour step load) was a combination of both operating 

conditions 2 and 3, which are both undesirable.

All four Control Schemes were trained and validated with simulated sensor failure 

conditions with the exception of Control Scheme 1, which did not include such conditions. 

When simulated sensor failure occurs BA and pH have taken the values of 0 g CaCO3 I" 1 and 

6.5 pH units. The values were chosen because they occurred a few times during the 

experimental work. The 0 g CaCO3 I" 1 occurred when there was no sample going to the BA 

analyser and readings of 6.5 pH units occurred when the pH sensor fouled.

The next five Sections will present and discuss how the different Control Schemes were 

devised, trained and validated and will analyse how well the four Control Schemes 

performed in terms of the suggested remedial actions. It will also conclude as to the best 

Control Scheme to use for this biological treatment process.

5.2.2. Control Scheme 1

Control Scheme 1 was setup considering the results obtained in Section 5.1 where the BP 

network was found to be the most suitable ANN to use.

Architecture and Development of Control Scheme 1

Figure 5.4 shows a diagrammatic representation of the first Control Scheme. This was based 

on a standard 3-layer BP algorithm with 15 neurones allocated to the hidden layer. The 

neurones of each layer possessed a logarithmic sigmoid transfer function and the network 

was trained with the Levenberg-Marquardt optimisation technique (Demuth and Beale, 1994) 

to further speed up learning. The network employed momentum, to prevent being caught in 

local minima, with a value of 0.1 and an adaptive learning rate initially set to IxlO"4 . The 

increment and decrement factors of the learning rate were IxlO'3 and 10, respectively and the 

target SSE was set to 0.02. Eighty-five data sets were used during training of the Control 

scheme 1.
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Input elements

BA

Gas flowrate————>
_PH_^

Average OP

Input layer

Remedial actions
BA adjustment

Load reduction

Load increase

Carbon source addition

Output layer
Hidden layer

Figure 5.4 - The 3-layer FFN structure for the Control Scheme 1

Results and Discussion

The ANN controller decisions are presented in Table 5.7. These would ultimately be 

transferred to the plant actuators e.g. pumps or valves on a normalised scale of 0 to 1 (where 

0 means off or closed and 1 means maximum output or fully open). The schematic of this 

arrangement can be found in Figure 3.7 (Sections 3.5.1 and 3.5.3). As can be seen from 

Table 5.7 the network made sensible predictions as to the valve openings and pump speeds in 

the event of a change in the input to the process. For example, for normal operation, the 

network would leave the process alone, whilst when the organic load was increased the 

network would reduce the organic content entering the system by 80 %. In the case of 

operating condition 5 (reactor instability) in which the BA fell to 950 mg CaCOs I" 1 and the 

pH dropped to 6.8 (Table 5.6) the activation of the remedial action is almost full BA addition 

and maximum reduction of the load strength.

Table 5.7 also displays the ANN decisions for the simulated failure of the pH and BA 

sensors. As it can be seen, the neural network did not respond well and has made 

inappropriate decisions. It suggested switching on the bicarbonate dosing pump, reduction of 

the load, and in the case of BA instrument simulated failure it also predicted an addition of 

carbon source during all operating conditions, something that was not appropriate. This last
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condition happened as the BP networks work on the principal that during training the overall 
range of the data should be shown to the network (Demuth and Beale, 1994).

Table 5.7 - ANN predictions for the 6 different operating conditions and two cases of 

simulated sensor failure (Control Scheme 1)

Scenarios

1 Normal
operation
2 Organic step
load
3 Colour step
load
4 Organic &
colour step load
5 Reactor
instability
6 Low organic
& colour load

BA
adj.

0

0

0

0.3

0.9

0

Outputs

Load
red.

0

0.8

0.5

1

0.9

0

of ANN

Load
inc.

0

0

0

0

0

0.6

Carbon
add.

0

0

0.4

0

0

0

Outputs of ANN
(pH electrode

BA
adj.

0.9

1

1

0.9

0.9

0.9

Load
red.

1

1

1

1

1

1

Load
inc.

0

0

0

0

0

0

fouls)
Carbon

add.

0

0

0

0

0

0

Outputs of ANN
(BA instrument
BA
adj.

1

1

1

1

1

1

failure)
Load Load Carbon
red. inc

0.9 0

1 0

0.9 0

1 0

1 0

0.9 0

add.

0.5

0.5

0.4

0.5

0.4

0.5

5.2.3. Control Scheme 2

The second Control Scheme was setup as for the Control Scheme 1 and trained and validated 

with additional conditions.

Architecture and Development of Control Scheme 2

The diagrammatic representation of Control Scheme 2 is the same as Control Scheme 1 as 
the second control scheme resulted from re-training the first Control Scheme with sensor 
failure conditions (Section 5.2.1), in addition to the original training set. This it was thought 
would increase the tolerance of the network to possible sensor failure. The number of hidden 
neurones was also increased from 15 to 25 in order to cope with the increase in the number 
of data sets (Demuth and Beale, 1994). The network was trained until it reached an 

acceptable accuracy. During training of the BP network comprising the Control Scheme 2, 

124 data sets were used.
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Results and Discussion

Table 5.8 displays the results for the six operating conditions encountered in Control Scheme 

1. However, in this Control Scheme the failure of the pH and BA instruments has been 

included in the examples used to train the ANN. As can be seen in Table 5.8, the ANN 

outputs for cases when the instrument failed have improved over that achieved for Control 

Scheme 1 (Table 5.7), where no inappropriate BA addition was made. However, the network 

predictions for conditions when no instrument failure occurs were not as satisfactory, this 

was perhaps due to the large and contradictory set of training data. For example, in the case 

of the reactor being unstable (operating condition 5) the ANN decided that no appropriate 

remedial actions were required when it should have suggested reduction of the load strength 

and an increase of the BA flow. This means that this Control Scheme no longer reliably 

classifies the BA instrument output. Similarly, the load was not increased in operating 

condition 6 when the BA and pH sensors failed. From the results of Control Scheme 2, it can 

be concluded that an improved means of controlling such a complex process where sensor 

failure is often an occurrence is needed.

Table 5.8 - ANN predictions with two cases of sensor failure, when these have been included

in the training data (Control Scheme 2)

Scenarios

1 Normal
operation
2 Organic step
load
3 Colour step
load
4 Organic &
colour step load
5 Reactor
instability
6 Low organic 
& colour load

BA
adj.

0

0

0.2

0

0

0

Outputs

Load 
red.

0

0.5

0.6

0.9

0.8

0

of ANN

Load
inc.

0

0

0

0

0

0.3

Carbon 
add.

0

0

0

0

0

0

Outputs of ANN 
(pH electrode fouls)

BA
adj.

0

0

0.1

0

0.1

0

Load Load 
red. inc.

0 0

0.5 0

0.5 0

0.8 0

0.7 0

0 0

Carbon 
add.

0

0

0

0

0

0

Outputs of ANN 
(BA instrument failure)
BA
adj.

0

0

1

1

0.1

0

Load 
red.

0

0.5

0.2

1

0.5

0

Load Carbon 
inc. add.

0

0

0

0

0

0

0

0

0

0

0

0
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5.2.4. Control Scheme 3

A hybrid neural Control Scheme was setup, trained and validated. Control Scheme 3 was 

developed to cope with the large and contradictory sensorial information and will be 

described in this Section. The SOM was used for classification based on the positive results 
shown in Section 5.1.2.

Architecture and Development of Control Scheme 3

Figure 5.5 shows, a schematic, of the third control scheme, which consisted of a SOM and 6 

BP networks. The SOM was used to pre-process the incoming data, to detect when a sensor 

had failed together with the operating conditions, and to select the most appropriate neural 

network component from a suite of multilayered perceptron networks in order to optimise the 

WWT process for the most probable situation. The 2-dimensional SOM was constructed 

with 6 neurones in the Kohonen layer, an initial learning rate of 1 and the training data sets 

were presented to the network 1000 times. As the nature of training was of the unsupervised 

type, the use of the SSE was not required in this case. The accuracy of the predictions 

depends on the number of classes attributed and the number of times that the training data 

sets are presented to the network. The degree of certainty of classification by the network is 

reflected by the emergence of a dominant neurone (denoted by the larger circle). The 

persistency of the emergence of a pattern reflects the network's certainty of the class being 

presented to the network. Figure 5.5 shows the case when neurone 1 of the SOM is dominant 

(largest) and this then selects the appropriate BP network to make the necessary remedial 

actions (being in this case BP1). Neurone number 2, 3 and 4 are neighbours to the dominant 

neurone and the fifth and sixth are termed dead neurones, these ones are furthest away from 

the dominant one.

The six BP networks, each representing a set of remedial actions designed to cope with the 

expected range of undesirable reactor behaviour, consisted of similarly structured networks 

employed in Control Schemes 1 and 2. The difference here is that the data used to train the 

Control Schemes 1 and 2 was subdivided into six distinct data clusters. Training of the six 

BP networks was performed only after the SOM predictions were obtained. The data sets for 

training of the BP networks were defined according to the SOM classification.
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By experience, a smaller SSE (0.001) was thus achievable in order to improve the accuracy. 

Although the training data sets decreased as they were subdivided, the numbers of hidden 

neurones (15) were maintained so as to allow for the improvement in the error goal. The 

number of data sets used during training by the different ANNs of Control Scheme 3 were as 

follows: SOM - 124; BP1 and BP2 - 30; BP3 - 6, BP4 - 14; BP5 - 21; and BP6 - 23.

Results and Discussion

Table 5.9 displays the results obtained using Control Scheme 3 and includes the result of the 

SOM classification. The second column of Table 5.9 shows which neurone, from the 6 

attributed during training was dominant. Each dominant neurone represents one class of 

representative data.

As can be seen for the case when all sensors were operational, this Control Scheme 

performed similarly to Control Scheme 1, whereas for the two cases of simulated sensor 

failure Control Scheme 3 performed significantly better than Control Schemes 1 and 2 

(Tables 5.7 and 5.8). This is best observed for the cases of organic step load and reactor 

instability where Control Scheme 3 would provide the appropriate buffering and load 

reduction for instances where either sensor failed. However, carbon was not added in 

operating condition 3 when either sensor was failing, and BA was added in this case. This 

could perhaps be due to insufficient training data and/or to disadvantages in using an 

unsupervised learning network such as SOM in this type of Control Scheme. The observed 

disadvantage was that slightly different data fired the neighbour neurone and not the 

dominant one (i.e. it predicted a different class), consequently there was less accurate 

predictions, as the BP network selected was not trained with data similar to the validation 

data set.
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Table 5.9 - ANN predictions for Control Scheme 3

Operating Conditions

1 Normal operation 
2 Organic step load 
3 Colour step load 
4 Organic & colour step load 
5 Reactor instability 
6 Low organic & colour load
BA Failure
1 Normal operation 
2 Organic step load 
3 Colour step load 
4 Organic & colour step load 
5 Reactor instability 
6 Low organic & colour load
pH Failure
1 Normal operation 
2 Organic step load 
3 Colour step load 
4 Organic & colour step load 
5 Reactor instability 
6 Low organic & colour load

SOM 
Classification

5 
2 
3 
2 
2 
5

1
2 
1 
2 
2 
1

5 
6 
6 
6 
3 
5

BA adj.
0 
0 

0.2 
0.4 
0.5 
0

0 
0 
0 

0.7 
0.5 
0

0 
0 
0 
0 
1 
0

ANN

Load red.
0 

0.6 
0.6 
0.8 
0.8 
0

0 
0.7 

1 
1 

0.8 
0

0 
0.9 

1 
0.9 
0.4 
0

Outputs

Load inc.
0 
0 
0 
0 
0 

0.5

0 
0 
0 
0 
0 

0.4

0 
0 
0 
0 
0 

0.3

Carbon add.
0 
0 

0.2 
0 
0 
0

0 
0 
0 
0 
0 
0

0 
0 
0 
0 

0.2 
0

5.2.5. Control Scheme 4

It was thought from the experience of running the biological treatment process that using a 

supervised learning classification network such as the LVQ network could be more useful for 

the control purpose than utilising the SOM. If the LVQ network is used, the BP networks can 

be trained even before the classification network as the data sets for the different classes and 

consequently the data for training of the various BP networks is selected by the user. The 

sensorial data corresponding to the different operating conditions are quite distinctive from 

each other, so that there is no need to use an unsupervised classification network. The use of 

the LVQ network presents also another advantage as for the predictive accuracy due to its 

learning structure. The advantages of the LVQ network in comparison to other competitive 

networks will be summarised in the next two Sections.

Architecture and Development of Control Scheme 4

As outlined previously, the SOM is an unsupervised learning network, meaning that the 

network itself learns to detect regularities in the training data. The neurones of competitive
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networks learn to recognise groups of similar input vectors. However, the classes that the 

competitive layer finds are dependent only on the euclidian distance between input vectors. If 

two input vectors are very similar, the competitive layer will probably put them into the same 

class. There is no mechanism in a competitive layer design to dictate whether or not any two 

input vectors are in the same class or different classes. LVQ networks, on the other hand, 

learn to classify input vectors into target classes chosen by the user in a supervised manner. 

LVQ networks classify input vectors into target classes by using a competitive layer to find 

subclasses of input vectors, and then combining them into the target classes. The use of an 

LVQ network therefore is a safer option in comparison to the SOM. LVQ networks can 

classify any set of input vectors, the only requirement is that the competitive layer must have 

enough neurones, and each target class must be assigned enough competitive neurones.

In terms of training time, LVQ networks can take longer as the user has to define the 

corresponding outputs. The LVQ network training takes longer providing that a small 

software program is built when using the option of SOM + BPs (Control Scheme 3). This 

program must assist in the automatic division of the data sets (i.e. depending on the predicted 

class) into smaller data sets for the training of the BP networks, otherwise the use of the 

SOM can also be time consuming. Another disadvantage of the SOM, for this type of 

Control Scheme, is that some of the data vectors had a dominant neurone e.g. 2 but 1, 3 and 

4 were neighbours of the dominant neurone meaning that a similar data set could actually 

belong to one of the neighbouring neurones. Since the build up of the data set to train each 

BP network is only based on the dominant neurone classification, it might result in a 

degradation of the predictions made by the BP network, as they might not contain similar 

data when trained.

Therefore, a supervised classification network such as the LVQ network was thought to 

perform better in this type of Control Scheme. Validation of the Control Scheme (Figure 5.6) 

with the same data sets as for Control Scheme 3 was performed and the results are presented 

in the next section. For simplicity, only a box represents the LVQ network. The structure of 

this network is shown in more detail in Figure 5.7. This ANN contains 2 layers: a 

competitive hidden layer with a size of 24 neurones (i.e. 6 classes with 4 subclasses each).
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LVQ Classification Network

Sensorial 
Information

BA
TOD 
CO2

Gas flowrate
pH 

Average OD

Competitive 
Hidden Layer

Linear Output 
Layer

User Defined 
Classes

Figure 5.7 - LVQ network used in the Control Scheme 4

Table 5.10 shows the classification work and the respective pre-defmed outputs of the LVQ 

network. Training was set (as for the SOM) at 1000 epochs. The data defining each class 

(output of the LVQ network) was pre-defmed by the user (i.e. supervised learning). The use 

of six different classes (as the outputs of the LVQ network) were chosen based on previous 

experience and also to maintain the number of classes used by the SOM for a fairer 

comparison of predictions. The six BP networks, each representing a set of remedial actions 

designed to cope with the expected range of undesirable reactor behaviour and sensor loss, 

consisted of similarly structured networks employed as for Control Schemes 1 to 3.

The number of data sets used during training by the different ANNs of Control Scheme 4 

were as follows: LVQ - 124; BP1 - 18; BP2 - 20; BP3 - 19, BP4 - 32; BP5 - 18; and BP6 -

17.
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Table 5.10- Training of the LVQ Network for Control Scheme 4

LVQ network input data from sensors LVQ network output 
___designation___

Normal operation
BA failure
pH failure
Organic step load & colour step loads (joint and separately)
Reactor instability
Low organic and colour loads_________________

[00000 !]-» Class 1 
[00001 I]-* Class 2 
[0001 1 l]-»Class3 
[00111 l]-» Class 4 
[01111 1]-* Class 5 
[1 1 1 1 1 l]-»Class6

Results and Discussion

Scheme 4 similarly to Scheme 3 was used to detect bad reactor operation and whether a 

sensor had failed and subsequently, to select an appropriate BP network to cope with the 

situation. Table 5.11 displays the remedial actions predicted by the Control Scheme 4 and 

also the result of the LVQ network classification.

As can be seen for the case when all sensors were operational, this Control Scheme 

performed similarly to Control Scheme 1, it predicted better than Control Scheme 2 and 

considerably better than Control Scheme 3, especially for operating condition 3 (i.e. colour 

step load). In this case Control Scheme 4 did not suggest additional intake of BA and 

suggested a more appropriate carbon addition in order to improve dye degradation.

For sensor failure conditions Control Scheme 4 outperformed all the other Control Schemes. 

However, a closer comparison to Control Scheme 3 will be made here, as they proved to be 

the two best Control options. The fourth Scheme during a colour step load (i.e. operating 

condition 3) predicted well for both sensor failure conditions, very similar to the case of no 

sensor failure. Another improvement was for the case of reactor instability and simulated 

failure of the pH probe, hi these cases Control Scheme 3 suggested an increase in carbon 

addition and no load reduction, both undesirable control actions. On the other hand, Control 

Scheme 4 only increased the BA intake and reduced the load strength to the reactor; it did 

not suggest any carbon addition, all appropriate suggestions. Control Scheme 4 also 

improved the predictions for operating condition 6 (low organic and colour load) where it 

dictated a 0.5 load strength increase, with loss of both sensors, instead of 0.4 and 0.3 for BA 

and pH sensors failure, respectively, in Control Scheme 3.
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Table 5.11- ANN predictions for Control Scheme 4

Operating Conditions

1 Normal operation 
2 Organic step load 
3 Colour step load 
4 Organic & colour step load 
5 Reactor instability 
6 Low organic & colour load
BA Failure
1 Normal operation 
2 Organic step load 
3 Colour step load 
4 Organic & colour step load 
5 Reactor instability 
6 Low organic & colour load
pH Failure
1 Normal operation 
2 Organic step load 
3 Colour step load 
4 Organic & colour step load 
5 Reactor instability 
6 Low organic & colour load

LVQ network 
Classification

1 
4 
4 
4 
5 
6

2 
2 
2 
2 
2 
2

3 
3 
3 
3 
3 
3

BA adj.
0 
0 
0 

0.3 
0.6 
0

0 
0 
0 

0.4 
0.6 
0

0 
0 
0 

0.4 
0.6 
0

ANN

Load red.
0 

0.7 
0.5 
0.8 
0.9 
0

0 
0.7 
0.7 
0.8 
0.9 
0

0 
0.7 
0.7 
0.9 
0.9 
0

Outputs

Load inc.
0 
0 
0 
0 
0 

0.6

0 
0 
0 
0 
0 

0.5

0 
0 
0 
0 
0 

0.5

Carbon add.
0 
0 

0.4 
0 
0 
0

0 
0 

0.3 
0 
0 
0

0 
0 

0.3 
0 
0 
0

5.2.6. Conclusions from the Control Scheme Development

Training of all the Control Schemes was relatively quick. None of the BP networks took 

more than 49 epochs, which represents the number of presentations of each data set to the 

network for 6 input elements together with the 4 targets elements, and the calculation of new 

network parameter (weights and biases) necessary to minimise the SSE. The training of the 

SOM and LVQ networks was also performed quickly.

Comparing each of the four Control Schemes in this manner is subjective. In order to achieve 

a quantitative comparison, the actual response of each scheme was compared with the target 

and the calculated SSE is displayed in Table 5.12. There is a relatively large error for 

Scheme 1, which is reduced considerably with the inclusion of the sensor failure conditions 

in Scheme 2. A further 48 % reduction in prediction error was achieved for Scheme 3 in 

comparison with Scheme 2. The best Scheme was Control Scheme 4 with a SSE of 0.027, 

with an extra 29 % prediction improvement compared to Scheme 3.
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Table 5.12 - SSEs for the four Control Schemes

Control Schemes__________SSE
1 0.206
2 0.073
3 0.038 

_______4________________0.027 
Note: SSEs achieved for the same validation data set

5.3. Further Development and On-line Implementation of Two 
ANNBCSs to Control the UASB Reactor and the Aerobic Stage

The work presented in this Section follows the results obtained from Section 5.2 where the 
best ANNBCS was found and was based on a hybrid ANN based structure (LVQ + BPs). 
The objective was to test on-line a more complete controller (i.e. more inputs and outputs) 
based on the structure of Control Scheme 4 for controlling both stages at the same time. 
However, as mentioned in Section 4.3 the UASB reactor could not cope with an organic step 
load and therefore two separate ANNBCSs (1 and 2) were trained in order to test on-line 
their performance at controlling the UASB reactor and the aerobic stage, respectively.

This section presents the off-line training and on-line testing of the ANNBCSs (1 and 2). For 
the anaerobic stage the control actions were to alter the dye concentration to be fed to the 
UASB reactor in order to maintain good effluent quality (i.e. average OD < 1.65 TCU) and 
to maintain BA and pH levels above 1700 mg CaCO3 I" 1 and 7.4, respectively, despite the 
simulated failure of the BA analyser. Control over the aerobic stage was achieved through 
the regulation of the extra starch to the stage using TOC as the control parameter, and also by 
maintaining the DO level above 3 g I' 1 and the pH level below 7.2. ANNBCS (1 and 2) were 
trained with data gathered from Experimental Phases 4 and 5 (Sections 4.3 and 4.4), 
respectively.
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5.3.1. On-line Control of the UASB Reactor (ANNBCS (1))

The monitoring and hardware control setup and the data gathered for the training of the 

ANNBCS (1) have been described in Sections 3.6.4 and 4.3. As mentioned earlier, only a 

colour step load could be performed, due to the health of the reactor. For the same reason, it 

was not advisable to perform an uncontrolled dye step load, therefore, the data used to train 

the ANNBCS (1) was gathered only from Experiment 4.1. The data, which represents the 

increase in the STE dye concentration, of colour, B A, pH and TOC was constructed from the 

previous experience of running the reactor. First of all, what was good or bad reactor 

operation was defined using the sensorial data for pH and BA (within the UASB reactor), 

also for colour and TOC in the effluent of the reactor. From here, ANNBCS (1) was re­ 

organised and re-trained based on the same principle as Control Scheme 4 (Section 5.2). 

From the four remedial actions presented previously, only two were adopted: adjustment of 

the dye pump, which was pumped separately from the concentrated STE and adjustment of 

the BA pump. The other two remedial actions, carbon addition and increase in organic and 

dye concentration were not used due to the health of the UASB reactor. The ANNBCS (1) 

was tested on-line to maintain: steady BA concentration within the reactor, even during 

simulated failure of the BA monitor, which should maintain a constant level of pH, and a 

good UASB reactor effluent quality in terms of colour.

Two experimental runs were carried out to test the ANNBCS (1) on-line and similar results 

were obtained. The following parameters were monitored on-line: BA, TOC, pH, and colour. 

The TOC and colour analysers sampled the effluent from the UASB reactor. The dye step 

load and the non-addition of a constant flow of BA together with the STE were performed 

1 h into experiment (Figures 5.14 to 5.18) and was then returned, to its initial level 7 hours 

after the step load started. Control was effected by peristaltic pumps (Watson Marlow 505U, 

Cornwall, UK) (calibrated as in Section 3.5.3). During Experiment 4.2 the pumps were 

controlled by the ANNBCS (1) with some of the Lab VIEW™ code to integrate the remedial 

actions from MATLAB® and send them to the actuators being shown in Figure 5.8. The 

program written in MATLAB® for controlling the UASB reactor on-line is shown in Section 

B.3 - Appendix B.
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The additional dye pump was controlled by BP(a) an integral part of ANNBCS (1). The 

concentration of the additional dye was stored at a concentration of 50 g I" 1 and the 

maximum flowrate for the pump, provided when BP(a) suggested a 5 V output, was 

9.925 g I" 1 , so that a total of 10 g I" 1 could be pumped to the reactor when joined with the 

constant flow of dye in the concentrated STE. During the same time period no BA was 

pumped with the STE. Instead the BA addition was controlled by the combination of the 3 

ANNs: LVQ and both BP(bl) and BP(b2). These three elements of the ANNBCS (1) 

controlled the pump for the concentrated BA solution (60 g NaHCO3 1"'). This solution was 

prepared just before the experiment took place and its concentration was chosen so that it 

was as close to saturation as possible so that the smallest alteration to the UASB reactor 

HRT could be achieved. From Experimental Phase 3, it was known that increasing the STE 

dye concentration would not affect the levels of BA and pH within the UASB reactor. The 

main objective in controlling the BA level was to be able to test the predictions on-line of the 

hybrid part of ANNBCS (1) during BA monitor simulated failure.

r> TEXLOGNNCOMTSanaeiobicuKMi vexs Diagi...
Eite £dk Qpeiale E'°i=cl Windows yelp

Reads the data file
Closes the data file

0 MATLAB~I [OUTpUTS FROM MATLAB TO LABVIEW I

Scan from string
I18LVQ classl

/ Build array
While loop for the 
program to wait until 
the data file from 
MATLAB is ready to be 
opened by LabVIEW

~7

Saves the outputs 
to the ̂ actuators and 
the LYQ class

_______[ Otj A explore-Sa... | LabVIEW /\ |H|TEXLOGNNC,.. | igTEXLOGNNC... | El Ba"a de ataK -

^ Outputs the analogue signal to the extra dye pump 
Outputs the analogue signal to the BA pump

Figure 5.8 - LabVIEW™ VI code to integrate data from MATLAB® (ANNBCS (1))
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Training ofANNBCS (1) to Control the UASB Reactor

Four ANNs were designed and trained which made up ANNBCS (1) to control the UASB 

reactor on-line. Three of them were the standard 3-layer FFN using the fast BP algorithm 

(i.e. BP(a), BP(bl) and BP(b2)), the fourth was the LVQ network for classification of the 

functional status of the BA monitor (working or failing) and to subsequently select the 

appropriate BP network either (bl) or (b2). Two classes were found sufficient to classify the 

BA and pH sensorial data, in order to control the BA feed rate and also detect if there was a 

loss in the BA sensor. If the colour readings would be included in the LVQ classification 

network the number of classes would have to be increased and most probably ANNBCS (1) 

would have less accurate predictions. The design and training parameters of the ANNs are 

presented in Table 5.13. The training input and output sets ranged as indicated in Table 5.14.

Measurement of on-line TOC could be used as another input to BP(a), however since there 

was no knowledge of the average OD and TOC relationship when the additional dye 

concentration was in place, TOC measurements could not be used. BP(a) was trained based 

only on the average OD values as follows:

• the delivered flow would be decreased accordingly for an average OD between 0.7 and 

1.65;

• the flow would be completely turned-off for an average OD above 1.65.

The hybrid part (LVQ + BP(bl)) ofANNBCS (1) that controlled the BA pump was trained 

as follows:

• the pump would be stopped for values of pH and BA above 8 and 2250 mg CaCOa 1" , 

respectively;
• there would be a variable flowrate of BA solution for values between 6.8 and 8 of pH 

and 800 and 2200 mg CaCO3 1" 1 .

The hybrid part (LVQ + BP(b2)) ofANNBCS (1) controlled the BA pump during simulation 

of BA monitor failure (i.e. assumed to be when BA < 700 mg CaCO3 I" 1 ). During this 

situation BP(b2) would take only the values of pH into consideration and not the BA monitor 

measurements since they were not valid (Tables 5.13 and 5.14).
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Table 5.13 - Structure and training parameters of ANNBCS (1)

Type of ANN Data 
sets

Input features 
(sensor measurements)

Hidden 
nodes

Network outputs 
(V to pumps)

Control of extra dye pump
BP(a) 110 1 (UASB reactor effluent OD) 30 1

BA monitor working 
BP(bl)

BA monitor failing 
BP(b2)

31

20

2 (UASB reactor BA and pH)

1 (UASB reactor pH)

30

35

1

1

Table 5.14 - ANNs input and output range of ANNBCS (1)

Type of ANN
BP(a) 
LVQ

BP(bl) 

BP(b2)

ANN Input range
Av. OD [0 to 5] (OD units) 
pH [6.8 to 8] (pH units) 
BA [0 to 2300] (mg CaCO 3 1' 1 ) 
pH [6.8 to 8] (pH units) 
BA [0 to 2300] (mg CaCO3 1' 1 ) 
pH [6.8 to 8] (pH units)

ANN Output range
Dye pump [0 to 5] (V) 
2 Binary Classes [0 1 or 1 0])'

BA pump [0 to 5] (V) 

BA pump [0 to 5] (V)
1 There was a 'software switch' which translated the binary values as follows: 
[0 1] -> Class 1 ->• BP(bl); |1 0] -> Class 2 -> BP(b2)

The setup and calibration of the two control pumps can be observed in Table 5.15 (Section 

3.5.3). It is important to notice that in order to maintain the BA and pH values, within the 

UASB reactor, of 1700 mg CaCO3 I" 1 and 7.4, an equivalent of 0.545 ml min" 1 of the BA 

solution had to be pumped (i.e. ANN output for the BA pump of 2.5 V).

Table 5.15 - Control pumps setup and calibration for control of the UASB reactor

Designation of the 
pumps

BApump
Additional dye pump

Maximum 
voltage (V)

5
5

Maximum speed 
(RPM)

12
25

Maximum flowrate 
(ml min" 1 )

1.090
4.506

Note: Minimum voltages and corresponding flowrates were 0 V and 0 ml min" , respectively.

The three BP networks were trained as before and achieved a satisfactory SSE of 0.02 after 

training. The LVQ network was trained to recognise two distinctive patterns with a total of 

51 data sets. It was constructed with 8 neurones (4 neurones for each subclass in the 

competitive layer). As explained previously, the prediction accuracy depended on the number 

of times the data was presented to the network. From observation of the training plot after
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1500 presentations (Figure 5.10) the learning had stabilised, therefore 1500 was felt to be the 

adequate number of presentations to adopt. The initial learning rate was set to 0.1 and the 

bias time constant of 0.99. Class 1 contained data where the intermittent BA monitor was 

fully operational (values above 700 mg CaCO3 I" 1 ) and the second class included data when 

the monitor was faulty (values below 700 mg CaCO3 I" 1 ). The corresponding BP networks 

associated with the two possible operating conditions, were the fully functional and faulty 

BA monitor were BP(bl) and BP(b2), respectively.

All the networks had the input and output data normalised to values between 0 and 1, except 

the outputs of the LVQ network, as the outputs were of the binary form. The training 

sequence for the four networks is presented in Figures 5.9 to 5.12.

Sum-Squared Network Error for 60 Epochs
T

O 

UJ

1ro3 cr
°?
E

OT

Figure 5.9 - Training sequence for BP(a) vs. SSE
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0

LVQ: 1500 cycles

-50'

i ————— i ————— i ————— i

data points o neurones in the competitive layer

Class 1 q+++

Class 2

o o o o
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iQl 
6.6 6.8 7 7.2 7.4 7.6 7.8 8 8.2

Figure 5.10 - Final position of the competitive neurones after 1500 epochs

Sum-Squared Network Error for 7 Epochs

10

Figure 5.11 - Training sequence for BP(bl) vs. SSE
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Sum-Squared Network Error for 5 Epochs

10

Figure 5.12 - Training sequence for BP(b2) vs. SSE

Results and Discussion of the On-line Control Experiments

Figure 5.13 shows a screen capture of the panel of the Lab VIEW™ VI during the second run 

of Experiment 4.2.

Figure 5.13 - Screen capture of part of the LabVIEW™ VI panel during the second run of

Experiment 4.2
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UASB Reactor BA and pH

During Experiment 4.2 there were variations in the on-line BA levels in the UASB reactor. 

These variations were due to the irregularity in the volume of the sample that reached the 

instrument. This phenomenon was caused by the rapid flowrate used by the re-circulating 

pump which was necessary in order to promptly remove the granules so as to avoid them 

being deposited in Filter 2 (Section 3.4). Therefore, during the entire experiment the BA 

monitor provided measurements that were not correct. However, the measurements were 

maintained within a range which ANNBCS (1) was not trained as being failure conditions. 

Consequently, in order to test the hybrid part of the control scheme a simulation of the BA 

monitor failure had still to be performed (i.e. BA values lower than 700 mg CaCO3 1" 1 ).

Despite the BA measurement variations, ANNBCS (1) behaved quite sensibly throughout the 

experiment. Off-line BA measurements (Jenkins et al., 1983) were performed every hour and 

an average value of 1830 mg CaCO3 I" 1 (sd = 85, n = 9) was found indicating that as in 

Figure 5.14 only the highest levels recorded by the on-line BA monitor were realistic. The 

lower values obtained by the analyser were due to less sample being pumped to the reaction 

chamber. The constant level of pH within the upper part of the UASB reactor can also be 

observed in Figure 5.15, indicating that changes in the BA measurements were not 

completely real. As described in Section 3.3.3, the BA monitor operated intermittently every 

30 minutes and therefore BP(bl) had similar outputs during the entire 30 minute period. The 

variations of the ANN outputs during the time where BA measurements remained constant 

were due to the small fluctuations in the pH measurements. From the arrow labelled start 

until the arrow labelled end (Figures 5.14 and 5.15) ANNBCS (1) was actuating on the 

pumps (i.e. additional dye and BA). However, before and after the arrows ANNBCS (1) was 

outputting predictions based on the sensorial measurements without controlling the pumps. 

Its predictions (Figure 5.14) in the first half-hour before the start of the controlled experiment 

showed how important it would be to have two different measurements that can provide 

similar/complementary information to a control scheme. It can be seen in the first half-hour 

of the experiment that if only BA measurements were to be considered by ANNBCS (1), the 

predictions would be 0 V to the BA pump, instead of what really happened because BP(bl) 

also considered the pH measurements.
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As shown in the Figure 5.14, there was a simulation of BA failure where the instrument 

output was set to 0 mg CaCO3 I" 1 . The LVQ network correctly classified the 'failure' and 

selected BP(b2) in order to deal with the problem as represented by Class 2 in Figure 5.15. 

BP(b2) predictions were quite noisy in comparison to the BP(bl) as they were related only 

with pH measurements and not to the BA values since these were understood not to be 

correct.
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Figure 5.14 - ANN control output (BP(bl) and BP(b2)) vs. UASB reactor BA level

It would be very important to have various monitors capable of providing complementary 

information so as to enhance the tolerance of the ANNBCS. It is well known that WW 

sensors can fail quite frequently and the ANNBCS has to be able to cope with these losses. 

Even if not all the sensor failure conditions are to be taken into account at least the most 

common ones should be. For example a similar intermittent BA monitor to the one used 

here, could return various unreal measurements:

• higher readings due to foaming or to slacking of its feeding tube or air leaking into the 

reaction chamber;
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' lower readings due to a tube blockage, air bubble trapped and as in this case the re­ 

cycling pump for the filter produced a sucking effect of the sample, decreasing the 
amount of flow to the monitor;

> zero or constant readings due to an electrical failure of the monitor or a computer 
software problem.
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Figure 5.15 - UASB reactor pH and LVQ network output (Classes 1 or 2)

UASB Reactor Effluent Colour
Figure 5.16 shows the response of the BP(a) network output in attempting to reduce the dye 
addition when the colour quality of the UASB reactor effluent deteriorated. As there was 
only one flowcell that could be read by the spectrophotometer, and the UASB reactor was 
fed with a STE (i.e. the OD and the TOC of the feeding WW were known) it was decided 
that the spectrophotometer would measure the UASB reactor effluent only. This brought 
known complications for the controller. The increase in colour and TOC content of the 

UASB reactor effluent was not immediate due to adsorption, degradation, sampling delay 
(approximately 16 minutes) and mostly due to the flow dynamics of the reactor. In real life 

the OD and TOC of the feed would have to be measured as well and be input to the 
ANNBCS so that these two parameters would dictate the major remedial actions to be taken. 

In order to safeguard the health of the reactor, compliance with legislation and to be able to
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reuse the WW by the industrial process if required, the feed dye load would have to be 

reduced prior to its entrance in the reactor. This reduction would be based on the measured 

OD of the reactor feed and the known average reactor removal efficiency. Small adjustments 

could then be made from the observed reactor efficiency at a particular time based on the 

measurement of the UASB reactor effluent, as for example:

• removal efficiency has increased due to biomass growth then an increase in dye load in 

the feed is possible or;

• removal efficiency has decreased due to loss of biomass or the effect of a toxic agent, 

then the dye load in the feed has to be reduced.

A combination of remedial actions such as reduction of the colour load, addition of a carbon 

source, addition of biomass and addition of nutrients could actually be performed by the 

ANNBCS.

The main objective of this experiment was to assess the generalisation capacity of ANNBCS 

(1) as only the UASB reactor effluent colour and TOC were measured and only the reduction 

of the dye concentration was considered as a remedial action. It can be seen from Figure 5.16 

that, the additional dye pump was only switched off after 6.3 h from the start of Experiment 

4.2. However the flow was gradually reduced 4.5 h from the start of the experiment.

Apart from the good generalisation capability of the ANNBCS (1) a positive control effect 

could also been observed. The pump for extra dye was completely switched off before this 

was done manually and the flow started to reduce 1 h before that. The effect of the ANNBCS 

(1) could be more significant if the additional load of dye instead of being available for a 7 h 

period would be available for one whole night e.g. 14 hours. However, when operating with 

real effluent where the dye concentrations are unknown the colour analyser would be 

measuring the influent and then a much efficient ANNBCS control action would easily be 

achieved. Figure 5.17 shows that the maximum average of the UASB reactor effluent OD 

was attained approximately 13 h after the commencement of the step increase in the dye. It 

also shows the time required for near full recovery and the correlation between on-line 

measurements and the five off-line measurements (true colour) of the average OD, which 

correlated well with the introduction of the 60 jam mesh.
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Incorrect position of the tubes

Figure 5.16 - ANN output (BP(a)) vs. on-line UASB reactor effluent average OD
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Figure 5.17 - On-line average OD and off-line true colour

UASB Reactor Effluent TOC
The additional dye contributed to the increase in the organic content fed to the UASB 

reactor, which was detected by the measurements of the UASB reactor effluent TOC. Figure
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5.18 shows the TOC evolution during the experiment. TOC values were filtered using a 4th 

order low-pass Bessel filter constructed with LabVIEW™ VI code. As it can be seen, during 

the two days experiment the TOC of the UASB reactor effluent increased from an average of 

400 mg I" 1 to a maximum of 1000 mg I" 1 within 14 hours. It can be observed from Figures 

5.17 and 5.18 that both values of the average effluent OD and TOC were still unsatisfactory 

2 days after the step increase in the dye load. This was probably resulted from the dye being 

adsorbed onto the granules and its slow release.
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Figure 5.18 - Off-line COD vs. on-line TOC

The legislation concerning discharge consents does not yet refer to TOC limits, only to BOD 

and COD. In order to find a correlation between TOC and COD for this particular waste, off­ 

line COD measurements were performed during these experiments. The off-line COD 

measurements can be related to the TOC, as shown in Figure 5.18. COD values as expected 

were higher than those obtained with TOC analysis. A COD:TOC ratio of 2.1 was 

determined. For control purposes it is important to use some sort organic content measuring 

technique. With the COD:TOC ratio, the TOC analysis could be performed and compared to 

the legislative restrictions. Ionics (1993) published COD:TOC ratios of 1.8 - 2.2.
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5.3.2. On-line Control of the Aerobic Stage (ANNBCS (2))

The data of Experimental Phase 5 was selected and used to train the different networks 

involved in the control scheme has been defined in Section 4.4. In Section 3.6.5 there is a 

full description of the on-line monitoring used to gather the data and control setup adopted to 

test the prototype ANNBCS. The following two Sections will detail the training of ANNBCS 

(2), and the results of the on-line control of the aerobic stage.

Training of ANNBCS (2) to Control the Aerobic Stage

The control scheme objective was to optimise the pH and DO levels within the aerobic tank 

and also the TOC of the aerobic stage effluent. As explained earlier the extra starch due to 

difficulties was hydrolysed with NaOH rather than with amylase. This lead to the decrease of 

pH during Experiment 5.2, which would most probably not have occured when hydrolysed 

with amylase. Therefore, ANNBCS (2) would add acid (1 M HC1) in order to control the pH 

level increase within the aerobic tank. The maximum flowrates for each control action to be 

applied during the control experiment were as presented in Table 5.16 and zero as the 

minimum flowrates by the three actuators.

Table 5.16 —ANNBCS (2) control outputs based on the combined action of three separate

ANNs (maximum voltages and flowrates)

ANNBCS

1
2 
3

Actuators

Additional starch pump 
Air compressor 

Acid (HC1) pump

Max. ANN output
(V)
1.7
5 
5

Max. corresponding 
flowrate (ml min" 1 )

0.5 
7000 
1.14

All the BP networks were trained using the same learning parameters as for the networks 

used for the on-line control of the UASB reactor. Neurones of the logarithmic sigmoid 

transfer function were also employed for each of the layers. They were of a SISO structure. 

Seventy-three data sets were used for all the networks. The three networks achieved a 

satisfactory SSE of 0.002 after training.

ANN Controller 1 - Consisted of one input element (TOC from the aerobic settler) and one 

output (voltage to the additional starch pump). The voltage would be reduced when the
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controller was informed of the decrease in the effluent quality. The values of outputs (i.e. 

voltage to the additional starch pump) considered for the training set were as follows:

• 1.7 V for TOC values below 100 ppm (fully on providing the maximum flowrate set for 

the calibration);

• 0 V (completely off) when the TOC of the effluent was above 600 ppm for Experiment 

5.2 and 300 ppm for Experiment 5.3; and

• it would vary for values in between.

ANN Controller 2 - The second network had DO readings as input and the voltage to the 

additional air compressor as an output. For the case when the level of DO was lower than 

3 mg 1" the extra compressor fully switched on as the compressor was not of a variable type. 

As a consequence the training of the ANN controller was based on an on-off remedial action.

ANN Controller 3 - Its response was based on monitored values of pH in the aerobic tank. 

Similarly with the acid pump, the third ANN controller output consisted of the on-off 

response despite the fact that the pump for the acid was of the variable type. This simplistic 

on-off response was thought to be adequate since the sampling rate of 2 minutes was fast 

enough to deal with the size of the tank and the acid flowrate. Furthermore, the tank was well 

mixed due to the aeration motion. The acid pump would be activated should the pH level rise 

higher than 7.2, in order to deal with the increase of pH due to the NaOH used to neutralise 

the amylase hydrolysed starch.

Results and Discussion of the On-line Control Experiments for the Aerobic Stage

Two runs of Experiment 5.3 were performed as indicated in Section 3.6.5. During the first 

the TOC analyser was faulty (i.e. it did not hold the calibration and the injection arm was 

constantly getting stuck) and therefore ANNBCS (2) performed differently for the two runs.

TOC of the Settling Vessel Effluent and Aerobic Tank SCA
A similar step increase in the starch intake to the one of Experiment 5.2 was performed in 

order to test the ANNBCS (2) response with the TOC analyser being fully operational. The 

increased starch intake was available for 5 hours and was then manually turned off as 

indicated by the arrows in Figure 5.19. Prior to the start of the experiment (i.e. 18 h before)
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some drops of hydrogen peroxide were used to break-up the floes so that there was not to 

much loss of solids (Metcalf and Eddy, Inc., 1991). Just before the start of the experiment the 

sludge MLSS concentration in the tank was quite high (approximately 3.5 g I" 1 ) and as the 

experiment progressed, significant sludge bulking problems were experienced at the top of 

the settler. The TOC analyser worked well throughout this experiment and there was actually 

an increase in organic degradation despite the poor quality of the sludge. This efficiency 

enhancement had repercussions for the ANN control action. The corresponding controller 

output when the TOC value was above 300 ppm was set to 0 V. Due to this treatment 

efficiency improvement the effluent TOC was only above 300 ppm after the additional starch 

pump had been manually switched off. In between the start and the end, the controller did try 

to regulate the additional flow of starch, although its actions were not restrictive enough as 

can be seen in Figure 5.19. Tighter control should have been applied during training of the 

first ANN (e.g. full turn-off of the extra starch pump for TOC measurements higher than 

150 ppm).

As the sludge was very fine it inevitably lead to bulking at the top of the settler where the 

sampling point of the TOC analyser was located meaning that both Filters 2 and 3 were 

significantly blocked at the end of Experiment 5.3. These filters had to be cleaned and hence 

no recovery period was monitored. However, there was very little difference between 

Experiment 5.2, which was uncontrolled (Figure 4.20) and Experiment 5.3, which was 

controlled (Figure 5.19). Figure 5.20 shows a similar effect to that of Experiment 5.2, 

between the SCA and the TOC levels. However, in this case the five SCA results were 

slightly higher than the ones during Experiments 5.1 and 5.2 and this could have been due to 

one or a combination of the sludge condition and the addition of the hydrogen peroxide to 

break-up the floes. The DO levels were also higher in the tank in comparison with 

Experiment 5.2, but this would possibly indicate a lower and not higher biomass catalase 

activity.
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Figure 5.19 - ANN control of the aerobic stage effluent quality (Experiment 5.3)
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Figure 5.20 - Aerobic stage effluent TOC vs. SCA of the aerobic tank (Experiment 5.3)
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Aerobic tank DO and pH

The other parameters that the ANNBCS simultaneously controlled were the DO and the pH 
in the aerobic tank. There was no need for pH control throughout the second run of 
Experiment 5.3, which was safely maintained within the range of 7 to 7.18 and also no effort 
was required to control the level of DO control (Figure 5.21). The DO results were filtered 
using a 4th order Bessel filter so to attenuate the effect of the large bubbles, which impinged 
on the DO probe. However, the demand for oxygen through the experiment varied. The DO 
increased just after the commencement of the increase in starch intake and decreased as soon 
as ANN Controller 1 started to reduce the additional starch pump speed and was maintained 
at a slightly lower level than at the start of this experiment.
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Figure 5.21 - ANN Control of the DO in the aerobic tank (Experiment 5.3)

5.3.3. Conclusions from the On-line Implementation of the ANNBCSs

The ANNBCSs (1 and 2) used here were successful as they suggested the appropriate 
remedial actions and responded accordingly to the training examples. The on-line control 
examples highlighted the need for complementary parameters with which to establish a
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control action since most of the on-line analysers used in WWTPs are still quite unreliable. 

The provision of additional information to the ANNBCS would definitely increase the 

tolerance to any loss of information.

Sensors for TOC and colour have to measure both the influent and effluent of the UASB 

reactor and aerobic stage. The information provided about the influent and effluent in terms 

of organic and colour loads would be used by the ANNBCS in order to balance remedial 

actions, as for example: diversion/dilution, addition of nutrients, GAC or powered activated 

carbon (PAC) addition to the UASB reactor, addition of carbon source, variation of the RAS, 

re-treatment of the effluent. The influent characteristics have to be known so as to decide on 

the remedial actions before it flows to the system and also during the treatment process. It is 

very important to know the characteristics of the WW before it is allowed inside the system. 

This is because any system has a maximum treatment capacity no matter how many 

enhancing substances or actions are used. At the same time other remedial actions could be 

put in place to cope to the adverse WW characteristics. The additional sensing requirements 

needed to ensure robust monitoring and control are significant additional costs and perhaps 

only more stringent legislation will force the increased use of instrumentation.

Despite the aerobic biomass condition i.e. sludge bulking, its activity followed the increase 

in organic load to the system.
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6. MODELLING OF THE UASB REACTOR USING ANNs 

AND FURTHER EVALUATION ON THE ANNBCS 

PERFORMANCE IN A COMPUTER SIMULATION

The 'black-box' modelling technique using ANN is adopted here to model the behaviour of 

the UASB reactor via the use of data gathered from the UASB reactor operation during a 

period of 7 months (i.e. Experimental Phase 3 except Experiments 3.5, 3.6, 3.8 and 3.9). The 

Neural Network Based Identification Toolbox developed by N0rgaard (1995) has been 

extensively used in this Chapter for the system identification task. Also an ANNBCS was 

constructed using the same hybrid structure as in Chapter 5 (i.e. LVQ + BPs) using the 

Neural Network Toolbox by Demuth and Beale (1994). The two toolboxes were both for use 

with MATLAB®. The 'black-box' models were subsequently evaluated with unseen data and 

their prediction accuracy verified before being used to further evaluate the ANNBCS within 

a computer simulation environment. The ANNBCS was re-trained with 3 inputs (TOD, 

average OD and COz) and 2 outputs (adjustment in starch and dye loads).

6.1. The Purpose of the Chapter

This Chapter serves to demonstrate the feasibility of using the ANNBCS developed in this 

work to optimise the treatment achieved by the UASB reactor in relation to organic and 

colour loads. One on-line control experiment was successfully carried out on the UASB 

reactor to evaluate the ANNBCS performance in coping with a sudden step load in the STE 

dye concentration (Chapter 5). Unfortunately no further on-line control experiments could be 

carried out, as the health of the UASB reactor deteriorated after Experimental Phase 3. 

Therefore the concentration of the starch and dye had to be decreased to lower values than 

the ones adopted during Phase 3. Several attempts to increase the loading rate of the UASB 

reactor to previous levels were performed but with little success. During these starch
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increases the VFAs in the reactor built up and the pH decreased quite quickly which 

indicated reactor instability (Chapter 4). Also the bed of granules rose to the top of the 

reactor and at this point it was decided that the reactor was no longer usable for starch step 
loads.

As a large number of experiments were undertaken where the starch and dye concentrations 

were changed in a step manner with the response of the UASB reactor being measured by 

instruments such as the TOD analyser, UV/Visible Spectrophotometer and a CO2 analyser, 

neural models of the anaerobic process could be developed. This would enable further 

evaluation tests to be carried out on the ANNBCS in simulation. Although comprehensive 

on-line control experiments were not possible, the advantage of the simulation work on the 

ANNBCS using models was that it would be possible to better investigate the controller's 

performance.

It has been widely claimed that ANNs are able to model non-linear and time varying 

processes (Narendra and Parthasarathy, 1990; Chen and Billings, 1991). The following 

sections are dedicated to investigating the performance of the ANNBCS in a computer 

simulation environment during the following three different operating conditions:

• Low dye and starch concentrations;

• High dye and low starch concentrations;

• High dye and starch concentrations.

6.2. Background to the ANN Based System Identification

Identification is about finding a model that best regenerates the original output signals when 

subjected to the same input signals based on previous observation (e.g. Ljung, 1987). It is a 

tool, which could be utilised to 'model' a process without having to take into account the 

many complex physical laws that govern the system. Identification using ANNs in many 

ways is similar to the parametric identification approach, as multi-layered ANNs are versatile 

non-linear maps (Chen and Billings, 1991). These identification networks are techniques to 

estimate the parameters in a given model structure, which basically entails a numerical 

search for suitable values of the associated parameters of the model in order to deliver
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satisfactory results (Ljung, 1995). In the case of system identification using FFNs, the 

number of neurones in the hidden layer(s) will have to be pre-allocated depending on the 

complexity of the input-output relationship, and this is generally determined through trial and 

error. The task of system identification using ANNs essentially involves finding a suitable 

model structure and subsequently finding good numerical values for its parameters (weights 

and biases of the network). The theoretical basis of non-linear modelling by using ANNs has 

been well established in the last decade by authors such as Hornik et al. (1989). They have 

shown that a 2-layer FFN hosting sufficient numbers of neurones (of continuous, bounded 

and non-constant activation function) in the hidden layer can approximate any continuous 

function.

The work involved in identifying the dynamics of a process can be summarised into four 

sequential basic steps:

Step 1: gathering experimental data;

Step 2: selecting a model structure;

Step 3: estimating the model (i.e. find suitable model parameters); and

Step 4: validating the identified model with new data sets.

Step 1 — One vital requirement in such technique is that the training data should cover the 

entire operating region of interest and is gathered with the correct choice of sampling 

frequency (Ljung, 1995; N0rgaard, 1995). All the dynamic modes of response should be 

reflected in the gathered data collected, which will be used to teach the 'black-box' ANN 

model. Additionally, this information must come from a continuous stream of data gathered 

from the same experiment in order to avoid any discontinuities or irregularities in defining 

the dynamics of the process.

Step 2 - In this work an ANN of the MLP architecture was adopted as the framework of the 

model structure. In addition to the adopted model structure, the tasks also involved choosing 

an appropriate set of regressor vectors (N0rgaard, 1995) (since the process to be identified 

was non-linear in nature). The ARX regressor structure was chosen based on its popularity in 

linear system identification and hence was extrapolated to include the ANN models. More 

sophisticated regressor structures could well reduce the error during training but the added 

complexity of the model was not justified by the possible improvement in forecasting
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(Premier et al., 1997). The regressor structure ARX uses previous inputs and outputs in order 

to deliver an output prediction at one or more sample periods in the future (Ljung, 1995; 

Premier et al., 1997). The function nnarx in the Neural Network System Identification 

Toolbox, allows the user to utilise such a regressor structure in the context of ANN 

modelling, and therefore the models were denoted as NNARX models. The associated 

regressor vector and the predictor terms are defined as:

<P(t) = [y(l -1 )---y(t - na). u(t - n k )...u(t - n b - n k +1 j]1 and g((p(t),6), consequently.

Where:

cp(t) is a vector containing the regressors;

9 is a vector containing the weights and biases of the network;

g is the function realised by the ANN model through learning;

na and nt denote the number of past outputs and inputs required, respectively;

nk denotes the delay of the system, expressed as the number of sampling periods.

There are other advantages according to N0rgaard (1995) in using the nnarx function. His 

work stated that it has a static predictor (feed-forward with no feedbacks), which is more 

stable in its prediction than other model types, which are recurrent (i.e. the future network 

inputs depend on past network outputs) and further suggested its use as a general rule of 

thumb, hi addition, the presence of noisy signals can be considered to be insignificant as the 

raw signals can be filtered prior to its use by the models, which further justifies the use of the 

nnarx function (N0rgaard, 1995).

Step 3 - When developing NNARX models there are difficulties that can be encountered. 

The tasks of choosing the appropriate order of the model (i.e. number of past inputs and 

outputs that the model has to take into consideration) and also the output delay (i.e. time 

taken for the output of the system to start changing) are relatively laborious for non-linear 

processes. In addition, other parameters such as the number of neurones in the hidden layer 

and the desired error goal will have to be determined empirically. However, in the absence of 

more precise knowledge, some intuitive physical insight will to some extent enable the 

designer to suggest the orders and delays of the system (N0rgaard, 1995; Ljung, 1995).
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Step 4 - Once the 'black-box' model has been constructed with the desired error goal during 

training, the final stage is to validate it. This involves passing unseen data to the model and 

then comparing the actual responses to the model predictions. The average sum squared error 

(ASSE) between the actual response and the model prediction was used by Chong (1999) 

and Chong et al. (2001) to evaluate the model's predictions and is defined below:

ZN fY _ . 2 Where: Y( is the actual plant response; y f is the model 
V i j \ /

ASSE = — —————— prediction and N is the number of samples within the data set.

The comparison of the ASSE for the testing and validation exercise is vital, as it provides an 

indication of the model's ability to generalise. In linear system identification, the auto­ 

correlation function of the residuals and cross correlation function between the input signals 

and residuals are employed to quantify the model's performance. In the case of non-linear 

models, the main approach is by a visual comparison of the predictions of the derived model 

with the plant response of the validation data sets. Therefore, the choice of the test data must 

be carried out carefully in order to fully investigate the predictive ability of the model.

Should the predictions prove to be unsatisfactory, then the designer would have to refer back 

to the two previous steps in the identification procedures (i.e. steps 1 and 2). Very often this 

will involve a single or combined action such as: choosing a different regressor structure; 

altering the delays, number of past inputs and outputs; or adopting a different network 

architecture, for instance the number of neurones in the hidden layer. Unfortunately, this is 

an empirical exercise that has to be carried out until satisfactory results are obtained. If the 

predictions still proved to be unsatisfactory, additional feature(s) could be added as inputs to 

the model in order to improve the ANN learning of the functional relationship (Premier et 

al, 1999). Again, the inclusion of additional feature(s) hinges solely on the degree of 

influence that these parameters have on the process being modelled and again is primarily 

based on the experience of the expert operator(s).
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6.3. Feed-Forward MLP Neural Network - Architecture of the 

NNARX Models

Numerous ANN applications in system identification and data classification involve the so- 

called FF MLP ANNs (Chong, 1999; Narendra and Parthasarathy, 1990). These are, at 

present, the most common type of ANN in use and have been utilised in numerous practical 

applications (Demuth and Beale, 1994). The widespread use of such a network is due to its 

ability to model complex functional relationships between the given input and output data 

sets by learning from examples.

In these types of networks, the signals only flow in one direction, from the input to the output 

(final) layer. There are no feedback connections between the individual layers and no 

association between the neurones (simple processing elements) in each layer and therefore 

the MLP network is only capable of statically mapping the input vectors to their 

corresponding targets. However, they are still widely used in dynamic system identification 

by feeding the past input and output values of the system to be modelled as inputs to the 

network. This can be achieved by employing the tap-delay-line technique and using the next 

time step output of the system as the target output (Narendra and Parthasarathy, 1990), hence 

converting temporal modelling problem into a spatial modelling problem.

A 'black-box' model approach is beneficial in situations where the relationships between the 

input and output data carry heavier emphasis than an in-depth understanding of the process 

under study (Ljung, 1987; Premier et al., 1999). The obstacles in formulating mathematical 

models based on the underlying dynamics of biological treatment processes are well known, 

and much literature has been reported with respect to this issue (Section 2.9). Figure 6.1 

depicts the architecture of the MLP network employed for the modelling work.
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Figure 6. 1 -The FF MLP network architecture for the NNARX model structure

From Figure 6. 1 the following can be established:

y(u,w,b,W,B) = F =F +B

Where:

n is the number of features in the input vector;

y(u, w,b, W,B) is the model prediction, as a function of the network inputs, weights and

biases;

F' is the linear activation function of the output layer;

Wj are the weights of the connections between the hidden and the output layer;

B is the bias of the output layer;

f is the activation function of the hidden layer (hyperbolic tangent);

w j; are the weights through which u, is connected to the hidden neurone j and bj is the bias

of the hidden layer;

m represents the number of hidden neurones;

Uj represents the feature input vector of length n, presented as the input to the FFN.
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The structure of the fully connected network consisted of a hidden layer with m neurones of 

hyperbolic tangent transfer function and a linear output layer with a single linear neurone, as 

depicted in Figure 6.1. The type of model considered in this work consisted of a MISO. A 

Gauss-Newton based Levenberg-Marquardt method was employed to minimise the mean 

square error criterion, due to its fast convergence property. The method adopted by N0rgaard 

in his function marq can be found in Fletcher (1987).

6.4. Development and Training of the UASB Reactor Models

Three models of the UASB reactor were constructed namely on the effluent TOD, average 

OD and also the biogas CO2 with starch and dye loading as the inputs to these models. The 

three network architectures were based on the NNARX structure built using the N0rgaard 

(1995) ANN system identification toolbox, and they were of the MISO type. These models 

were developed, trained and tested using MATLAB®. The program written in MATLAB® to 

train the TOD NNARX model is shown in Section B.4 - Appendix B.

6.4.1. Data Selected for the NNARX Models Training

The data used to train the NNARX models was gathered from Experiments 3.1, 3.2, 3.3, and 

3.4 over a period of 25 days of continuous operation (Section 3.6.3). These experiments were 

geared towards the generation of information regarding the behaviour of the UASB reactor 

when subjected to various starch and dye loading conditions. Continuous on-line monitoring 

of CO2 was achieved from the experimental runs, apart from short periods, which were 

neglected (Chapter 3). However, no on-line measurements of TOD and average OD were 

available at all times due to sensor failure or loss of calibration, therefore a comparison with 

off-line measurements was carried-out. In the case of TOD, a comparison with off-line 

measurements of COD revealed a ratio of 1.4 during the 4 experiments and was subsequently 

used for conversion (sd = 0.23, n = 25). The average OD (which was available on-line) 

exhibited an identical trend to the true colour measurements (performed off-line). Although 

0.83 absorbance units were taken from the average OD to be referred as true colour 

measurements expressed in TCU as the filter mesh was the 185 urn. In the following Figures,
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the average OD is abbreviated as OD. These experiments were felt to give a large enough 

spread of operating conditions to be used in the development of the models.

Chapter 4 described that for an increase in starch load there was no decrease in BA and pH 

values within the UASB reactor. Actually, the opposite happened due to the starch being 

hydrolysed with NaOH, which made those parameters rise within the reactor. This situation 

may not happen in real life as the starch may be hydrolysed with another chemical or 

substance such as amylase and therefore to model these relationships at this point would not 

be of any benefit. Therefore, it was decided to model the TOD, average OD and CO2 .

From the continuously gathered data, the sampling rate was decreased to 1 hour from an 

initial value of 2 minutes. The reason was to reduce the size of the training data and also to 

enable one-step ahead predictions further in the future (of 1 hour instead of 2 minutes). A 1 h 

sampling rate was found to be suitable and that at least two past samples were required by 

the regressor structure (as inputs to the models) to deliver its one-step ahead prediction. 

Premier et al. (1999) used a similar approach when modelling a fluidised bed anaerobic 

digester in which a 30 minutes sampling rate was adopted. The three response curves (TOD, 

average OD and CO2) were passed through a 4th order Bessel low-pass filter, which was 

empirically found to provide suitable high frequency noise attenuation (National Instruments, 

1998). Figures 6.2 and 6.3 show the responses of the reactor effluent TOD, average OD and 

the reactor biogas CO2 (%) for the different loading concentrations of starch and dye (600 

data points). The upper and lower limits of the input and output data set used to train the 

three MISO models are presented in Table 6.1. This range of limits adopted during training 

was the working boundary when validating the performance of the models.

Table 6.1 - Upper and lower limits of the training data

Parameters
Starch (g I" 1 )
Dye (g I' 1 )
UASB reactor effluent TOD (mg I' 1 )
UASB reactor effluent average OD
UASB reactor biogas % CO2

Maximum
3.8

0.75
2352
3.11
32.3

Minimum
1.9

0.15
979
0.33
24.9
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6.4.2. NNARX Models' Structure and Training

An insight into the process to be modelled can prove to be extremely useful in selecting the 

appropriate parameters such as the delays and orders of the parameters when forming the 

regressor vector to be fed as inputs to the neural model. The NNARX models were, as 

previously noted, of the MISO type. Hence, each model represented one output parameter of 

the reactor. The delay time was observed (Figures 6.2 and 6.3) to be of one sampling period 

(1 h) for CO2 , (4 h) for the effluent TOD and average OD (Sections 4.2.1, 4.2.2 and 4.2.5). 

The response of the three output parameters was found heuristically to be two (i.e. order of 

the output) (Premier et al. 1999). Before training, both inputs and targets (600 data points) 

were normalised to a mean of 0 and variance of 1 in order to improve the network training 

and also to reduce training time using the function dscale (N0rgaard, 1995). The following 

parameters were carefully selected prior to training: the number of inputs (i.e. starch and 

dye), neurones in the hidden layer and the error goal (i.e. a measure of the desired predictive 

accuracy from the model).

The input parameters of the three NNARX models were the starch and dye concentration in 

the STE (600 data sets). Each model had only one output (i.e. TOD, average OD or COi) and 

the structure is as depicted in Figure 6.4. The type of MLP network structure adopted for the 

identification tasks here was confined to one hidden layer of hyperbolic tangent activation 

function (tank) neurones and a single neurone in the output layer with a linear activation 

function (Nergaard, 1995). The following settings were used: na was 2 (order or number of 

past outputs), nb was [2 2] (past inputs of both starch and dye) for the 3 models whilst the nk 

(delay) was [4 4] for the TOD and average OD models and [1 1 ] for the CO2 model. These 

parameters were set based on past working experience and also through trial and error. The 

same empirical derivation procedure was used to decide on the number of hidden neurones 

and the normalised sum squared error (NSSE) goal. Increasing the order could result in lower 

error goal during training, but to a large extent cause over-fitting of the data (Premier et al., 

1999). It is worth stating that the function lipschit in the Neural Network Based System 

Identification Toolbox can be used to calculate the order (lag space) for SISO models. 

However, N0rgaard (1995) emphasised that insight into the process being modelled is still 

the best means of synthesising a good model.
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It was found that 10 neurones in the hidden layer were sufficient to represent the 

characteristic of the three models. As defined in the function nnarx by N0rgaard (1995), a 

NSSE goal of 0.0003 was set although a lower error was found for the average OD 

prediction model only after a few training iterations as depicted in Figures 6.5 to 6.7 (where 

S - starch and D - dye concentrations). Although, the predefined error goal was probably not 

the global minimum it was found to be sufficiently low to provide good results, and was used 

for all the three models. A maximum of 7 iterations were needed for the CO2 model to 

achieve the specified NSSE while the other models required a smaller number of iterations. 

This demonstrates the rapid convergence property of the training algorithm adopted by 

N0rgaard in his function marq based on the Leverberg-Marquardt optimisation technique to 

reach the predefined NSSE goal.

Hidden Layer Hidden Layer

Output Layer

TOD (t)

OD(t-l)

OD (t-2) O
Output Layer

OD(t)

TOD Model Average OD Model

Hidden Layer

Output Layer

CO; (t)

CO-, Model

Figure 6.4 - Structure of the NNARX models for TOD, average OD and CO2
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Figure 6.6 - Training error vs. number of iteration for the average OD model
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Figure 6.7 - Training error vs. number of iterations for the CO2 model

The objective of this work was to use the three models to represent the physical UASB 

reactor, in order to test the proposed ANNBCS. As they were going to be employed in a 

computer simulation with an unlimited predictive horizon i.e. pure simulation, there was a 

need for their optimised performance. N0rgaard (1995) proposed a solution to reduce the 

dimensionality of the NNARX models by employing the so-called Optimal Brain Surgeon 

algorithm to 'prune' the network (nnprune) in order to optimise its performance. This 

involved re-training the networks for a number of iterations (in this case 50) in order to 

optimise the performance of the three models with respect to the training data sets after some 

weights of the network were removed (i.e. 5 %). This algorithm ran until a global minima 

was reached and the network weights that delivered the best performance were adopted 

(N0rgaard, 1995). The length of time taken to prune was 5 h for the TOD and average OD 

models and almost 6 h for the CO2 model with a P120MHz PC with 48 MB of memory. The 

program written in MATLAB® to prune the NNARX models is shown in Section B.5 - 

Appendix B.

The testing and validation of the pruned models' one step ahead predictions will be shown in 

the next two sections (6.5 and 6.6) whilst the testing and validation for pure simulation 

predictions will be shown in Sections 6.7 and 6.8.
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6.5. One Step Ahead Prediction Testing of the UASB Reactor NNARX 

Models

Figures 6.8 and 6.9 show the comparison between the models' one-step ahead predictions 

with the targets for TOD, average OD and CC>2 production, respectively. As one would 

expect they are in good agreement, since a good-fit model has been derived in response to 

the performance of an objective function through the learning process from the example data 

set. The ASSE found during the testing of the 3 models were as follows: 84 for the TOD, 

3.63 x 10"5 for the average OD and 0.2 for the CO2 . These ASSE(s) will be the indices by 

which to compare the one-step ahead validation results.

Figure 6.8 shows that the predictions for the TOD and average OD models were extremely 

good as the two lines (targets and predictions) actually overlapped. The target and prediction 

lines for the CO2 model did not overlap although they were very close as shown in Figure 

6.9.
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Figure 6.8 - Testing of the TOD and average OD models using one-step ahead predictions
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Figure 6.9 - Testing of the biogas CO2 model using one step ahead predictions

6.6. One Step Ahead Prediction Validation of the UASB Reactor 

NNARX Models

The data used to validate the models was gathered from Experiment 3.7. This information 

was not presented to the models during training and was gathered over a period of 9 days of 

continuous operation with the same sampling rate (1 h). This data set (217 vectors) was 

collected from the UASB reactor operation 23 days after the training data sets from which 

the feed to UASB reactor was stopped and the reactor was just heated. This time period 

represents a significant temporal separation between the examples and the unseen data and 

would impose a stiffer test on the performance of the models. It is important to bear in mind 

that the model can only be tested using similar inputs (i.e. the inputs are starch and dye only 

no other input as for example an inhibiting factor can be considered). The upper and lower 

limits of the validation data set are presented in Table 6.2 and validation data sets were 

filtered using the same 4th order Bessel low-pass filter as before, prior to the one step ahead 

validation. The validation data sets are presented in Figures 6.10 and 6.11, for TOD, average 

OD and CO2 .
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Table 6.2 - Upper and lower limits for the validation data set

Parameters
Starch (g I' 1 )
Dye (g r 1 )
UASB reactor effluent TOD (mg r 1 )
UASB reactor effluent average OD
UASB reactor biogas % CO2

Maximum
2.9

0.45
1859
1.16

29.83

Minimum
1.9

0.15
895
0.44
23.8

When comparing the ASSE of the prediction and validation exercise for each model, the 

expected results were achieved. An ASSE of 8 times greater (i.e. ASSE - 686) was achieved 

when validating the TOD model, for the average OD and CO2 models higher ASSEs were 

also achieved as 28 (i.e. ASSE = 0.001) and 1.1 (i.e. ASSE = 0.22) times, respectively. These 

show clearly that the validation results were very good when comparing them with the 

targets. However, the best way of assessing the model predictions is by looking at the 

predicting plots and analysing whether they are a good representation of the physical UASB 

reactor.
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Figure 6.10 - Validation data set - responses of TOD and average OD resulting from step

changes in colour and organic strength
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At this point the designer can take a closer look at the delays and orders of the input 
parameters and intuitively fine tune these parameters and re-train the networks to investigate 
for possible improvements. But visual investigation of Figures 6.12 and 6.13 clearly 
demonstrates that the models are able to represent the dynamics during process operating 
conditions. It can therefore be concluded that the delays and orders of the inputs and output 
have been adequately chosen and an appropriate network architecture has been adopted as 
the structure for the non-linear NNARX model. The results suggested that 'black-box' 
modelling technique using the NNARX regressor structure was successful in modelling the 
non-linear and time variant behaviour of the UASB reactor, and is reflected in the 
satisfactory one step ahead (1 h) predictions. Sections 6.7 and 6.8 present the testing and 
validation of the models' predictions for pure simulation, respectively, and discuss the 

results.
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Figure 6.13 - Actual response vs. one-step ahead validation for the UASB reactor biogas CO2
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6.7. Testing of the NNARX Models Using Pure Simulation

In Sections 6.5 and 6.6, the performance of the three NNARX models to deliver one-step 

ahead predictions was tested with the training data, already seen by the networks and then 

validated with unseen data. It is important to emphasise that the one-step ahead predictions 

represent a future prediction, 1 hour in this case (i.e. sampling rate). It is very common to 

obtain good one step ahead predicting results with NNARX models (Premier et al, 1999; 

Chong, 1999; Chong et al., 2001). As for such prediction there are no accumulation of errors, 

meaning that for a second prediction the network takes the target values and not the previous 

model predictions.

A real test to the models was performed when the models' inputs would be its previous 

predictions until the end of the prediction process i.e. the actual targets were never shown to 

the models during the prediction. For these cases an increase of the ASSE would be 

expected, as would be an accumulation of the errors. This section deals with this pure 

simulation technique or futuristic prediction where the prediction is performed with the 

training data. Figures 6.14 and 6.15 show both the actual UASB reactor responses to data 

already seen by the models for pure simulation predictions.
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Figure 6.14 - Testing of the TOD and average OD models using pure simulation
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As can be seen in Figure 6.14 the predictions for the first 24 sampling periods rapidly 

converged with the actual values, as the regression matrix had to be constructed first. From 
this point onwards the pure simulation predictions appeared to follow the trends very well. 

Similarly to the one step ahead predictions, the ASSEs were calculated here not accounting 
for the first 24 samples. As expected they have increased compared to those obtained in 

Section 6.6. They were as follows: 2253 for the TOD model, 0.011 for the average OD 
model and 0.42 for the biogas CCh model. These ASSEs will be used for comparison with 

the pure simulation predictions with validation data in the next section. This ASSE of 2253 

actually means that an average error of ± 48 mg I" 1 of TOD could be found when comparing 

the predictions with the actual targets. An average prediction error of 2-5 % defined a very 
good pure simulation prediction potential for the TOD model, as it is known that 5 % 
monitoring precision range is very common in organic strength monitors. For the average 
OD and CO2 models the following average percentage error were found 3.8-15 % and 1.8 - 
2.4 %, respectively. The model of average OD presented the least pure simulation prediction 

capacity for the testing data.
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Figure 6.15 - Testing of the CO2 model using pure simulation
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6.8. Validation of the NNARX Models Using Pure Simulation

This section tests the full capability of the models when analysing its futuristic prediction 
with data unseen during training. It can be observed in Figures 6.16 and 6.17 that the 
predictions broadly follow the actual UASB reactor behaviour for TOD and average OD 
parameters, however the COa model seemed to have some difficulties.

As undertaken previously in Sections 6.5 and 6.6, the pure simulation validation results were 
compared to the pure simulation testing results using the ASSE. These were 10696, 0.013 
and 3.03 for the TOD, average OD and CO2 models, respectively. In terms of % average 
prediction error for the TOD model was 6 - 10 % for the average OD model was 10-22 % 
and 6 - 7 % for the CO2 model. As for testing, this validation exercise revealed that the least 

accurate model was the average OD model with up to 22 % average prediction error.
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Figure 6.16 - Validation of the TOD and average OD models using pure simulation
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Figure 6.17 - Validation of the biogas CO2 model using pure simulation

Considering the results, it was thought possible to use these models as a representation of the 

physical reactor in order to test the ANNBCS. However, Figure 6.17 shows that the COa 

model predictions did not follow the trend for medium starch and medium dye (i.e. the 

considered good operating conditions), and in consequence the ANNBCS actions could 

fluctuate according to CC»2 model predictions.

6.9. Development and Training of the ANNBCS

The ANNBCS is based on a hybrid ANN structure (Chapter 5 - Control Scheme 4 (i.e. LVQ 

+ BPs)), which was re-trained to be able to map the models' outputs to an adjustment factor 

of the starch and dye loading. In reality the textile industrial WW contains both starch and 

dye that cannot be separated although, an addition of a carbon source would compensate for 

any low organic textile effluent in the case where only dye concentration would have to be 

reduced. The program written in MATLAB®to train the ANNBCS is shown in Section B.6 - 

Appendix B.
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6.9.1. Data Selection

ANNs such as LVQ and BP networks have no inherent temporal characteristics (i.e. they 

work as static maps) and therefore the way the training data is presented does not have to be 

sequential and continuous. This way the data gathered from Experiment 3.7 was included in 

the training data set since they represent the good operating conditions worthy of being 

taught to the ANNBCS to improve its control actions. In order to maintain the training data 

sets to a reasonable amount, data from Experiment 3.3 (i.e. high starch and low dye) was not 

included in the training set. Figures 6.18 and 6.19 show the training data for the LVQ 

network and the corresponding four BP networks. All the unshaded parts in Figures 6.18 and 

6.19 included the training data for Class 1. These Figures show how the data was sub­ 

divided for training of the LVQ network (with 4 classes) and the four BP networks, hi this 

case, the classification network was used to sub-divide the data into smaller and similar data 

sets to improve the predictions of the BP networks and not for recognition of sensor failure 

as in Chapter 5. Testing of the ANNBCS for sensor failure conditions was not performed 

during this computer simulation as it was already tested on-line in Chapter 5 and it would be 

difficult to incorporate these failure conditions in the NNARX models as they have inherent 

temporal characteristics.

The ANNBCS outputs (i.e. adjustment factors for the starch and dye concentrations) were 

defined in order to maintain acceptable UASB reactor effluent quality and to maintain its 

health. This definition of constraints was based on previously gathered knowledge and by 

bearing in mind the following optimum conditions TOD ~ 1850 mg I" 1 , average OD ~ 

1.10 mg I" 1 , and biogas CO2 ~ 28.5 %. These being the average behaviour of the reactor for 

medium starch and medium dye loading conditions. During these operating conditions the 

UASB reactor was stable and degrading organic matter and dye to a good extent. At the same 

time biomass in the aerobic stage could be maintained so that the degradation of the dye 

breakdown products should take place. The output data for training of the ANNBCS was 

defined by the expert user as in Table 6.3.
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Table 6.3 - Operating conditions and respective ANNBCS (LVQ + BPs) actions

Operating conditions

Low starch and low dye (Exp. 3.1)

Medium starch and medium dye 
(good operation) (Exp. 3.7)

Low starch and high dye (Exp. 3.2)
High starch and high dye (Exp. 3.4)

LVQ network Class and 
respective BP network

1

2

3
4

ANNBCS actions

Increase in both starch and dye 
loads

Maintain both starch and dye 
loads

Addition of starch
Reduction of both starch and 

dye loads

6.9.2. Structure and Training of the ANNBCS

The structure and training of the 5 ANN components of the ANNBCS are presented in Table 

6.4. The LVQ network was trained to classify four classes of data as already mentioned. Each 

class had three subclasses (i.e. 12 competitive neurones) for better data distribution and it 

was trained for a maximum of 5000 epochs. The BP networks (1 to 4) were of a 3-layer 

structure with neurones of logarithmic sigmoidal transfer function in the three layers and 

trained using two different learning functions: trainlm (for BP1) and trainbpx (for the other 

BP networks), trainlm is a much faster function with momentum but required a lot of 

computer memory. The BP1 network achieved an error goal of 2 x 10"5 in only 7 iterations 

while BP2, BPS and BP4 achieved an error goal of 0.04 with 2906, 9092, and 2704 

iterations, respectively. The ANNBCS was trained to recognise the minimum and maximum 

of starch and dye concentration multiplication factors as follows (% adjustment is also given 

for better understanding):

• (-20 %) 0.8 < starch concentration adjustment factor < 1.5 (50 %);

• (-45 %) 0.55 < dye concentration adjustment factor < 3 (200 %);

It can be seen that dye concentration adjustments were more significant than the starch 

concentration adjustment in order to maintain the UASB reactor optimum operating 

conditions. The combination of the optimum values of TOD = 1850 mg I" 1 , average OD - 

1.10 mg I" 1 , and biogas CO2 = 28.5 % corresponded to the adjustment factor of 1 for both 

starch and dye loads i.e. maintaining the previous loads.
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Table 6.4 - Structure and training parameters of the ANNBCS

ANN

LVQ

BP1

BP2
BP3
BP4

Data 
sets
618

278

102
122
116

Network inputs 
(MISO model outputs)
3 (TOD, average OD, CO 2 )

as above

as above
as above
as above

Hidden 
neurones

N/A

30

20
20
20

Network outputs

[0001] Class 1; [0 0 1 1] Class 2; 
[0 1 1 I] Class 3; [1 1 1 11 Class 4

2 adjustment factors to be multiplied 
by the previous starch and dye cone.

As above
As above
As above

6.10. Further Evaluation on the ANNBCS Performance in a Computer 
Simulation

The computer simulation was performed in MATLAB® programming environment, with the 
help of two ANN tools the ANN toolbox (Demuth and Beale, 1994), and the ANN system 
identification toolbox (N0rgaard, 1995). The first toolbox for the development and training 
of the ANNBCS and the second toolbox for the development and training of the NNARX 

models.

6.10.1. Concept and Architecture of the Computer Simulation

The general schematic of the organisation of the simulation program is depicted in Figure
6.20 and the utilised computer program can be found in Section B.7 - Appendix B. Figure
6.21 details the inputs and outputs of the three models. The basic idea behind the computer 
simulation was to utilise the predictions of the models by the ANNBCS. Should the 
treatment process be sub-optimal, the ANNBCS would suggest changes in the input 
parameters such as a certain percentage of adjustment in the starch and/or dye concentration 
being fed to the reactor. For example, if the biogas CO2 and the reactor effluent TOD 
suggested that there was an organic overload then the ANNBCS would suggest a decrement 

in the starch load and so on as detailed in Table 6.3.

Part of the major work involved was to create the new 'regression matrix' (N0rgaard, 1995) 
by taking into account the new inputs as adjusted by the ANNBCS, and output (i.e.
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predictions of the ANN models) matrices. This involved constructing the necessary 

regression vector at previous time steps (depending on the delays and orders of the inputs 

and output parameters) to deliver a prediction of the three parameters namely TOD, average 

OD and COa at one-step ahead. For the computer simulation, appropriate initial conditions of 

TOD, average OD and CO2 were provided in order to obtain a better representation of the 

actual process during the first few control iterations. The setting of the correct initial 

conditions was of paramount importance in the correct functioning of the ANNBCS.
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Figure 6.20 - Computer simulation architecture

An important factor that one must take into account is the aspect of disturbances to the 

system. As with computer simulation involving ANNs one would hope that the training data 

set would have incorporated if not all, some of the disturbances that are most likely to be 

encountered in the day-to-day operation of the reactor (e.g. biomass loss or growth). 

Therefore, the NNARX models would respond accordingly should these conditions be 

encountered again as there are no means of quantifying the relationship between for example 

the changes in the monitoring parameters with the bacterial population change even when 

starch and dye are constant over an extended period of time. Obviously, it would be more 

interesting and realistic to test the ANNBCS on the physical UASB reactor as it could after a 

period of time have improved or decreased in its treatment efficiency. Therefore, the starch 

and dye concentration predicted by the ANNBCS would vary more in order to maintain 

optimal values of TOD, average OD and biogas CO2 . The effect of integrating the CO2
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model within the computer simulation to further test the ANNBCS performance was 
analysed. The relatively faster CO2 response to changes in the starch load, as it is a gas phase 
monitoring parameter compared for example with the TOD as a liquid phase monitoring 
parameter, became very valuable in terms of a control action.

ANNBCS Starch 
Prediction

Starch

Dye

ANNBCS Dye 
Prediction

,T

on(t-i)
OD (1-2)
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TOD (t)

OD(t)

C02 (t)

Figure 6.21 - Inputs and outputs from the three NNARX models within the computer

simulation

6.10.2. Results and Discussion

This section describes the results obtained by carrying out the computer simulation exercise 
on the NNARX models and ANNBCS. The approach to further evaluate the ANNBCS was 
by carefully selecting examples of non-optimal operation of the reactor over a period of time 
(in the order of a few days) and feeding such information to the computer simulation with a
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view of comparing the ANNBCS effort with the reactor response. These examples are shown 

in Figures 6.22 to 6.30. Results of Test A are presented in the Figures 6.22 to 6.24, for the 

Test B in Figures 6.25 to 6.27 and finally, for the Test C in Figures 6.28 to 6.30. These 

Figures show the ANNBCS response (new starch and dye), being the starch and dye 

concentration, new predictions of the input parameters for the three NNARX models, which 

identified sensorial information, namely new TOD, average OD and CO2- The three tests 

were designed to assess the predictions of the NNARX models in pure simulation and also to 

test the response of the ANNBCS.

Test A - Simulation of the ANNBCS response to low and medium starch and dye loads

The data sets of Test A were used to evaluate the proposed ANNBCS in a computer 

simulation environment, and consisted of information gathered from the UASB reactor when 

successfully treating a higher load intake. As can be seen in Figures 6.22 to 6.24, the step 

load changes were in the order of 50 % in starch and about 200 % in the dye loads. These 

step increases were carried manually in order to study the response of the reactor to such 

loading pattern upon the attainment of favourable conditions. The corresponding output 

parameters increased accordingly to such change with new values of TOD, average OD and 

CO2 reaching a maximum of 1860 mg I" 1 , 1.16 TCU and 29.83 %, respectively.

It can also be seen from these Figures, that the ANNBCS was able to make appropriate 

decisions upon detection of highly favourable conditions. These were detectable from 

modest values of the models' output parameters, which resulted in an increase in the load 

intake of a similar magnitude to those of manual operation. The models within the computer 

simulation were found to be able to 'replicate' the physical reactor in such working 

condition. Such satisfactory responses can be seen firstly in the response profile where the 

'black-box' models were able to reproduce the actual trend to sufficient accuracy. The 'new 

TOD' from the TOD model prediction rose to a maximum of 1800 mg I" 1 as compared to 

1860 mg I" 1 (actual data) following a very similar loading pattern in the starch intake. It is 

important to note that changes in the dye intake will inevitably affect the response of the 

TOD as dye itself contributes towards the organic level. Despite the changing level of dye 

intake after the step increase the average level was 0.38 g I" 1 , as compared to the constant and 

maximum value of 0.45 g I" 1 in the actual data. Following the first step increase in the dye 

intake during a time span of 10 h, the first noticeable change in the average OD model
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prediction was an increase from an average of 0.52 TCU to a maximum of 1.05 TCU. Such 
response was similar to that of the actual process where upon the step increase in the dye 
intake resulted in an increment of 25 % in the average OD level over a very similar time 
period. Hence, one can conclude that the ANNBCS performed well as it maintained the level 
of the average OD to below 1.10 TCU.

It is well known from the literature and from this study that the CO2 level is more responsive 
to changes in the starch than dye intake. Therefore, the CO2 level from its initial value rose 
by an additional 10 %, which was highly comparable to the actual reactor response. It must 
be mentioned here that the pure simulation predictive accuracy of the CO2 model is the least 
satisfactory among the three 'black-box' models as described in Section 6.8. However, 
despite the additional 50 % increase in the starch intake the CO2 fluctuated within a fairly 
tight band of between 25 and 32 %, such behaviour demonstrated by the CO2 model can be 
very well observed in the actual reactor operation. Therefore, it can be concluded that even 
the CO2 response behaved accordingly in the functioning of the ANNBCS (mimicking the 

behaviour of the actual reactor).
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Figure 6.22 - Response of the ANNBCS to sensorial information for Test A - Changes to the

input parameters (starch and dye) vs. TOD
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Test B - Simulation of the ANNBCS response to high dye and low starch loads

Test B was mainly designed to assess the ANNBCS behaviour during high dye and low 

starch loading conditions (Figures 6.25 to 6.27). These operating conditions showed that the 

dye load was in excess and needed to be reduced to maintain a reasonable reactor effluent 

colour. Such an unwanted situation was controlled based on the adjustment of two main 

parameters: the overall dye concentration and also the low starch/dye ratio. It has been 

previously mentioned that the presence of a carbon source (in this case starch) is essential in 

the anaerobic degradation of dye. Its ratio has to be carefully selected for the best possible 

working efficiency.

After 18 control steps (corresponding to 18 h) from the start of the experiment only the dye 

load intake was manually increased by 400 %, the starch load concentration remained the 

same. The corresponding output parameters increased accordingly to such a change with new 

values of TOD, average OD and CO2 reaching about 1950 mg \'\ 3.1 TCU and 26.2 %, 

respectively. In this case the increase in the biogas CO2 was almost negligible. It can also be 

seen from Figures 6.25 to 6.27, that the ANNBCS was also able to detect as previously 

shown in Figures 6.22 to 6.24, the initial favourable conditions and made an increase in 

starch and dye concentrations. A comparison between the manual and controlled operation of 

the reactor revealed that its response i.e. its effluent TOD, average OD and the CO2 is 

favoured also when controlled by the ANNBCS. Those values did not go above 1800 mg I" 1 , 

1.05 TCU, and 31 %, respectively. These maximum values meant that the working condition 

of the UASB reactor was in good health and was within the organic and colour constraint 

limits set during training.
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Figure 6.27 - Response of the ANNBCS to sensorial information for Test B - Changes to the

input parameters (starch and dye) vs. CO2

Test C - Simulation of the ANNBCS response to high dye and starch loads
A final test, Test C serves to confirm the feasibility of the ANNBCS at controlling the starch 
and dye loads when both concentrations were higher than the reactor could cope with. It can 
be seen in Figures 6.28 to 6.30, that the ANNBCS reduced both the starch and dye loads to 
roughly half of the loads used during manual operation. With these suggestions, the TOD 
values were reduced to below 1800 mg I" 1 , the average OD below 1.05 TCU and the CO2 

remained below 31 %. It is important to point out that, the use of CO2 as a monitoring 
parameter in which a control action could be based upon is of extreme importance as it 

responded faster than the other process variables, for example TOD to changes in the input 
parameter (i.e. variation of starch load). This phenomenon is clearly shown in Figures 6.28 
and 6.30. After control step 28 the ANNBCS suggested a reduction in starch load to the 

reactor, from 2.9 g I" 1 to 2.7 g I" 1 . This need for reduction was taken based on the CO2 values, 
which have increased to around 30 %, and not by the TOD values which were still below 
1800 mg T 1 . If the CO2 measurements were not considered, the decrement in the starch load 

would have come only when the values of TOD have risen above the limit. At this time the
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values of CO2 may have risen much higher than what the reactor could cope with, meaning 

that the health of the methanogenic bacteria was then at risk.
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6.11. Conclusions from the UASB Reactor Modelling and Usage of the 
ANNBCS in a Computer Simulation

It must be stressed here that the system identification of such a biological treatment process 

as performed in this work can be seen in many ways as a simplistic approach compared to 

mathematical modelling. This relative simplistic modelling approach lacks model 

transparency, as it does not allow the user to understand the underlying dynamics of the 

process. However, it is able to produce accurate one step ahead (i.e. 1 h in the future) 
predictions for TOD, average OD and CO2 both using the training and validation data sets. 

The pure simulation tests showed that the NNARX models were also able to make futuristic 

predictions for seen data over a typical time period of 25 days. The pure simulation test using 

unseen or validation data were not at all disastrous yielding a reasonable prediction from the 

TOD, average OD and CO2 models, being the average OD model the least accurate. 

However, in terms of fluctuations in the predictions the CO2 model may be more critical 

when used in conjunction with the ANNBCS. To overcome the difficulty of obtaining better 

pure simulation results with the validation data set, a more comprehensive data set could be
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used. Other configurations such as different numbers of hidden neurones, decreasing the 

NSSE, delays, and order of the system might yield some improvements.

Having developed the CO2 model, it was used by the ANNBCS in a computer simulation 

environment. Due to the poor performance of the CO2 model the values of starch and dye 

loads were occasionally sub-optimal (i.e. below 2.9 g I" 1 starch and 0.45 g I" 1 dye) with 

consequent lower values for TOD and average OD.

The ANNBCS has been found to be able to mimic the action of an expert operator by 

increasing or decreasing the starch and dye loads intake upon detection of 

satisfactory/unsatisfactory UASB reactor condition. Such changes in the load were 

performed without jeopardising the integrity of the reactor represented by the models, 

namely it maintained acceptable levels of the process parameters (i.e. TOD < 1800 mg I" 1 ; 

average OD < 1.10 TCU and CO2 < 32 %). In addition, one can also conclude that the 

NNARX models of the reactor behaved very well in a pure simulation environment, although 

its use is strictly confined to a specific reactor operating under these specific conditions.

The ANNBCS actions were very similar throughout the three Tests (A, B and Q. These 

resulted as it was controlling based on the NNARX models' outputs and not the physical 

reactor where unknown disturbances (e.g. biomass growth or loss, inhibitory agent) could 

occur. Disturbances such as an increase in the treatment efficiency due to biomass growth or 

a decrease in case of biomass loss or intrusion of an inhibitory agent could happen in real 

life.

This ANNBCS would only work if the treatment efficiency of the UASB reactor would be 

close to the ones used here so its control actions would fall into the ones used to train it. As 

for any ANNBCS, any big changes to the learned relationships would have to be 

incorporated by re-training. Instead, an on-line trained ANNBCS could also be an alternative. 

A more sophisticated control scheme that takes into account the delays of the system could 

be more advantageous than just a static mapping approach.

There are considerable advantages in using models that can represent the UASB reactor. 

They could be used in a control strategy for example to substitute the small reactors used
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widely to indicate the effects of such a waste in the real and bigger reactor. Simulation could 

be used instead of experimental runs, which can be labour intensive, costly and could risk the 

reactor's health. However, it is important to note that the models must be built based on quite 

a wide range of operating conditions to better represent the physical process. This computer 

simulation could also be utilised to detect what would be the most important parameters to 

be fed into the ANNBCS. For example the same computer simulation could be used to detect 

the effect on the performance of not modelling one of the monitoring parameters and hence 

not using it by the ANNBCS. Extra investigations could also take place to study the use of 

other monitoring parameters within the ANNBCS such as biogas hydrogen, VFAs and so on. 

Other advantages come from the ability of using this computer simulation in order to 

evaluate the effect of possible control/remedial actions more intensely such as addition of 

nutrients or recycling biomass.
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7. CONCLUSIONS AND RECOMMENDATIONS FOR 

FURTHER WORK

The main objective of this project was to develop and test on-line an original ANNBCS to 

improve the performance of an UASB reactor and an aerobic biotreatment stage for 

treatment of a STE. The control scheme needed to output remedial actions for different 

'health' states of the biotreatment processes and quality of their effluents, namely in terms of 

organic and colour concentrations, reducing at the same time the operating costs (e.g. control 

of chemical addition and oxygen input) and be tolerant to sensor loss. Other objectives were 

also inherent to this project, namely the selection of: appropriate ANNs for use in the 

ANNBCS; the most useful on-line monitoring parameters (in terms of usefulness, response 

time, maintenance and reliability) used by the ANNBCS.

It can be concluded from the work presented here that the objectives were achieved. 

ANNBCSs were configured to control simultaneously multiple parameters of the biological 

processes during organic and/or colour step loads and to tolerate sensor loss with some 

success. The ANNBCSs were tested using a range of on-line instruments to measure B A, pH, 

colour, DO, TOD, TOC, temperature, biogas flowrate and H2 and CO2 in the UASB reactor 

gas space. For the UASB reactor a few remedial actions were used by the ANNBCSs, for 

testing them off-line (i.e. adjustment of BA, dye and starch loads, and increase in carbon 

source) and for testing them on-line (i.e. adjustments of BA and dye intakes). For the aerobic 

stage, remedial actions such as adjustments of starch, acid and oxygen intakes to the aerobic 

tank were performed by the ANNBCS.

In addition to the referred achievements other work was also accomplished. Detailed studies 

were performed on applying filtering systems and a biocide for use with the on-line colour 

analyser, which helped improve the accuracy of the readings and also prolonged the 

monitoring time before maintenance was required. Real time hardware and software links
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from the TOC, BA and colour monitors to the main computer were established. Also 

improvements to the intermittent BA monitor working mode were made. Interface of the 

monitoring and control software (LabVIEW™ and MATLAB®) and hardware was 

performed. This thesis also highlighted the improvements that could be gained on the 

controller's performance through the integration of NNARX models into a control scheme.

Specific conclusions from this work can be seen in Chapters 4, 5 and 6. However, a summary 

of the main conclusions is following presented:

• On-line colour measurements must be performed at various wavelengths using a well 

filtered sample with added biocide to counter bacterial fouling.

• The on-line TOD instrument described may not be used with industrial wastes 

containing significant mineral content because of blockages. Another instrument for 

monitoring organic strength both at the influent to the UASB reactor and at the effluent 

are a priority for RTC.

• It is recommended that all the on-line measurements (except for TOD) must be used by 

the ANNBCS for control of the textile WWT.

• The biomass catalase activity monitor may be used in a control scheme for the activated 

sludge process without the need for off-line measurements of MLSS or VSS.

• ANNs such as linear, BP, RBF, Elman, SOM and LVQ networks were tested and 

selected for integration within the ANNBCS, based on the accuracy of the network 

predictions, time required for the necessary training and the size of the training data. 

Results demonstrated that a hybrid structure containing a LVQ network followed by a 

series of BP networks was the most efficient at dealing with different colour, organic 

and BA load conditions whilst being least influenced by sensor failure.

• The two ANNBCSs used for on-line control performed successfully, as they suggested 

appropriate remedial actions and responded accordingly to the training examples.

• Accurate NNARX models of the UASB reactor were built to predict CO2 concentrations 

in the biogas and TOD and average OD of the reactor's effluent, even during pure 

simulation.
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• The ANNBCS tested on the NNARX models using a computer simulation performed 

well. Adjustments of the starch and dye intake loads to the UASB reactor were 

successfully determined by the ANNBCS using the NNARX models' predictions.

Using a similar laboratory scale plant the following recommendations are outlined for further 

work:

• Perform similar experiments as the ones presented here with a more complex STE or 

with a real waste. This effluent would then include for example other dyes mixture and 

surfactants.

• Test toxicity monitors such as a rapid anaerobic toxicity tester - RANTOX (Rozzi et al, 

1995) for the anaerobic stage and Activity and Nitrification Analyser - ANITA (Massone 

and Rozzi, 1997) and RODTOX (Vanrolleghem et al,, 1990) for the aerobic stage and 

possibly incorporate their output within the ANNBCS. Test also the use of a dissolved 

hydrogen monitor (e.g. Cord-Ruwisch et al., 1997), correlate its results with other 

monitored parameters and possibly incorporate it within the ANNBCS.

• Use on-line instruments such as TOC and colour monitors with multi-channel 

capabilities, that is, before the entrance in the UASB reactor, before going to the aerobic 

stage and in the final effluent quality. Duplicate measurements of such parameters as 

pH, DO and temperature so they could be used by the ANNBCS to identify sensor 

failure.

• Integrate the biomass catalase activity instrument within an ANNBCS to control the 

RAS flowrate and possibly the addition of nutrients and other supplements.

• A more sophisticated ANNBCS that takes into account the delays of the system could 

be more advantageous than just a static mapping approach.

• Use a measurement of aromatic amines if possible on-line for determination of process 

performance and integrate it within the ANNBCS.

• Use if possible an on-line monitor for measuring anaerobic biomass activity or for the 

loss rate or at least an off-line technique that could provide some 'early' indication of the 

deterioration of granules for which no remedial actions were successful in tackling the 

event after they started to float (e.g. Dubourguier et al. (1988) used: direct examination 

by light microscopy for observing bacterial conglomerates; staining with toluidine blue
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for identification of active bacteria; X-ray analysis for observation of mineral 

precipitates; transmission electron microscopy to study the ultrastructure of the granules; 

SEM for surface examination and location of each bacterium inside the granule).

• In RTC, incorporate NNARX model(s) of the UASB reactor together with the ANNBCS 

developed. The model(s) would predict for example 3 hours ahead and rapid remedial 

actions could then take place before the reactor's efficiency would have deteoriorated 

drastically.

• A computer simulation such as the one performed here could be used to detect other 

important parameters to be used by the ANNBCS such as the concentration of biogas 

H2 , and of VFAs.

• A similar computer simulation study could be performed for the aerobic stage.

• Other remedial actions to be used by the ANNBCSs for both biotreatment stages could 

be tested. These could be: adjustment of nutrients (different types of nutrient analysers 

have been used for close loop control of activated sludge plants - Lynggaard-Jensen et 

al., 1996) and trace elements flow for both stages, recycle anaerobic biomass to the 

reactor; recycle the effluents from both stages for re-treatment; use GAC (Walker and 

Weatherlay, 1999) or PAC (Lin, 1993) in a separate module, for example after the 

UASB reactor; use of a H2O2 unit after the UASB reactor in case of a colour overload 

(McCurdy et al., 1992); and control the RAS and WAS in the aerobic stage.

It would be also useful to apply a similar control scheme to a real industrial plant using real 

textile effluent after re-training of the networks involved.
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Appendix A - Monitoring and control hardware

J!T

Figure A.I - Interface Box 1

/»
Figure A.2 - Interface Box 2

Figure A.3 - From the left: H2 monitor, CC>2 analyser and respective pumps. Also part of the
scrubber at the bottom

47 KO
In
•-

Out
-•

47 kn

Figure A.4 - Electronic circuit built for Figure A.5 - Electronic circuit built
conversion from current to voltage signal for stability of the CO2 analyser

with 10-fold amplification signal
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Figure A.6 - Interface Box 4 Figure A.7 - D/A Converter 8-Bit Quad

Figure A. 8 - From the left: UV/Visible Spect. dedicated PC, TOC analyser, and intermittent
BA analyser dedicated PC

Figure A.9 - From the left: LFM 300 gas meter, MX8000 and WP4007
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Figure A. 10 - From the left: PC for the TOC analyser (DC 190 Terminal Software), 
Macintosh for the TOC analyser and CB50, central computer

Figure A. 11 - UV/Visible Spect. (top right) and DI + biocide tank under the bench
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Figure A. 12 - Opto Schmitt Trigger Detectors (IS436)
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Figure A. 13 - Temperature sensor 1C LM35 and temperature probe
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Appendix B - Monitoring and control software

B.I - Program written in QuickBasic for instructing the intermittent BA 
monitor and also for data acquisition and output data
,************ QuickBasic program for the Intermittent BA Analyser ********* 
i***************** Textile WWT Project *****************

10 GOSUB start '(main program).
20 GOSUB control 1
30 GOSUB measurement
40 GOSUB CONV
50 GOSUB SENDAC
60 GOSUB contro!2

start: '(subroutine).

ba% = &H300
COLOR (8), (15)
OUT ba% +11, 255 '(all valves and pumps de-energised).
CLS
PRINT " Welcome to the Bicarbonate Analysis"
PRINT" #******#*******************#**"
PRINT "If you want to start the operation program for the analyser please first make"
PRINT "sure that the electrical circuit of the analyser is switched on!"
again:
PRINT
PRINT "Do you want to start the program now? (yes = 1, cancel = any other number)"
PRINT
INPUT "—> ", answl
IF answl = 1 THEN
PRINT
PRINT "Is the electrical circuit switched on? (yes = 1, no = any other number)"
ELSE
GOTO stopping
END IF
PRINT
INPUT "— > ", answ2
IF answ2 = 1 THEN
GOTO continue
ELSE
GOTO again

continue: 
END IF 
RETURN

cycles: '(subroutine).

CLS
COLOR (9)
PRINT " Purging Cycle"
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FOR c% = 1 TO 50
OUTba%+ 1,2
OUTba% + 2,2
1 = INP(ba% + 3)
h = INP(ba% + 4)
p = (1 + h * 256) / .4095 + p
FOR d% = 1 TO 2000: NEXT d%
NEXT c%
IF ((p / 50) - 40) < 0 THEN
press% = 0
ELSE
press% = ((p / 50) - 40) * 1.06369280723# * ((p / 50) - 40) A .043260703617#
END IF

'(carbonate equation).
CARBO% = (((press% / 1000 * (.0775 / (.082057 * (273.15 + temp%)) + .06406 * .973857 A temp% 
* .0499)) / (.0499 * .00002)) * 1.2) * 1.1667 * 1.25

'(saving data in file ba.dat). 
OPEN "ba.dat" FOR APPEND AS #1 
WRITE #1, DATES, TIMES, temp%, press%, CARBO% 
CLOSE #1 
RETURN

i********************* Conversion ******************************

CONV: '(Conversion from digital to analogue)
BB% = CARBO%
msbl 1% = 0: msblO% = 0: msb9% = 0: msb8% = 0
IF BB% >= 2048 THEN msbl 1% = 1: BB% = BB% - 2048
IF BB% >= 1024 THEN msblO% = 1: BB% = BB% - 1024
IF BB% >= 512 THEN msb9% = 1: BB% = BB% - 512
IF BB% >= 256 THEN msb8% = 1: BB% - BB% - 256
lsb% = BB%
msb% = (msbl 1% * 8) + (msblO% * 4) + (msb9% * 2) + (msb8% * 1)
'PRINT "lsb="; lsb%
'PRINT "msb="; msb%
RETURN

SENDAC: 
OUTba% + 5, lsb% 
OUT ba% + 6, msb% 
RETURN

contro!2: '(subroutine).

i******************************* Discharging ***************************

GOSUB cycles
LOCATE 7, 1
COLOR (12)
PRINT "»»"
COLOR (8)
OUT ba% + 11, 127 '(drain valve on).
SLEEP 2
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OUT ba% + 11, 63 '(outlet gas valve on).
SLEEP (10) '(sample out/discharging time).
OUT ba% +11,191 '(drain valve off).

i******************************* j Cleaning ***************************
LOCATE 8, 1
COLOR (12)
PRINT "»»"
COLOR (8)
OUT ba% +11,159 '(water valve on).
SLEEP (12) '(cleaning water in/filling time).
OUT ba% +11,191 '(water valve off).
OUT ba% + 11, 189 '(circulating pump on).
SLEEP (12) '(1. cleaning time).
OUT ba% +11,191 '(circulating pump off).

i******************************* Discharging ***************************
GOSUB cycles
LOCATE 9, 1
COLOR (12)
PRINT "»»"
COLOR (8)
OUT ba% + 11, 63 '(drain valve on).
SLEEP (15) '(cleaning water out/discharging time).

i******************************* 2 cleaning ***************************
GOSUB cycles
LOCATE 8, 1
COLOR (12)
PRINT "»»"
COLOR (8)
OUT ba% + 11, 159 '(drain valve off/water valve on).
SLEEP (18) '(cleaning water in/filling time).
OUT ba% +11,191 '(water valve off).
OUT ba% +11,189 '(circulating pump on).
SLEEP (20) '(2. cleaning time).
OUT ba% +11,191 '(circulating pump off).

.******************************* Discharging ***************************
GOSUB cycles
LOCATE 9, 1
COLOR (12)
PRINT "»»"
COLOR (8)
OUT ba% + 11, 63 '(drain valve on).
SLEEP (15) '(cleaning water out/discharging time).

i******************************* 3. Cleaning ***************************
GOSUB cycles 
LOCATE 8, 1 
COLOR (12) 
PRINT "»»" 
COLOR (8)
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LOCATE 9, 1 
COLOR (12) 
PRINT "»»" 
COLOR (8)
OUT ba% + 1 1 , 63 '(drain valve on).
SLEEP (15) '(cleaning water out/discharging time).

Waiting ****************************** 
GOSUB cycles 
LOCATE 10, 1 
COLOR (12) 
PRINT "»»" 
COLOR (8)
SLEEP (4200) '(waiting time). 
GOTO 20 '(start of a new analysis procedure). 
stopping: END

B.2 - Program written in QuickBasic for instructing the UV/Visible 
Spectrophotometer and also to output data

'GOTO dummy
test:
OPEN "coml:9600,n,8,l" FOR RANDOM AS #1
PRINT #1, "TER"; CHR$(13); CHR$(10);
'PRINT #1, "LIS"; CHR$(13); CHR$(10);
'PRINT #1, "BAS"; CHR$(13); CHR$(10);
SLEEP 30
PRINT #1, "MOD ABS"; CHR$(13); CHR$(10);
SLEEP 10
PRINT #1, "WDR436"; CHR$(13); CHR$(10);
SLEEP 40
'PRINT #1, "FIX 1"; CHR$(13); CHR$(10);
SLEEP 10
PRINT #1, "RUN"; CHR$(13); CHR$(10);
SLEEP 10
PRINT #1, "WDR 525"; CHR$(13); CHR$(10);
SLEEP 40
PRINT #1, "RUN"; CHR$(13); CHR$(10);
SLEEP 10
PRINT #1, "WDR 620"; CHR$(13); CHR$(10);
SLEEP 40
PRINT #1, "RUN"; CHR$(13); CHR$(10);
SLEEP 20
'PRINT #1, "GET"; CHR$(13); CHR$(10);
s = 0
b$ = ""
c$(l) = ""
c$(2) = ""
c$(3) = ""
FOR v = 1 TO 1 1
INPUT #l,a$
PRINT a$
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b$ = b$ + a$ 
NEXT 
CLOSE #1

'dummy:
's = 0
•b$ = "--1.1234-3.5234-3.1234--"
PRINT "len= "; LEN(b$);
FOR n = 1 TO LEN(b$)
IF MID$(b$, n, 1) = "." THEN GOSUB this
NEXT
PRINT c$(l), c$(2), c$(3)
'Dilution factor
c(0) = VAL(c$(l))* 6.533
c(l) = VAL(c$(2))* 6.533
c(2) = VAL(c$(3)) * 6.533
c(3) = (c(0) + c(l) + c(2))/3
PRINT c(0), c(l), c(2), c(3)
GOSUB that
IF INKEYS = "e" THEN END
GOTO test
'GOTO dummy

this:
s = s+ 1
PRINT "this"
FOR m = n - 1 TO n + 4
c$(s) = c$(s) + (MID$(b$, m, 1))
NEXT
RETURN

that:
PRINT "that"
FOR s = 0 TO 3
OUT &H37A, s + 4
Yem IF c(s) > INT(c(s)) + .5 THEN h = INT(c(s)) + 1: GOTO other
h = c(s)
other:
OUT&H378, (h* 18.21)

FORm= 1 TO 10: NEXT 
OUT &H37A, s 
PRINT, h* 18.21 
NEXT 
RETURN

B.3 - Program written in MATLAB® for controlling the UASB reactor on­ 
line

echo on 
t = clock;
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for k= 1:99999 
fid=-l; 
while fid==-l

fid = fopen('Macintosh HDrlabVIEW 3.1:data:FEB DATA:11FEB99-3 dat1 VV 
%(read the excel file)

pause(l) %(if file is already opened pause 1 s and try again) 
end; %(end the while loop)
fbv = fscanf(fid,'%f\r\n'); %(matrix fbv is equal the fid file where the values will be displayed % 

separatly so use carriage return and line feed) 
fclose(fid); %(close the file) 
[m,n]=size(fbv); 
c=m/ll;
other=reshape(fbv, 11 ,c); 
use=other';
[a,b]=size(use) %(x is the no. of rows and y the no. of columns) 
BA=use(a,l); pH=use(a,7); avcol=use(a,6); 
Input l=[pHBA]'; 
Input2=pH; 
Input3=avcol;
AA=preanaecontlvq 1 (Input 1); 
if AA=1

CC=preanaecontl(Inputl); % output for extra BA addition 
else AA==2

CC=preanaecont2(Input2); % output for extra BA addition
end
BB=preanaecont3(Input3); % output for dye pump
Output=[BB CC AA]
while etime (clock, t) < (k*120); end; %(send output every 1 min)
disp('waiting cycle')
fidl=-l;
while fidl=-l

fidl = fopen('Macintosh HD:labVIEW 3.1:data:FEB DATA:1 lFEB99:4.dat',V) 
% (write to a file) 

pause(l)
end;
fprintf(fid 1,'% 10.5f\n',Output);
fclose(fidl); 

end;

B.4 - Program written in MATLAB® to train the TOD NNARX model

% NNARX Dynamic Model (MISO) for the UASB reactor effluent TOD

% 2 Inputs: concentration of starch and dye
% 1 Output: TOD of the UASB effluent
% ______________ Load inputs and output ______________

load training.mat
input=input'; % the inputs must be presented raw wise and not column wise
tod=tod'; % the same with the output, when using to predict OD use OD=OD';

% or for CO2 use CO2-CO2';
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input=[starch;dye];
% First thing to do is to scale down the inputs and target. Remember
% with DSCALE, the matrix using DSCALE must be row wise
% [X_sc, X_m&std]=dscale, where the X_sc are the scaled matrix of data and
% X_m&std is the mean and standard deviation of each elements

% ____________ ____Normalisation of inputs and outputs___________ 
[P,Pscale]=dscale(input); [T,Tscale]=dscale(tod);

%__________Defining the training parameters of the ANN Model_________
% 2-LAYER 'FF' structure (1 hidden (tansig function)
% and 1 output (linear function) layer)
NetDef=['HHHHHHHHHH'; % no. of neurones in the hidden layer (e.g. 10)

'L————']; % no. of neurones in the output layer (1) 
na=[2]; % no. of past outputs
nb=[2 2]; % 2nd order of the system, no. of past inputs 
nk=[4 4]; % delay for each element in P
NN=[na nb nk]; % combine parameters which define the temporal patterns of the 
% system (ARX type regressor as inputs to the model) 
max_iter=1000; % maximum iterations 
eg=0.0001; % error goal
lambda=l; D=0; % other training parameters (default) 
trparms=[max_iter eg lambda D]; % combine the training parameters

[Wl,W2,PI_vector,iteration,lambda]=nnarx(NetDef,NN,Wl,W2,trparms,T,P);

% Automatic initialisation of the Network weights and biases and training 
% with the function nnarx

%_______________Plot learning curve____________________ 
semilogy(PI_vector); grid; % (PI_vector is the error that the network reaches after 
% training)

hold on
semilogy(iteration,ones(size(iteration))*eg,'r-') 
xlabel('Iteration'); % x-axis legend 
ylabel(Training error1); % y-axis legend

% Saving the weights and associated parameters of the trained network 
save tparatod.mat NetDef NN Wl W2 Pscale Tscale

% To rescale back
[wl,w2]=wrescale(Wl,W2,Pscale,Tscale,NN); 
[prdtod,totalerr]=nnvalid('nnarx' ) NetDef,NN,w 1 ,w2,tod,input)

B.5 - Program written in MATLAB®to prune the NNARX models

% Pruning of the developed NNARX Models (Function file)

function [Wl_opt,W2_opt,input_scale,target_scale]=pruning(NetDef,Wl,W2,...
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NN,trparms,tr_input,tr_target,vld_input,vld_output) 
% Wl_opt (optimised weights after pruning)

% Scaling training data set to zero mean and variance 1 and then scale the 
% validation set with the same constants.

[tr_input_s, input_scale]=dscale(tr_input);%input_scale=mean and std dev.
%tr_input_s=scaled tr_input.

[tr_target_s,target_scale]=dscale(tr_target);%target_scale=mean and std dev.
%tr_target_s=scaled tr_target.

[m,n]=size(vld_input);
for k=l:m
vld_input_s(k,:)=(vld_input(k,:)-input_scale(k,l))/input_scale(k,2);
end;
vld_output_s=(vld_output-target_scale(l,l))/target_scale(l,2) % Only 1 row.

% Training parameters for the Optimal Brain Surgeon
prparms=[50 5]; % max. iter of 50, 5% elimination of weights - see page 1-16.

% Note that Wl & W2 are the unsealed weights, obtained after training. 
% trparms is the training parameters adopted for the function 'nnarx1 . 
% e.g. trparms=[500 0.015 1 0] refers to the epochs, eg, lambda & D.

[thd,tr_error,FPE,te_error,d_eff,pvec]=nnprune(lnnarx',NetDef,Wl,W2,... 
tr_input_s,tr_target_s,NN,trparms,prparms,vld_input_s,vld_output_s);

% Retrieving the optimal weight matrix.
[minte_error,index]=min(te_error(pvec));
index=pvec(index);
[Wl_obs,W2_obs]=netstruc(NetDef,thd,index); % Weights determine by the Optimal Brain
% Surgeon.

% Retraining the network with the Optimum weights without weight decay. 
[Wl_opt,W2_opt,NSSEvec]=nnarx(NetDef,NN,Wl_obs,W2_obs,trparms,tr_target_s,...
tr_input_s);
save d:\MACDl\MOD_CONT\model\prune\odprn_w.mat Wl_opt W2_opt....
input_scale target_scale

B.6 - Program written in MATLAB® to train the ANNBCS for testing in 
B.7
Training the subBPl (the other 3 SubBPs were similarly trained)

% SUB_BP1 Network
echo on 
%chan=ddeinit('excel','BPl_data.xls')
% data=ddereq(chan,'rIc 1 :r279c5');
% save c:\Sandra\Mod_Cont\Control\Cont_tr\Bpl_tr\dataBPl.mat data
cd c:\Sandra\Mod_Cont\Control\Cont_tr\Bpl_tr
load dataBPl.mat
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% Desiccating data into inputs and outputs
Inputl=data(:,l:3);
Target l=data(:,4:5);

% Choosing the data
Pm=Inputl;
Tm=Targetl;
Pm=Pm';
Tm=Tm';

% Find the maximum values of each row in input and target matrix 
Pmax=nnmaxr(Pm); Tmax=nnmaxr(Tm); 
pl=Pm(l,:)./Pmax(l,l);tl=Tm(l,:)./Tmax(l,l); 
p2=Pm(2,:)./Pmax(2,l);t2=Tm(2,:)./Tmax(2,l); 
p3=Pm(3,:)./Pmax(3,l);

% Regroup the reformed input and target matrix 
P=tpl;p2;p3];T=[tl;t2];

% Number of input, hidden, and output neurones, respectively 
Sl=3; S2=20; S3=2;

% Matrix Prange only takes min and max values of each row of matrix P 
Prange=[nnminr(P( 1,:)) nnmaxr(P( 1,:));

nnminr(P(2,:)) nnmaxr(P(2,:));
nnminr(P(3,:)) nnmaxr(P(3,:))];

% Initialising the weights and the biases 
[Wl,bl,W2,b2,W3 >b3]=initff(Prange,Sl, 1logsigl,S2,'logsig') S3,'logsig');

% Setting the training parameters
TP(1)=10;%....frequency of progress display in epochs.... 
TP(2)=10000; %....maximum number of epochs to train... 
TP(3)=0.001; %...sum-squared error goal... 
TP(4)=0.0001; %...minimum gradient... 
TP(5)=0.001; %...initial value for MU... 
TP(6)=10; %...Multiplier for increasing MU... 
TP(7)=0.1; %...multiplier for decreasing MU.... 
TP(8)=lelO; %....maximum value for MU....

tp=[TP(l) TP(2) TP(3) TP(4) TP(5) TP(6) TP(7) TP(8)]; 
[Wl,bl,W2,b2,W3,b3,te,tr]=trainlni(Wl,bl, l logsig',W2,b2,'logsig',W3,b3,'logsig',P,T,tp);

save subbpl.mat Wl bl W2 b2 W3 b3

% Simulation of network outputs 
al=simuff(P,Wl,bl,'logsig',W2,b2,'logsig',W3,b3,'logsig');

% Multiplying the scale down output of the network by their % respective maximum value

ala=al(l,:).*Tmax(l,l);
a2a=al(2,:).*Tmax(2,l);
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% Regroup the reformed output matrix 
Al=[ala;a2a]

Pmax 1 =max(data( : , 1 )) 
Pmax2=max(data(:,2)) 
Pmax3=max(data( : ,

Tmax 1 =max(data( : ,4)) 
Tmax2=max(data(:,5))

end

Training the LVQ network

o

0

% Control simulation (4 classes)
% three inputs (tod, OD, co2) and 4 classes (low/low, normal, high dye/low starch and high/high)
%.....................Training with LVQ.....................
load Ivqtrain.mat
P=[tod;OD;co2];
T=[target 1; target2; targets; targe t4];
[Wl,W2]=initlvq(P,12,T); % having 3 subclasses (competitive layer) in each class
tp=[20 5000 0.1];
[Wl ,W2]=tramlvq(W 1 ,W2,P,T,tp);
save Lvq_we.mat Wl W2
A=simulvq(P,Wl,W2)
A=full(A)
end

B.7 - Program written in MATLAB® to further evaluate the ANNBCS 
performance in a computer simulation

function [U_new,Y_new]=simullbl(NetDef_tod,NN_tod,Wlopt_tod,... 
W2opt_tod,NetDef_od,NN_od, W1 opt_od, W2opt_od,NetDef_co2,... 
NN_co2, W1 opt_co2, W2opt_co2,U, Y_all)

% Function File of the Control Simulation

[nu,Ndat]=size(U);
outputs=l; % one linear output neurone
[ny,Ndat]=size(Y_all);
nmax_tod=max([NN_tod(l),NN_tod(2: l+nu)+NN_tod(2+nu: l+2*nu)-l]);
nmax_od=max([NN_od( 1 ),NN_od(2:1 +nu)+NN_od(2+nu: 1 +2*nu)-l ]);
nmax_co2=max([NN_co2(l),NN_co2(2:l+nu)+NN_co2(2+nu:l+2*nu)-l]);
nmax=max([nmax_tod nmax_od nmax_co2]);
N=Ndat-nmax; % no. of column vectors in the regression matrix

jj=nmax+l:Ndat;
U_change=zeros(nu,N); % starch and dye 
delta_Yall-zeros(ny,N); % TOD, OD and CO2

% Parameters for the tuning block (maximising the performance of the UASB reactor Model)
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stch_fac_inc=1.05; 
dye_fac_inc=1.05; 
tune_t=zeros(l,N); % Dummy matrix for the recording of tuning instances.

% Setting of the Parameters Required for the TOD Model.
%Y_tod=Y_all(l,:); % Y_all=[l to Ndat for tod, od and co2]
na_tod=NN_tod(l); nb_tod=NN_tod(2: 1+nu); nk_tod=NN_tod(2+nu: l+2*nu);
nab_tod=na_tod+sum(nb_tod) ;
% Network Initialisation for the TOD Model.
H_hidden_tod=fmd(NetDef_tod( 1 , : )=='H')';
L_output_tod=find(NetDef_tod(2,:)=='L')1 ;
[hidden_tod,inputs_tod]=size( W 1 opt_tod);
y l_tod=[zeros(hidden_tod,N);ones( 1 ,N)];
Yhat_tod=zeros( 1 ,N);
Regr_tod=[zeros(nab_tod,N);ones(l,N)];

% Setting of the Parameters Required for the OD Model.
%Y_od=Y_all(2,:); % Y_all=[l to Ndat for tod, od and co2]
na_od=NN_od(l); nb_od=NN_od(2:l+nu); nk_od=NN_od(2+nu:l+2*nu);
nab_od=na_od+sum(nb_od);
% Network Initialisation for the OD Model.
H_hidden_od=find(NetDef_od(l,:)=='H')';
L_output_od=find(NetDef_od(2,:)=='L1) 1 ;
[hidden_od, inputs_od] =si ze( W 1 opt_od) ;
y l_od=[zeros(hidden_od,N);ones( 1 ,
Yhat_od=zeros( 1 ,N);
Regr_od=[zeros(nab_od,N);ones( 1 ,

% Setting of the Parameters Required for the CO2 Model.
%Y_co2=Y_all(3,:); % Y_all=[l to Ndat for tod, od and co2]
na_co2=NN_co2( 1 ); nb_co2=NN_co2(2: 1 +nu); nk_co2=NN_co2(2+nu: 1 +2*nu);
nab_co2=na_co2+sum(nb_co2);
% Network Initialisation for the CO2 Model.
H_hidden_co2=find(NetDef_co2( 1 ,:)=='H')';
L_ourput_co2=fmd(NetDef_co2(2,:)=='L')';
[hidden_co2,inputs_co2]=size( W 1 opt_co2);
yl_co2=[zeros(hidden_co2,N);ones(l,N)];
Yhat_co2=zeros( 1 ,N);
Regr_co2=[zeros(nab_co2,N);ones( 1 ,N)];
for t=l :N, % Number of Control iterations = N

% Construction of the Regression Matrix for the TOD Model. 
index_tod=0;
for k_tod=l :na_tod, 

Regr_tod(k_tod+index_tod,:)=Y_all(l,jj-k_tod);
% For loop to set the first 2 (na) rows of the reg. matrix.

end 
index_tod=index_tod+na_tod;
for kk_tod=l:nu, 

for m_tod=l :nb_tod(kk_tod), 
Regr_tod(m_tod+index_tod,:)=U(kk_tod,jj-m_tod-nk_tod(kk_tod)+l);

end 
index_tod=index_tod+nb_tod(kk_tod);
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end; 
ox% Calculating the TOD Model's One Step Ahead Prediction.
hl_tod=W 1 opt_tod*Regr_tod(:,t);
y 1 _tod(HJiidden_tod,t)=pmntanh(h 1 _tod(H_hidden_tod));
h2_tod=W2opt_tod*yl_tod(:,t);
Yhat_tod(L_output_tod,t)=h2_tod(L_output_tod,:);
tod_prd=Yhat_tod(L_output_tod,t); % TOD Model's Prediction at t.
tod_mtrx(:,t)=tod__prd; % Building the TOD Models prediction matrix.
% Construction of the Regression Matrix for the OD Model.
index_od=0;
for k_od=l :na_od,

Regr_od(k_od+index_od,:)=Y_all(2,jj-k_od);
% For loop to set the first 2 (na) rows of the reg. matrix, 

end
index_od=index_od+na_od; 
for kk_od=l:nu,

for m_od=l :nb_od(kk_od), 
Regr_od(m_od+index_od,: )=U(kk_od,j j -m_od-nk_od(kk_od)+1);

end
index_od=index_od+nb_od(kk_od); 

end;
% Calculating the OD Model's One Step Ahead Prediction. 
hl_od=Wlopt_od*Regr_od(:,t);
yl_od(H_hidden_od,t)=pmntanh(hl_od(H_hidden_od)); 
h2_od=W2opt_od*yl_od(:,t); 
Yhat_od(L_output_od,t)=h2_od(L_output_od,:); 
od_prd=Yhat_od(L_output_od,t); % OD Model's Prediction at t. 
od_mtrx(: ,t)=od_prd;

% Construction of the Regression Matrix for the CO2 Model. 
index_co2=0; 
for k_co2=l :na_co2,

Regr_co2(k_co2+index_co2,:)=Y_all(3Jj-k_co2);
% For loop to set the first 2 (na) rows of the reg. matrix, 

end
index_co2=index_co2+na_co2; 
for kk_co2=l:nu,

for m_co2=l :nb_co2(kk_co2), 
Regr_co2(m_co2+index_co2,:)=U(kk_co2,jj-m_co2-nk_co2(kk_co2)+l);

end 
index_co2=index_co2+nb_co2(kk_co2);

end;
% Calculating the CO2 Model's One Step Ahead Prediction.
h 1 _co2=W 1 opt_co2 *Regr_co2(: ,t);
yl_co2(H_hidden_co2,t)=pmntanh(hl_co2(H_hidden_co2));
h2_co2=W2opt_co2*yl_co2(:,t); 
Yhat_co2(L_output_co2,t)=h2_co2(L_output_co2,:); 
co2_prd=Yhat_co2(L_output_co2,t); % CO2 Model's Prediction at t. 

co2_mtrx(: ,t)=co2_prd;

% Feeding tod_prd, od_prd and co2_prd to the controller. 
[new_stch,new_dye,AA]=controller(tod_prd,od_prd,co2_prd);

% Tuning Block (Its purpose is to maximise the treatment process
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% in terms of starch and dye intake loads, 
if t>=10 & rem(t,10)==0, 

tod_diff=tod_prd-tod_mtrx(t-9); 
od_diff=od_prd-od_mtrx(t-9); 
co2_diff=co2_j>rd-co2_mtrx(t-9);
if tod_diff<=75 & tod_prd<=1500 & od_diff<=0.3 & od_prd<=l & co2_diff<=3 & co2_prd<=30, 

disp('everything OK'), 
disp(t),
tune_t(l,t)=t; % marking of the instances when tuning took place. 
new_stch=new_stch* stch_fac_inc; 
ne w_dye=ne w_dye * dye_fac_inc; 

end; 
end;

% Changes to the Original Input and Target Matrix as specified by the
% Neural Network Controller/tuning block.
U_change(:,t)=[new_stch;new_dye];
U(:,nmax+t)=U_change(:,t);
U_new=U;

delta_Yall(:,t)=[tod_prd;od_prd;co2_prd];
Y_all(:,nmax+t)=delta_Yall(:,t);
Y_new=Y_all;
end;
save d:\MacDl\Mod_Cont\Strateg2\Simullbl\results.mat U_new U_change...
Y new delta Yall tune t AA
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Appendix C - Organic loading rates and COD and colour 
removals for the combined bio-treatment system for 
Experimental Phases 2 and 3

Table C.I - Organic loading rates and COD removed by the combine bio-treatment system
for Experimental Phases 2 and 3

Exp.
Phase 2

2.1
2.2
2.3
2.4

Exp.
Phase 3
Initial

3.1
3.2
3.3
3.4
3.5

Bv

(g COD I 1 reactor d ')

2.67
1.66
2.73
1.81

2.29
2.22
2.71
3.73
3.90
3.14

COD removed
by the UASB
reactor (%)

49
58
71
66

62
66
52
61
60
62

COD removed
by the aerobic

stage (%)

24
9
3
3

17
14
14
27
19
15

COD
removed
in total

73
67
74
69

79
80
66
88
79
77

Note — All the results are average values calculated after 3 anaerobic HRTs

Table C.2 — Colour removed by the combine bio-treatment system for Experimental
Phases 2 and 3

Exp. Phase 2

2.1
2.2
2.3
2.4

Exp. Phase 3
Initial

3.1
3.2
3.3
3.4
3.5

Colour removed by the
UASB reactor (%)

48
58
66
69

58
41
38
59
56
56

Colour removed by
the aerobic stage (%)

19
15
7
8

15
15
7
18
12
11

Colour removed
in total (%)

67
73
73
77

73
56
45
77
68
67

Note All the results are average values calculated after 3 anaerobic HRTs
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