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ABSTRACT 

 

Transportation departments are tasked with managing numerous assets that are 

part of the roadway infrastructure. One of the most challenging pieces of transportation 

asset management is pavement markings. There are several characteristics of pavement 

markings that make them difficult to incorporate into an asset management system 

including the volume of markings on the roadway and the lack of easy, standardized data 

collection methods. 

Machine vision technology has potential applications in transportation asset 

management and could alleviate some of the problems currently faced in managing 

pavement markings as an asset. Advanced driver assistance systems (ADAS) 

incorporating machine vision cameras have the ability to assign quality ratings to 

individual pavement markings, and vehicles equipped with machine vision have the 

capability to collect large amounts of data without direct input from the vehicle operator. 

The large amount of data collected by ADAS machine vision cameras is readily stored 

and easily processable for asset management decision-making. 

In order for the machine vision data to be useful in pavement marking asset 

management, the reliability of the quality scores and their relationship to established 

pavement marking evaluation characteristics needed to be investigated. The purpose of 

this research was to explore the repeatability of the quality scores assigned by the 

machine vision camera under different collection conditions. Along with determining the 
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correlation between the machine vision quality scores and the defined pavement marking 

characteristics retroreflectivity, luminance, and contrast. 

The results of the analysis were that the ADAS machine vision quality scores 

were determined to be mostly reliable under each individual condition but not across the 

different collection conditions. An acceptable relationship between the current pavement 

marking evaluation characteristics and the machine vision quality scores was not able to 

be conclusively established using several different regression approaches as a result of 

the correlation analysis. From the analysis that was done as a part of this research, it is 

recommended that further data collection efforts be conducted under various conditions 

in order to expand on both the repeatability and correlation analysis that was performed. 
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1. INTRODUCTION  

Departments of Transportation (DOTs) are tasked with the responsibility of 

managing and maintaining an extensive infrastructure network consisting of pavements, 

structures, traffic control devices, and other elements. In order to manage these assets 

effectively, a considerable amount of resources must be employed for asset inventory 

and condition assessment. With emerging vehicle technologies, such as automated and 

connected vehicles, sensor systems can be used to gather information about the roadway 

infrastructure. Applying these readily available sensor technologies to transportation 

asset management makes it possible to generate infrastructure inventory and condition 

assessment data. Equipping DOT fleet vehicles with onboard sensor equipment is 

relatively inexpensive and would allow for the creation of a continuously updated 

database containing infrastructure data without having to conduct specific data collection 

operations. This leads to greater understanding of current and future infrastructure 

conditions and improved transportation asset management practices. 

A major area of innovation in transportation over the last decade plus has been 

the incorporation of automation into the driving task. SAE defines six levels of driving 

automation ranging from Level 0 to Level 5 described in Table 1 (1).  
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Table 1 SAE Automation Levels 

0 No Automation Zero autonomy; the driver performs all driving tasks. 

1 Driver 

Assistance 

Vehicle is controlled by the driver, but some driving assist features 

may be included in the vehicle design. 

2 
Partial 

Automation 

Vehicle has combined automated functions, like acceleration and 

steering, but the driver must remain engaged with the driving task 

and monitor the environment at all times. 

3 
Conditional 

Automation 

Driver is a necessity but is not required to monitor the 

environment. The driver must be ready to take control of the 

vehicle at all times with notice. 

4 
High 

Automation 

The vehicle is capable of performing all driving functions under 

certain conditions. The driver may have the option to control the 

vehicle. 

5 Full 

Automation 

The vehicle is capable of performing all driving functions under all 

conditions. The driver may have the option to control the vehicle.  

 

Many vehicles on the road today have some level of automation and all new vehicles 

will at least meet the standard for Level 1-Driver Assistance after the NHTSA decision 

to require all new vehicles to have rear-view cameras by May of 2018 (2). Rear-view 

cameras are part of evolving technologies referred to as driver assistance technologies 

aimed at keeping drivers, passengers, and other transportation system users safe. Many 

different driver assistance technologies exist including emergency braking systems, 

collision warnings, lane departure warnings and lane keeping assistance, blind spot 

detection, adaptive cruise control, and the aforementioned rear-view video systems. The 

integration of all these technologies into an automated system is often referred to as 

Advanced Driver Assistance Systems (ADAS). ADAS relies on inputs from a variety of 

data sources including radar, LiDAR, cameras, computer/machine vision, or even other 

vehicles. These systems can be comprehensive including all of the available 
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technologies or only a few options and can be built into the vehicle by the manufacturer 

or installed as add-ons. ADAS that include the use of machine vision offer the highest 

potential levels of automation along with the greatest capabilities for roadway data 

collection. Machine vision cameras are often used in the lane assist technologies to 

either warn the driver the vehicle is departing the lane or to diagnose the vehicle leaving 

its lane and then activate corrective measures to return the vehicle to its intended travel 

lane automatically. In order to perform lane assist functions, the machine vision cameras 

must be able to adequately see the lane markings on the roadway.  

Pavement markings are one of the most prolific components of transportation 

infrastructure. With countless miles of lane markings to inspect and maintain, DOTs are 

in need of innovative solutions to monitor and catalog their resources. Using vehicles 

equipped with systems of onboard cameras and sensors to record the type, location, and 

quality of pavement markings can greatly improve the efficiency of data collection. In 

order for this data collection method to be widely implemented for pavement marking 

asset management, the precision of the pavement marking quality assessment data needs 

to be determined. Once the precision of the data is better understood, the information can 

be integrated into transportation asset management practices. The capabilities of the 

system can be fully realized as useful raw data is processed, analyzed, and presented in 

an effective manner to facilitate decision making for transportation departments. 

This research seeks to investigate how Advanced Driver Assistance Systems 

(ADAS) technology (specifically cameras using machine vision) may be used for 

pavement marking condition assessment as a part of transportation asset management. 
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The machine vision camera used in the ADAS relies on lane markings to perform 

several of its functions, both passive and active, including lane departure warnings and 

lane keeping assistance. These functions cannot be completed by the ADAS if the lane 

markings are not of a sufficient quality; therefore, the camera sensor continuously 

assesses the quality of each lane marking in its field of vision. These quality values 

indicate the confidence the sensor has in its ability to perform necessary functions or 

provide valid measurements based on the detection of the lane markings. In order for this 

data to be useful for understanding pavement marking conditions and included in asset 

management, the precision, or closeness of agreement between multiple results, for these 

quality score measurements needs to be determined. 

Along with the statistical analysis required to determine the precision of the 

ADAS machine vision pavement marking quality scores, this research seeks to perform 

application analysis for potential uses of the data. Several applications exist for 

pavement marking data collected with ADAS cameras using machine vision. Using 

camera equipped vehicles allows for continuous data collection over a large area of the 

transportation network. A direct application for this data is using the pavement marking 

quality scores in the asset management practices for pavement markings. This research 

seeks to determine the cost effectiveness and other benefits of collecting real time data 

for use in pavement marking asset management. 
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2. BACKGROUND  

2.1 Pavement Marking Performance Measurement 

Pavement markings provide guidance to road users by supplying information 

about the roadway path. Maintaining the functional quality of pavement markings is 

essential to providing desirable levels of operational safety (3). Pavement marking 

performance can be evaluated by measuring several characteristics of the pavement 

marking materials. These characteristics include the pavement marking retroreflectivity, 

contrast, and color. Durability is another aspect of pavement marking performance and is 

evaluated based on the overall percentage of marking material remaining as well as 

retained retroreflectivity (4).  

The remaining marking material is often referred to as the presence condition of 

the pavement marking. Pavement marking presence is a more difficult characteristic to 

quantify as the most widely adopted evaluation method is expert observation. With 

advancements in technology, attempts have been made to evaluate pavement marking 

presence with image processing techniques.  These techniques have proven successful in 

determining the presence condition of pavement markings at levels consistent with 

expert observation (4). Presence is not specifically evaluated or analyzed in this study 

but is assumed to be incorporated in the quality score assigned by the ADAS machine 

vision camera.  

The most widely measured performance indicator is retroreflectivity, which is 

directly related to the nighttime visibility of pavement markings. Retroreflectivity is the 

occurrence of light hitting a surface and being reflected back to the light source. It is 
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measured by the coefficient of RL in units of millicandelas per square meter per lux 

(mcd/m2/lux). The standard specifications for measuring retroreflectivity are designed to 

measure at a point 30 meters ahead of a vehicle to simulate the driver’s observation of 

the road at night (5). Retroreflectivity can be measured using both handheld and mobile 

retroreflectometers which are produced in many different models by several 

manufacturers. The standard retroreflectivity measurement geometry is based on a 

European vehicle which has a headlamp height of 0.65 meters and a driver eye height of 

1.2 meters (5). Figure 1 shows the standard retroreflectivity geometry.  

 

 

Figure 1. Standard 30-meter Retroreflectivity Measurement Geometry 

 

Luminance is the brightness of a surface in a given direction per unit of area of 

the surface independent of viewing distance (6). Daytime luminance is represented by 

the luminance coefficient under diffuse illumination (Qd) which is the quotient of the 

luminance of the pavement marking and the illuminance on the pavement marking 

expressed in mcd/m2/lux (3). Qd determines the quality of the pavement marking for 

visibility in daylight or under roadway lighting where higher values for Qd correspond to 

higher levels of lightness (7). The luminance coefficient under diffuse illumination is 
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measured according to ASTM standard E2302 using a portable reflectometer with a co-

viewing angle fixed at 2.29° and with the measurement geometry of the instrument 

based on a 30-meter viewing distance and 1.2-meter eye height (7).  

Drivers are able to distinguish pavement markings from the pavement surface 

because of contrast. There are two types of contrast, color and luminance (3). The 

pavement marking color contrast is the degree of difference between the marking and 

pavement surface, while the luminance contrast is the ratio of luminance between the 

marking and pavement surface (3). The contrast ratio can be defined for both nighttime 

and daytime luminance using the coefficients RL and Qd in Equations 1 and 2. The 

higher the contrast ratio the more clearly the pavement marking can be distinguished.  

𝐶𝑅 =
𝑅𝐿(𝑚𝑎𝑟𝑘𝑖𝑛𝑔)−𝑅𝐿(𝑝𝑎𝑣𝑒𝑚𝑒𝑛𝑡)

𝑅𝐿(𝑝𝑎𝑣𝑒𝑚𝑒𝑛𝑡)
  (Equation 1) 

𝐶𝑅 =
𝑄𝑑(𝑚𝑎𝑟𝑘𝑖𝑛𝑔)−𝑄𝑑(𝑝𝑎𝑣𝑒𝑚𝑒𝑛𝑡)

𝑄𝑑(𝑝𝑎𝑣𝑒𝑚𝑒𝑛𝑡)
  (Equation 2) 

Color also plays an important role in communicating information about the 

roadway to drivers. The color of pavement marking materials is defined using the Yxy 

coordinates of the International Commission on Illumination where the Y coordinate 

refers to how light or dark the object is and the x,y plot the color on the chart (3). Color 

can be measured by using a colorimeter or spectrophotometer.  

2.2 Precision 

Two ASTM standards were reviewed in order to understand the precision for test 

methods. Precision refers to the closeness of agreement between independent test results 

under stipulated conditions (8). There are multiple concepts or categories for the 
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precision of a test method including repeatability and reproducibility. For this test 

method, the repeatability is of main concern as it defines the precision under conditions 

where results are obtained with the same method on identical test items by the same 

operator using the same equipment in a short time interval (8,9). Reproducibility 

involves recreating the experimental results in another location with different operators 

and equipment on the same item, so it will not be examined in this study. This study only 

involves one ADAS machine vision system and the pavement marking materials are in 

fixed locations, so reproducibility is not an appropriate measure for this study. The 

repeatability can also be determined for a test method where a single repeatability 

experiment is conducted in multiple laboratories then the pooled repeatability standard 

deviation is used as the test method repeatability estimate (8). This approach is valuable 

as it provides an estimate of the magnitude of the variability that can be expected 

between results in other laboratories (8,9). 

2.3 Asset Management 

Asset management in transportation is continually growing in implementation 

and scope. The U.S. Department of Transportation’s Asset Management Primer chooses 

to use the following working definition “Asset Management is a systematic process of 

maintaining, upgrading, and operating physical assets cost-effectively. It combines 

engineering principles with sound business practices and economic theory, and it 

provides tools to facilitate a more organized, logical approach to decision-making (10).” 

Asset management has been practiced for years within the transportation community and 

with increased demands being placed on an aging infrastructure system, is as important 
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as ever. Traditionally pavement and bridge management systems have been the primary 

focus of asset management; however, advancements in technology and data practices are 

opening the door to including more highway assets in the asset management system.  

Applying current transportation asset management practices to pavement markings can 

be difficult for multiple reasons including issues with collecting inventory data, 

determining which attributes to consider when evaluating performance, and the 

conditions for which the asset should be evaluated. Currently pavement marking asset 

management relies on retroreflectivity measurements and visual inspections for 

evaluating the condition of the asset; however, data inventory collection with both of 

these methods can time consuming and costly (11, 12). Sitzabee et al. developed a 

method for integrating pavement markings into asset management using collected 

retroreflectivity values and predictive degradation models for pavement markings along 

with GIS to assess the current and future conditions of pavement markings as a 

transportation asset (11). However, there are issues surrounding types of 

retroreflectometers and their measurements which have complicated a widespread 

acceptance of deterioration models for predicting performance and cost, which are key 

elements of asset management (12). Agencies recognize the value of pavement marking 

management, as over $1.5 billion was estimated to be spent in 2000 in the U.S. and 

Canada by state and local agencies, so continued efforts are needed to develop more 

effective ways to manage pavement markings as a transportation asset (12). 
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2.4 Lane Detection 

Lane detection is a key problem in Advanced Driver Assistance Systems 

(ADAS) that attempt to warn drivers or assist in the driving process in potentially 

dangerous situations. Machine vision technology used in these systems must rely on the 

same visual cues as human drivers such as road boundaries, road color and texture, and 

lane marking color and type. Several sensing methods are used for lane understanding 

including vision (video camera), stereo imaging, LIDAR, RADAR, and Geographic 

Information Systems (GIS)/Global Positioning Systems (GPS)/Inertial Measurement 

Unit (IMU). Vision is the most prominent of the lane and road detection methods 

because markings are made for human vision, while LIDAR and GPS are important 

complements (13). Figure 2 shows a representation of a vision-based detection system 

(14). 

 

 

Figure 2. Vision-based Detection System 
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In recent years many approaches and algorithms have been developed to tackle 

the lane detection problem. Several reviews have been conducted in order to catalog the 

progress of road and lane detection. From these reviews it can be seen that most of the 

systems share commonalities that can be separated into functional elements of the 

detection process. Hillel et al. identified a generic system with the following modules: 

image cleaning, feature extraction, road/lane model fitting, temporal integration, image 

to world correspondence (13). Another survey of detection systems by Yenikaya et al. 

identified four basic steps: preprocessing, feature detection, fitting, and tracking (14). 

Lane markings are recognized in the feature detection and extraction step of the system. 

Several features of the road environment can be used for the detection of features such as 

lane markings. These include color, edges, and texture each of which are important to 

the human visual system along with machine vision systems. The image features of the 

lane markings are then extracted using various filters or statistical methods which fall 

into three classes: area-based, edge-based, and area-edge-combined methods (14). Many 

different techniques are used but the same set of assumptions underlies them all, the 

brightness change between the markings and road surface along with the narrow shape 

of the lane markings (13).  

Detection systems need to be able to perform in various and rapidly changing 

environmental conditions in order to be acceptable. The combined effects of vehicle 

motion along with degraded lane markings, occlusion from shadows or other vehicles, 

and various lighting or weather conditions make developing lane detection systems a 

unique challenge as coverage for all conditions requires complex systems and 
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considerable engineering effort (13). Further development is still needed in the 

robustness of state-of-the-art processing algorithms as the current algorithms used in 

vision-based lane detection systems rely on the use of many assumptions making them 

less adaptive than the human driver (13).  
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3. STUDY DESIGN  

The experiment was conducted in order to investigate the repeatability of the 

pavement marking quality scores determined by the ADAS machine vision technology, 

and to establish if a correlation exists between the machine vision quality scores and 

current pavement marking evaluation characteristics. To determine the repeatability, 

appropriate samples were taken of lane markings in multiple configurations and 

conditions to ensure that the number of test results is a sufficiently large value. The 

repeatability is a measure of the precision of the test method not a parameter of the lane 

marking population (8). In order to investigate a correlation between the machine vision 

pavement marking quality scores and current pavement marking evaluation 

characteristics, a set of multiple pavement markings was fully defined for characteristics 

such as retroreflectivity, luminance, and color. Two scenarios were used for performing 

data collection on lane markings in this experiment. Open road data collection occurred 

on selected segments of local roadways in the Bryan/College Station area, while closed 

course data collection took place at a Texas A&M Transportation Institute (TTI) facility.  

When designing the data collection methodology for the study. ASTM E177 and 

ASTM E691, which are standards for the use and determination of precision in a test 

method, were consulted. The study was designed based on ASTM E691, which deals 

with interlaboratory studies to determine the precision of a test method (8, 9). Since the 

pavement marking quality measurement being collected by the machine vision 

technology is an ordinal value and not in a traditional controlled laboratory setting the 

standard was not able to be directly applied; however, it did provide an adequate 
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framework for designing the study. Borrowing from the language used in the ASTM 

standard, for this study, each lane marking was treated as a separate material and each 

lane position of the collection vehicle was a laboratory. 

3.1 Open Road  

The purpose of the open road experiment was to determine the repeatability of 

the quality scores provided by the machine vision technology under various operating 

conditions such as daytime and nighttime. The benefits of the open road environment are 

that it provides a representative simulation of the actual scenarios in which the machine 

vision technology is expected to operate and collect data. Collecting data on actual 

roadways also provides multiple lane configurations and pavement surfaces for the 

study.  

For the open road data collection, three locations in the Bryan/College Station 

area were selected based on their different lane configurations. The multiple lane 

configurations allowed for more lane markings and lane routes to be included in the 

study following the recommendation of ASTM E691 which encourages involving more 

materials across more laboratories instead of a large number of results per material in a 

few laboratories (9). Figure 3 shows the locations with the lane markings numbered and 

the routes the test vehicle drove as letters. 
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Figure 3. Open Road Collection Locations 

 

The roadway sections are each between one and two miles long and were 

selected because of potential access to staging areas and turnaround locations. On FM 

2154 the location was south of College Station from Greens Prairie Rd W to Hidden 

Springs Way. The N Texas Ave location was in Bryan from Wilhelm Dr to Arthur 

Davila Middle School. The third segment was on FM 2818 from La Brisa Dr in Bryan to 

F and B Road in College Station. These three sites were determined as adequate for the 

study because results were able to be obtained for 14 different pavement markings from 

B A D C A B 

1 2 3 4 5 6 

FM 2154 N Texas Ave FM 2818 

D C A B

  

1 2 3 1 2 3 4 5 
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10 different observation lanes. The results from each route driven were obtained in the 

shortest practical period of time in order to preserve repeatability conditions (9). 

The Mobileye system can observe and record data for two lane markings on each side of 

the vehicle; however, only the quality score data obtained on the lane markings when 

adjacent to the vehicle was analyzed. 

Each lane route was driven 30 times to obtain results for the lane marking quality 

scores, this results in some of the markings being observed from multiple directions and 

positions. The number of times each route should be driven was determined with 

equation 3. 

𝑛 ≥ (
𝑡𝛼 2⁄ ,𝑑𝑓

∆
∗ 𝜎̃)

2

   (Equation 3) 

𝑛 = 𝑠𝑎𝑚𝑝𝑙𝑒 𝑠𝑖𝑧𝑒 

∆= 𝑒𝑟𝑟𝑜𝑟 𝑏𝑜𝑢𝑛𝑑 

𝑡𝛼
2⁄ ,𝑑𝑓 = 𝑡 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 𝑓𝑜𝑟 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑒𝑑 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝑙𝑒𝑣𝑒𝑙 

𝜎̃ = 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 𝑜𝑓 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 

The equation was applied for a confidence interval about the mean quality score 

for a segment of lane markings. A 95 percent confidence level was chosen with an error 

bound of 0.25 and an estimate for the standard deviation of quality scores was 

determined to be 0.62 from previously collected data on another roadway segment. This 

method was chosen for the sample size calculation because even though the quality 

scores are interval data, they were averaged over a specified segment length converting 

them to a pseudo-continuous variable. The calculation of a sample size of 30 results for 

each lane marking also complies with the recommendation of the ASTM standards as a 

sufficiently large sample size for determining precision (8). 
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3.2 Closed Course 

The purpose of the closed course testing was twofold, to investigate a correlation 

between the ADAS machine vision quality scores and the conventional pavement 

marking evaluation characteristics for various measurement conditions, and to determine 

the repeatability of the machine vision quality scores under different controlled 

conditions for pavement markings that are intentionally degraded. The closed course 

benefits include completely defined pavement markings which allows for a correlation to 

be established between the machine vision quality score and other pavement marking 

evaluation characteristics. Other closed course benefits include more easily controlled 

conditions and lack of outside interference from traffic or other sources when making 

multiple consecutive data collection runs for determining repeatability. Also degraded 

pavement markings on a closed course provide a designed sample for the repeatability 

and correlation analysis not available in the open road scenario. 

The correlation portion of the closed course experiment used multiple pavement 

markings that were installed and characterized for another study at the TTI facility. 

These markings consisted of 7 levels of yellow and white preformed tape markings 

arranged in both solid line and skip line configurations. Each pavement marking was 

characterized in both daytime and nighttime lighting conditions. Data collected on the 

markings consisted of retroreflectivity, luminance, and color values. Machine vision 

quality scores were also obtained through the other study for the seven levels of yellow 

and white tape markings in daytime and nighttime conditions. However, since this data 

was from another study not designed for determining repeatability, there were not 
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enough quality scores collected to meet the minimum sample size requirements for 

determining repeatability for all of the testing conditions and marking configurations. 

These markings had been removed from the TTI facility at the time of the data collection 

for this study so further data collection was not possible. Figure 4 shows an example of 

the pavement marking layout at the TTI facility which was used in the closed course 

experiment.  

 

 

Figure 4. Pavement Marking Layout for Closed Course Correlation Analysis 

 

Additional machine vision data was collected on another set of markings in the 

closed course conditions for the repeatability analysis. The machine vision data was 

collected in as close to the same conditions and method as the open road data as 

possible. There were six painted white solid pavement markings used for the closed 

course experiment. Some of these markings had been intentionally degraded when 

placed at the TTI facility in order to simulate markings of varying quality. An example 

of the marking layout is shown in Figure 5. 
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Figure 5. Layout of Closed Course Pavement Markings for Repeatability Analysis 

 

The markings were arranged in 3 sets of parallel lines at the TTI facility. The 

data collection vehicle was driven between each set of parallel markings in both 

directions. Driving through the markings in both directions allowed for the markings to 

be observed from both sides of the collection vehicle which served as multiple 

observation positions in the repeatability analysis. Along with observing each line from 

both sides of the collection vehicle, observing the markings in different travel directions 

was important because pavement markings characteristics can be direction dependent. 

Pavement marking evaluation characteristics, such as retroreflectivity and luminance, 
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may not have the same value when measured in different directions due to variations in 

the marking application process or external influences. Retroreflectivity values change 

for different measurement directions because of the variation in the embedment and 

distribution of the glass beads that occurs in the paint marking construction process. A 

sufficiently large sample of quality scores was collected from this second set of closed 

course pavement markings for the repeatability analysis.  

An important difference between the open road and closed course portions of the 

study is the type of pavement on which the lane markings are observed. The open road 

portion of the study consisted of asphalt pavement surfaces while the closed course 

markings were applied to a concrete pavement surface. Pavement type plays an 

important role in the visibility of lane markings due to the contrast between the 

pavement surface and the lane marking. Lighter colored pavement surfaces, such as 

concrete, have less contrast with white lane markings than a darker surface such as 

asphalt does. This difference in contrast could affect the quality scores assigned to the 

lane markings in each portion of the study as it is reasonable to assume that a lane 

marking on a dark surface would be more easily detected by the machine vision than a 

marking on a light surface. 
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Table 2 shows a summary of the attributes measured along with the sample size 

for the open and closed course scenarios.  

 

Table 2. Data Collection Summary 

Scenario Analysis Type 

Pavement 

Markings  

Attributes 

Evaluated Sample Size 

Open 

Road 

Repeatability 

Analysis 

14 Lane 

Markings Quality Score 

30 observations per 

marking 

Closed 

Course 

Repeatability 

Analysis 

6 Lane 

Markings Quality Score 

30 observations per 

marking 

Correlation 

Analysis 

7 Lane 

Markings 

Cap Y 

Luminance 

At least 20 measurements 

per marking 

Qd Luminance 

At least 14 measurements 

per marking 

Retroreflectivity 

At least 14 measurements 

per marking 

Quality Score 

18 observations per 

marking 
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4. DATA COLLECTION  

4.1 Open Road Data Collection 

The data collected in the open road portion of this study was for use in the 

repeatability analysis. The data of interest for the pavement markings in the open road 

scenario was the quality score that was assigned to the lane marking segments by the 

Mobileye machine vision system. The machine vision camera assigns the lane markings 

a quality that is an integer from zero to three (0-3), with zero being the lowest quality 

and three being the highest. In a sense, the machine vision quality score is akin to the 

confidence level that the machine vision camera has that it can detect the lane marking.  

4.1.1 Data Collection Equipment 

All of the data for the open road portion of the study was collected using a TTI 

fleet vehicle equipped with the Mobileye machine vision sensor technology. The data 

collection system consists of a single machine vision camera mounted to the inside of 

the windshield below the rear-view mirror and an in-vehicle data unit located underneath 

the rear seat. The in-vehicle data unit has wi-fi connectivity and is responsible for 

recording and pushing the data to a cloud server where it is stored. The data collection 

vehicle, the position of the machine vision camera, and the in-vehicle data unit are 

shown in Figure 6 through Figure 9. The data collection system does not require any 

input from the driver of the vehicle during the data collection process. 
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Figure 6. Data Collection Truck 

 

 

Figure 7. Machine Vision Camera Position on Data Collection Truck 
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Figure 8. Installed Machine Vision Camera 

 

 

Figure 9. Machine Vision In-Vehicle Data Unit 
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Understanding the geometry of the machine vision camera is important to be able 

to compare the machine vision quality scores to the other pavement marking 

characteristics such as retroreflectivity. The camera is positioned in the middle of the 

data collection vehicle at a height of about 64 inches from the ground. The headlamps of 

the data collection vehicle are located at a height of 39 inches from the pavement. 

According the user guide the Mobileye camera has an object maximum detection range 

of 80 meters (262 feet) and a view field of 40 degrees by 30 degrees (width x height) 

(15). However, the actual look ahead distance associated with the quality score assigned 

to the pavement markings by the machine vision camera is not explicitly stated. From 

another study it was determined that the sweet spot for the Mobileye machine vison 

camera to evaluate pavement markings is 30 to 40 feet in front of the vehicle (16). The 

distance at which the machine vision camera evaluates the lane marking and assigns the 

quality score is important in calculating the observation angle and entrance angle for 

comparison to the standard 30-meter geometry of the retroreflectometer used in this 

study. The angles were calculated using the 30 to 40-foot viewing distance discussed 

above. The observation angle was calculated to be between 2.94 and 3.89 degrees and 

the entrance angle was between 83.8 and 85.35 degrees. Figure 10 shows the viewing 

geometry of the data collection vehicle with the machine vision camera.  



 

26 

 

 

Figure 10. Data Collection Truck Viewing Geometry 

 

The observation angle is a function of the distance between the headlamps and 

the machine vision camera along with the viewing distance. While the entrance angle is 

a function of the height of the headlamps and the viewing distance. A smaller 

observation angle increases the observed luminance as the light source (headlamps) and 

receptor (driver or machine vision camera) are closer together. A smaller entrance angle 

would also result in increased luminance as the light source and reflector are more in line 

with each other. The data collection vehicle has higher headlamps than the vehicle used 

to construct the standard 30-meter geometry along with a higher receptor height. When 

the geometry is calculated with the 30 to 40 foot viewing distance this results in a 

smaller entrance angle and a larger observation angle than the 30-meter geometry.  

The Mobileye machine vision camera collects data for two lane markings on 

each side of the camera in the collection vehicle. The lane markings are named in the 

raw data files as far left, left, right, and far right. For this study only data collected on the 

adjacent lane markings (left and right) was analyzed. Data is recorded in tenth of second 

increments and is geolocated to an accuracy of less than one foot.  
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In the open road data collection, the ADAS machine vision sensor collected data 

for each lane marking and segment of roadway and recorded the data on the cloud 

server. The data collected included the pavement marking quality score, the type of 

pavement marking, and the position in relation to the collection vehicle. Other useful 

data collected about the test vehicle includes the time of day, speed, and geographic 

location.  

4.1.2 Data Collection Conditions 

In order to understand the full capabilities of the machine vision technology and 

usefulness of the data it collects; it was necessary to investigate the effects of different 

collection conditions on the consistency of the pavement marking quality scores. As 

mentioned previously, the open road setting allows for the experiment to be conducted in 

real world driving scenarios with other vehicles on the roadway and influence from the 

environment. It was desirable to perform data collection operations in a diverse set of 

conditions in order to determine if any effects exist on the pavement marking quality 

scores. Data was collected in four conditions: Bright overhead sun, Nighttime, Low Sun 

Angle, and Overcast. These conditions were selected based on the potential effects of 

light, glare, visibility, and shadows on the pavement markings. The low sun angle 

condition data was collected in late evening because of the orientation of the roadway 

segments to create potential for the scenario with the most extreme shadows on the 

roadway and glare for the camera. The purpose of collecting data in this condition was to 

determine if shadows on the lane markings and the camera pointing directly into or away 

from the sun have any effect on the consistency of the quality scores. As these 
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conditions occur in a smaller window of time, it was difficult to collect an adequate 

sample size for analysis in a single session; therefore, it was necessary to split data 

collection over several days in order to drive a route the desired number of runs. The 

data collection efforts for this condition were carried out in consecutive days and started 

at the same time in order to minimize the effects of collecting in multiple sessions. Since 

the low angle sun and overcast conditions were more dependent on weather conditions 

and time, it was only feasible to perform data collection efforts at a single location 

instead of all three locations. This was due to the need to collect adequate sample sizes 

in a shorter amount of time. Low angle sun data was collected on N Texas Avenue 

because of the orientation of the roadway and the presence of trees close to the roadway 

to create shadows and glare conditions. Overcast data was collected on FM 2154 since it 

was one of the shorter sections and had a simple configuration with only one lane in 

each direction which allowed a sufficient sample size to be collected while overcast 

conditions persisted. The data for each condition was collected in the same window of 

time at each location in order to best replicate each condition for all of the locations. For 

the daytime condition, a bright overhead sun was desirable, so the data collection was 

performed in the middle of the day from 11:00 AM to 3:00 PM. The data for the 

nighttime condition was collected after darkness was fully reached from 10:00 PM to 

2:00 AM. The low sun angle condition was collected in the evening before sunset from 

6:00 PM to 8:00 PM. On the days this data was collected sunset was recorded to occur at 

8:15 PM. The overcast condition was collected as long as the condition persisted.  
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4.1.3 Open Road Data Processing  

The data collected by the ADAS machine vision camera was pushed to a cloud 

server where it is recorded in tenth of second increments. The server has a web interface 

that includes a model view showing what the machine vision detected and the raw data 

files available for download. The model view is shown in Figure 11 and the raw data 

format on the cloud server is shown in Figure 12. The model view shows the light 

condition the data was collected in (day or night), a visual representation of the lane 

markings as detected by the machine vision camera, the quality score of the lane 

markings, dimensions of the lane markings, and the distance from the machine vision 

camera to the lane markings. The raw data file shows all of the data collected on the lane 

markings along with the other data recorded about the data collection vehicle by the 

onboard system.

 

Figure 11. Model View Display of Machine Vision Data 
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Figure 12. Raw Data Interface Sample 

 

The data files are stored by each individual trip beginning with the turning on of 

the vehicle. In order to separate the data files into individual runs, the vehicle was turned 

off and back on after a section was traveled in each direction resulting in the creation of 

a new file for each data collection run. The ability of the ADAS machine vision system 

to record other vehicle functions, such as the activation of turn signals, was used to help 

mark the beginning and end of each roadway section. At the start of section, the left turn 

signal was activated then at the end of each section the right turn signal was activated. 

This allowed for easier separation of the raw data files into each collection section for 

analysis. Raw data files were able to be downloaded in the comma separated values 

format for use in the analysis portion of the study. 

4.2 Closed Course Data Collection 

There were two groups of closed course data collected for the purposes of this 

project. Closed course data was collected for both the repeatability analysis and the 
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correlation analysis portions of the effort. For the repeatability analysis the quality score 

assigned by the Mobileye machine vision camera was collected for the closed course 

pavement markings. The correlation analysis required the quality score to be collected 

along with other characteristics of the pavement markings. These markings were fully 

characterized for retroreflectivity, luminance, and color. Table 3 shows the evaluation 

characteristics, by their variable name, that were collected or calculated from the 

collected values for each marking and used in the correlation analysis.  

  



 

32 

 

Table 3. Pavement Marking Characteristics 

Marking Y 
Luminance of the 
pavement marking 

-  

Cap Y 
Contrast 

Calculated contrast 
based on the 
luminance of the 
pavement marking 
and adjacent 
pavement surface 

𝐶𝑅 =
𝑌(𝑚𝑎𝑟𝑘𝑖𝑛𝑔) − 𝑌(𝑝𝑎𝑣𝑒𝑚𝑒𝑛𝑡)

𝑌(𝑝𝑎𝑣𝑒𝑚𝑒𝑛𝑡)
 Eq. 4 

Composite 
M1 Mk 
Luminance 

Luminance of the 
pavement marking 

-  

Luminance 
Ratio 

Calculated 
ratio based on 
the average of 
the adjacent 
pavement 
surface 
luminance on 
both sides of 
the marking 

𝐿𝑅 =
𝐶𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒 𝑀1 𝑀𝑘 𝐿𝑢𝑚𝑖𝑛𝑎𝑛𝑐𝑒

1
2

∗ (𝑃𝑎𝑣𝑚𝑒𝑛𝑡 𝐿𝑢𝑚𝑖𝑛𝑎𝑛𝑐𝑒𝑟𝑖𝑔ℎ𝑡 + 𝑃𝑎𝑣𝑒𝑚𝑒𝑛𝑡 𝐿𝑢𝑚𝑖𝑛𝑎𝑛𝑐𝑒𝑙𝑒𝑓𝑡)
 Eq. 5 

Qd(LTL-XL) 
Marking 

Luminance coefficient 
under diffuse 
illumination for the 
pavement marking  

-  

Qd(LTL-XL) 
Contrast 

Calculated contrast 
based on luminance 
coefficient under 
diffuse illumination of 
marking and adjacent 
pavement surface 

𝐶𝑅 =
𝑄𝑑(𝑚𝑎𝑟𝑘𝑖𝑛𝑔) − 𝑄𝑑(𝑝𝑎𝑣𝑒𝑚𝑒𝑛𝑡)

𝑄𝑑(𝑝𝑎𝑣𝑒𝑚𝑒𝑛𝑡)
 Eq. 6 

RL(LTL-X) 
Marking 

Retroreflectivity of 
the pavement 
marking 

-  

RL(LTL-X) 
Contrast 

Calculated contrast 
based on 
retroreflectivity of the 
pavement marking 
and adjacent 
pavement surface 

𝐶𝑅 =
𝑅𝐿(𝑚𝑎𝑟𝑘𝑖𝑛𝑔) − 𝑅𝐿(𝑝𝑎𝑣𝑒𝑚𝑒𝑛𝑡)

𝑅𝐿(𝑝𝑎𝑣𝑒𝑚𝑒𝑛𝑡)
 Eq. 7 
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4.2.1 Data Collection Equipment 

The closed course data collected for use in repeatability analysis was collected 

with the same equipment and method as the open road data. The closed course data 

collected for use in the correlation analysis included fully characterized pavement 

markings for retroreflectivity, luminance, and color along with the machine vision 

quality score. The data used in the correlation analysis was collected by other 

researchers in conjunction with another project.  

Several different pieces of equipment were used to collect the pavement marking 

characteristic data. The retroreflectivity was measured with a 30-meter geometry using a 

handheld reflectometer. The device used to measure the retroreflectivity values was an 

LTL-X model reflectometer. Multiple luminance values were collected for each of the 

markings using different equipment and methods. The luminance coefficient under 

diffuse illumination (Qd) for the pavement markings were also collected using a 

handheld reflectometer, but with the LTL-XL model. The Marking Y and Composite M1 

Mk luminance were the other luminance values collected for the markings. These 

luminance values for the pavement markings and adjacent pavement surface were 

measured using a CCD camera and a more traditional colorimeter. The color data is also 

measured with these devices in the form Y,x,y where Y is the luminance and x,y are the 

coordinates on the Hunter color chart. As with the open road data the Mobileye machine 

vision technology was used to collect pavement marking quality score data. 
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4.2.2 Data Collection Conditions 

Each marking had its characteristics measured in daytime and nighttime 

conditions. The quality score data was collected in these same conditions driving 

through the pavement marking course in each direction. By collecting data in both 

directions any effects on the data due to glare or other factors can be observed along 

with providing another measurement location for calculating the repeatability.  

4.2.3 Data Processing 

The machine vision sensor used in the closed course data collection for the 

correlation analysis did not produce raw data files the same as for the open road data 

collection. The vehicle for this data collection was equipped with a separate video 

camera which was used in conjunction with the machine vision sensor to reduce the data 

and acquire quality scores for the pavement markings. A video viewing program was 

used to synchronize the video feeds from the camera and machine vision to determine 

quality scores over the length of the pavement markings. The data collected for the 

repeatability analysis did not require any additional processing as it was collected with 

the same equipment as the open road data.  
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5. DATA ANALYSIS AND RESULTS 

5.1 Repeatability of Machine Vision Quality Scores 

The fundamental precision statistic for characterizing the repeatability of the 

pavement marking quality scores is the repeatability standard deviation. Using the 

equation below the repeatability standard deviation was calculated for each lane marking 

in the study.  

𝑠𝑟 = √∑ 𝑠2𝑝
1 /𝑝   (Equation 8) 

𝑠𝑟 = 𝑡ℎ𝑒 𝑟𝑒𝑝𝑒𝑎𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 

𝑠 = 𝑡ℎ𝑒 𝑐𝑒𝑙𝑙 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 = √∑ (𝑥 − 𝑥̅)2/(𝑛 − 1)𝑛
1   (Equation 9) 

𝑝 = 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑎𝑏𝑜𝑟𝑎𝑡𝑜𝑟𝑖𝑒𝑠 

The pavement quality measurement being collected is not a continuous variable, 

but is a rapidly recorded integer value; however, for the purposes of this study the above 

equations and method are still able to be applied because of the way the way the data is 

recorded by the ADAS machine vision system.  

The machine vision technology records a quality score more than ten times per 

second meaning there are a large number of results collected even on a short lane 

marking or roadway segment. Therefore, a segmented approach was used to analyze the 

data. In the segmented approach the quality score results were grouped into a defined 

distance and then averaged over each segment for use in the repeatability analysis. For 

the open road data collection, the pavement marking quality score results were grouped 

into 0.05-mile-long segments then averaged for analysis. In the closed course analysis, 
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the observed pavement markings were each about 0.1 miles long, so they were divided 

in half for grouping the quality scores then averaged. The segment lengths were chosen 

based on the typical 0.1-mile distance used for aggregating pavement marking 

retroreflectivity values when reporting measurements collected with a mobile vehicle 

mounted retro-reflectometer. The segments used in the analysis are only half of the 

typical length for mobile retroreflectivity, but the machine vision camera is not directly 

measuring retroreflectivity, so it was decided that the 0.05-mile-long segment length 

would be acceptable to maintain a consistent segment length for the open road and 

closed course analysis.  

The segmented approach required a substantial amount of data processing in 

order to transform the raw data into a useable format for analysis. Each data collection 

run had to be separated into individual lane markings then the data for each lane marking 

was binned into the 0.05-mile-long segments for the open road data and divided in half, 

which was roughly 0.05 miles, for the closed course data. Once the data was grouped 

into bins of the correct segment length the average and standard deviation of the 

pavement marking quality score from all of the data collection runs were calculated and 

assigned to the corresponding segment of each pavement marking. This process was 

repeated for all of the data collection locations and conditions. The result was fourteen 

open road lane markings each divided into 0.05-mile-long segments and six closed 

course pavement markings each divided into two segments.  

The repeatability standard deviation was calculated according to Equation 8 for 

each segment of all the pavement markings in the study. When applying the formula to 
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the collected data, the value p for the number of laboratories is equivalent to the number 

of positions the pavement marking is observed from by the machine vision camera. In 

order to calculate a true repeatability standard deviation, multiple laboratories must be 

used, or in this study multiple observation positions must be present. For the pavement 

markings that are only observed from one position, the repeatability standard deviation is 

equivalent to the sample standard deviation. In this study, the outside edge lane markings 

for each of the three open road locations and the two-way left-turn lane markings on FM 

2818 are examples of lane markings only observed from one position. These lane 

markings were removed from the analysis results presented below.  

  



 

38 

 

 

5.1.1 Open Road Repeatability Analysis 

The open road pavement markings analyzed for repeatability are shown in the 

figure below.  

 

       

Figure 13. Open Road Pavement Markings with Repeatability Standard Deviation 

 

Lane Marking 1 was the double yellow centerline marking on FM 2154 located 

outside of College Station, TX. The pavement marking was observed from two positions 

both on the left side of the data collection vehicle as the road segment was traveled in 

1 2 3 4 5 6 
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each direction. The road section was 0.80 miles long; therefore, it was divided 16 

analysis segments each 0.05 miles long. For this location, data was collected in three 

observation conditions: day, night, and overcast. Since this marking was observed in 

different directions a comparison of the quality scores for each direction under each of 

the collection conditions was performed to see if there was a clear observable difference 

in the quality score assigned to the pavement marking based on the travel direction of the 

data collection vehicle. Figures 15 through 17 show the average quality score for each 

segment in each direction in the three collection conditions.  

 

Figure 14. Daytime Quality Score by Direction 
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Figure 15. Nighttime Quality Score by Direction 

 

 

Figure 16. Overcast Quality Score by Direction 
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The comparison of the quality scores collected in each travel direction did not 

show a clear trend for a difference in quality score based one direction versus the other. 

This observation held true for all of the markings observed in different directions. 

Because of this both directions of data were combined for use in the repeatability 

analysis.  

 

 

Figure 17. Lane Marking 1 FM 2154 Segment Repeatability Standard Deviation 

 

The repeatability standard deviation is shown in Figure 17 for each segment 

under each of the three observation conditions. At this location, the repeatability 

standard deviation appears to vary for many of the analysis segments based on the 

condition the data was collected in day, night, or overcast. For the majority of the 

segments, the daytime collection condition resulted in a higher repeatability standard 
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deviation than the other collection conditions. The relationship between the average 

quality score of each lane marking segment and the repeatability standard deviation for 

each segment is shown in Figure 18. The figure shows that for each of the observation 

conditions the repeatability standard deviation decreases as the average quality score 

increases. 

 

 

Figure 18. Lane Marking 1 Repeatability Standard Deviation vs. Average Quality 

Score 

 

Lane marking 2 was the dashed white lane line for the southbound travel 

direction of N Texas Avenue in Bryan, TX. The pavement marking was observed from 

both the left and right sides of the data collection vehicle travelling in the same direction. 

The road section was 1.15 miles long and was divided into 23 analysis segments each 
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0.05 miles long. For this location data was collected in three observation conditions: day, 

night, and low angle sun.  

 

 

Figure 19. Lane Marking 2 N Texas Ave Segment Repeatability Standard Deviation 

 

The repeatability standard deviation is shown in Figure 19 for each segment 

under each of the three observation conditions. At this location the repeatability standard 

deviations for the first segments are much higher than the end segments particularly in 

the day and low sun collection conditions. This could be due to the presence of shadows 

from trees close by the edge of the roadway at this location. For the segment with high 

repeatability standard deviations the low sun condition has a higher value in most 

instances. The lack of a bar for a condition indicates that the repeatability standard 

deviation is equal to zero, which means that the quality score was the same for each 

sample and observation position in that segment. The relationship between the average 

quality score of each lane marking segment and the repeatability standard deviation for 
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each segment is shown in Figure 20. The figure shows that for each of the observation 

conditions the repeatability standard deviation decreases as the average quality score 

increases. 

 

 

Figure 20. Lane Marking 2 Repeatability Standard Deviation vs. Average Quality 

Score 

 

Lane marking 3 was the double yellow centerline marking on N Texas Avenue in 

Bryan, TX. The pavement marking was observed from two positions both on the left 

side of the data collection vehicle as the road segment was traveled in each direction. 

The road section was 1.15 miles long and was divided into 23 analysis segments each 

0.05 miles long. For this location data was collected in three observation conditions: day, 

night, and low angle sun. 
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Figure 21. Lane Marking 3 N Texas Ave Segment Repeatability Standard Deviation 

 

The repeatability standard deviation is shown in Figure 21 for each segment 

under each of the three observation conditions. This section had low repeatability 

standard deviations across all collection conditions and segments except for a few 

segments which had higher values in the low angle sun condition. The lack of a bar for a 

condition indicates that the repeatability standard deviation is equal to zero, which 

means that the quality score was the same for each sample and observation position in 

that segment. The relationship between the average quality score of each lane marking 

segment and the repeatability standard deviation for each segment is shown in Figure 22. 

The figure shows that for each of the observation conditions the repeatability standard 

deviation decreases as the average quality score increases. 
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Figure 22. Lane Marking 3 Repeatability Standard Deviation vs Average Quality 

Score 

 

Lane marking 4 was the dashed white lane line for the northbound travel 

direction of N Texas Avenue in Bryan, TX. The pavement marking was observed from 

both the left and right sides of the data collection vehicle travelling in the same direction. 

The road section was 1.15 miles long and was divided into 23 analysis segments each 

0.05 miles long. For this location data was collected in three observation conditions: day, 

night, and low angle sun. 
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Figure 23. Lane Marking 4 N Texas Ave Segment Repeatability Standard Deviation 

 

The repeatability standard deviation is shown in Figure 23 for each segment 

under each of the three observation conditions. This location shows a similar pattern to 

lane marking 2 where the segments at the beginning have higher repeatability standard 

deviations. It also shows the same trend as previous markings where the daytime 

condition results in the higher repeatability standard deviations. The lack of a bar for a 

condition indicates that the repeatability standard deviation is equal to zero, which 

means that the quality score was the same for each sample and observation position in 

that segment. The relationship between the average quality score of each lane marking 

segment and the repeatability standard deviation for each segment is shown in Figure 24. 

The figure shows that for each of the observation conditions the repeatability standard 

deviation decreases as the average quality score increases. 
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Figure 24. Lane Marking 4 Repeatability Standard Deviation vs. Average Quality 

Score 

 

Lane marking 5 was the dashed white lane line for the southbound travel 

direction of FM 2818 in Bryan, TX. The pavement marking was observed from both the 

left and right sides of the data collection vehicle travelling in the same direction. The 

road section was 0.60 miles long and was divided into 12 analysis segments each 0.05 

miles long. For this location data was collected in two observation conditions: day and 

night. 
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Figure 25. Lane Marking 5 FM 2818 Repeatability Standard Deviation 

 

The repeatability standard deviation is shown in Figure 25 for each segment 

under each of the three observation conditions. Again, at this location, by observation, 

the data shows that the daytime collection condition repeatability standard deviation is 

usually higher than the nighttime values. The relationship between the average quality 

score of each lane marking segment and the repeatability standard deviation for each 

segment is shown in Figure 26. The figure shows that for each of the observation 

conditions the repeatability standard deviation decreases as the average quality score 

increases. 
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Figure 26. Lane Marking 5 Repeatability Standard Deviation vs. Average Quality 

Score 

 

Lane marking 6 was the dashed white lane line for the northbound travel 

direction of FM 2818 in Bryan, TX. The pavement marking was observed from both the 

left and right sides of the data collection vehicle travelling in the same direction. The 

road section was 0.60 miles long and was divided into 12 analysis segments each 0.05 

miles long. For this location data was collected in two observation conditions: day and 

night 
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Figure 27. Lane Marking 6 FM 2818 Repeatability Standard Deviation 

 

The repeatability standard deviation is shown in Figure 27 for each segment 

under each of the three observation conditions. This location is interesting as almost all 

of the segments only have repeatability standard deviations for one of the two collection 

conditions. The lack of a bar for a condition indicates that the repeatability standard 

deviation is equal to zero, which means that the quality score was the same for each 

sample and observation position in that segment. More segments have a repeatability 

standard deviation in the nighttime condition than the daytime condition which is 

different from previous lane markings where the daytime condition would often show 

the higher repeatability standard deviation. The relationship between the average quality 

score of each lane marking segment and the repeatability standard deviation for each 

segment is shown in Figure 28. The figure shows that for each of the observation 
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conditions the repeatability standard deviation decreases as the average quality score 

increases. 

 

 

Figure 28. Lane Marking 6 Repeatability Standard Deviation vs. Average Quality 

Score 

 

From analyzing the collection locations and segments individually it was 

observed that there appeared to be a difference in the repeatability standard deviations 

based on the data collection condition. Therefore, it was thought to be useful to compare 

the repeatability standard deviation and average quality score for all segments and 

conditions in order to see any potential effects the condition had on the collected values. 

From this it was observed that the different conditions all follow the same trend, that as 

the average quality score increases the repeatability standard deviation decreases. 

However, it was also observed that the different conditions appear to have very different 

ranges of average quality score and repeatability standard deviation. The daytime and 
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low angle sun condition have the most spread in average quality score and also the 

highest repeatability standard deviations while the overcast and nighttime conditions are 

much more closely grouped and have lower repeatability standard deviations. This could 

be due to the more consistent light conditions present at night and in the overcast 

collection conditions than the low angle sun and daytime conditions where the light is 

more variable and can result in shadows or glare on the pavement markings and road 

surface. The results are shown in Figure 29. 

 

 

Figure 29. Repeatability Standard Deviation vs. Average Quality Score 

 

As a result of these observations, further analysis was performed on the average 
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test for the effects of collection conditions on the quality score and repeatability standard 

deviation. All of the average quality scores and repeatability standard deviations for each 

segment and collection condition were combined into one data set for this analysis. The 

means of the average quality scores and repeatability standard deviations were compared 

using the Tukey’s HSD test. This method compares the means of multiple groups and 

allows for the conclusion to be made whether the means are significantly different from 

each of the other groups. This test was performed for both the average quality score and 

the repeatability standard deviation. The results are shown in Figures 30 to Figure 33. 

 

 

Figure 30. Average Quality Score by Collection Condition 
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Figure 31. Tukey's HSD Results for Average Quality Score 

 

Figure 32. Repeatability Standard Deviation by Collection Condition 
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Figure 33. Tukey's HSD for Repeatability Standard Deviation 

 

The results of the Tukey’s HSD test show that the means of the average quality 

scores for the lane markings and the repeatability standard deviations are significantly 

different between the daytime and nighttime collection conditions. All of the other 

comparisons between the different collection conditions do not indicate that there is a 

significant difference in the means for the average quality score or the repeatability 

standard deviation. The evidence of the means for the average quality score and 

repeatability standard deviation being different between the daytime and nighttime 

conditions could mean that the data collected by the ADAS machine vision camera is not 
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repeatable across the different conditions. This could have implications on decision-

making using ADAS machine vision data collected in different conditions. 

5.1.2 Closed Course Repeatability Analysis 

Along with the six open road lane markings, six more closed course pavement 

markings were analyzed for repeatability. Each of the closed course markings was a 

solid white lane marking. These markings were divided in half for analysis purposes 

resulting in 12 total segments from all six of the markings. The first half of each marking 

was designated as “a’ while the second half was labeled “b” for organizational and data 

presentation purposes. The repeatability standard deviation for each marking segment is 

shown in Figure 34. 

 

 

Figure 34. Closed Course Repeatability Standard Deviation by Segment 

 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

1a 1b 2a 2b 3a 3b 4a 4b 5a 5b 6a 6b

R
e

p
e

at
ab

ili
ty

 S
ta

n
d

ar
d

 D
e

vi
at

io
n

 (
Sr

)

Segment 

Day

Night



 

58 

 

As a group the closed course pavement marking segments had lower average 

quality scores than the open road lane marking segments. This could be explained by a 

couple of different reasons. The first is that the closed course markings, being 

intentionally degraded, likely have lower retroreflectivity values than the open road 

markings. The second is that the closed course markings were applied to a concrete 

pavement surface which would have a lower contrast with the white lane markings than 

the asphalt pavement surface from the open road scenario. Both reasons could result in 

the closed course pavement markings being more difficult for the machine vision to 

detect, thus resulting in lower quality scores.  

The relationship between the average quality score and the repeatability standard 

deviation was again plotted as it was for the open road data. The daytime data appears to 

exhibit close to the same relationship as the open road data where the repeatability 

standard deviation decreases as the average quality score increases; however, the 

nighttime data does not appear to follow this relationship as clearly as in the open road 

condition.  
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Figure 35. Closed Course Repeatability Standard Deviation vs. Average Quality 

Score 

 

This difference in the relationship between the repeatability standard deviation 

and average quality score for the nighttime data could be a result of the lower average 

quality scores for the markings resulting in increased variability and higher Sr due to the 

presence of both lower and higher quality markings. The closed course nighttime 

average quality scores were consistently lower than the corresponding daytime average 

quality score for almost all of the closed course segments as shown in Figure 36.  
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Figure 36. Closed Course Average Quality Score by Segment 

 

The same comparison using the Tukey’s HSD test performed on the open road 

data was also applied to the closed course data. For the closed course data, the means of 

the average quality score for the daytime and nighttime condition were significantly 

different just as they were for the open road data. However, the means of the 

repeatability standard deviations were not significantly different between the two 

collection conditions. The results of the JMP software outputs are shown Figures 37 

through 40.  
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Figure 37. Closed Course Average Quality Score by Condition 

 

 

Figure 38. Tukey's HSD Results for Closed Course Average Quality Score 
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Figure 39. Closed Course Repeatability Standard Deviation by Condition 

 

 

Figure 40. Tukey's HSD Results for Closed Course Repeatability Standard 

Deviation 

 

5.1.3 Relationship between Quality Score and Retroreflectivity  

Further investigation into the difference between the daytime and nighttime 

machine vision average quality scores was performed as a result of the closed course 

repeatability analysis and the comparison of the machine vision average quality scores 
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collected in the different conditions. This analysis sought to understand the relationship 

between the average quality scores assigned by the ADAS machine vision camera and 

the measured retroreflectivity of the pavement markings. The measured retroreflectivity 

of the closed course pavement markings ranged from 14.14 mcd/m2/lux to 1285.88 

mcd/m2/lux. For this analysis the average quality score for each individual data 

collection run was paired with the measured retroreflectivity for the pavement marking 

resulting a total of 597 paired observations. A box-and-whisker plot was then 

constructed to compare the mean and range of the measured retroreflectivity values that 

were assigned each quality score value by the machine vision.  

 

 

Figure 41. Box-and-Whisker Plot Retroreflectivity vs. Quality Score 
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 The box-and-whisker plot in Figure 41 shows that the markings assigned a 

quality score of 0 and 1 have much lower retroreflectivity values that the markings 

assigned quality scores of 2 or 3. The plot indicates that the quality score of 0 or 1 was 

only assigned by the machine vision camera if the retroreflectivity was below about 200 

mcd/m2/lux, but the two highest retroreflectivity values assigned a quality score of 1 

were outliers. The quality scores of 2 and 3 were assigned for a much larger range of 

retroreflectivity values including the range of retroreflectivity values that were given a 0 

or 1 quality score. However, the average retroreflectivity value for the markings 

assigned a quality score of 2 or 3 is higher than the maximum retroreflectivity value 

assigned a quality score of 1. The plot appears to indicate that there is some relationship 

between the measured pavement marking retroreflectivity and the machine vision quality 

score. The relationship appears to be that a pavement marking with a retroreflectivity 

value greater that 200 mcd/m2/lux will not receive a quality score of 0 or 1, but that a 

pavement marking with a retroreflectivity of less than 200 mcd/m2/lux can receive a 

quality of 2 or 3.  

 Another chart comparing the retroreflectivity for each closed course pavement 

marking with its average quality score for all the data collection runs was also created to 

observe any potential relationships. Figure 42 shows the results of this chart where each 

point represents each of the different closed course pavement markings measured for 

retroreflectivity and assigned a machine vision quality score in both the northbound and 

southbound direction.  
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Figure 42. Retroreflectivity vs. Average Quality Score 

 

The same relationship from the box-and-whisker plot can also be seen in this chart as the 

retroreflectivity values greater than 200 mcd/m2/lux only received high quality scores (2 

or 3) while the lower retroreflectivity values had averages across the entire range of the 

quality scores (0-3).  

When the relationship between retroreflectivity and pavement marking is 

considered along with the previous analysis showing that the average of the daytime 

quality scores was significantly different, and higher, than the nighttime quality scores 
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the conclusion could be made that presence of pavement markings with low 

retroreflectivity values is the reason for the lower nighttime quality scores. The higher 

average quality score in the daytime could also indicate that in the daytime condition the 

machine vision is not as dependent on the brightness of the marking measured by values 

such as Qd, RL, or Cap Y, but it could be more dependent on presence or contrast 

between the marking and the pavement surface. While in the nighttime condition, the 

machine vision is more reliant on the retroreflectivity of the marking in order to 

determine presence and assign a quality score; therefore, since the pavement markings 

had varying retroreflectivity values the result was lower average quality scores for the 

data collected in the nighttime condition.  

5.1.4 Repeatability Analysis Conclusions 

Between the open road and closed course data twelve pavement markings 

divided into 121 segments were analyzed for repeatability under four data collection 

conditions. For both the open road and closed course data it was found that the 

repeatability standard deviation and average quality score were significantly different 

between the daytime and nighttime collection conditions. There was not a significant 

difference when comparing to the low angle sun and overcast collection conditions. 

These results indicate that the data collected by the ADAS machine vision camera may 

not be repeatable under different collection conditions. As a result, the decision-making 

process should take this into account when using data collected under different 

conditions.  
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5.2 Correlation between Pavement Marking Characteristics and Quality Score 

In order to understand the usefulness of the quality scores assigned by the 

machine vision system it was necessary understand how the quality score relates to 

known pavement marking characteristics such as retroreflectivity, luminance, and 

contrast. The relationship between the machine vision quality scores and the current 

pavement marking performance evaluation characteristics was established using the 

closed course data collected by TTI. While the values for retroreflectivity and luminance 

were directly collected using equipment and methods described in the data collection 

section, the values for contrast needed to be calculated. Contrast was calculated using the 

ratio between the pavement markings and pavement surface for all of the 

retroreflectivity and luminance values collected by the different methods and devices 

outlined in the data collection section.  

Regression analysis was performed to investigate the correlation between the 

machine vision quality score and the current measured pavement marking evaluation 

characteristics. For the analysis, the pavement marking characteristics considered as 

explanatory variables included the collected retroreflectivity and luminance values along 

with the calculated contrast ratios, while the machine vision quality score was 

considered as the response variable. The regression analysis was performed using JMP 

software, which is an SAS product with enhanced analysis capabilities and features.  
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5.2.1 Simple Regression Models 

The first step in building the regression models was to plot the machine vision 

quality score against each of the explanatory variables to determine which could be most 

useful in fitting an appropriate model. This step also allows the observation of any 

curved relationship or if a transformation could potentially be needed in fitting an 

appropriate model. As a part of this step the data was analyzed to determine if any 

outliers or influential points existed that could affect the validity of the fit models. 

Outliers and influential points were checked by calculating the studentized residuals and 

Cook’s D. From this initial analysis it appeared that one of the materials used in the 

measurements produced outliers for each of the evaluation characteristics and for 

multiple degrees of regression polynomials in both the day and night collection 

conditions. However, because of the design of the experiment which used different 

materials, some of which were intentionally degraded, in order to obtain a representative 

sample of marking condition measurements, these data points were not removed as their 

appearance as outliers does not necessarily indicate an error in measurement, sampling, 

or data recording occurred. 

After determining the validity of the data, the regression models created for each 

explanatory variable were analyzed to determine which of the variables appeared to 

correlate the most with the average marking quality score and if any variable 

transformations should be made. The average marking quality score for each marking 

was plotted against each of the eight explanatory variables for the day and night 

collection conditions. For each of the bivariate plots a linear, quadratic, and cubic 
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regression equation was fit in order to observe any potential relationship between the 

individual explanatory variables and the average marking quality score. To determine 

which of the regression models most closely fit the data the coefficient of determination 

(R2) was examined. The R2 value is the proportion of the overall variability of the 

response that is explained by the model and indicates a close fit of the data to the 

estimated line, thus, it is a measure of the strength of the relationship. The residuals from 

the fit regression models were analyzed in order to validate the model assumptions and 

investigate the need for variable transformations. This analysis was performed by 

plotting the residuals against the explanatory variables and the model predicted response 

variable. From these plots the spread and shape of the residuals was examined to 

determine if the model assumptions were valid or if an appropriate variable 

transformation could be made to remedy any failing assumptions and fit a better model.  

As a result of this analysis it was determined that none of the explanatory 

variables exhibit a linear relationship with the average making quality score in either the 

daytime or nighttime condition. The most appropriate fit for the daytime condition was a 

cubic regression with Marking Cap Y as the explanatory variable. The R2 value was 0.72 

and the fit line is shown in Figure 43. 
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𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑄𝑢𝑎𝑙𝑖𝑡𝑦 𝑆𝑐𝑜𝑟𝑒 = −0.0000619𝑥3 + 0.00522575𝑥2 − 0.144011𝑥 + 3.72304 

 

 

Figure 43. Daytime Average Marking Quality Score vs. Marking Y 

 

For the daytime condition, the other variable most highly correlated when fit with 

a cubic regression was Cap Y Contrast which is expected as this variable is dependent on 

the Marking Y value. For the nighttime condition, the most appropriate fit was again a 

cubic regression this time with Cap Y Contrast as the explanatory variable. The R2 value 

was 0.57 and the fit curve is shown below. This R2 value is very low but was included to 

convey the lack of a good regression fit based on a single explanatory variable for the 

nighttime condition.  
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𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑄𝑢𝑎𝑙𝑖𝑡𝑦 𝑆𝑐𝑜𝑟𝑒 = 0.0380291𝑥3 − 0.49435𝑥2 + 2.13915𝑥 − 0.281797 

 

 

Figure 44. Nighttime Average Quality Score vs. Cap Y Contrast 

 

For the nighttime condition, the other variable most closely correlated was 

Marking Y which is expected since Cap Y Contrast is related to the Marking Y value. 

The explanatory variables with the lowest correlation to the average marking quality 

score in both the daytime and nighttime conditions for all of the regression curves fit 

were the variables related to measuring the Qd and RL values. It is possible that the 

retroreflectivity measurements taken with the retroreflectometer are not as highly 

correlated with the quality scores given by the machine vision because the of the 
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differences in viewing geometry between the retroreflectometer and the machine vision 

camera.  

Along with observing the best fit regression models, the results for each 

explanatory variable were analyzed for potential transformations by the process 

previously described. For both the daytime and conditions none of the linear fit models 

clearly indicated that a logarithmic transformation would be appropriate. In order to fully 

investigate the potential for transforming the data, a reciprocal transformation was 

applied to the explanatory variables in both the daytime and nighttime conditions. For 

the daytime condition, none of the reciprocal transformed fits resulted in an improved 

model over the cubic regression for Marking Cap Y. In the nighttime condition the 

reciprocal transformation of the variable Composite M1 Mk Luminance did result in an 

improved correlation with an R2 value equal to 0.62; however, the residuals were unclear 

as to whether the model fit is entirely appropriate. The fit curve is shown in Figure 45.  
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𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑄𝑢𝑎𝑙𝑖𝑡𝑦 𝑆𝑐𝑜𝑟𝑒 = 3.0597877 − 0.646328 ∗
1

𝐶𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒 𝑀1 𝑀𝑘 𝐿𝑢𝑚𝑖𝑛𝑎𝑛𝑐𝑒
 

 

 

Figure 45. Reciprocal Transformation Average Marking Quality Score vs. 

Composite M1 Mk Luminance 

 

The residuals, which were used to determine if the model fit assumptions were 

met or if a variable transformation was appropriate, were often unclear and difficult to 

use for drawing conclusions about regression models when only one explanatory 

variable was considered. Therefore, multiple linear regression models were constructed 

to investigate if a relationship existed between the average marking quality rating and a 

set of the explanatory variables.  
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5.2.2 Multiple Linear Regression Models 

In a multiple linear regression model, more than one explanatory variable can be 

considered along with interaction between the explanatory variables when predicting the 

response variable. From the previous simple regression analysis, it was already 

determined which of the individual explanatory variables were most correlated with the 

average marking quality score, so it was expected that these variables would be included 

in the multiple regression model. The multiple regression models were constructed using 

the JMP software and all of the explanatory variables were considered for potential 

inclusion in the model. Since the multiple regression models being fit were exploratory 

in nature and purpose, the stepwise model construction method was used. This allowed 

for the inclusion of all the explanatory variables and the creation of multiple regression 

models including all combinations of the variables. Several model selection criteria were 

used in order to identify the best multiple regression model fit using the stepwise 

method. These criteria included the adjusted R2, root mean square error (RMSE), 

Mallow’s Cp, the predicted error sum of squares, and the Akaike’s Information Criterion 

(AICc). Based on these criteria and the inclusion of all explanatory and their potential 

combinations in a multiple linear regression model, the models with the best fit were 

identified for both the day and night average marking quality scores. For the daytime 

condition, the best fit multiple linear regression model according to the stepwise process 

included the terms Marking Y, Qd (LTL-XL) Marking, and Luminance Ratio as 

explanatory variables. The prediction expression and model selection criteria are shown 

below. 
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1.742 + 0.034 ∗ 𝑀𝑎𝑟𝑘𝑖𝑛𝑔 𝑌 − 0.012 ∗ 𝑄𝑑(𝐿𝑇𝐿 − 𝑋𝐿)𝑀𝑎𝑟𝑘𝑖𝑛𝑔 + 0.364 ∗

𝐿𝑢𝑚𝑖𝑛𝑎𝑛𝑐𝑒 𝑅𝑎𝑡𝑖𝑜  

Adjusted R2 RMSE Cp PRESS AICc 

0.599412 0.308312 8.7463 5.369 28.70717 

 

For the nighttime condition, the best fit multiple linear regression model 

according to the stepwise process included the terms Marking Y, Qd (LTL-XL) 

Marking, and Qd (LTL-XL) Contrast as explanatory variables. The prediction 

expression and model selection criteria are shown below. 

1.393 + 0.042 ∗ 𝑀𝑎𝑟𝑘𝑖𝑛𝑔 𝑌 − 0.017 ∗ 𝑄𝑑(𝐿𝑇𝐿 − 𝑋𝐿)𝑀𝑎𝑟𝑘𝑖𝑛𝑔 + 0.785 ∗

𝑄𝑑(𝐿𝑇𝐿 − 𝑋𝐿)𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡  

Adjusted R2 RMSE Cp PRESS AICc 

0.42573 0.47839 1.7390 11.4694 67.3660 

 

In order to investigate other potential multiple regression models that could better 

predict the average marking quality score, separate models were created including 

variable transformations again using the stepwise regression process. The variable 

transformations used were logarithmic transformation of the explanatory variables 

(LogX), logarithmic transformation of the explanatory and response variables (LogLog), 

and a reciprocal transformation of the explanatory variables (RecipX). The variables 
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included in the best fit models along with their prediction equations and model selection 

criteria are shown below.  

Day 

• LogX: 

3.946 + 0.768 ∗ 𝐿𝑜𝑔(𝑀𝑎𝑟𝑘𝑖𝑛𝑔 𝑌) − 1.037 ∗ 𝐿𝑜𝑔(𝑄𝑑(𝐿𝑇𝐿 − 𝑋𝐿)𝑀𝑎𝑟𝑘𝑖𝑛𝑔)

+ 0.790 ∗ 𝐿𝑜𝑔(𝐿𝑢𝑚𝑖𝑛𝑎𝑛𝑐𝑒 𝑅𝑎𝑡𝑖𝑜) 

Adj R2 RMSE Cp PRESS AICc 

0.799 0.218 4.99 2.37 -1.74 

 

• LogLog: 

𝐸𝑥𝑝(2.667 + 0.506 ∗ 𝐿𝑜𝑔(𝑀𝑎𝑟𝑘𝑖𝑛𝑔 𝑌) + 0.543 ∗ 𝐿𝑜𝑔(𝑅𝐿(𝐿𝑇𝐿 −

𝑋)𝑀𝑎𝑟𝑘𝑖𝑛𝑔) − 1.252 ∗ 𝐿𝑜𝑔(𝑄𝑑(𝐿𝑇𝐿 − 𝑋𝐿)𝑀𝑎𝑟𝑘𝑖𝑛𝑔) − 0.580 ∗

𝐿𝑜𝑔(𝑅𝐿(𝐿𝑇𝐿 − 𝑋)𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡) + 0.846 ∗ 𝐿𝑜𝑔(𝑄𝑑(𝐿𝑇𝐿 − 𝑋𝐿)𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡) +

0.453 ∗ 𝐿𝑜𝑔(𝐿𝑢𝑚𝑖𝑛𝑎𝑛𝑐𝑒 𝑅𝑎𝑡𝑖𝑜)) 

Adj R2 RMSE Cp PRESS AICc 

0.815 0.136 5.46 1.15 -38.08 

 

• RecipX: 

2.765 − 12.39 ∗ (
1

𝑀𝑎𝑟𝑘𝑖𝑛𝑔 𝑌
) + 63.16 ∗ (

1

𝑄𝑑(𝐿𝑇𝐿 − 𝑋𝐿)𝑀𝑎𝑟𝑘𝑖𝑛𝑔
) − 1.23

∗ (
1

𝐿𝑢𝑚𝑖𝑛𝑎𝑛𝑐𝑒 𝑅𝑎𝑡𝑖𝑜
) 
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Adj R2 RMSE Cp PRESS AICc 

0.838 0.195 5.10 1.83 -11.35 

Night 

• LogX: 

1.207 + 0.913 ∗ 𝐿𝑜𝑔(𝑀𝑎𝑟𝑘𝑖𝑛𝑔 𝑌) − 0.515 ∗ 𝐿𝑜𝑔(𝑄𝑑(𝐿𝑇𝐿 − 𝑋𝐿)𝑀𝑎𝑟𝑘𝑖𝑛𝑔)

+ 0.248 ∗ 𝐿𝑜𝑔(𝐿𝑢𝑚𝑖𝑛𝑎𝑛𝑐𝑒 𝑅𝑎𝑡𝑖𝑜) 

Adj R2 RMSE Cp PRESS AICc 

0.584 0.406 0.16 8.39 50.08 

 

• LogLog: 

𝐸𝑥𝑝(−0.112 + 0.633 ∗ 𝐿𝑜𝑔(𝑀𝑎𝑟𝑘𝑖𝑛𝑔 𝑌) − 0.309 ∗ 𝐿𝑜𝑔(𝑄𝑑(𝐿𝑇𝐿 −

𝑋𝐿)𝑀𝑎𝑟𝑘𝑖𝑛𝑔) + 0.104 ∗ 𝐿𝑜𝑔(𝐿𝑢𝑚𝑖𝑛𝑎𝑛𝑐𝑒 𝑅𝑎𝑡𝑖𝑜)) 

Adj R2 RMSE Cp PRESS AICc 

0.568 0.246 0.45 3.33 8.98 

 

• RecipX: 

3.348 − 14.67 ∗ (
1

𝑀𝑎𝑟𝑘𝑖𝑛𝑔𝑌
) − 0.450 ∗ (

1

𝐶𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒 𝑀1 𝑀𝑘 𝐿𝑢𝑚𝑖𝑛𝑎𝑛𝑐𝑒
) 

Adj R2 RMSE Cp PRESS AICc 

0.742 0.320 0.50 5.36 30.53 
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A few of the transformed multiple regression models appear to produce better fit 

models according to their adjusted R2 value than the linear multiple regression models 

for both the day and night conditions. The best fit models for both the daytime and 

nighttime conditions use the reciprocal transformation of the explanatory variables 

which aligns with the previous results for the simple regression models when the 

reciprocal transformation produced a better fit model for the nighttime condition and a 

similar quality fit to the cubic regression for the daytime condition.  

5.2.3 Correlation Analysis Conclusions 

As a result of the correlation analysis it was found that none of the explanatory 

variables showed a clear linear correlation when compared individually with the average 

pavement marking quality score assigned by the Mobileye machine vision camera. 

Applying polynomial fits to the individual explanatory variables resulted in slightly 

better correlations as expected, but none of the models were overwhelmingly convincing 

as to their validity. Variable transformations were also investigated, and only reciprocal 

transformation resulted in comparable or better correlation for relating some of the 

variables to the average marking quality score. Multiple regression models were more 

successful in fitting the data as more explanatory variables were included in the analysis. 

Again, the reciprocal transformation produced the best fit models for both the daytime 

and nighttime conditions. Further study could be done on the relationship between 

known pavement marking evaluation characteristics and the pavement marking quality 

scores assigned by ADAS machine vision as more data becomes available. When 

performing further analysis, collecting more data from lower quality pavement markings 



 

79 

 

would be useful in determining correlation. This analysis could include investigating the 

relationship between the pavement marking characteristics and the standard deviation of 

the marking quality scores instead of the average quality score. Other approaches to 

constructing regression models could also be explored by combining transformed and 

non-transformed explanatory variables or interaction terms in the models. As of now the 

results of the correlation analysis performed appear to be inconclusive in defining a clear 

model for predicting the average pavement marking quality score assigned by the ADAS 

machine vision camera based on the eight explanatory variables used in the analysis.  
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6. APPLICATION ANALYSIS  

Some attempts have been made by organizations to include pavement markings 

in their transportation asset management systems. According to literature review and 

surveys conducted as a part of other research efforts, only a small percentage of agencies 

manage pavement markings with a dedicated system. An NCHRP synthesis study 

received responses where 20 to 25 percent of responding agencies identified a dedicated 

pavement marking management system or a workbook or spreadsheet (12), while in an 

AASHTO survey published by FHWA 21 of 39 states reported they inventory pavement 

markings and 26 of 39 monitor condition in some fashion (17). Akofio et al. identified 

from literature review that about 35 percent of the 64 agencies reviewed managed 

pavement markings.  A target survey was sent out to agencies as a follow up to the 

literature review in order to get a more current state of practice and see if any agencies 

had expanded their asset management programs. The survey received 18 responses 

where 10 agencies indicated that they include pavement markings in their asset 

management efforts (18).  

Often agencies lack required data to complete asset management systems 

because the data collection efforts required to create asset inventory and monitor asset 

condition can be quite challenging. In the studies and surveys mentioned above, visual 

inspection was the most commonly reported data collection method employed for both 

asset inventory and condition assessment (12, 17, 18). The vast majority of reporting 

agencies assess pavement marking conditions at least on an annual basis and all 

responses indicate the frequency of condition surveys as being less than 5 years apart 
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(12, 17, 18). In addition to visual inspections, which provide qualitative evaluations of 

pavement markings, agencies may also take retroreflectivity measurements to evaluate 

asset performance. 

Effective asset management depends on the type, amount, and quality of data 

available. For pavement markings, because of reliability and repeatability issues 

associated with different types of retroreflectometers, developing deterioration models 

for predicting performance or cost have not been widely accepted and used (12). This 

lack of reliable physical measurements along with the dependence on visual inspection 

affects the ability of agencies to fully implement an asset management plan for pavement 

markings. Machine vision data collection directly addresses the issues that currently 

exist in developing a widespread pavement marking asset management approach. The 

quality ratings provided by an ADAS machine vision system could be shown as reliable 

across various conditions with more investigation and data as shown in the data analysis 

section. The quality scores reliability and repeatability should not change with different 

operators since the data collection system does not require active input from the driver. 

Machine vision technology also provides continuous data for pavement marking quality. 

Pavement marking inventory and condition assessments can be updated real time for a 

large network of roadways by equipping only a small percentage of agency vehicles with 

this technology. Since the machine vision system does not require scheduled inventory 

or condition assessments of the pavement markings, like an approach based on visual 

inspection or using retroreflectometers, more efficient use of agency resources can be 

realized while also providing a greater percentage of asset inventory and more up to date 
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condition assessments. Using machine vision technology for pavement marking data 

collection should improve on the numbers reported in the surveys mentioned previously 

where responses to Akofio’s survey indicated a median value of 50 percent of pavement 

markings included in agency’s asset management programs and in the AASHTO survey 

only 10 of the 39 responses indicated that all of their pavement marking assets were 

inventoried and less than 10 responses reported 100 percent coverage of condition 

monitored while the greatest number of responses indicated no coverage of condition 

monitored (17,18). An ADAS machine vision system also provides data on pavement 

markings not previously easily available when using only visual inspection and 

retroreflectometers such as GPS coordinates, marking width, and lane width.   

Machine vision technology is easy to integrate and allows for the improvement 

of current information technology systems and data analysis tools used to support asset 

management. The most common currently used tools for analysis in pavement marking 

management are the Microsoft office suite (Excel and Access), Oracle database systems, 

or GIS interfaces (12, 18). The use of these programs indicates a simpler approach to 

managing pavement markings when compared with other advanced software 

management systems for bridges and pavements (18). Implementing machine vision 

technology for data collection and condition assessments allows for easy incorporation 

into a GIS or other map interface for data visualization because the data is geolocated 

automatically upon collection and hosted on a cloud-based server. Efforts have already 

been made to create an automatically updating map interface showing pavement marking 

inventory and conditions as shown in Figure 46. 
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Figure 46. Example Pavement Marking Inventory Map 

 

The pavement marking data could also be incorporated into a more widely used 

GIS interface with analysis tools which many agencies already use as a part of their 

transportation asset management programs for managing other infrastructure resources. 

When data is effectively integrated into a visual system, geographic information could 

be easily used to efficiently plan maintenance on multiple assets that are in close 

proximity.  

One of the key elements of asset management is using inventory and quantitative 

condition data to inform the management decision making process for budget and 

maintenance of an asset. In the current state of pavement marking asset management 

practice, survey results indicate that the asset inventory and condition assessment are 

used to a degree in budgeting decisions but are not the primary drivers of budget 

processes. For both the AASHTO survey and the survey conducted by Markow, less 

than one-third of responses indicated an approach based on asset performance or asset 
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inventory for funding allocation (12, 17). Instead, most responses indicated using a 

method based on adjustments to previous budget, while a high percentage also 

responded that judgment and politics are involved (12). These trends in pavement 

marking asset management could be due to lacking asset inventory as discussed 

previously and the dependence on qualitative visual inspections. Machine vision 

technology would remedy these issues by increasing asset inventory and providing 

quantitative assessments of pavement marking conditions which can be used in budget 

and maintenance decision making as a part of the pavement marking asset management 

process. 

When considering implementing machine vision technology into an already 

established pavement marking asset management system or using machine vision to 

create a new approach to managing pavement marking assets, it is important to 

understand the potential costs and benefits of such a system. Different approaches exist 

for evaluating asset management programs. Since asset management programs are often 

developed in stages one evaluation approach is to use a general scale to classify the 

maturity level of the system based on its capabilities. AASHTO uses the maturity scale 

shown in Table 4 as a general classification of transportation asset management system 

in order to understand the relative position of different processes and determine next 

steps to improve (19). This scale is most useful in understanding the potential span of 

improvement that is possible in asset management but is not necessarily an explicit 

definition of levels used to track improvement. 
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Table 4. AASHTO Transportation Asset Management Maturity Scale 

Transportation Asset 

Management (TAM) 

Maturity Scale Level 

Generalized Description 

Initial 
No effective support from strategy, processes, or tools. 

There can be lack of motivation to improve. 

Awakening 
Recognition of a need and basic data collection. There is 

often reliance on heroic effort of individuals. 

Structured 
Shared understanding, motivation, and coordination. 

Development of processes and tools. 

Proficient 
Expectations and accountability drawn from asset 

management strategy, processes, and tools 

Best Practice 
Asset management strategies, processes, and tools are 

routinely evaluated and improved. 

 

Markow also applies a scale that evaluates the different aspects of an asset 

management system as listed in Table 5 by placing them into one of three general stages 

of maturity: basic infrastructure management, growing application of asset management, 

or state-of-the-art asset management (20). Each aspect of asset management has different 

criteria for being placed in the three general stages of maturity. 

 

Table 5. Aspects of Infrastructure Asset Management Evaluated for Maturity 

Aspect of Infrastructure Management 
Overall Description of Agency Practice 

Policy Guidance 

Asset Life-Cycle Focus 

Asset Performance and Costs 

Impacts of Asset Performance 

Resource Allocation, Budgeting, and Project Selection 

Organization 

Performance Measurement 

IT and Data Collection and Processing 
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Implementing machine vision technology for pavement marking management as 

part of a transportation asset management system undoubtedly moves an asset 

management system up on either maturity scale. The machine vision technology and 

associated data processing systems, at minimum, would fall in the structured category on 

the AASHTO scale and if properly applied would result in a best practice maturity level. 

Using machine vision for pavement marking quality data collection falls in the IT and 

Data Collection and Processing aspect of infrastructure asset management in the scale 

outlined by Markow in NCHRP 371. The state-of-the-art asset management maturity 

level for the IT and Data Collection and Processing aspect describes multiple capabilities 

that should present in the asset management system. These capabilities include: a mix of 

technology used for data collection including automated measurement systems, data 

organized on an integrated platform accessible internally and potentially externally, data 

updated on an established schedule or criteria, and data coverage is high and cost 

effective. Using machine vision to collect pavement marking quality data and the 

associated data organization structure meets all of the capabilities required of an asset 

management system functioning at a state-of-the-art maturity level for the IT and Data 

Collection and Processing category. The more mature an asset management system is, 

the more benefits will be realized. When more assets are managed at a higher maturity 

level, as pavement markings would be with the utilization of machine vision technology, 

synergistic effects could also be realized, resulting in improved management of other 

transportation assets and the overall performance of the infrastructure management 

system. 
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Another method used to more quantitatively evaluate the costs and benefits of 

asset management systems and practices is to perform a benefit cost analysis. Benefit 

cost analysis can be performed for an entire transportation asset management system, the 

inclusion of a new asset to be managed, or for the implementation of a new technology, 

practice, or method for managing assets. Machine vision technology used for pavement 

marking asset management can be incorporated into an existing transportation asset 

management system that is already managing pavement markings using other methods, 

it can be used to add pavement markings into an infrastructure asset management system 

that is not currently managing pavement markings, or it can be used to create a stand-

alone asset management system focused only on pavement markings. Ideally, for a 

benefit cost analysis two scenarios would be compared, in this case one asset 

management system would implement machine vision for managing pavement 

markings, while the other would not. The challenge in performing a benefit cost analysis 

for using machine vision technology for pavement marking asset management comes 

when attempting to quantify the benefits directly attributable to the machine vision 

technology. In an asset management system not currently managing pavement markings 

or managing pavement markings at low maturity level, implementing machine vision 

technology could have a synergistic effect resulting in potential benefits or costs for 

other assets being managed as the scope and maturity level of the asset management 

system increases. Also quantifying benefits for managing pavement markings using 

machine vision technology would be difficult as the performance of the machine vision 
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system’s outputs could be dependent on the maturity level of the asset management 

system in which the technology is implemented.  

When taking these challenges into consideration the decision was made to do a 

cost comparison between using the repurposed ADAS machine vision system developed 

by TTI and costs reported in literature for pavement marking data collection. Finding 

costs for current pavement marking data collection methods proved to be difficult with 

the only costs coming from Akofio et al. and Sitzabee. In response to a survey sent out to 

numerous agencies by Akofio only one response indicated a cost for pavement marking 

data collection which was $4 per lane mile (18). The other cost for pavement marking 

data collection is specific to retroreflectivity data collection in North Carolina where a 

cost of $200,000 was reported by Sitzabee to collect data used in pavement marking 

asset management on approximately ten percent of the roadways (11). In 2013, North 

Carolina reported having 225,168 lane miles of roadway, so the cost to collect data on 

approximately 22,520 lane miles would be $8.88 per lane mile. 

The costs for implementing machine vision technology for pavement marking 

quality data collection come from the pilot program where TTI installed ADAS machine 

vision units into TxDOT fleet vehicles and developed a hosting system for data storage. 

The costs for each component of the program are shown in Table 6.  
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Table 6. Machine Vision Component Costs 

Component Cost 

Unit  $3,000/Unit 
Install $400/Unit 

Cellular Data $50/Unit 

Hosting $1,400/Month 

Tech Services $3,600/Month 

Analysis and Development $120/Hour 

 

Four units were installed as a part of the program, and for this analysis costs were 

calculated over an operating period of only six months. The component and services cost 

assumptions come from a benefit cost analysis report prepared by TTI for the 

implementation of high-speed remote-sensing highway infrastructure technology on a 

large scale for TXDOT. The main assumptions made which affected the cost 

calculations were that the hosting and tech services components scaled linearly for the 

number of units being installed while the analysis and development hourly cost is not 

dependent on the number of units or timeframe. The benefit cost analysis performed by 

TTI assumed one hundred units would be implemented versus the four used for this cost 

comparison. These assumptions resulted in the total cost estimate shown in Table 7 for 

implementing and operating the machine vision technology over a six-month period. 
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Table 7. Total Cost Estimate for Machine Vision System 

Component Cost Units 

Months or 

Hours 

Total Component 

Cost 

Unit $3,000/Unit 4 - $ 12,000 

Install $400/Unit 4 - $ 1,600 

Cellular Data $50/Unit/Month 4 6 $ 1,200 

Hosting $1,400/Month 4 6 $ 336 

Tech Services $3,600/Month 4 6 $ 864 

Analysis and 

Development $120/Hour - 1040 $ 124,800 

      Total Cost $140,800 

 

In order to compare the cost of using machine vision technology to collect 

pavement marking quality data to the current practices used for pavement marking 

quality data collection in asset management, the number of miles of roadway covered by 

the vehicles equipped with machine vision needed to be determined. A map showing the 

approximate coverage area of the four equipped vehicles was shown in Figure 47. The 

data file recorded for each trip made by a machine vision equipped vehicle contains the 

total distance traveled; these distances were recorded for a six-month period resulting in 

the total distances traveled shown in Table 8. 

 

Table 8. Distance Traveled by Machine Vision Equipped Vehicles 

Vehicle ID Trips Miles 

TxDOT_4407K 440 12,153 

TxDOT_4408K 39 465 

TxDOT_4754K 747 6,908 

TxDOT_5756K 888 9,700 

 Total Miles 29,226 
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The machine vision equipped vehicles covered over 29,000 miles of road, 

assigning pavement marking quality scores for the markings on both sides of the vehicle 

resulting in almost 60,000 miles of pavement markings receiving quality assessment. 

When compared to the total implementation and operating cost of $140,800 the result is 

a cost of $4.82 per mile. This value is similar to the cost for pavement marking data 

collection of $4 per mile reported in the survey conducted by Akofio and is less than half 

of the $8.88 per lane mile cost for collecting pavement marking retroreflectivity data in 

North Carolina. The $4.82 per lane mile does not take into account any benefits that 

could result in cost savings in other ways by using machine vision technology for data 

collection and also assumes a high number of hours for the Analysis and Development 

component resulting in a most likely very conservative cost estimate over a six-month 

period. 

There are several potential benefits that if included in a benefit cost analysis 

would lower the overall cost associated with the pavement marking data collection 

process. These benefits were not included in the cost comparison calculation above due 

to lack of data and information regarding specific maintenance and data collection 

practices for the area the pilot program was implemented. The benefits resulting in cost 

savings from implementing machine vision technology for pavement marking data 

collection can be placed into three main categories: human capital efficiency, 

maintenance efficiency, and equipment efficiency. One of the main anticipated benefits 

is improved efficiency for agency employees especially those tasked with pavement 

marking and roadway signage inspection and repair. These employees spend a 
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significant portion of their time driving in order to perform visual inspections. Visual 

inspections must be performed at night which poses difficulties for personnel. With the 

implementation of machine vision data collection inspection efficiency is expected to 

increase, allowing for greater productivity from a large number of employees. Future 

savings could also be realized as the need for adding inspection focused employees 

would decrease with the adoption of more machine vision data collection methods. 

Another area expected to benefit from machine vision data collection is maintenance of 

pavement markings. Current pavement marking maintenance plans are often based on 

using cyclical schedules usually requiring restriping of markings every other year in 

order to ensure safety standards are properly met. This practice does not take into 

account the condition of the pavement markings. By using machine vision technology to 

collect quantifiable pavement marking quality data, the condition of the markings can be 

taken into account when making maintenance decisions allowing for longer periods 

between restriping versus the current practices. Even if striping efficiency only increases 

by a small percentage large cost savings will be realized because of the expansive 

network of pavement markings that must be maintained. The last main potential benefit 

area is increased equipment efficiency for agency fleet vehicles. With the 

implementation of machine vision technology, data collection for pavement markings 

and other roadway infrastructure such as signs can be performed by many types of 

agency vehicles instead of those dedicated to only inspections. This leads to reduced 

inspection vehicle usage which when coupled with increased inspection efficiency will 

result in fewer miles traveled by inspection vehicles. The benefit of fewer miles traveled 
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is realized in vehicle operating cost savings and environmental cost savings. Fewer miles 

traveled means less maintenance and longer service times before replacement of 

inspection vehicles along with reduced emissions from inspection vehicles. There is still 

potential for other benefits outside of the three main categories when machine vision 

technology is implemented for data collection. Potential safety benefits from quantifiable 

pavement marking quality data are difficult to evaluate but could be realized by 

replacing deficient markings sooner because of machine vision collected data. Another 

final benefit is the data being collected. This data could be useful to companies 

researching and testing autonomous vehicles. The data could be used to create maps with 

optimal paths for autonomous vehicle travel based on the quality of pavement markings 

available to assist with navigation. 

Machine vision technology provides a potentially reliable and cost-effective 

method for collecting pavement marking quality data. Implementing machine vision 

technology in transportation asset management will improve current practices allowing 

for more effective management of infrastructure resources. Benefits and cost savings 

will be realized by transportation agencies as a result of using machine vision technology 

for data collection and from the quantifiable pavement marking quality data that is 

collected.  
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7. CONCLUSIONS AND RECOMMENDATIONS  

The potential of machine vision technology in transportation is evident. Whether 

the technology is applied to data collection and asset management or other uses such as 

navigation, it is a part of the future and the present. Using machine vision in 

transportation asset management specifically for pavement markings has numerous 

applications in data collection and analysis. If the machine vision technology is accurate, 

reliable, and fully understood many benefits could be realized. Being able to incorporate 

machine vision technology in pavement marking asset management provides potential 

cost savings, safety improvements, and the potential for a standardized quantitative 

evaluation method.  

As a result of this study it was determined that the ADAS machine vision camera 

was mostly reliable under each individual data collection condition but was not 

necessarily reliable when comparing data between all of the data collection conditions. 

This would mean that when applying machine vision collected data to asset management 

decision-making, criteria would need to be established for evaluating the quality scores 

assigned to the markings by the machine vision based on what the collection conditions 

were. Also, from the study an acceptable correlation could not be established between 

current pavement marking evaluation characteristics and the machine vision quality 

scores. The pavement marking characteristics that were investigated for a correlation 

with the machine vision quality scores included retroreflectivity, luminance, and 

contrast. Not being able to relate the machine vision quality scores to established 

pavement marking evaluation characteristics means that exactly what the ADAS 
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machine vision is evaluating is not fully understood. In order to fully rely on machine 

vision for data collection that could be used in pavement marking asset management 

decision-making, it is desirable that evaluation methods and criteria of the machine 

vision technology are more fully known and quantifiable. To achieve this level of 

understanding and confidence in the ADAS machine vision quality scores much more 

data must be collected under a wider variety of conditions so that the machine vision 

quality scores can be analyzed and understood on their own or another attempt must be 

made to establish a relationship between the ADAS machine vision quality scores and 

other pavement marking evaluation characteristics. 

From this study it is recommended that further investigation be done into both 

the repeatability of the ADAS machine vision quality scores and the correlation of the 

quality scores to established pavement marking evaluation characteristics. Using 

machine vision repurposed from an ADAS system may not be the most effective method 

of evaluating pavement marking quality with machine vision technology. Machine 

vision has a wide range of capabilities outside of ADAS and can be tuned to specific 

functions such as pavement marking evaluation. Machine vision technology can allow 

for expansion of the current scope of most transportation asset management systems to 

include pavement markings by improving data collection and evaluation practices. 

Expansion beyond pavement markings is also possible for the use of machine vision 

technology in asset management to include signs and other transportation infrastructure.  

Other potential uses also exist for machine vision collected pavement marking data 

outside of asset management. This data could also be used for autonomous vehicle 
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routing and mapping of quality pavement markings. The benefits of using machine 

vision technology for pavement marking evaluation and data collection warrant further 

study. 

7.1 Limitations of the Work 

This study provided valuable insights into the ability of a machine vision camera 

operating as part of an Advanced Driver Assistance System (ADAS) to be used for 

collecting pavement marking quality information. However, there are several limitations 

to the work and the conclusions drawn from it. One of the most significant limitations is 

that only one machine vision system was used for collecting the pavement marking 

quality data. By using only the Mobileye unit, the conclusions drawn from the results of 

the study are limited by the capabilities of this system. The quality score output from the 

Mobileye system is a limited measurement. There could be other proprietary background 

data available from the machine vision system that is not currently an available output 

but would offer more information as to how the machine vision camera is evaluating the 

pavement marking quality score. Since the time of the data collection in 2016 there may 

have been updates to the Mobileye system or other ADAS machine vision technologies 

with different capabilities that have emerged. The field of machine vision technology is 

much broader and has more capabilities than what is represented in this study. This 

should be considered when evaluating and applying the conclusions of this research. 

Other limitations of the work include not collecting any pavement marking 

characteristic data for the lane markings in the open road scenario and not considering 

the color of the pavement markings in the correlation or repeatability analysis. By not 



 

97 

 

collecting pavement marking characteristics for the open road scenario, correlation 

analysis could not be performed for the data collected in this scenario. Also, the 

pavement marking characteristics could not be compared with the data from the closed 

course markings which could have provided more insight to the effects of pavement 

type, retroreflectivity, and luminance on the machine vision quality scores. Color is an 

important characteristic that was not considered in any of the analysis. The difference in 

yellow and white markings and how they are evaluated by the machine vision camera is 

important to understand but is not investigated as a part of this research.  

As a part of future work related to research seeking to understand the 

repeatability of machine vision quality scores and establish a correlation between the 

quality scores and other pavement marking characteristics, it will be important to include 

multiple machine vision systems, collect pavement marking characteristics on open road 

lane markings, and investigate the effects of pavement marking color on the machine 

vision quality scores.   
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APPENDIX A 

OPEN ROAD REPEATABILITY 

 

Appendix A contains an example of the data used in the Open Road Repeatability 

analysis along with the summary data for each lane marking and observation condition, 

including calculated repeatability standard deviations.  
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Figure A-1. Example Data Collected for Open Road Repeatability Analysis 

 

 

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19 A20 A21 A22 A23 A24 A25 A26 A27 A28 A29 A30

0.05 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

0.10 3 3 3 2.966667 3 3 3 3 2.896552 3 3 2.965517 3 2.933333 2.965517 3 2.966667 3 2.947368 3 3 3 3 2.793103 2.933333 3 2.965517 2.931034 3 2.758621

0.15 3 3 3 3 3 3 2.344828 3 3 3 2.285714 3 3 2.714286 3 3 2.206897 3 2.236842 3 3 3 3 2.448276 3 3 3 3 2.655172 2.758621

0.20 3 2.724138 3 2.678571 2.965517 3 2.666667 3 2.892857 3 2 2.827586 3 2.964286 2.964286 3 2.814815 3 2.714286 3 2.964286 2.678571 3 2.964286 2.931034 3 2.857143 2.964286 2 2.842105

0.25 3 2.892857 3 2.678571 2.892857 3 3 3 3 3 2.892857 3 3 3 3 2.892857 3 3 3 3 2.892857 2.964286 2.962963 3 2.928571 3 3 2.962963 2.75 2.964286

0.30 3 3 3 2.785714 3 3 3 3 3 3 3 2.947368 3 3 2.962963 3 3 3 3 3 3 3 2.965517 3 3 3 3 3 2.964286 2.928571

0.35 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

0.40 2.931034 3 2.758621 2.931034 2.758621 3 2.62069 2.655172 2.821429 2.931034 2.785714 2.862069 2.785714 2.931034 2.928571 3 2.894737 3 2.931034 2.923077 2.821429 2.921053 2.965517 3 2.965517 3 2.758621 3 3 2.793103

0.45 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

0.50 3 3 3 3 3 3 3 3 3 2.666667 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

0.55 2.766667 3 3 3 3 3 3 3 3 2.25 2.724138 2.7 2.758621 3 2.621622 3 3 2.714286 3 3 3 3 2.62069 3 3 2.357143 3 3 3 2.896552

0.60 2.37037 3 3 3 3 3 3 3 3 3 2.666667 2.740741 2.703704 3 3 3 3 2.75 3 3 3 3 2.814815 3 3 3 3 3 3 2.423077

0.65 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

0.70 2.8 2.793103 2.933333 3 3 3 3 2.25 2.8 2.827586 2.482759 2.655172 2.448276 2.9 2.384615 3 2.931034 3 2.966667 2.933333 2.413793 2.965517 2.413793 2.482759 2.7 2.448276 2.62069 2.758621 2.862069 3

0.75 3 3 3 3 3 3 3 2.933333 3 3 2.897436 3 2.7 3 3 3 3 3 3 2.655172 2 2.833333 2.566667 2 3 2.586207 3 2 3 3

0.80 3 3 3 3 3 3 3 3 3 2.904762 3 2.818182 3 3 3 2.785714 3 3 3 2 2.5625 2 2.764706 2 3 2 3 2.826087 2.642857 3

0.85 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!

0.90 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!

0.95 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!

1.00 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!

1.05 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!

1.10 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!

1.15 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!

1.20 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!

LEFT A

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15 B16 B17 B18 B19 B20 B21 B22 B23 B24 B25 B26 B27 B28 B29 B30

0.05 2.775 2.9 2.9 2.925 2.975 2.875 2.394737 2.5 2.875 2.675 2.825 2.853659 2.775 2.925 2.575 2.9 2.974359 2.461538 3 2.55 2.780488 2.75 2.925 2.85 2.975 3 2.25 2.947368 2.658537 2.825

0.10 3 3 3 3 3 2.833333 2.821429 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

0.15 3 3 2.321429 3 2.962963 2.464286 3 3 2.285714 3 2.482759 3 2.571429 3 2.888889 3 3 3 3 3 2.551724 3 3 3 2.964286 3 2.964286 3 3 3

0.20 3 3 2.678571 3 3 3 3 3 2.551724 3 3 3 3 3 2.678571 3 3 3 3 3 3 3 3 3 3 2.928571 2.758621 3 3 3

0.25 3 3 3 3 3 3 3 3 3 2.964286 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2.964286 3 3 3 3 3

0.30 3 3 3 3 3 3 3 3 3 3 3 2.933333 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

0.35 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

0.40 3 2.931034 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

0.45 2.551724 2.035714 3 2.285714 2.586207 3 3 2.259259 2.5 2.703704 3 3 3 3 3 2.178571 2.947368 3 2.678571 2.37931 2.571429 2.5 3 2.555556 2.464286 3 2.392857 3 3 2.482759

0.50 3 3 3 3 2.481481 3 3 3 2.75 3 3 3 3 3 3 2.444444 3 3 3 3 2.964286 3 3 3 3 3 3 3 3 2.481481

0.55 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

0.60 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

0.65 3 3 3 3 3 3 3 2.933333 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2.965517 3 3 3

0.70 2.733333 3 3 3 2.896552 3 2.714286 2.551724 3 2.9 2.833333 3 2.551724 2.689655 2.105263 2.206897 2.206897 3 2.724138 3 3 2.35 3 2.862069 3 2.5 2.75 2.933333 2.241379 3

0.75 3 2.965517 3 2.964286 2.178571 3 2 2.75 3 3 2.857143 3 3 3 2.178571 2.892857 2.285714 3 2.178571 3 3 2.642857 2.428571 3 3 2.964286 3 3 2 3

0.80 3 3 3 3 2.695652 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2.944444 3

0.85 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!

0.90 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!

0.95 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!

1.00 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!

1.05 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!

1.10 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!

1.15 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!

1.20 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!

LEFT B
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Figure A-2. Lane Marking 1 Summary Data 

 

 

 

 

 

 

 

 

 

 

 

mean stdev mean stdev avg mean sr

0.05 3 0 2.786523 0.195365 2.893261 0.138144

0.10 2.967441 0.059357 2.988492 0.043823 2.977967 0.052171

0.15 2.855021 0.26804 2.881925 0.228023 2.868473 0.248837

0.20 2.847157 0.256489 2.953202 0.118212 2.90018 0.199701

0.25 2.955864 0.07772 2.997619 0.009061 2.976742 0.055329

0.30 2.985147 0.04194 2.997778 0.012172 2.991463 0.030879

0.35 3 0 3 0 3 0

0.40 2.889161 0.108429 2.997701 0.012591 2.943431 0.077186

0.45 3 0 2.702434 0.308657 2.851217 0.218253

0.50 2.988889 0.060858 2.93739 0.165315 2.963139 0.124565

0.55 2.880324 0.203782 3 0 2.940162 0.144095

0.60 2.915646 0.174071 3 0 2.957823 0.123086

0.65 3 0 2.996628 0.013509 2.998314 0.009552

0.70 2.759047 0.237744 2.758353 0.288653 2.7587 0.264426

0.75 2.839072 0.312593 2.776232 0.351572 2.807652 0.332654

0.80 2.81016 0.342981 2.988003 0.056139 2.899082 0.245751

A Day B Day

mean stdev mean stdev avg mean sr

0.05 3 0 2.949877 0.183457 2.974939 0.129724

0.10 2.952279 0.21265 2.986328 0.07734 2.969304 0.160002

0.15 2.964718 0.199587 2.988092 0.039899 2.976405 0.143921

0.20 2.985846 0.064297 2.902069 0.157925 2.943958 0.12057

0.25 2.990517 0.027462 2.956048 0.174545 2.973282 0.12494

0.30 2.936673 0.113193 2.986328 0.07185 2.9615 0.094802

0.35 2.943746 0.110669 2.996094 0.022097 2.96992 0.079799

0.40 2.987084 0.043223 2.997159 0.016071 2.992122 0.032607

0.45 3 0 2.998494 0.005927 2.999247 0.004191

0.50 3 0 2.867692 0.185656 2.933846 0.131279

0.55 2.957 0.112066 3 0 2.9785 0.079243

0.60 2.974569 0.069449 3 0 2.987284 0.049108

0.65 3 0 2.998512 0.008418 2.999256 0.005952

0.70 2.979994 0.069288 2.959249 0.117285 2.969622 0.096324

0.75 2.99858 0.008035 2.944344 0.171714 2.971462 0.121553

0.80 2.991776 0.04652 2.96875 0.176777 2.980263 0.129256

A Night B Night

mean stdev mean stdev avg mean sr

0.05 3 0 2.824697 0.210252 2.912349 0.148671

0.10 2.987482 0.030201 2.990287 0.047299 2.988884 0.039682

0.15 2.913793 0.227124 2.880419 0.216701 2.897106 0.221974

0.20 2.952865 0.117492 2.981481 0.10143 2.967173 0.109755

0.25 2.985539 0.049391 2.995232 0.015738 2.990386 0.036655

0.30 3 0 2.996736 0.009964 2.998368 0.007046

0.35 3 0 3 0 3 0

0.40 2.937189 0.1151 2.997778 0.012172 2.967484 0.081842

0.45 3 0 2.887288 0.230966 2.943644 0.163318

0.50 3 0 2.984436 0.07253 2.992218 0.051286

0.55 3 0 3 0 3 0

0.60 3 0 3 0 3 0

0.65 3 0 2.996552 0.018887 2.998276 0.013355

0.70 2.937597 0.156279 2.940561 0.117922 2.939079 0.138436

0.75 2.995838 0.023175 3 0 2.997919 0.016387

0.80 2.962404 0.100494 2.996818 0.012123 2.979611 0.071575

B OvercastA Overcast
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Figure A-3. Lane Marking 2 Summary Data 

 

 

 

 

 

 

 

mean stdev mean stdev avg means sr mean stdev mean stdev avg means sr mean stdev

0.05 2.170661 0.268241 2.60345 0.418493 2.387056 0.351489 0.05 3 0 3 0 3 0 0.05 2.517651 0.405722

0.10 2.466378 0.477719 2.962957 0.087187 2.714667 0.343378 0.10 3 0 3 0 3 0 0.10 2.811966 0.378186

0.15 2.670226 0.437692 3 0 2.835113 0.309495 0.15 3 0 3 0 3 0 0.15 2.871533 0.318649

0.20 2.861472 0.291125 3 0 2.930736 0.205857 0.20 3 0 3 0 3 0 0.20 2.934296 0.224473

0.25 2.977679 0.126269 3 0 2.988839 0.089286 0.25 3 0 3 0 3 0 0.25 2.991667 0.045644

0.30 3 0 3 0 3 0 0.30 3 0 3 0 3 0 0.30 3 0

0.35 3 0 2.976293 0.134106 2.988147 0.094828 0.35 3 0 2.979472 0.114294 2.989736 0.080818 0.35 3 0

0.40 3 0 2.983994 0.090544 2.991997 0.064024 0.40 3 0 2.993768 0.025212 2.996884 0.017828 0.40 3 0

0.45 3 0 3 0 3 0 0.45 3 0 2.98503 0.064626 2.992515 0.045698 0.45 3 0

0.50 3 0 3 0 3 0 0.50 3 0 3 0 3 0 0.50 3 0

0.55 3 0 3 0 3 0 0.55 3 0 2.979211 0.115746 2.989606 0.081845 0.55 3 0

0.60 3 0 3 0 3 0 0.60 3 0 2.994067 0.022968 2.997033 0.016241 0.60 3 0

0.65 3 0 3 0 3 0 0.65 3 0 2.998045 0.010885 2.999022 0.007697 0.65 3 0

0.70 3 0 3 0 3 0 0.70 3 0 2.994307 0.031695 2.997154 0.022412 0.70 3 0

0.75 3 0 3 0 3 0 0.75 3 0 2.983382 0.056874 2.991691 0.040216 0.75 3 0

0.80 2.998494 0.008519 3 0 2.999247 0.006024 0.80 3 0 3 0 3 0 0.80 3 0

0.85 2.994612 0.030479 3 0 2.997306 0.021552 0.85 3 0 2.99609 0.02177 2.998045 0.015394 0.85 3 0

0.90 3 0 3 0 3 0 0.90 3 0 3 0 3 0 0.90 3 0

0.95 3 0 3 0 3 0 0.95 3 0 3 0 3 0 0.95 3 0

1.00 3 0 3 0 3 0 1.00 3 0 3 0 3 0 1.00 3 0

1.05 3 0 3 0 3 0 1.05 3 0 3 0 3 0 1.05 3 0

1.10 3 0 3 0 3 0 1.10 3 0 2.989247 0.049823 2.994624 0.03523 1.10 3 0

1.15 3 0 3 0 3 0 1.15 3 0 2.993326 0.03716 2.996663 0.026276 1.15 3 0

C Day D Day C Night D Night C Low Sun
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Figure A-4. Lane Marking 3 Summary Data 

 

 

 

 

 

 

 

 

mean stdev mean stdev avg means sr mean stdev mean stdev avg means sr mean stdev mean stdev avg means sr

0.05 3 0 3 0 3 0 0.05 3 0 3 0 3 0 0.05 2.900122 0.299248 3 0 2.950061 0.2116

0.10 3 0 3 0 3 0 0.10 3 0 3 0 3 0 0.10 2.968966 0.124938 3 0 2.984483 0.088344

0.15 3 0 3 0 3 0 0.15 3 0 3 0 3 0 0.15 3 0 3 0 3 0

0.20 3 0 3 0 3 0 0.20 3 0 2.996124 0.02123 2.998062 0.015012 0.20 3 0 3 0 3 0

0.25 3 0 3 0 3 0 0.25 3 0 3 0 3 0 0.25 3 0 3 0 3 0

0.30 3 0 3 0 3 0 0.30 3 0 3 0 3 0 0.30 3 0 3 0 3 0

0.35 3 0 3 0 3 0 0.35 3 0 3 0 3 0 0.35 3 0 3 0 3 0

0.40 3 0 3 0 3 0 0.40 3 0 3 0 3 0 0.40 2.923031 0.131782 3 0 2.961515 0.093184

0.45 3 0 3 0 3 0 0.45 3 0 2.99899 0.005533 2.999495 0.003912 0.45 3 0 3 0 3 0

0.50 3 0 3 0 3 0 0.50 2.996774 0.017668 3 0 2.998387 0.012493 0.50 3 0 3 0 3 0

0.55 3 0 3 0 3 0 0.55 3 0 3 0 3 0 0.55 3 0 3 0 3 0

0.60 3 0 3 0 3 0 0.60 3 0 2.994118 0.032219 2.997059 0.022782 0.60 3 0 3 0 3 0

0.65 3 0 3 0 3 0 0.65 3 0 2.996774 0.017668 2.998387 0.012493 0.65 3 0 3 0 3 0

0.70 3 0 3 0 3 0 0.70 3 0 3 0 3 0 0.70 3 0 3 0 3 0

0.75 3 0 3 0 3 0 0.75 3 0 2.994697 0.029046 2.997348 0.020539 0.75 3 0 3 0 3 0

0.80 3 0 3 0 3 0 0.80 3 0 2.999187 0.004453 2.999593 0.003149 0.80 3 0 3 0 3 0

0.85 3 0 2.996498 0.019811 2.998249 0.014009 0.85 3 0 3 0 3 0 0.85 3 0 3 0 3 0

0.90 3 0 3 0 3 0 0.90 3 0 3 0 3 0 0.90 3 0 3 0 3 0

0.95 3 0 3 0 3 0 0.95 3 0 3 0 3 0 0.95 3 0 3 0 3 0

1.00 3 0 3 0 3 0 1.00 3 0 3 0 3 0 1.00 3 0 3 0 3 0

1.05 3 0 3 0 3 0 1.05 3 0 3 0 3 0 1.05 3 0 3 0 3 0

1.10 2.997596 0.013598 3 0 2.998798 0.009615 1.10 3 0 3 0 3 0 1.10 2.995699 0.023558 3 0 2.997849 0.016658

1.15 3 0 3 0 3 0 1.15 3 0 3 0 3 0 1.15 3 0 3 0 3 0

C Low SunA Day C Day A Night C Night A Low Sun
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Figure A-5. Lane Marking 4 Summary Data 

 

 

 

 

 

 

mean stdev mean stdev avg means sr mean stdev mean stdev avg means sr mean stdev

0.05 2.767122 0.406105 3 0 2.8835609 0.28716 0.05 3 0 3 0 3 0 0.05 2.597299 0.436176

0.10 2.901506 0.252661 3 0 2.9507528 0.178658 0.10 3 0 3 0 3 0 0.10 2.937356 0.168906

0.15 2.99442 0.031567 3 0 2.9972098 0.022321 0.15 2.975556 0.133888 2.998534 0.008164 2.9870446 0.094849 0.15 3 0

0.20 3 0 3 0 3 0 0.20 2.9825 0.095851 3 0 2.99125 0.067777 0.20 3 0

0.25 3 0 2.996774 0.017961 2.9983871 0.0127 0.25 3 0 2.987748 0.053873 2.9938742 0.038094 0.25 3 0

0.30 3 0 3 0 3 0 0.30 3 0 2.98827 0.051114 2.9941349 0.036143 0.30 2.996552 0.018887

0.35 2.970833 0.164992 3 0 2.9854167 0.116667 0.35 3 0 2.996416 0.019956 2.9982079 0.014111 0.35 3 0

0.40 2.96875 0.176777 3 0 2.984375 0.125 0.40 3 0 3 0 3 0 0.40 2.885914 0.175264

0.45 2.969828 0.170681 3 0 2.9849138 0.12069 0.45 3 0 3 0 3 0 0.45 3 0

0.50 3 0 3 0 3 0 0.50 3 0 3 0 3 0 0.50 3 0

0.55 3 0 3 0 3 0 0.55 3 0 2.999022 0.005443 2.9995112 0.003848 0.55 3 0

0.60 2.998922 0.006096 3 0 2.9994612 0.00431 0.60 3 0 2.997067 0.016328 2.9985337 0.011545 0.60 3 0

0.65 2.890724 0.295816 2.983871 0.089803 2.9372976 0.2186 0.65 3 0 2.998534 0.008164 2.9992669 0.005773 0.65 3 0

0.70 2.875 0.336011 2.982796 0.095789 2.9288978 0.247062 0.70 3 0 3 0 3 0 0.70 3 0

0.75 2.948008 0.186179 3 0 2.9740042 0.131649 0.75 3 0 3 0 3 0 0.75 3 0

0.80 2.96875 0.176777 3 0 2.984375 0.125 0.80 3 0 3 0 3 0 0.80 3 0

0.85 2.986842 0.074432 3 0 2.9934211 0.052632 0.85 3 0 3 0 3 0 0.85 3 0

0.90 3 0 3 0 3 0 0.90 3 0 3 0 3 0 0.90 3 0

0.95 3 0 3 0 3 0 0.95 3 0 3 0 3 0 0.95 3 0

1.00 3 0 3 0 3 0 1.00 3 0 3 0 3 0 1.00 3 0

1.05 3 0 3 0 3 0 1.05 2.96875 0.171163 3 0 2.984375 0.121031 1.05 3 0

1.10 3 0 3 0 3 0 1.10 2.9825 0.095851 3 0 2.99125 0.067777 1.10 3 0

1.15 3 0 3 0 3 0 1.15 3 0 3 0 3 0 1.15 2.975758 0.132781

A Day B Day A Night B Night A Low Sun
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Figure A-6. Lane Marking 5 Summary Data 

 

 

 

 

 

 

 

 

 

 

 

mean stdev mean stdev avg means sr mean stdev mean stdev avg means sr

0.05 2.737621 0.325311 2.985417 0.082496 2.861519 0.237311 0.05 2.980574 0.109888 2.935141 0.196248 2.957858 0.159042

0.10 2.96663 0.179705 3 0 2.983315 0.127071 0.10 2.984375 0.088388 2.945516 0.192487 2.964945 0.149773

0.15 2.995795 0.022646 3 0 2.997897 0.016013 0.15 3 0 2.997058 0.013127 2.998529 0.009282

0.20 3 0 3 0 3 0 0.20 3 0 3 0 3 0

0.25 3 0 3 0 3 0 0.25 3 0 2.985795 0.080353 2.992898 0.056818

0.30 3 0 3 0 3 0 0.30 3 0 3 0 3 0

0.35 2.995402 0.024759 3 0 2.997701 0.017508 0.35 3 0 2.997283 0.015372 2.998641 0.01087

0.40 2.965517 0.185695 3 0 2.982759 0.131306 0.40 3 0 2.98989 0.043949 2.994945 0.031077

0.45 2.965517 0.185695 3 0 2.982759 0.131306 0.45 2.997024 0.016836 2.996324 0.020797 2.996674 0.018921

0.50 2.98692 0.070436 3 0 2.99346 0.049806 0.50 3 0 2.995028 0.028124 2.997514 0.019886

0.55 3 0 3 0 3 0 0.55 3 0 3 0 3 0

0.60 3 0 3 0 3 0 0.60 3 0 2.990767 0.044663 2.995384 0.031581

C Day D Day C Night D Night
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Figure A-7. Lane Marking 6 Summary Data 

 

 

 

 

 

 

 

 

 

 

 

mean stdev mean stdev avg mean sr mean stdev mean stdev avg mean sr

0.05 2.876689 0.310153 3 0 2.938345 0.219311 0.05 3 0 3 0 3 0

0.10 2.925806 0.255008 3 0 2.962903 0.180318 0.10 3 0 3 0 3 0

0.15 2.976054 0.104217 3 0 2.988027 0.073693 0.15 3 0 3 0 3 0

0.20 3 0 3 0 3 0 0.20 3 0 2.983221 0.08335 2.99161 0.058938

0.25 3 0 3 0 3 0 0.25 2.999219 0.004419 2.98766 0.064342 2.993439 0.045604

0.30 3 0 3 0 3 0 0.30 2.987733 0.0611 2.980378 0.110999 2.984056 0.089594

0.35 3 0 3 0 3 0 0.35 2.995833 0.02357 2.997159 0.016071 2.996496 0.020172

0.40 3 0 3 0 3 0 0.40 3 0 3 0 3 0

0.45 3 0 3 0 3 0 0.45 3 0 2.947397 0.19317 2.973698 0.136592

0.50 3 0 3 0 3 0 0.50 3 0 2.995089 0.023809 2.997545 0.016836

0.55 3 0 3 0 3 0 0.55 2.995451 0.018908 2.986553 0.059754 2.991002 0.044317

0.60 2.998246 0.009609 3 0 2.999123 0.006795 0.60 3 0 2.995 0.028284 2.9975 0.02

A Day B Day A Night B Night



 

109 

 

APPENDIX B 

CLOSED COURSE REPEATABILITY 

 

Appendix B contains a summary of each of the closed course markings along with their 

calculated repeatability standard deviation used in the Closed Course Repeatability 

analysis.
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Figure B-1. Closed Course Lane Marking Summary Data 

 

 

 

 

 

 

 

 

 

 

Mean Std dev Mean Std dev Sr avg means

1a 2.059476 0.244783 2.646009 0.431978 0.351087 2.352742468

1b 2.308895 0.410933 2.146169 0.232791 0.333959 2.22753238

2a 1.957661 0.161081 2.877147 0.295233 0.237813 2.417404239

2b 2.162268 0.368366 2.316532 0.266603 0.321535 2.239400049

3a 2.408266 0.167693 2.275202 0.168754 0.168224 2.341733871

3b 2.967742 0.179605 2.999022 0.005443 0.127058 2.983382209

4a 2.302419 0.187046 2.202621 0.26674 0.230366 2.252520161

4b 2.937256 0.174199 2.843093 0.261892 0.22241 2.890174179

5a 2.096774 0.180306 2.284274 0.137962 0.160536 2.190524194

5b 2.43304 0.394498 2.998045 0.010885 0.279058 2.715542522

6a 2.311492 0.259266 2.478831 0.208133 0.235094 2.39516129

6b 2.882698 0.265417 2.994589 0.021791 0.18831 2.938643346

Day

NB SB

Mean Std dev Mean Std dev Sr avg means

1a 1.803226 0.282529 2 0 0.199778 1.901613

1b 2 0 1.907834 0.128328 0.090741 1.953917

2a 1.304839 0.374467 1.943164 0.185009 0.295342 1.624002

2b 1.886248 0.277868 1.903226 0.131555 0.217391 1.894737

3a 2.496976 0.492413 2.596774 0.396465 0.447021 2.546875

3b 2.855327 0.206966 2.918866 0.218572 0.212848 2.887097

4a 2.572581 0.308873 2.339718 0.308278 0.308576 2.456149

4b 2.899316 0.287095 2.791789 0.374071 0.333431 2.845552

5a 2 0 1.380952 0.121716 0.086066 1.690476

5b 2 0 1.976959 0.12829 0.090714 1.988479

6a 1.906452 0.208863 1.463902 0.155021 0.183923 1.685177

6b 1.991511 0.047265 2 0 0.033421 1.995756

Night

NB SB
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APPENDIX C 

CLOSED COURSE CORRELATION ANALYSIS 

 

Appendix C contains the raw data for all of the markings in the day and night conditions 

used in the Closed Course Correlation analysis. 
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Figure C-1. Daytime Correlation Analysis Raw Data 

 

Section Direction SectionDirection

Avg 

Rating

Std Dev 

of Avg 

Rating Color Material Marking Y Marking x Marking y

RL (LTL-X) 

Marking

Qd (LTL-XL) 

Marking

Composite M1 Mk 

Luminance

Composite M1 

Mk Color Cx

Composite M1 

Mk Color Cy

CapY 

Contrast

RL (LTL-X) 

Contrast

Qd (LTL-XL) 

Contrast Luminance Ratio

1LDD NB 1LDDNB 0.712988 0.83624 Yellow AA 10.211667 0.34163333 0.3607 26.5625 91.125 2580.358 0.3167711 0.3701586 0.6103806 1.5686516 1.301785714 0.715116179

1LDD SB 1LDDSB 0.707512 0.601392 Yellow AA 10.211667 0.34163333 0.3607 28.1875 88.75 3092.213 0.31247 0.372174 0.6103806 1.6646161 1.347248577 0.830003527

1RDD NB 1RDDNB 2.012975 0.368243 White F 46.581667 0.31813333 0.33833333 24.095238 131.0909091 6603.512 0.3005658 0.3549184 2.6840488 1.4326898 1.83227446 1.914231511

1RDD SB 1RDDSB 2.213363 0.217718 White F 46.581667 0.31813333 0.33833333 29.857143 133.0909091 5829.371 0.295538 0.3503129 2.6840488 1.7752896 1.916230366 1.673946391

1WDD NB 1WDDNB 2.352941 0.523352 White F 46.655 0.31765 0.336525 19.538462 125.3846154 5397.188 0.3234415 0.3571842 2.9310507 1.1598174 1.783369803 1.678714244

1WDD SB 1WDDSB 2.176471 0.498158 White F 46.655 0.31765 0.336525 19.538462 128 3547.439 0.3221087 0.3530482 2.9310507 1.3439153 1.930394432 1.336359957

1YDD NB 1YDDNB 0.785714 1.032441 Yellow AA 13.0025 0.354475 0.370925 22.307692 85.46153846 2253.195 0.343617 0.3815416 0.8816749 1.5425532 1.299415205 0.803883639

1YDD SB 1YDDSB 1.964286 0.237316 Yellow AA 13.0025 0.354475 0.370925 22.307692 85.23076923 5384.884 0.3387183 0.3771008 0.8816749 1.5675676 1.346294046 1.850910979

2LDD NB 2LDDNB 2.306817 0.214283 Yellow D 35.423333 0.47048333 0.43108333 78.761905 119.6 6766.751 0.4152772 0.4353935 2.1970229 4.5006803 1.733333333 1.851895711

2LDD SB 2LDDSB 2.088098 0.18647 Yellow D 35.423333 0.47048333 0.43108333 86.333333 118.6363636 6764.904 0.4185826 0.4330259 2.1970229 4.9333333 1.751677852 1.556080953

2RDD NB 2RDDNB 2.066441 0.205609 White K 49.631667 0.3191 0.33911667 88.25 126.8 7744.495 0.3015269 0.3572684 3.0843086 5.1608187 1.783403657 2.20438877

2RDD SB 2RDDSB 2.517618 0.258665 White K 49.631667 0.3191 0.33911667 92.05 127.2 7191.51 0.3007592 0.3576624 3.0843086 5.3830409 1.86784141 1.86638188

3LDD NB 3LDDNB 2.242381 0.267508 Yellow G 30.311667 0.46651667 0.42853333 197.04762 95.36363636 5700.818 0.4058966 0.4351811 2.3497416 12.7953 1.725328947 1.763149312

3LDD SB 3LDDSB 2.075232 0.216254 Yellow G 30.311667 0.46651667 0.42853333 201.47619 93.09090909 5513.94 0.4011006 0.4301083 2.3497416 13.08287 1.706666667 1.656880478

3RDD NB 3RDDNB 2.030561 0.187456 White BB 24.4 0.31045 0.32866667 44.611111 131.5555556 5442.015 0.2919061 0.3511414 1.6948368 2.841472 2.200743494 1.591119868

3RDD SB 3RDDSB 2.034673 0.232692 White BB 24.4 0.31045 0.32866667 48.333333 119.2222222 5838.824 0.294846 0.3530234 1.6948368 3.0785563 2.185336049 1.768419153

3YDD NB 3YDDNB 2.625 0.223607 Yellow D 31.9475 0.46115 0.4272 68.909091 99.45454545 5065.433 0.426441 0.443687 2.7780435 5.0533333 1.683076923 2.705544303

3YDD SB 3YDDSB 2.21875 0.256174 Yellow D 31.9475 0.46115 0.4272 68.909091 102.0909091 5158.924 0.3677812 0.3953588 2.7780435 5.2638889 1.722392638 2.141708996

4LDD NB 4LDDNB 2.507598 0.149841 Yellow C 38.333333 0.48721667 0.4322 465.78947 136.1 8717.31 0.4588226 0.4369329 2.6342916 28.059607 2.167197452 2.806043224

4LDD SB 4LDDSB 2.188974 0.254116 Yellow C 38.333333 0.48721667 0.4322 474.42105 135.9 7390.184 0.4473546 0.4341005 2.6342916 28.579581 2.164012739 1.97691534

4RDD NB 4RDDNB 2.321069 0.19273 White A 62.946667 0.31798333 0.33823333 928.38095 249.3636364 16793.61 0.3031037 0.3616157 4.3496487 61.51922 3.85252809 5.206128767

4RDD SB 4RDDSB 2.622561 0.217657 White A 62.946667 0.31798333 0.33823333 861.28571 248.2727273 13810.29 0.3020548 0.3607877 4.3496487 57.07315 3.835674157 4.397424583

4WDD NB 4WDDNB 2.558824 0.428746 White K 48 0.318325 0.337025 60.444444 127.6666667 6357.974 0.3235091 0.359645 3.8102798 4.352 2.147663551 2.390752361

4WDD SB 4WDDSB 2.323529 0.430885 White K 48 0.318325 0.337025 60.444444 126.2222222 4474.604 0.3248345 0.3554766 3.8102798 4.7304348 2.281124498 1.804810336

5LDD NB 5LDDNB 2.671066 0.188116 White Paint 31.875 0.3407 0.35968333 31.4 97 6567.718 0.3229884 0.3797092 1.9242379 1.7532995 1.487028302 1.879811948

5LDD SB 5LDDSB 2.413702 0.320214 White Paint 31.875 0.3407 0.35968333 31.36 98.84615385 6597.112 0.3208107 0.381 1.9242379 1.751066 1.540767386 1.805635666

5RDD NB 5RDDNB 2.438376 0.164668 White Paint 30.23 0.32558333 0.34146667 23.52 87.61538462 6089.179 0.3101664 0.3626527 1.900461 1.3688889 1.420199501 1.932216083

5RDD SB 5RDDSB 2.606245 0.157955 White Paint 30.23 0.32558333 0.34146667 22.12 86.23076923 6582.973 0.3107103 0.365043 1.900461 1.2874074 1.387376238 1.836631732

5YDD NB 5YDDNB 2.5 0.365148 Yellow G 31.09 0.460175 0.427375 131.36364 90.36363636 4544.343 0.4190169 0.4422224 2.1840534 10.176056 1.80399274 1.878784158

5YDD SB 5YDDSB 2.125 0.341565 Yellow G 31.09 0.460175 0.427375 131.36364 91.36363636 4445.012 0.3678523 0.3958064 2.1840534 10.94697 1.86802974 2.00636302

6LDD NB 6LDDNB 2.587322 0.13639 White Paint 29.596667 0.35261167 0.37006667 53.04 80.92307692 5613.804 0.3305265 0.3896995 2.0193314 3.0022642 1.340127389 1.589440582

6LDD SB 6LDDSB 2.513877 0.080122 White Paint 29.596667 0.35261167 0.37006667 40.72 79.84615385 6170.225 0.3276109 0.3886161 2.0193314 2.3049057 1.322292994 1.613423033

6RDD NB 6RDDNB 2.59957 0.310363 White Paint 26.758333 0.32746667 0.34578333 27.24 77 5501.993 0.3084615 0.3708118 1.7940552 1.68 1.284980745 1.547865451

6RDD SB 6RDDSB 2.584969 0.179812 White Paint 26.758333 0.32746667 0.34578333 33.12 79.21428571 5375.335 0.3094451 0.3690255 1.7940552 2.0426432 1.321932881 1.752352448

6WDD NB 6WDDNB 2.647059 0.293934 White A 64.2325 0.3178 0.3368 543.09091 226.7272727 12286.25 0.3259476 0.361039 4.8204503 40.364865 3.909090909 5.541013535

6WDD SB 6WDDSB 2.794118 0.309173 White A 64.2325 0.3178 0.3368 543.09091 243.0909091 7481.352 0.3265119 0.3560296 4.8204503 44.58209 4.563139932 3.331519586

6YDD NB 6YDDNB 2.875 0.223607 Yellow C 36.53 0.479875 0.431175 333 124.8181818 6400.095 0.4527389 0.4467053 2.4841891 25.615385 2.27694859 3.148586994

6YDD SB 6YDDSB 2.21875 0.363719 Yellow C 36.53 0.479875 0.431175 333 127.8181818 3953.387 0.4227078 0.4077181 2.4841891 26.543478 2.46234676 1.644887596

7LDD NB 7LDDNB 2.521534 0.302015 White Paint 29.463333 0.35005 0.36735 16.64 52.46153846 3918.231 0.3289984 0.3855618 2.3747985 1.0203774 0.972895863 1.382770523

7LDD SB 7LDDSB 2.676049 0.197692 White Paint 29.463333 0.35005 0.36735 16.2 51 4085.177 0.3235559 0.3838105 2.3747985 0.9933962 0.945791726 1.560643462

7RDD NB 7RDDNB 2.593872 0.302289 White Paint 30.045 0.32578333 0.34218333 14.4 57.15384615 4169.964 0.3147798 0.3728409 2.3239655 0.9191489 1.073699422 1.383875882

7RDD SB 7RDDSB 2.68918 0.197883 White Paint 30.045 0.32578333 0.34218333 15.44 65.15384615 5071.949 0.3100629 0.3672117 2.3239655 0.9855319 1.223988439 1.957006391

7YDD NB 7YDDNB 2.321429 1.067116 Yellow BB 27.61 0.322925 0.34095 29.142857 136.5714286 4683.133 0.3276119 0.3610279 1.7048472 2.1702128 2.483116883 2.482250531

7YDD SB 7YDDSB 1.821429 0.60787 Yellow BB 27.61 0.322925 0.34095 29.142857 134.7142857 7452.811 0.3301617 0.3656223 1.7048472 2.372093 2.583561644 2.588148252

8ONLYDD NB 8ONLYDDNB 1.911216 0.45892 White Paint #N/A #N/A #N/A #N/A #N/A 3722.336 0.2883837 0.3449163 #N/A #N/A #N/A 1.72222532

8ONLYDD SB 8ONLYDDSB 1.62026 0.481742 White Paint #N/A #N/A #N/A #N/A #N/A 3535.906 0.2879814 0.3471958 #N/A #N/A #N/A 1.477929631

9LDD NB 9LDDNB 2.495935 0.862527 White Structured #N/A #N/A #N/A 293.72727 202.5 12055.03 0.3076669 0.3662655 #N/A 13.459201 2.325358852 2.438356558

9LDD SB 9LDDSB 2.555556 0.096225 White Structured #N/A #N/A #N/A 426.21212 207.1666667 4889.98 0.3496487 0.3890828 #N/A 19.529935 2.385796545 0.997208112

9RDD NB 9RDDNB 2.248971 0.750002 White Structured #N/A #N/A #N/A 1005 192.25 2691.909 0.3283421 0.3753243 #N/A 42.605985 2.214011516 0.359160449

9RDD SB 9RDDSB 2.560606 0.104973 White Structured #N/A #N/A #N/A 1285.8788 191.6666667 11164.75 0.3147542 0.3717721 #N/A 54.513565 2.200956938 2.349765045
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Figure C-2. Nighttime Correlation Analysis Raw Data 
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1LND NB 1LNDNB 1.515971 0.859902 Yellow AA 10.2116667 0.34163333 0.3607 26.5625 91.125 0.449532 0.4068173 0.4278198 0.6103806 1.5686516 1.301785714 1.271069589

1LND SB 1LNDSB 0.5 0.516398 Yellow AA 10.2116667 0.34163333 0.3607 28.1875 88.75 0.4888445 0.4099051 0.4311203 0.6103806 1.6646161 1.347248577 1.354993798

1RND NB 1RNDNB 2.228609 0.369291 White F 46.5816667 0.31813333 0.3383333 24.095238 131.0909091 0.6737899 0.4091183 0.4202611 2.6840488 1.4326898 1.83227446 2.155994871

1RND SB 1RNDSB 2.658436 0.217704 White F 46.5816667 0.31813333 0.3383333 29.857143 133.0909091 0.6540531 0.409692 0.4168809 2.6840488 1.7752896 1.916230366 1.587964642

1WND NB 1WNDNB 2.40625 0.455293 White F 46.655 0.31765 0.336525 19.538462 125.3846154 0.5779593 0.4097775 0.4260155 2.9310507 1.1598174 1.783369803 3.311461443

1WND SB 1WNDSB 3 0 White F 46.655 0.31765 0.336525 19.538462 128 0.8582862 0.4077874 0.4190924 2.9310507 1.3439153 1.930394432 3.067794414

1YND NB 1YNDNB 0.733333 1.066815 Yellow AA 13.0025 0.354475 0.370925 22.307692 85.46153846 0.541317 0.4313708 0.443958 0.8816749 1.5425532 1.299415205 2.095547865

1YND SB 1YNDSB 1.178571 0.464391 Yellow AA 13.0025 0.354475 0.370925 22.307692 85.23076923 0.4146714 0.4308802 0.443809 0.8816749 1.5675676 1.346294046 1.879168432

2LND NB 2LNDNB 2.781958 0.22785 Yellow D 35.4233333 0.47048333 0.4310833 78.761905 119.6 1.321505 0.4736177 0.4654773 2.1970229 4.5006803 1.733333333 3.715590675

2LND SB 2LNDSB 2.218921 0.311339 Yellow D 35.4233333 0.47048333 0.4310833 86.333333 118.6363636 1.662009 0.4819003 0.4628263 2.1970229 4.9333333 1.751677852 4.246876059

2RND NB 2RNDNB 2.399134 0.267939 White K 49.6316667 0.3191 0.3391167 88.25 126.8 1.074546 0.4022581 0.4230177 3.0843086 5.1608187 1.783403657 3.814447921

2RND SB 2RNDSB 2.983205 0.041208 White K 49.6316667 0.3191 0.3391167 92.05 127.2 1.496451 0.4059463 0.4195385 3.0843086 5.3830409 1.86784141 3.776655918

3LND NB 3LNDNB 2.715384 0.240979 Yellow G 30.3116667 0.46651667 0.4285333 197.04762 95.36363636 3.356826 0.4880576 0.4668988 2.3497416 12.7953 1.725328947 11.50592498

3LND SB 3LNDSB 2.609718 0.288336 Yellow G 30.3116667 0.46651667 0.4285333 201.47619 93.09090909 3.432306 0.4880968 0.4677967 2.3497416 13.08287 1.706666667 10.56706393

3RND NB 3RNDNB 1.98706 0.357199 White BB 24.4 0.31045 0.3286667 44.611111 131.5555556 0.5110642 0.3997904 0.4187356 1.6948368 2.841472 2.200743494 1.919131355

3RND SB 3RNDSB 2.418531 0.43552 White BB 24.4 0.31045 0.3286667 48.333333 119.2222222 0.806058 0.4018632 0.4162491 1.6948368 3.0785563 2.185336049 2.325178151

3YND NB 3YNDNB 2.933333 0.258199 Yellow D 31.9475 0.46115 0.4272 68.909091 99.45454545 2.149807 0.4742302 0.4627762 2.7780435 5.0533333 1.683076923 8.372021386

3YND SB 3YNDSB 3 0 Yellow D 31.9475 0.46115 0.4272 68.909091 102.0909091 1.582365 0.4754758 0.4607317 2.7780435 5.2638889 1.722392638 8.932743825

4LND NB 4LNDNB 2.685332 0.203337 Yellow C 38.3333333 0.48721667 0.4322 465.78947 136.1 8.885652 0.4990942 0.4666835 2.6342916 28.059607 2.167197452 28.21887795

4LND SB 4LNDSB 2.560471 0.260504 Yellow C 38.3333333 0.48721667 0.4322 474.42105 135.9 6.275712 0.500036 0.4667149 2.6342916 28.579581 2.164012739 16.37649505

4RND NB 4RNDNB 2.446079 0.38152 White A 62.9466667 0.31798333 0.3382333 928.38095 249.3636364 11.9841 0.4156517 0.4263643 4.3496487 61.51922 3.85252809 41.27756867

4RND SB 4RNDSB 2.729141 0.272038 White A 62.9466667 0.31798333 0.3382333 861.28571 248.2727273 13.7835 0.4184054 0.4250424 4.3496487 57.07315 3.835674157 35.81871497

4WND NB 4WNDNB 2.96875 0.125 White K 48 0.318325 0.337025 60.444444 127.6666667 1.548646 0.4010411 0.4198068 3.8102798 4.352 2.147663551 9.281134943

4WND SB 4WNDSB 3 0 White K 48 0.318325 0.337025 60.444444 126.2222222 2.009435 0.4011684 0.419714 3.8102798 4.7304348 2.281124498 9.047845039

5LND NB 5LNDNB 2.3125 0.458063 White Paint 31.875 0.3407 0.3596833 31.4 97 0.6664867 0.4274157 0.4285385 1.9242379 1.7532995 1.487028302 1.782584775

5LND SB 5LNDSB 1.917109 0.185568 White Paint 31.875 0.3407 0.3596833 31.36 98.84615385 0.6602609 0.4256894 0.4289289 1.9242379 1.751066 1.540767386 1.660630355

5RND NB 5RNDNB 1.609931 0.252553 White Paint 30.23 0.32558333 0.3414667 23.52 87.61538462 0.4577237 0.4219691 0.4243605 1.900461 1.3688889 1.420199501 1.429587111

5RND SB 5RNDSB 1.924908 0.187611 White Paint 30.23 0.32558333 0.3414667 22.12 86.23076923 0.5650537 0.4247916 0.4245265 1.900461 1.2874074 1.387376238 1.32284855

5YND NB 5YNDNB 3 0 Yellow G 31.09 0.460175 0.427375 131.36364 90.36363636 3.568069 0.4630106 0.4967968 2.1840534 10.176056 1.80399274 19.18045459

5YND SB 5YNDSB 3 0 Yellow G 31.09 0.460175 0.427375 131.36364 91.36363636 2.478183 0.4880293 0.4675807 2.1840534 10.94697 1.86802974 15.10839841

6LND NB 6LNDNB 2.881665 0.193188 White Paint 29.5966667 0.35261167 0.3700667 53.04 80.92307692 1.354424 0.4164217 0.4273468 2.0193314 3.0022642 1.340127389 3.764113961

6LND SB 6LNDSB 2.752789 0.292159 White Paint 29.5966667 0.35261167 0.3700667 40.72 79.84615385 1.3981 0.4120632 0.4276463 2.0193314 2.3049057 1.322292994 3.134193987

6RND NB 6RNDNB 2.662919 0.382529 White Paint 26.7583333 0.32746667 0.3457833 27.24 77 0.7884879 0.4111149 0.4212217 1.7940552 1.68 1.284980745 2.382276497

6RND SB 6RNDSB 2.528395 0.398892 White Paint 26.7583333 0.32746667 0.3457833 33.12 79.21428571 1.249056 0.4076713 0.4206043 1.7940552 2.0426432 1.321932881 2.746794103

6WND NB 6WNDNB 2.96875 0.125 White A 64.2325 0.3178 0.3368 543.09091 226.7272727 11.71396 0.4177966 0.4286889 4.8204503 40.364865 3.909090909 68.44605195

6WND SB 6WNDSB 2.78125 0.256174 White A 64.2325 0.3178 0.3368 543.09091 243.0909091 12.81983 0.4179248 0.4263071 4.8204503 44.58209 4.563139932 69.77708592

6YND NB 6YNDNB 3 0 Yellow C 36.53 0.479875 0.431175 333 124.8181818 7.239649 0.4994377 0.466287 2.4841891 25.615385 2.27694859 37.39923736

6YND SB 6YNDSB 2.8 0.253546 Yellow C 36.53 0.479875 0.431175 333 127.8181818 6.024119 0.5005425 0.4659278 2.4841891 26.543478 2.46234676 34.47740069

7LND NB 7LNDNB 2.361784 0.528953 White Paint 29.4633333 0.35005 0.36735 16.64 52.46153846 0.548721 0.4240282 0.4245309 2.3747985 1.0203774 0.972895863 1.532305571

7LND SB 7LNDSB 1.880272 0.199214 White Paint 29.4633333 0.35005 0.36735 16.2 51 0.4901594 0.422339 0.4243484 2.3747985 0.9933962 0.945791726 1.524716087

7RND NB 7RNDNB 1.365532 0.834143 White Paint 30.045 0.32578333 0.3421833 14.4 57.15384615 0.3624344 0.4127897 0.4253849 2.3239655 0.9191489 1.073699422 1.072178355

7RND SB 7RNDSB 1.423574 0.721486 White Paint 30.045 0.32578333 0.3421833 15.44 65.15384615 0.525175 0.4169841 0.4198146 2.3239655 0.9855319 1.223988439 1.370895536

7YND NB 7YNDNB 2.266667 1.222799 Yellow BB 27.61 0.322925 0.34095 29.142857 136.5714286 0.6713651 0.4028491 0.4192194 1.7048472 2.1702128 2.483116883 3.696020378

7YND SB 7YNDSB 2.033333 0.58146 Yellow BB 27.61 0.322925 0.34095 29.142857 134.7142857 0.5941023 0.4039021 0.4187648 1.7048472 2.372093 2.583561644 3.696769617

8ONLYND NB 8ONLYNDNB2.176008 0.815346 White Paint #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A

8ONLYND SB 8ONLYNDSB2.363335 0.414986 White Paint #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A

9LND NB 9LNDNB 2.911392 0.12531 White Structured #N/A #N/A #N/A 293.72727 202.5 6.437537 0.4103611 0.4188881 #N/A 13.459201 2.325358852 9.501778317

9LND SB 9LNDSB 2.837963 0.280656 White Structured #N/A #N/A #N/A 426.21212 207.1666667 9.786879 0.4052649 0.4212015 #N/A 19.529935 2.385796545 15.17110253

9RND NB 9RNDNB 2.962963 0.052378 White Structured #N/A #N/A #N/A 1285.8788 191.6666667 21.51538 0.4084843 0.412733 #N/A 54.513565 2.200956938 40.00778757

9RND SB 9RNDSB 2.962963 0.06415 White Structured #N/A #N/A #N/A 1005 192.25 17.35245 0.4050983 0.4181929 #N/A 42.605985 2.214011516 26.84852076


