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Abstract Differential evolution (DE) has been a popular
algorithm for its simple structure and few control parame-
ters. However, there are some open issues in DE regrading
its mutation strategies. An interesting one is how to bal-
ance the exploration and exploitation behavior when per-
forming mutaion, and this has attracted a growing number
of research interests over a decade. To address this issue,
this paper presents a triangular Gaussian bare-bones mu-
tation strategy. This strategy utilizes the physical positions
and the fitness differences of the vertices in the triangular
structure. Based on this strategy, a triangular Gaussian bare-
bones DE (TGBDE) and its improved version (ITGBDE)
are suggested. Empirical studies are carried out on the 20
benchmark functions and show that, in the comparison with
several state-of-the-art DE variants, ITGBDE obtains signif-
icantly better or at least comparable results, suggesting the
proposed mutation strategy is promising for DE.

Keywords Differential evolution(DE) · Gaussian distribu-
tion · triangular structure · global optimum

1 Introduction

Swarm algorithms, inspired by the Darwinian’s evolution
theory (Darwin C, 2009), are well known to solve complex
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optimization problems without any requirements of prob-
lems’ intrinsic differentiability and continuity. Differential
evolution (DE), proposed by Storn and Price (Price K et al,
2006; Storn R and Price K, 1995), is a population-based
stochastic optimization algorithm. DE differs from other stan-
dard evolutionary algorithms (EAs) in the way that DE gen-
erates offspring by mutating the solutions with a scaled dif-
ference of two randomly selected population vectors. Due
to simple structure and few control parameters, DE has at-
tracted a lot of researchers’ attention. It is worth noting that
some variants of DE have been highly ranked in the compe-
tition of the IEEE Congress on Evolutionary Computation
(CEC) conference series. Up to date, DE and its variants
have become one of the most powerful and competitive al-
gorithms in evolutionary computation and they have been
successfully applied to numerous real world areas.

However, the performance of DE is greatly influenced by
two components: one is the the new vector generation muta-
tion and crossover strategies; the other is the control param-
eters setting. In the past decades, a number of DE variants
that employ new mutation strategies and/or adapt the control
parameters have been proposed to improve the performance
of DE. Since 2000, researchers have devoted much effort
to designing new mutation schemes and combining existing
mutation schemes, such as ODE(Rahnamayan S et al, 2008),
TDE(Fan HY et al, 2003), DEGL(Das S et al, 2009),CoDE
(Wang Y et al, 2011), OXDE(Wang Y et al, 2012), EPSDE
(Mallipeddi R et al, 2011) and so on. A large number of
studies also focus on guided adaptation of three primary
control parameters of DE, e.g., jDE(Brest J et al, 2006),
JADE(Zhang J and Sanderson AC, 2009), ADE(Yu WJ et al,
2014), SHADE(Tenabe R and Fukunaga AS, 2013), and SaDE
(Qin AK et al, 2009). Although these strategies are helpful
to improve the DE performance, many of them introduce
extra complex operations which are not easy to implement.

The rest of this paper is organized as follows. Section 2
briefly introduces the classical DE algorithm. Section 3 sur-
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2 Jinglei Guo et al.

veys related work on improving DE. In section 4, the pro-
posed approach is described in detail. Experimental results
and discussion on the well-known 20 functions are reported
in section 5. Finally, section 6 concludes this paper.

2 Classical DE Algorithm

Like other EAs, DE starts with a population of NP ran-
dom individuals ,P g = {

−→
X g

i |i = 1, 2, · · · , NP}, where g
is the generation number, and NP is the population size. In
P g , each individual is called the target vector, i.e.

−→
X g

i =

(xgi1 · · ·x
g
iD), where D is the dimension of the search space.

In the initialization stage (g = 0), the jth dimension of vec-
tor i is initialized as follows:

x0ij = Lj + rand() · (Uj − Lj) (1)

where rand() generates a uniformly distributed random num-
ber in the range [0, 1], Lj and Uj are the lower and upper
bounds of the jth component of a vector, respectively.

After that, DE iteratively performs three basic opera-
tions: mutation, crossover and selection, to evolve the pop-
ulation towards the global optimum. In the evolution of DE,
trial vectors are generated through the combination of muta-
tion operation and crossover operation.

2.1 Mutation

At this stage, a mutant vector
−→
V g

i = {vgi1, · · · , v
g
iD} is gen-

erated by a mutation operator. Unlike traditional mutation in
EA, DE employs the difference of two vectors with a scaling
factor F to explore different search regions. The following
are the most common mutation operators in DE:

– DE/rand/1:

−→
V g

i =
−→
X g

r1 + F · (
−→
V g

r2 −
−→
V g

r3) (2)

– DE/best/1:

−→
V g

i =
−→
X g

best + F · (
−→
X g

r1 −
−→
X g

r2) (3)

– DE/current-to-best/1:

−→
V g

i =
−→
X g

i +F · (
−→
X g

best−
−→
X g

i )+F · (
−→
X g

r1−
−→
X g

r2) (4)

– DE/rand/2:

−→
V g

i =
−→
X g

i +F · (
−→
X g

r2 −
−→
X g

r3) +F · (
−→
X g

r4 −
−→
X g

r5) (5)

– DE/best/2:

−→
V g

i =
−→
X g

best+F ·(
−→
X g

r1−
−→
X g

r2)+F ·(
−→
X g

r3−
−→
X g

r4) (6)

where F is the scaling factor and the indices r1, r2, r3, r4
and r5 are distinct integers randomly selected from {1, 2, · · ·,
NP}, which are different from the base index i.

−→
X g

best is the
best vector in the current population.

2.2 Crossover

After mutation, a trial vector
−→
U g

i = {ugi1, · · · , u
g
iD} is gen-

erated by a binomial crossover operator on
−→
X g

i and
−→
V g

i as
follows:

ugij =

{
vgij if rand() ≤ CR or j = jrand

xgij otherwise
(7)

where CR is the crossover control parameter, and similar to
Eq. (1), rand() is a random number in [0, 1], and jrand ∈
{1, 2, . . . , D} is a randomly chosen index. The condition
j = jrand ensures that the trial vector

−→
U g

i is different from
the corresponding target vector

−→
X g

i on at least one dimen-
sion.

2.3 Selection

Selection operator in DE is a one-to-one greedy replacement
between the trial vector and the corresponding vector. For
minimization problems, if the trial vector

−→
U g

i is smaller than
or equal to the target vector

−→
X g

i , the trial vector survives to
next generation; otherwise, the target vector enters the next
generation:

−→
X g+1

i =

{−→
U g

i if f(
−→
U g

i ) ≤ f(
−→
X g

i )
−→
X g

i otherwise
(8)

where f is the objective function .

3 Related Work

In the past two decades, continuous effort has been made
to improving DE , as presented in the comprehensive sur-
vey made by Das and Suganthan(Das S and Suganthan PN,
2011; Das S et al, 2016). The improvement on DE can be
classified into two categories: 1) dynamic adaptation or self-
adaptation of control parameters; 2) new strategies to gener-
ate trial vectors.

3.1 Adaptation of control parameters

There are three control parameters: scaling factor(F ), crossover
rate(CR) and population size(NP ) in DE. The performance
of DE is sensitive to the associated parameters, especially
for complex problems(Gamperle R et al, 2002). Thus, a good
volume of research work has been undertaken to tune the
control parameters. Storn and Price(Storn R and Price K,
1995) suggested that NP should be between [5D,10D] and
F should be in the range of [0.4,1]. Brest et al. (Brest J
et al, 2006) proposed a self-adaptation scheme(jDE) for DE
in which the control parameters F and CR are encoded into
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Triangular Gaussian Bare-Bones Differential Evolution 3

the the individuals and adjusted by two factors τ1 and τ2.
Qin et al. (Qin AK et al, 2009) introduced SaDE, in which
each mutation strategy associated with parameters F and
CR is self-adapted by the experience of previous LP gen-
erations. In SaDE, F is approximated by the normal distri-
bution with mean value 0.5 and standard deviation 0.3, de-
noted byN(0.5, 0.32) andCR obeys the normal distribution
with the mean value 0.5 and standard deviation 0.1, denoted
by N(0.5, 0.12). FiADE(Ghosh A et al, 2011), proposed by
Ghosh et al., is a simple yet effective parameter adaptation
based on the objective function value. The presented results
showed that the performance of FiADE is very competi-
tive with the best-known DE variants. Zhang and Sanderson
(Zhang J and Sanderson AC, 2009) found better control pa-
rameters tend to generate more successful individuals and
they made use of the most recent successful mutation in-
formation to propagate the new F and CR in JADE. Tanabe
and Fukunaga (Tenabe R and Fukunaga AS, 2013) proposed
a success-history based parameter adaptation DE (SHADE)
to revise the selection of future control parameter values in
JADE . Awad et al. (Awad NH et al, 2016) used a sinusoidal
function to automatically adapt the values of the scaling fac-
tor F to further improve LSHADE. The population sizeNP
plays an important role on the number of function evalua-
tions and converge rate. Mallipeddi et al. (Mallipeddi R et al,
2011) suggested that separable and unimodal functions re-
quire smaller population sizes to speed up the convergence,
while parameter-linked multimodal functions require large
populations to avoid premature convergence. Yu et al. (Yu
WJ et al, 2014) studied the relationship between the popu-
lation state and control parameters and proposed an adap-
tive DE (ADE) algorithm with a two-level adaptive param-
eter control scheme. In ADE, the population-level param-
eters Fp and CRp for the whole population are adaptively
controlled according to the optimization states, namely, the
exploration state and the exploitation state in each genera-
tion. The individual-level parameters Fi and CRi for each
individual are generated by adjusting the population-level
parameters. Experimental results showed that ADE gener-
ally outperforms four state-of-the-art DE variants on differ-
ent kinds of optimization problems. Brest and Maucec(Brest
J and Maucec MS, 2009) found that a higher population
diversity is needed at the beginning of the evolution and
the exploitative ability is more favourable in the last stage.
Dynamic population size reduction techniques (Brest J and
Maucec MS, 2009) were proposed to improve the efficiency
and robustness of the DE algorithm. Tanabe and Fukunaga
(Tanabe R and Fukunaga AS, 2014) improved SHADE with
linear population size reduction and named it LSHADE, which
was the winner in the CEC 2014 competition on real param-
eter singe objective optimization.

3.2 New Trial Vector Generation Strategies

Despite the combination of existing mutation strategies in
DE, researchers have made several attempts to design new
mutation and crossover schemes for generation new trial
vector. Zhang and Sanderson (Zhang J and Sanderson AC,
2009) proposed a new mutation strategy named “DE/current-
to-pbest” with an optional external archive which utilizes
historical data to provide information of progress direction.
Due to the external archive, JADE showed promising re-
sults for relatively high dimensional problems. Das et al.
(Das S et al, 2009) described an improved variant of the
DE/current-to-best/1 scheme, which utilizes the concept of
the physical neighborhood of population members, to bal-
ance the exploration and exploitation abilities of DE without
imposing the function evaluation burden. Epitropakis et al.
(Epitropakis MG et al, 2011) proposed a proximity-based
mutation operator which selects parents based on the pair-
wise distance possibility, with the closest neighbor of a vec-
tor having the highest probability to be a parent. Authors in
(Epitropakis MG et al, 2011) incorporated this proximity-
based mutation operator in the original DE algorithm, as
well as other recently proposed DE variants to enhance per-
formance for the majority of the benchmark problems stud-
ied. Fan and Lampinen (Fan HY et al, 2003) proposed trigono-
metric mutation and embedded it into DE. This operator
forms a hypergeometric triangle in the search space where
the selected individuals are viewed as the vertices, and uti-
lizes the selected individuals’ objective function values to
ensure the perturbations can be biased towards the best points.
Wang et al. (Wang Y et al, 2012) proposed orthogonal crossover
(OX) operators to make a systematic and rational search in a
region defined by the parent solutions. Gong and Cai (Gong
W and Cai Z, 2013) proposed a ranking-based mutation op-
erator for DE, where the individuals are proportionally se-
lected according to their rankings in the current population.
In the ranking-based mutation operator, the individuals with
better rankings have more opportunity to be selected as par-
ents. Guo et al. (Guo SM et al, 2014) proposed a successful-
parent-selection framework to improve the performance of
DE by providing alternatives for the selection of parents dur-
ing mutation and crossover. The recently updated solutions
are stored into an archive and some parents in the achieve
are chosen to perform mutation and crossover so as to al-
leviate evolutionary stagnation. Wang et al. (Wang Y et al,
2016) proposed a cumulative population distribution frame-
work called CPI-DE. In CPI-DE, two trial vectors are cre-
ated based on the original coordinate system and eigen co-
ordinate system. Wang et al. (Wang H et al, 2013) proposed
the Gaussian bare-bones DE (GBDE) and modified GBDE
(MGBDE), in which the Gaussian mutation strategy gener-
ates trial vectors randomly from a Gaussian distribution with
mean µ and standard deviation σ. The proposed Gaussian
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4 Jinglei Guo et al.

mutation strategy eliminates the parameter F , and µ and σ
are calculated from the current individual and the best indi-
vidual from the population.

4 Triangle Brare-Bones DE

Despite various improvements, most DE variants are still
not free from control parameters, which means they have
to be provided optimal parameter settings in order to per-
form to the best of their ability. Also, optimal parameter val-
ues are often problem dependent. Inspired by the idea of
the bare-bone particle swarm algorithm(Kennedy J, 2003),
Wang (Wang H et al, 2013) proposed a two-fold modifica-
tion of DE, named them GBDE and Modified GBDE(MGBDE),
to ease the effects of control parameters.

4.1 GBDE and MGBDE

Unlike common mutation operator, the mutant vectors in
GBDE are generated by sampling randomly from Gaussian
distribution with mean value (

−→
X g

best +
−→
X g

i )/2 and standard
deviation |

−→
X g

best −
−→
X g

i | as follows,

−→
V g

i = N(

−→
X g

best +
−→
X g

i

2
, |
−→
X g

best −
−→
X g

i |
2) (9)

As the mean value and standard deviation are calculated
from the current population, the parameter F is omitted in
GBDE. The binomial crossover operator Eq. (7) is used to
generate the trial vector, but the crossover possibility CR is
chosen from the Gaussian distribution with mean value 0.5
and standard deviation 0.1. The CR value is individual in-
dependent and will keep unchanged if the solution has been
updated in the current generation, otherwise it will be set to
a value generated by the Gaussian distributionN(0.5, 0.12).
Thus, CR is self-adapted as follows:

CRg+1
i =

{
CRg

i , if f(Ug
i ) ≤ f(X

g
i )

N(0.5, 0.12), otherwise
(10)

In the modified GBDE, named MGBDE, each individual
is assigned to a mutation strategy (either DE/best/1 or the
Gaussian mutation) during the population initialization and
sticks to the mutation strategy during the search process.

4.2 TGBDE

4.2.1 Motivation

In either GBDE or MGBDE, only the best vector
−→
X g

best in
the current population plays an attractor role in the search-
ing process, that is all the individuals move towards

−→
X g

best.

g
gbestx


g
ix
 g

jx


Fig. 1 Triangular topology of TGBDE.

It is obvious that the standard deviation |
−→
X g

best −
−→
X g

i | in
Eq.(9) is small when the current vector

−→
X g

i is very close to
the best vector

−→
X g

best. In this situation, the Gaussian muta-
tion in Eq. (9) only produces a slight vibration surrounding
−→
X g

best due to the small |
−→
X g

best −
−→
X g

i | value. This is very
likely to cause evolutionary stagnation if

−→
X g

best is a local op-
timum rather than global optimum. In view of this drawback,
we suggest a new triangular Gaussian bare-bones mutation
strategy. The new strategy employ an extra vector, which is
selected randomly in the current population, to enhance the
perturbation. The best vector

−→
X g

best, the current vector
−→
X g

i

and the randomly selected vector
−→
X g

j together form a hyper-
gometric triangle in the search apace, as shown in Figure 1.

Although the Gaussian bare-bones mutation in GBDE
eliminates the scaling factor F , it only utilizes the physical
position of the vectors and ignores the fitness status of the
vectors. In contrast to GBDE, TGBDE takes into consider-
ation both the physical position information and objective
function values of the candidate vectors when creating per-
turbations, which is detailed in the following subsection.

4.2.2 Proposed TGBDE

Based on the analysis of the search behaviour of GBDE
and MGBDE, we propose a new triangular Gaussian bare-
bones mutation strategy. In this strategy, three vectors, i.e.,
the global best vector

−→
X g

best, the current vector
−→
X g

i and the
random vector

−→
X g

j in the population, are considered vertices
to construct a triangle. The center of the triangle’s vertices
is viewed as the mean value µ and the weighted sum of the
three vector differences as the deviation value σ in Gaus-
sian distribution function. Therefore, the triangular Gaussian
bare-bones mutation strategy is defined by

−→
V g

i = N(µ, σ2) (11)
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g
gbestX


g
iX



g
jX



(4,6)

(1,1)

(-2,2)

μ =(2.33,1.67)

σ =(2.44,5.84)

Fig. 2 An illustration of calculating parameters in the triangular Gaus-
sian bare-bones mutation strategy for the 2-D Sphere problem.

where

µ = (
−→
X g

best +
−→
X g

i +
−→
X g

j )/3.0 (12)

σ = (p2 − p1)(
−→
X g

best −
−→
X g

i ) + (p3 − p1)(
−→
X g

best −
−→
X g

j )

+(p3 − p2)(
−→
X g

i −
−→
X g

j ) (13)

with

p1 = |f(
−→
X g

best)|/sum p

p2 = |f(
−→
X g

i )|/sum p

p3 = |f(
−→
X g

j )|/sum p

sum p = |p2 − p1|+ |p3 − p1|+ p2 − p1|

The calculation of µ and σ for the 2-D Sphere problem f(x) =∑D
i=1 x

2
i is illustrated in Figure 2. in the figure, the mu-

tant vector
−→
X g

i = (4, 6), the random selected vector
−→
X g

i =

(−2, 2) and the best vector of current population
−→
X g

gbest =

(1, 1) are chosen to produce a perturbed vector. Thus, we
can easily derive µ = (2.33, 1.67) and σ = (2.44, 5.84)

using Eq.(12) and Eq.(13), respectively.
It can be seen that the standard deviation part in Eq.(12)

is associated with the three edges of the triangle, i.e., (
−→
X g

best−−→
X g

i ), (
−→
X g

best −
−→
X g

j ) and (
−→
X g

i −
−→
X g

j ). (p2 − p1), (p3 − p1)
and (p2 − p3) in Eq.(13) are weights. The signs of weights
determine the shifting direction of the vector difference and
the absolute values of (p2 − p1), (p3 − p1) and (p2 − p3)
determine the step-size. The weights enable a preference to
produce a new high-quality vector because their signs cause
the donors to move towards a vertex with a better objective
value. The values of the weights can automatically magnify
the contribution of the vector differentials to the standard
deviation σ such that the greater the difference in the fitness
values between the vertices that form a triangular structure,
the larger contribution the corresponding vector difference.

It is noticeable from the above analysis that the trian-
gular topology directs the search to promising areas since

it tends to generate new trial solutions towards the better
ones of three individuals in the triangular topology. Com-
pared with GBDE, the TGBDE mutation strategy utilizes
the triangular structure which introduces an extra vector to
make the current vector

−→
X g

i not only learn the information
of global best individual but also gain the learning experi-
ence of another random vector

−→
X g

j .
Furthermore, the search behaviour of TGBDE is a fine-

tuned procedure which emphasizes exploration at the early
stage and then gradually switches to exploitation at the late
stage. At the early stage, the distances between vectors are
large because the vectors are randomly distributed in the
search space. Thus the search process focuses on exploration
due to the large deviation σ in (11). As the evolution pre-
cedes, the distances between vectors become smaller due
to the attraction of outstanding vectors, which makes the
search process focus on exploitation.

Similar to the classical DE, TGBDE also utilizes the bi-
nomial crossover scheme in Eq.(7). Obviously, the param-
eter CR greatly affects the performance of TGBDE. When
the crossover probability CR is large, the trial vector

−→
U g

i

inherits more components from the triangular Gaussian mu-
tant vector

−→
V g

i which is generated by the three vertices (the
current vector

−→
X g

i , the random vector
−→
X g

j and global best

vector
−→
X g

best ). It means the trial vector will learn more in-
formation from the random vector

−→
X g

j and global best vec-

tor
−→
X g

best. When CR is small, the trial vector
−→
U g

i inherits
more components from current vector

−→
X g

i . This means the
trial vector will be similar to the current vector, and the con-
vergence speed will decrease. Each individual

−→
X g

i is consid-
ered to have its own CRi parameter. CRi is set by normal
distribution with mean µCR and standard variance σCR:

CRi = N(µCR, σ
2
CR) (14)

where σCR is set to 0.1, as suggested in GBDE or MGBDE
(Wang H et al, 2013).

The pseudocode of TGBDE is described in Algorithm
1. Again, we use the 2-D Sphere problem as an example to
illustrate the search behavior of TGBDE. The plots in Fig-
ure 3 show the population distribution at generation g=0,
10, 20, and 30, respectively. At generation g = 0, popula-
tion individuals are widely distributed in the search space
[−100, 100]2. At this stage, the population has a high level
of diversity and TGBDE mainly focuses on exploration. With
an increase in the number of generations (i.e., g increases
from 0 to 30), the population diversity decreases gradually
and the search behaviour transforms from exploration to ex-
ploitation.

4.2.3 Improved TGBDE (ITGBDE)
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a) the generation g = 0 b) the genreation g = 10

c) the generation g = 20 d) the genreation g = 30

Fig. 3 Search behaviour of TGBDE for 2-D Sphere function, where ’∗’ in blue represents the individuals in the current population at generation
g and ’•’ in red indicates the best individual in the current population.

Algorithm 1 Triangular Gaussian Bare-Bones DE
1: Randomly initialize the population at generation g = 0.
2: Set µCR.
3: while the stopping criterion is not satisfied do
4: for i := 1 to Np do
5: CRi=randn(µCR, 0.1)

6: Generate the mutant vector
−→
V g

i according to (11)
7: Generate the trial vector

−→
U g

i according to (7)
8: Evaluate the trial vector

−→
U g

i

9: if f(
−→
U g

i ) ≤ f(
−→
Xg

i ) then
10:

−→
Xg+1

i =
−→
U g

i

11: else
12:

−→
Xg+1

i =
−→
Xg

i

13: end if
14: end for
15: g ← g + 1
16: end while

TGBDE is still likely to get trapped into local minima,
although it adopts a triangular structure in its mutation strat-
egy to reduce the likelihood. This happens particularly when
the three vectors

−→
X g

best,
−→
X g

i and
−→
X g

j roughly lie in a single
line, which renders the triangular structure of limited use.
To further improve the exploration ability of TGBDE, we
suggest to combine TGBDE with the “DE/rand/1” strategy,
which leads to the improved TGBDE or ITGBDE for short.

The “DE/rand/1” strategy selects all vectors for mutation
randomly from the current population, so it can guarantee
there is sufficient exploration during the search for ITGBDE.
In every generation, each vector is assigned one strategy (ei-
ther TGBDE or “DE/rand/1”) with possibility τ , and τ is
adaptively adjusted based on each strategy’s recent perfor-
mance. Thus, ITGBDE’s mutation strategy can be expressed
as follows:

Mi =

{
TGBDE rand(0, 1) ≤ τ
DE/rand/1 otherwise

(15)

Like SaDE (Qin AK et al, 2009), the mutation strategy is
selected according to the probability τ learned from a certain
number of previous generations. At the beginning of evolu-
tion, τ is initialized as 0.5, i.e., the two strategies have equal
possibility to be chosen. In every generation g, ngk records
the times that the strategy k (k = 1, 2) is selected to produce
mutant vectors, and nsgk records the number of trial vectors
generated by strategy k that can survive to next generation.
After a fixed number of previous generation (LP ), called the
learning period, we can calculate the success ratio (srk) for
strategy k, the formula is as follows,

srk =

∑t+LP−1
g=t nsgk∑t+LP−1
g=t ngk

(16)
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Algorithm 2 Improved Triangular Gaussian Bare-Bones DE
1: Randomly initialize the population at generation g = 0.
2: Set µCR, µF and τ = 0.5
3: while the stopping criterion is not satisfied do
4: for i := 1 to Np do
5: CRi=randn(µCR, 0.1)
6: Fi=randn(µF , 0.1)
7: if rand(0, 1) < τ then
8: Generate the mutant vector

−→
V g

i according to (11)
9: ng

1 ← ng
1 + 1

10: else
11: Generate the mutant vector

−→
V g

i according to (2)
12: ng

2 ← ng
2 + 1

13: end if
14: Generate the trial vector

−→
U g

i according to (7)
15: Evaluate the trial vector

−→
U g

i

16: if f(
−→
U g

i ) ≤ f(
−→
Xg

i ) then
17:

−→
Xg+1

i =
−→
U g

i

18: else
19:

−→
Xg+1

i =
−→
Xg

i

20: end if
21: if f(

−→
U g

i ) ≤ f(
−→
Xg

i ) then
22: if strategyk is selected then
23: nsgk ← nsgk + 1
24: end if
25: end if
26: end for
27: if g%LP == 0 then
28: update τ according to(17)
29: Set all ng

k, ns
g
k = 0

30: end if
31: g ← g + 1
32: end while

According to the srk value, the τ is computed by

τ = LBP + (1− 2 · LBP ) sr1
sr1 + sr2

(17)

where LBP is the lower bound possibility of τ and ensures
each mutation strategy has at least LBP to participate mu-
tation.

The pseudocode of ITGBDE is described in Algorithm
2. In Algorithm 2, the scaling factor F for the “DE/rand/1”
strategy is generated by Gaussian distribution with mean
value µF and standard deviation 0.1. The crossover pos-
sibility CR remains the same as Eq.(14) in TGBDE. The
computational cost of ITGBDE is O(T ·NP ·D), which is
determined by the iteration number T , the population size
NP and the dimension of search space D.

To better demonstrate the difference between TGBDE
and improved TGBDE(ITGBDE), the 2-D Shekel’s Foxholes
function (as shown in Figure 4) is adopted as a case study.
The Shekel’s Foxholes function is a typical multimodal func-
tion with 24 distinct local minima and the global minimum
f(−32,−32) = 0.998004 in the domain [−65.536, 65.536]2.
Both TGBDE and ITGBDE with NP = 30, µF = 0.5,
µCR = 0.5, LP = 50 and LBP = 0.3 are tested on
this problem. The population distribution of TGBDE and

Fig. 4 3-D plot of the Shekel´s Foxholes function.

ITGBDE at the 30th, 60th and 90th generation is plotted
in Figure 5. It is observable from the figure that both popu-
lation individuals of TGBDE and ITGBDE are scattered in
most local minima at the 30th generation. As the number of
generations increases, the population individuals try to jump
out of local optima and move towards the global optimum.
At the 60th generation, the individuals of ITGBDE gathers
in three local optima near the global optimum whereas the
population of TGBDE is still distributed in 13 local optima
areas. At the 90th generation, all the individuals of ITGBDE
reaches the global minimum point (−32,−32) but most in-
dividuals of TGBDE still get trapped in 10 local optima. It
implies that ITGBDE maintains a good balance between ex-
ploration and exploitation due to the proposed strategies.

5 Experimental Study

5.1 Test Functions

In order to test the performance of the proposed approach,
we choose a set of 20 benchmark test functions in the follow-
ing experiments. The detailed description of these bench-
mark functions is shown in Table 1. The first 13 functions
are well-known benchmarks, which have been widely used
in the literature (Brest J et al, 2006; Brest J and Maucec MS,
2009; Wang H et al, 2013; Yao X et al, 1999; Zhang J and
Sanderson AC, 2009). Here, F01 -F04 are continuous uni-
modal functions. F05 has a narrow valley from the perceived
local optimum to the global optimum, F06 is a discontinu-
ous step function with one minimum, F07 is a noisy quartic
function, and F08-F13 are multimodal functions with many
local minima. F14-F20 are shifted functions used in (Wang
H et al, 2009).
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a) TGBDE at the 30th generation b) TGBDE at the 60th generation c) TGBDE at the 90th generation

d) ITGBDE at the 30th generation e) ITGBDE at the 60th generation f) ITGBDE at the 90th generation

Fig. 5 Search behaviour of TGBDE for 2-D Shekel’́s Foxholes function, where ’∗’ represents population distribution at generation g.
Table 1 Benchmark functions

Type functions Name f(
−→
X∗) Search range

Unimodal Functions

F01 Sphere 0 [-100,100]
F02 Schwefel 2.22 0 [-10,10]
F03 Schwefel 1.2 0 [-100,100]
F04 Schwefel 2.21 0 [-100,100]
F05 Rosenbrock 0 [-100,100]
F06 Step 0 [-100,100]
F07 Quartic with Noise 0 [-1.28,1.28]

Multimodal Functions

F08 Schwefel 2.26 -1259.5 [-500,500]
F09 Rastrigin 0 [-5.12,5.12]
F10 Ackley 0 [-32,32]
F11 Griewank 0 [-600,600]
F12 Penalized1 0 [-50,50]
F13 Penalized2 0 [-50,50]

Shift Functions

F14 Shift Sphere 0 [-100,100]
F15 Shift Schwefel 1.2 0 [-100,100]
F16 Shift Schwefel 1.2 with Noise 0 [-100,100]
F17 Shift Griewank 0 [-600,600]
F18 Shift Ackley 0 [-32,32]
F19 Shift Penalized1 0 [-50,50]
F20 Shift Penalized2 0 [-50,50]

5.2 Influence of Parameter Settings

In ITGBDE, two control parameters µF and µCR are in-
troduced and the values of these parameters affect its per-
formance. In order to make a better choice of there control
parameters, we investigate the influence of different µF and
µCR values. We make four common combinations, that is
µF =0.5/µCR=0.2, µF =0.5/µCR=0.5, µF =0.9/µCR=0.2 and
µF =0.9/µCR=0.5. The dimensions of testing functions were
all set to 30 (D=30), the maximal number of fitness func-

tion evaluations was 10000 × D. The population size NP
was 30 (NP=30) and lower bound possibility was set to 0.3
(LBP = 0.3). ITGBDE with each combination of µF and
µCR was run 30 times on each test function, the mean er-
ror and standard deviation values are presented in Table 2.
The best mean error for each function across the different
parameter combination is shown in boldface.

To select the best value of µF and µCR at a statistical
level, the Friedman test(Garcı́a S et al, 2009, 2010) is con-
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Triangular Gaussian Bare-Bones Differential Evolution 9

ducted to obtain an average ranking. Table 3 shows the aver-
age ranking of TGBDE with different µCR and µF values.
From Table 3, µF =0.5/µCR=0.5 achieves the best average
ranking. Therefore the combination of µF =0.5/µCR=0.5 is
adopted in the following experiments.

5.3 Comparison with Other DE Variants

A number of DE variants are employed for empirical study.
The algorithms, together with their parameter settings, are
listed as follows:

1. OXDE (Wang Y et al, 2012) with NP = D, F = 0.95,
CR = 0.9;

2. SADE (Zhang J and Sanderson AC, 2009) with an ex-
ternal archive, NP = 30, F = 0.5, CR = 0.3;

3. MGBDE (Wang H et al, 2013) with NP = 100, F =

0.9, CR = 0.9;
4. TGBDE (proposed in 4.2.2) with NP = 30, µCR =

0.5;
5. ITGBDE (proposed in 4.2.3) with NP = 30, µCR =

0.5, µF = 0.5, LBP=0.3, and LP=50 (suggested in
SaDE (Zhang J and Sanderson AC, 2009)).

To make a fair comparison, the parameters of OXDE,
SADE and MGBDE were set the same as those used in their
original literature. The maximum number of function evalu-
ations FEs was set to 10000 ×D. Each algorithm was ex-
ecuted independently 30 times, the mean solution error and
standard deviation are reported in Tables 4 and 5 forD = 30

and D = 50, respectively. The wilcoxon’s rank-sum test at
the 0.05 significance level is employed to judge the signifi-
cant difference between ITGBDE and the other algorithms,
′+′, ′−′ or ′ =′ represent our proposed algorithm ITGBDE
is better than, worse than, or similar to the compared one,
respectively, in the Wilcoxon’s rank-sum test. The compari-
son results are summarized as ′w′, ′l′ and ′t′ in the last three
rows of the table, which mean that ITGBDE wins in w func-
tions, loses in l functions and ties in t functions.

Observing the results in Table 4 for 30-D test functions,
we can see that ITGBDE performs generally better than the
other algorithms over most of the test functions. To be spe-
cific, ITGBDE obtains competitive and in most case the best
results in all three groups of test problems (i.e., unimodal,
multimodal, and shifted functions). On the first seven uni-
modal problems, ITGBDE provides very good function val-
ues, showing it has very high ability of exploitation. It is
defeated mainly by TGBDE on f01 and f02. This is under-
standable because ITGBDE allocates some computational
resources to DE/rand/1 for exploration in addition to using
TGBDE for exploitation, whereas TGBDE focuses only on
exploitation, which is favorable when solving these two uni-
modal functions. For the second multimodal group (f08 to
f13), ITGBDE performs comparatively with MGBDE and

SADE, indicating ITGBDE is able to solve some multimodal
problems. TGBDE is better than OXDE but cannot com-
pete with MGBDE, SADE, and ITGBDE. The difference
between TGBDE and ITGBDE implies the hybrid muta-
tion strategy can increase exploration so as to jump out of
local minima when solving multimodal problems. For the
last seven shifted functions, ITGBDE performs best. Partic-
ularly, the outperformance of ITGBDE over the other algo-
rithms on the last four shifted multimodal functions clearly
illustrates that ITGBDE is capable of handling multimodal-
ity, due to great exploration ability rendered by the proposed
hybrid mutation strategy. It is noteworthy that MGBDE also
employs a Gaussian bare-bones model, but it is better than
ITGBDE only on f11, while ITGBDE outperforms MGBDE
on 11 functions, as evidenced by statistical testing. This com-
parison indirectly verifies the effectiveness of the proposed
triangular structure and the hybrid mutation strategy.

Similar observations can be made from Table 5 for the
case of D = 50. Again, ITGBDE provides better results
than the other algorithms for most of the test functions, in-
cluding both unimodal and multimodal ones. The high per-
formance on unimodal problems shows that ITGBDE has a
nice exploitation ability so that it can converge to the min-
imum rapidly. The high performance on multimodal prob-
lems indicates that ITGBDE can not only explore the search
space widely so as to avoid being trapped in local minima,
but also have the ability to balance exploitation and explo-
ration in order to find the global minimum with a fast con-
vergence speed.

In order to determine whether there is a statistically sig-
nificant difference between the results obtained by the com-
pared algorithms on the test suite, we conducted the Fried-
man test (Garcı́a S et al, 2009, 2010). Table 6 shows the
average ranking of the five DE variants on the test suite for
both D=30 and D=50, and the best value is highlighted in
boldface. We can rank the five algorithms, according to their
average rankings indicated in the table, from best to worst as
follows: ITGBDE, MGBDE, SADE, TGBDE and OXDE.
Therefore, ITGBDE can significantly outperform the other
algorithms on the test problems used in this paper.

Figure 6 shows the convergence curves of OXDE, MGBDE,
SADE, TGBDE and ITGBDE on some 30-D example func-
tions, and similar observations can be obtained from the
other functions and are not included here. It can be observed
from the figure that TGBDE and ITGBDE have a faster con-
vergence speed than the others on all the functions excluding
f04 during the search. While most the algorithms seem pre-
mature, ITGBDE is still able to further lower the function
value, as indicated on f04. Overall, ITGBDE has better per-
formance than TGBDE, showing the proposed hybrid muta-
tion strategy indeed improves DE.
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Table 2 The results obtained by TGBDE with different control parameters

µF =0.5/µCR=0.2 µF =0.5/µCR=0.5 µF =0.9/µCR=0.2 µF =0.9/µCR=0.5
Mean ± Std Mean ± Std Mean ± Std Mean ± Std

F01 3.33E-156 ± 6.34E-156 2.02E-174 ± 0.00E+00 1.31E-124 ± 1.84E-124 8.03E-182 ± 0.00E+00
F02 1.27E-102 ± 6.97E-103 8.52E-121 ± 7.60E-121 5.13E-88 ± 3.05E-88 6.20E-124 ± 1.31E-123
F03 2.05E+00 ± 1.76E+00 6.70E-08 ± 7.52E-08 1.03E+01 ± 6.57E+00 2.35E-18 ± 3.42E-18
F04 4.33E-29 ± 7.32E-29 1.41E-18 ± 7.08E-18 1.39E-28 ± 1.85E-28 3.00E-07 ± 1.30E-06
F06 0.00E+00 ± 0.00E+00 0.00E+00 ± 0.00E+00 0.00E+00 ± 0.00E+00 0.00E+00 ± 0.00E+00
F07 6.33E-03 ± 6.56E-03 1.21E-03 ± 4.08E-04 1.97E-03 ± 5.49E-04 1.59E-03 ± 5.86E-04
F08 -1.26E+04 ± 1.85E-12 -1.25E+04 ± 7.41E+01 -1.26E+04 ± 1.85E-12 -1.20E+04 ± 3.14E+00
F09 0.00E+00 ± 0.00E+00 4.05E+00 ± 2.07E+00 0.00E+00 ± 0.00E+00 1.65E+01 ± 4.97E+00
F10 3.55E-15 ± 0.00E+00 3.55E-15 ± 0.00E+00 5.21E-15 ± 1.80E-15 3.93E-01 ± 6.01E-01
F11 0.00E+00 ± 0.00E+00 1.40E-03 ± 3.22E-03 0.00E+00 ± 0.00E+00 6.15E-03 ± 9.78E-03
F12 1.57E-32 ± 5.57E-48 1.57E-32 ± 5.57E-48 1.57E-32 ± 5.57E-48 4.49E-02 ± 1.35E-01
F13 1.35E-32 ± 5.57E-48 1.35E-32 ± 5.57E-48 1.35E-32 ± 5.57E-48 5.54E-02 ± 2.91E-01
F14 0.00E+00 ± 0.00E+00 0.00E+00 ± 0.00E+00 0.00E+00 ± 0.00E+00 3.53E-31 ± 1.05E-30
F15 2.46E+00 ± 2.13E+00 5.97E-08 ± 7.33E-08 8.51E+00 ± 6.60E+00 3.71E-18 ± 6.08E-18
F16 6.12E+01 3.43E+01 3.73E-06 ±5.19E-06 9.61E+01 ± 4.00E+01 1.09E+01 ± 5.94E+01
F17 0.00E+00 ± 0.00E+00 0.00E+00 ± 0.00E+00 0.00E+00 ± 0.00E+00 3.94E-03 ± 5.12E-03
F18 3.67E-15 ± 6.49E-16 3.55E-15 ± 0.00E+00 5.68E-15 ± 1.77E-15 1.83E-01 ± 4.78E-01
F19 1.57E-32 ± 5.57E-48 1.57E-32 ± 5.57E-48 1.57E-32 ± 5.57E-48 3.81E-02 ± 1.72E-01
F20 1.35E-32 ± 5.57E-48 1.35E-32 ± 5.57E-48 3.66E-04 ± 2.01E-03 5.62E-02 ± 2.93E-01

Table 3 The average rankings of ITGBDE with different control pa-
rameters

Control Parameters Ranking
µF =0.5/µCR=0.2 2.30
µF =0.5/µCR=0.5 2.03
µF =0.9/µCR=0.2 2.70
µF =0.9/µCR=0.5 2.98

6 Conclusions

Mutation operation plays a fundamental role in DE and has
been increasingly studied over the years. In this paper, a tri-
angular Gaussian bare-bones mutation strategy is proposed,
which uses the physical position and the fitness differences
between three vectors (the current vector, the global best
vector and the randomly selected vector) in a triangular topol-
ogy. DE with this strategy (called TGBDE) is less likely to
get trapped into local minima while maintaining a high level
of convergence speed. TGBDE is further improved by co-
operating with the popular “DE/rand/1” strategy to balance
the exploration and exploitation behaviour. The key param-
eters in the improved version of TGBDE (ITGBDE) have
been deeply investigated on a wide range of test problems,
deriving the best parameter values. TGBDE and ITGBDE
have been also compared with on a number of state-of-the-
art DEs, and empirical studies have demonstrated that the
proposed mutation strategies are promising for improving
the performance of DE.

Like many DE variants, the proposed strategies are not
free from parameters, which may limit their wide applica-
tion. Encouraged by promising performance, we would like
to focus on reducing parameters from ITGBDE in our future
work.
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Table 4 The results obtained by OXDE, MGBDE, SADE, TGBDE and ITGBDE for D=30

OXDE MGBDE SADE TGBDE ITGBDE

Mean± Std Mean± Std Mean±Std Mean± Std Mean ± Std

F01 1.68E-59 ± 4.09E-59 + 2.49E-75 ± 1.36E-74 + 2.51E-131± 6.33E-131 + 1.38E-185 ± 0.00E+00 - 2.02E-174 ±0.00E+00

F02 2.39E-33 ± 1.97E-33 + 2.08E-43 ± 9.81E-43 + 1.06E-79 ± 1.15E-79 + 3.78E-134 ± 8.84E-134 - 8.52E-121 ± 7.60E-121

F03 3.09E-05 ± 4.70E-05 + 7.10E+00 ± 9.10E+00 + 8.92E-07 ± 2.15E-06 + 9.60E-08 ± 1.38E-07 = 6.70E-08 ± 7.52E-08

F04 7.17E+00 ± 3.49E+00 + 1.43E-12 ± 3.43E-12 + 1.21E-11 ± 5.14E-11 + 5.94E-08 ± 2.19E-07 + 1.41E-18 ± 7.08E-18

F05 9.30E-01 ± 1.71E+00 - 1.55E+01 ± 1.14E+01 + 2.72E+01 ± 1.98E+01 + 3.02E+01 ± 2.69E+01 + 8.82E+00± 6.04E+00

F06 0.00E+00 ± 0.00E+00 = 0.00E+00 ± 0.00E+00 = 0.00E+00 ± 0.00E+00 = 2.33E-01 ± 7.74E-01 + 0.00E+00 ± 0.00E+00

F07 4.26E-03 ± 1.69E-03 + 2.50E-03 ± 7.04E-04 + 2.27E-03 ± 1.05E-03 + 1.33E-03 ± 5.16E-04 = 1.21E-03 ± 4.08E-04

F08 -1.26E+04 ± 5.14E+01 - -1.22E+04 ± 3.14E+02 + -1.26E+04 ± 2.16E+01 + -1.20E+04 ± 2.83E+02 + -1.25E+04 ± 7.41E+01

F09 1.07E+01 ± 3.41E+00 + 4.44E+00 ± 1.82E+00 = 3.32E-02 ± 1.82E-01 - 5.07E+00 ± 5.16E-04 = 4.05E+00 ± 2.07E+00

F10 3.55E-15 ± 0.00E+00 = 6.51E-15 ± 3.11E-15 + 3.55E-15 ± 0.00E+00 = 6.95E-02 ± 2.66E-01 + 3.55E-15 ± 0.00E+00

F11 2.14E-03 ± 4.42E-03 = 0.00E+00 ± 0.00E+00 - 8.51E-03 ± 1.50E-02 - 3.45E-03 ± 7.58E-03 = 1.40E-03 ± 3.22E-03

F12 2.07E-02 ± 7.89E-02 = 1.57E-32 ± 5.89E-35 = 3.46E-03 ± 1.89E-02 = 3.46E-03 ± 1.89E-02 = 1.57E-32± 5.57E-48

F13 3.66E-04 ± 2.01E-03 = 1.35E-32 ± 5.57E-48 = 7.32E-04 ± 2.79E-03 = 1.61E-32 ± 1.44E-32 = 1.35E-32 ± 5.57E-48

F14 6.57E-33 ± 3.60E-32 = 0.00E+00 ± 0.00E+00 = 1.64E-33 ± 9.00E-33 = 1.64E-31 ± 9.00E-31 = 0.00E+00 ± 0.00E+00

F15 1.31E-05± 1.42E-05 + 7.86E+00 ± 5.57E-48 + 6.69E-06 ± 3.25E-05 + 8.56E-08 ± 1.05E-07 = 5.97E-08 ± 7.33E-08

F16 1.12E-04 ± 1.25E-04 + 8.99E+00 ± 1.38E+01 + 3.31E-01 ± 1.22E+00 + 7.63E+00 ± 2.18E+01 + 3.73E-06 ± 5.19E-06

F17 3.53E-03 ± 6.86E-03 + 0.00E+00 ± 0.00E+00 = 8.52E-03± 1.22E-02 + 1.89E-03 ± 3.97E-03 + 0.00E+00 ± 0.00E+00

F18 3.10E-02 ± 1.70E-01 = 7.11E-15 ± 1.62E-15 + 6.21E-02 ± 2.36E-01 = 1.24E-14 ± 3.58E-15 + 3.55E-15 ± 0.00E+00

F19 3.46E-03 ± 1.89E-02 = 1.59E-32 ± 5.57E-48 = 1.38E-02 ± 4.50E-02 = 6.91E-03 ± 2.63E-02 + 1.57E-32 ± 5.57E-48

F20 3.66E-04 ± 3.66E-04 = 1.35E-32 ± 5.57E-48 = 7.32E-04 ± 2.79E-03 = 2.93E-03 ± 8.62E-03 = 1.35E-32 ± 5.57E-48
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l 2 1 2 2 –

t 9 8 8 9 –
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Table 5 The results obtained by OXDE, MGBDE, SADE, TGBDE and ITGBDE for D=50

OXDE MGBDE SADE TGBDE ITGBDE

Mean ± Std Mean ± Std Mean ± Std Mean ± Std Mean ± Std

F01 1.75E-27 ± 2.06E-27 + 4.11E-68 ± 2.24E-67 + 3.71E-119 ± 9.29E-119 + 8.84E-162 ± 3.54E-161 + 3.36E-164 ± 0.00E+00

F02 9.84E-16 ± 5.06E-16 + 8.26E-42 ± 4.39E-41 + 6.00E-81 ± 1.25E-80 + 6.32E-127 ± 9.88E-127 - 3.75E-117 ± 3.93E-117

F03 7.40E+01 ± 3.72E+01 + 1.60E+03 ± 1.10E+03 + 3.30E-03 ± 3.98E-03 - 8.85E-03 ± 7.94E-03 - 2.87E-01 ± 2.00E-01

F04 9.60E+00 ± 2.49E+00 + 1.03E-05 ± 7.52E-06 + 6.20E-03 ± 2.50E-02 + 1.38E-06 ± 2.23E-06 + 1.64E-08 ± 6.97E-08

F05 1.08E+01 ± 1.21E+01 - 3.86E+01 ± 2.54E+01 + 6.47E+01 ± 3.61E+01 + 4.64E+01± 3.05E+01 + 2.53E+01 ± 1.76E+01

F06 0.00E+00 ± 0.00E+00 = 0.00E+00 ± 0.00E+00 = 0.00E+00 ± 0.00E+00 = 2.67E+00 ± 5.55E+00 + 0.00E+00 ± 0.00E+00

F07 9.11E-03 ± 2.54E-03 + 4.66E-03 ± 1.24E-03 + 9.08E-03 ±2.25E-03 + 2.46E-03 ± 9.44E-04 = 2.16E-03 ± 6.69E-04

F08 -2.09E+04 ± 3.70E-12 = -1.98E+04 ± 5.57E+02 + -2.09E+04 ± 3.70E-12 = -1.91E+04 ± 4.59E+02 + -2.08E+04 ± 1.91E+02

F09 1.59E+01 ± 3.38E+00 + 2.22E+01 ± 6.68E+00 + 6.96E-01 ± 9.11E-01 - 1.78E+01 ± 6.19E+00 + 1.24E+01 ± 4.05E+00

F10 1.10E-14 ± 4.97E-15 + 1.02E-14 ± 3.58E-15 + 1.18E+00 ± 4.69E-01 + 2.66E-01 ± 5.24E-01 + 7.11E-15 ± 0.00E+00

F11 2.37E-03 ± 8.03E-03 = 7.39E-04 ± 2.83E-03 = 3.85E-03 ± 9.47E-03 = 6.29E-03 ± 1.46E-02 + 8.22E-04 ± 2.53E-03

F12 6.22E-03 ± 2.50E-02 + 9.42E-33 ± 9.49E-33 = 1.25E-02 ± 5.76E-02 + 6.29E-03 ± 2.70E-02 + 9.42E-33 ± 1.39E-48

F13 3.66E-04 ± 2.01E-03 + 1.45E-32 ± 3.75E-33 = 3.66E-04 ± 2.01E-03 + 5.70E-02 ± 2.28E-01 + 1.35E-32 ± 5.57E-48

F14 1.35E-27 ± 1.68E-27 + 4.60E-32 ± 1.53E-31 = 2.30E-32 ± 4.24E-32 = 1.40E-30 ± 2.54E-30 + 4.40E-31 ± 2.30E-30

F15 7.44E+01 ± 3.46E+01 + 1.55E+03 ± 8.62E+02 + 4.24E-32 ± 3.55E-03 - 1.29E-02 ± 2.14E-02 - 2.16E-01 ± 1.42E-01

F16 1.24E+02 ± 5.88E+01 + 1.81E+03 ± 9.98E+02 + 1.33E+02 ± 1.73E+02 + 2.37E+02 ± 1.81E+02 + 3.17E+00 ± 2.83E+00

F17 4.11E-04 ± 2.25E-03 = 8.22E-04 ± 2.53E-03 = 8.56E-03 ± 1.94E-02 + 8.98E-03 ± 2.58E-02 + 0.00E+00 ± 0.00E+00

F18 1.02E-14 ± 5.26E-15 + 1.09E-14 ± 4.47E-15 + 1.26E+00 ± 4.67E-01 + 2.90E-01 ± 5.10E-01 + 7.11E-15 ± 0.00E+00

F19 1.66E-02 ± 5.88E-02 + 9.52E-33 ± 2.43E-34 + 1.45E-02 ± 4.81E-02 + 1.04E-02 ± 2.87E-02 + 9.42E-33 ± 1.39E-48

F20 1.52E-25 ± 6.32E-25 + 3.66E-04 ± 2.01E-03 + 5.43E-02 ± 2.91E-01 + 6.67E-02 ± 2.92E-01 + 1.35E-32 ± 5.57E-48
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a) the convergence curve on f02 b) the convergence curve on f04
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c) the convergence curve on f07 d) the convergence curve on f12
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Fig. 6 The convergence curves of OXDE, MGBDE, SADE, TGBDE, and ITGBDE on some selected functions.

Table 6 The average rankings of OXDE, MGBDE, SADE, TGBDE,
and ITGBDE

Algorithms Ranking
OXDE 3.56

MGBDE 3.03
SADE 3.30

TGBDE 3.46
ITGBDE 1.65
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