
Abstract — This paper presents a sensorless control for a 
Doubly Fed Induction Generator (DFIG) in the context of 
grid-connected turbine-based wind generation systems. The 
paper proposes a full order adaptive observer able to track 
with excellent accuracy the DFIG rotor position even in 
presence of significant parameters deviations.  The 
developed adaptive observer is coupled with a traditional 
stator flux based Field Oriented Control (FOC). The novel 
approach has been validated by an extensive numerical 
analysis.  

Index Terms -- doubly-fed induction generator, wind 
power system, sensorless control, full order observer, field 
oriented control. 

I.  NOMENCLATURE 

s ri i  Space vector of the stator/rotor current 

s rL Lσ σ  Stator/rotor leakage inductance 

mL  Air-gap linkage inductance 

sL  Stator inductance s s mL L Lσ= +  

rL  Rotor inductance r r mL L Lσ= +  

s rR R Stator/rotor resistance 

s rv v Space vector of the stator/rotor voltage 

r eϑ ϑ  Mechanical/electrical rotor position 

s r  Space vector of the stator/rotor flux 

rω ω  Rotor angular speed/angular frequency 

^ Superscript to indicate estimated quantity 
*  Superscript to indicate reference quantity 
( )r  Superscript to indicate rotor reference frame 

II. INTRODUCTION

The spread of wind-based generation power systems 
[1] has attracted great interest for the Doubly-Fed 
Induction Generator (DFIG). The wind generation system 
must be able to operate in a wide wind speed range in 
order to ensure optimal aerodynamic efficiency by 
tracking the best tip-speed ratio, hence extracting the 
maximum available power. Therefore, the electric 
generator operates with a variable rotor speed; typically 
±35% around the synchronous speed.  

In grid-connected systems, currently the most 
widespread, the stator windings of DFIG are directly 
supplied by the grid, while a three-phase double stage 
AC/DC-DC/AC converter feeds the rotor via slip-rings. 
In this configuration, the major portion of the mechanical 

power at the shaft is directly transformed to electrical 
power and supplied to the grid without involving the 
rotor. Additionally, also the magnetizing current is 
directly absorbed by the grid. As a consequence, only a 
fraction of the total power has to be handled by means of 
the power converter, introducing significant advantages. 
Indeed, the converter rated power is typically about 30% 
of the target power generator, resulting a reduction of the 
initial and operative cost of the system. Moreover, the 
losses in the power electronic converter is reduced 
compared to a system where the converter has to handle 
the whole power. 

Differently than for conventional induction machine, 
the DFIG stator power is conditioned to the rotor 
voltages. Hence, the driving of the system requires the 
detection of the rotor position, which is necessary for the 
transformation from the rotor to the stator reference 
frame. The usage of position sensors is not advisable 
against the possible event of failure, especially in stormy 
weather, where DFIG is employed, invalidating the 
characteristic of the generator robustness. Actually, this 
type of generator intrinsically suggests the adoption of a 
sensorless control. Indeed, the requirement to use 
additional current transducers, indispensable for 
monitoring the rotor currents, involves the need to reduce 
the costs of the other devices of the control system and 
therefore practically imposes a sensorless control [2],[3].  

Different approaches have been proposed in order to 
realize sensorless control for a variable speed-constant 
frequency generation system based on a doubly fed 
induction generator: closed loop estimation [4],[5], 
Kalman filter [6], high frequency signal injection [7],[8], 
Model Reference Adaptive System (MRAS) [9],[10] with 
full or reduced order approaches [11]-[13], etc. In each of 
these controls, the challenge is to assess the position of 
the rotor in an indirect way, while keeping a good 
estimation accuracy against possible parameter 
deviations. 

Depending on the implemented control strategy, such 
as Field Oriented Control (FOC), Direct Torque Control 
(DTC) [14]-[16], Direct Power Control (DPC) [17],[18] 
and so on, it is possible to obtain many different 
performances, all substantially linked to the opportunity 
to improve the estimation of the rotor position. 

This work proposes a novel adaptive full order 
observer, proving the estimation of the rotor position to a 
FOC control scheme. Differently than for other 
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approaches, the rotor position estimation error is not 
minimized but, instead, regarded as an additional 
machine parameter. This parameter is precisely tracked 
by the proposed adaptive law, allowing a quasi perfect 
compensation of the projection error from the rotor frame 
to the stator frame.  

As testified by numerical investigation, the proposed 
control is resilient to parametric errors, showing good 
performance, even in presence of up to ±20% of 
parameter deviations. 

III. DESCRIPTION OF THE SYSTEM

A Doubly Fed Induction Generator (DFIG) consists of 
a wound rotor equipped with slip rings where the stator 
windings are directly connected to the three-phase grid. 
Usually, the rotor windings are connected to a back-to-
back power converter partially rated (30% of the rating 
power of the whole system) as shown in Fig. 1. 

In particular, the back-to-back converter is a bi-
directional power converter consisting of two converter 
and a common DC-link: Rotor Side Converter (RSC) and 
Grid Side Converter (GSC) respectively. Due to the bi-
directional power flow ability of the converter, the DFIG 
may operate as a generator or motor in both sub-
synchronously and super-synchronously. Indeed in the 
generator mode operation, the frequency of the RSC is 
imposed in order to ensure that the frequency AC grid is 
constant. 

The bi-directional converter ensure the capability of 
the DFIG to operate in sub-synchronous and super-
synchronous modes. These two modes are limited in 1/3 
up and down of synchronous speed. 

IV. PROPOSED ADAPTIVE OBSERVER

The well-known mathematical model of the DFIG can 
be conveniently presented in its matrix form with respect 
to the stator reference frame: 

[ ] [ ]11 12 1 1

21 22 2 2

d

d
s s

s r
s s

A A B C
A A B Ct

= + +
i i

v v  (1) 

It can be noted that the dynamical equations of a 
traditional induction machine can be quickly derived 
from (1) by imposing 0.r =v  

Since all the system state variables and inputs have 
been defined as space vectors, all the corresponding 
matrix elements are complex numbers. In particular: 
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where: 

( ) , ,
,

; 1 ; ;m r
r s r s eq s r eq

r r eq

L RL L f
L L

μ σ μ μ σ= = − = = (3) 

with s m rL Lμ =  and , .r eq rL Lσ=  

The space vector of the rotor currents can be easily 
computed starting from the chosen state variables through 
the relation: 

s s
r s

m m

L
L L

= −i i (4)

With reference to the DFIG mathematical model (1), a 
full order Luenberger observer can be defined as: 

[ ] [ ] 1

2

ˆ ˆd ˆ
ˆ ˆd

s s
s r s s

s s

G
A B C

Gt
= + + + −

i i
v v i i  (5) 

The observer matrix elements G1 and G2 should be 

assigned such that the error ˆ
s s−i i  converges quickly to

zero while preserving the system stability. In particular, 
an optimal dynamic response can be ensured if the 
eigenvalues ,1Op  and ,2Op  of the observer state matrix: 

11 1 12

21 2 22
O

A G A
A

A G A
−

=
−

(6)

are imposed equal, independent from the rotor speed, real 
and proportional, through an overall observer gain KG, to 
the DFIG high frequency pole ,D HFp  at zero speed: 

, ,
,

s
D HF r eq

s eq

Rp f
L

≅ − + (7)

which is a good approximation by excess of the 
effective ,D HFp value. Therefore, by the condition: 

,1 ,2 ,
,

s
O O O G r eq

s eq

Rp p p K f
L

= = = − + (8)

the observer gains expressions are derived: 

1 11

2
2 21 12

2 O

O

G A p

G A p A

= −

= +
(9)

In the context of a sensorless control, the space vector 
of the rotor voltage rv , which, together with sv  and si , 

belongs to the input vector of the dynamical system (5), 
cannot be directly measured, since it is related to the 

actual space vector voltage ( )r
rv  provided by the rotor 

power converter through the relation: 
( ) ejr

r r e ϑ=v v (10)

where: 

Fig  1 System block scheme 
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e rpϑ ϑ=  (11) 

represents the electrical rotor position, rϑ  the mechanical 

one and p  the pole-pairs number. Consequently, the 

space vector of the rotor voltage in the stator reference 
frame has to be estimated by properly exploiting the 
observer outputs.  

Since the actual ri  is linked through eϑ  to ( ) ,r
ri which 

is measurable, by the relation ( ) ejr
r r e θ=i i , while the

estimated one can be computed, coherently with Eq.(4), 

by the relation ( )ˆ ˆ ,r s s s mL L= −i i the rotor electrical

position can be derived as: 

( ) ( )( )
( )

ˆ ˆarg argej rr
e s s s rr

r
e Lϑ ϑ= = − −

i i i
i

 (12) 

Once êθ  is known, the rotor speed can be estimated by: 

ˆ1
ˆr

d
p dt

θω = ℑ (13) 

with ℑ the functional associated to a properly sized Low 
Pass Filter (LPF), needed to dampen the oscillations 
resulting from the time derivative computation. 

It is evident that the whole procedure is based on the 
machine parameter values, whose knowledge can be 
affected by uncertainties.  Indeed, the A, B and C matrix 
of (5), together with ,rv  should formally be referred to 

their estimated version ( Â , B̂ , Ĉ  and ˆ rv ); analogously, 

in (12), sL  should be formally replaced by ˆ
sL .

The possible parameter deviations determine naturally 

a rotor position estimation inaccuracy on êϑ . By denoting 

with eϑΔ  be the rotor position estimation error: 

ˆ
e e eϑ ϑ ϑΔ = − (14) 

the rotor voltage rv  can be written as: 

( )ˆ ˆ( ) ( ) ˆe e e e e
j j j jr r

r r r re e e e
ϑ ϑ ϑ ϑ ϑ+Δ Δ Δ= = =v v v v  (15) 

where 
ˆ( )ˆ ejr

r r e ϑ=v v  is the estimation of the rotor voltage

in the stator reference frame. This simple relation states 
that the rotor voltage projection error can be compensated 
once a procedure to identify eϑΔ  is envisioned. By 

denoting with êϑΔ  the estimation of eϑΔ , the following 

approximation can be assumed for small values of  êϑΔ : 
ˆ ˆ ˆ ˆcos sin 1ej

e e ee j jϑ ϑ ϑ ϑΔ = Δ + Δ ≅ + Δ  (16) 

Thus, considering that the machine parameter values, 
as well as the rotor speed, can be affected by 
uncertainties, in lights of (15), and with the 
approximation (16), the model (5) becomes: 

[ ] ( )[ ] [ ]
ˆ ˆd ˆ ˆ ˆˆ ˆ1
ˆ ˆd

s s
s e r

s s

A B C j G
t

ϑ= + + + Δ +
i i

v v e  (17) 

where [ ]1 2
TG G G= and ˆ

s s= −e i i . 

In (17) the quantity êϑΔ  can be regarded as an 

additional machine parameter. In particular, based on the 
Lyapunov theory, the following adaptive law is 
considered: 

( ) 0

0

ˆ ˆˆ ˆ
t

e ry x rx y eK v e v e dtϑϑ ϑΔΔ = − + Δ  (18)

where K ϑΔ  is a not negative number. 

In presence of possible parameter deviations, the 
proposed adaptive observer, which is formally defined by 
(17), (12), (13) and (18), provides the estimation of the 

rotor speed ˆrω  and position êϑ  and, moreover, is capable 

to track the rotor position estimation error êϑΔ .  

V.  CONTROL SCHEME 

The whole control diagram is shown in Fig. 2. It is 
based on a traditional stator flux based FOC driven by the 
proposed sensorless adaptive observer. 

In particular, by denoting with ψ̂  the estimated angle 

of the stator flux provided by the observer: 

( )ˆˆ arg sψ = (19)

the measured rotor current space vector ( )r
r r ri jiα β= +i   

is reported to the dq reference frame synchronous with 
ˆ

s :

( )ˆ ˆ ˆ( ) ( ) e ejr j
r r rd rqe e i ji

ϑ ϑ ψ+ΔΦ −= = +i i (20)

and then processed by two decoupled PI regulators with 

outputs ,rd rqv v  acting on the errors between ,rd rqi i  and 

their references * *,rd rqi i .  

Ideally, *
rdi  should be set to zero and *

rqi  should be 

made proportional to the reference torque *
eT  by the 

torque constant TK . However, in order to ensure an 

effective tracking of eϑ  and eϑΔ  in all operating 

conditions, an injection strategy has been implemented:  
* *

,

* * *
,

rd rd inj

rq T e rq inj

i i

i K T i

=

= +
(21)

where: 

( )
( )

*
,

* *
,

cos 2

cos 2

rd inj d inj inj

rq inj T e q inj inj

i A f t

i K T A f t

λ π

λ π

=

= +
(22)

with ,inj injA f  the amplitude, frequency of the injected 

currents components. ,d qλ λ  (which can assume either 0 

or 1 values) activate/deactivate the injection on the 
correspondent axis based on the DFIG operating 
conditions (written for sake of simplicity in C language 
style): 
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*
,

*
,

||d r inj e e inj

q e e inj

p T T

T T

λ ω ω ω

λ

= − < Δ < Δ

= < Δ
(23) 

with injωΔ ( ),e injTΔ  the speed (torque) injection 

activation threshold. 

The PI outputs ,rd rqv v are then compensated in order 

to carry out the decoupling action: 
*

,

*
, ,

ˆ

ˆ ˆ

rd rd s eq rq

rq rq s eq rd s R

v v L i

v v L i
σ

σ σ

ω

ω ω

= −

= + + Φ
(24) 

with ˆ ˆrpσω ω ω= − the estimated rotor slip angular 

frequency and ,s RΦ  the rated stator flux. Finally, the 

voltage reference *( ) ,r
rv which drives the rotor converter 

modulation, is computed as: 

( )ˆ ˆ ˆ*( ) *( ) * *e ejr j
r r r rqv v e e v jv

ϑ ϑ ψ
α

− +ΔΦ= = +  (25) 

*( )r
rv  is also reported to the observer by the relation: 

ˆ*( )ˆ ejr
r rv e ϑ=v  (26) 

which effectively closes the loop on which the proposed 
adaptive law operates. 

VI. NUMERICAL VALIDATION

 The proposed adaptive observer has been validated 
through an extensive numerical analysis performed in 
MATLAB® Simulink® environment. The main DFIG 
parameters are shown in Table I, while the main 
algorithm quantities are reported in Table II. 

In order to test the effectiveness of the discussed 
adaptive law in a wide cases scenario, the electrical 
machine has been driven with a rotor speed assumed 
constant at 0.5 p.u., 1 p.u. and 1.5 p.u. in the time 
intervals (0 s, 6 s), (12 s, 18 s) and (24 s, 30 s) and 
linearly increasing in the remaining time intervals. 
Analogously, the reference torque has been forced to a 
piecewise linear behaviour, with upward steps from 0.5 
p.u. to 1 p.u. at 2 s, 14 s and 26 s and downward steps 
from 1 p.u. to 0.5 p.u. at 4 s, 16 s and 28 s. Moreover, an 
error of 20% has been assumed on the flux linkage 
inductance.  

The results of the whole simulation are shown in 
Fig. 3. From the Electric Torque and the Rotor Speed 
plots it can be noted how, in each operating condition, the 
algorithm is able to track the reference torque with 
excellent accuracy, while guarantying a negligible error 
between the actual rotor speed and estimated one.  

TABLE II        

CONTROLLER PARAMETERS 

Variable Symbol Value 

Sampling Frequency fS 4 kHz 
Observer Gain KG 5  
Adaptive Law Gain K  0.3 A-2

Injection Current Amplitude Ainj 6 % 
Injection Current Frequency finj 400 Hz 

TABLE I        

DFIG PARAMETERS 

Variable Symbol Value 

Rated Power PR 11 kW 
Rated Stator Voltage Vs,R 400 V 
Rated Rotor Voltage Vr,R 260 V 
Rated Stator Frequency fs,R 50 Hz 

Fig  Control diagram 
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In particular, the torque behaviour highlights how the 
switching ripple decreases as the actual rotor speed 
approaches the synchronous one. This result is coherent 
with the corresponding rotor converter modulation index, 
which, indeed, decreases with the rotor frequency. The 
Stator Flux plot confirms the good performance of the 
system, with an associated maximum error between the 
modules of the actual flux and the estimated one of 
around 1%. It should be noted that a substantial error can 
be appreciated only in the low speed region, coherently 
with the attended observer performance, which 
deteriorates as the rotor speed decreases. Finally, the 
bottom plot depicts the behaviors of the actual and the 
estimated error between the measured electric rotor 
position and the computed one. It can be deduced that the 
proposed adaptive law, even in presence of strong 
parameters errors, is able to track effectively the steady 
state position error, which, in particular, never exceeds 3 
deg. Conversely, the dynamic performance strongly 
depends on the operating condition. Indeed, while the 
time response of the adaptive low is quite fast in 
correspondence of low and high speed operations (0.5 
p.u. and 1.5. p.u.), the position error convergence time 
assumes substantial higher values at medium speed (1 
p.u.). This behaviour depends on the significantly 

decreased sensibility of the current errors ˆ
s s−i i with

respect to the position error eϑΔ , which, indeed, when 

the rotor speed is near the synchronous one, drives the 

observer estimated currents though a set of rotor voltages 
characterized by a smaller amplitude. 

The steady state behaviors of first and second phase 
stator and rotor currents (referred to the stator windings) 
at the rated torque are shown in Fig. 4. It can be noted 
how the results relative to low speed and high speed 

conditions (respectively top and bottom plot) are very 
similar. As expected, the rotor currents frequency is half 
the stator one, being the correspondent rotor speeds 0.5 
and 1.5 the synchronous one, while their amplitude is 
smaller than the stator currents one, being the 
correspondent direct reference components set to zero by 
the controller. Conversely, in correspondence of the 
medium speed operating condition (middle plot), the 
currents show the superimposed injection needed to 
increase tracking accuracy of the rotor position error. In 
particular, the stator currents become distorted and 
unsymmetrical, while the rotor currents (which, ideally, 
should be constant, being the rotor speed equal to the 
synchronous one) are instead characterized by a ripple at 
the injection frequency. 

 Finally, Table III compares the maximum observed 

eϑεΔ  obtained with the proposed adaptive law (AL 

column) to the one associated with a conventional full 
TABLE III       

MAXIMUM ROTOR POSITION ERROR

Parameter Error eϑεΔ (AL) 
eϑεΔ  (NAL) 

+20% on Lm 1.7 deg 34 deg 
+10% on Lm 0.9 deg 18 deg 
-10% on Lm 0.9 deg 21 deg 
-20% on Lm 2.5 deg 51 deg 
+20% on L s 0 5 deg
+10% on L s 0 2.5 deg
-10% on L s 0 3 deg
-20% on L s 0 8 deg

Fig  3 System response in the whole simulation interval. 
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order observer (NAL column). 

VII. CONCLUSION

In the paper a novel adaptive sensorless full order 
observer for a DFIG system driven by a wind turbine has 
been presented. The proposed observer is based on a 
properly designed full order one rearranged in order to 
expose the rotor position error as a machine parameter. 
This aspect has been exploited by the formulation of an 
effective adaptive law allowing to track the rotor position 
error, which, therefore, can be used to ideally cancel the 
difference between the estimated position and the actual 
one. The developed sensorless strategy, coupled with a 
stator flux-based FOC, has been numerically validated in 
MATLAB® Simulink® environment. The simulation 
results confirm the effectiveness of the sensorless 
adaptive observer which, indeed, is able to guarantee the 
accuracy of the rotor position estimation even in presence 
of strong parameters deviation (up to ± 20%).   
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