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and/or polarization) via the engineering 
of metallic or dielectric resonating ele-
ments suitably arranged on a 2D surface. 
Indeed, their inherent 2D character has 
played a major catalyzing role, by consid-
erably simplifying the fabrication process, 
as opposed to “bulk” 3D metamaterials.[4] 
The reader is referred to refs. [5–9] (and 
references therein) for recent reviews on 
the modeling, design, and attainable phys-
ical effects, as well as the abundant appli-
cations, ranging from wavefront shaping 
and beam-forming to chemical and bio-
logical sensing.

Of specific interest for the present 
study is the concept of “coding and digital” 
metasurfaces, recently put forward by Cui 
et al.[10] (see also ref. [11] for an analogous 
concept applied to bulk metamaterials), 
which relies on the exploitation of a lim-
ited number of element-types (unit cells). 
In its simplest form, only two element-

types (labeled as “1” and “0”) are employed, so that the meta-
surface design can be effectively associated with a 2D binary 
coding. This can be viewed, in a sense, as an evolution of the 
“checkerboard-surface” concept originally conceived by Paquay 
et al.[12] As implied by the name, the basic idea underlying a 
checkerboard surface is to alternate two types of unit cells (e.g., 
metallic and artificial-magnetic-conducting, at microwave fre-
quencies) characterized by out-of-phase reflection coefficients, 
so as to suppress the specular reflection in view of the inherent 
cancellation effects. With suitable extensions and modifications 
of the unit cells as well as the spatial arrangement, this basic 
concept has been exploited in several subsequent studies[13–18] 
in order to attain broadband and wide-angle reduction of the 
radar cross-section (RCS) of planar surfaces.

Within this framework, the digital-metasurface concept[10] 
introduces further levels of sophistication. First, the spatial 
arrangement (described by a coding) of the unit cells is far 
more general and flexible. Further versatility can be intro-
duced by employing more than two unit cells, corresponding to 
multibit coding. Most important, by exploiting reconfigurable 
unit cells (whose response can be switched, e.g., by means of a 
biased diode or a microelectromechanical system), the coding 
is no longer irreversibly bound to the structure design, but 
can be controlled, e.g., via a field-programmable gate array. To 
date, this represents one of the first working examples of a pro-
grammable metamaterial platform for field manipulation and 

Coding metasurfaces, based on the combination of two basic unit cells with 
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Diffuse Scattering

1. Introduction

Driven by the seminal work by Yu et al.,[1] metasurfaces have 
gained considerable momentum, and nowadays constitute one 
of the most promising research thrusts in the field of artificial 
materials. By leveraging the concepts of radio-frequency “reflect 
array”[2] and “transmit array”[3] antennas, and expanding their 
applicability to terahertz and optical wavelengths, metas-
urfaces enable the precise control and local tailoring of an  
electromagnetic wavefront (in terms of amplitude, phase, 
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processing and has stirred a considerable interest during the 
past couple of years. The reader is referred to refs. [19–38] for a 
representative (but nonexhaustive) sample of recent studies on 
digital metasurfaces. Among the most prominent applications, 
besides the aforementioned RCS control, particularly worth of 
mention are those to field shaping in reverberating scenarios,[19] 
computational imaging,[26] and dynamic control of polarization, 
wavefront and scattering signature,[33] as well as of information 
entropy.[31] Interestingly, some of these results and applications 
have recently been extended to acoustic scenarios.[39,40]

The present study focuses on coding metasurfaces for dif-
fuse scattering. With specific reference to the binary case, it was 
shown in ref. [10] that the coding could be optimized in such 
a way that the scattered field due to an impinging plane wave 
would be distributed uniformly among all possible directions. 
By comparison with simple checkerboard geometries,[12–18] 
this implies a considerable reduction in both the monostatic 
and bistatic RCSs of the metasurface, and also finds important 
applications to computational imaging. Starting from these 
results, our study here addresses two important open issues 
that are inherently related to the numerical optimization. 
First, since there is no guarantee that a numerical optimiza-
tion algorithm can reach the global optimum (in view of the 
inherently non-quadratic nature of the objective function), we 
theoretically study the scaling law of the RCS reduction and 
derive some bounds that allow assessing the “goodness” of an 
optimized coding. Second, since brute-force numerical optimi-
zation rapidly becomes computationally unaffordable for elec-
trically large metasurfaces, we derive a simple, deterministic 
coding strategy which, by comparison against the aforemen-
tioned bounds, turns out to be suboptimal. This suboptimal 
coding will provide results that are comparable with that 
obtained via brute-force optimization, and can be applied to 

arbitrarily large metasurfaces, with a negligible computational 
burden.

2. Background Theory and Modeling

2.1. Idea and Geometry

Figure 1 illustrates the basic idea and geometry of the coding 
metasurfaces under investigation, as well as the Cartesian (x, y, 
z) and associated spherical (r, θ, φ) coordinate systems utilized 
throughout. More specifically, Figure 1a conceptually schema-
tizes a binary-coding metasurface, as in ref. [10]. We assume 
a planar structure, in the x − y plane, featuring two possible 
element types, labeled with “1” and “0,” implemented in turn 
as “supercells” consisting of square arrangements of M × M 
identical unit cells (shown in Figure 1b,c, respectively). There 
are several possible choices of the unit cells, which result in 
different characteristics in terms of frequency, angular, and 
polarization sensitivity. To facilitate direct comparison with the 
optimized-coding results in ref. [10], we consider the same unit-
cell geometry (see Figure 1d), consisting of a square metallic 
patch of sidelength w laid on a grounded dielectric substrate 
of relative permittivity εr and thickness h. Accordingly, letting 
a the unit-cell period, the supercell total sidelength is d = Ma, 
while the total metasurface sidelength is Nd. The “1” and “0” 
element-types are implemented via suitable choices of the patch 
sidelength (w1 and w0, respectively), so that the corresponding 
reflection phases differ by 180° at the design frequency. The 
proper choice of all parameters (including the number M of 
unit cells per linear dimension) will be detailed hereafter.

As previously mentioned, and conceptually illustrated in 
Figure 1e, the aim of this study is to suitably synthesize a 

Adv. Optical Mater. 2017, 5, 1700455

Figure 1.  Illustration of the idea and geometry. a) Conceptual illustration of a binary-coding metasurface, comprising a square arrangement of N × N 
elements (represented as magenta squares) of two possible types (labeled with “1” and “0”). b,c) Schematics of the supercells implementing the “1” 
and “0” element types, respectively. Each supercell consists of a square arrangement of M × M identical unit cells, with total sidelength d. d) Geometry 
of the unit cell (of period a = d/M). The “1” and “0” element types are implemented via suitable choices of the patch side length (w1 and w0, respec-
tively), so that the corresponding reflection coefficients are out of phase at the design frequency. Also shown are the Cartesian (x, y, z) and associated 
spherical (r, θ, φ) coordinate systems utilized throughout. e) Conceptual illustration of the diffuse scattering: a normally incident plane wave (thick 
green arrow) is scattered uniformly in all possible directions (thinner red arrows).
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coding to realize diffuse scattering, so that a normally incident 
plane wave (thick green arrow) is scattered in all possible direc-
tions (thinner red arrows) in the most uniform fashion.

2.2. Semianalytical Modeling

In what follows, we study the scattering properties of our coding 
metasurfaces for plane-wave illumination (normally impinging 
along the negative z-direction), with suppressed exp(−iωt) time-
harmonic dependence. As a meaningful observable to quantify 
the scattering signature, we consider the bistatic RCS[41]
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where Ei and Es denote the incident and scattered electric fields, 
respectively, and (θ, φ) indicates an observation direction in the 
far region. Here, and henceforth, boldface symbols are used to 
indicate vector quantities. To compactly parameterize the dif-
fuse-scattering properties of our coding metasurfaces, it makes 
sense to normalize the RCS with respect to that of a reference, 
a perfectly electric conducting (PEC) target of same size, and 
to eliminate the direction-dependence by considering the worst-
case scenario (maximum-scattering direction) for both targets. 
Accordingly, we define the RCS ratio as 
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where the subscripts “MS” and “PEC” identify the metasur-
face and PEC targets. For the reference PEC planar scatterer, 
the maximum RCS is observed at the specular direction, which, 
for the assumed normal incidence corresponds to backscat-
tering (θ = 0). In Equation (2), and henceforth, the observation 
directions are restricted to the upper-half space (z > 0), i.e.,  
0 /2θ π≤ ≤ , 0 ≤ φ ≤ 2π. Rigorous computation of the observable 
in Equation (2) requires the full-wave numerical solution of two 
3D scattering problems, as detailed below. Nevertheless, we also 
consider a semianalytical approximation that was developed in 
ref. [10] (see also the Supporting Information for details) 
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with c2 /λ π ω=  denoting the vacuum wavelength (and c the 
corresponding speed of light), A the (identical) area of the tar-
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the metasurface “directivity.” The expression in Equation (4) 
closely resembles the directivity of antenna arrays.[41] In par-
ticular, we identify the “supercell factor” 
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and the “array factor” 
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with α̂α  denoting an α-directed unit vector, x x xsinc( ) sin( )/≡ ,  
k 2 /π λ=  the vacuum wavenumber, N the number of super-
cells per linear dimension (see Figure 1a), Γnl the reflection 
coefficient associated with the generic supercell (centered at 
xn = nd, yn = ld), and kx and ky the x- and y-domain wavenum-
bers, respectively.

The semianalytical approximation in Equations (4)–(6) pro-
vides an insightful working model, which is instrumental in 
the following developments. Its accuracy will be assessed by 
comparison against full-wave numerical simulations.

2.3. Numerical Modeling

The semianalytical model in Equations (4)–(6) is numeri-
cally implemented via an in-house Python code (www.python.
org). The metasurface design and cross-validation rely also 
on rigorous full-wave simulations by means of the finite-ele-
ment-based commercial software package Ansys HFSS (Elec-
tromagnetics suite Release 16.2.0, www.ansys.com/Products/
Electronics/ANSYS-HFSS). The geometrical and constitutive 
parameters utilized are detailed hereafter in the various exam-
ples. Further implementation details are available in the Sup-
porting Information.

3. Results and Discussion

3.1. Optimized Coding

Several brute-force optimization strategies have been proposed 
in order to design coding metasurfaces with minimized RCS, 
including hybrid,[20] particle-swarm,[23] simulated annealing,[27] 
and genetic[35] algorithms. In this study, as a benchmark, 
we consider the optimized-coding results obtained in 
ref. [10] (based on hybrid optimization as in ref. [20]). The cor-
responding 1D coding sequences are reported in Table S1 (Sup-
porting Information), together with the corresponding RCS 
reductions, for various lengths. The same coding sequence is 
assumed for the two directions, so that the 2D coding is readily 
obtained via dyadic product of the 1D sequence by itself. The 
optimization is specifically intended for a structure featuring 
unit cells (see Figure 1d) of period a = 7 mm, with patch 
sidelengths w1 = 3.75 mm and w0 = 4.8 mm, for the “1” and “0” 
element-types, respectively; a substrate of thickness h = 1.964 
mm is assumed, with εr = 2.65, tan δ = 0.001, and copper metal-
lization of thickness 18 µm. The full-wave-computed reflection-
phase responses pertaining to the two element-types are shown 
in Figure S1 (Supporting Information) as a function of the 
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frequency. It can be observed that the two responses are almost 
out of phase over a rather broad bandwidth, and the phase 
difference is exactly 180° at 8.7 GHz and 11.5 GHz. The opti-
mized-coding metasurfaces is obtained by arranging (according 
with the 2D coding pattern) supercells made of 7 × 7 unit cells, 
with a total sidelength d = 49 mm. The nominal design fre-
quency is chosen as 8.57 GHz, i.e., very close to the 180°-phase-
difference condition. We observe that, at this frequency, the 
supercell sidelength is exactly one wavelength (d = λ).

Figure 2 shows the RCS ratio (orange-diamond markers) 
pertaining to the above optimized-coding metasurfaces as a 
function of their electrical size (or, equivalently, the number of 
supercells per linear dimension). A linear decreasing trend is 
observable which, in view of the log–log scale utilized, is quali-
tatively indicative of an algebraic scaling law. For a more quanti-
tative assessment, the numerical algebraic fit 

γ λ λ
π

≈ 



 ≈2.552

32.08
4

fit

2.187 2.187

1.0935Nd A 	
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is superimposed (orange-solid line). In the second approxi-
mate equality of Equation (7), we have explicitly substituted the 
metasurface area A = (Nd)2, and have factored out a 4π term. 
This allows a more direct and insightful comparison with the 
semianalytical approximation in Equation (3). In what follows, 

we will elucidate the physical nature and implications of such 
scaling law. This will allow us to address two crucial aspects 
that remain unresolved in view of the inherent limitations of 
brute-force numerical optimization. First, since the RCS is 
a complicated function of the reflection-phase distribution 
(cf. Equations (2)–(6)), with many local minima, there is no 
guarantee that the results in Figure 2 are close to the “global 
optimum.” Therefore, in principle, there could be room for 
further reduction, e.g., in terms of a faster algebraic decay or 
a smaller multiplicative constant. Second, in view of the rapid 
growth of the computational burden with the electrical size, the 
optimized results in Figure 2 are necessarily limited up to mod-
erately large structures (A = 20λ × 20λ). Thus, different routes 
should be explored in order to render the RCS minimization of 
very large metasurfaces computationally affordable.

3.2. Scaling Laws and Bounds on RCS Reduction

By comparing the optimized-coding scaling-law numerical 
fit in Equation (7) with the semianalytical approximation in 
Equation (3), we note that, apart from slight differences (<10%) 
in the exponents, the two expressions exhibit the same struc-
ture, thereby indicating that the maximum directivity of the 
metasurface is essentially independent of its electrical size. This 
represents a pivotal observation, since it elucidates the physical 
mechanism underlying the RCS reduction and its scaling law. 
In essence, the diffuse scattering induced by the optimized 
coding maintains the metasurface maximum RCS constant, 
irrespective of its electrical size. Since the RCS of the reference 
PEC target is instead proportional to its electrical area, the RCS 
ratio scales as A~ /2λ .

Based on the above observation, we can derive some theoret-
ical bounds to the RCS reduction. First, in view of the assumed 
coordinate-separable coding (with identical sequences along the 
two dimensions), the array factor in Equation (6) can be further 
factored as 

F k k k kx y x y,( ) ( )( )= Λ Λ
	

(8)

thereby effectively reducing the study to a 1D array factor 
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with Γn denoting the reflection coefficient associated with the 
generic supercell, whose element-type is dictated by the n-th bit 
of the 1-D coding sequence. Accordingly, the metasurface direc-
tivity in Equation (4) becomes 
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A first bound can be derived by finding the condition under 
which the maximum value (with respect to θ and φ) of the 
metasurface directivity is minimized. Intuitively, this happens 
in the perfectly “isotropic” scattering case 
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Figure 2.  Optimized-coding versus derived bounds. The RCS ratio 
(orange-diamond markers) is plotted as a function of the metasurface 
electrical size on a log-log scale. The corresponding number N of super-
cells (of sidelength d = λ) per linear dimension is shown on the top axis. 
Also shown, as references, are the algebraic fit (Equation (7); orange-solid 
line), as well as the absolute (Equation (13); magenta-dashed-dotted line) 
and IAF (Equation (16); purple-dashed line) bounds. The optimized-
coding sequences and corresponding RCS ratios are extracted from 
ref. [10] and, for convenience, are also reported in Table S1 (Supporting 
Information). Results specifically refer to a unit cell of period a = 7 mm, 
with patch sidelengths w1 = 3.75 mm and w0 = 4.8 mm, for the “1” and 
“0” element-types, respectively; a substrate of thickness h = 1.964 mm is 
assumed, with εr = 2.65, tan δ = 0.001, and copper metallization of thick-
ness 18 µm. The operational frequency is 8.57 GHz.
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We can therefore define an “absolute” lower bound for the 
RCS ratio as 
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Such scaling law is also shown (magenta-dashed dotted line) 
in Figure 2, and its comparison with the optimized coding 
results seems to indicate, at least in principle, the possibility 
to uniformly reduce the RCS ratio by ≈12 dB. However, the 
condition in Equation (11) requires the array factor to perfectly 
compensate the element factor, which cannot be realistically 
attained. First, it is clear from Equation (5) that the element 
factor may exhibit nulls (for d > λ) that would render the com-
pensation impossible. Moreover, even in the absence of nulls, 
the spectral shaping that can be synthesized in the array factor 
by exploiting binary coefficients is quite limited (see, e.g., 
ref. [42] for one of the very few synthesis approaches available). 
Overall, the absolute lower bound in Equation (13) is expected 
to be rather loose.

A more realistic bound can be derived by considering 
another possible condition that yields a constant directivity, 
namely an isotropic array factor (IAF), 

constantκ( )Λ =
	 (14)

In this case, it readily follows from Equation (10) that 
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i.e., the metasurface directivity coincides with the supercell 
directivity. In other words, the metasurface directivity depends 
solely on the supercell electrical size, but not on the number of 
supercells (and, hence, on the total size). Figure 3 shows the 
maximum value of the supercell directivity in Equation (15) as 
a function of its electrical size, from which it is evident that the 
supercell should be made as small as possible. However, there 
are inherent limitations in the minimum size of the supercell 
that are intrinsically related to the approximations implied in 
the semianalytical model. Such model ideally assumes that an 
arbitrary binary distribution of local reflection coefficients can 
be induced on the metasurface. However, the physical unit cells 
are designed via full-wave simulations assuming an infinite 
periodic structure made of identical (“1” or “0” element type) 
unit cells. Clearly, the above assumption represents a reason-
able approximation as long as each supercell in the metasurface 
is sufficiently large so as to establish a local periodicity condi-
tion, and inevitably breaks down below a critically small size. 
Intuitively, such critical size is on the order of a wavelength. 

Accordingly, we assume a supercell of sidelength d = λ, com-
prising 7 × 7 unit cells, which is also the configuration con-
sidered in the optimized-coding results.[10] By extracting from 
Figure 3 the corresponding maximum directivity (magenta-
cross marker), and substituting it in Equation (3), we obtain 

γ
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henceforth referred to as “IAF bound.” Also this scaling law is 
shown (purple-dashed line) in Figure 2. Remarkably, the IAF 
bound appears rather close to (≈3 dB below) the optimized-
coding results, thereby indicating that the brute-force numer-
ical optimization might be somehow equivalent (in terms of 
RCS reduction) to “flattening” the array factor response.

3.3. Suboptimal Design

The above analysis suggests a possible “suboptimal” coding 
strategy based on the IAF condition in Equation (14). It is expe-
dient to recast the array factor in Equation (9) in the canonical 
polynomial form 

n
n

n

N

n( ) , 1,1
0

1

∑ξ ξ { }Λ = Γ Γ ∈ −
=

−

	
(17)

where ξ = exp (−iκd), and the phase reference has been suitably 
chosen so as to eliminate an irrelevant phase factor in the Γn 
coefficients. This allows us to directly establish an intriguing 
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connection between the IAF condition in Equation (14) and 
a celebrated problem in pure mathematics that was origi-
nally posed by Erdős[43] and Littlewood.[44] The problem con-
cerns to what extent the absolute value of a polynomial as in 
Equation (17) can be made almost constant on the unit circle 
or, in mathematical terms 

N( ) , 1ξ ξΛ = =
	 (18)

where the constant N  is the root-mean-square value (see 
Supporting Information for details). Clearly, the strict equality 
in Equation (18) is impossible for N > 1, and suitably weaker 
metrics should be considered. For instance, the so-called “flat-
ness” condition[44] requires that two constants 0 < C1 < 1 < C2 
exist so that 

C N C N( ) , 11 2ξ ξ≤ Λ ≤ =
	

(19)

A more stringent condition, usually referred to as “ultraflat-
ness,”[44] requires instead the existence of a sequence of polyno-
mials {Λj} (of degree Nj − 1) such that 

N Nj j j j jmax ( ) , 0
1

ξ η ηΛ − ≤ →
ξ = 	

(20)

To date, the above problem remains elusive and largely open, 
with several theoretical results and conjectures available. For 
instance, it has been proved that a random choice of the coef-
ficients is quite poor in terms of flatness, as it yields (see, e.g., 
ref. [45]) 

N Nmax ( ) ~ log
1

ξΛ
ξ = 	

(21)

as N → ∞ with probability tending to one. Moreover, it was con-
jectured by Erdős[43] that 

Nmax ( ) , 1
1

ξ χ χΛ ≥ >
ξ = 	

(22)

which would prevent the ultraflatness condition in  
Equation (20). In fact, if the binary constraint on the Γn coef-
ficients is relaxed, e.g., by assuming simple unimodularity 
(|Γn| = 1), the ultraflatness condition can be attained. This was 
demonstrated, by using probabilistic arguments, by Kahane[46] 
and subsequently, in a constructive form, by Bombieri and 
Bourgain.[47] However, for the binary coding (Γn ∈ {−1,1}) 
of interest in our study, there is no rigorous proof available. 
Indeed, for this case, extensive numerical searches[48] suggest 
the validity of the Erdős conjecture in Equation (22), and the 
bounding constants C1 ≈ 0.64 and C2 ≈ 1.27 for the flatness con-
dition in Equation (19).

Among the well-studied cases, particularly appealing are the 
Barker sequences,[49] which are widely utilized in communica-
tions and radar applications. Unfortunately, they can only be 
constructed for N = 3, 4, 5, 7, 11, 13, and it is conjectured that 
they do not exist for N > 13; this renders them of scarce interest 
for our intended application.

Another very interesting example is provided by the 
Golay-Rudin-Shapiro (GRS) polynomials,[50–52] which have 

found interesting applications ranging from antenna arrays[53] to 
spread-spectrum communications.[54] The Pν and Qν GRS poly-
nomials can be recursively defined via two intertwined formulas 

P P Q

Q P Q

( ) ( ) ( )

( ) ( ) ( )

1
2

1
2

ξ ξ ξ ξ
ξ ξ ξ ξ

= +
= −

ν ν ν

ν ν ν

+

+

ν

ν

	
(23)

with 

P Q 10 0= = 	 (24)

It can be verified that these polynomials belong to the gen-
eral class in Equation (17), with N = 2ν. Moreover[52]

P Q( ) 2 , ( ) 2 , 1
1

2
1

2ξ ξ ξ≤ ≤ =ν

ν

ν

ν+ +

	
(25)

i.e., they satisfy the upper-bound in Equation (19) with C 22 = .  
No rigorous theoretical results are instead available for the 
lower bound. For N ≠ 2ν, GRS-type sequences can still be con-
structed, but they are characterized by a looser upper bound[52] 
C 2 22 = + .

With a view toward our IAF-based coding strategy, GRS 
polynomials seem to constitute a reasonable compromise 
between “flatness” and simple, deterministic structure. In par-
ticular, their algorithmic generation requires negligible com-
putational burden, irrespective of the coding sequence size.

Figure 4 shows the magnitude distributions (over the unit 
circle) pertaining to three representative orders. A complemen-
tary behavior of the P- and Q-types is observed, which can be 
rigorously expressed as[52]

P Q( ) ( ) 2 , 1
2 2 1ξ ξ ξ+ = =ν ν

ν+

	
(26)

Additional theoretical results on their zeros can be found in 
ref. [55] (see also the Supporting Information).

From the algorithmic viewpoint, the generation of 
GRS-coded metasurfaces is rather straightforward. For a 
chosen sequence length and type (P or Q), the coefficients 
Γn ∈ {−1, 1} could be directly calculated from the recursive 
definitions in Equation (23), by using symbolic-manipula-
tion tools. We utilize instead a simpler algorithm,[52] based 
on the generation of an auxiliary binary sequence with the 
alphabet {−1, 1} 

ς ς ς ς ς( )= = = −+1, , 1
0 2 2 1n n n

n

n 	 (27)

which, for N = 2ν, directly yields the reflection-coefficient 
sequence pertaining to the Pν-type polynomials 

n Nn n , 0,..., 1ςΓ = = − 	 (28)

and, with a sign flip in the second half, also yields the sequence 
pertaining to the Qν-type polynomials 

ς

ς
Γ =

= −

− = −










, 0,...,
2

1

,
2

,..., 1

n
N

n
N

N
n

n

n

	 (29)
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Next, without loss of generality, we associate Γn = 1 with a “1” 
element-type, and Γn = −1 with a “0” element type. Nevertheless, 
we stress that, in view of the symmetry in the GRS-polynomial 
magnitude distributions (cf. Figure 4), the opposite association 
would yield equivalent results. The GRS coding sequences are 
explicitly reported in Tables S2 and S3 (Supporting Information) 
for Pν and Qν polynomials, respectively, with 2 ≤ ν ≤ 7.

Figure 5 shows the full-wave computed (see the Supporting 
Information for details) 3-D RCS patterns for representative 
structures. In particularly, we consider Pν- and Qν-type coding, 
with ν = 3 (8 × 8 supercells, i.e., 8λ × 8λ total size) and ν = 4 
(16 × 16 supercells, i.e., 16λ × 16λ total size), with same unit-cell, 
supercell, and operational frequency as for the optimized-coding 
results in Figure 2. As it can be observed, a diffuse scattering  
is obtained, with reasonably uniform distributions of lobes.

For a more quantitative assessment, Figure 6 shows the RCS-
ratio scaling laws. More specifically, the semianalytical results are 
shown for orders up to ν = 7 (corresponding to a maximum total 
size of 128λ × 128λ), whereas the full-wave results are limited to 
orders ν = 3 and ν = 4 (cf. Figure 5), which are compatible with our 
current computational resources. The very good agreement with 
the full-wave simulations provides an independent validation for 
the semianalytical modeling, which can therefore be utilized as a 
reliable prediction tool in the electrically large-size regime where 
full-wave simulations are computationally unaffordable. The 
scaling laws exhibit fairly linear trends, with slopes very similar to 
the IAF bound, and only few dB differences in the intercepts. To 
give an idea, a Q-type GRS-coded metasurface of size 16λ × 16λ 
yields an RCS reduction of ≈19 dB, i.e., only ≈4 dB less than the 
IAF bound. Such differences are attributable to the imperfect flat-
ness of the GRS polynomials. The algebraic numerical fits yield 

γ λ λ
π

≈ 



 ≈4.375

54.98
4

GRSP

1.991 1.991

0.9955Nd A 	
(30)

and 

γ λ λ
π

≈ 



 ≈2.73

34.22
4

GRSQ

1.902 1.912

0.951Nd A 	
(31)

for the P- and Q-type GRS coding, respectively. By com
parison with Equation (7), we note that these scaling laws are 
quantitatively consistent with those pertaining to the optimized 
coding in ref. [10]. However, unlike brute-force numerical 
optimization, our proposed synthesis can be inexpensively 
applied to arbitrarily large sizes.

3.4. Experimental Validation

As a proof-of-concept experimental validation of our proposed 
GRS-coding design strategy, we fabricated and characterized a 
metasurface prototype sample operating at microwave frequen-
cies (X-band). Referring to Section 5 for a basic description (and 
the Supporting Information for more details), we highlight 
that, for practical fabrication-related reasons, we selected the 
unit-cell and supercell parameters, as well as the operational 
frequency, slightly different from the configurations in our 
numerical study above (see Figure S2 in the Supporting Infor-
mation for the corresponding phase responses).

Figure 7 illustrates the metasurface design (based on the 
GSR-P3 coding) together with a photo of the fabricated proto-
type. The moderate electrical size (8λ × 8λ) is dictated by the 
size of the experimental facility, in order to fulfill the Fraun-
hofer-condition ensuring a quasi-plane-wave illumination of 
the target (see the Supporting Information for more details).

Figure 8 compares the full-wave-computed and measured 
results. More specifically, Figure 8a shows the simulated 3-D 
RCS pattern (as in Figure 5, but for the assumed prototype 
parameters and operational frequency). Figure 8b compares 
the simulated and measured RCS patterns in the φ = 0 plane, 
showing a fairly good agreement. Finally, for a better illustra-
tion of the RCS reduction, Figure 8c,d show the comparisons 
(simulated and measured, respectively) with a metallic refer-
ence target with same size. In the φ = 0 plane, an RCS reduc-
tion of ≈11.6 dB is experimentally observed, which is in line 
with the numerical estimate computed over all possible direc-
tions (9.4 dB, cf. Figure 8a). We point out that the RCS meas-
urements are carried out at various frequencies, and the best 
agreement with the simulations is observed at 10.5 GHz. Such 
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with argument running over the unit circle [ξ = exp(−iκd)].
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slight difference from the nominal design frequency (10 GHz) 
was also observed in previous experimental studies[31] relying 
on the same fabrication process, and may thus be attributable 
to fabrication tolerances as well as uncertainty on the substrate 
parameters. Similar frequency shifts were also observed for 
THz experiments.[56] Overall, the above characterization demon
strates the practical viability of the proposed coding strategy, 
and validates the theoretical and numerical predictions of  
our study.

3.5. Frequency and Angular Stability

The results in our study are obtained assuming a fixed fre-
quency and normally incident plane-wave illumination. One 
might wonder to what extent they are robust with respect to 
frequency and/or incidence variations. Remarkably, our subop-
timal coding design is independent of frequency and incidence 
conditions, as long as the “1” and “0” element-types maintain 
the out-of-phase responses. In this case, in our semianalyt-
ical model, frequency and incidence variations translate into 
spectral scaling and shifts, respectively, in the array-factor in 
Equation (6). However, given the flat spectral character implied 

by our suboptimal coding, it is easily understood that scaling 
and shifts do not yield sensible effects in the (maximum) RCS 
response. Therefore, the robustness is essentially dictated by 
the element design. Within this framework, we stress that 
the element design was not the focus of this study, and that a 
simple patch-type design was chosen, mainly to facilitate direct 
comparison with previous studies.[10] Nevertheless, we show 
in the Supporting Information some representative results 
(Figures S3–S5, Supporting Information) that indicate a rea-
sonable stability for variations of the frequency and incidence 
variations. Clearly, different element-types could be considered, 
with optimized stability with respect to frequency and inci-
dence conditions (see, e.g., ref. [17]).

3.6. Some Remarks

As previously mentioned, GRS polynomials provide a rea-
sonable tradeoff between simplicity of design and perfor-
mance. Nevertheless, one might wonder to what extent the 
uniformity of the scattered field can be improved. Although 
no rigorous theoretical results are available in this respect, 
the aforementioned numerical estimates[48] of the bounding 

Adv. Optical Mater. 2017, 5, 1700455

Figure 5.  RCS patterns for GRS-coded metasurfaces. a,b) Full-wave-computed 3-D RCS patterns pertaining to P3 and P4 coding, respectively, super-
posed on the corresponding metasurface patterns (not in scale). Results are normalized with respect to the maximum RCS of a PEC target of same size. 
c,d) Same as above, but for Q3 and Q4 coding, respectively. The coding sequences are explicitly given in Tables S2 and S3 (Supporting Information). 
Unit-cell geometry and parameters, as well as supercell size and operational frequency, are as in Figure 2.
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constants (C1 ≈ 0.64 and C2 ≈ 1.27) for the flatness condition in 
Equation (19) suggest that no significant improvements should 
be expected for binary codings. Conversely, by relaxing the 
binary constraints, the ultraflatness condition in Equation (20) 
can be in principle approached, which should result in more 
uniform scattering patterns. The reader is referred to ref. [57]  
for examples of polynomials with polyphase coefficients, char-
acterized by particularly uniform magnitude distributions. 
Therefore, multi-bit codings should allow some improvement 
in the scattering-pattern uniformity, at the expense of a more 
complicated design and implementation.

Another largely open issue is the possibility to extend our 
results to other applications, rather than RCS reduction. This 
would entail, for instance, the capability of shaping the array 
factor in more general ways. Once again, as previously men-
tioned, the binary-coding constraint poses significant limi-
tations on the spectral shaping that can be synthesized. 

Nevertheless, there are some synthesis approaches available in 
the literature that could be explored. For instance, in ref. [42], 
an approach based on Markov chains is proposed that allows 
some limited spectral-shaping capabilities.

4. Conclusions

In conclusion, we have investigated the design of coding metas-
urfaces for diffuse scattering. The main outcomes of this study 
can be summarized as follows. By analyzing the scaling-laws 
of the RCS ratio (with reference to a metallic scatterer of same 
size) attained via numerically optimized coding, we have eluci-
dated their basic working principle, which essentially consists 
of maintaining the metasurface directivity independent of its 
electrical size. This observation suggests the theoretical deriva-
tion of a realistic bound to the RCS reduction, which exhibits 
a similar scaling law as the optimized coding. Moreover, it 
also establishes an intriguing connection with the problem of 
“flat polynomials” in pure mathematics, from which a simple, 
deterministic suboptimal design strategy can be borrowed. This 
turns out to yield RCS-ratio scaling laws that are in line with 
those exhibited by the numerically optimized coding consid-
ered in our study, while requiring a negligible computational 
burden, irrespective of the metasurface electrical size.

The above results and predictions rely on semianalytical 
modeling, full-wave numerical simulations and microwave 
(X-band) measurements, which have been cross-validated. They 
provide some rigorous grounds and effective design tools for 
coding metasurfaces, which can also be extended to THz and 
optical frequencies, as well as to other physical domains (e.g., 
acoustics). Within this framework, the fabrication and experi-
mental characterization of THz samples is currently under way 
and will be the subject of a forthcoming paper. Also of great 
interest are possible extensions to multi-bit coding, which 
would provide more flexibility in terms of array-factor shaping. 
This may enable to approach the absolute lower bound for RCS 
reduction, and may also find more general applications to com-
plex field shaping as well as computational imaging.

5. Experimental Section

For experimental confirmation, a microwave (X-band) prototype of a 
coding metasurface was fabricated, with a nominal working frequency 
of 10 GHz. A standard printed-circuit-board fabrication process was 
employed, by utilizing a commercial FR4 substrate with nominal relative 
permittivity εr = 4.3, tangent loss tan δ = 0.03, thickness h = 1.6 mm, 
and copper metallization of thickness 18 µm. The prototype (shown in 
Figure 7b) comprised 8 × 8 supercells of sidelength d = 28 mm (each 
consisting of 4 × 4 unit cells of period a = 7 mm), resulting in a total 
area of 224 × 224 mm2. The patch sidelengths pertaining to the “1” and 
“0” element-types are w1 = 5 mm and w0 = 6.5 mm, respectively (see 
Figure 1d). A representative sub-optimal coding was implemented.

The experimental characterization was carried out by measuring 
the bistatic RCS of the metasurface prototype (as well as that of a 
reference copper plate of same size) by means of a dedicated indoor 
measurement setup comprising an anechoic chamber, transmitting 
and receiving horn antennas, vector network analyzer, rotatory support, 
and personal computer with GPIB interface (see Figure S6 in the 
Supporting Information). The far-field radiation pattern is obtained 
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Figure 6.  RCS-ratio scaling-laws for GRS-coded metasurfaces. a) RCS 
ratio computed via the semianalytical model (red-circle markers) and 
full-wave simulations (blue-square markers) pertaining to Pν-type as a 
function of the metasurface electrical size on a log–log scale. The cor-
responding order ν is shown on the top axis. Also shown, as references, 
are the algebraic fit of the semianalytical results (Equation (30); red-solid 
line) and the IAF bound (Equation (16); purple-dashed line). b) Same as 
above, but for Qν-type; the corresponding algebraic fit of the semianalyt-
ical results is given in Equation (31). The coding sequences are explicitly 
given in Tables S2 and S3 (Supporting Information). Unit-cell geometry 
and parameters, as well as supercell size and operational frequency, are 
as in Figure 2.
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Figure 7.  Prototype design and fabrication. a) Metasurface design pertaining to a GRS-P3 coding. The design assumes an FR4 substrate (εr = 
4.3, tan δ = 0.03, h = 1.6 mm, and copper metallization of thickness 18 µm), and comprises 8 × 8 supercells of sidelength d = 28 mm (each 
consisting of 4 × 4 unit cells of period a = 7 mm), resulting in a total area of 224 × 224 mm2. The patch sidelengths pertaining to the “1” and 
“0” element-types are w1 = 5 mm and w0 = 6.5 mm, respectively (see Figure 1d). The nominal operational frequency is 10 GHz. b) Photo of 
fabricated prototype.

Figure 8.  Experimental validation. a) Full-wave-computed 3-D RCS pattern pertaining to the prototype in Figure 7, superposed on the corresponding 
metasurface pattern. Results are normalized with respect to the maximum RCS of a PEC target of same size. b) Full-wave-computed (magenta-dashed 
curve) and measured (blue-solid curve) RCS pattern cut (in the φ = 0 plane). c,d) Full-wave-computed and measured, respectively, RCS pattern cuts 
(in the φ = 0 plane) pertaining to the metasurface prototype (blue-solid curves) and a metallic reference scatterer of same size (red-dashed curves). 
Results in panels (b–d) are normalized with respect to the maximum RCS of the metallic scatterer (at θ = 0). Simulated and measured results pertain 
to slightly different operational frequencies (10 GHz and 10.5 GHz, respectively).
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when the rotatory support, carrying both the transmitting antenna and 
metasurface, automatically rotates 360° in the horizontal plane.

Further details can be found in the Supporting Information.

Supporting Information
Supporting Information is available from the Wiley Online Library or 
from the author.
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