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ABSTRACT 

 
We studied the mistakes that happen in the real-time identification of structural breaks in 

the selected aggregate-level of U.S. financial data series. We were interested in the real-

time identification because of its relevance for forecasting. The level of the noisiness of 

different datasets and techniques used for the identification of breaks affected the frequency 

of the mistakes encountered in real-time. We found that mistakes in not finding the true 

breaks and/or finding the wrong ones in real-time were made more frequently in the case of 

a noisier financial dataset. Moreover, the techniques for optimal break detection based on 

the sequential learning of Bai and Perron (2003) were found to make fewer mistakes than 

those based on the Information Criteria (IC). 
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INTRODUCTION  

 

Many economic and financial time series are subject to structural breaks or changes as a result of changes in 

tastes, technology or policy. The presence of breaks in time series is widely recognised, if ignored, they may 

lead to serious implications. It is, therefore, a crucial matter, that needs to be dealt with using special care and 

attention, or otherwise one may obtain spurious results as argued by Perron (1989). Moreover, breaks can pose 

a serious problem for forecasting. Pástor and Stambaugh (2012) also argued that “estimation risk” is one of the 

key components of long-horizon forecasting uncertainty.  

Pástor and Stambaugh (2012) argued that “estimation risk” is one of the key components of long-horizon 

forecasting uncertainty. There is a large amount of prior literature on the development of techniques for 

identifying breaks in a given dataset (e.g. Alogoskoufis and Smith (1991); Stock and Watson (1996); Pesaran 

and Timmermann (2002); Stock and Watson (2003); Rapach and Wohar (2006); Breitung and Eickmeier 

(2011)). Some recent literature has focused on developing approaches for forecasting under the presence of 

breaks.1 Rossi et al. (2012) reviewed the empirical analyses that have been carried out on the advances in 

forecasting under the presence of breaks. A key question is what dataset to employ to estimate the parameters 

of the forecasting model. Since forecasts are typically based on the assumption of the constancy of the model 

parameters, the potential for breaks implies that a key forecasting problem is to determine which dataset to 

employ to estimate the parameters of the model that will generate future observations. This requires judging if 

and when there has been a break in the past data. If there is judged to have been a recent break then there is a 

further question of whether the model should be solely estimated on the post-break data or whether there is any 

incremental information in the pre-break data. 

In this paper, we considered another aspect of the problem of forecasting in an environment where there 

are uncertain break dates. We studied the problem of learning about break dates and examined the dynamics of 

how agents learn about the occurrence of breaks in real-time. Intuitively, the problem for an agent in real-time 

is judging whether an extreme observation is just an outlier from an unchanged structural model, or whether it 

is the first observation from a model with revised parameters. We investigated how often different techniques 

mistakenly identified breaks in real-time when we knew with hindsight from the full dataset that no break had 

occurred. 

The liquidity crisis that arose in 2008 offers an example of this problem. The crisis was so severe that at 

times confidence was eroded to the point that it was considered just another shock that was drawn from the 

same distribution of shocks over the previous 50 years. Many commentators argued that the future might 

resemble a 1930s style depression or the low growth environment observed in Japan since the early 1990s. This 

would be an example of a potential structural break in the economy. Confidence has gradually returned that this 

was not a structural break but rather a very extreme observation in a given model. However, at the time of 

writing, there were still different views on this point. As more data accumulate, the apparent break turns out 

merely to have been a few extreme observations in an unchanged model. The nearly halving of stock prices in 

2008 can only reflect the opinion of many investors that a structural break had occurred in 2008. The recovery 

of stock markets from that low point can be interpreted in the context of the ideas of this study as the result of 

a gradual revival of confidence that a permanent break had not occurred. 

In our previous paper, Nur-Syazwani and Bulkley (2015), we provided the empirical evidence of the 

instability in the firm-level dividend of U.S. firms. In this paper, we obtained the aggregate-level financial data 

series i.e. dividends, earnings and prices from Shiller (2013). Following Timmermann (2001), we modelled the 

growth processes in dividends and the same for earnings and prices as well. The key results from our study of 

the real-time dynamics of breaks are summarised below: 

 

The breaks found, with the benefit of hindsight, were found to be linked to some major or significant 

events in economic and financial history. This provides us with good grounds to assume that these 

breaks are the true breaks in our study. 

In real-time, it is more likely for mistakes to be made in the case of a noisier dataset, or a dataset 

with higher volatility.  

 

                                                             
1Some of the papers on the topic of forecasting in the presence of breaks are by Stock and Watson (2003), Pesaran and Timmermann (2002) 

and Giacomini and Rossi (2009), Groen et al. (2013), Pesaran et al. (2013) etc. 
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For the four techniques for optimal break detection from Bai and Perron (2003), the Bayesian 

Information Criterion (BIC) reports the highest number of total false breaks found compared to the 

other techniques for optimal break selection; Sequential, Repartition and the modified version of 

Schwarz’ criterion proposed by Liu et al. (1997) and abbreviated as LWZ. 

 

It is important to identify any error or mistake that can potentially be made in the identification of breaks. In real-

time, we have limited information and this may further limit the ability of any methodology used for the detection 

of breaks. As we obtain more data, the results may also change accordingly. This will affect the accuracy of 

economic and financial forecasting and the decisions made based on the forecasts can be misleading. In a 

practical sense, a misleading decision can be very costly if required to be reversed and/or rectified. Therefore, 

the realisation of any potential error that can be made in break identification is crucial to ensure that good quality 

forecasts are produced. This paper serves to examine this issue in more detail. 

The techniques for break identification used in this paper are based on Bai and Perron (2003). In a technical 

sense, we believe that selecting simple (linear) but yet highly reliable techniques for break identification can help 

illustrate how the error can be identified in real-time more efficiently. This is done by applying the technique of 

real-time analysis of Clements and Galvão (2013). In this paper, we combined the two methods of linear break 

identification and real-time analysis of Bai and Perron (2003) and Clements and Galvão (2013) to study any error 

or mistake in the real-time identification of breaks. Prior literature has seen a growing number of studies that 

have emphasised the importance of considering the non-linear nature of most financial data series and hence 

suggesting that techniques based on non-linearity are more appropriate for that matter.  On the contrary, prior 

literature also highlights that the increasing complexity of the methodology used does not necessarily translate 

into greater accuracy. A comparison made by Stock and Watson (1998) between linear and nonlinear univariate 

models for forecasting macroeconomic time series showed a preference towards simpler linear models, which 

were argued to give the overall best forecasting performance. 

 

 

DATA AND METHODOLOGY 

 

Aggregate-level data  

The monthly data on the dividend, earnings and price series, denoted by Dt, Et and Pt for the time period that 

begins from January 1871 until December 2013 were obtained from continuously updated-data following Shiller 

(2013).  The computation of ‘Online Data Robert Shiller’ on monthly dividend and earnings is from the S&P 

four-quarter totals for the quarter since 1926, with linear interpolation to monthly figures. The data on dividend 

and earnings before 1926 were compiled from Cowles (1939), with linear interpolation from the annual figures. 

Moreover, the monthly data on stock prices were computed from averaging the daily closing prices and the data 

on the CPI (Consumer Price Index-All Urban Consumers) starting from 1913 and were obtained from the U.S. 

Bureau of Labor Statistics. For the years before 1913, the data on the CPI was extracted from the CPI Warren 

and Pearson’s price index (Warren and Pearson (2017)). 

The aggregate-level financial series considered in this paper differed in terms of their level of noisiness. Figure 

1 plots the aggregate real-dividend, earnings and price from 1871-2013 obtained from Shiller (2013). The 

processes related to aggregate-level prices were seen to be noisier than the processes related to aggregate-level 

earnings. The processes related to aggregate-level dividends were the least noisy compared to the rest. Hence, it 

was possible to see how the level of noisiness in a dataset can affect the real-time dynamics of breaks. 

 

 
Figure 1 Plots for the Aggregate Real Dividend, Earnings and Price from 1871-2013 

(Source: ‘Online Data Robert Shiller’ http://www.econ.yale.edu/~shiller/data.htm) 

 

We converted the series of the dividend, earnings and price into real dividends, earnings and price by using 

the Consumer Price Index (CPI) obtained from the same source as well. The left-hand side or dependent variable  
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in our structural break analysis in real-time was the growth rate of the real dividends, prices and earnings. Thus, 

we modelled the change in the logarithm of the real dividend, earnings and price as follows: 

 

dt = ∆ log (Dt) 

et = ∆ log (Et) 

pt = ∆ log (Pt) 

 

Furthermore, we also considered the absolute value of the growth rate i.e. |dt|, |et| and |pt| in the above 

aggregate-level financial series which allowed us to detect possible breaks in the volatility of the processes 

related to the above aggregate-level financial series. 

 

Structural break analysis  

We utilised the Bai and Perron (2003) program that allowed for the construction of estimates of the parameters 

in models with multiple structural breaks. The algorithm of this program is based on the principle of dynamic 

programming and information criteria and sequential hypothesis testing to give the optimal number of breaks. 

Besides that, it was also designed to construct confidence intervals and test for structural change. We can also 

estimate either pure or partial structural change models and choose the options whether to allow for 

heterogeneity and/or serial correlation in the data and the errors across segments or not.  

 

The multiple linear regression models with m breaks (m+1 regimes) are described as follows:  

𝑦𝑡 = 𝑥𝑡
′𝛽 + 𝑧𝑡

′ 𝛿1 + 𝑢𝑡,       𝑡 = 1, … , 𝑇1 

𝑦𝑡 = 𝑥𝑡
′𝛽 + 𝑧𝑡

′ 𝛿2 + 𝑢𝑡,          𝑡 = 𝑇1 + 1, … , 𝑇2 
⋮  

𝑦𝑡 = 𝑥𝑡
′𝛽 + 𝑧𝑡

′ 𝛿𝑚+1 + 𝑢𝑡,   𝑡 = 𝑇𝑚+1 + 1, … , 𝑇                    (1)                                

 

Where yt is the observed dependent or response variable at time t; xt(p x 1) is the vector of variable(s), 

fixed throughout the analysis; zt(q x 1) is the vector of variable(s) subject to structural breaks at time t, β and 

δj(j = 1,...,m+1) are the vectors of coefficients of xt and zt respectively; ut is the error or disturbance at time t. 

The maximum number of breakpoints is given by m. 

 

For the purpose of our structural break analysis, we considered two different (general) structural break 

models as follows: 

 

Trend-stationary break model (Model 1): 

 

𝑦𝑡  =  𝛼 + 𝛽𝑡 +  𝑢𝑡 (2) 

 

Where t is time, f is a deterministic (linear) function, in which f(t)=  and ut is the disturbance at time t. The 

variable(s) subject to breaks is given by zt={α , t} whereas xt={}.  

 

Autoregressive break model (Model 2):  

 

𝑦𝑡  =  𝛼 + β 𝑦𝑡−1 +  𝑢𝑡 (3) 

Where t is time, α is drift, yt-1 is the lag of dependent variable or unit root term and ut is the disturbance at 

time t. The variable(s) subject to breaks is given by zt={α, yt-1} whereas xt={}. 

 

Real-time analysis 

In general, following Clements and Galvão (2013), we had access to the “vintage” T values of the observations 

on y up to time period T-1, where “vintage” is defined as the information set that one has available in hand at a 

given or specific date and the compilation of such vintage is the “real-time dataset” (Croushore and Stark 2003). 

The T-vintage can be written as {yt
T}t=1,2,…T-1. This is also called the latest available T-vintage, whereas the 

previous vintages, for example, the T-j vintage is {yt
T-j} for j=1,2,3,…, and where t=1,2,…,T-j-1. When we have  
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the full dataset with hindsight, we have the T-vintage in which the true breaks are detected by using the full 

dataset. The regression model for T-vintage with m breaks (m+1 regimes) of interest is 

 

𝑦𝑡
𝑇 = 𝑥𝑡

,𝑇𝛽 +  𝑧𝑡
′𝑇𝛿1 + 𝑒𝑡

𝑇 ,      𝑡 = 1, … , 𝑇1  

𝑦𝑡
𝑇 = 𝑥𝑡

,𝑇𝛽 +  𝑧𝑡
′𝑇𝛿2 + 𝑒𝑡

𝑇 ,    𝑡 = 𝑇1 + 1, … , 𝑇2  

⋮   

𝑦𝑡
𝑇 = 𝑥𝑡

,𝑇𝛽 +  𝑧𝑡
′𝑇𝛿𝑚+1 + 𝑒𝑡

𝑇 ,      𝑡 = 𝑇𝑚+1 + 1, … , 𝑇-1 (4) 

 

The true set of breaks is given by {Tk} where k=1,2,…,m where m is the maximum number of breaks 

allowed in the empirical exercise.  

For the real-time analysis, we carried out the structural breaks analysis of the Bai and Perron (2003) 

program by using all the previous vintages that we had, i.e. {yt
T-j}for j=1,2,3,…, and where t=1,2,…,T-j-1.  

 

𝑦𝑡
𝑇−𝑗

= 𝑥𝑡
,𝑇−𝑗

𝛽 +  𝑧𝑡
′𝑇−𝑗

𝛿1 + 𝑒𝑡
𝑇−𝑗

,      𝑡 = 1, … , 𝑇1  

𝑦𝑡
𝑇−𝑗

= 𝑥𝑡
,𝑇−𝑗

𝛽 +  𝑧𝑡
′𝑇−𝑗

𝛿2 + 𝑒𝑡
𝑇−𝑗

,      𝑡 = 𝑇1 + 1, … , 𝑇2  

⋮   

𝑦𝑡
𝑇−𝑗

= 𝑥𝑡
,𝑇−𝑗

𝛽 +  𝑧𝑡
′𝑇−𝑗

𝛿𝑚+1 + 𝑒𝑡
𝑇−𝑗

,      𝑡 = 𝑇𝑚+1 + 1, … , 𝑇-j-1 (5) 

 

With the benefit of hindsight that a break had occurred at the 5% significance level, we would expect to 

find the same break as more data arrived. For instance, we would expect to detect a break at a past date i.e. 

{yt
T}, where t=1,2,…T-1. Similarly, we would always expect to detect the same break in the next periods as 

more data become available. 

However, there are times when this may not be the case. The error in judgement in real-time may be present 

in the form of Type 1 and Type 2 errors: 

 

Type 1 error: This happens in the case of a rejection of the null hypothesis of no break when it is 

actually true i.e. a break was identified when there was no break. 

Type 2 error: This happens in the case of a failure to reject the null hypothesis when it is actually 

not true i.e. a break was not identified when there was a break. 

 

In the context of our structural break analysis in real-time, if we were to explain a judgement error in terms 

of either a Type 1 or Type 2 error, as it would naturally have been thought of, this would lead us to some 

confusion, which could further lead to a misleading analysis.  

To analyse the mistakes in the detection of structural breaks in real-time, the following would have been 

our set of hypotheses: 

 

Null hypothesis: There is no (true) break(s) at data point t 

Alternative hypothesis: There is a (true) break(s) at data point t 

 

Essentially, we investigated the following: 

 

How often do we find or not find the wrong or true break(s) given the different levels of the noisiness 

of the dataset in real-time respectively? 

 

 

RESULTS 

 

Structural breaks in the aggregate-level series in hindsight 

The Bai and Perron (2003) method involve extensive programming that allows the construction of the estimates 

of parameters in models with multiple structural changes (the main essence is a dynamic programming 

algorithm).  By setting m=8, the maximum number of breaks allowed is 8 and by treating the number of breaks 

as known, the Global Optimization procedure estimates the break dates for m=1, 2, 3, 4, 5, 6, 7, 8. The optimal 

number of breaks is estimated by using the Information Criteria (BIC and LWZ), Sequential and Repartition test.  

Timmermann (2001) tested the breaks in the endowment process by using the Gauss program provided by Bai 

and   Perron   (1998).  The   maximum   number  of   breakpoints   is  set   to   8   as  well,  and  by  allowing  the  
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heteroscedasticity in the residuals; he presented the evidence of structural breaks in the U.S. dividend series. He 

utilised monthly data on dividends from 1871-1999 obtained from Shiller (2000). Dividends were converted into 

the real dividends by, Dt. The dependent or left-hand side variable is the change in the logarithm of Dt, i.e. the 

real dividend growth rate, dt = ∆ log (Dt). 

Timmermann (2001)presented  the results of the following processes: 

 

Dividend growth 

Absolute dividend growth  

Dividend growth with lag 

Absolute dividend growth with lag 

 

The same processes were included in our investigation together with some other processes of the aggregate-level 

time series of earnings and price as well. We demonstrated the results by applying different specifications in two 

different models. The first model was based on the univariate specifications with a drift or an intercept term as 

the regressor was subjected to structural breaks whereas the second model included drift or the intercept term 

and a single lag of the dependent variable as the regressors were subjected to structural breaks. 

Table 1 presents the estimated number of optimal breakpoints by the techniques for optimal break selection for 

all of the processes for the two models. The estimated number of breakpoints, by using the Bai and Perron (2003) 

method, which is the modified version of the Bai and Perron (1998) method applied by Timmermann (2001) for 

the above four processes are consistent with Timmermann (2001). The Sequential and Repartition breakpoint 

tests used a significance level of 5%, while the two information criteria, the BIC and LWZ were based on the 

penalised likelihood function. The Sequential and Repartition tests failed to detect any break for most of the 

processes when there was only an intercept term included as the regressor but by including a single lag as another 

regressor, the estimated number of breakpoints reported by the Sequential and Repartition tests was higher when 

compared to the BIC technique. The LWZ method was observed to be more stringent and the estimated number 

of breaks was always lower than the BIC technique. 

 

Table 1 The Estimated Number of Breakpoints, Bai and Perron (2003) Method 
 Process Sequential Repartition BIC LWZ 

Model 1: Stationary Break Model 

Abs. dividend growth* 2 2 5 1 

Abs. earnings growth 0 0 5 1 

Abs. price growth 3 3 2 2 

Dividend growth* 0 0 4 0 

Earnings growth 0 0 0 0 

Price growth 0 0 0 0 

Model 2: Autoregressive Break Model 

Abs. dividend growth with lag* 6 6 4 1 

Abs. earnings growth with lag 0 0 2 1 

Abs. price growth with lag 3 3 2 2 

Dividend growth with lag* 3 3 1 1 

Earnings growth with lag 5 5 1 1 

Price growth with lag 0 0 0 0 

Note: * The number of breakpoints matched those reported by Timmermann (2001) and any additional breakpoint(s) found here is outside 

the time period considered by Timmermann (2001). 

 

Error in Real-Time 

Table 2 presents the descriptive statistics of the number of dates where we did not find an earlier true break in 

real-time. We observed that for the absolute growth processes, the noisier a dataset is, the more dates we did 

not find a break at a date where there was indeed a true break. In terms of the comparison between the techniques 

for break detection, it is interesting to see that for the processes related to growth in the dividend, the BIC found 

the highest number of dates where we did not find the true breaks followed by the LWZ, and Sequential and 

Repartition for the processes related to growth in the dividend. However, for the processes related to growth in 

price, this was not the case. Overall, the autoregressive model (Model 2) reported, mostly, a higher number of 

dates at which the true breaks were not found compared to the stationary break model (Model 1). 
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Table 2: Error in the Identification of Breaks in Real-Time, Bai and Perron (2003) Program 
Procedure Process Descriptive Statistics 

    Model 1: Stationary Break Model 

    N Mean  Median 

Std. 

Dev.  Min Max 

Rang

e 

Sequential Absolute dividend growth 2 80 80 N/A N/A N/A N/A 

  Absolute price growth 3 304 307 263.51 39 566 527 

Repartition Absolute dividend growth 2 80 80 N/A N/A N/A N/A 

  Absolute price growth 3 523.33 692 353.58 117 761 644 

BIC Absolute dividend growth  5 233.25 132 277.59 27 642 615 

 Absolute earnings growth 5 330.75 336.50 199.34 109 541 432 

  Absolute price growth 2 371.50 371.50 297.69 161 582 421 

  Dividend growth 4 613.25 628.50 92.96 492 704 212 

LWZ Absolute dividend growth  1 198 198 N/A N/A N/A N/A 

  Absolute price growth 2 428.50 428.50 350.02 181 676 495 

  Model 2: Autoregressive Break Model 

Sequential Absolute dividend growth  6 472.40 540 361.51 42 980 938 

  Absolute price growth  3 764.67 1005 424.09 275 1014 739 

  Dividend growth  3 591.67 267 590.92 167 1540 1373 

  Earnings growth  5 763.60 636 335.26 511 1144 633 

Repartition Absolute dividend growth  6 417.40 248 369.16 42 980 938 

  Absolute price growth  3 499 691 397.45 42 764 722 

  Dividend growth  3 247.67 286 189.43 42 415 373 

  Earnings growth  5 474 212 533.65 3 1215 1212 

BIC Absolute dividend growth  4 361.50 361.50 54.45 323 400 77 

 Absolute earnings growth  2 812 812 216.37 659 965 306 

  Absolute price growth  2 985 1135 518.53 251 1418 1167 

  Dividend growth  1 671 671 N/A N/A N/A N/A 

 Earnings growth  1 1139 1139 N/A N/A N/A N/A 

LWZ Absolute dividend growth  1 497 497 N/A N/A N/A N/A 

  Absolute price growth  2 399.50 399.50 54.45 361 438 77 

  Dividend growth  1 905 905 N/A N/A N/A N/A 

  Earnings growth  1 1139 1139 N/A N/A N/A N/A 

 

An error can also happen when we found a break at a past date where there was no true break at that date in real-

time. Table 3, on the other hand, presents the descriptive statistics of the number of dates where we did not find 

a break at a past date where there was no true break at that date in real-time i.e. we correctly did not find the 

wrong breaks. The BIC reported the highest number of total false breaks found compared to the other techniques 

for optimal break selection. Comparing the two break models, the autoregressive model (Model 2) reported a 

lower number of dates at which the false breaks were not found this was especially noted for Sequential and 

Repartition techniques but the evidence was not conclusive for the BIC and LWZ methods.  

 
Table 3 Correct Identification of Breaks in Real-Time, Bai and Perron (2003) Program 

Procedure Process Descriptive Statistics 

    Model 1: Stationary Break Model 

    N Mean Median Std. Dev.  Min Max Range 

Sequential Absolute dividend growth 29 1333.69 1372 390.45 162 1705 1543 

  Absolute price growth 36 1076.53 1017.50 486.44 263 1713 1450 

Repartition Absolute dividend growth 28 1426.29 1628 321.38 795 1708 913 

  Absolute price growth 90 1058.07 1014 451.57 263 1713 1450 

BIC Absolute dividend growth  98 1201.80 1030.50 323.48 528 1709 1181 

 Absolute earnings growth 179 1111.71 1052 424.87 123 1713 1590 

  Absolute price growth 70 909.13 1088 528.26 86 1710 1624 

  Dividend growth 112 1180.46 1110 299.36 739 1712 973 

LWZ Absolute dividend growth  20 1316.45 1636 424.24 779 1712 933 

  Absolute price growth 34 1168.76 1016.50 350.24 760 1708 948 

  Model 2: Autoregressive Break Model 

Sequential Absolute dividend growth  29 1223.48 1219 493.41 201 1712 1511 

  Absolute price growth  17 1001.12 945 571.18 42 1694 1652 

  Dividend growth  28 1171.89 1155 422.80 42 1694 1652 

  Earnings growth  72 36.80 17 128.84 1 754 753 

Repartition Absolute dividend growth  23 1143.65 1148 497.61 201 1711 1510 

  Absolute price growth  27 1028.30 941 399.72 260 1694 1434 

  Dividend growth  28 1227.18 1155 297.83 511 1694 1183 

  Earnings growth  92 47.43 20 132.44 1 861 860 
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Table 3 Cont. 

BIC Absolute dividend growth  7 1528.57 1659 212.95 1035 1694 659 

 Absolute earnings growth  16 1300.44 1216 323.99 829 1637 808 

  Absolute price growth  23 1293.13 1193.50 171.10 1122 1646 524 

  Dividend growth  0 N/A N/A N/A N/A N/A N/A 

 Earnings growth  4 1594.25 1640.5 102.13 1442 1654 212 

LWZ Absolute dividend growth  2 1366 1366 384.6661 1094 1638 544 

  Absolute price growth  1 1323 1323 N/A N/A N/A N/A 

  Dividend growth  0 N/A N/A N/A N/A N/A N/A 

 Earnings growth  4 1594.25 1640.50 102.13 1442 1654 212 

 

 

CONCLUSION 

 

We were particularly concerned with the effect that breaks can pose for forecasting. Such concern has led many 

researchers to take the wise step of incorporating breaks in their forecasting models with the hope of generating 

more accurate and reliable forecasts. Our study focused more on exploring the topic of structural breaks where 

we looked at the dynamics of learning about breaks in real-time.  

It is important to look at breaks from the real-time perspective as this captures what could actually have been 

attained with the data that is available at the present time. As more data become available, the view also changes 

accordingly. As previously mentioned, we could relate this to the recent financial crisis that arose in 2008. This 

would be a potential structural break in the economy. However, the techniques for optimal break selection 

considered in this paper did not find a break during this crisis. We offer an explanation of this situation from our 

point of view based on real-time learning about the dynamics of breaks. The availability of more data in 

subsequent periods may reveal that some apparent breaks turn out merely to have been a few extreme 

observations in an unchanged model.  

In this paper, the breaks found in hindsight are assumed to be the true breaks for the purpose of real-time 

analysis. We observed links between these breaks and some major or significant events in history. We found 

that in real-time, it is more likely for mistakes to happen in the case of a noisier dataset. The Bayesian 

Information Criterion (BIC) was observed to record the highest number of total incorrectly identified breaks 

when compared to the other techniques for optimal break selection; Sequential, Repartition and the modified 

version of Schwarz’ criterion proposed by Liu et al. (1997) abbreviated as LWZ. 
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