CHALLENGES AND BARRIERS OF BUILDING INFORMATION MODELLING (BIM) IMPLEMENTATION IN CONSTRUCTION INDUSTRY

NUR FARHANA BINTI HAMZAH

B. ENG(HONS.) CIVIL ENGINEERING

UNIVERSITI MALAYSIA PAHANG
SUPERVISOR’S DECLARATION

I hereby declare that I have checked this project and in my opinion, this project is adequate in terms of scope and quality for the award of the Bachelor Degree of Civil Engineering

(Supervisor’s Signature)

Full Name : MR MOHAMMAD SYAMSYUL HAIRI BIN SAAD
Position : LECTURER
Date : 12 JUNE 2018
STUDENT’S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at Universiti Malaysia Pahang or any other institutions.

(Student’s Signature)

Full Name : NUR FARHANA BINTI HAMZAH
ID Number : AA14087
Date : 12 JUNE 2018
CHALLENGES AND BARRIERS OF BUILDING INFORMATION MODELLING (BIM) IMPLEMENTATION IN CONSTRUCTION INDUSTRY

NUR FARHANA BINTI HAMZAH

Thesis submitted in fulfillment of the requirements for the award of the Bachelor Degree in Civil Engineering

Faculty of Civil Engineering and Earth Resources
UNIVERSITI MALAYSIA PAHANG

JUNE 2018
To my beloved parents, Hamzah Ahmad and Rodiah Abd Majid.
ACKNOWLEDGEMENTS

Alhamdullilah and thanks to God, I have successfully completed this project. Although I had faced many challenges to complete this project, there are many useful knowledges and experiences I achieved when doing this project.

Therefore, I would like to express my greatest appreciation to my supervisor, Mr Mohammad Syamsyul Hairi bin Saad for his willingness to give me guidance and encouragement during the study. His guidance helped me in all the time of research and writing this thesis.

Lastly, I would like to thank my family, for always believed in me and continued to support me throughout the hard times. I am also thankful for all my friends and the others who directly or indirectly had helped me but whose names have not been mentioned here. May success will always be with all of you. InsyaAllah.
ABSTRAK

ABSTRACT

Building Information Modelling (BIM) is an intelligent model-based process that provides insight for creating and managing building and infrastructure projects faster, more economically and with less environmental impact. It also represents the process of development and use of a computer generated model to simulate the planning, design, construction and operation of a facility. BIM is defined as a modelling technology and associated set of processes to produce, communicate, and analyse building models throughout the entire project's lifecycle. Although there is bound of benefits that gained from the BIM application, the local construction industry still reluctant to deploy the technology in delivery its services. The objectives of the study is to identify the types of challenges from relevant literature review related to BIM, to design the questionnaire on the challenges and barriers during the implementation of BIM and to analyse the effect of challenges to the outcome of BIM. The survey questionnaires were distributed in the construction field, consultant firm and architecture firm within Klang Valley. The method of data collection is by questionnaire and also simple interview. The main conclusion drawn from the study are cost, lack of collaborative work processes and modelling standards and fragmented nature are the most largest challenges and barriers in the implementation of BIM in construction industry.
TABLE OF CONTENT

DECLARATION

TITLE PAGE

ACKNOWLEDGEMENTS iii

ABSTRAK iv

ABSTRACT v

TABLE OF CONTENT vi

LIST OF TABLES x

LIST OF FIGURES xi

LIST OF ABBREVIATIONS xii

CHAPTER 1 INTRODUCTION 15

1.1 Background 15

1.2 Problem Statement 16

1.3 Research Objectives 17

1.4 Scope of Study 18

1.5 Significance of Study 18

1.6 Thesis Structure 18

CHAPTER 2 LITERATURE REVIEW 19

2.1 Introduction 19

2.2 Building Information Modelling 19

2.3 Nature of the Study 21

2.4 Roles of Construction Professionals 22
2.4.1 Client 22
2.4.2 Architect 22
2.4.3 Engineer 23
2.4.4 Contractor/Builder 23
2.4.5 Quantity Surveyor 23

2.5 The Concept of BIM 24
2.5.1 Function of BIM 25
2.5.2 Benefits of BIM 26
 2.5.2.1 Design Phase 27
 2.5.2.2 Construction Phase 27
 2.5.2.3 Management Phase 27

2.6 Implementation of BIM 28
2.6.1 Challenges to BIM in Construction Industry 29
 2.6.1.1 Interoperability 30
 2.6.1.2 Stakeholders 31
 2.6.1.3 Modelling Guidelines 31
 2.6.1.4 Client’s Demand 32
 2.6.1.5 Pilot Project 32
 2.6.1.6 Legal Issues 32
 2.6.1.7 Issues of Training and Learning 33
 2.6.1.8 Transition Team 33

2.7 Use of BIM in Construction Management 34
2.7.1 Visualization 35
2.7.2 3D Coordination 36
2.7.3 Prefabrication 38
2.7.4 Construction Planning and Monitoring 40
2.8 Challenges of BIM Implementation

2.8.1 People

 2.8.1.1 Roles and Responsibilities
 2.8.1.2 Training and Education

2.8.2 Technology

 2.8.2.1 Hardware
 2.8.2.2 Technical Support

2.9 Summary

CHAPTER 3 METHODOLOGY

3.1 Introduction

3.2 Instrument for Data Collection

 3.2.1 Questionnaire Survey Design
 3.2.2 Interview

3.3 Respondent of the Study

3.4 Data Analysis

3.5 Research Framework

3.6 Summary

CHAPTER 4 RESULTS AND DISCUSSION

4.1 Introduction

4.2 Questionnaire Analysis

 4.2.1 Respondent’s Background
 4.2.1.1 Nature of the Firm
 4.2.1.2 Job Positions
 4.2.1.3 Amount of workers in company

 4.2.2 Causes of Challenges and Barriers of BIM Implementation

4.3 Discussion
4.3.1 Benefits of BIM Implementation

4.3.1.1 Easy maintenance of building life cycle

4.3.1.2 High Level of Customization and Flexibility

4.3.1.3 Improve Review and Approval Cycles

4.3.1.4 Reduces Conflicts and Changes during Construction

4.3.1.5 Reduce Risk Mitigation

4.3.2 Challenges and Barriers of BIM Implementation

4.3.2.1 High Cost to Install BIM Tools and Software

4.3.2.2 Lack of Collaborative Work Processes and Modelling Standards

4.3.2.3 Fragmented nature

4.3.2.4 Lack of Knowledge on BIM Implementation

4.3.2.5 Lack of Determination of Ownership

CHAPTER 5 CONCLUSION

5.1 Introduction

5.2 Assessment on Research Objectives

5.2.1 Objective 1: To identify the types of challenges from relevant literature review related to BIM

5.2.2 Objective 2: To design the questionnaire on the challenges and barriers during the implementation of BIM

5.2.3 Objective 3: To analyse the effect of challenges to the outcome of BIM

5.3 Conclusion

5.3 Research Limitations

5.4 Recommendation for Future Research Study

REFERENCES
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Average Index</td>
<td>48</td>
</tr>
<tr>
<td>4.1</td>
<td>Remarks for the Benefits of BIM Implementation</td>
<td>55</td>
</tr>
<tr>
<td>4.2</td>
<td>Remarks for the Challenges and Barriers of BIM Implementation</td>
<td>56</td>
</tr>
<tr>
<td>4.3</td>
<td>Average Index for Benefits of BIM Implementation</td>
<td>57</td>
</tr>
<tr>
<td>4.4</td>
<td>Average Index for Causes of Challenges and Barriers of BIM Implementation</td>
<td>58</td>
</tr>
<tr>
<td>4.5</td>
<td>Average Index for Respective Causes</td>
<td>60</td>
</tr>
<tr>
<td>4.6</td>
<td>Structural framing material take off generated from Revit software</td>
<td>68</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Uses of BIM throughout a Building Cycle</td>
<td>32</td>
</tr>
<tr>
<td>2.2</td>
<td>Uses of Virtual Mock-ups in the Detailed 3D Shop Drawings</td>
<td>34</td>
</tr>
<tr>
<td>2.3</td>
<td>MEP System at Research 2 Tower Project</td>
<td>35</td>
</tr>
<tr>
<td>2.4</td>
<td>Hennessy Centre Safety and Site Logistics Planning</td>
<td>39</td>
</tr>
<tr>
<td>3.1</td>
<td>Research Methodology Framework</td>
<td>49</td>
</tr>
<tr>
<td>4.1</td>
<td>Nature of the Firm</td>
<td>52</td>
</tr>
<tr>
<td>4.2</td>
<td>Job Positions</td>
<td>53</td>
</tr>
<tr>
<td>4.3</td>
<td>Amount of workers in company</td>
<td>54</td>
</tr>
<tr>
<td>4.4</td>
<td>Effect of BIM use on project profitability</td>
<td>70</td>
</tr>
</tbody>
</table>
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEC</td>
<td>Architecture, Engineering, Construction</td>
</tr>
<tr>
<td>AGC</td>
<td>Associated General Constructors</td>
</tr>
<tr>
<td>AI</td>
<td>Average Index</td>
</tr>
<tr>
<td>AIA</td>
<td>American Institute of Architects</td>
</tr>
<tr>
<td>BAS</td>
<td>Building Automation System</td>
</tr>
<tr>
<td>BCSs</td>
<td>Biosafety Cabinets</td>
</tr>
<tr>
<td>BIM</td>
<td>Building Information Modelling</td>
</tr>
<tr>
<td>CAD</td>
<td>Computer Aided Design</td>
</tr>
<tr>
<td>CADD</td>
<td>Computer Aided Drafting and Design</td>
</tr>
<tr>
<td>CAM</td>
<td>Computer Aided Manufacturing</td>
</tr>
<tr>
<td>CIDB</td>
<td>Construction Industry Development Board</td>
</tr>
<tr>
<td>CMM</td>
<td>Capability Maturity Model</td>
</tr>
<tr>
<td>CNC</td>
<td>Computer Numerical Control</td>
</tr>
<tr>
<td>COBie</td>
<td>Construction Operations Building Information Exchange</td>
</tr>
<tr>
<td>CPM</td>
<td>Critical Path Method</td>
</tr>
<tr>
<td>ICT</td>
<td>Information and Communication Technology</td>
</tr>
<tr>
<td>IPD</td>
<td>Integrated Project Delivery</td>
</tr>
<tr>
<td>IT</td>
<td>IT Information Technology</td>
</tr>
<tr>
<td>MEP</td>
<td>Mechanical, Electrical, Plumbing</td>
</tr>
<tr>
<td>NBIMS</td>
<td>National Building Information Modelling Standards</td>
</tr>
<tr>
<td>O&M</td>
<td>Operation & Maintenance</td>
</tr>
<tr>
<td>PrM</td>
<td>Production Manager</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>RFID</td>
<td>Radio Frequency Identification</td>
</tr>
<tr>
<td>ROI</td>
<td>Return on Investment</td>
</tr>
<tr>
<td>2D</td>
<td>Two Dimensional: x,y</td>
</tr>
<tr>
<td>3D</td>
<td>Three Dimensional: x,y,z</td>
</tr>
<tr>
<td>4D</td>
<td>Four Dimensional</td>
</tr>
<tr>
<td>5D</td>
<td>Five Dimensional</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

Building Information Modelling (BIM) is an intelligent model-based process that provides insight for creating and managing building and infrastructure projects faster, more economically and with less environmental impact. It also represents the process of development and use of a computer generated model to simulate the planning, design, construction and operation of a facility (Arayici, 2009).

The Building Information Model is primarily a three dimensional digital representation of a building and its intrinsic characteristics. It is made of intelligent building components which includes data attributes and parametric rules for each object. For instance, a door of certain material and dimension is parametrically related and hosted by a wall. Furthermore, BIM provides consistent and coordinated views and representations of the digital model including reliable data for each view.

This saves a lot of designer's time since each view is coordinated through the built-in intelligence of the model. According to the National BIM Standard, Building Information Model is "a digital representation of physical and functional characteristics of a facility and a shared knowledge resource for information about a facility forming a reliable basis for decisions during its lifecycle; defined as existing from earliest conception to demolition".

Construction industry is moving rapidly toward modernization. Information Communication Technology (ICT) has played the significant roles in this
transformation. The use of ICT permeates various industries and is seen as a major driver for improvement in performance and cost efficiency (Arayici, 2009).

However, the performance of ICT towards the industry is still underprivileged. It might be due to the different types of software used by the participants of the industry, the amount of the redundant information and the manual transfer of information (McGraw-Hill, 2008).

To solve this problem, Building Information Modelling (BIM) has been introduced to the industry. BIM is suitable to support the simulation of a construction project in a virtual environment, with the advantage of taking place in silico through the use of a proper software package (Jardim-Goncalves, 2010). Although the adoption of BIM is expanding within the industry and it have been beneficial to several parties. Yet, there is still some space for improvements.

Even though the concept of BIM has been widely implemented, but people still failed to explore how a BIM can really talk to a construction project in a real time manner (McGraw-Hill, 2008).

1.2 PROBLEM STATEMENT

The productivity and economic benefits of BIM to AEC industry are widely acknowledges and increasingly well understood. Further, the technology to implement BIM is readily available and rapidly maturing. Yet, the adoption of BIM is much slower than anticipated (Jung, Y., & Joo, M, 2011).

The researchers and practitioners have to develop suitable solutions to overcome these challenges and other associated risks. There are two main reasons; technical and managerial that cause BIM adoption is much slower than anticipated (Kacprzyk, Z, 2014).

The major drawback of technical and managerial challenges needs to be identify, synthesize and discuss. It is expected that the use of BIM will continue to
increase in the AEC industry. Despite that, there are some barriers when dealing with the BIM. As Datuk Seri Prof Judin Abdul Karim said "It is not a problem of knowledge and information on the usage of ICT; it is always about the cost." Although there is awareness of using the ICT but the cost of investment prohibited companies from adopting the technology. Big companies can afford ICT investment while most of the small companies find its adoption unaffordable (Kiviniemi, A, 2013).

Therefore, this research will identified the barriers when dealing with the widespread of BIM adoption which not only in the monetary term but also others related issues such as legal issues, data storage capacities, availability of real-time information and et cetera.

1.3 RESEARCH OBJECTIVES

The following is the research objectives that guide me throughout the study:

1.3.1 To identify the types of challenges from relevant literature review related to BIM.

1.3.2 To design the questionnaire on the challenges and barriers during the implementation of BIM.

1.3.3 To analyse the effect of challenges to the outcome of BIM.

1.4 SCOPE OF STUDY

This study focused on the participants of the construction industry generally consists of Consultants, Engineers and Contractors. The respondents will complete the questionnaire and give their opinions towards the challenges of Building Information Modelling (BIM) in project implementation and also project related issues. In addition, the study will focus on the construction industry, consultant firm and architecture firm located within Klang Valley area.
REFERENCES

Kiviniemi, A. (2013) “Public clients as the driver for open BIM adoption-how and why UK government wants to change the construction industry?” *Conference at Clareon Hotel Airlanda airport, Open BIM. 2013-04-22*.

