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Abstract

This thesis aims to address some optimal problems using risk measure for different

purpose.

First topic is considering to find the optimal hedging strategy in general to replace

the fixed minimum capital reserve. This problem, that minimises the cost of the financial

position, is generated from ruin theory by using the properties of risk measures. Under

the cash invariance, positive homogeneity and sub-additivity of the general risk measure,

a generalised minimum capital (GMC) is introduced. By selecting the cumulative risk

measure and cumulative pricing rule, an example is demonstrated.

Since a reinsurance contract can be considered as a hedging approach, the work in

this thesis then aim to find the optimal reinsurance design under various framework.

Secondly, the distortion risk measure is selected to avoid insolvent of the cedent and

to calculate the premium of reinsurance policy. To work on this problem, we construct

a discrete-time dynamic surplus model. To our knowledge, the work in this thesis is the

first instance of a proposal of a framework for an optimal reinsurance contract wherein

the insurance company’s life-time dividends are maximised while addressing the risk of

moral hazard. We considered different types of conditions and observed that if there

is no specific dividend policy in place, the optimal design of the reinsurance contract

in static and dynamic frameworks is similar. Meanwhile, the problem with a specific

dividend policy, in its general form, can be different for dynamic and static frameworks.

However, for particular cases (for example, if the premium principle is Value at Risk)

the optimal design for dynamic and static frameworks is similar.
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With the similar aim in mind when choosing the objective function in the last work,

reciprocal set-up is used in the final topic in this thesis. We propose a new approach

to this problem by considering a multi-objective optimisation problem. We optimise

one party’s overall risk while regulating the risk of the other party under the distortion

risk measures. We also proposed a more realistic global risk position in contrast to the

existing over-simplified assumptions in the literature. We demonstrated that the problem

can be solved in a manner similar to solving a straightforward optimal reinsurance design

problem. We studied different examples and determined their solutions.

In the last two problems, we utilised the Marginal Indemnity Function formulation

method (Assa, 2015a; Zhuang et al., 2016). Under the no–moral–hazard assumption

and the unique form of DRM we used, the MIF formulation ensures that the multi-layer

type reinsurance is optimal and is accessed to. In this thesis, we demonstrate how this

method can aid the introduction of more sophisticated problems in the literature on

reinsurance contract design.
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Chapter 1

Introduction and Literature Review

The research carried out in this thesis is concerned with determining optimal reinsurance

strategies to satisfy two types of criteria individually. One is to maximise the expectation

of discounted cumulative dividends, whereas the other is to minimise the risk of certain

parties. In the literature on the optimal reinsurance problem, most of the studies focus

on the perspective of the cedent and omitted the benefit of reinsurance company. This

is particularly so when the research used the first two criteria reviewed in Section 1.3,

which are minimising the ruin probability and the ceding risks respectively. This is the

reason that the results of existing studies are likely to be optimal for the cedent and not

for the reinsurer. Balbás et al. (2013) emphasised the motivation behind this is that the

ceding company makes the final decision on buying the reinsurance contract. However, as

another participating party of the reinsurance agreement, the reinsurer needs to approve

the chosen strategy. Therefore, our work presented in Chapter 4 brings the shareholders

as the third party into consideration by maximising the discounted total dividends.

Additionally, in Chapter 5, we investigate the optimal reinsurance problem under a

so-called reciprocal objective, which implies that the interests of both the insurer and

reinsurer are considered. All the risk-related assessments in our work shown in Chapter

4 and 5 are under the Distortion Risk Measure (DRM) framework; see Section 1.1.2,

Definition 2.2.6 in Section 2.2.
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1. Introduction and Literature Review

This thesis is organised as follows: in the rest of this chapter, Section 1.1 reviews

the development of risk measures, while Section 1.3 describes the existing research on

reinsurance optimisation under different criteria and set-ups. Chapter 2 serves as a

mathematical and theoretical foundation of the main topics demonstrated in Chapter 3,

4 and 5. Their results are summarised in Chapter 6 with the potential areas of interest

indicated.

1.1 Risk Measure

While uncertainty is with regard to events that are likely to occur in the future under

different scenarios, risk is a means to translate the (negative) impact of uncertainty to

today’s value. Whereas uncertainty is objective and is concerned only with the mod-

elling issues, risk can be subjective; moreover, its assessment can vary among different

risk-averse individuals. From the financial and actuarial perspective, risk is not always a

negative entity as investments with high risks are associated with higher returns. There-

fore, in risk management, decision-makers are divided into two types: risk-seeking and

risk-averse. However, regardless of the different preferences of individuals, actuaries

analyse the available information to provide professional recommendations. Risk mea-

sures are mostly used as the criteria to assess the risk and rank different products. Risk

measures are also used to price the insurance products and are generally called insurance

premium principles. A variety of risk measures have been introduced and studied in the

literature. Similar to mathematical modelling, it is not feasible to identify one among

all the families of risk measures and/or their properties as the most effective. However,

for particular purposes, one can identify a family of risk measures that can be more

effectively applied to our problems.

The most popular risk measure is likely to be the Value at Risk (VaR). VaR is a

quantile of the loss distribution. According to Dowd and Blake (2006), the concept un-

derlying VaR was first formulated in the early 70s; however, the term VaR has not been

commonly used until the 1990s. At that time, the financial institutes were expanding

2



1.1. Risk Measure

rapidly and they needed to develop certain mathematical models to manage their risks.

VaR is convenient to use and straightforward to understand. Additionally, VaR is ap-

plicable to various risk and capital losses with their associated probabilities. Numerous

researches have been done to develop the methods of risk management based on VaR.

As a result, VaR has been considered as the benchmark to manage financial risks (see

Duffie and Pan (1997) and Jorion (2002) for more detailed reviews of VaR). Notwith-

standing these advantages, VaR has certain significant limitations, such as the deficiency

of information on tail losses. From VaR, the maximum losses are estimated in optimistic

situations, and this is likely to result in moral hazard problems (Dowd and Blake, 2006).

Another shortcoming is the deficiency of sub-additivity (Artzner et al., 1997, 1999),

which is incompatible with the observations in reality wherein the diversification of in-

vestments aids risk reduction or at least prevents increase in risk. Moreover, Balbás

et al. (2017) summarised that optimisation of VaR is more complicated comparing to

other risk measures.

Following the study of this celebrated VaR, researchers developed two main methods

to generate new risk measures: providing a group of axioms and defining the functional

forms.

1.1.1 Axiom-based Risk Measure

After addressing the issues caused by VaR, Artzner et al. (1997) applied the methods of

defining new terminology in geometry to the measures of risk. They proposed the coher-

ent risk measure as a family of risk measures satisfying four properties: sub-additivity,

cash invariance (also called translation invariance), positive homogeneity, and mono-

tonicity. This work then was further developed in Artzner et al. (1999). In these two

seminal papers, the coherent risk measures were defined on a finite-probability space,

which was extended to a general probability space in Delbaen (2002). As VaR does

not satisfy sub-additivity, it is not coherent. As an improvement, Conditional Value at

Risk (CVaR), which accounts the losses exceeding VaR and can be derived from VaR,

is introduced as an alternative risk measure. Similar to VaR, the concept of CVaR has

3



1. Introduction and Literature Review

been used since the 1960s (Artzner et al., 1999; Dowd and Blake, 2006); however, it was

formally introduced and discussed in Artzner et al. (1999). CVaR is an extension of VaR

because it takes into consideration the average over the losses exceeding a quantile for

estimating the worse cases 1. Another example of coherent risk measure is the entropic

value at risk (EVaR), introduced by Ahmadi-Javid (2012), which is the upper bound for

VaR and CVaR derived from the Chernoff inequality.

As we stated, ‘the best ’ set of axioms applicable to all purposes is not available.

Föllmer and Schied (2002) argues that the positive homogeneity may not always hold;

for example, the value is likely to increase at different rates or be non-linear, with the

constant increment in market risks. Therefore, they recommended the use of convexity to

replace both the sub-additivity and positive homogeneity in the coherent risk measure

family. In the next chapter, it is revealed that these two properties together are the

sufficient but not necessary conditions of convexity. All the risk measures satisfying

convexity, cash invariance and monotonicity are called convex risk measures. Similar

concepts are expressed in Frittelli and Gianin (2002).

There are a large number of studies with a similar underlying concept providing

different combinations of new properties that a ‘good ’ risk measure needs to satisfy for

certain applications. For practical purposes of analysing empirical data, the property

of law invariant is required (Kusuoka, 2001; Acerbi, 2002). Acerbi (2002) introduces

the spectral risk measures by adding both law invariant and comonotone additivity

to coherent risk measures. Further details of the discussions and development in this

topic are available in Balzer (2001); Goovaerts et al. (2003); Teugels and Sundt (2004);

Rockafellar et al. (2006); Dhaene et al. (2006, 2008) and Rachev et al. (2008).

1It is important to note that in continuous distributions, CVaR is equal to yet another risk measure
called Expected Shortfall, which is not coherent when the probability distribution of the losses is discrete
(Artzner et al., 1999; Dowd and Blake, 2006).
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1.1. Risk Measure

1.1.2 Distortion Risk Measure

Distortion Risk Measure (DRM) is a family of risk measures which can be written as an

integral of VaR (more detailed terms will be explained in Section 1.1.2). Yaari (1987)

modifies the independence axiom of the expected utility theory in Von Neumann and

Morgenstern (1944) to develop the dual theory with a distortion on survival functions.

Young (1999) states that this distortion probability could be considered as a risk-neutral

probability in the area of the pricing of financial derivatives with the non-additive prop-

erty (Denneberg, 1994). Wang (1996) applies this concept into the Choquet integral and

defines the DRM. Both VaR and CVaR belong to this family of risk measures, while

DRM could also be coherent under certain constraints (Balbás et al., 2009). For exam-

ple, the DRM is coherent if the corresponding distortion functions are concave or if and

only if they are continuous (Wang et al., 1997; Goovaerts et al., 2003). DRM is reviewed

in Pflug (2006) and discussed in Balbás et al. (2009). DRM is the core risk measure

used in Chapter 4 and 5; therefore, we will explain it in further detail in Chapter 2 on

the preliminaries.

Although we addressed some disadvantages of VaR, it still crucially participates in

risk management by financial institutions and academic researchers (Balbás et al., 2017).

This is why we choose DRM to include VaR in our general optimization results. Espe-

cially, examples under VaR are given in 4 to demonstrate the main results. Additionally,

DRM has been applied to a variety of problems in the financial area, such as the as-

set allocation problem in Hamada et al. (2006) and catastrophe bond pricing in Wang

(2004). More general discussions of the applications of DRM for portfolio optimisation

is available in Chapter 25 of Sereda et al. (2010). Another application of DRM is in the

determination of insurance premiums, i.e. they can be straightforwardly considered as

insurance premium principles. When DRM is used to calculate premiums, it is called

the distortion premium principle (DPP). Insurance premium is the compensation paid

by the contract buyer to the insurer for shifting the covered risks. The calculation of the

premium is one of the most important topics that insurance companies are interested

5



1. Introduction and Literature Review

in. There are three main methods to develop the premium principles: ad hoc method,

characterisation method, and economic method. While the expected value premium

principle is typically an ad hoc approach to risk premium, the axiomatic approach to

generating risk measures provides the necessary characterisation to premium principles.

Furthermore, by applying existing theory to generate a new set of premium principles, we

can introduce an economic method of risk measurement (for further details, see Teugels

and Sundt (2004)). Researchers are impelled to improve the theories in risk measures

by seeking a more effective premium principle, e.g. the introduction of the DRM. Wang

(1995) introduced the proportional hazards premium principle, and then, the concept of

distortion premium principle (DPP) was derived in Wang (1996). Wang Transform as

a distortion function was recommended by Wang (2000), and the corresponding DRM

named Wang’s premium principle was defined. Note that Wang’s premium principle

belongs to DPP. We will provide more mathematical definitions in the next chapter,

and DPP is selected to calculate the reinsurance premium in Chapter 4.

1.2 Hedging in Financial Markets

Hedging is a common practice in banking, finance and insurance. In the literature

on financial mathematics, parametric and non-parametric are two main approaches of

hedging. The parametric method is in nature as it assumes that the market price fol-

lows a particular diffusion process. This approach includes the intrinsic risk hedging of

Schweizer (1992), the super-hedging of El Karoui and Quenez (1995) and the efficient

hedging of Föllmer and Leukert (2000). The second approach is non-parametric since it

does not make use of the structure of the model that drives the underlying price dynam-

ics. The robust pricing and hedging strategies of Cox and Ob lój (2011a, 2011b) serve as

an example of this approach. A different line of research in model-free hedging is based

directly on the concepts of hedging and minimising the risk (see Xu (2006), Balbás et al.

(2009), Balbás et al. (2009), Balbás et al. (2010) and Assa and Balbás (2011)). In this

setting, the investor or portfolio manager minimises the risk of a global position given

6



1.3. Reinsurance Optimisation

the budget constraint on a set of manipulatable positions (a set of accessible portfolios,

for instance). We account for market incompleteness and frictions by minimising ag-

gregate hedging costs that consist of the market price associated and the so-called risk

margin. As a general method, this non-parametric or robust hedging approach is used

in different ways such as hedging contingent claims and economic risk variables. For

the development of the approaches on the sub-additive risk evaluators and pricing rules,

more discussions can be found in Jaschke and Küchler (2001), Staum (2004), Xu (2006),

Balbás et al. (2009), Balbás et al. (2009), Balbás et al. (2010), Assa and Balbás (2011)

and Arai and Fukasawa (2014).

1.3 Reinsurance Optimisation

A reinsurance contract is an insurance agreement written by the reinsurance company

to protect the ceding insurance company (or cedent). Similar to an insurance policy,

reinsurance reduces the risk of the cedent arising from the insurance claims, and the

reinsurer is compensated by a premium. As a consequence, the ceding company has

the opportunity to sell a more flexible range of insurance contracts to the policyholders

while retaining the risk at an acceptable level. Through this cooperation of a risk-

sharing relation, the small-scaled cedents are rendered more competitive in the financial

markets. Another effect on the ceding companies is that a reinsurance contract aids

them in decreasing the ruin probability from unexpected losses. Refer Teugels and

Sundt (2004) for further material covering discussions on reinsurance terms and their

functioning.

Inspired by the general equilibrium theory established by Arrow and Debreu (1954),

Borch (1960a) first formally applied the concepts related to uncertainty in economics to

the field of insurance and initially solved the optimal risk-sharing problem. As a result

of this fundamental work, a stop-loss contract is proven to be the optimal reinsurance

strategy to minimise the variance of cedent losses under the expected value premium

principle. Arrow (1963) obtained similar results for different optimisation criteria by

7



1. Introduction and Literature Review

maximising an expected utility of the terminal surplus for the insurance company.

In more recent literature, three main objective criteria are selected to determine the

optimal reinsurance retention levels: ruin probability in risk theory, losses estimated

by risk measures and expected utilities (including the discounted cumulative dividends,

although eventually, they are not utilities).

1.3.1 Optimal Criteria

The optimal problem of minimising the probability of ruin is popular since the birth of

the risk theory (Lundberg, 1926, 1903), which was developed by Cramér (1930). One

of the core interests in risk theory is the relation between the ruin probability and the

initial reserve of the insurance company. Following the development under this funda-

mental Cramér–Lundberg surplus setting, ruin probability estimates the likelihood of

insurer bankruptcy and is popular in the optimisation literature as the objective func-

tion. Ruin probability minimisation provides a criterion to lower the bankruptcy risk;

however, it omits the economic value of the cedent. Therefore, dividend maximisa-

tion is selected to take the shareholders’ perspectives into consideration. Asmussen and

Taksar (1997) applied HJB equation to solve the general optimal aggregate discounted

dividends problem in 1997. Three years later, Asmussen et al. (2000) used the results

from that work to solve the optimal reinsurance problem with excess-of-loss reinsurance

as an example. Mnif and Sulem (2005) also used HJB equation to obtain the optimal

excess-of-loss reinsurance contract and general dividend strategy. A few new papers that

extend Asmussen et al. (2000) have been published with the general form of the dividend

payments; for example, Bai et al. (2010) with transaction costs and taxes, Wu and Guo

(2012) with capital injections and Liu and Hu (2014) with equity. Most of the available

literature on the optimal reinsurance problem is discussed under the continuous time

dynamic setting. In this case, Bellman Principle is commonly applied and extended to

the Hamilton–Jacobi–Bellman (HJB) equation to minimise the ruin probability under

the expected value principle to determine the optimal solutions of excess of loss reinsur-

ance; e.g. see Hipp and Vogt (2003) and Dickson and Waters (2006). Schmidli et al.

8



1.3. Reinsurance Optimisation

(2002) extended the problem by finding the optimal investment policy additional on the

problem of minimising the ruin probability to find the optimal proportional reinsurance

policies by the HJB equation in the work of Schmidli (2001). In 2007, Zhang et al. (2007)

worked on a similar topic, albeit with a focus on the combination of quota-share and

excess-of-loss reinsurance. Zhang and Siu (2009) then incorporated the investment part

into the setting and used Hamilton–Jacobi–Bellman–Isaacs (HJBI) equations to solve

the problem under two objective functions.

Another objective commonly used in the literature is to minimise the total risk of an

insurance company by using a risk measure. Gajek and Zagrodny (2004) used a general

risk measure on a combination of a quota share and stop-loss contract to analyse a gen-

eral form of reinsurance optimisation problem. Cai and Tan (2007) initially obtained

the optimal stop-loss reinsurance retention level under the VaR and CVaR minimisa-

tion. Inspired by this work, a series of extensions of risk minimisation under VaR and

CVaR have been investigated. Cai et al. (2008) determined that the optimal reinsur-

ance type is a stop-loss reinsurance in certain cases, whereas in other ones, quota-share

or a combination of the two are optimal. To extend this work, Cheung (2010) solved

the problem with a geometric method and provided an example of minimising VaR

under Wang’s premium principle. Another work in this series by Chi and Tan (2011)

demonstrated that the stop-loss reinsurance, capped stop-loss, or truncated stop-loss

reinsurance is optimal owing to different properties of the ceded loss functions. Balbás

et al. (2009) studied the different selected reinsurance contract types under a general

risk measure and under VaR. Following the development in risk measures, researchers

such as Zheng and Cui (2014) changed the objective to the ceding risk estimated using

the DRM. Note that most of the literature mentioned before applies the expected value

premium principle. However, with the development of risk measures, the problem of

constructing the optimal reinsurance strategy has been studied under different types of

risk-measure-based premium; for example, Kaluszka (2005) studies the problem using

the convex premium principles, and Chi and Tan (2013) uses a three-axiom-specified

premium principle. Similar to Cui et al. (2013), Assa (2015a), Zheng et al. (2015) and

9



1. Introduction and Literature Review

Zhuang et al. (2016), our research discussed in Chapter 4 calculates the reinsurance pre-

mium under the DPP; however, both focused on minimising the risks under the DRM of

ceding losses, while we target to maximise the shareholders’ benefits. In particular, Assa

(2015a) introduces a general framework where the optimal problem can be constructed

under a general DRM and premium, from the perspective of insurance, reinsurance and

social planer. The major technical advantage of this paper was to introduce the so-called

marginal indemnification function method. An extension to problems with constraints

on the budget was achieved in Zhuang et al. (2016).

The expected total dividends work as the objective function among the optimal

reinsurance problems as well. To render the classical model in risk theory more realistic,

De Finetti (1957) recommended the addition of more criteria such as dividend payments

to limit the higher bound of the insurer’s surplus. In his work, he determined that

the barrier strategy is the optimal dividend policy to maximise the expectation of the

discounted dividends under a discrete time surplus model. There are two main dividend

policies studied in the literature: the band strategy and the barrier strategy. The

barrier policy is a special case of the band strategy. Numerous researchers aimed to

identify the optimal dividend policy under different settings. Højgaard and Taksar

(1999) discussed two types of dividend strategies under the continuous time models

with the proportional reinsurance contract. One is the barrier policy with an upper

limit, and another one is the standard barrier strategy. However, because the band

strategy does not satisfy the monotonicity with respect to the remaining balance, it is

demonstrated to be optimal only in more general settings. In the work of Albrecher and

Thonhauser (2008), band strategy is obtained as the optimal policy when maximising

the expected cumulatively discounted dividend payments until ruin under a risk model

with a compound Poisson process. By adding the capital injection into the objective

function, Kulenko and Schmidli (2008) found that the barrier policy is optimal under

the risk theory framework. Eisenberg and Schmidli (2009) stated that barrier policy is

typically the optimal dividend strategy in a framework of collective risk theory but it

leads to ruin almost surely which could be proven similarly as the classical one from ruin

10
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theory. Whereas Miyasawa (1961), Morrill (1966) and Claramunt et al. (2003) studied

the optimal barrier dividend problem under the discrete-time set-up, the research of

Jeanblanc-Picqué and Shiryaev (1995), Siegl and Tichy (1999), Asmussen and Taksar

(1997), Paulsen and Gjessing (1997), Gerber and Shiu (1998, 2003, 2004), Højgaard

(2002), Irbäck (2003) and Eisenberg and Schmidli (2009) focused on the continuous

models for constant barrier strategy, and Albrecher and Kainhofer (2002) were interested

in the non-linear barrier dividend agreement. The first text book stating the fundamental

concepts of both discrete and continuous dividend policies was written by Bühlmann

(1970). Albrecher and Thonhauser (2009) reviewed the optimal dividend policy under

classical risk models and suggested some potential problems.

1.3.2 Reciprocal Reinsurance

The term reciprocal reinsurance was first used in Borch (1960b) and recently regained

centre-stage owing to studies such as Cui et al. (2013) and Balbás et al. (2013). Re-

ciprocal reinsurance implies placing equal emphasis on both the parties involved in a

reinsurance contract. The mainstream literature is concerned only with the insurance

company and omits the reinsurers’ interests. The most optimal reinsurance policy for a

cedent might be the least optimal for the reinsurance company (see Borch (1969) and

in particular, Assa (2015a)). One approach is studied in (Cui et al., 2013), wherein the

objectives are to maximise the joint survival probability and the joint profitable proba-

bility. In addition, they derived the existence conditions of different optimal reinsurance

contracts under the expected value premium principle and then extended them to a gen-

eral premium principle. Two specific examples are provided to explain the applications

of the theorems. By considering a group of insurance and reinsurance companies, Balbás

et al. (2013) address more than one cedent and diversify the risks among several parties

under both the deviation measures and coherent risk measures. More recent studies

related to this topic are investigated by Dimitrova and Kaishev (2010); Castañer et al.

(2013); Fang and Qu (2014) and Castañer and Claramunt (2016).
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1. Introduction and Literature Review

The general concept of this thesis is related to determining the optimal reinsurance

policies under DRM. Therefore, in this chapter, we reviewed the literature on the history

of risk measures in Section 1.1, and in Section 1.3, we illustrated the beginning and

growth of the studies of reinsurance optimisation with three objective criteria and under

the reciprocal set-up. The rest of this thesis is organised as follows. In Chapter 2, we will

demonstrate the key concepts supporting our research with mathematical explanations.

The results from Chapter 4 are under the maximisation of dividend payments, and the

premium calculation is under the DPP. A dynamic DRM is derived in Section 3.1 to

match the discrete time surplus set-up used in the same chapter. Chapter 5 discusses the

optimal reinsurance agreements profiting both the cedent and reinsurer, with examples

under the selected reinsurance contract related to stop-loss and quota-share policies.

Chapter 6 concludes the results and provides potential work topics for future study.

12



Chapter 2

Preliminary

The available theories and outcomes from the literature listed in this chapter serve as

the foundation for this thesis.

Section 2.1 states certain useful concepts of actuarial science along with the classical

risk model and the extensions of it with the terms related to the reinsurance and dividend

policies. The classical Cramér–Lundberg surplus model is considered in Chapter 3 while

the one with reinsurance and dividend components is used in Chapter 4.

Section 2.2 describes certain important properties of risk measures and provides the

definition of Distortion Risk Measure (DRM) and Distortion Premium Principle (DPP).

In Section 2.3, the no–moral–hazard assumption is stated, which leads to Marginal

Indemnification Function (MIF) formulation method used in our studies.Section 2.4

demonstrates the theory of primal optimisation problem and its Lagrangian dual problem

and supports our work in Chapter 4. These three sections provide crucial background

and method for Chapters 4 and 5.

Before going further, let us state the fundamental mathematical setting underlying

our work. Consider a non-atomic filtered probability space (Ω,F , {Ft}t∈{N∪∞},P), where

Ω represents the space of all scenarios (or states of the world), F is a σ-field consisting

of all events, {Ft}t∈{N∪∞} is a filtration, and P is a probability measure. Non-atomic

measure is a measure with no atoms, i.e. for any set A ∈ F with P(A) > 0, there exists

13



2. Preliminary

a subset B ⊆ A ∈ F such that P(A) > P(B) > 0. Recall that a random variable is

an F -measurable function and that two random variables are equivalent if they coincide

P-almost surely. Let us denote the Cumulative Distribution Function (CDF) of X by

FX(x) = P (X ≤ x) and its Probability Density Function (PDF) by fX . Furthermore,

we assume that F0 = {∅,Ω} and F∞ = F .

2.1 Actuarial Concept

We explain certain fundamental concepts in the field of actuarial science.

• Reserve is the initial capital that covers the risk of losses and retains the company’s

overall risk at an acceptable level.

• Claims are the losses paid by insurers that are covered by certain insurance con-

tracts. The value of each claim is referred to as the claim size.

• Insurance premium is the amount of money paid by the insured to acquire an

insurance policy. A premium (calculation) principle is a method or a rule to

determine the premium of an insurance or reinsurance policy. There are three

premium principles mentioned later in this chapter: the net premium principle,

the expected value premium principle and the distortion premium principle(DPP).

• The surplus of an insurance company is the balance left after receiving premi-

ums and paying claims. If the surplus drops below zero, the insurer is ruined or

insolvent.

• A reinsurance agreement is an insurance contract sold by the reinsurer to an

insurance company, also called the cedent or ceding company.

Lundberg (1926, 1903) and Cramér (1930) first introduced the Cramér–Lundberg

surplus model as

Ut = u+ ct−
Nλ
t∑

i=1

Yi, (2.1)
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2.1. Actuarial Concept

where u is the initial capital; c is the premium rate; Nλ
t is the number of claims in (0, t],

which is a counting process with a Poisson distribution with a parameter λ; and Yi is

the individual claim and independent of Nλ
t . For further reading of Risk theory, see the

books by Asmussen and Albrecher (2010), Grandell (2012) and Schmidli (2017).

Assume the cedent has access to buy reinsurance contract to transfer part of the risk

from the claims. Let X denote the total loss from the claims. The loss covered by the

reinsurance policy is a deterministic function of the total loss for cedent, denoted by

R(X). Adding the reinsurance components into the surplus of the insurer and consider

a discrete-time surplus model for time period [t− 1, t), we obtain

Ut = Ut−1 + c− cR − (X −R(X)) = Ut−1 + c− cR − I(X), (2.2)

where cR is the reinsurance premium paid by cedent and I(X) denotes the remaining

loss for the ceding company.

2.1.1 Reinsurance Type

There are numerous popular reinsurance contracts discussed in the literature. However,

only the reinsurance types acting on the total claims presented are taken into consid-

eration in this thesis. Specifically, these four types of reinsurance are discussed and

demonstrated in Figure 2.1.

• Quota-share contract with proportion p: R(X) = pX.

• (Limited or capped) Stop-loss reinsurance with retention levels a ≥ 0 and

b > 0: the claims covered by reinsurance is a function of total claims given by

R(X) = min{(X − a)+, b} =


0, X < a

x− a, a ≤ X ≤ a+ b

b, X > a+ b

.
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• Stop-loss after quota-share reinsurance

R(X) =

pX, X < a
p

a, X ≥ a
p

.

• Quota-share after stop-loss reinsurance

R(X) =

X, X < a

pX + (1− p) a, X ≥ a

.

From the definitions and figures, another common property of these four reinsurance

types considered could be found is the continuity of the reinsurance claims function

R(X). This is not necessary and left-continuity is enough for the Proposition 2.3.2 of

VaR proven later in Section 2.3.

Figure 2.1: Reinsurance Types

(a) Quota-share Reinsurance (b) Stop-loss Reinsurance

(c) Stop-loss after quota-share Reinsurance (d) Quota-share after stop-loss Reinsurance
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2.1. Actuarial Concept

In addition, let us assume that the cedent needs to pay the dividends, denoted by Dt,

to the shareholders. As mentioned in the last chapter, this set-up brings the third party

into consideration. The admissible dividend strategies are assumed to be a function of

surplus, i.e. Dt = H(Ut). One example of dividend policies is the band dividend strategy

defined in Chapter 5.1 of the book from Azcue and Muler (2014).

Definition 2.1.1. For non-negative ai, bi and finite n such that 0 = b0 ≤ a0 < b1 <

a1 < b2 < · · · < bn < an < bn+1 =∞, the band dividend payments at the time t, Dn
t , is

defined as a function of the surplus Ut as Dn
t = f(Ut), where

f(x) = (x− ai)+
1(ai,bi+1](x), i = 0, 1, . . . , n. (2.3)

Figure 2.2: Band Dividend Policy with n = 3.

If we set n = 0, this particular band strategy is called the barrier dividend policy

which is more popular to use in literature due to its monotonicity and without jump as

the band strategy.

Definition 2.1.2. A barrier dividend policy at time t denoted by Dt is a function of

the surplus Ut such that Dt = f(Ut), where f(x) = (x − a0)+ and a0 is a non-negative

constant number.
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Figure 2.2 and Figure 2.3 illustrate the band dividend strategy with n = 3 and the

barrier dividend policy, respectively. The general form and the barrier dividend strategy

will be used in Chapter 4 to find the optimal reinsurance policy to maximising the

expectation of cumulative dividends.

Figure 2.3: Barrier Dividend Policy

2.2 Risk Measure

Consider a set X containing all real-valued loss variables. A risk measure is defined as

a mapping ρ : X → R that maps each risk variable to a real number. Here are two

popularly used risk measures related to our research in this thesis. As reviewed in last

chapter, the first risk measure used in literature the Value at Risk (VaR) which is the

quantile of the risk distribution and introduced below.

Definition 2.2.1. The VaR of random variable X with confidence level α ∈ [0, 1] is

defined as

VaRα(X) := inf{x ∈ R|P(X ≤ x) ≥ α}. (2.4)

Following the work of Cheung and Lo (2017), denote the generalised left-continuous

inverse function of any non-decreasing and right-continuous function ζ : R→ R by ζ−1
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2.2. Risk Measure

which is defined as

ζ−1(p) = inf{x ∈ R| ζ(x) ≥ p}. (2.5)

Recall that the CDF of a random variable X is denoted as FX(x) = P(X ≤ x) which

is a non-decreasing and right-continuous function.Therefore, VaR is equivalent to the

generalised left-continuous inverse function of CDF, i.e., the left-continuous inverse dis-

tribution function written as

VaRα(X) = F−1
X (α). (2.6)

See Dhaene et al. (2002) for more information of inverse distribution function. As

discussed in Section 1.1.1, Conditional Value at Risk (CVaR) is introduced with the

advantage of satisfying the property of sub-additivity comparing to VaR. Because of

long-history of use, several forms of it has been derived. In this thesis, only the version

consistent to the distortion risk measure form is used which is defined as

CVaRα(X) =
1

1− α

∫ 1

α

VaRz(X)dz. (2.7)

Now let us move to more general way to describe a set of risk measures. As mentioned in

Section 1.1.1, Artzner et al. (1997) proposed the axiomatic method to introduce new risk

measures; specifically, they introduced the family of coherent risk measures as follows:

Definition 2.2.2. A risk measure is coherent if it satisfies the following four axioms:

1. Sub-additivity: ρ(X + Y ) ≤ ρ(X) + ρ(Y ) for any X, Y ∈ X ;

2. Cash invariance: ρ(X + a) = ρ(X) + a for a fixed X ∈ X and any a ∈ R;

3. Positive homogeneity: ρ(aX) = aρ(X) for any X ∈ X and a ≥ 0;

4. Monotonicity: If X ≤ Y ∈ X , then ρ(X) ≤ ρ(Y ).

After arguing the possibility of non-linear growth in reality, Föllmer and Schied

(2002) relaxed the constraints by replacing both positive homogeneity and monotonicity

by convexity. Hence, the convex risk measures can be defined as follows:
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Definition 2.2.3. A risk measure is convex if it satisfies both axioms 1 and 2 in Defi-

nition 2.2.2 and also complies with the convexity stated as

ρ (aX + (1− a)Y ) ≤ aρ (X) + (1− a)ρ (Y ) ,

for any X, Y ∈ X and a ∈ [0, 1].

Remark 2.2.4. It is important to note that in Artzner et al. (1997), Artzner et al.

(1999) and Föllmer and Schied (2002), risk measures are considered on a profit variable

(instead of a loss variable defined in the beginning of this section). In this scenario,

Y < 0 means loss whereas a loss variable X represents loss when it is positive. As a

result, a risk measure of a profit variable Y is cash-invariant if ρ(Y + a) = ρ(Y ) − a

for any a ∈ R. This implies that by adding cash as a profit to a risky position, the

risk is reduced. In Chapter 3, the variables inside risk measure are defined as the profit

variables while the ones defined in Chapters 4 and 5 are loss variables.

Another strand of literature introducing and using risk measures is based on Choquet

integral theory (see Yaari (1987)), from which, the form of DRM used in this thesis is

derived.

Definition 2.2.5. (Yaari, 1987) A distortion function denoted by g is a non-decreasing

function from [0, 1] to [0, 1] such that g(0) = 1− g(1) = 0.

Let P∗(A) := g (P (X ∈ A)), which is called a distorted probability measure in the

literature (Balbás et al., 2009). By using the extended definition of the Choquet integral

discussed in Denneberg (1994), the Choquet integral of X with respect to P∗ could be

expressed in the form of Riemann integral as

(C)

∫
XdP∗ =

∫ 0

−∞
[P∗ ({x|x ≥ z})− P∗(Ω)] dz +

∫ ∞
0

P∗ ({x|x ≥ z}) dz (2.8)

=

∫ 0

−∞

[
g
(
F̄X(z)

)
− g(1)

]
dz +

∫ ∞
0

g
(
F̄X(z)

)
dz, (2.9)

where F̄X(x) = 1 − FX(x) is the survival distribution function of the risk X; (C)

∫
inside the first integral represents a Choquet integral, and all the other integrals above
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2.2. Risk Measure

are Riemann integrals. By stating this relation, Wang (1996) introduced the DRM as

the Choquet integral determined by the chosen distortion function.

Definition 2.2.6. A Distortion Risk Measure (DRM) ρg of the loss variable X with the

corresponding distortion function g satisfies

ρg(X) :=

∫ 0

−∞
(g(F̄X(z))− 1)dz +

∫ ∞
0

g(F̄X(z))dz. (2.10)

If g
(
F̄X(z)

)
is re-expressed as an integral

∫ F̄X(z)

0
dg(α) and recall VaR as the inverse

distribution function in Equation (2.6), we have the equivalent form of DRM, which is

the integral of VaR shown below (Dhaene et al., 2006):

ρg(X) =

∫ 1

0

VaR1−z(X)dg(z). (2.11)

Define the dual distortion function of g as Λ(u) := 1−g(1−u). Hence, Λ : [0, 1]→ [0, 1]

is also non-decreasing. Replacing the distortion function g by the dual Λ in (2.11) and

applying change of variables, we obtain

ρg(X) =

∫ 1

0

VaR1−z(X)d [1− Λ(1− z)] (2.12)

=

∫ 1

0

VaRz(X)dΛ(z) (2.13)

=: ρΛ(X). (2.14)

Therefore, the form of DRM with respect to the dual distortion function demonstrated

in Lemma 2.2.7 is obtained.

Lemma 2.2.7. The formula of DRM in Definition 2.2.6 is equivalent to

ρΛ(X) :=

∫ 1

0

VaRz(X)dΛ(z), (2.15)

where Λ:[0, 1]→ [0, 1] is a non-decreasing dual distortion function; VaR with confidence

level α has the forms in Equation (2.4) and (2.6).

In this thesis, we mainly apply the form (4.2) in Lemma 2.2.7 for DRM and DPP.

Although DRMs are not directly generated from axioms, they are proven to fulfil three
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properties of coherent risk measures: cash invariance, positive homogeneity and mono-

tonicity; furthermore, they are comonotonely additive. DRMs are sub-additive if and

only if the corresponding distortion function is concave. Hence, DRMs are coherent if

and only if they have concave distortion functions (Wirch and Hardy, 2001). Other

axioms discussed in the literature are available in Dhaene et al. (2006); Balbás et al.

(2009); Dowd and Blake (2006) and Guerard Jr (2009).

Specific DRMs are obtained by selecting different distortion functions. For example,

VaR in Equation (2.4) belongs to DRM when the distortion function is an indicator

function defined as ΠVaRα(u) := 1[α,1](u), while CVaR could be derived to the form in

Equation (2.7) with distortion function ΠCVaRα := u−α
1−α1[α,1](u). Furthermore, one of the

popular DRMs is generated by Wang’s transformation defined in (2.16) as the distor-

tion function. This DRM introduced by Wang (1996) is commonly used for financial

derivatives pricing and insurance premium calculation.

gη(u) := Φ
(
Φ−1(u) + η

)
, (2.16)

where Φ is the CDF of standard normal distribution and η is a real number that stands

for the market price of the risk term. Using the properties of Φ, the dual distortion

function can be expressed as

Πη(u) = 1− gη(1− u) = Φ
(
Φ−1(u)− η

)
. (2.17)

Denote the premium principle by π : X → R. The net premium principle is defined

as π[X] = E[X], which is under the assumption that there is no risk if the insurer sells

an adequate number of independent and identically distributed contracts Teugels and

Sundt (2004). By introducing the term called safety loading or risk loading denoted by

θ > 0, a more commonly used method is the expected value premium principle defined

as π[X] = (1 + θ)E[X]. This principle is more reasonable as an insurer should expect

profits on an average from selling the policies. Similarly, one can introduce the Distortion

Premium Priciple (DPP) by incorporating the safety loading as follows:
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Definition 2.2.8. For a safety loading θ ∈ R+ and a dual distortion function Λ : [0, 1]→

[0, 1], a distortion risk premium πΛ is introduced as

πΛ(X) := (1 + θ)

∫ 1

0

VaRz(X)dΛ(z). (2.18)

Lemma 2.2.9. Given the safety loading θ > 0, a DPP could be represented by a DRM

with the same distortion function as πΛ(X) = ρΛ
(
(1 + θ)X

)
. Therefore, DPPs could be

technically treated as DRMs.

Proof. By applying the cash invariance property of VaR on Definition 2.2.8, we obtain

the following relation:

πΛ(X) = (1 + θ)

∫ 1

0

VaRz(X)dΛ(z)

=

∫ 1

0

VaRz

(
(1 + θ)X

)
dΛ(z)

= ρΛ
(
(1 + θ)X

)
.

When the Wang’s Transform in (2.16) is selected to be the distortion function, this

corresponding DPP is called Wang’s premium principle derived by Wang (1996). Notice

that the expected value premium principle is a special case of the DPP when the dual

distortion function satisfies ΛE(x) := x.

2.3 Moral Hazard and MIF Formulation

In this section, we discuss the key assumption and the main formulation method that

we use in this thesis. More precisely, one of the basic assumptions in reinsurance op-

timal contract design problems is the so-called no–moral–hazard assumption, on whose

basis we can introduce the Marginal Indemnification Function (MIF). Moral hazard is

explained in Dowd (2009) as the risk caused by one of the decision-making parties who

puts its own benefits above those of the other one. He discussed the role of moral hazard
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in the financial crisis of 2008 and recommended more prudential measures to overcome

this problem in the financial markets. Assa (2015b) explained the moral hazard problem

in a banking system, where tougher prudential risk management measures are applied

to remove the risk of moral hazard.

In the literature of actuarial science, this problem is addressed by considering that

both of the parties need to perceive the risk of losses (Heimer, 1989; Bernard and Tian,

2009). Therefore, we make the following assumption and call it no-moral-harzard as-

sumption:

Assumption 1. We assume that both the loss functions of the claims covered by the

insurance and reinsurance companies are non-decreasing functions of the total losses.

This assumption also enables us to employ the MIF formulation introduced in Assa

(2015a) and later developed in Zhuang et al. (2016). Following the work of Assa (2015a),

the set of admissible reinsurance contracts under Assumption 1 is defined as the space

of indemnification functions:

C = {0 ≤ R(x) ≤ x|R(x) and x−R(x) are non-decreasing} . (2.19)

Here R(X) is a Lipschitz function so it is absolutely continuous; therefore, it is differ-

entiable almost everywhere, and its derivative is essentially bounded by the Lipschitz

constant. As a result, we have the following expressions:

Proposition 2.3.1. The space of the indemnification functions in (2.19) is equivalent

to

C =

{
R : R+ → R+|R(x) =

∫ x

0

h(t)dt, 0 ≤ h ≤ 1

}
. (2.20)

Therefore, we define the space of marginal indemnification functions as

D = {h : R+ → R+ |0 ≤ h ≤ 1} . (2.21)

Assumption 1 along with the following two key Propositions 2.3.2 and 2.3.3 form the

basis of the MIF formulation. The property of static VaR with a left-continuously non-

decreasing function, R(X), stated below is commonly used in the past papers regarding
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2.3. Moral Hazard and MIF Formulation

VaR. It is proven in Theorem 1-(a) by Dhaene et al. (2002) and listed in Lemma 2.1 by

Dhaene et al. (2006) as the quantile of transformed random variables.

Proposition 2.3.2. For a non-decreasing and left-continuous function R : X → R, VaR

with the confidence level α ∈ [0, 1] satisfies

VaRα (R(X)) = R (VaRα (X)) . (2.22)

Proof. This proof follows the steps shown in Theorem 1-(a) by Dhaene et al. (2002).

Recall that CDF of a random variable X is denoted by FX and its left-continuous inverse

function is denoted by F−1
X . For any x ∈ R, CDF satisfies the following two equivalent

inqualities:

F−1
X (α) ≤ x⇔ α ≤ FX(x). (2.23)

Therefore, the equivalence below holds for any x ∈ R.

F−1
R(X)(α) ≤ x⇔ α ≤ FR(X)(x). (2.24)

Since R is left-continuous and non-deceasing,

R(z) ≤ x⇔ z ≤ sup{y|R(y) ≤ x} (2.25)

holds for any x, z ∈ R. Thus, take it back into the equivalence (2.24) to obtain

α ≤ FR(X)(x)⇔ α ≤ FX (sup{y|R(y) ≤ x}) . (2.26)

There are three possible scenarios for the supremum.

1. If sup{y|R(y) ≤ x} is finite, then by equivalence (2.23),

α ≤ FX (sup{y|R(y) ≤ x})⇔ F−1
X (α) ≤ sup{y|R(y) ≤ x} (2.27)

2. If sup{y|R(y) ≤ x} = +∞, then α ≤ FX(+∞) = 1⇔ F−1
X (α) ≤ +∞ holds and is

consistent to the equivalence in the first scenario.

3. If sup{y|R(y) ≤ x} = −∞, then α ≤ FX(−∞) = 0⇔ F−1
X (α) ≤ −∞ holds and is

also consistent to the equivalence in the first scenario.
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Therefore, F−1
R(X)(α) ≤ x is equivalent to F−1

X (α) ≤ sup{y|R(y) ≤ x}. As R is left-

continuous and non-deceasing,

F−1
X (α) ≤ sup{y|R(y) ≤ x} ⇔ R(F−1

X (α)) ≤ R (sup{y|R(y) ≤ x}) = x (2.28)

holds for any real x. As a consequence, F−1
R(X)(α) ≤ x ⇔ R(F−1

X (α)) ≤ x holds for

any x ∈ R and F−1
R(X)(α) = R(F−1

X (α)) Based on the relation shown in Equation (2.6),

rewrite the left-continuous inverse distribution function by VaR on both sides to get

VaRα (R(X)) = R (VaRα (X)) as required.

Applying the MIF in Chapters 4 and 5, we will use another useful proposition stated

here. It is first established and proved in Lemma 2.1 by Zhuang et al. (2016).

Proposition 2.3.3. For a DRM ρΛ and a function R ∈ C with its derivative R′, we

have

ρΛ (R (X)) =

∫ ∞
0

(1− Λ (FX (z)))R′ (z) dz. (2.29)

In straightforward terms, the MIF formulation is used to work with the marginal

indemnity functions rather than the indemnity functions because based on the discus-

sions above, DRM and DPP are linear over the space of marginal indemnities with

the no–moral–hazard assumption. This fact can significantly simplify the mathematical

technology that we use to address optimal reinsurance problems.

2.4 Duality

The aim of Chapter 4 is to determine the optimal reinsurance policy that maximises the

expectation of discounted total dividends under budget constraints and solvency con-

ditions. In addition, Chapter 5 focus on the optimal reinsurance strategy design that

minimises total risk of cedent, reinsurer and both. To solve these optimal problems,

we use the method called duality or duality principle. In this section, we will explain

the existing terminology of the duality for solving the optimisation problems. It will be

demonstrated in (4.32) of Chapter 4 that our optimal problem is technically equivalent
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to a minimisation problem although the initial goal is concerned with maximising the

total dividends. Moreover, one can conveniently shift between the maximisation and

minimisation problems by changing the associated signs of the objective functions and

inequality constraints below in (2.30); thus, only the minimisation problem will be ex-

plained in this section. Further details are available in Chapters 4 and 5 of the book

written by Boyd and Vandenberghe (2004).

An optimisation problem is a setting for determining an optimal solution that min-

imises the objective function and satisfies all the conditions. Let J0 : Rn → R denote

the objective function and x ∈ Rn denote the control variable or optimisation variable.

There are two types of conditions that the control variable needs to satisfy: equality

and inequality constraints. Such a problem is called a primal problem and we denote it

as follows:

inf
x

J0(x)

Subject to gj(x) = 0, j = 1, 2, . . . , p (2.30)

gj(x) ≤ 0, j = p+ 1, p+ 2, . . . , p+m

where p,m are positive integers and gj : Rn → R are constraint functions. Define the

optimal value J∗ of this minimisation problem as

J∗ := inf
{
J0(x) | gj(x) = 0, j = 1, . . . , p, and gj(x) ≤ 0, j = p+ 1, . . . , p+m

}
.

(2.31)

Therefore, the set of all the optimal points x∗ is referred to as the optimal set and is

denoted by

Xopt :=
{
x∗ | J0(x∗) = J∗, gj(x

∗) = 0, j = 1, . . . , p,

and gj(x
∗) ≤ 0, j = p+ 1, . . . , p+m} . (2.32)

The Lagrangian function is introduced in the following definition.

Definition 2.4.1. Let λ := {λj}pj=1 and µ := {µj}mj=1 denote the Lagrangian multi-

plier vectors, where λj and µj are called the Lagrangian multipliers of the equality and
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inequality constraints, respectively. The Lagrangian function is defined as a function

L : Rn × Rp × Rm → R such that

L(x,λ,µ) := J0(x) +

p∑
j=1

λjgj(x) +
m∑
j=1

µjgj+p(x). (2.33)

The use of the Lagrangian function is occasionally called the Lagrangian relaxation

method. It is generally used when certain constraints make the optimal problem com-

plicated and hinder its solution. Therefore, by minimising the Lagrangian function, the

lower bound on the optimal value of the primal problem could be obtained.

Definition 2.4.2. The Lagrangian dual function, denoted by LD : Rp × Rm+ → R, is

defined as the infimum of the Lagrangian function, i.e.

LD(λ,µ) := inf
x
L(x,λ,µ) = inf

x

(
J0(x) +

p∑
j=1

λjgj(x) +
m∑
j=1

µjgj+p(x)

)
, (2.34)

where the Lagrangian multipliers, µj, functioning on inequality constraint functions are

non-negative.

Here, the non-negative Lagrangian multiplier ensure that the Lagrangian dual func-

tion gives a lower bound of the optimal value.

Lemma 2.4.3. By Definition 2.4.2 with non-negative µ, the Lagrangian dual function

yields lower bounds of the optimal value, J∗, i.e.

LD(λ,µ) ≤ J∗. (2.35)

Proof. Assume that x̃ satisfies all the constraints in the primal problem. Because µj ≥ 0,

we have
∑p

j=1 λjgj(x̃) = 0 and
∑m

j=1 µjgj+p(x̃) ≤ 0; as a result,

L(x̃,λ,µ) = J0(x̃) +

p∑
j=1

λjgj(x̃) +
m∑
j=1

µjgj+p(x̃) ≤ J0(x̃). (2.36)

Consequently,

LD(λ,µ) = inf
x∈D
L(x,λ,µ) ≤ L(x̃,λ,µ) ≤ J0(x̃). (2.37)

holds for any feasible point x̃; thus, LD(λ,µ) ≤ J∗, which implies that the Lagrangian

dual function yields lower bounds of the optimal value.
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Note that irrespective of whether the primal problem is a convex problem or not,

the Lagrangian dual function is concave. As the constraint µ ≥ 0 is a convex set,

the associated Lagrangian dual problem defined below is convex. The Lagrangian dual

problem is denoted by

sup
λ,µ

LD(λ,µ) (2.38)

Subject to µ ≥ 0. (2.39)

Let LD∗ denote the optimal value of this dual problem; therefore, (2.38) implies that it

is the largest lower bound, i.e. LD∗ ≤ J∗ always holds. The difference between them

is called the duality gap: J∗ − LD∗. If this gap is equal to zero, the strong duality

holds and the optimal value of the primal problem could be obtained by determining

the optimal value of the Lagrangian dual problem. We assume that the strong duality

holds in Chapters 4 and 5. Numerous methods are used to ensure that this holds, which

are called the constraint qualifications. Slater’s condition is one of them which holds

when the inequality constraints hold with strict inequalities and the primal problem is

convex.

Proposition 2.4.4. The Slater’s condition states that the strong duality holds if the

primal problem is convex and there exists an x in the relative interior of its domain such

that

gj(x) < 0, j = p+ 1, p+ 2, . . . , p+m. (2.40)

(See Section 4.2.5 in Boyd and Vandenberghe (2004) for the proof.)

The strong duality implies the complementary slackness as follows:

Proposition 2.4.5. When there is no duality gap, for any primal optimal point x∗ and

dual optimal points (λ∗,µ∗), the conditions µ∗jgj+p(x
∗) = 0, j = 1, 2, . . . ,m hold, which

is called the complementary slackness.
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Proof. Using the equality and inequality constraints of the primal problem and Definition

2.4.2 with the non-negative µ, we have

J0(x∗) = LD(λ∗,µ∗)

= inf
x

(
J0(x∗) +

p∑
j=1

λ∗jgj(x
∗) +

m∑
j=1

µ∗jgj+p(x
∗)

)

≤ J0(x∗) +

p∑
j=1

λ∗jgj(x
∗) +

m∑
j=1

µ∗jgj+p(x
∗)

≤ J0(x∗)

As a result, the duality gap is zero when µ∗jgj+p(x
∗) = 0, j = 1, 2, . . . ,m.

Another condition to be commonly used under strong duality is called the Karush-

Kuhn-Tucker (KKT) optimality conditions. Kuhn and Tucker (1951) extended and

completed the KKT theorem for nonlinear optimization problems with inequality con-

straints which was first introduced by Karush in 1939 in his unpublished master’s the-

sis. If the objective function and all the constraint functions are differentiable, then the

Karush-Kuhn-Tucker (KKT) optimality conditions below are the necessary conditions

of the primal and dual optimal problems with no duality gap (See more discussions of

KKT condtions in Boyd and Vandenberghe (2004) and Aragón et al. (2019)).

Proposition 2.4.6. For any primal and dual optimal problems defined above, if the

duality gap is zero with differentiable objective and constraint functions, then any primal

optimal point x∗ and dual optimal points (λ∗,µ∗) satisfy the following conditions called

the Karush-Kuhn-Tucker (KKT) optimality conditions:

gj(x
∗) = 0, j = 1, 2, . . . , p

gj(x
∗) ≤ 0, j = p+ 1, p+ 2, . . . , p+m

µ∗j ≥ 0, j = 1, 2, . . . ,m (2.41)

µ∗jgj+p(x
∗) = 0, j = 1, 2, . . . ,m

∇J0(x∗) +

p∑
j=1

λ∗j∇gj(x∗) +
m∑
j=1

µ∗j∇gj+p(x∗) = 0,
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where J0 and gj, j = 1, 2, . . . , p+m are differentiable.

The KKT condition is used in Chapter 5 under the strong duality condition.
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Chapter 3

From Ruin Theory to a Hedging

Problem

Hedging is a common practice that financial institutions such as commercial banks,

investment corporations, and insurance companies use to reduce risk. As reviewed in

Chapter 1, there are two main types of hedging methods in existing studies: parametric

and non-parametric approaches. In this chapter, a non-parametric method is used, which

is also called a robust hedging approach. We account for the market incompleteness

and friction by minimising the aggregate hedging costs that consist of the associated

market price and so-called risk margin. This approach is fairly general and can be used

for various purposes such as hedging contingent claims and economic risk variables.

Research in this area has provided methods for sub-additive risk evaluation and pricing

rules. The novelty of the study mainly lies in incorporating the concept of hedging

within a market-consistent valuation framework. Although the focus of this chapter is

on the pricing part of the hedging problem and the extension of a pricing rule to the

space of all financial and economic variables in imperfect markets, we also construct a

set of market principles that are used to determine the existence of a solution to the

hedging problem.

Because any financial position in a complete market can be replicated by definition,
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3.1. Motivation and Set-up of the Hedging Problem

perfect hedging is always an option (while not the only one). However, in an incomplete

market, replication and complete perfect hedging are not an option for all positions (see

El Karoui and Quenez (1995)). The reason for incompleteness is the underlying asset

liquidity. It is clear that we also cannot have liquidity in the insurance market because

the insurance contracts or underlying risks are not traded in the market.

In actuarial applications, a main hedging activity is to buy reinsurance, where the

risk of claims would be transferred from the insurance company to the reinsurance

company. However, with a larger perspective, one can think of hedging in a larger

scope, where it can be generalised to a large range of activities that can reduce the risk

up front. Interestingly, this generalisation can include other risk-mitigating practices

such as setting a minimum capital requirement, as we will discuss shortly. In line with

the other chapters, we will discuss hedging strategies in the insurance industry in this

chapter.

3.1 Motivation and Set-up of the Hedging Problem

Let us begin by reviewing the setup in ruin theory. In actuarial science, risk theory is

widely used to measure the amount of initial capital that insurance companies need to

reserve in order to limit the probability of bankruptcy below a bearable level. Lundberg

(1903) modelled the surplus process of an insurance company for the first time on the

basis of a compound Poisson process, which was later known as the Cramér–Lundberg

model:

Ut = u+ ct−
Nλ
t∑

i=1

Yi, (3.1)

where u is the initial capital; c is the premium rate; Nλ
t is the number of claims in (0, t],

which is a counting process with a Poisson distribution with a parameter λ; and Yi is

the individual claim and independent of Nλ
t . Recall that the minimum initial capital

denoted by u∗ can be found by controlling the ruin probability as follows:
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3. From Ruin Theory to a Hedging Problem

u∗ := inf

u ∈ R

∣∣∣∣∣∣P
inf
t≥0

u+ ct−
Nλ
t∑

i=1

Yi < 0

 ≤ 1− α

 . (3.2)

Because the value at risk (VaR) can be considered as a left-continuous inverse distri-

bution function of the loss, the minimal initial capital can be interpreted in the risk

measure framework as

u∗ = VaRα

sup
t≥0

 Nλ
t∑

i=1

Yi − ct

 . (3.3)

Essentially, this equation can be interpreted as the minimum capital needed to obtain

no deficit risk, where the risk is measured by VaRα. Thus, the problem can be rewritten

as

inf

u ∈ R

∣∣∣∣∣∣VaRα

sup
t≥0

 Nλ
t∑

i=1

Yi − ct− u

 ≤ 0

 . (3.4)

Now, we can generalise this problem in four steps:

1. We consider a more general surplus process S = {St}0≤t≤T for some 0 ≤ T ≤ ∞

(instead of

{
ct−

Nλ
t∑

i=1

Yi

}
t≥0

):

inf

{
u ∈ R

∣∣∣∣VaRα

(
sup

0≤t≤T
(−St − u)

)
≤ 0

}
. (3.5)

2. The simple capital reserve strategy can be extended to a more sophisticated one by

including other risky capital, e.g. considering a process X = {Xt}t≥0 instead of the

constant (process) u. If the cost of this risky capital is measured by a functional

π : X → R, where X is the set of all risky capital accessible to us, then we have

the following generalisation of the previous problem:

inf

{
π (X)

∣∣∣∣VaRα

(
sup

0≤t≤T
(−St −Xt)

)
≤ 0, X ∈ X

}
. (3.6)

3. Recall that the VaR is a special case of distortion risk measures (DRMs). Thus,

VaRα can be replaced by the general form of a distortion risk measure denoted by
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% to obtain

inf

{
π (X)

∣∣∣∣%( sup
0≤t≤T

(−St −Xt)

)
≤ 0, X ∈ X

}
. (3.7)

where % is a DRM on a set of random variables denoted by Y .

4. Finally, we assume a general risk measure ρ on random processes denoted by

Y = {X|ρ(X) < ∞}. In particular, one can see that for the set S + X :={
{St +Xt}t≥0 |X ∈ X} , the final set-up of the problem is as follows:

inf {π (X) |ρ (S +X) ≤ 0, X ∈ X } . (3.8)

As one can see, the problem is thoroughly generalised to find the least costly risky

position to be added to control the risk of insolvency. Following the steps above, a

general problem is set up, and the two examples below demonstrate particular cases

belonging to our set-up.

Example 3.1.1. The obvious example is the minimum initial capital problem intro-

duced in ruin theory, which is therefore a special case in our problem set-up when

X = R, T =∞, the cost function π is an identity function, St = ct−
∑Nλ

t
i=1 Yi, and

ρ (X) = VaRα

(
sup
t≥0

(−Xt)

)
.

Example 3.1.2. Consider a financial market consisting of n assets denoted by X1 to

Xn. Let F 1
t , . . . , F

m
t be m independent processes modelling the main economic factors

(economic forces) that drive the prices in the economy (one can think of the infamous

Fama and French three-factor model plus some default factors). Then, the value of each

asset X i
t would be a linear combination of some of these Fm

t processes. Mathematically,

we let F 1
t , . . . , F

m
t be m independent processes. Each X i

t is a linear combination of some

or all of F 1
t , . . . , F

m
t , i.e.
X1
t

X2
t

...

Xn
t

 =


a11 . . . a1m

a21 . . . a2m

... . . .
...

an1 . . . anm




F 1
t

F 2
t

...

Fm
t

 +


ε1t

ε2t
...

εnt

 , (3.9)
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where the values of aij are real numbers for 1 ≤ i ≤ n and 1 ≤ j ≤ m and εit is an

asset-specific risks independent of any other process and with zero mean. In this case,

one can think of all linear combinations of
m∑
j=1

wjF
j, where wj is given as


w1

w2

...

wn

 =


a11 . . . a1m

a21 . . . a2m

... . . .
...

an1 . . . anm




x1

x2

...

xn

 . (3.10)

Furthermore, we assume that F j
t follows a simple affine model as follows:

F j
t = exp

(
vjB

j
t

)
,

where (B1
t , . . . , B

n
t ) is a vector of independent Brownian motions, v1 = 0 (representing

the risk-free scenario), and vj, j = 2, . . . , n are positive numbers. In this case,

E
[
F j
t

]
= exp

(
1

2
v2
j t

)
,

σ2
(
F j
t

)
= exp

(
t2v2

j

) (
exp(t2v2

j )− 1
)
.

For the assessment of our model, we have to compare the minimum value of the quadratic

risk measure with ρ(S), which is the minimum value to keep S solvent. For instance,

we can assume a three-factor model: the first one is the risk-free v1 = 0, the second one

represents the financial market (e.g. a major index), and the third represents a major

macro-economic force such as inflation or consumption growth, which is not captured

by the first and second factors.

3.1.1 Restructuring Dilemma and Extension to Sub-additive

Risks

As before, let S denote the surplus and n ∈ N be a natural number greater than 1
α

. Let

us assume that {Ω1, . . . ,Ωn} is a partition of Ω, where P (Ωi) = 1
n
, i = 1, . . . , n. We
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restructure the risk capital in the form of Si = 1ΩiS. It is clear that
n∑
i=1

Si = S. Now,

observe that for an arbitrary positive number x > 0, we obtain P (x+ Si > 0) ≥ P (Ω \

Ωi) = 1− 1
n

for any x > 0 because {Si = 0} = {1ΩiS = 0} = {S = 0}∪ (Ω\Ωi) ⊇ Ω\Ωi,

which implies that P (x + Si < 0) ≤ 1
n
≤ α. Because x > 0 is arbitrarily chosen, the

capital reserve for the process Si will be equal to zero.

This means that ruin theory essentially leads us to capital restructuring that can

reduce risk with no cost. This would not occur if we had the so-called ’sub-additivity’

property for ρ. Let us recall the sub-additivity below.

Definition 3.1.3. A risk measure ρ is sub-additive if

1. ∀X, Y ∈ Y , X + Y ∈ Y ;

2. ρ (X + Y ) ≤ ρ (X) + ρ (Y ), for all X, Y ∈ Y .

Proposition 3.1.4. If a risk measure % is sub-additive on random variables, then the

following risk measure is sub-additive on processes:

ρ (X) = %

(
sup

0≤t≤T
{−Xt}

)
.

As a reminder of the Remark 2.2.4, the property of cash invariance, under a risk

measure on a profit variable, is defined as follows:

Definition 3.1.5. A risk measure ρ of a profit variable X is cash-invariant if ρ (X + c) =

ρ (X)− c for any c ∈ R.

Note the differences between signs of this cash invariance and that used in other

chapters. This is simply to accommodate the cash invariance for the risk measure

induced by ruin theory, i.e.

ρα (X + c) = VaRα

(
sup
t≥0

(−Xt − c)
)

= VaRα

(
sup
t≥0

(−Xt)

)
− c = ρα (X)− c.

Definition 3.1.6. A risk measure is positive homogeneous if ∀X ∈ Y and λ > 0,

λX ∈ Y and ρ (λX) = λρ (X).
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3.2 Problem Set-up

In this section, we set up a hedging problem to find the generalised solvency problem.

Let us denote the net value of an insurance company by S. Consider a cedent that

has given the freedom to choose either to keep a minimum capital requirement or to

hedge the company’s risk with a set of accessible positions. We denote this set by X

and assume that it is a positive cone that contains the risk-free case and is contained in

Y , i.e. 
X + X ⊆ X

λX ⊆ X , ∀λ ≥ 0

R ⊆ X ⊆ Y

. (3.11)

The cost function π : X → R is now the price of forming any financial position from

the set X , which is positive homogeneous and translation-invariant. Note that pi is

not a risk measure; therefore, the translation-invariant property means that π(X + c) =

π(X)+c,∀c ∈ R. Given that the insurance company has access to a set of valid positions

X , the solvency problem can be regarded as a hedging problem following the steps from

the previous section and can be rewritten as
min π(X)

ρ (X + S) ≤ 0

X ∈ X

. (3.12)

Now, the major question we need to answer is whether this is a viable practice. To

obtain the results, we first need to prove a short lemma.

Lemma 3.2.1. Let us fix a random process S such that−S ∈ Y . Then, ρ (ρ (−S) +X) ≤

0 for any X ∈ Y with ρ (X + S) ≤ 0.

Proof. Because ρ (X + S) ≤ 0, we have

ρ (ρ (−S) +X) = ρ ((ρ (−S)− S) + (X + S))

≤ ρ (ρ (−S)− S) + ρ (X + S) ≤ 0.
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Now, we provide the answer for the case where the risk measure holds under certain

conditions.

Theorem 3.2.2. Let us assume that both ρ and π are positive homogeneous and cash-

invariant and particularly assume that ρ is sub-additive. Then, problem (3.12) is finite

if and only if π (X + ρ (X)) ≥ 0 ∀X ∈ X .

Proof. First, we assume that ∃X0 ∈ X such that π (X0 + ρ(X0)) < 0 and show that

(3.12) does not have a solution. By cash invariance, π (X0 + ρ(X0)) < 0 is equivalent to

ρ (X0 − π(X0)) < 0. To this end, we have to show that there exists a sequence Xn of

positions that satisfy the constraints in (3.12) and that π(Xn)→ −∞.

Because ρ is cash-invariant, ρ (X0 − π(X0)− ε) < 0, where ε = −ρ(X0−π(X0))
2

. By our

assumptions on S, we also know that there exist c ∈ R such that ρ (c+ S) ≤ 0. Let us

introduce Xn = c + n(X0 − π(X0) − ε) where n > 0. Because ρ (X0 − π(X0)− ε) < 0,

ρ (c+ S) ≤ and by sub-additivity and positive homogeneity of ρ, we have

ρ (Xn + S) = ρ (c+ n(X0 − π(X0)− ε) + S)

≤ ρ (c+ S) + ρ (n(X0 − π(X0)− ε))

= ρ (c+ S) + nρ ((X0 − π(X0)− ε)) < 0.

On the other hand, Xn ∈ X by (3.11). Hence, Xn satisfies the conditions in (3.12), and

we also have

π(Xn) = π(c+ n(X0 − π(X0) + ε)

= c+ n(π(X0)− π(X0)− ε) = c− nε,

which tends to −∞ as n→∞.

Let us assume that X is a random process such that X ∈ X and ρ (X + S) ≤ 0. By

Lemma 3.2.1, we have

ρ (X − π(X) + (π(X) + ρ (−S))) = ρ (ρ (−S) +X) ≤ 0.

Because ρ (X − π(X)) ≥ 0, we must have π(X) + ρ (−S) ≥ 0, implying that π(X) ≥

−ρ (−S).
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There is a nice interpretation behind this theorem. If we look at π (X + ρ (X)) ≥ 0,

one can see that it indicates that hedging is possible if no solvent position is free. In more

detail, any position X ∈ X can be solvent if we add ρ (X) to it, i.e. ρ (X + ρ (X)) =

ρ (X) − ρ (X) = 0. However, making the position X solvent by adding a sufficient

amount of capital does not make it free; that is, π (X + ρ (X)) < 0 cannot occur.

We also can look at this from a different perspective. π (X + ρ (X)) ≥ 0 is equiv-

alent to ρ (X − π (X)) ≥ 0 for cash invariance. This means no free position is insol-

vent. More precisely, if X ∈ X , the position X − π (X) is free by cash invariance,

i.e. π (X − π (X)) = 0. However, this free position cannot be solvent; otherwise, our

hedging problem would not be bounded.

It is also interesting to note that the boundedness of the hedging problem is totally

independent of the position S and fully depends on the interrelation between X , π, and

ρ.

Now, we want to establish a new definition for the minimum capital requirement

based on our hedging problem. Because we assume that R ⊆ X , we can replace X with

X + ρ(X + S), in which case problem (3.12) is reduced to

 min π(X) + ρ(X + S)

X ∈ X
. (3.13)

For the particular case of finding the solvency value when X = R, the minimum in (3.12)

is equal to ρ(S). This proves the following definition.

Definition 3.2.3. The generalised minimum capital (GMC) requirement for the sol-

vency of an insurance company is defined by

GMC(S) = min
X∈X
{π(X) + ρ(X + S)} . (3.14)

There are two other interesting facts. First, constant capital cannot make any difference
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in the hedging strategy:

GMC(S) = min
X∈X
{π(X) + ρ(X + S)}

= min
X∈X

{
π(X) + (ct)T0 − (ct)T0 + ρ(X + S)

}
= min

X∈X

{
π(X + (ct)T0 ) + ρ(X + (ct)T0 + S)

}
.

Second, if the conditions of the theorem hold, i.e. the hedging problem is bounded,

then the GMC can be regarded as a risk measure on S. If both π and ρ are positive

homogeneous and ρ is cash-invariant, then so is the GMC. Furthermore, if both are

sub-additive, then the GMC is also sub-additive.

Now, let us use a specific risk measure and a pricing rule to show an example of the

GMC. Following Assa (2011), the risk of a random process can be measures by defining

a cumulative risk measure ρ as follows:

ρ(X) =
1

T

∫ T

0

ρ0(Xt)dt , (3.15)

where ρ0 is a cash invariant and positive homogeneous risk measure that is finite on Xt,

for all t ∈ [0, T ]. We also assume that t 7→ ρ0(Xt) is integrable on interval [0, T ].

In Assa et al. (2016), the use of Entropic Value at Risk measure (EVaRα) of Ahmadi-

Javid (2012) as ρ0, is a suitable choice for studying the risk processes.

We also assume that a market uses a cumulative pricing rule π:

π(X) =
1

T

T∫
0

π0(Xt)dt.

Now, if we want to verify if the hedging problem is finite, we need to check

ρ(X) + π(X) =
1

T

∫ T

0

(ρ0(Xt) + π0(Xt)) dt ≥ 0,∀X ∈ X .

This is possible if the static problem ρ0(Xt) + π0(Xt) ≥ 0 can be verified.
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Example 3.2.4. Let ρ0 (Xt) = σ (Xt)−E [Xt] (σ is the standard deviation) and π (Xt) =

E [Xt]. In this case, we have

ρ(X) + π(X) =
1

T

∫ T

0

(ρ0(Xt) + π0(Xt)) dt

=
1

T

∫ T

0

(σ(Xt)) dt ≥ 0.

This shows that the hedging problem always has a solution (regardless of the set X ).

To find the hedging strategy, we need to solve the following problem:

GMC(S) = min
X∈X
{π(X) + ρ(X + S)} (3.16)

= min
X∈X

 1

T

T∫
0

E(Xt)dt+
1

T

T∫
0

(σ (Xt + St)− E [Xt + St]) dt

 (3.17)

= min
X∈X

 1

T

T∫
0

(σ (Xt + St)− E [St]) dt

 . (3.18)

If one needs to look at the benefit that hedging can have on the solvency, we can

compare the GMC with the value of the solvency without any hedging strategy ρ (S),

i.e.

ρ (S)−GMC(S) = min
X∈X

 1

T

T∫
0

(σ (St)− σ (Xt + St)) dt

 .

This shows all the benefits depend on how the values of St are correlated, which makes

perfect sense.

3.3 Discussion

In this chapter, we extended the classical problem of finding the minimum initial capital

from ruin theory. First, we demonstrated the process of deducing a hedging problem

from the original problem established on the basis of risk models to a general risk

measure. By replacing the constant initial capital reserve with the risky positions with a

cost, we introduced a hedging problem to find the generalised minimum capital (GMC)

requirement, which is more realistic in a financial market. In addition, the problem
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3.3. Discussion

was discussed for certain properties of the risk measure and cost function, i.e. positive

homogeneity, cash invariance, and sub-additivity. In the last section, an example was

shown for the chosen risk measures and cost functions by the cumulative risk measure

and cumulative pricing rule, respectively.
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Chapter 4

Optimal Reinsurance Policy Design

under a Dynamic Framework

The optimal reinsurance problem has been extensively discussed in the literature by

considering different objective criteria under different premium principles with differ-

ent types of reinsurance contracts. Borch (1960a) and Arrow (1963) are among the

first papers that address the optimal reinsurance policy design in a utility-maximisation

framework. Later, this problem was further developed by considering set-ups minimising

the ruin probability, maximising the expected utility of terminal surplus, and maximis-

ing the cumulative expected discounted dividends, these constituting the three main

objective criteria chosen to design for the optimal reinsurance retention level. The rele-

vant literature has been reviewed in Chapter 1. The constant-barrier dividend policy is

proven to be optimal in several discrete-time settings (e.g. De Finetti (1957), Miyasawa

(1961), Morrill (1966), Claramunt et al. (2003) and Mármol et al. (2005)).

The problem of optimal reinsurance design has been studied in both dynamic and

static frameworks. In a continuous-time dynamic set-up, the Bellman Principle is the

main principle used for finding optimal reinsurance contracts. In a dynamic program-

ming problem, a Hamilton–Jacobi–Bellman (HJB) equation that minimises the ruin

probability under the expected value principle is used to find the optimal solutions of
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excess-of-loss reinsurance; seeHipp and Vogt (2003) and Dickson and Waters (2006).

Zhang et al. (2007) worked on a similar topic but focused on the combination of quota-

share and excess-of-loss reinsurance. Zhang and Siu (2009) added the investment part

into the setting and used Hamilton–Jacobi–Bellman–Isaacs (HJBI) equations to solve

the problem under two objective functions. In a different strand of the literature, ruin

probability minimisation that provides a criterion to reduce the bankruptcy risk and

stands for the ceding company, along with a dividend maximisation problem, adding

the shareholders’ point of view, has been considered. Asmussen and Taksar (1997) ap-

plied the HJB equation to solve the general optimal aggregate discounted dividends

problem. Using the results from that paper, Asmussen et al. (2000) solved the optimal

reinsurance problem considering excess-of-loss policies. Mnif and Sulem (2005) used the

HJB equation to obtain the optimal excess-of-loss reinsurance for a general dividend

strategy. Recently, the method of Asmussen et al. (2000) has been extended in various

ways; for instance, Bai et al. (2010) added transaction costs and taxes, Wu and Guo

(2012) added capital injections, and Liu and Hu (2014) added the equity.

As mentioned, another strand of the literature on optimal reinsurance design is the

static set-up. Although the optimal design based on utility maximisation in Borch

(1960a) and Arrow (1963) falls in this category, in recent years most of the problems in

this branch have been developed by minimising the risk of the insured’s global position as

measured by a risk measure. Gajek and Zagrodny (2004) and Cui et al. (2013) considered

a general risk measure. In contrast, Cai and Tan (2007) worked on stop-loss reinsurance

under two specific chosen risk measures, Value at Risk (VaR) and Conditional Tail

Expectation (CTE). Most of the studies mentioned worked under the expected value

premium principle. By the development of risk measures, the problem of constructing

reinsurance strategy has been studied under different types of risk measures as both the

objective function and the premium principle. One family of risk measures is the family

of distortion risk measures (DRMs), which includes Wang’s premium principle (Wang,

2000), Value at Risk (VaR), and Conditional Value at Risk (CVaR) (see Pflug (2006) and

Balbás et al. (2009)). In Assa (2015a), it is shown that under a very general framework,
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4. Optimal Reinsurance Policy Design under a Dynamic Framework

when the risk measure and the risk premium are both from the family of DRMs,the

ceding, reinsurance, and social planner problems can be considered in a unified set-

up. By introducing the marginal indemnification functions (MIFs), the optimal solution

could be obtained via MIF formulation and it has a multilayer structure.

Although a dynamic set-up better reflects the reality of the world, there are numerous

technical restrictions involved, causing researchers to focus their attention on a limited

number of reinsurance strategies in a dynamic setting, such as stop-loss or excess-of-loss

policies. The static framework, on the other hand, has the flexibility to consider a wider

range of policies. In this chapter, we combine the dynamic and static frameworks and

take advantage of both set-ups at the same time. Indeed, because reinsurance contracts

are written at the beginning of each year, we need only consider a discrete-time model.

Therefore, inspired by the celebrated Cramér–Lundberg model, we consider a surplus

process in a discrete-time model with independent increments. While being dynamic,

this set-up also allows us to take advantage of the static approach over the course of

a year. To the best of our knowledge, this study is the first to introduce dynamic

distortion risk measures to fit in the proposed setting. We will see that the assumption

of independent increments will help to simplify the problem using dynamic distortion

risk measures. In this work, we show the optimal results under the general distortion

risk measures and applications with some well-known risk measures in the DRM family

as specific cases.

This chapter is organised as follows. Section 4.1 lists two common expressions of

DRMs found in the literature and introduces the dynamic DRM. The optimisation

problems with respect to different conditions are set up and explained in Section 4.2,

and the results are presented in Section 4.3. In Section 4.4, we apply the results with

particular DRMs as examples. Section 4.5 summarise this chapter.
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4.1. Dynamic Distortion Risk Measures and Premiums

4.1 Dynamic Distortion Risk Measures and

Premiums

Let us first review the basic setting stated in Chapter 2. Consider a non-atomic filtered

probability space (Ω,F , {Ft}t∈{N∪∞},P), where Ω is the sample space, F is a σ-field,

{Ft}t∈{N∪∞} is a filtration, and P is a probability measure. Assume F0 = {∅,Ω} and

F∞ = F . We will introduce the specific filtration Ft in Section 4.2.

In this chapter, we work first in a static framework and then in a discrete-time

dynamic set-up. For t = 0, 1, 2, . . . ,∞, let L0(Ω,Ft) be the vector space consisting

of all real-valued random variables that are Ft-measurable. We denote the set of all

random variables in L0 (Ω,Ft) that have a finite second momentum by L2 (Ω,Ft). In a

discrete-time dynamic set-up, we consider a claim process Xt ∈ L2(Ω,Ft) that is simply

the aggregate claims received from the insurance company’s clients over the time period

[t − 1, t). Now let us consider L2 = L2 (Ω,Ft) × L2 (Ω,Ft+1) × L2 (Ω,Ft+2) × · · · . We

introduce the Hilbert space
(
L2
β, 〈., .〉 L2

β

)
, for a constant number β, that consists of all

members of L2 that have a finite norm induced by the following inner product:

〈
{Ys}s≥t , {Y

′
s}s≥t

〉
L2
β

=
∑
s≥t

βs−t 〈Ys, Y ′s 〉L2(Ω,Fs) .

Throughout this chapter, we further assume that {Xs}s≥t ∈
(
L2
β, 〈., .〉 L2

β

)
.

Recall that Value at Risk (VaR), as one of the most popular risk measures both

in the literature and in industry, is the quantile of the risk variable distribution. It is

also referred to as the left-continuous inverse distribution function. Let us rewrite the

definition below.

Definition 4.1.1. The VaR of a random variable X with confidence level α ∈ [0, 1] is

defined as

VaRα(X) := inf{x ∈ R|P(X ≤ x) ≥ α}. (4.1)

Throughout this chapter, we denote the left inverse of a CDF by F−1
X (α), which im-
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4. Optimal Reinsurance Policy Design under a Dynamic Framework

plies VaRα(X) = F−1
X (α). As a reminder from Section 2.2, the expression of a distortion

risk measure derived by introducing the dual distortion function Λ(u) = 1− g(1− u), is

written as follows:

Definition 4.1.2. A Distortion Risk Measure (DRM) ρΛ can be rewritten as

ρΛ(X) :=

∫ 1

0

VaRz(X)dΛ(z), (4.2)

where Λ : [0, 1] → [0, 1] is a non-decreasing and càdlàg function and VaRα(X) is as

defined in Definition 4.1.1.

Again, this form of DRM will be used throughout this chapter. Similarly, a distortion

premium principle (DPP) can be introduced as follows:

Definition 4.1.3. For a safety load θ ∈ R+ and a distortion function Λ : [0, 1]→ [0, 1],

a Distortion Premium Principle (DPP) πΛ is introduced as

πΛ[X] := (1 + θ)

∫ 1

0

VaRz(X)dΛ(z).

In this chapter, a dynamic set-up will be studied, which leads us to consider a

dynamic risk measure. This is because for an insurance company, the risk measure used

for controlling risk and calculating premiums could be determined anew at the beginning

of each accounting year.

For this purpose, let us first review the literature for the dynamic Value at Risk

defined in Cheridito and Stadje (2009). First, however, in order to introduce a dynamic

Value at Risk, we need to introduce some notation. For a family of random variables F ,

the essential infimum of F , which is the greatest lower bound of the family, is denoted

by ess inf (F ). For the reader’s convenience, we provide the following proposition from

Neveu (1975, p. 121).

Proposition 4.1.4. For every family F of real-valued measurable functions f : Ω →

R ∪ {−∞,+∞} defined on a probability space (Ω,F ,P), there exists one and up to

equivalence only one measurable function g : Ω→ R ∪ {−∞,+∞} such that
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4.1. Dynamic Distortion Risk Measures and Premiums

1. g ≤ f almost surely(a.s.) for all f ∈ F ;

2. if h is a measurable function such that h ≤ f a.s. for all f ∈ F , then h ≤ g a.s.

This function g is the essential infimum of the family F .

Therefore, the definition of dynamic VaR can be extended from the infimum in (4.1)

to the essential infimum as follows:

Definition 4.1.5. For any risk X ∈ L0(F∞) and confidence level α ∈ (0, 1), a dynamic

Value at Risk at time t is defined as

VaRα
t (X) := ess inf{Zt ∈ L0(Ft) : P(X ≤ Zt|Ft) ≥ α}, (4.3)

where t ∈ N.

Notice here that the subscript t of Zt inside ess inf only indicates that it is in the set

L0(Ft). The following proposition is a result of Definition 4.1.5:

Proposition 4.1.6. We have the following statements:

1. For any X ∈ Ft and Y , VaRα
t (Y +X) = VaRα

t (Y ) +X.

2. For any non-decreasing and left-continuous real function f , we have

VaRα
t (f (X)) = f (VaRα

t (X)) .

The first statement is simply an immediate result of the definition. To show the

second one, first, we can prove the statement for an increasing function f ; then, we can

consider a sequence of increasing functions fn that uniformly converge to f , and take

the limit as n→∞.

Now for the first time, we introduce a dynamic DRM in a manner similar to that for

Definition 4.1.2.
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4. Optimal Reinsurance Policy Design under a Dynamic Framework

Definition 4.1.7. For a distortion function Λ : [0, 1] → [0, 1], a Dynamic Distortion

Risk Measure at time t is a mapping ρΛ
t : L0(F∞)→ L0(Ft) for t ∈ N such that

ρΛ
t (X) :=

∫ 1

0

VaRz
t (X)dΛ(z). (4.4)

Notice that from Definitions 4.1.5 and 4.1.7, both mappings VaRα
t (X) and ρΛ

t (X)

are from L0(F∞) to L0(Ft); thus, VaRα
t (X) and ρΛ

t (X) are both Ft-measurable. Sim-

ilarly, we can introduce a dynamic distortion premium principle as ΠΛ
t (X) = (1 +

θ)
∫ 1

0
VaRz

t (X)dΛ(z).

4.2 Problem Set-up

In this section, we set up the problem, discuss the main objective, and present several

constraints.

First, however, we need to introduce the surplus process of the insurance company for

the context of the following discussions. As before, let us denote the aggregate claims

over the period [t, t + 1) by Xt+1. We consider a filtration Ft as the smallest σ-field

generated by X1, . . . , Xt.

The amount of losses covered by the reinsurance contract for the same period is

given by Rt(Xt+1), where Rt is known as the indemnity function at time t. The terms of

the reinsurance policy (the indemnity function) are agreed between the cedent and the

reinsurer before the period of coverage, [t, t+1). Rt is Ft-measurable, and the reinsurance

premium is calculated by the distortion premium principle, denoted as πΠ
t [Rt(Xt+1)]. To

keep the problem manageable, we assume that the insurance premium per unit time, ct,

is a piece-wise constant function over the time period [t, t+ 1). Finally, we assume that

a dividend Dt is paid at time t according to the dividend policy chosen.

The aim in this chapter is to find the optimal reinsurance strategy to maximise the

shareholders’ lifetime dividend. Thus, the objective function is defined as the conditional
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4.2. Problem Set-up

expectation on discounted aggregate dividends given information Ft, i.e.

E

[
∞∑
s=t

βs−tDs|Ft

]
,

where β is the discounting factor per unit time.

To achieve this, we assume that dividend payments are made before the cedent pays

the reinsurance premium. Thus, the surplus of the insurer at time s+1, before dividends

and reinsurance premiums are paid, follows the following dynamic:

Us+1 =
Us −Ds + cs

β
− Is(Xs+1)− πΠ

s [Rs(Xs+1)] , (4.5)

where

Is(Xs+1) = Xs+1 −Rs(Xs+1) (4.6)

is the amount of the remaining claims covered by the cedent for period [s, s + 1), and

s = t, t+ 1, . . . ,∞. This is the budget constraint of the insurance company.

Next, let us consider the condition for keeping the cedent solvent:

ρΓ
s (−Us+1) ≤ 0. (4.7)

This condition means that the insurance company cannot accept any shortfall risk over

a period [s, s+ 1). Using the budget constraint, we can rewrite this condition as follows:

ρΓ
s

(
−Us −Ds + cs

β
+ Is(Xs+1) + πΠ

s [Rs(Xs+1)]

)
≤ 0. (4.8)

Now, using Proposition 4.1.6, we can rewrite the solvency condition as

ρΓ
s (Is(Xs+1)) ≤ Us −Ds + cs

β
− πΠ

s [Rs(Xs+1)] , (4.9)

for s = t, t+ 1, . . . ,∞.

Notice that Is (Xs+1) is the insurance loss variable, and the insurance company’s

balance is equal to Us−Ds+cs
β

− πΠ
s [Rs(Xs+1)]. Therefore, the company is solvent if the

company’s capital requirement, that is, ρΓ
s (Is(Xs+1)), is less than the company’s balance.
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4. Optimal Reinsurance Policy Design under a Dynamic Framework

There are two main assumptions that need to be considered. The first one is inspired

by the Cramér–Lundberg model. In this classical model, the aggregate claim at time t is

given by
∑N(t)

i=1 Yi, where {Yi}i=1,2,...,∞ is an independent process that is independent of

the Poisson process {N(t)}t≥0. Therefore, the increments over the course of [t−1, t) are

given by Xt =
∑N(t)

i=N(t−1) Yi, which is an independent sequence. Therefore, we consider

the following assumption on the claim size Xt.

Assumption 2. The total claims Xt are independent and have the cumulative distri-

bution function FXt .

Under this assumption, we have the following results.

Proposition 4.2.1. Under Assumption 2 (by which the period total claims Xt are

independent and have cumulative distribution function FXt), the dynamic VaR satisfies

VaRα
t (Y ) = VaRα(Y ), a.s., (4.10)

for any Y independent of Ft.

Proof. Let B =
⋂t
i=1{ai ≤ Xi ≤ bi} ∈ Ft and let Zt be an Ft-measurable random

variable. Assume that the joint CDF of (Y, Zt, Xt, . . . , X1) is denoted by F . Thus, by

the definition of the conditional expectation, we have

E [P (Y ≤ Zt|Ft)1B] = E
[
E
[
1{Y≤Zt}|Ft

]
1B

]
= E

[
1{Y≤Zt}1B

]
=

∫ b1

a1

· · ·
∫ bt

at

∫ ∞
−∞

∫ ∞
−∞

1{y≤zt}dF (y, zt, xt, . . . , x1).

By Assumption 2, Xi, Y are independent ofB. If we denote the joint CDF of Zt, Xt, . . . , X1
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by F2, we obtain

E[P(Y ≤ Zt|Ft)1B]

=

∫ b1

a1

· · ·
∫ bt

at

∫ ∞
−∞

∫ ∞
−∞

1{y≤zt}

× dFY (y)dF2(zt, xt, . . . , x1)

=

∫ b1

a1

· · ·
∫ bt

at

∫ ∞
−∞

[∫ zt

−∞
dFY (y)

]
dF2(zt, x1, . . . , xt)

=

∫ b1

a1

· · ·
∫ bt

at

∫ ∞
−∞

FXs+1(zt)dF2(zt, x1, . . . , xt)

=E[FY (Zt)1B].

Given that Ft is the smallest σ-field generated by sets like B, it can be deduced that

P(Y ≤ Zt|Ft) = E[FY (Zt)|Ft] = FY (Zt) a.s. Following the definition of dynamic VaR,

we have

VaRα
t (Y ) = essinf{Zt ∈ L0(Ft) : P(Y ≤ Zt|Ft) ≥ α}

= essinf{Zt ∈ L0(Ft) : FY (Zt) ≥ α}

= essinf{Zt ∈ L0(Ft) : Zt ≥ F−1
Y (α)}.

By Definition 4.1.1, F−1
Y (α) = inf{x ∈ R|P(Y ≤ x) ≥ α} = VaRα(Y ). As a result,

VaRα
t (Y ) = VaRα(Y ) a.s.;

i.e. under Assumption 2, the dynamic VaR is no longer dynamic.

This proposition shows that VaR is no longer dynamic under Assumption 2. Hence,

similar results can be applied to the general DRMs as follows:

Lemma 4.2.2. Following Proposition 4.2.1, for any distortion function Λ and a mea-

surable real function f , we obtain

ρΛ
t (f (Xt+i)) = ρΛ (f (Xt+i)) , a.s., i ∈ N. (4.11)
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Using this lemma, we can rewrite the solvency condition as follows:

ρΓ (Is(Xs+1)) ≤ Us −Ds + cs
β

− πΠ
s [Rs(Xs+1)] , (4.12)

for s = t, t+ 1, . . . ,∞.

In a manner similar to the discussion regarding ρΓ
s , we can see that since Xs+1 is

independent of Fs, we have that πΠ
s [Rs(Xs+1)] = πΠ [Rs(Xs+1)]. Again, therefore, we

can rewrite the solvency condition as follows:

ρΓ (Is(Xs+1)) ≤ Us −Ds + cs
β

− πΠ [Rs(Xs+1)] , (4.13)

for s = t, t+ 1, . . . ,∞. The same holds for the budget constraint, which is rewritten as

follows:

Us+1 =
Us −Ds + cs

β
− Is(Xs+1)− πΠ [Rs(Xs+1)] . (4.14)

4.2.1 MIF formulation

In this section, let us recall the MIF-based formulation method from Section 2.3 under

the no–moral–hazard assumption formulation. As a reminder, the risk of moral hazard

is ruled out under Assumption 1 because both cedent and reinsurer will be affected by

any increase in the global loss. This is consistent with the construction of the space of

indemnification functions defined as

C = {0 ≤ R(x) ≤ x|R(x) and x−R(x) are non-decreasing} . (4.15)

Or equivalently,

C =

{
R : R+ → R+|R(x) =

∫ x

0

h(t)dt, 0 ≤ h ≤ 1

}
. (4.16)

Additionally, the space of MIFs as

D = {h : R+ → R+|0 ≤ h ≤ 1}. (4.17)

From Proposition 2.3.3, a DRM denoted by ρΛ can be written as

ρΛ (R (X)) =

∫ ∞
0

(1− Λ (FX (z)))R′ (z) dz, (4.18)
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where R ∈ C is a function with its derivative R′.

Before applying MIF formulation in the next section, we need to state an useful

lemma here. Recalling the notation for positive and negative parts of a random variable

Y as Y + = max(Y, 0) and Y − = −min(Y, 0), respectively, we have the following lemma.

Lemma 4.2.3. For any real function R ∈ C and random variables X ≥ 0 and Y with

E [Y ] 6= 0, if E [Y +] 6= 0 and E [Y −] 6= 0, then there exist two random variables X1, X2

with probability density functions fX1 (x) =
∫∞
0 yfX,Y (x,y)dy

E[Y +]
and fX2 (x) =

∫ 0
−∞ yfX,Y (x,y)dy

E[−Y −]
,

respectively, such that

E [R (X)Y ] =E
[
Y +
] ∫ ∞

0

(1− FX1 (z))R′ (z) dz

− E
[
Y −
] ∫ ∞

0

(1− FX2 (z))R′ (z) dz. (4.19)

If E [Y +] = 0 and E [Y −] 6= 0, then X2 exists with the density above such that

E [R (X)Y ] = −E [Y −]
∫∞

0
(1− FX2 (z))R′ (z) dz.

If E [Y +] 6= 0 and E [Y −] 6= 0, then X1 exists with the density above such that

E [R (X)Y ] = E [Y +]
∫∞

0
(1− FX1 (z))R′ (z) dz.

Proof. Assume first that the joint density fX,Y exists. To prove this lemma, we distin-

guish four cases.

Case 1: If Y = 0 a.s., then E[Y ] = 0, and the problem is trivial.

Case 2: Assume that Y is non-negative and Y > 0 on a positive measure set. This
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implies that E [Y ] > 0. We have

E [Y R(X)]

=

∫ ∞
0

∫ ∞
0

yR (x) fX,Y (x, y) dydx

=

∫ ∞
0

(∫ ∞
0

yfX,Y (x, y) dy

)
R (x) dx

=

(∫ ∞
0

∫ ∞
0

yfX,Y (x, y) dydx

)∫ ∞
0

(∫∞
0
yfX,Y (x, y) dy

)(∫∞
0

∫∞
0
yfX,Y (x, y) dydx

)R (x) dx

=E [Y ]

∫ ∞
0

fX1 (x)R (x) dx = E [Y ]E [R(X1)] ,

where X1 is a random variable with probability density function equal to

fX1 (x) =

(∫∞
0
yfX,Y (x, y) dy

)(∫∞
0

∫∞
0
yfX,Y (x, y) dydx

) =

∫∞
0
yfX,Y (x, y) dy

E [Y ]

and corresponding cumulative distribution function FX1 . Therefore, using Lemma

2.3.3, we have E [R(X1)] =
∫∞

0
(1− FX1 (z))R′ (z) dz.

Case 3: Consider the scenario opposite of that in Case 2; assume that Y is non-positive

and Y < 0 on a positive measure set. This implies that E [Y ] = −E [Y −] < 0

and E[−Y −] =
(∫∞

0

∫ 0

−∞ yfX,Y (x, y) dydx
)

. Thus, similar to Case 2, we obtain

E [Y R(X)]

=

∫ ∞
0

∫ 0

−∞
yR (x) fX,Y (x, y) dydx

=

(∫ ∞
0

∫ 0

−∞
yfX,Y (x, y) dydx

)∫ ∞
0

(∫ 0

−∞ yfX,Y (x, y) dy
)

(∫∞
0

∫ 0

−∞ yfX,Y (x, y) dydx
)R (x) dx

=E [Y ]

∫ 0

−∞
fX2 (x)R (x) dx = E [Y ]E [R(X2)] ,

where X2 is again a random variable with probability density function equal

to fX2 (x) =
∫ 0
−∞ yfX,Y (x,y)dy

E[−Y −]
and corresponding cumulative distribution function

FX2 . Therefore, using Lemma 2.3.3, we have

E [R(X2)] =

∫ ∞
0

(1− FX2 (z))R′ (z) dz.
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Case 4: Consider a scenario in which Cases 1, 2, and 3 do not apply. Here, we need to

notice that E [R (X)Y ] = E [R (X)Y +] − E [R (X)Y −], and then we can use

Cases 2 and 3 to derive the result as

E [R (X)Y ]

=E
[
Y +
] ∫ ∞

0

(1− FX1 (z))R′ (z) dz − E
[
Y −
] ∫ ∞

0

(1− FX2 (z))R′ (z) dz,

where the corresponding probability density functions of random variables

X1, X2 are

fX1 (x) =

0, if Y + = 0∫∞
0 yfX,Y (x,y)dy

E[Y +]
, otherwise

and

fX2 (x) =

0, if Y − = 0∫ 0
−∞ yfX,Y (x,y)dy

E[−Y −]
, otherwise

,

respectively, for the cumulative distribution functions FX1 and FX2 .

Now consider the case where the joint distribution does not exist. In this case, we

can consider sequences (Xn, Yn) that have joint distributions and converge uniformly to

(X, Y ). Then the result can be derived by obtaining a limit as n → ∞ and using the

fact that R is Lipschitz and that uniform convergence implies L1 convergence.

Proposition 2.3.3 and Lemma 4.2.3 will be used throughout the proofs of our main

theorems on the optimal results in the next section.

Finally, we want to mention that since {Xs}s≥t ∈ L2
β and since R and I are Lipschitz,

it is easy to see that {Us}s≥t ∈ L2
β. In order to formalise this, we state it as a proposition

as follows:

Proposition 4.2.4. If {Xs}s≥t ∈ L2
β, then {Us}s≥t ∈ L2

β.
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4. Optimal Reinsurance Policy Design under a Dynamic Framework

4.3 Optimal Solutions

In this section, we discuss the optimal results in three scenarios. The objective function

is the conditional expectation of cumulative dividends. To maximize the shareholders

benefits, the supremum of the objective function is taken as follows:

sup
Ds

E

 ∞∑
s=t

βs−tDs|Ft

 . (4.20)

Then, we consider the budget constraints, the solvency condition, and dividend rules as

follows: 
Us+1 =

Us −Ds + cs
β

− Is(Xs+1)− πΠ[Rs(Xs+1)] [i]

Us −Ds + cs
β

− ρΓ [Is(Xs+1)]− πΠ[Rs(Xs+1)] ≥ 0 [ii]

Ds = H(Us) [iii]

(4.21)

for s = t, t+ 1, . . . ,∞. Thus, we have the set-ups for maximising the objective function

subject to constraints as

• Problem I: Dynamic Setting without Solvency Condition under General

Dividend Policy. To maximise the shareholders’ profits, we only consider the

budget constraint [i] in (4.21) and look for the optimal reinsurance contract in this

set-up.

• Problem II: Extension with Solvency Condition under General Divi-

dend Policy. We extend the settings of the first problem by adding the solvency

condition, [ii] in (4.21). As a consequence, the cedents benefit is also taken care

of.

• Problem III: Dynamic Setting with a Specific Dividend Policy. Both

Problems I and II are under the general dividend policy without any restrictions.

In this setting, the specific condition [iii] in (4.21) of the dividend strategies is

given as explained in Section 4.3.3.
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4.3. Optimal Solutions

4.3.1 Problem I

In this setting, we only consider the maximisation of the discounted total dividends with

the budget constraint stated in (4.21)-[i].

Theorem 4.3.1. Using the notation defined above, if {Xs}s≥t ∈ L2
β and if Assumptions

2 and 1 hold, ’the optimal solution of Problem I (dynamic setting with budget constraint

only) is myopic, and the optimal reinsurance contract is given by

R∗s (x) =

∫ x

0

(R∗s)
′ (z) dz,

where

(R∗s)
′ (z) = 1{1−FXs+1

(z)>(1+θ)(1−Π[FXs+1
(z)])}.

Proof. Let us rearrange the budget constraint [i] in (4.21) so that the dividend policy is

represented in terms of s = t, t+ 1, . . . ,∞, as

Ds = Us − βUs+1 + cs − β
(
Is(Xs+1) + πΠ [Rs(Xs+1)]

)
. (4.22)

Taking this into the objective function (denoted by J0) and establishing the notation

RUt := {Rt,Ut}, where Rt = {Rs}s≥t and Ut = {Us}s≥t, we have

J0(RUt)

=E

[
∞∑
s=t

βs−tDs

∣∣∣Ft]

=E

[
∞∑
s=t

βs−tUs − βs−t+1Us+1 + βs−t+1

(
cs
β
− Is(Xs+1)− πΠ [Rs(Xs+1)]

) ∣∣∣Ft]

=E

[
∞∑
s=t

βs−tUs − βs−t+1Us+1

∣∣∣Ft]

+E

[
∞∑
s=t

βs−t+1

(
cs
β
− Is(Xs+1)− πΠ [Rs(Xs+1)]

) ∣∣∣Ft] . (4.23)
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4. Optimal Reinsurance Policy Design under a Dynamic Framework

Now let us deal with the two summations. First, we consider the one on the left. Based

on Proposition 4.2.4, {Us}s≥t ∈ L2
β, which gives us in the limit

∞∑
s=t

(
βs−tUs − βs−t+1Us+1

)
=(Ut − βUt+1) + (βUt+1 − β2Ut+2) + (β2Ut+2 − β3Ut+3) + · · ·

=Ut.

Thus, (4.23) becomes

J0(RUt) = E

[
∞∑
s=t

βs−t+1
(
−Is(Xs+1)− πΠ [Rs(Xs+1)]

) ∣∣∣Ft]+ Ut +
∞∑
s=t

βs−t+1cs.

Because Ut is known at time t and the summation at the end of the equation does not

contain any control variable, Rt is now the only remaining control variable. As a result,

maximising J0(RUt) is equivalent to minimising

J(Rt) := E

[
∞∑
s=t

βs−t+1
(
Is(Xs+1) + πΠ [Rs(Xs+1)]

) ∣∣∣Ft] , (4.24)

where Is(Xs+1) = Xs+1 − Rs(Xs+1). Notice that to minimise the objective function of

the summation with respect to set Rt is now equivalent to minimising the conditional

expectation of each term with the corresponding Rs: for s = t, t+ 1, . . . ,∞,

inf
Rt

J(Rt)⇐⇒ inf
Rs

E
[
βs−t+1

(
Is(Xs+1) + πΠ [Rs(Xs+1)]

)
|Ft
]
.

Therefore, the optimal solution of the problem is myopic in this case. Given the inde-

pendence of Ft and Xs+1, s ≥ t, we find that solving the previous problems is equivalent

to finding the answer to the following optimisations:

inf
Rs

{
E [Is(Xs+1)] + πΠ [Rs(Xs+1)]

}
∀s = t, t+ 1, . . . ,∞. (4.25)

Now, the MIF formulation can be used to solve this problem. Note that expectation is

a DRM with distortion function gE(x) = x. Therefore, ΠE(x) = x, which with Lemma

2.3.3 yields

E[Is(Xs+1)] =

∫ ∞
0

(
1− FXs+1 (z)

)
I ′s (z) dz =

∫ ∞
0

(
1− FXs+1 (z)

)
(1−R′s (z)) dz.

(4.26)
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4.3. Optimal Solutions

By again applying Lemma 2.3.3, we obtain

πΠ [Rs(Xs+1)] = (1 + θ)

∫ ∞
0

(
1− Π

[
FXs+1 (z)

])
R′s (z) dz. (4.27)

Now, using (4.26) and (4.27) in (4.25), we obtain, ∀s = t, t+ 1, . . . ,∞,

inf
Rs

∫ ∞
0

[(
1− FXs+1 (z)

)
(1−R′s (z)) + (1 + θ)

(
1− Π

[
FXs+1 (z)

])
R′s (z)

]
dx. (4.28)

From Proposition 2.3.1, the derivative R′s (z) is between 0 and 1. Therefore, the optimal

solution satisfies

R∗′s (z) = 1{1−FXs+1
(z)>(1+θ)(1−Π[FXs+1

(z)])}, (4.29)

and the minimum is equal to∫ ∞
0

inf
{(

1− FXs+1 (z)
)
, (1 + θ)

(
1− Π

[
FXs+1 (z)

])}
dz.

As a consequence, the reinsurance contract

R∗s (x) =

∫ x

0

(R∗s)
′ (z) dz

is a multilayer reinsurance policy.

4.3.2 Problem II

It is interesting to notice that adding any general solvency condition, such as S (Us, Rs, Ds) ≥

0, does not change the solution. To see this, note that by following the same argument

made above, the set-up of the optimisation Problem II for s = t, t + 1, . . . ,∞ can be

written as 
inf
Rs

E

[
∞∑
s=t

βs−t+1
(
Is(Xs+1) + πΠ [Rs(Xs+1)]

)
|Ft

]
S(Us, Rs, Ds) ≥ 0

. (4.30)

As can be seen, we can first solve for optimal reinsurance Rs and afterwards find a proper

Ds that makes the solvency condition hold. Note that since the function S is decreasing

with respect to Ds, in order to maximise the dividend it suffices to find the maximum

Ds and make the constraint binding; i.e. S(Us, Rs, Ds) = 0.
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4. Optimal Reinsurance Policy Design under a Dynamic Framework

4.3.3 Problem III

In this problem set-up, we focus on the same objective function with one additional

condition, one regarding the dividend payments. This section is divided into two parts.

First, we explain the characteristics of acceptable dividend policies and show the opti-

mal results satisfying these restrictions. Second, we show the results under the barrier

dividend strategy.

We assume that the dividend policy chosen is a function of the surplus; thus, we

have the third constraint stated in (4.21)-[iii] as

Ds := H(Us), for s = t, t+ 1, . . . ,∞. (4.31)

We also assume that the admissible dividend strategies satisfies following property.

Property 4.3.2. The mapping x 7→ x − H (x) is bounded above. This means If the

surplus at the end of one period is large the cedent benefit is almost as large as the

surplus.

Since
(
L2
β, 〈., .〉 L2

β

)
is a Hilbert space, we can use the Lagrangian on infinite dimen-

sional spaces to find the dual problem; see Zalinescu (2002). We denote the Lagrangian

multipliers associated with conditions [i] and [ii] by µ = {µs+1}s≥t and λ = {λs ≥ 0}s≥t
where µ,λ ∈

(
L2
β, 〈., .〉 L2

β

)
.

Let G(x, s) := x−H(x)+cs
β

, and recall that RUt := {Rt = {Rs}s≥t,Ut = {Us}s≥t}. We

can write Problem III as stated in (4.21) in an easier way as follows:

inf
RUt

E

 ∞∑
s=t

βs−t+1
(
Is(Xs+1) + πΠ [Rs(Xs+1)]

)
|Ft


G(Us, s)− Is(Xs+1)− πΠ[Rs(Xs+1)]− Us+1 = 0 [i]

G(Us, s)− ρΓ [Is(Xs+1)]− πΠ[Rs(Xs+1)] ≥ 0 [ii]

(4.32)

for s = t, t+ 1, . . . ,∞.
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4.3. Optimal Solutions

Theorem 4.3.3. Assume {Xs}s≥t ∈ L2
β and that Assumptions 2 and 1 hold. If we

assume that there is no duality gap, then for optimisation Problem III as stated in

(4.32),there exist Lagrangian multipliers µ = {µs+1}s≥t and λ = {λs ≥ 0}s≥t, where

µ,λ ∈
(
L2
β, 〈., .〉 L2

β

)
, and the following statements hold true.

1. µs+1 ≥ 0, µs+2 + λs+1 ≥ µs+1, s = t, t+ 1, t+ 2, . . . ,∞.

2. The dual problem is given as follows

LD(µ,λ) =

− βG(Ut, t) [λt + Et (µt+1)] + Et [MG (µs+1, µs+2 + λs+1)]

+
∞∑
s=t

βs−t+1

[ ∫ ∞
0

min

{
(1 + Et (µs+1) + Et (λs)) (1 + θ)

(
1− Π[FXs+1(z)]

)
,

(1− FXs+1(z)) + Et (µs+1) (1− FX1
s+1

(z)) + Et (λs)
(
1− Γ[FXs+1(z)]

)}
dz

]
,

(4.33)

where fX1
s+1

(x) =
∫∞
0 yfXs+1,µs+1

(x,y)dy

Et(µs+1)
, and MG (a, b) = minx ax− bG(x, s).

3. The optimal reinsurance contract has the form R∗s (x) =
∫ x

0
1{z∈Bs}dz, where

Bs =
{
z ∈ R+

∣∣(1 + Et (µs+1) + Et (λs)) (1 + θ)
(
1− Π

[
FXs+1(z)

])
≤ Et (µs+1)

(
1− FX1

s+1
(z)
)

+ Et (λs)
(
1− Γ[FXs+1(z)]

)
+
(
1− FXs+1(z)

)}
.

Proof. Let us find the Lagrangian dual of the problem stated in (4.32). Denoting Et[·] :=

E[·|Ft], we obtain the Lagrangian function as follows:

L(RUt,µ,λ) =Et

[
∞∑
s=t

βs−t+1
(
Is(Xs+1) + πΠ [Rs(Xs+1)]

)]

−Et

[
∞∑
s=t

βs−t+1µs+1

(
G(Us, s)− Is(Xs+1)− πΠ[Rs(Xs+1)]− Us+1

)]

−Et

[
∞∑
s=t

βs−t+1λs
(
G(Us, s)− ρΓ [Is(Xs+1)]− πΠ[Rs(Xs+1)]

)]
. (4.34)
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4. Optimal Reinsurance Policy Design under a Dynamic Framework

Note that all the constraints need to be discounted with constant rate β. Then the

Lagrangian dual function is LD(µ,λ) = infRUt L(RUt,µ,λ), and the Lagrangian dual

problem becomes

sup
µ,λ
LD(µ,λ)⇔ sup

µ,λ
inf
RUt

L(RUt,µ,λ)

subject to µs+1 ∈ R, λs ≥ 0 for s = t, t+ 1, . . . ,∞.

Reorganising the Lagrangian function (4.34) to put the terms with Is together, and

recognising that Et is continuous in L2 space, we have that

L(RUt,µ,λ)

=Et
{ ∞∑

s=t

βs−t+1
[
Is(Xs+1) + µs+1Is(Xs+1) + λsρ

Γ [Is(Xs+1)]

+ (1 + µs+1 + λs) π
Π [Rs(Xs+1)] + µs+1Us+1 − (µs+1 + λs)G(Us, s)

]}
=
∞∑
s=t

βs−t+1

{
Et [Is(Xs+1)] + Et [µs+1Is(Xs+1)] + Et [λs] ρ

Γ [Is(Xs+1)]

+ (1 + Et [µs+1] + Et [λs]) π
Π [Rs(Xs+1)] + Et

[
µs+1Us+1 − (µs+1 + λs)G(Us, s)

]}
.

(4.35)

Before we continue further with our discussion, we need to work on the term Et [µs+1Is(Xs+1)].

This term is apparently different from the others as it is the only one that has the prod-

uct of the Lagrangian and the decision variable inside the expectation. By using Lemma

4.2.3, however, we have

Et [µs+1Is(Xs+1)]

=Et
[
µ+
s+1

] ∫ ∞
0

(
1− FX1

s+1
(x)
)
I ′s (x) dx− Et

[
µ−s+1

] ∫ ∞
0

(
1− FX2

s+1
(x)
)
I ′s (x) dx,

(4.36)

where FX1
s+1

(x) and FX2
s+1

(x) are two distributions with densities

fX1
s+1

(x) =


0, if µ+

s+1 = 0∫∞
0 yf

Xs+1,µ
+
s+1

(x,y)dy

Et(µ+s+1)
, otherwise
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and

fX2
s+1

(x) =


0, if µ−s+1 = 0∫ 0
−∞ yf

Xs+1,µ
−
s+1

(x,y)dy

Et(−µ−s+1)
, otherwise

,

respectively. Then the Lagrangian dual function changes to

LD(µ,λ) = inf
RUt

L(RUt,µ,λ)

= inf
RUt

∞∑
s=t

βs−t+1
{
Et [Is(Xs+1)] + Et

[
µ+
s+1

]
Et
[
Is
(
X1
s+1

)]
− Et

[
µ−s+1

]
Et
[
Is
(
X2
s+1

)]
+ Et [λs] ρ

Γ [Is(Xs+1)]

+
(
1 + Et [µs+1] + Et [λs]

)
πΠ [Rs(Xs+1)]

+ Et
[
µs+1Us+1 − (µs+1 + λs)G(Us, s)

]}
.

The last term inside the sum does not directly contain the control vectors Rt, and

because we use Lagrangian multipliers to separate the conditions and periods, we can

split the dual function into two parts, LD(µ,λ) = LD1 (µ,λ) + LD2 (µ,λ), where

LD1 (µ,λ) := inf
Rt

∞∑
s=t

βs−t+1

{
Et [Is(Xs+1)] + Et

[
µ+
s+1

]
Et
[
Is
(
X1
s+1

)]
− Et

[
µ−s+1

]
Et
[
Is
(
X2
s+1

)]
+ Et [λs] ρ

Γ [Is(Xs+1)]

+ (1 + Et [µs+1] + Et [λs]) π
Π [Rs(Xs+1)]

}
. (4.37)

Since Ut is Ft-measurable, Ut is known at time t, and we only need to make a decision

on each Us for all s ≥ t+ 1. Hence, we replace Ut by Ut+1 in LD2 :

LD2 (µ,λ) := inf
Ut+1

∞∑
s=t

βs−t+1
{
Et
[
µs+1Us+1 − (µs+1 + λs)G(Us, s)

]}
. (4.38)

Now for the first part of the dual function, using Lemma 2.3.3 we can rewrite (4.37) as

LD1 (µ,λ)

= inf
Rt

∞∑
s=t

βs−t+1

∫ ∞
0

{[ (
1− FXs+1(z)

)
+ Et (λs)

(
1− Γ[FXs+1(z)]

)
+Et

(
µ+
s+1

)
(1− FX1

s+1
(z))− Et

(
µ−s+1

) (
1− FX2

s+1
(z)
) ]

(1−R′s(z))

+ (1 + Et (µs+1) + Et (λs)) (1 + θ)
(
1− Π

[
FXs+1(z)

])
R′s(z)

}
dz. (4.39)
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4. Optimal Reinsurance Policy Design under a Dynamic Framework

Since each term is now non-negative, in order to find the optimal reinsurance contract,

we need to minimise each part in the summation; i.e. the minimum is found where each

of the following term holds, for all s = t, t+ 1, . . . ,∞:

inf
Rs

∫ ∞
0

{[ (
1− FXs+1(z)

)
+ Et (λs)

(
1− Γ[FXs+1(z)]

)
+ Et

(
µ+
s+1

) (
1− FX1

s+1
(z)
)
− Et

(
µ−s+1

) (
1− FX2

s+1
(z)
) ]

(1−R′s(z))

+ (1 + Et (µs+1) + Et (λs)) (1 + θ)
(
1− Π[FXs+1(z)]

)
R′s(z)

}
dz. (4.40)

Then, recalling the no–moral–hazard assumption again, R∗s(x) ∈ C, the marginal optimal

indemnity is given by

(R∗s)
′ (z) = 1{z∈Bs}, (4.41)

where set Bs satisfies

Bs =
{
z ∈ R+

∣∣∣ (1− FXs+1(z)
)

+ Et (λs)
(
1− Γ

[
FXs+1(z)

])
+ Et(µ+

s+1)
(

1− FX1
s+1

(z)
)
− Et

(
µ−s+1

) (
1− FX2

s+1
(z)
)

≥ (1 + Et (µs+1) + Et (λs)) (1 + θ)
(
1− Π

[
FXs+1(z)

]) }
. (4.42)

Therefore, the optimal solution is R∗s (x) =
∫ x

0
(R∗s)

′ (z) dz =
∫ x

0
1{z∈Bs}dz. Notice that

when the equality holds, the optimal MIF could have any value between 0 and 1 and

the result would be the same.

Next, considering the second part (4.38) of the dual function, we rearrange the

problem as follows:

LD2 (µ,λ) := inf
Ut+1

∞∑
s=t

βs−t+1Et [µs+1Us+1 − (µs+1 + λs)G(Us, s)]

=− βG(Ut, t) [λt + Et (µt+1)]

+ inf
Ut+1

∞∑
s=t

βs−t+1Et [µs+1Us+1 − β(µs+2 + λs+1)G(Us+1, s+ 1)] . (4.43)

To obtain the maximum with respect to the corresponding surplus for each s = t, t +

1, . . . ,∞, we need to find

inf
Us+1

Et [µs+1Us+1 − β(µs+2 + λs+1)G(Us+1, s+ 1)] . (4.44)
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For any two numbers a, b, let us define MG (a, b) = infx ax − bG(x, s). For each ω, the

infimum in (4.44) is equal to

Et
[

inf
Us+1(ω)

(
µs+1 (ω)Us+1 (ω)− β [(µs+2 (ω) + λs+1 (ω)]G[Us+1(ω), s]

)]
=Et [MG (µs+1, µs+2 + λs+1)] . (4.45)

Therefore, we have

LD2 (µ,λ) = −βG(Ut, t) [λt + Et (µt+1)] + Et [MG (µs+1, µs+2 + λs+1)] . (4.46)

By Property 4.3.2, it is clear that the function G is bounded from above. Let us assume

that G(x, s) ≤ L∀x. Now, if there exists ε > 0 such that the set Aε = {µs+1 < −ε} is of

positive measure, then, by choosing Us+1 = M on Aε, we have

Et [1Aε [µs+1Us+1 − β (µs+2 + λs+1)G(Us+1, s+ 1)]]

≤− Et [1Aεµs+1M ] + βLEt [1Aε |µs+2 + λs+1|]

≤− εMP (Aε) + βLEt [|µs+2 + λs+1|] . (4.47)

If M goes to +∞ in the right-hand side of the inequality above, it can be seen that

(4.45) does not have a finite infimum. This contradicts the assumption that there is no

duality gap. Since ε > 0 is an arbitrary positive number, we have

µs+1 ≥ 0 almost surely for all s = t, t+ 1, . . . ,∞. (4.48)

As a result, µ−s+1 = 0; thus, (4.42) can be written as

Bs =
{
z ∈ R+

∣∣∣ (1− FXs+1(z)
)

+ Et (λs)
(
1− Γ

[
FXs+1(z)

])
+ Et(µs+1)

(
1− FX1

s+1
(z)
)

≥ (1 + Et (µs+1) + Et (λs)) (1 + θ)
(
1− Π

[
FXs+1(z)

]) }
, (4.49)

and (4.40) is equal to

inf
Rs

∫ ∞
0

{[ (
1− FXs+1(z)

)
+ Et (λs)

(
1− Γ[FXs+1(z)]

)
+ Et (µs+1)

(
1− FXs+1(z)

) ]
(1−R′s(z))

+ (1 + Et (µs+1) + Et (λs)) (1 + θ)
(
1− Π[FXs+1(z)]

)
R′s(z)

}
dz, (4.50)
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which can be reorganised as∫ ∞
0

min

{
(1− FXs+1(z)) + Et (µs+1) (1− FX1

s+1
(z)) + Et (λs)

(
1− Γ[FXs+1(z)]

)
,

(1 + Et (µs+1) + Et (λs)) (1 + θ)
(
1− Π[FXs+1(z)]

)}
dz. (4.51)

Consequently, the first part of the dual function is a summation of the discounted integral

obtained above, so we have

LD1 (µ,λ)

=
∞∑
s=t

βs−t+1

[ ∫ ∞
0

min

{
(1 + Et (µs+1) + Et (λs)) (1 + θ)

(
1− Π[FXs+1(z)]

)
,

(1− FXs+1(z)) + Et (µs+1) (1− FX1
s+1

(z)) + Et (λs)
(
1− Γ[FXs+1(z)]

)}
dz

]
. (4.52)

By adding back two parts of the dual function, (4.52) and (4.46), we have

LD(µ,λ) = LD1 (µ,λ) + LD2 (µ,λ)

=
∞∑
s=t

βs−t+1

[ ∫ ∞
0

min

{
(1 + Et (µs+1) + Et (λs)) (1 + θ)

(
1− Π[FXs+1(z)]

)
,

(1− FXs+1(z)) + Et (µs+1) (1− FX1
s+1

(z)) + Et (λs)
(
1− Γ[FXs+1(z)]

)}
dz

]
−βG(Ut, t) [λt + Et (µt+1)] + Et [MG (µs+1, µs+2 + λs+1)] .

Now, for an arbitrary positive number ε > 0, let Bε = {µs+2 + λs+1 − µs+1 < −ε}. We

claim that Bε must be of measure zero. If it is not, then by choosing Us+1 = −M on Bε,

for a large number M > 0, by Property 4.3.2, we get

Et
[
1Bε

(
µs+1 (−M)− β(µs+2 + λs+1)

(
−M + cs

β

))]
=−MEt [1Bε (µs+1 − (µs+2 + λs+1))]− csEt [1Bε (µs+2 + λs+1)]

≤− εMPt (Bε) + csEt [|µs+2 + λs+1|] . (4.53)

However, by sending M to ∞, the minimum of the objective is not finite, and there is

a duality gap, which contradicts the assumption. Since ε > 0 was chosen arbitrarily, it

can be deduced that

µs+2 + λs+1 ≥ µs+1 almost surely for all s = t, t+ 1, . . . ,∞. (4.54)
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Now, let us discuss the particular case of dividend strategy as the barrier dividend

policy denoted by

H (Ut) = (Ut − b)+, (4.55)

where b ∈ R is the known constant dividend barrier, and Ut is the balance of the

insurance company before the reinsurance retention level covering the claims of the next

period is determined and the dividends are paid out. Let us prove one lemma to simplify

the proof of the following corollary with barrier dividend policy selected.

Lemma 4.3.4. For non-negative numbers a, d, let K(x, s) = aG(x, s) − dx. Then

maxxK(x, s) = b
(
a
β
− d
)+

+ acs
β

.

Proof. By construction, we have

K(x, s) =aG(x, s)− dx = a

(
x− (x− b)+ + cs

β

)
− dx

=
a

β
(min(x, b) + cs)− dx =


(
a
β
− d
)
x+ acs

β
, x ≤ b

−dx+
(
ab
β

)
+ acs

β
, x > b

. (4.56)

If a
β
< d, then the maximum of K(x, s) is taken at x = 0, and the maximum value is

equal to acs
β

. If a
β

= d, then the maximum can be taken at any x ∈ [0, b], and the value

of the maximum is equal to acs
β

. Finally, if a
β
> d, then the maximum of K(x, s) is

taken at x = b, and the maximum value is equal to
(
a
β
− d
)
b+ acs

β
. Therefore, we have

maxxK(x, s) = b
(
a
β
− d
)+

+ acs
β

.

By applying barrier dividend strategy, the results in Theorem 4.3.3 can be further

derived in the following corollary.

Corollary 4.3.5. Let us assume that H (x) = (x− b)+ for some positive number b > 0

and assume that the duality gap is zero in optimisation Problem III. Then the optimi-
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4. Optimal Reinsurance Policy Design under a Dynamic Framework

sation Problem III is now simplified to be the problem below:


inf
Rs

(
Et [Is(Xs+1)] + πΠ [Rs(Xs+1)]

)
It(Xt+1) + πΠ[Rt(Xt+1)] ≤ G (Ut, t)− b, if s = t

Is(Xs+1) + πΠ[Rs(Xs+1)] ≤ b+cs
β
− b, if s = t+ 1, t+ 2, . . . ,∞

.

Proof. Let A be a set of measure 1 so that the inequalities in (4.48) and (4.54) hold

everywhere on A. For a single scenario ω ∈ A, let a
β

= µs+2 (ω) + λs+1 (ω) and d =

µs+1 (ω). Then we have a
β
≥ 0, d ≥ 0, and a

β
− d ≥ 0. As a result, from the previous

lemma, we obtain

max
x

K(x, s+ 1) = b

(
a

β
− d
)+

+
acs+1

β

=b (µs+2 + λs+1 − µs+1) + (µs+2 + λs+1) cs+1.

By applying this to (4.44) inside the second part of the dual function, we obtain

inf
Us+1

Et [µs+1Us+1 − β(µs+2 + λs+1)G(Us+1, s+ 1)]

= sup
Us+1

Et [K(Us+1, s+ 1)]

=Et [bµs+1 − (b+ cs+1)µs+2 − (b+ cs+1)λs+1] . (4.57)

The solution of Us+1 is also given by

Us+1 =

b, µs+2 + λs+1 > µs+1

l, µs+2 + λs+1 = µs+1

,

where l can be any number in [0, b]. Putting this term back into the summation and
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reorganising the second part of the dual function, we have

LD2 (µ,λ) =
∞∑
s=t

βs−t+1Et [bµs+1 − (b+ cs+1)µs+2 − (b+ cs+1)λs+1]

=βEt [bµt+1 − (b+ ct+1)µt+2 − (b+ ct+1)λt+1]

+ β2Et [bµt+2 − (b+ ct+2)µt+3 − (b+ ct+2)λt+2]

+ β3Et [bµt+3 − (b+ ct+3)µt+4 − (b+ ct+3)λt+3]

+ · · ·

=−
∞∑

s=t+1

βs−t (b+ cs)λs

+ βbEt (µt+1)

− β (b+ ct+1)Et (µt+2) + β2bEt (µt+2)

− β2 (b+ ct+2)Et (µt+3) + β3bEt (µt+3)

− · · · . (4.58)

Now, let us see the dual problem in (4.35) for optimal solutions I∗s and R∗s:

LD(µ,λ) =
∞∑
s=t

βs−t+1
{
Et (I∗s (Xs+1)) + Et (µs+1I

∗
s (Xs+1)) + Et (λs) ρ

Γ [I∗s (Xs+1)]

(1 + Et (µs+1) + Et (λs))π
Π [R∗s(Xs+1)]

}
− βG(Ut, t) [λt + Et (µt+1)] + βbEt (µt+1)

− β (b+ ct+1)Et (µt+2) + β2bEt (µt+2)

− β2 (b+ ct+2)Et (µt+3) + β3bEt (µt+3)

− · · ·

−
∞∑

s=t+1

βs−t (b+ cs)λs.

Therefore, by concatenating the terms with respect to multipliersλs and µs+1, for
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s = t, t+ 1, . . . ,∞, we obtain

LD(µ,λ) =
∞∑
s=t

βs−t+1
{
Et (I∗s (Xs+1)) + πΠ [R∗s(Xs+1)]

}
+ βEt

((
b−G (Ut, t) + πΠ [R∗t (Xt+1)] + I∗s (Xt+1)

)
µt+1

)
+

∞∑
s=t+1

βs−t+1Et
((

b−
(
b+ cs
β

)
+ πΠ [R∗s(Xs+1)] + I∗s (Xs+1)

)
µs+1

)
+ βEt

((
−G (Ut, t) + πΠ [R∗t (Xt+1)] + ρΓ [I∗t (Xt+1)]

)
λt
)

+
∞∑

s=t+1

βs−t+1Et
((
−
(
b+ cs
β

)
+ πΠ [R∗s(Xs+1)] + ρΓ [I∗s (Xs+1)]

)
λs

)
.

(4.59)

Now let us minimise LD(µ,λ) in terms of µ,λ. In order to avoid a duality gap, from

the second and third lines above as well as condition [i], we derive

G (Ut, t)− Ut+1 = πΠ [R∗t (Xt+1)] + I∗t (Xt+1) ≤ G (Ut, t)− b,

G (Us, s)− Us+1 = πΠ [R∗s(Xs+1)] + I∗s (Xs+1) ≤ b+cs
β
− b.

(4.60)

A simple implication of this inequality isπ
Π [R∗t (Xt+1)] + I∗t (Xt+1) < G (Ut, t) ,

πΠ [R∗s(Xs+1)] + I∗s (Xs+1) < b+cs
β
.

(4.61)

Now, using the strict inequalities in (4.61), to avoid a duality gap, by the fourth and

fifth lines in (4.59) above, we need to have

λs = 0, s = t, t+ 1, . . . ,∞.

Furthermore, (4.60) implies

b = G (Ut, t)−G (Ut, t) + b ≤ Ut+1,

and

b− (Us − b)−

β
=

(
Us − (Us − b)+ + cs

β

)
−
(
b+ cs
β

)
+ b

=G (Us, s)−
(
b+ cs
β

)
+ b ≤ Us+1.
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By induction, these two together imply that Us+1 ≥ b, s = t, t + 1, . . . ,∞. This shows

that we can search for the optimal solution in a more restricted set consisting of Rt and

satisfying conditions [i] and [ii] in (4.32) and {Us+1 ≥ b}, s = t, t + 1, . . . ,∞. We show

the last new condition as [iv]. Given that for x ≥ b, G(x, s) = b+cs
β

, we simplify to obtain

inf
Rs

Et

[
∞∑
s=t

βs−t+1
(
Is(Xs+1) + πΠ [Rs(Xs+1)]

)]
G(Ut, t)− It(Xt+1)− πΠ[Rt(Xt+1)]− Ut+1 = 0 [i1]

b+cs
β
− Is(Xs+1)− πΠ[Rs(Xs+1)]− Us+1 = 0 [i2]

G(Ut, t)− ρΓ [It(Xt+1)]− πΠ[Rt(Xt+1)] ≥ 0 [ii1]

b+cs
β
− ρΓ [Is(Xs+1)]− πΠ[Rs(Xs+1)] ≥ 0 [ii2]

Us+1 ≥ b [iv]

s = t, t+ 1, . . . ,∞.

(4.62)

However, conditions [i1], [i2], and [iv] imply [ii1] and [ii2], meaning that [ii1] and [ii2]

can be removed:

inf
Rs

Et

[
∞∑
s=t

βs−t+1
(
Is(Xs+1) + πΠ [Rs(Xs+1)]

)]
G(Ut, t)− It(Xt+1)− πΠ[Rt(Xt+1)]− Ut+1 = 0 [i1]

b+cs
β
− Is(Xs+1)− πΠ[Rs(Xs+1)]− Us+1 = 0 [i2]

Us+1 ≥ b [iv]

s = t, t+ 1, . . . ,∞.

Since Us+1 does not exist in the objective function, we obtain

inf
Rs

∞∑
s=t

βs−t+1
(
Et [Is(Xs+1)] + πΠ [Rs(Xs+1)]

)
It(Xt+1) + πΠ[Rt(Xt+1)] ≤ G (Ut, t)− b

Is(Xs+1) + πΠ[Rs(Xs+1)] ≤ b+cs
β
− b

s = t, t+ 1, . . . ,∞.
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Now, as can be seen, none of the conditions are linked to each other. Therefore, we can

simply minimise any of the following expressions:
inf
Rs

(
Et [Is(Xs+1)] + πΠ [Rs(Xs+1)]

)
It(Xt+1) + πΠ[Rt(Xt+1)] ≤ G (Ut, t)− b, if s = t

Is(Xs+1) + πΠ[Rs(Xs+1)] ≤ b+cs
β
− b, if s = t+ 1, t+ 2, . . . ,∞.

4.4 Examples

In this section, we show how to use the results presented in the previous section. Corol-

lary 4.4.1 will reveal that under VaR, the optimal reinsurance is consistent with the

form of a two-layer stop-loss reinsurance for any distribution of claims. Furthermore,

using the exponential distribution for claims at each period, we show three examples

with different DRMs chosen for risk control and reinsurance premium principles.

Corollary 4.4.1. If VaR is chosen as the reinsurance premium principle, i.e. πΠ(·) =

(1 + θ)VaRα(·) for some α ∈ (0, 1), and the optimal solutions exist, and either θ > 0 or

FXs+1(z) > 0, z 6= 0, we have R∗s (x) = min {VaRα (Xs+1) , Xs+1}.

Proof. Recall the set in (4.49),

Bs =
{
z ∈ R+

∣∣(1 + Et (µs+1) + Et (λs)) (1 + θ)
(
1− Π

[
FXs+1(z)

])
≤
(
1− FXs+1(z)

)
+ Et (µs+1)

(
1− FX1

s+1
(z)
)

+ Et (λs)
(
1− Γ[FXs+1(z)]

)}
.

Now, when Π
[
FXs+1(z)

]
= 1, the left-hand side of the above inequality is zero and is not

greater than or equal to the right-hand side. On the other hand, if Π
[
FXs+1(z)

]
= 0,

since 1 − FXs+1(z) ≤ 1 and 1 − FX1
s+1

(z) ≤ 1 then either θ > 0 or FXs+1(z) > 0, z 6= 0,

implies that the left-hand side is strictly greater than the right-hand side. As a result,

Bs =
{
z ∈ R+

∣∣FXs+1 (z) ≤ α
}
. (4.63)
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Therefore, by taking the integral of the MIF as the indicator function on Bs, the rein-

surance contract is a multilayer policy satisfying

R∗s(x) =

∫ x

0

R∗
′

s (z) dz =

F
−1
Xs+1

(α) , x > F−1
Xs+1

(α)

x, otherwise

. (4.64)

Now consider the total claims over each period [s, s+1) for s = t, t+1, t+2, . . . , /infty,

all following an exponential distribution but with different constant parameters depend-

ing only on time κs+1 > 0. Thus, the CDF of Xs+1 can be denoted as FExp
Xs+1

(x) =

1− e−κs+1x. By using different DRMs, we show the following examples.

Example 4.4.2. Consider DRMs for both the solvency condition and reinsurance pre-

mium as Value at Risk with different confidence levels 1− γ and 1−α, respectively, i.e.

ρΓ(.) = VaRγ(.) and πΠ (.) = (1 + θ)ρΠ(.) = (1 + θ) VaRα(.); the corresponding dual dis-

tortion functions are ΓV aR(u) = 1[γ,1](u) and ΠV aR(u) = 1[α,1](u), respectively. In addi-

tion, the total claims in each time period [s, s+1), with s = t, t+1, t+2, . . . ,∞, follow an

exponential distribution with parameter κs+1 > 0, so the CDF is FExp
Xs+1

(x) = 1−e−κs+1x.

Therefore, the optimal reinsurance contract of

Problem I is a one-layer stop-loss reinsurance contract with retention level − lnα
κs+1

for all

s = t, t+ 1, . . . ,∞, written as

R∗s(x) = min

{
x,− lnα

κs+1

}
,

and that of

Problem III has the form, for all s = t, t+ 1, . . . ,∞,

R∗s(x) =

x+ ln(1−α)
κs+1

, − ln(1−α)
κs+1

≤ x <∞

0, otherwise

, (4.65)

or, equivalently, R∗s(x) =
(
x+ ln(1−α)

κs+1

)+

.
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Proof. Problem I: Following the results in Theorem 4.3.1 and being aware that safety

loading θ is a non-negative number, we know that the optimal MIF has the form

(R∗s)
′ (x) = 1{

1−FExpXs+1
(x)>(1+θ)

(
1−ΠV aR[FExpXs+1

(x)]
)}

= 1{e−κs+1x>(1+θ)1[α,1](e
−κs+1x)}

= 1[0,α)(e
−κs+1x)

= 1[0,− lnα
κs+1

)(x).

Therefore, the reinsurance contract becomes

R∗s (x) =

∫ x

0

(R∗s)
′ (z) dz = min

{
x,− lnα

κs+1

}
.

Problem III: Taking the specific dual distortion functions into Theorem 4.3.3, we can

rewrite (4.41) and (4.49) as

(R∗s)
′ (z) = 1{z∈Bs}, (4.66)

where

Bs =
{
z
∣∣∣(1− FXs+1(z)) + Et (µs+1) (1− FX1

s+1
(z)) + Et (λs)1[0,γ)

(
FXs+1(z)

)
≥ (1 + Et (µs+1) + Et (λs)) (1 + θ)1[0,α)

(
FXs+1(z)

)}
. (4.67)

Denote the complement of set Bs as B̄s. If FXs+1(z) ∈ [0, α), then the inequality condition

inside B̄s becomes

(1− FXs+1(z)) + Et (µs+1) (1− FX1
s+1

(z)) + Et (λs)1[0,γ)

(
FXs+1(z)

)
< (1 + θ) [1 + Et (µs+1) + Et (λs)] .

This is equivalent to

θ + FXs+1(z) + Et (µs+1)
[
θ + FX1

s+1
(z)
]

+ Et (λs)
{

1 + θ − 1[γ,1]

(
FXs+1(z)

)}
< 0.

Since FXs+1 and FX1
s+1

are CDFs, FXs+1 ∈ [0, 1] and FX1
s+1
∈ [0, 1] always hold. Moreover,

the safety loading θ is non-negative, and one minus an indicator function is still an

indicator function with the complement condition, so the term 1 + θ − 1[γ,1]

(
FXs+1(z)

)
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is non-negative. In addition, based on the discussion in the proof of Theorem 4.3.3,

µs+1 ≥ 0 and λs ≥ 0 for all s = t, t + 1, . . . ,∞, so their expectations are also non-

negative. Hence, the set [0,VaRα(X)) ⊆ B̄s despite the choices of Lagrangian multipliers

and time period. This is equivalent to Bs ⊆ [VaRα(X),∞) for all s = t, t+ 1, . . . ,∞.

On the other hand, if FXs+1(z) ∈ [α, 1], then the inequality condition in Bs becomes

(1−FXs+1(z)) +Et (µs+1) (1−FX1
s+1

(z)) +Et (λs)1[0,γ)

(
FXs+1(z)

)
> 0. Again, following

similar reasoning, we know that this holds when all three non-negative terms equal zero

at the same time, i.e. 
(1− FXs+1(x)) = 0 (i)

Et (µs+1) (1− FX1
s+1

(x)) = 0 (ii)

Et (λs)1[0,γ)

(
FXs+1(x)

)
= 0. (iii)

(4.68)

Condition (4.68-i) holds when FXs+1(x) = 1 ∈ [α, 1], which leads to 1[0,γ)

(
FXs+1(x)

)
= 0

since γ ≤ 1. As a result, (4.68-iii) holds. Because FXs+1(x) is a CDF, x tends to infinity.

Consequently, FX1
s+1

(x) as a CDF itself also equals 1, so condition (4.68-iii) holds for all

s = t, t + 1, . . . ,∞. Therefore,
{
z|FXs+1(z) ∈ [α, 1)

}
⊆ Bs and

{
z|FXs+1(z) = 1

}
⊆ B̄s

for any time period.

To summarise, we can rewrite the condition set (4.67) of the MIF as

Bs =
{
z|FXs+1(z) ∈ [α, 1)

}
for all s = t, t+ 1, . . . ,∞.

As a consequence, (R∗s)
′ (x) = 1[α,1)

(
FXs+1(x)

)
= 1[F−1

Xs+1
(α),∞)(x). Notice that the set

Bs here is no longer related to time s. Therefore, the reinsurance contract as the integral

of the MIF has the form

R∗s(x) =

∫ x

0

(R∗s)
′ (z) dz =

∫ x

0

1[F−1
Xs+1

(α),∞) (z) dz

=

x− F
−1
Xs+1

(α), F−1
Xs+1

(α) ≤ x <∞

0, otherwise

,

or, equivalently, R∗s(x) =
(
x− F−1

Xs+1
(α)
)+

. When we take the exponential distribution

for the total claims, we have R∗s(x) =
(
x+ ln(1−α)

κs+1

)+

.
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Example 4.4.3. Consider an insolvency risk measured by Value at Risk at confidence

level 1 − γ. Thus, ρΓ(.) = VaRγ(.) with dual distortion functions ΓV aR(u) = 1[γ,1](u).

The reinsurance premium is estimated by Conditional Value at Risk at confidence level

1− α as

πΠ (.) = (1 + θ)CVaRα(X) =
1 + θ

1− α

∫ 1

α

VaRs(X)ds,

with dual distortion function ΠCVaR(u) := u−α
1−α1[α,1](u).

In addition, the total claims in one period follow an exponential distribution with

parameter κs+1 > 0, so the CDF is FExp
Xs+1

(x) = 1− e−κs+1x. Therefore, the optimal rein-

surance policy to pay more dividends in the set-ups of both Problem I and Problem III

is not to spend money to buy reinsurance; i.e. R∗s (x) = 0 for all s = t, t+ 1, . . . ,∞.

Proof. Problem I: Following the results in Theorem 4.3.1, we know that the optimal

MIF has the form

(R∗s)
′ (x) = 1

1−FExpXs+1
(x)>(1+θ)

1−
F
Exp
Xs+1

(x)−α

1−α 1[α,1](F
Exp
Xs+1

(x))


= 1{

1− e
−κs+1x

1+θ
<

(
1− e

−κs+1x

1−α

)
1[0,α)(e

−κs+1x)

}.
If e−κs+1x ∈ [0, α), then since θ ≥ 0 but α ∈ [0, 1] and e−κs+1x ∈ [0, 1], 1

1+θ
≤ 1 < 1

1−α . As

a result, e−κs+1x

1+θ
> e−κs+1x

1−α cannot hold for any x, so the MIF R∗′s (x) = 0. Otherwise, if

e−κs+1x ∈ [α, 1], then e−κs+1x > 1+θ ≥ 1 cannot hold for any x, so the MIF (R∗s)
′ (x) = 0.

In this set-up, the optimal reinsurance policy is not to buy reinsurance in order to pay

more dividends.

Problem III: Taking the distortion function of CVaR back to the results in The-

orem 4.3.3, we have ΠCVaR(u) := u−α
1−α1[α,1](u) = max(u−α

1−α , 0), and only when u = 1

does ΠCVaR(u) = 1. Thus, the optimal MIF set B =
{
z|ΠCVaR[FExp

Xs+1
(z)] = 1

}
={

z|FExp
Xs+1

(z) = 1
}

= {z|1− e−κs+1z = 1} = {0}. Therefore, the optimal MIF is

(R∗s)
′ (z) =

1, FExp
Xs+1

(z) = 1

0, FExp
Xs+1

(z) ∈ [0, 1)

, (4.69)
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and the optimal reinsurance contract satisfies R∗s (x) =
∫ x

0
1{z∈B}dz = 0. Therefore, as

with the set-up in Problem I, the optimal policy of the insurance company is not to buy

reinsurance to maximise the dividends paid.

Example 4.4.4. Consider an insolvency risk measured by Value at Risk at confidence

level 1 − γ. Thus, ρΓ(.) = VaRγ(.) with dual distortion functions ΓV aR(u) = 1[γ,1](u).

The reinsurance premium is estimated by Wang’s premium principle with dual distortion

function as

Πη(u) = Φ(Φ−1(u)− η),

where η ∈ R is a real parameter. The safety loading satisfies θη = 0.

In addition, the total claims in one period follow an exponential distribution with

parameter κs+1 > 0, so the CDF is FExp
Xs+1

(x) = 1 − e−κs+1x. Therefore, the optimal

reinsurance policy to pay more dividends in the set-up of Problem I is not to spend

money to buy reinsurance; i.e. R∗s (x) = 0 for all s = t, t+ 1, . . . ,∞.

Proof. Problem I: Following the results in Theorem 4.3.1, we know that the optimal

MIF has the form

(R∗s)
′ (x) = 1{

1−FExpXs+1
(x)>(1+θ)

(
1−Πι[F

Exp
Xs+1

(x)]
)}

= 1{e−κs+1x>(1+θ)[1−Φ(Φ−1(1−e−κs+1x)−ι)]}

= 1{
Φ−1(1−e−κs+1x)−Φ−1(1− e

−κs+1x

1+θ
)<ι

}.
Since the safety loading θ is a non-negative value, Φ−1(1− e−κs+1x) ≤ Φ−1(1− e−κs+1x

1+θ
).

Therefore, if the fixed parameter is positive, then for all x and s, the MIF is equal to

zero, and the reinsurance contract is also equal to zero for all x and s.

4.5 Discussion

In this chapter, we have introduced dynamic DRM to support our discrete-time surplus

model and demonstrate how the assumption of independent periodic total claims sim-
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4. Optimal Reinsurance Policy Design under a Dynamic Framework

plifies all the dynamic settings. Various constraints were discussed for the maximisation

of the expectation of cumulatively discounted dividend payments, but similar conclu-

sions were obtained as multilayer reinsurance contracts are the optimal choice for the

shareholders’ benefit. The examples under specifically chosen DRMs in the last section

can be considered a demonstration of how to use the general results that we obtained

in Section 4.3 with exponentially distributed and independent claims.

The assumption of independence was convenient in this work, but with the applica-

tion of DRM properties such as comonotonicity, this assumption may be removed, and

the results could potentially be extended to more realistic and general set-ups in the

future.
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Chapter 5

Reciprocal Optimisation

In this chapter, we consider the problem of reciprocal optimal reinsurance design when

the risk is measured by a distortion risk measure (DRM) and the premium is given

by a distortion premium principle (DPP). First, we point out that, in a very common

situation, the most optimal reinsurance contracts from an insurance point of view are

the least optimal contracts from a reinsurance point of view. In light of this observation,

we introduce three different reciprocal reinsurance contracting problems:

1. Ceding Optimal/Reinsurance Control, where the insurance company minimises its

risk of losses while the reinsurance company controls the risk.

2. Reinsurance Optimal/Ceding Control, where the reinsurance company minimises

its risk of losses while the insurance company controls the risk.

3. Ceding Reinsurance/Optimal Control, where the sum of the insurance and rein-

surance total risks is minimised while both parties control their level of risk.

On the basis of these three problems, we find their Lagrangian dual and show that strong

duality holds for all of them. Using this and the MIF method demonstrated in Section

2.3, we can characterise the optimal solutions by solving the dual problem and show that

the solutions have a multi-layered structure. Second, we consider three types of contracts

that are usually traded in the reinsurance market—namely, the stop-loss, stop-loss after
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quota-share, and quota-share after stop-loss. We show how to find the retention levels

for each contract with respect to each of the three problems introduced above. We will

show how we can find the solutions within by using the Karush–Kuhn–Tucker (KKT)

conditions.

The rest of this chapter is organised as follows. In Section 5.1, we introduce our

reciprocal reinsurance problems and show that the most optimal solution for one party

in a common situation is the least optimal for the other. In Section 5.2.1, we solve the

reciprocal problems in their most general forms. In Section 5.2.2, we consider the stop-

loss, stop-loss after quota-share, and quota-share after stop-loss of particular policies

and show how to find the retention levels for each contract. Section 5.2.2 summarises

the results of this chapter.

5.1 Problem Set-up

In this section, we will set up the problem framework and find the optimal solution.

First, we have to know the total loss of each party in the market.

Let us denote the annual risk of an insurance company by a non-negative loss variable

X. In general, a reinsurance company will accept to cover part of the risk in exchange

for receiving a premium. Let us denote the part of the risk covered by the reinsurer

by XR and the part covered by the insurance company by XI = X −XR. We assume

that 0 ≤ XR ≤ X. The premium received by the reinsurance company is (1 + θ)π(XR),

where θ ≥ 0 is a relative-safety-loading factor. Therefore, the global loss of the ceding

company, denoted by T I , can be expressed as

T I = XI + (1 + θ)π
(
XR
)
. (5.1)

In the same manner, for the reinsurer, we have

TR = XR − (1 + θ)π
(
XR
)
. (5.2)

Note that in this chapter, more aspects (the cedent, reinsurance, and both as a group)

are involved in the objectives; to simplify the notation and avoid the confusion of super-
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5.1. Problem Set-up

scripts, we remove the symbol of the distortion function from the DRM and DPP, i.e.

ρ(X) := ρΛ(X) and π(X) := πΛ(X). Therefore, the risks with respect to each party for

chosen risk measures are expressed below.

• Total risk of the ceding company. If the insurance company chooses ρI to

measure the risk, then its total risk will be

TRI := ρI
(
XI + (1 + θ)π

(
XR
))
.

• Total risk of the reinsurance company. Likewise, given that ρR denotes the

reinsurance company’s risk measure, the total risk is defined as

TRR := ρR
(
XR − (1 + θ)π

(
XR
))
.

• Total risk. The total risk of both the ceding and reinsurance companies is

ρR
(
XR − (1 + θ)π

(
XR
))

+ ρI
(
XI + (1 + θ)π

(
XR
))
,

where ρI and ρR are the risk measures used by the insurance and reinsurance

companies, respectively.

By applying the cash invariance property, they are respectively equivalent to the follow-

ing three expressions:

• Total risk of the ceding company.

TRI = ρI
(
XI
)

+ (1 + θ)π
(
XR
)
.

• Total risk of the reinsurance company.

TRR = ρR
(
XR
)
− (1 + θ)π

(
XR
)
.

• Total risk.

ρR
(
XR
)

+ ρI
(
XI
)
.
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Therefore, we introduce three problem setups.

1. Ceding Optimal/Reinsurance Control (CORC). We assume that the insurance com-

pany wants to minimise its total risk; at the same time, the reinsurance company

has to control its total risk below a tolerable level bR > 0. Hence, the first setup

is as follows: min ρI
(
XI
)

+ (1 + θ)π
(
XR
)

ρR
(
XR
)
− (1 + θ)π

(
XR
)
≤ bR

.

2. Reinsurance Optimal/Ceding Control (ROCC ). The position between the insur-

ance and reinsurance companies in the last setup are exchanged, and it is assumed

that the total risk of the insurance company cannot exceed a level bI > 0. The

second problem is set up asmin ρR
(
XR
)
− (1 + θ)π

(
XR
)

ρI
(
XI
)

+ (1 + θ)π
(
XR
)
≤ bI

.

3. Ceding Reinsurance/Optimal Control (CROC). In this case, we assume a total risk,

given that both the insurance and reinsurance risks are controlled, and the total

risk of both sides is minimised; therefore, we have
min ρR

(
XR
)

+ ρI
(
XI
)

ρR
(
XR
)
− (1 + θ)π

(
XR
)
≤ bR

ρI
(
XI
)

+ (1 + θ)π
(
XR
)
≤ bI

.

5.2 Optimal Solution

In this section, we find the optimal policies for the three problems in the previous section.

Here, we discuss a few assumptions that will be used in the following.

Assumption 3. We assume that the DRM and DPP satisfy a particular regularity

condition. Let ρ be either a risk measure or risk premium. We assume that the following
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limit holds:

lim
n→∞

ρ(X ∧ n) = ρ(X). (5.3)

Recall the assumption of no moral hazard risk from Section 2.3 (see Assumption

1). The interpretation of a marginal indemnification function is as follows: if R(x) =∫ x
0
h(z)dz is a contract, then at each value X = x, a marginal change ∆ in the value of

the global loss will result in a marginal change in the cedent risk of size ∆h(x). We will

see in the following that the marginal change of an optimal contract is either 0 or ∆ in

our framework, i.e. h = 0 or 1.

Now, let us prove two lemmas that will be used in further discussions.

Lemma 5.2.1. Let us assume that XR = R(X), where R ∈ C and ρ(X) is a DRM;

then, ρ
(
XI
)

= ρ (X)− ρ
(
XR
)
.

Proof. Because ρ(X) is a DRM, the corresponding distortion function Λ has the form

shown in (4.2) such that

ρ(X) =

∫ 1

0

VaRz (X) dΛ (z) .

Given that x 7→ x−R(x) and R are non-decreasing and that VaRz commutes with any

non-decreasing function, we have the following simple calculations:

ρ (X −R(X)) =

∫ 1

0

VaRz (X −R(X)) dΛ(z)

=

∫ 1

0

(VaRz(X)−R(VaRz(X))) dΛ(z)

=

∫ 1

0

(VaRz(X)− VaRz(R (X))) dΛ(z)

= ρ (X)− ρ (R (X)) .

By applying the notation used in this chapter to Proposition 2.3.3 from Chapter

2, we have the following expression for the DRM or DPP on the reinsurance contract:

ρ
(
XR
)

=
∫∞

0
(1− Π (FX(z)))h (z) dz, where XR = R (X) ∈ C.
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Remark 5.2.2. To simplify the notation, the following symbols are defined and used

in this chapter. Given the DRM or DPP as ρ (X) =
∫ 1

0
VaRt (X) dΠ (t) and the CDF of

X as FX , we have

Πρ := Π,

Πρ
X := Πρ ◦ FX ,

Φρ (t) := Πρ (1)− Πρ (t) = 1− Πρ (t) ,

Φρ
X (t) := Πρ (1)− Πρ

X (t) = 1− Πρ
X (t) .

In addition, let ΦI
X (t) := ΦρI

X (t) and ΦR
X (t) := ΦρR

X (t). We also define the following

notation

ΨI
X (t) := (1 + θ) Φπ

X (t)− ΦI
X (t) ,

ΨR
X (t) :=ΦR

X (t)− (1 + θ)Φπ
X (t) .

Now, we are in a position to show that in certain scenarios, the most optimal rein-

surance contract from an insurance point of view can be the worst contract for the

reinsurance company.

Theorem 5.2.3. If Assumptions 1 and 3 hold and ρI = ρR = ρ, then the most optimal

solution for each party is the least optimal for the other one.

Proof. As a reminder, the total risks of the ceding and reinsurance companies are as

follows:

TRI = ρ
(
XI
)

+ (1 + θ)π
(
XR
)

and

TRR = ρ
(
XR
)
− (1 + θ)π

(
XR
)
.

If we sum them, we have TRI + TRR = ρ
(
XI
)

+ ρ
(
XR
)
. If XR = R (X) and XI =

X−R (X), where R (x) =
∫ x

0
h(z)dz ∈ C, we have the following using Lemma 5.2.1 and
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Proposition 2.3.3:

TRI

(
XR
)

+ TRR

(
XR
)

=

∫ X

0

Φρ (t)h (t) dt+

∫ X

0

Φρ (t) (1− h (t)) dt

=

∫ X

0

Φρ (t) dt = ρ (X) .

By using Lemma 5.2.1, we have

TRI + TRR = ρ
(
XI
)

+ ρ
(
XR
)

= ρ
(
X −XR

)
+ ρ

(
XR
)

= ρ (X)− ρ
(
XR
)

+ ρ
(
XR
)

= ρ (X) .

Because the sum of the insurance and reinsurance total risks are constant, any policy

XR that minimises TRI will maximise TRR and vice versa.

Remark 5.2.4. The main assumption of this theorem, i.e. ρI = ρR = ρ, is not very

unusual if the companies control their risk for regulatory purposes. For instance, in

Solvency II, all companies are asked to keep the company solvent under a VaR of 99.5%.

5.2.1 General Case

In this section, we find the optimal solutions of CORC, ROCC, and CROC by solving

their Lagrangian dual problems.

Theorem 5.2.5. If Assumption 1 and 3 hold, then the reinsurance optimal solutions

to CORC, ROCC, and CROC are given as

(
XR
)(CORC)

=

∫ X

0

h∗(CORC) (t) dt,

(
XR
)(ROCC)

=

∫ X

0

h∗(ROCC) (t) dt,

(
XR
)(CROC)

=

∫ X

0

h∗(CROC) (t) dt,
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respectively, where

h∗(CORC) (t) =

1 : ΨI
X (t) + λ∗RΨR

Y (t) < 0

0 : ΨI
X (t) + λ∗RΨR

Y (t) > 0

and
∫∞

0
ΨR
Y (t)h∗(CORC)(t)dt = bR,

h∗(ROCC) (t) =

1 : ΨR
X (t) + λ∗IΨI

Y (t) < 0

0 : ΨR
X (t) + λ∗IΨI

Y (t) > 0

and
∫∞

0
ΨI
Y (t)h∗(ROCC)(t)dt = BI ,

and 

h∗(CROC) (t) =

1 : ΨR
X (t) + ΨI

X (t) + λ∗∗
R

ΨR
X (t) + λ∗∗

I
ΨI
X (t) < 0

0 : ΨR
X (t) + ΨI

X (t) + λ∗∗
R

ΨR
X (t) + λ∗∗

I
ΨI
X (t) > 0∫∞

0
ΨR
X (t)h∗(CROC)(t)dt = bI∫∞

0
ΨI
X (t)h∗(CROC)(t)dt = bR

.

Proof. Given Lemma 5.2.1 and Proposition 2.3.3, one can rewrite CORC, ROCC, and

CROC as follows:

(CORC)


min

∫∞
0

ΨI
X (t)h (t) dt∫∞

0
ΨR
X (t)h (t) dt ≤ bR

0 ≤ h ≤ 1

, (ROCC)


min

∫∞
0

ΨR
X (t)h (t) dt∫∞

0
ΨI
X (t)h (t) dt ≤ BI

0 ≤ h ≤ 1

,

(5.4)

and

(CROC)



min
∫∞

0

(
ΨI
X (t) + ΨR

X (t)
)
h (t) dt∫∞

0
ΨR
X (t)h (t) dt ≤ bR∫∞

0
ΨI
X (t)h (t) dt ≤ BI

0 ≤ h ≤ 1

, (5.5)

where BI = bI−ρI(X). As one can see, the objective functions in all three problems are

smooth functions of the retention levels; therefore, one can find their Lagrangian duals.
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The Lagrangian functions are given by

(CORC) LR
(
λR, h

)
= −

∫∞
0

ΨI
X (t)h (t) dt+ λR

(
bR −

∫∞
0

ΨR
X (t)h (t) dt

)
,

(ROCC) LI
(
λI , h

)
= −

∫∞
0

ΨR
X (t)h (t) dt+ λI

(
BI −

∫∞
0

ΨI
X (t)h (t) dt

)
,

and

(CROC) L(λI , λR, h) = LI
(
λI , h

)
+ LR

(
λR, h

)
,

where λI , λR ≥ 0 are Lagrangian multipliers. We focus our attention only on CORC

and its Lagrangian because the other problems can be solved in a similar way. With a

simple rearrangement, we have

LR
(
λR, h

)
= −

∫∞
0

(
ΨI
X (t) + λRΨR

X (t)
)
h (t) dt+ λRbR ,

which yields

max
0≤h≤1

LR
(
λR, h

)
=
∫∞

0

(
ΨI
X (t) + λRΨR

X (t)
)
− dt+ λRbR .

Let us denote the minimal point of the following optimisation by λ∗R, i.e.

λ∗R = argmin
λR≥0

∫ ∞
0

(
ΨI
X (t) + λRΨR

X (t)
)
− dt+ λRbR.

One can easily check that h (t) = ε for a sufficiently small ε is within the interior of

the optimisation problem above, satisfying Slater’s conditions; therefore, strong duality

holds. This implies that the following min-max problem has a solution:

min
λR≥0

max
0≤h≤1

LR
(
λR, h

)
= max

0≤h≤1
min
λR≥0
LR
(
λR, h

)
.

Let us denote the solution to this problem by
(
λ∗R, h∗(CORC)

)
. It is clear that h∗(CORC)

is an solution to the following optimisation problem:

max
0≤h≤1

−
∫ ∞

0

(
ΨI
X (t) + λ∗RΨR

X (t)
)
h (t) dt+ λ∗RbR. (5.6)

From (5.6), the optimal solution has the following form

h∗(CORC) (t) =

1 : ΨI
X (t) + λ∗RΨR

Y (t) < 0

0 : ΨI
X (t) + λ∗RΨR

Y (t) > 0

.
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Note that λ∗R = 0 is impossible; otherwise, the optimal solution will be h∗(CORC) = 0,

which is a contradiction. Therefore, the complementary slackness condition implies that∫ ∞
0

ΨR
Y (t)h∗(CORC)(t)dt = bR.

This completes the proof for CORC. ROCC and CROC can be solved in the same

manner.

Now, we discuss another assumption and study optimal solutions under it.

Assumption 4. We assume that the following set is of measure zero in R for any

(a, b, c) ∈ R3, where either ab 6= 0 or ac 6= 0:

{
t ∈ R |aΦπ

X (t) + bΦI
X (t) + cΦR

X (t) = 0
}
. (5.7)

For instance, by Assumption 4,

{
ΨI
X (t) + λRΨR

X (t) = 0
}

=
{

ΦR
X (t)− λRΦI

X (t) + (1 + θ)
(
1− λR

)
Φπ
X (t) = 0

}
is of measure zero. This implies that, although the function λR 7→

(
ΨI
X (t) + λRΨR

X (t)
)
−

is not differentiable, the following function is differentiable:

A
(
λR
)

=

∫ ∞
0

(
ΨI
X (t) + λRΨR

X (t)
)
− dt+ λRbR,

and its derivative is equal to

A
(
λR
)

=

∫ ∞
0

ΨR
X (t)1{ΨIX+λRΨRX<0}dt+ bR.

Therefore, λ∗R will be the root of this function.

Theorem 5.2.6. If in addition to Assumption 1, 3 and 4 hold, then the reinsurance

optimal solutions are almost surely unique and given by

(CORC) h(CORC) (t) = 1{ΨIX+λ∗RΨRX<0} (t) ,

(ROCC) h(ROCC) (t) = 1{ΨRX+λ∗IΨIX<0} (t) ,
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and

(CROC) h(CROC) (t) = 1{ΨRX+ΨIX+λ∗∗RΨRX+λ∗∗IΨIX<0} (t) .

Furthermore, λ∗I , λ∗R, and
(
λ∗∗I , λ∗∗R

)
can be found by solving the following problems:

(CORC)
∫∞

0
ΨR
X (t)1{ΨIX+λ∗RΨRX<0} (t) dt+ bR = 0,

(ROCC)
∫∞

0
ΨI
X (t)1{ΨRX+λ∗IΨIX<0} (t) dt+BI = 0,

(5.8)

and

(CROC)


∫∞

0

(
ΨR
X (t)

)
1{ΨRX+ΨIX+λ∗∗RΨRX+λ∗∗IΨIX<0} (t) dt+ bR = 0∫∞

0

(
ΨI
X (t)

)
1{ΨRX+ΨIX+λ∗∗RΨRX+λ∗∗IΨIX<0} (t) dt+BI = 0

. (5.9)

Proof. The theorem is easily a result of the fact that the following sets are of measure

zero in R by Assumption 4:

(CORC)
{

ΨI
X + λ∗RΨR

X = 0
}
,

(ROCC)
{

ΨR
X + λ∗IΨI

X = 0
}
,

and

(CROC)
{

ΨR
X + ΨI

X + λ∗∗
R

ΨR
X + λ∗∗

I

ΨI
X = 0

}
.

Example 5.2.7. Let us assume that α1 and α2 are two risk aversion parameters.

Let us assume that Ππ is strictly increasing and that ρI and ρR belong to the set

{VaRα1 ,CVaRα2}. Then, it is easy to see that Assumption 1 holds; therefore, the solu-

tions are either in the form of (5.8) or (5.9).

5.2.2 Stop-Loss and Quota-Share Policies

The methods developed above can characterise the optimal solutions to the optimal

reinsurance problem. However, there are not many different forms of contracts or multi-

layered policies that can be traded in the real world. Usually, contracts are either

stop-loss, stop-loss after quota-share, or quota share after stop loss. In this section, we
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focus our attention on these contracts. Recall the definitions of these three reinsurance

agreements in Section 2.1.1. We denote 0 ≤ l ≤ u < ∞ as the lower and the upper

retention levels and β ∈ (0, 1] as a proportion of the quota-share reinsurance. The

contracts could be represented as follows:.

1. Stop-loss reinsurance:

R(x) = min{(x− l)+, u} = (x− l)1[l,u) (x) + (u− l)1[u,∞) (x) . (5.10)

2. Stop-loss after quota-share reinsurance:

R(x) =

βx , x < u
β

u , x ≥ u
β

= βx1[0,uβ ) (x) + u1[uβ ,∞) (x) . (5.11)

3. Quota-share after stop-loss reinsurance:

R(x) =

x , x < u

βx+ (1− β)u , x ≥ u

= x1[0,u) (x) + (βx+ (1− β)u)1[u,∞) (x) . (5.12)

One can easily find the associated derivatives as h (t) = 1[l,u) (t), h (t) = β1[0,uβ ) (t), and

h (t) = 1[0,u) (t) + β1[u,∞) (t), respectively. As a reminder, the main objective problems

are (5.4) and (5.5); by substituting h in all three cases, we have

1. Stop-loss policy:

(CORC)

min
∫ u
l

ΨI
X (t) dt∫ u

l
ΨR
X (t) dt ≤ bR

, (ROCC)

min
∫ u
l

ΨR
X (t) dt∫ u

l
ΨI
X (t) dt ≤ BI

,
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and

(CROC)


min

∫ u
l

(
ΨI
X (t) + ΨR

X (t)
)
dt∫ u

l
ΨR
X (t) dt ≤ bR∫ u

l
ΨI
X (t) dt ≤ BI .

2. Stop-loss after quota-share policy:

(CORC)

min β
∫ u
β

0 ΨI
X (t) dt

β
∫ u
β

0 ΨR
X (t) dt ≤ bR

, (ROCC)

min β
∫ u
β

0 ΨI
X (t) dt

β
∫ u
β

0 ΨR
X (t) dt ≤ BI

,

and

(CROC)


min β

∫ u
β

0

(
ΨI
X (t) + ΨR

X (t)
)
dt

β
∫ u
β

0 ΨR
X (t) dt ≤ bR

β
∫ u
β

0 ΨI
X (t) dt ≤ BI .

3. Quota-share after stop-loss policy:

(CORC)

min
∫ u

0
ΨI
X (t) dt+ β

∫∞
u

ΨI
X (t) dt∫ u

0
ΨR
X (t) dt+ β

∫∞
u

ΨR
X (t) dt ≤ bR

,

(ROCC)

min
∫ u

0
ΨR
X (t) dt+ β

∫∞
u

ΨR
X (t) dt∫ u

0
ΨI
X (t) dt+ β

∫∞
u

ΨI
X (t) dt ≤ BI

,

and

(CROC)


min

∫ u
0

[
ΨI
X (t) + ΨR

X (t)
]
dt+ β

∫∞
u

[
ΨI
X (t) + ΨR

X (t)
]
dt∫ u

0
ΨR
X (t) dt+ β

∫∞
u

ΨR
X (t) dt ≤ bR∫ u

0
ΨI
X (t) dt+ β

∫∞
u

ΨI
X (t) dt ≤ BI .

.

If the Lagrangian multiplier is denoted by λ, then we have to solve the following KKT

optimality conditions under the setup of CORC:
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5. Reciprocal Optimisation

1. Stop-loss policy: 

ΨI
X(u) + λΨR

X(u) = 0

ΨI
X(l) + λΨR

X(l) = 0∫ u
l

ΨR
X(t)dt ≤ bR

λ ≥ 0

λ
(
bR −

∫ u
l

ΨR
X (t) dt

)
= 0.

2. Stop-loss after quota-share policy:

ΨI
X

(
u
β

)
+ λΨR

X

(
u
β

)
= 0

β
∫ u
β

0 ΨR
X(t)dt ≤ bR

λ ≥ 0

λ
(
bR −

∫ u
β

0 ΨR
X(t)dt

)
= 0.

3. Quota-share after stop-loss policy:

(1− β)
(
ΨI
X(u) + λΨR

X(u)
)

= 0∫∞
u

(
ΨI
X(t) + λΨR

X(t)
)
dt = 0∫ u

0
ΨR
X(t)dt+ β

∫∞
u

ΨR
Xdt ≤ bR

λ ≥ 0

λ
(
bR −

∫ u
0

ΨR
X(t)dt+ β

∫∞
u

ΨR
X(t)dt

)
= 0.

We will provide further information about these particular cases in the following example,

which demonstrates the optimality condition for three policies explained above can be

derived and only focuses on the CORC framework. The other two set-ups can be solved

in the same manner. This instance illustrates how a mathematical derivation of the

solution can be feasibly found through a finite number of basic computations.

Example 5.2.8. We assume that both of the selected DRMs of the insurer and reinsurer

are VaRs but with different confidence levels, denoted by ρI (X) = VaRα1 (X) and

ρR (X) = VaRα2 (X), where α1 ≤ α2. In addition, we keep the DPP, π, general. To

94



5.2. Optimal Solution

simplify the notation, let us denote s := FX(t) and apply the selected VaR to Remark

5.2.2 to obtain

ΨI (s) = (1 + θ) Φπ (t)− 1[0,α1) (s) ,

ΨR (s) = 1[0,α2) (s)− (1 + θ) Φπ (t) .

1. Stop-loss policy: If we denote δ := FX (u) and γ1 := FX (l), the optimality

conditions are represented as

(1 + θ) Φπ (δ) (1− λ)− 1[0,α1) (δ) + λ1[0,α2) (δ) = 0

(1 + θ) Φπ (γ1) (1− λ)− 1[0,α1) (γ1) + λ1[0,α2) (γ1) = 0

(u ∧ VaRα2 (X)− l ∧ VaRα2 (X))− (1 + θ) (π (X ∧ u)− π (X ∧ l)) ≤ b

λ ≥ 0

λ (b− (u ∧ VaRα2 (X)− l ∧ VaRα2 (X)) + (1 + θ) (π (X ∧ u)− π (X ∧ l))) = 0.

In the third and the fifth lines, we used the fact that π (X ∧ x) =
∫ x

0
Φπ (t) dt.

Now, we have the following six cases to consider.

Case 1. γ1 < δ < α1. In this case, the optimality conditions become

((1 + θ) Φπ (δ)− 1) (1− λ) = 0

((1 + θ) Φπ (γ1)− 1) (1− λ) = 0

(u− l)− (1 + θ) (π (X ∧ u)− π (X ∧ l)) ≤ b

λ ≥ 0

λ (b− (u− l) + (1 + θ) (π (X ∧ u)− π (X ∧ l))) = 0

.

If λ 6= 1, then δ = γ1, which is a contradiction.

If λ = 1, then all 0 ≤ γ1 < δ < α1 can be solutions to two equations above. This

implies that 0 ≤ l < u < VaRα1 (X). In this case, the complementary slackness

condition also has to hold. Therefore, the following optimality conditions have to
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5. Reciprocal Optimisation

hold: 0 ≤ l < u < VaRα1 (X)

(u− l)− (1 + θ) (π (X ∧ u)− π (X ∧ l)) = b

.

Case 2. α1 ≤ γ1 < δ < α2. In this case, we have

(1 + θ) Φπ (δ) (1− λ) + λ = 0

(1 + θ) Φπ (γ1) (1− λ) + λ = 0

(u− l)− (1 + θ) (π (X ∧ u)− π (X ∧ l)) ≤ b

λ ≥ 0

λ (b− (u− l) + (1 + θ) (π (X ∧ u)− π (X ∧ l))) = 0

.

If 0 ≤ λ ≤ 1, then Φπ (δ) ≤ 0, which contradicts α1 ≤ δ. If λ > 1, then

Φπ (γ1) = Φπ (δ), implying that γ1 = δ, which is a contradiction again.

Case 3. α2 ≤ γ1 < δ. In this case, we have

(1 + θ) Φπ (δ) (1− λ) = 0

(1 + θ) Φπ (γ1) (1− λ) = 0

− (1 + θ) (π (X ∧ u)− π (X ∧ l)) ≤ b

λ ≥ 0

λ (b+ (1 + θ) (π (X ∧ u)− π (X ∧ l))) = 0

.

If λ 6= 1, then γ1 = δ = 1, which is a contradiction. If λ = 1, then all α1 ≤ γ1 < δ

can be solutions to first two equations above. From α2 ≤ γ1 < δ, we also obtain

VaRα2 (X) ≤ γ1 < δ. Because the complementary slackness condition also has to

hold, we have the following optimality conditions:VaRα2 (X) ≤ l < u

− (1 + θ) (π (X ∧ u)− π (X ∧ l)) = b

.
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5.2. Optimal Solution

Case 4. γ1 < α1 ≤ δ < α2. In this case, the first two optimality equations become

(1 + θ) Φπ (δ) (1− λ) + λ = 0

((1 + θ) Φπ (γ1)− 1) (1− λ) = 0

(u− l)− (1 + θ) (π (X ∧ u)− π (X ∧ l)) ≤ b

λ ≥ 0

λ (b− (u− l) + (1 + θ) (π (X ∧ u)− π (X ∧ l))) = 0

.

If 0 ≤ λ ≤ 1, then Φπ (δ) ≤ 0, which contradicts α1 ≤ δ. If λ > 1, thenδ = (Φπ)−1
(

λ
(1+θ)(λ−1)

)
γ1 = (Φπ)−1 ( 1

1+θ

) .

However, these need to be checked with our conditions. The optimality conditions

become
1

1+θ
< (Φπ)−1 (α1) ≤ u < VaRα2 (X)

l = VaR(Φπ)−1( 1
1+θ )

(X)(
u− VaR(Φπ)−1( 1

1+θ )
(X)

)
(1 + θ)

(
π (X ∧ u)− π

(
X ∧ VaR(Φπ)−1( 1

1+θ )
(X)

))
= b

.

Case 5. α1 ≤ γ1 < α2 ≤ δ. In this case, the two first lines of the optimality condi-

tions become

(1 + θ) Φπ (δ) (1− λ) = 0

(1 + θ) Φπ (γ1) (1− λ) + λ = 0

(VaRα2 (X)− l)− (1 + θ) (π (X ∧ u)− π (X ∧ l)) ≤ b

λ ≥ 0

λ (b− (VaRα2 (X)− l) + (1 + θ) (π (X ∧ u)− π (X ∧ l))) = 0

.

If λ 6= 1, then Φπ (δ) = 0, which is a contradiction. If λ = 1, then the second line of

the equations above implies that 1 = 0, which is a contradiction again. Therefore,

we are left with nothing to check.
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5. Reciprocal Optimisation

Case 6. γ1 < α1 ≤ α2 ≤ δ. In this case, the first two lines of the optimality condi-

tions are expressed as

((1 + θ) Φπ (δ)− 1) (1− λ) = 0

(1 + θ) Φπ (γ1) (1− λ) = 0

(VaRα2 (X)− l)− (1 + θ) (π (X ∧ u)− π (X ∧ l)) ≤ b

λ ≥ 0

λ (b− (VaRα2 (X)− l) + (1 + θ) (π (X ∧ u)− π (X ∧ l))) = 0

.

If λ 6= 1, then δ = 1 and γ1 = 0 must hold. This implies that both u = ∞ and

l = 0. If λ 6= 0, then u =∞ and l = 0

VaRα2 (X) ≤ b

.

If λ 6= 0 and λ 6= 1, then we haveu =∞ and l = 0

VaRα2 (X) = b

.

If λ = 1, then the optimality conditions become
θ

1+θ
< α1

l = VaR θ
1+θ

(X) and u =∞
.

If λ = 1, then all γ1 < α1 ≤ α2 ≤ δ could be the solutions to the first and the

second optimality equations. Therefore, we havel < VaRα1 (X) ≤ VaRα2 (X) ≤ u

(VaRα2 (X)− l)− (1 + θ) (π (X ∧ u)− π (X ∧ l)) = b

.

2. Stop-loss after quota-share policy: Let us denote γ2 := FX

(
u
β

)
under this
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5.2. Optimal Solution

contract. The optimality conditions become

(1 + θ) Φπ (γ2) (1− λ)− 1[0,α1) (γ2) + λ1[0,α2) (γ2) = 0(
u
β
∧ VaRα2 (X)

)
− (1 + θ) π

(
X ∧ u

β

)
≤ b

λ ≥ 0

λ
(
b−

(
u
β
∧ VaRα2 (X)

)
− (1 + θ) π

(
X ∧ u

β

))
= 0

.

As a result, we need to discuss the following three cases.

Case 1. γ2 < α1. In this case, the optimality conditions are

((1 + θ) Φπ (γ2)− 1) (1− λ) = 0

u
β
− (1 + θ) π

(
X ∧ u

β

)
≤ b

λ ≥ 0

λ
(
b−

(
u
β

)
− (1 + θ) π

(
X ∧ u

β

))
= 0

.

If λ = 0, then γ2 = (Φπ)−1 ( 1
1+θ

)
, and the optimality conditions are

u
β
< VaRα1 (X)

u
β

= VaR(Φπ)−1( 1
1+θ )

(X)

u
β
− (1 + θ)π

(
X ∧ u

β

)
≤ b

.

With the same argument, if λ 6= 0 and λ 6= 1, then
u
β
< VaRα1 (X)

u
β

= VaR(Φπ)−1( 1
1+θ )

(X)

u
β
− (1 + θ)π

(
X ∧ u

β

)
= b

.

If λ = 1, then γ2 can be any number less than α1 and can be solution to the first

equation of the optimality conditions. Therefore, we have
u
β
< VaRα1 (X)

u
β
− (1 + θ)π

(
X ∧ u

β

)
= b

.
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5. Reciprocal Optimisation

Case 2. α1 ≤ γ2 < α2. The optimality conditions are



(1 + θ) Φπ (γ2) (1− λ) + λ = 0

u
β
− (1 + θ) π

(
X ∧ u

β

)
≤ b

λ ≥ 0

λ
(
b− u

β
− (1 + θ) π

(
X ∧ u

β

))
= 0

.

If 0 ≤ λ ≤ 1, we obtain Φπ (γ2) ≤ 0 from the first line of the optimality condi-

tions, which contradicts α1 ≤ γ2. If λ > 1, we obtain γ2 = (Φπ)−1
(

λ
(λ−1)(1+θ)

)
.

Therefore, VaRα1 (X) ≤ u
β
< VaRα2 (X)

u
β
− (1 + θ) π

(
X ∧ u

β

)
= b

.

Case 3. α2 ≤ γ2. In this case, we have



(1 + θ) Φπ (γ2) (1− λ) = 0

VaRα2 (X)− (1 + θ) π
(
X ∧ u

β

)
≤ b

λ ≥ 0

λ
(
b− VaRα2 (X)− (1 + θ) π

(
X ∧ u

β

))
= 0

.

If λ 6= 1, then γ2 = 0, which contradicts α2 ≤ γ2. If λ = 1, we have

VaRα2 (X) ≤ u
β

VaRα2 (X)− (1 + θ) π
(
X ∧ u

β

)
= b

.
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5.2. Optimal Solution

3. Quota-share after stop-loss policy: Let us denote δ = FX (u). Hence, we have

(1− β)
(
(1 + θ) Φπ (δ) (1− λ)− 1[0,α1) (δ) + λ1[0,α2) (δ)

)
= 0(1 + θ) (π (X)− π (X ∧ u)) (1− λ)

− (VaRα1 (X)− u ∧ VaRα1 (X)) + λ (VaRα2 (X)− u ∧ VaRα2 (X)) = 0u ∧ VaRα2 (X)− (1 + θ) π (X ∧ u)

+β (VaRα2 (X)− u ∧ VaRα2 (X)− (1 + θ) (π (X)− π (X ∧ u))) ≤ bλ (u ∧ VaRα2 (X)− (1 + θ) π (X ∧ u)

+ β (VaRα2 (X)− u ∧ VaRα2 (X)− (1 + θ) (π (X)− π (X ∧ u)))− b) = 0

.

As a consequence, there are three cases to discuss under this policy.

Case 1. δ < α1. We have

(1− β) ((1 + θ) Φπ (δ)− 1) (1− λ) = 0(1 + θ) (π (X)− π (X ∧ u)) (1− λ)

− (VaRα1 (X)− u) + λ (VaRα2 (X)− u) = 0u− (1 + θ) π (X ∧ u)

+β (VaRα2 (X)− u− (1 + θ) (π (X)− π (X ∧ u))) ≤ bλ (u− (1 + θ) π (X ∧ u)

+ β (VaRα2 (X)− u− (1 + θ) (π (X)− π (X ∧ u)))− b) = 0

.

If λ = 0, then δ = (Φπ)−1 ( 1
1+θ

)
, and

(Φπ)−1 ( 1
1+θ

)
< α1

u = VaR(Φπ)−1( 1
1+θ )

(X)

(1 + θ) (π (X)− π (X ∧ u))− (VaRα1 (X)− u) = 0u− (1 + θ)π (X ∧ u)

+β (VaRα2 (X)− u− (1 + θ) (π (X)− π (X ∧ u))) ≤ b

.
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5. Reciprocal Optimisation

If λ = 1, then the second line of the optimality condition implies that VaRα2 (X) =

VaRα1 (X). Therefore, this case occurs if α1 = α2.
u < VaRα1 (X)u− (1 + θ) π (X ∧ u)

+β (VaRα1 (X)− u− (1 + θ) (π (X)− π (X ∧ u))) = b

.

If λ 6= 0 and λ 6= 1, then δ can be solved from the first equation. After substituting

the second equation, λ could be found.

(Φπ)−1 ( 1
1+θ

)
< α1

u = VaR(Φπ)−1( 1
1+θ )

(X)u− (1 + θ) π (X ∧ u)

+β (VaRα2 (X)− u− (1 + θ) (π (X)− π (X ∧ u))) = b

.

Case 2. α1 ≤ δ < α2. We have

(1− β) ((1 + θ) Φπ (δ) (1− λ) + λ) = 0(1 + θ) (π (X)− π (X ∧ u)) (1− λ)

+λ (VaRα2 (X)− u) = 0u− (1 + θ)π (X ∧ u)

+β (VaRα2 (X)− u− (1 + θ) (π (X)− π (X ∧ u))) ≤ bλ (u− (1 + θ) π (X ∧ u)

+ β (VaRα2 (X)− u− (1 + θ) (π (X)− π (X ∧ u)))− b) = 0

.

If 0 ≤ λ < 1, then the first line implies that Φπ (δ) ≤ 0, which contradicts α ≤ δ.

If λ = 1, then the first line implies that 1 = 0. If λ > 1, then λ could be obtained

from the first line according to the choice of u. Therefore,
VaRα1 (X) ≤ u < VaRα2 (X)u− (1 + θ) π (X ∧ u)

+β (VaRα2 (X)− u− (1 + θ) (π (X)− π (X ∧ u))) = b.

102



5.3. Discussion

Case 3. α2 ≤ δ. We have

(1− β) (1 + θ) Φπ (δ) (1− λ) = 0

(1 + θ) (π (X)− π (X ∧ u)) (1− λ) = 0

u− (1 + θ) π (X ∧ u)− β (1 + θ) (π (X)− π (X ∧ u)) ≤ b

λ (u− (1 + θ)π (X ∧ u)− β (1 + θ) (π (X)− π (X ∧ u))− b) = 0

.

If λ 6= 1, then δ = 0 holds from the first line, which contradicts α2 ≤ δ. If λ = 1,

we have VaRα2 (X) ≤ u

u− (1 + θ)π (X ∧ u)− β (1 + θ) (π (X)− π (X ∧ u)) = b.

5.3 Discussion

In this chapter, we investigated the optimal reinsurance problems under three types of

reciprocal frameworks: CORC, ROCC, and CROC. We first characterised the optimal

solutions to these three problems in general set-ups by using the marginal indemnifi-

cation function formulation and Lagrangian duality theory. An example of solving the

CORC optimal problem was presented with three selected reinsurance policies: stop-loss,

stop-loss after quota-share or quota-share after stop-loss. We showed how the optimal

retention levels of each reinsurance type can be found and discussed some particular

interesting cases.
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Chapter 6

Conclusion

In this thesis, we focus on hedging against risk to meet minimum capital reserve require-

ment for insurance company and design reinsurance strategies from different perspectives

including shareholders and reinsurer.

Chapter 3 is devoted to develop a hedging problem for the minimum capital require-

ment. We demonstrate the steps to construct a problem of finding the minimum cost

risky position to avoid insolvency of the insurance company. By discussing the properties

of risk measures in general form, we introduce the generalised minimum capital (GMC).

An example is given with selected cumulative risk measure and cumulative pricing rule.

Buying reinsurance contract is a common approach of hedging against risk by ce-

dent. Reinsurance policy design is popular in literature but the majority of the existing

research on this topic is within the sector of the insurance companies. In reality, as the

contract seller, the reinsurance companies play a more important role. The motivation

for this thesis is therefore to provide a view from the reinsurers’ perspective. We analyse

the optimal reinsurance problems in our research from two aspects: dividend maximisa-

tion in Chapter 4 and risk minimisation in Chapter 5. The duality with the Lagrangian

functions is used in both chapters and the basic concepts are reviewed in Section 2.4.

To achieve the aim that the insolvency risks are maintained under a tolerable level,

the distortion risk measures (DRMs) are used in reinsurance optimisation throughout
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this thesis. As the advantage of the DRM, the distortion premium principle (DPP)

is generated similarly to calculate the insurance and reinsurance premium. This en-

ables our analysis under the DRM and DPP to be mathematically consistent. The core

techniques used in this thesis are the properties of the DRM along with the marginal

indemnity function method introduced by Assa (2015a) and developed by Zhuang et al.

(2016). The MIF based formulation is under the assumption that both the ceding and

reinsurance companies are sensitive to the change in total losses which rules out the risk

of moral hazard in the actuarial area (see Assumption 1 and Section 2.3).

In Chapter 4, a discrete time surplus model of the ceding company is constructed

and modified. In order to apply the DRM and DPP to this dynamic optimization

framework and fill the blank in the literature, we propose the dynamic DRM and DPP

in Section 4.1 which are generated from the well-defined dynamic VaR. We assume that

the total claims in each period are independent in this chapter. As a result, Proposition

4.2.1 and Lemma 4.2.2 are proven to solve the technical issues caused by the dynamic

DRM. The aim of this chapter is to find the optimal reinsurance contracts to maximize

the expectation of the discounted and cumulative dividends paid to shareholders. For

this purpose, we consider the objective subject to three sets of constraints formed by

the budget constraint, the solvency condition and the dividend policy property. From

the MIF method, the MIF is often proven to be an indicator function which implies a

multilayer reinsurance policy including the simplest example as the stop-loss reinsurance

contract. The optimal reinsurance contracts obtained in Theorems 4.3.1 and 4.3.3 satisfy

the property as a multilayer reinsurance agreement.

The study in Chapter 5 is investigated by introducing three optimal problems with

different objectives and constraints. In order to make the problems manageable, the

risks of one party (insurer, reinsurer or both) are minimised while the risks of another

one are assumed to be under an acceptable level. Similar to the results in Chapter 4, the

optimal results contain the indicator function as the MIF thus the form of the multilayer

reinsurance contracts are satisfied in Theorem 5.2.5 in the general case. Particular cases

are discussed in Section 5.2.2 with stop-loss, stop-loss after quota-share and quota-share
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6. Conclusion

after stop-loss reinsurance policies. In Example 5.2.8, VaR is selected to estimate both

insurance and reinsurance risks and the discussions are demonstrated for the set-up of

minimising the risk of the cedant and controlling the risk of the reinsurer.

The hedging problem set up in Chapter 3 can be discussed under different risk

measure and pricing rules. The area regarding the reinsurance policy optimisation also

has huge potential. As extension of the study in Chapter 4, the prospective research of

applying the dynamic DRM and DPP on the framework with correlated claims is closer

to the reality. The applications of the outcomes in Chapter 4 with other specific DRMs

may result in other interesting findings. With the development of the reinsurance design,

the future popular policies could be considered into the optimal problems introduced in

Chapter 5. Moreover, the MIF method was introduced in recent years which could be

applied to a wide range of the existing setups in the literature.
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Appendix A

Major Correction Report

By the requirement from both examiners, the thesis of first submission has been edited

following the suggestions from Viva. Additionally, a new chapter is added and one paper

has been submitted to journal of Insurance: Mathematics and Economics.

A.1 Corrections in thesis

The core corrections I have done for the thesis are listed below. Page numbers follow

the first submission version.

1. Correct some typos and notations including changing ”corollaryresponding” to

”corresponding”, missing subscripts.

2. Add the control variables under the min,max, sup and inf.

3. Add comma to the notation of joint density, i.e., fX,Y .

4. Change all the parentheses to square brackets after expectations, E[.], to be more

consistent.

5. All the MIF method are changed to MIF formulation. I checked the literature

citing the work of Zhuang et al. (2016) and realised the confusion when using the

term MIF method. It is referred to as a MIF-based formulation method.
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A. Major Correction Report

6. Edit with consistency such as the spelling style in British English, the double slash

in text, ”set-up” as noun while ”set up: for verb and etc.

7. Chapter 1:reference papers are added.

8. P.11: {Ft}t∈{N} is changed to {Ft}t∈{N∪∞}.

9. P.14: The whole Section 2.1.1 is edited.

10. P.17: Add the definition of VaR and the inverse distribution function form. Edit

the Section 1.1 related to VaR introduced in the beginning of the section.

11. P.18: Remark 2.2.4 about cash invariance of a profit variable is updated.

12. P.19: Note that Section 2.1.1 shows that the claims covered by reinsurer is denoted

by a continuous function working on the total claims for all four reinsurance types

considered in this thesis. Under this stronger condition, the Proposition 2.3.2 could

be proven more easily by the one in the first submission.

13. P.20: Move the definition of CVaR to the beginning.

14. P.21: The dynamic VaR was moved and edited to Section 4.1 in Chapter 4. The

Proposition 4.1.6 was also moved. Add the note that Zt is not dynamic and the

subscript only indicates that it is in L0(Ft).

15. P.23: In Assumption 1, the ”the total” is added before the last ”losses”.

16. P.23: Found the reference of the Proposition 2.3.2 Add condition of left-continuous

and update the proof of Proposition 2.3.2 with the new reference papers.

17. P.26: Edit the Section 2.4.

18. P.33: Proposition 4.2.1 change Ft+i to σt+i- measurable.

19. P.34: Proof of Proposition 4.2.1 is edited.

20. P.35: Rephrase the whole Lemma 4.2.3 and change the pdf of X2 to fX2 (x) =∫ 0
−∞ yfX,Y (x,y)dy

E[−Y −]
, because E[−Y −] =

(∫∞
0

∫ 0

−∞ yfX,Y (x, y) dydx
)

.

108



A.2. Paper submission

21. P.42: Update the Hilbert space notations.

22. P.46: Explain why min(E[]) = E[min()].

23. The proofreading is done for Chapter 5 by Elsevier.

24. Chapter 4 has been edited along with the submitted paper and the comments of

the proofreading of the paper are also taken for editing it.

A.2 Paper submission

The paper titled ’Dynamic Set-up for Designing Optimal Reinsurance Contracts’ has

been done proofreading by Elsevier and submitted to the journal of Insurance: Mathe-

matics and Economics (current status: ”Under Review” ). It is also submitted to SSRN

(url to abstract page: http://ssrn.com/abstract=3420090).

A.3 New Chapter

Chapter 3 titled ’From Ruin Theory to a Hedging Problem’ has been added. The concept

studied in this chapter is the first topic that my supervisor, Dr. Hirbod Assa, suggested

for my PhD research which is consistent to my PhD application proposal. I researched

this topic of the hedging insolvency in my first one and half a year. It is a working

in process paper finished in the past year of major correction. I didn’t included it in

the first submission because it is not related to reinsurance and distortion risk measure.

However, it is related to risk measure in general and reinsurance is a common way used as

hedging against risk by insurance company so it is added as the new chapter required by

examiners. The proofreading has been done for this chapter by Elsevier. The literature

review of hedging approach is added as Section 1.2.

1. Add the reference into literature in Chapter 1.

2. Add into abstract
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Claramunt, M. M., M. Mármol, and A. Alegre (2003). A note on the expected present

value of dividends with a constant barrier in the discrete time model. Schweiz. Aktu-

arver. Mitt. (2), 149–159.
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