
U n iv er s i ty o f  H u d d e r s f i e l d  R e p o s i t ory

Kha n,  S a a d

Discove ring  a n d  Utilising  Expe r t  Knowled g e  fro m  S ec u ri ty Eve n t  Logs

Ori g i n a l  Cita t i o n

Kha n,  S a a d  (201 9) Discove rin g  a n d  U tilising  Exp e r t  Knowle d g e  fro m  S ec u ri ty 
Eve n t  Logs.  Doc to r al  t h e sis,  U nive r si ty of H u d d e r sfield.  

This  ve r sion  is available  a t  h t t p:// ep rin t s .h u d. ac.uk/id/ ep rin t/350 8 8/

The  U nive r si ty Re posi to ry is a  digi t al  collec tion  of t h e  r e s e a r c h  ou t p u t  of t h e
U nive r si ty, available  on  Op e n  Access .  Copyrig h t  a n d  Mo r al  Righ t s  for  t h e  
it e m s
on  t hi s  si t e  a r e  r e t ain e d  by t h e  individu al a u t ho r  a n d/o r  o t h e r  copyrigh t  
ow n e r s .
U s e r s  m ay  a cc e s s  full it e m s  fr e e  of c h a r g e;  copie s  of full t ex t  it e m s  g e n e r ally
c a n  b e  r e p ro d uc e d,  dis pl aye d  o r  p e rfo r m e d  a n d  given  to  t hi rd  p a r ti e s  in a ny
for m a t  o r  m e diu m  for  p e r son al  r e s e a r c h  o r  s t u dy, e d u c a tion al  o r  no t-for-p rofi t
p u r pos es  wi tho u t  p rio r  p e r mission  o r  c h a r g e ,  p rovide d:

• The  a u t ho r s,  ti tl e  a n d  full bibliog r a p hic  d e t ails  is c r e di t e d  in a ny copy;
• A hyp e rlink  a n d/o r  URL is includ e d  for  t h e  o riginal m e t a d a t a  p a g e;  a n d
• The  con t e n t  is no t  c h a n g e d  in a ny w ay.

For  m o r e  info r m a tion,  including  ou r  policy a n d  s u b mission  p roc e d u r e ,  ple a s e
con t ac t  t h e  Re posi to ry Tea m  a t :  E. m ailbox@h u d.ac.uk.

h t t p://ep rin t s .h u d. ac.uk/



UNIVERSITY OF HUDDERSFIELD

DISCOVERING AND UTILISING

EXPERT KNOWLEDGE FROM

SECURITY EVENT LOGS

by

SAAD ULLAH KHAN

A thesis submitted in partial fulfilment for the

degree of Doctor of Philosophy

in the

School of Computing and Engineering

Centre for Cyber Security

September 2019

http://www.hud.ac.uk
saad.khan@hud.ac.uk


Copyright Statement

� The author of this thesis (including any appendices and/or schedules to this thesis)

owns any copyright in it (the “Copyright”) and s/he has given The University of

Huddersfield the right to use such copyright for any administrative, promotional,

educational and/or teaching purposes.

� Copies of this thesis, either in full or in extracts, may be made only in accordance

with the regulations of the University Library. Details of these regulations may be

obtained from the Librarian. This page must form part of any such copies made.

� The ownership of any patents, designs, trademarks and any and all other intellec-

tual property rights except for the Copyright (the “Intellectual Property Rights”)

and any reproductions of copyright works, for example, graphs and tables (“Re-

productions”), which may be described in this thesis, may not be owned by the

author and may be owned by third parties. Such Intellectual Property Rights and

Reproductions cannot and must not be made available for use without the prior

written permission of the owner(s) of the relevant Intellectual Property Rights

and/or Reproductions.

i



Abstract

Security assessment and configuration is a methodology of protecting computer systems

from malicious entities. It is a continuous process and heavily dependent on human

experts, which are widely attributed to being in short supply. This can result in a

system being left insecure because of the lack of easily accessible experience and specialist

resources. While performing security tasks, human experts often revert to a system’s

event logs to determine status of security, such as failures, configuration modifications,

system operations etc. However, finding and exploiting knowledge from event logs is a

challenging and time-consuming task for non-experts. Hence, there is a strong need to

provide mechanisms to make the process easier for security experts, as well as providing

tools for those with significantly less security expertise. Doing so automatically allows

for persistent and methodical testing without an excessive amount of manual time and

effort, and makes computer security more accessible to non-experts. In this thesis, we

present a novel technique to process security event logs of a system that have been

evaluated and configured by a security expert, extract key domain knowledge indicative

of human decision making, and automatically apply acquired knowledge to previously

unseen systems by non-experts to recommend security improvements.

The proposed solution utilises association and causal rule mining techniques to auto-

matically discover relationships in the event log entries. The relationships are in the

form of cause and effect rules that define security-related patterns. These rules and

other relevant information are encoded into a PDDL-based domain action model. The

domain model and problem instance generated from any vulnerable system can then be

used to produce a plan-of-action by employing a state-of-the-art automated planning

algorithm. The plan can be exploited by non-professionals to identify the security is-

sues and make improvements. Empirical analysis is subsequently performed on 21 live,

real world event log datasets, where the acquired domain model and identified plans

are closely examined. The solution’s accuracy lies between 73% − 92% and gained a

significant performance boost as compared to the manual approach of identifying event

relationships.

The research presented in this thesis is an automation of extracting knowledge from

event data steams. The previous research and current industry practices suggest that

this knowledge elicitation is performed by human experts. As evident from the empirical

analysis, we present a promising line of work that has the capacity to be utilised in

commercial settings. This would reduce (or even eliminate) the dire and immediate

need for human resources along with contributing towards financial savings.



Acknowledgements

First of all, I would like to express my deepest gratitude to Dr. Simon Parkinson.

Without his mentorship, patience, commitment, determination and motivation, I would

have never been able to finish my Ph.D. I learned a lot of skills under his supervision,

but there is something that I want to bring in the spotlight; he taught me what it really

means to critically understand and analyse any given problem, and perform a complete,

thorough and frenetic research, the one that does not let you sleep at night. Throughout

my Ph.D. journey, Dr. Simon Parkinson provided an excellent, friendly and encouraging

research atmosphere along with the very best experience and valuable insights.

Many thanks to the University of Huddersfield for awarding me the Vice Chancellor

scholarship. I am very grateful for their financial support and generosity. The scholarship

allowed me to keep my entire focus on the research work.

Additionally, I would to thank and acknowledge all members of staff and school admin-

istration, who always provided a quick and constant support in resolving all of my Ph.D.

related issues.

iii



Contents

Copyright Statement i

Abstract ii

Acknowledgements iii

List of Figures viii

List of Tables x

Abbreviations xi

Symbols xiv

1 Introduction 1

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 What Are Event logs? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Research Question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Scope, Motivation And Aim . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.6 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.7 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.8 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.8.1 Journal Papers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.8.2 Conference Papers . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.8.3 Book Chapters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.9 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Background and Literature Review 12

2.1 Data Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 What Is Knowledge Acquisition? . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Manual And Assistive Knowledge Acquisition . . . . . . . . . . . . . . . . 14

2.3.1 Rule-Based Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.2 Case-Based Reasoning Systems . . . . . . . . . . . . . . . . . . . . 16

2.3.3 Codebook-Based Systems . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.4 Voting-Based Approach . . . . . . . . . . . . . . . . . . . . . . . . 18

iv



Contents v

2.3.5 Commercial Event Correlation Software . . . . . . . . . . . . . . . 18

2.4 Automated Knowledge Acquisition Approaches . . . . . . . . . . . . . . . 19

2.4.1 Clustering Techniques . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4.2 Automated Planning Techniques . . . . . . . . . . . . . . . . . . . 21

2.4.2.1 Domain Representation Languages . . . . . . . . . . . . . 24

2.4.2.2 Searching Techniques . . . . . . . . . . . . . . . . . . . . 26

2.4.2.3 Applications Of Planning In Cybersecurity . . . . . . . . 28

2.4.3 Association Rule Mining Techniques . . . . . . . . . . . . . . . . . 29

2.4.4 Causal Inference Techniques . . . . . . . . . . . . . . . . . . . . . . 33

2.5 Literature Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3 Automated Knowledge Acquisition 39

3.1 Data Pre-Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.1.1 Filtering Routine Entries . . . . . . . . . . . . . . . . . . . . . . . 41

3.1.2 Preparing Object-Based Model . . . . . . . . . . . . . . . . . . . . 43

3.2 Association Rule Mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2.1 Object-Based Association Rules . . . . . . . . . . . . . . . . . . . . 46

3.2.2 Establishing Support Value . . . . . . . . . . . . . . . . . . . . . . 48

3.2.2.1 Normality Test . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2.3 Event-Type Association Rules . . . . . . . . . . . . . . . . . . . . . 52

3.3 Sequences Of Event Relationships . . . . . . . . . . . . . . . . . . . . . . . 54

3.3.1 Temporal-Association Relationships . . . . . . . . . . . . . . . . . 54

3.3.2 Forming And Validating Sequences Of Events . . . . . . . . . . . . 57

3.4 Determining Causality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.4.1 Building Directed Acyclic Graph . . . . . . . . . . . . . . . . . . . 60

3.4.2 Inferring Causal Rank . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.4.2.1 PC Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 63

3.4.2.2 FCI Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 66

3.5 Storing Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4 Automated Planning 73

4.1 Classical Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.1.1 Conceptual Model Of Classical Planning . . . . . . . . . . . . . . . 74

4.1.2 Formalisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.1.3 General Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.2 Process Of Knowledge Representation And Modelling . . . . . . . . . . . 77

4.2.1 Modelling Process . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.3 Representation And Utilisation Of Extracted Rules . . . . . . . . . . . . . 79

4.3.1 System Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.3.2 Domain Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.3.2.1 Domain Name, Requirements And Types . . . . . . . . . 81

4.3.2.2 Predicates . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.3.2.3 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.3.2.4 Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.3.2.5 Domain Model Example . . . . . . . . . . . . . . . . . . . 83



Contents vi

4.3.3 Problem Instances . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.3.3.1 Problem Name And Objects . . . . . . . . . . . . . . . . 84

4.3.3.2 Initial State . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.3.3.3 Goal State And Optimisation Metric . . . . . . . . . . . 85

4.3.3.4 Problem Instance Example . . . . . . . . . . . . . . . . . 86

4.3.4 Automated Plan Generation . . . . . . . . . . . . . . . . . . . . . . 87

4.3.4.1 Planners . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.3.4.2 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5 Implementation and Evaluation 92

5.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.1.1 Software Requirements . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.1.2 Development Of Applications . . . . . . . . . . . . . . . . . . . . . 96

5.1.2.1 Knowledge Acquisition And Representation . . . . . . . . 97

5.1.2.2 Knowledge Utilisation . . . . . . . . . . . . . . . . . . . . 98

5.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.2.1 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.2.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.2.3 Process Of Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.2.3.1 Data Collection . . . . . . . . . . . . . . . . . . . . . . . 106

5.2.3.2 Knowledge In The Events . . . . . . . . . . . . . . . . . . 107

5.2.3.3 Automated Plan Generation . . . . . . . . . . . . . . . . 107

5.2.3.4 Manual Plan Generation . . . . . . . . . . . . . . . . . . 109

5.2.3.5 Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.2.3.6 Performance . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.2.5.1 Completeness . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.2.5.2 Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.2.5.3 Performance . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.2.5.4 Importance Of Causal Inference . . . . . . . . . . . . . . 118

5.2.5.5 Other Findings . . . . . . . . . . . . . . . . . . . . . . . . 119

5.2.6 Accuracy Analysis Of An Automated Plan . . . . . . . . . . . . . 120

5.2.7 Interpretation Of The Plan For Usability . . . . . . . . . . . . . . 121

5.2.8 Example Of An Incorrect Automated Plan . . . . . . . . . . . . . 123

5.2.9 A different approach to evaluation . . . . . . . . . . . . . . . . . . 124

5.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6 Conclusion and Future work 129

6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.1.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.2 Suggested Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

References 134



Contents vii

A Description of Microsoft events 1

B Elements of PDDL-based representation 4

B.1 Domain model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

B.2 Problem instance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

C Example of Temporal-Association-Causal (TAC) rules in HTML for-
mat 7



List of Figures

3.1 Summarised steps of proposed automated knowledge acquisition process,
where same coloured components belong to a single step. . . . . . . . . . 40

3.2 A visual time line representation of D covering a time span of 20 seconds. 44

3.3 A live entry of event type, 5447, acquired using the Event Viewer appli-
cation of a Microsoft system. It shows the description of event, list of all
object-value pairs and other relevant information. . . . . . . . . . . . . . . 45

3.4 Possible edges between a pair of variables (X and Z) given a third variable
(Y ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.5 (L) DAG created from the temporal-association rules given in Table 3.1
and (R) a PAG created from DAG where each edge is assigned a causal
rank, using the FCI algorithm. . . . . . . . . . . . . . . . . . . . . . . . . 70

3.6 Database schema to store temporal-association-causal rules along with
the anonymised event type information . . . . . . . . . . . . . . . . . . . . 71

4.1 Concept of AI planning (inspired from [1]) . . . . . . . . . . . . . . . . . . 75

4.2 An example of PDDL action, which is created from the temporal-association-
causal relationship of two events. It also shows the relevant objects/pa-
rameters and an accumulative-weight value. . . . . . . . . . . . . . . . . . 84

4.3 An example of problem instance generated automatically from a machine
that has poor security configurations . . . . . . . . . . . . . . . . . . . . . 86

4.4 A simple plan generated by by the LPG planner . . . . . . . . . . . . . . 89

5.1 Overview of the proposed solution represented in two phases. The first
phase is further divided into two segments; first, extract temporal-association-
causal (TAC) rules from the given event log dataset and second, represent
the TAC rules in a PDDL domain action model file. In second phase, a
plan solution is generated for the vulnerable machine to improve its security. 94

5.2 Screenshot of console application demonstrating the generation of (live)
PDDL domain action model using event log entries. This domain model
only represents the rules extracted from a single event log dataset. . . . . 97

5.3 Screenshot of the same application demonstrating the generation of PDDL
domain action model from the existing rules stored in database. This
domain model represents the set of all those rules, which were previously
acquired from one or more event log datasets. . . . . . . . . . . . . . . . . 99

5.4 Screenshot of application that takes the domain action model and event
log entries of a vulnerable machine to generate a problem instance, rep-
resenting the current security state of the machine. . . . . . . . . . . . . . 100

5.5 Screenshot of the same application that takes the domain model and
newly generated problem instance to produce an action plan for expert
security assessment and configuration actions. . . . . . . . . . . . . . . . . 101

viii



List of Figures ix

5.6 Screenshot of the same application that contains a simple plan parser to
display the LPG planner output in an easy-to-understand format. . . . . . 102

5.7 Overview of the evaluation methodology . . . . . . . . . . . . . . . . . . . 105

5.8 Process of manually extracting the knowledge from an event log dataset.
The user can view all event entries along with their types, descriptions
and objects. The event relationships and corresponding ‘accumulative-
weight’ values are defined that are further encoded into a domain action
model using PDDL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.9 A complete timeline of events extracted in the form of an automated
plan. The related events and corresponding objects reflect the security-
related actions of human expert on a particular machine. The red and
blue coloured boxes show the events found in vulnerable machine, whilst,
the green coloured box shows the mitigation plan. . . . . . . . . . . . . . 121

5.10 Incorrect sequence of actions extracted for the test machine using the
acquired domain knowledge. . . . . . . . . . . . . . . . . . . . . . . . . . . 124

B.1 Domain action model schema of PDDL . . . . . . . . . . . . . . . . . . . . 4

B.2 Problem instance schema of PDDL . . . . . . . . . . . . . . . . . . . . . . 5

C.1 An example of TAC rules represented in the HTML format. . . . . . . . . 8



List of Tables

3.1 Example of converting temporal-association rules to a DAG by removing
conflicts, duplicates and cycles. . . . . . . . . . . . . . . . . . . . . . . . . 62

3.2 Determining the active and inactive paths . . . . . . . . . . . . . . . . . . 66

4.1 An example of TAC rule for generating a PDDL domain action . . . . . . 81

5.1 Examples of security-related operations expressed in terms of order set of
events. The events are displayed as <Event type>: <Description> format.108

5.2 Results of the empirical analysis of automated knowledge acquisition, rep-
resentation and utilisation mechanism proposed in this thesis. The eval-
uation is performed on 21 different event log datasets obtained from live
machines, which were configured based on expert security knowledge. The
results are presented as output values from each stage of processing along
with the amount of accuracy of each plan solution against a given problem.113

5.3 Comparison of automated and manual domain action models with respect
to knowledge acquisition and representation time. The ‘Automated do-
main modelling time’ is the execution time of developed solution produc-
ing an automated domain model, whilst, the ‘Manual domain modelling
time’ is the time taken by three human experts for creating a manual
domain model from the event log dataset. The time is expressed in ‘h’
for hours, ‘m’ for minutes and ‘s’ for seconds. . . . . . . . . . . . . . . . . 115

5.4 Automated and manual plans to solve same problem instance. The con-
version of plans in a user-friendly format is performed by the plan parser
that shows actions and object-value pairs. . . . . . . . . . . . . . . . . . . 120

5.5 Evaluation of knowledge acquisition phase in terms of accuracy using a
different approach, i.e. direct comparison between manually and auto-
matically acquired TAC rules. . . . . . . . . . . . . . . . . . . . . . . . . . 125

A.1 Event categories of a Microsoft Windows operating system . . . . . . . . . 2

A.2 Security event categories of a Microsoft Windows operating system . . . . 3

x



Abbreviations

ADL Action Description Language

AI Artificial Intelligence

AR Association Rule

ARM Association Rule Mining

AP Automated Planning

ASCol Automated Static Constraint Learner

BLCD Bayesian Local Causal Discovery

BFS Breadth-First Search

CBR Case-Based Reasoning

CI Conditional Independence

DFS Depth-First Search

DAG Directed Acyclic Graph

EDF Empirical Distribution Function

EUROPA Extensible Universal Remote Operations Planning Architecture

FCI Fast Causal Inference

FF Fast-Forward

FSM Finite State Machines

FD Frequency Distribution

GPS General Problem Solver

GIPO Graphical Interface for Planning with Objects

ICKEPS International Competition on Knowledge Engineering for

Planning and Scheduling

(ISC)2 International Information System Security

Certification Consortium

IPC International Planning Competition

xi



Abbreviations xii

KA Knowledge Acquisition

KR Knowledge Representation

LOCM Learning Object-Centric Models

LHS Left-Hand Side

LiNGAM Linear Non-Gaussian Acyclic Model

LCD Local Causal Discovery

LPG Local search for Planning Graphs

LoCI Logical Causal Inference

MI Marginal Independence

MB Markov Blanket

MBCS Markov Blanket/Collider Set

MAGs Maximal Ancestral Graphs

MISL Multi-level Intensive Subset Learning

NASA National Aeronautics and Space Administration

NOAH Nets of Actions Hierarchies

NDDL New Domain Definition Language

OFD Object Frequency Distribution

OS Operating System

PAG Partial Ancestral Graph

POMDP Partially Observable Markov Decision Processes

PC Peter-Clark algorithm

PDDL Planning Domain Definition Language

PDS Possible-D-SEP or Possible D-Separation

PPDDL Probabilistic PDDL

RND Reference Normal Distribution

RHS Right-Hand Side

SID Security IDentifier

SIEM Security Incident and Event Management

SW Shapiro–Wilk

SEC Simple Event Correlator

SLAF Simultaneous Learning and Filtering

SD Standard Deviation

STRIPS Stanford Research Institute Problem Solver



Abbreviations xiii

SLPR Structure learning using Prior Results

SR Support Range

TA Temporal-Association

TAA Temporal-Association Accuracy

TAC Temporal-Association-Causal

TSKS Two-Sample Kolmogorov–Smirnov

USM Unified Security Management

V&V Validation and Verification

VTEC Variable Temporal Event Correlator

WFP Windows Filtering Platform



Symbols

Symbol Meaning

µ Mean

s Standard Deviation

→,← Implies

⊆ Subset

6= Not equal to

− Undirected Edge

C Set of temporal-association rules

∅ Null or empty set

∀ For every element in a set

∈ Belongs to

/∈ Does not belong to

< Less than

> Greater than

= Equals to

6= Not equal to

≥ Greater than or equal to

≤ Less than or equal to

⊥ Conditionally independent of

| Given this condition

φ Path of one or more connected vertices

a,A Action, Set of actions

s, S state, Set of State

γ State-transition functions∑
= (S,A, γ) State-transition system

xiv



Symbols xv

f Numeric fluents

i Intial state

g Goal state

P = (s, f, a, i, g) A planning system



Chapter 1

Introduction

This thesis work concerns the area of learning domain action models through sys-

tem event logs for Artificial Intelligence planning systems. This chapter provides the

overview, research question, motivation, rationale, novel contributions of the thesis and

a reader’s guide to the thesis structure.

1.1 Overview

Many organisations are vulnerable to critical security threats exposed due to their digital

infrastructure, and given the continuously increasing size and nature of their business

operations, there is a need to pro-actively identify and mitigate security vulnerabilities.

This process requires expert and up to date knowledge of the security threats and how

they can be eliminated. Such knowledge is in short supply, costly, sometimes unavailable

and requires a high amount of human effort [2]. Businesses are facing challenges with

recruiting and maintaining cyber-security expertise within their organisation and as

a result, they are often unable to adequately secure their systems. According to a

survey1 conducted in 2018 by International Information System Security Certification

Consortium, or (ISC)2, 2.93 million cybersecurity positions remain open and unfilled

around the world, depicting the lack of skilled security professionals. Despite the skills

shortage in cyber analysis, it is imperative to maintain the system security against

malicious attacks.

1https://www.isc2.org/Research/Workforce-Study

1



Chapter 1. Introduction 2

The lack or absence of expertise can be resolved using computational intelligence to

autonomously perform security evaluation of a machine and generate mitigation plans.

There is potential to develop a system whereby expert knowledge is automatically cap-

tured through monitoring experts’ system interactions and therefore minimises any over-

head of knowledge creation as it can be captured during or after live analysis/config-

uration tasks. Non-expert users will be able to obtain the desired knowledge. This

enables the use of expert knowledge, either in an assistive mode for training purposes or

autonomous mode to execute the knowledge model to determine if a vulnerability exists

as well as recommend automated configuration activities. Besides security, researchers

from various other domains are also exploring automation techniques, such as in in-

ferring behaviour models from execution traces of object-oriented programs [3], mining

specifications directly from software libraries [4], merging existing specification miners

to produce a superior specification [5] and automatically discovering program flaws by

learning method calls [6].

This research work presents an automated solution that can extract security actions

performed on a system using event log entries. An event log dataset is a discrete,

ordered sequence of event instances that contains information regarding the activities

of the system; generated by either a user, application or the operating systems (OS)

itself [7]. Event logs are used as a tool for tracking user, application and system changes

(e.g. creating or deleting users), along with troubleshooting the system failures and

other related issues. The proposed solution assembles the knowledge by discovering

complex chains of event relationships that represent linked human expert activities.

Therefore, every chain of connected events is the representative of a specific security-

related action. In this thesis, the relationships are termed as ‘temporal-association-

causal’ rules, which are obtained by incorporating a notion of time to frequently co-

occurred events and subsequently applying causal inference to prioritise the discovered

event relationships. The rules are then used by the automated planning tools to provide

appropriate knowledge to the non-expert users. The proposed solution is capable of

providing a technological solution to help reduce the security skills shortfall, enabling

expert-like decision making capabilities for users without cyber security expertise. It is

reasonable to suggest that a large amount of users are interacting with the vulnerable

machines, and providing an automated solution with access to skilled expertise has

potential to have a positive impact on overall cyber resilience.



Chapter 1. Introduction 3

The developed technique is currently tested on Microsoft Window OS [8], but the ap-

proach is independent of OS and can easily be applied to the event logs of other systems

or sources. The data recorded by Microsoft event logging mechanism is fully-structured

and represented in the form of object-value pairs. A default set of classes exists in the

.NET framework for identifying and parsing all categories of events, which facilitates

an easier development and creation of a valid testing environment for the proposed ap-

proach. The future extensions of this research will extract features focusing on other,

widely used Linux- and Mac-based systems along with web-servers, OpenStack cloud [9]

and Fog computing platforms [10].

1.2 What Are Event logs?

Event logs are a powerful source of knowledge that can be used for understanding op-

erations, performance and security status of the underlying system [11]. Event logs

are often described as the gold mine of knowledge due to their extensive and detailed

record-keeping ability. According to Microsoft documentation, the events are divided

into five different levels: Information, Warning, Error, Success Audit, and Failure Audit

and categorised into separate Application, Security, Setup, System and Forwarded logs.

A complete explanation of the general types of event logs, along with the classification

of security events, is provided in Appendix A. This research work only focuses on the

security events, which are easily identifiable within the existing entries. The security

events contain structured data that can be easily extracted and processed by a software

application to provide detailed state information on a system’s security controls. These

events include records of failed login attempts, system operations based on the firewall

policy, changes in user or application permissions, cryptographic operations and many

other security-related activities. The system activity is recorded based on the security

auditing and configuration policy, which is predefined by the administrator. Each entry

is created from their prototype/blueprint, called event type. Any event type can have

many instances or entries, and each entry consists of a series of objects that define a

particular occurrence of an event. The objects include a unique identifier, user name,

event source, machine name, time-stamp, and application and service-specific objects.

The security events of a system provide a detailed record of the security controls, which

describes both unauthorised activities and configuration events [12]. Many techniques



Chapter 1. Introduction 4

have been developed in previous research to identify relationships among events. Such

techniques generally employ variations of clustering [13], correlation rule mining [14] and

causal inference [15] algorithms. Most of the existing solutions construct a security model

that determines the causes behind system failures and suggest or in some cases implement

remedial actions. Although these techniques are focused on identifying problems using

software agents, there is a great potential to adopt this same philosophy for identifying

missing or incomplete security configurations as well as the security issues. It should

be noticed here that a configuration process against a certain issue usually generates a

large number of events, according to the specified audit policy, and produces a complex

chain of events to record the whole activity. The audit policy of a system defines the

types of events stored in the Security log. The Microsoft OS uses nine audit policy

categories and fifty subcategories for fine-grained control over which the information is

logged. To the best of our knowledge, there are no autonomous Security Incident and

Event Management (SIEM) solutions aimed at capturing actionable knowledge from the

event log sources that can be exploited by an intelligent software agent to aid non-expert

users.

It would be of great benefit to automatically determine and extract chains of events

against configuration activities. As an example, consider a scenario where a system

administrator is maintaining a file server. An unauthorised user attempts to view a file

named confidential.doc and successfully gains access to it. To document this activity,

an event of type 4663 will be recorded along with the relevant objects that shows ‘An

attempt was made to access an object’. Assuming the administrator takes notice of

this event and realises that the user is not authorised to access any file on this server

and their permissions should be immediately removed. The administrator proceeds to

alter the network share rights and permissions. As a result, an event log entry will be

logged with the type of 4670, detailing that ‘Permissions on an object were changed’.

The event logging mechanism generates this event in a way where it keeps a record

of the new and previous set of permissions. Many additional event log entries might

also be generated during the time span of events 4663 and 4670 due to other system

activities, and therefore it would require expert knowledge, time and effort to establish

the connection between events. Despite being simple, this example describes the fact

that managing security requires both experience and expert knowledge. A system that

can discover a relationship between events 4663 and 4670 in an automated manner would



Chapter 1. Introduction 5

be beneficial for the non-expert users. It would enable the immediate investigation of

such event entries, and determine if any user is exercising more than the required set of

permissions.

1.3 Assumptions

Following are the assumptions made in this thesis:

1. The event log was not cleared at any point in time. All event logging

mechanisms allow the user to clear or remove the entries of an event log. So,

if a user clears the event log, it would delete one or more entries. Processing

such event log entries by the proposed solution would output an incomplete set of

event relationships. This can be detrimental for the non-expert users in terms of

identifying all security issues and making improvements;

2. The event log dataset was retrieved directly from the system, not

through any intermediary tool. For extracting knowledge, the event log

dataset should be in raw format and acquired directly from the main source. In-

volving third-party tools to obtain any dataset might alter the event entries and

lead towards erroneous results. Moreover, all event logs should be acquired and

formatted through the same mechanism for accurate results; and

3. The user, application and system activities stored in the event logs have

satisfactory coverage of the required security knowledge. Any machine

that is being used to extract the expert security knowledge needs to be properly

configured/secured. The machine’s event log should possess a set of entries that

are required to be generated to document a certain security-related activity. It

should be noticed here that according to the default audit policy, all categories

and sub-categories are not enabled. Therefore, it is possible that the event log does

not have a full record of performed activities, and the proposed solution produces

invalid event relationships; and

4. The machine from which the knowledge is acquired and the machine on

which the knowledge is applied have similar settings. The configuration,

environment and intended use of the vulnerable machine are the same as of the



Chapter 1. Introduction 6

machine from which the domain action model was extracted. The similar operating

system, settings, and context of events are required to enable a compatibility

between the learned security knowledge and its utilisation for making the necessary

changes.

1.4 Research Question

The research question addressed in this thesis is whether it is possible to automatically

extract security-related actions (i.e. knowledge) performed by an expert on a machine,

and allow non-experts to utilise the actions for auditing and improving the security of

their systems. The current knowledge mining techniques rely on human experts, where

the knowledge is collected and modelled either manually or via assistive tools. Exploring

this question led to the development of an unsupervised knowledge acquisition technique,

which can discover (temporally ordered) cause and effect relationships among the event

log entries of any given machine. The terms ‘machine’ or ‘system’ used in this thesis

refers to any computing device, such as personal computer, laptop, server, etc.

This thesis presents the development and evaluation of a generalised approach, which

can be applied to any event log dataset that is or can be structured in a certain format.

The approach employs correlation and causal mining algorithms due to their known

suitability in finding such relationships. The solution first generates correlation rules,

which are combined and ordered based on a temporal metric, and then used to produce

cause and effect relationships. The final rules are encoded into a domain action model,

which is subsequently used by an automated planning algorithm to determine a course

of action on a previously unseen machine. Therefore, the proposed approach allows

non-expert users to conduct expert actions without the presence of a human expert.

Further to that, the automated solution can perform frequent monitoring, analysis and

mitigation activities. By doing this, potential security threats and vulnerabilities can

be identified quickly and mitigation activities can be put in place.



Chapter 1. Introduction 7

1.5 Scope, Motivation And Aim

Aim: To provide an automated method of extracting security knowledge by learning the

expert user activities performed on a machine, hence reducing the amount of required

knowledge, resources and effort required by non-expert users to identify and eliminate

security issues.

The non-expert users do not possess sufficient knowledge and/or experience to recog-

nise and comprehend the security issues. The work presented in this thesis provides a

method that can automatically enable all kinds of users to perform the security analysis

without needing expert knowledge, along with suggesting remedial actions. The primary

driver behind this research is to reduce the disparity in system security between those

configured by experts and non-experts. This will ensure a higher level of security is

maintained for all users. The automated process of building security knowledge base

will further reduce the manual effort and allow better efficiency in terms of resources

and time. Another motivation of this research is to create a solution that is generic and

universally applicable.

The scope of this work is to explore how, and to what extent, knowledge can be ac-

quired automatically from the existing data sources. Moreover, how that knowledge

can be utilised by automated planning algorithms for the intelligent application and

optimisation of the security issues identification and elimination process. The focus is

on obtaining useful knowledge that can strengthen the security of any given machine

by mimicking the traditional human expert analysis. The philosophy of this thesis is

well-justified because it automates and enhances normal industry practice. This work

can be viewed as a step towards an increase in autonomous knowledge elicitation and

utilisation in the domain of cybersecurity. The thesis will also examine the performance

of the proposed solution in terms of time, memory and processing power consumption

to demonstrate its application in the real-world environment.

1.6 Objectives

The objectives with respect to the security knowledge mining are:



Chapter 1. Introduction 8

1. The first objective is to develop a mechanism that can gather and process the user

activities data into a single, structured format; and

2. The second objective is to build a technique for automated knowledge extraction

that can utilise the formatted data and identify the relationships among the user

activities.

The objectives concerning the automated planning are:

1. The first objective is to produce a domain action model of the extracted rela-

tionships in a standardised language. This will allow state-of-the-art, domain-

independent automated planning tools to generate both accurate and temporally

ordered optimal plans;

2. The second objective is to convert the automated plan into a format that can be

easily understood by the non-expert users; and

3. The third objective is to acquire data from live, real-world data for evaluation and

demonstrate the accuracy, performance, and usability of the proposed solution.

1.7 Contributions

To the best of the author’s knowledge, this is the first work in the domain of Security In-

cident and Event Management (SIEM) systems. It presents a mechanism for automated

knowledge acquisition from event log sources, along with an intelligent utilisation of the

elicited knowledge. The novelty of this research lies in the automated learning, mod-

elling, and planning of security event relationships by applying correlation and causal

rule mining coupled with the generalised automated planning.

The summary of the primary thesis contributions to the subject area is as follows:

1. A novel technique for extracting and representing security knowledge

from event log entries. This technique starts by creating an object-based model

of event log entries, which is processed by an association rule mining algorithm.

The association rules are then converted into sequences of event relationships using

a temporal metric, which are further validated by applying a causal inference



Chapter 1. Introduction 9

technique. The extracted knowledge is represented in the form of a domain action

model. The problem instance is generated from a previously unseen computer that

requires security improvements. Together with the domain model and problem

instance, plan solution is generated by the automated planning algorithm and

utilised by the non-expert users for configurations;

2. A mechanism to automatically find support values for correlation min-

ing in event log dataset. The solution is capable of calculating minimum and

maximum support values without any human input used by the association rule

mining algorithm. The values are derived from the object-based model of the event

log dataset. The support value influences the amount and quality of correlation

rules and it is subjective to the characteristics of a provided dataset;

3. Software implementation. A novel software tool that is capable of learning

knowledge from mining Microsoft event log sources. The software represents the

output of using acquired knowledge on previously unseen machines in a user-

friendly manner. Several other tools have also been developed that can serve

the non-expert user for debugging purposes; and

4. Empirical analysis. The developed tool is evaluated on event log datasets taken

from live, multi-user and network-based machines to determine the overall per-

formance and accuracy of the proposed technique. This empirical analysis also

demonstrates and objectifies features of the proposed solution from various as-

pects, such as usability, efficiency, and productivity.

The solution presented in this thesis is inspired by on-going research in applying Artificial

Intelligence techniques in the area of cybersecurity. It is expected that the contributions

made in this research will entice more researchers towards the subject.

1.8 Publications

The following publications are related to this PhD project:



Chapter 1. Introduction 10

1.8.1 Journal Papers

Khan, S., Parkinson, S. (2018). Eliciting and utilising knowledge for security event log

analysis: An association rule mining and automated planning approach. Expert

Systems with Applications, 113, 116–127.

Parkinson, S., Khan, S. (2018). Identifying irregularities in security event logs through

an object-based Chi-squared test of independence. Journal of information security

and applications, 40, 52–62.

Khan, S., Parkinson, S. (2019). Discovering and utilising expert knowledge from

security event logs. Journal of Information Security and Applications, 48, 102375.

1.8.2 Conference Papers

Khan, S., Parkinson, S. (2017). Causal Connections Mining Within Security Event

Logs. In Proceedings of the Knowledge Capture Conference (p. 38). ACM.

Khan, S., and Parkinson, S. (2017). Towards Automated Vulnerability Assessment.

In: 11th Scheduling and Planning Applications woRKshop (SPARK), 19th June

2017, Carnegie Mellon University, Pittsburgh, USA.

Saad, K., Simon, P. (2017). Towards a multi-tiered knowledge-based system for au-

tonomous cloud security auditing. In: Proceedings of the AAAI-17 Workshop on

Artificial Intelligence for Cyber Security (pp. 187–194). AAAI

1.8.3 Book Chapters

Khan, S., Parkinson, S. (2018). Automated Planning of Administrative Tasks Using

Historic Events: A File System Case Study. In Guide to Vulnerability Analysis

for Computer Networks and Systems (pp. 159–182). Springer, Cham.

Khan, S., Parkinson, S. (2018). Review into State of the Art of Vulnerability Assess-

ment using Artificial Intelligence. In Guide to Vulnerability Analysis for Computer

Networks and Systems (pp. 3–32). Springer, Cham.



Chapter 1. Introduction 11

1.9 Thesis Structure

The document is organised as follows:

Chapter 2 reviews and analyses existing domain learning techniques, automated plan-

ning, correlation mining and causal inference techniques, alongside the critical literature

analysis to highlight the importance of the proposed system.

Chapter 3 describes the process of rule mining from event log dataset. It starts by

detailing and motivating the pre-processing phase of event entries and elaborates the

process of generating object-based model. Following on, it explains the association rule

mining process using an automatically calculated support value. Here, the association

rules are represented by their respective event types, where any sequence of events are

related through their objects. Next, it presents the process of filtering insignificant

rules based on a temporal metric. The remaining individual rules are combined to

form sequences of events, where each sequence represents a single configuration activity.

Finally, it explains the process of forming a directed acyclic graph from the extracted

rules, assigning a causal rank score to each rule based on the level or strength of causality.

Chapter 4 starts by formalising the classical planning and knowledge modelling tech-

niques. Following on, it presents a process of encoding the extracted event relationships

into a domain action model, which leads onto the explanation of the automated method

for extracting the problem instance from vulnerable machines, and applying an auto-

mated planning technique to generate plan-of-action for security improvements.

Chapter 5 is divided into two parts. The first part presents the implementation details

of knowledge acquisition and representation applications. The second part presents the

evaluation methodology and results in terms of performance and accuracy using the

security event logs of live machines.

Finally, Chapter 6 concludes the thesis and provides the future plans and extensions of

this research work.



Chapter 2

Background and Literature

Review

The purpose of this chapter is to survey and review the existing knowledge acquisition

technologies that are relevant for this thesis. It starts by exploring the available data

sources that can provide the required security knowledge. Next, it analyses the existing

manual, assistive and automated approaches that can extract security knowledge from

the data sources and distribute it to non-expert users. In the end, it performs a brief

analysis to demonstrate the current state and limitations of the knowledge acquisition

systems.

2.1 Data Sources

Many resources are readily available for individuals, who are seeking to learn knowledge

and gain expertise in a security-related area. Knowledge can be defined as the theoretical

or practical understanding of a phenomenon or an area. Knowledge can be of different

types and is presented in the form of postulations, facts, concepts, principles, proce-

dures, models, cognition, heuristics and examples. The resources for presenting security

knowledge include books, journals, articles, online discussion forums, vulnerability and

solution databases, tutorials, hands-on training sessions, certifications, human experts

and many others [16]. Knowledge sharing is a process of exploiting existing knowledge by

identifying, transferring and its application to solve tasks in a better, faster and cheaper

12



Chapter 2. Background and Literature Review 13

manner [17]. A major issue with such type of knowledge sharing is the requirement

of effort and time to probe the resources and manually learn about security issues and

remedial operations. Another limitation is that the user needs to know what skills they

are lacking to perform the security assessment and configuration of a specific system.

Moreover, due to a large amount of diversity in information systems, it is difficult for

novice users to appropriately secure all aspects of a system.

In this research, we selected event logs as a source of security knowledge. The event

logs are often referred as a ‘gold mine’ of information because they possess a record of

all activities performed on the machine. The knowledge in the event logs is acquired

through several pattern analysis techniques. The patterns are represented by a set of

rules, where each rule contains two or more related events depicting a particular security-

related activity. The rules can be formulated using a manual, assistive, or automated

approach. All of these approaches are explained in the remaining sections along with

their advantages and disadvantages.

2.2 What Is Knowledge Acquisition?

Knowledge Acquisition (KA) is a process of extracting and encoding the knowledge from

a certain data source into a form that can be utilised by knowledge-based systems [18].

This process generally consists of several phases: identifying the source of knowledge,

developing and applying a technique to extract the knowledge, representing the knowl-

edge in a way that can be understood by a software agent, applying the knowledge to

solve given problems along with the provision of explanations and justifications for the

steps taken, and a continuous cycle of updating and maintaining the knowledge.

The main purpose of KA is to build a system that can provide expert knowledge re-

garding a certain subject. The KA can be a long, tiring and expensive process as it is

difficult to capture accurate knowledge. The KA is recognised as the major bottleneck

for knowledge-based systems, limiting the wider adoptions of such systems [19]. The

main difficulty lies in the process of extracting expert knowledge with reasonable ac-

curacy, efficiency, and robustness. This is the reason several KA techniques have been

developed over the years. Such techniques can be taxonomised into manual, assistive



Chapter 2. Background and Literature Review 14

and automated approaches, and have their own advantages and disadvantages. These

techniques are described briefly in the following sections.

2.3 Manual And Assistive Knowledge Acquisition

The manual and assistive techniques of extracting knowledge are based on the help and

underpinnings of human security experts, who manually extract the knowledge from the

data sources. The process of knowledge discovery is either fully manual or semi-manual

using some supporting tools. The acquired knowledge is then used to automatically

identify vulnerabilities of a system and alert the user to implement corrective solution.

Several methodologies are available for this approach, and some of them are explained

in the following:

2.3.1 Rule-Based Systems

One of the most common method of acquiring and storing knowledge is the rule-based

systems. In rule-based systems, human experts use their knowledge and experience to

define patterns among events using condition-action relationships (rules). Many tools

and techniques are available that can be used for creating, storing and applying rules.

A patented research work developed a multi-tier security incident response system [20],

which is based on user-defined and configurable rules. The rules are created as open-

ended expressions, which can be both conjunctive and disjunctive in operation. The

purpose of this system is to identify critical threats and complex attack patterns, notify

the user and then generate human-readable reports.

A tool, named Simple Event Correlator (SEC), was developed for network and security

management. The SEC is an open-source and platform-independent tool1. The tool has

various significant features and uses a predefined knowledge base of hard-coded, static

rules to monitor and detect event patterns [21]. The rules are created as IF–THEN

statements to represent the condition of a specific security issue and propose adminis-

trative action to resolve it. Another tool, called Logsurfer [22], conducts the patterns

and relationships detection among the events of a given log file. The rules are defined

with the help of manually created regular expressions. An important feature of the

1https://sourceforge.net/projects/simple-evcorr/



Chapter 2. Background and Literature Review 15

Logsurfer is the ability to encode context of an event in the rules. The context describes

all relevant data for diagnosing a problem and keeps track of time, users, configuration,

environment etc. Another similar tool, called Simple Log Watcher2 (previously known

as Swatch), uses regular expression based rules to identify event patterns and perform

specified actions. Both regular expressions and corresponding actions are written by the

user in C programming language.

Another interesting tool, named Variable Temporal Event Correlator (VTEC) [23], al-

lows the user to define, modify and utilise event relationship rules. The VTEC uses Perl

language to define condition-action rules, which are directly applicable on computer

networks as well. An important feature of VTEC is efficiency; it is capable of apply-

ing rules on large amounts of event data using a multi-core, distributed architecture.

Another tool, called Prelude3, is a rule-based event correlation engine, where the rules

are written manually using Lua programming language. Each rule is a function that

has a particular input and output alert. This tool can also perform log analysis and

general event management operations. An open-source tool, called AlienVault OSSIM4,

performs the event collection, normalisation and correlation. The main achievement of

OSSIM is the modelling of cyber-attacks using event correlation rules. It also assigns

probability and priority values to an asset for providing better risk management and

security visibility. The rules are written manually using XML-like directives, and can

also enforce the security policies of a company.

Besides these security applications, rule-based systems are used in several other areas.

For example, a research work proposed a rule-based approach to determine energy ef-

ficiency anomalies in smart buildings [24]. The rules were developed with the help of

human experts and data analysis techniques. After testing on a real-time database, the

authors claim that the developed system successfully detected the anomalies along with

quantifying the energy consumption behaviour. Another interesting study proposed a

rule-based solution to create animations of Java algorithms [25]. The rules are manually

written using a tool called, Constraint Handling Rules. Given an algorithm, the solution

starts by identifying the interesting segments of the algorithm, and then dynamically

creates visual objects and effect to produce animations. Apart from the applications and

advantages, one of the main problem associated with the existing rule-based systems is

2https://sourceforge.net/projects/swatch/
3https://www.prelude-siem.org/projects/prelude/wiki/PreludeCorrelator
4https://www.alienvault.com/products/ossim



Chapter 2. Background and Literature Review 16

that it demands domain knowledge, skill and manual effort for extracting and defining

complex patterns. Furthermore, the rules production can be a challenging task for larger

and dynamic systems as it requires constant maintenance and management to encode

new knowledge and updating the existing ones.

2.3.2 Case-Based Reasoning Systems

The case-based reasoning (CBR) approach mainly consists of two parts: case repository

and reasoning engine. The case repository is a collection of past cases, containing the

knowledge of security issues and their corresponding solutions. The initial repository

is developed by human experts. The inference engine takes the (unfamiliar) problem,

identify the most similar case in the repository and retrieve the best-suited solution. If

the solution is found to be correct, the given problem is formulated into a new case and

stored in the repository. A research study [26] acquired the knowledge for case repository

by processing large amounts of security content in the textual format. They used text-

analytic and clustering algorithms to sanitise and categorise the text and used that to

manually build the knowledge for case repository. After that, they employed CBR to

analyse event logs and discover the patterns within system maintenance activities to

reduce the number of crashes and prevent failures. Another research study applied CBR

approach on temporal log data for intelligent monitoring and diagnosis of workflows of a

software system [27]. The knowledge and context for case repository was captured with

the help of software users. The authors concluded that the solution found and classified

given workflow-related problems with high accuracy and efficiency.

Another study presented an assistive solution for security and forensic investigators that

can profile attackers using CBR [28]. The experiments conducted has shown positive

results in exposing the identity of humans behind the attacks as well as determining if

the attack was successful. A similar study built a report generation mechanism using

CBR that can save security analyst time [29]. This solution can automatically fill the

corresponding templates of known threats and policy violations on the local network.

According to the authors, this solution can manage the slight deviations in attacks;

however, it cannot handle new, zero-day attacks. One of the major disadvantages of

CBR is its inability to represent problems and include the notion of time that is crucial

for defining the ordering of security-related actions [30]. Without conclusive ordering,



Chapter 2. Background and Literature Review 17

the CBR cannot produce quality solutions. Furthermore, building a case repository

that includes all possible security threats and their solutions is not feasible for practical

application as it would require a substantial amount of time and effort.

2.3.3 Codebook-Based Systems

The codebook-based systems define the event relationships by using coding techniques [31].

In this approach, the human expert performs the localisation process, where connections

between observable behaviour of the system and actual underlying problem are analysed

to identify the set of responsible events, i.e. codebook or knowledge. Every connection

made is assigned a codeword. After that, for every possible problem, a binary vector is

created to determine if each event in the codebook can be triggered by that particular

problem. The elements in a vector can either be one, to depict a relationship between

the event and problem, or zero if there is no relation. The codebook (or set of events)

is required to be sufficiently large so that it can cover all possible problems of a system.

For the problem identification process, events of the underlying system are monitored

in real-time and formed into vectors. These event vectors are compared with the ex-

isting codebook event vectors to find the most similar match and notify the user with

respective problem.

Another research study proposed a codebook-based approach to enhance the perfor-

mance, efficiency and usability of an anomaly intrusion detection (AID) system [32].

Initially, the normal/legitimate network traffic profiles were used to train a large struc-

tural codebook with 541,048 data items, each having a unique index. To find network

intrusions or deviations from the codebook, vector quantisation framework was employed

that determines similarity between feature vectors, along with reducing vector dimen-

sions. The results have demonstrated high detection rate, lower computational cost

and real-time intrusion detection. Apart from requiring a significant amount of time

and effort in building and indexing a codebook, these systems are not very productive

for dynamic environments, where a slight change in system configuration can cause an

ambiguity in matching with the corresponding codeword.



Chapter 2. Background and Literature Review 18

2.3.4 Voting-Based Approach

The voting approach is based on problem-opinion architecture, where each expert pro-

vides an opinion against a given problem and the absolute majority opinion is used as

a solution [33]. Usually, the opinion does not provide an exact solution but rather a

general direction to solve the problem. A research study employed the neural networks

to implement voting approach for detecting poison messages in large-scale networks [34].

The poison message exploits a software or protocol vulnerability by sending a malicious

message in the network and cause certain machines to fail. The neural network was

trained with the help of human experts, using various kinds of poison messages along

with opinion weights and biases. The evaluation of this solution shows the accuracy

range from 55% − 75%. Another study proposed a voting-based approach for an effi-

cient detection of unknown malware [35]. Initially, datasets were prepared by extracting

and using several features of executable files and trained an ensemble of classification

algorithms, namely K-nearest neighbours, C4.5 and Ripper. The authors applied three

different voting-based approaches to create the ensemble; majority voting, veto voting

and trust-based veto voting. The ensemble consolidates the individual decision of each

classifier in a way that can classify new malware samples, hence improving the deci-

sion strategy, and consequently increases the overall detection capability of the solution.

It should be noticed here that most of the voting-based approaches require extensive

input from the human operator, which is why they are usually deemed unsuitable for

large-scale and complex systems.

2.3.5 Commercial Event Correlation Software

There are several commercial solutions that enable the development and elicitation of

event correlation rules. These solutions fall under the category of Security Incident and

Event Management (SIEM). Majority of the rules are acquired manually through ex-

perts and community of users. One such solution, called Unified Security Management

(USM)5, is developed by AlienVault. The main purpose of this solution is to collect

and analyse the log data from multiple applications and devices, and identify malicious

patterns related to data security. These tasks are performed using event correlation

rules, which are constantly being developed by the company’s internal experts. Another

5https://www.alienvault.com/products/usm-anywhere



Chapter 2. Background and Literature Review 19

solution is developed by Logrythm6 that combines correlation rules with Artificial In-

telligence to identify malicious behaviour of users and applications. The main benefit

of this solution is the context learning of events, detection of statistical anomalies and

ability to assign risk level to an asset. The correlation rules are provided by the company

and can be developed by the users as well.

2.4 Automated Knowledge Acquisition Approaches

In order to discover relationships or patterns of events for knowledge discovery, a com-

plete set of information is required about the structure, properties, triggers and depen-

dencies of a system. Such information can be acquired automatically, or manually from

human experts. It is obvious that the second method requires a large amount of effort,

time, resources and experience. The manual techniques are only feasible if the majority

of supplied knowledge remains constant over an extended period, i.e. static knowl-

edge. Unlike these conventional systems, if the knowledge is mostly dynamic (changes

or requires updating over time), a self-learning, automated approach would be more suit-

able [36]. Although this approach does not require human assistance in generating and

maintaining knowledge, there is a possibility of acquiring unstable and incorrect knowl-

edge if not implemented properly. Recent progress in the research has shown promising

techniques in terms of accuracy, productivity and efficiency. Some of the automated

techniques are discussed in the following:

2.4.1 Clustering Techniques

A variety of classification algorithms exist that are based on either supervised or unsu-

pervised learning. These algorithms are commonly utilised for knowledge acquisition by

exploring the relationships among data items. The unsupervised classification is termed

as clustering or exploratory data analysis. Data clustering is a process of grouping items

or entries of a finite unlabelled dataset, such that the similar entries with respect to fea-

tures and attributes are classed together in the same clusters [37]. This process creates

one or more segregated groups of entries, where each entry is more related to the other

entries of the same group than those of the other groups.

6https://logrhythm.com/use-cases/advanced-correlation/



Chapter 2. Background and Literature Review 20

The clustering algorithms can be broadly categorised into Partitional and Hierarchical

schemes [38]. The Partitional clustering schemes are parametric, where the algorithms,

such as K-means, divide the data into a predefined number of clusters specified by the

user. The Hierarchical clustering schemes are non-parametric, where the algorithms,

such as MeanShift, decide the number of clusters to create based on certain metrics. The

clustering of data items is performed based on a ‘similarity’ metric [39]. The K-means

algorithm groups the data points based on closeness to the centroid of clusters [40]. The

closeness is measured with one of the following methods: Euclidean distance, Manhattan

distance, Mahalanobis distance and so on. This algorithm starts by taking the desired

number of clusters, and randomly assigns each data point into a certain cluster. Then

it computes the centroid of each cluster and re-assigns the data points to the closest

centroid. This step is repeated until each centroid position becomes stationary. At

this point, if the number of iterations are not defined, it will terminate the clustering

process, otherwise, it will continue to execute without changing anything. The MeanShift

algorithm [41] starts by selecting a random data point and creates a radius of specific

length around it, encompassing other data points. The radius length can be defined by

the user or automatically determined by the algorithm. The algorithm calculates the

centre of all data points (one after another) that are present within the same radius.

This process is continued until the centre stops shifting, and a cluster is formed. The

algorithm iterates over the remaining data points to find all clusters. Another important

distinction in the clustering algorithms is the hard and soft cluster assignment [42]. In

hard clustering, each entry is classified into exactly one cluster, whereas in soft clustering,

one data entry can be a member of multiple clusters.

A recent paper has proposed a clustering technique to evaluate the Distributed Denial

of Service attack security situation [43]. It starts by finding the risk indexes of all ma-

chines in a network, merges them and creates a fusion feature set. After that, Fuzzy

C-means clustering algorithm is employed to categorise machines into one of the five

security classes to determine the level of threat. The real-time experiments have shown

this technique to be reasonable and effective. One of the main applications of clustering

algorithm is in detecting anomalies and intrusions in a network. A research study pro-

posed a combination of hierarchical clustering and support vector machines approach to

detect intrusions in a network with 95.75% accuracy [44]. The original feature set is first

processed for quality improvement and size reduction. By training on the new dataset,



Chapter 2. Background and Literature Review 21

experimental results of the new technique have shown higher performance, especially for

the denial of service and probing attacks. Clustering techniques have also been utilised

for log analysis. For example, a study presented a novel clustering algorithm, called

the Simple Logfile Clustering Tool [45], which identifies infrequent events based on out-

liers that could represent previously unknown fault conditions, irregularities, and other

anomalies. Although clustering techniques have been used in many real-world applica-

tions, they are not suitable for identifying knowledge in our research, given the nature

of event logs data and required output.

A major drawback of using clustering to learn relationships among events is that it may

find a connection among events that are not necessarily related, but in fact, they might

be opposite to each other. Consider the following two Microsoft events: the event type

4728 shows that a member was added to a security-enabled global group, whereas the

event type 4729 explains that a member was removed from a security-enabled global

group. Both of these events have almost similar content and properties, but they are

triggered from contradictory activities. The clustering algorithm always inserts them in

the same cluster depicting a relationship, due to lack of semantic understanding. Same

applies to the event types 4732 (A member was added to a security-enabled local group)

and 4733 (A member was removed from a security-enabled local group). Hence, the

clustering approach only groups similar items together that do not necessarily represent

security identification and mitigation activities. Another drawback is that the clustering

algorithms only process numeric data, whereas the event logs contain both numeric and

non-numeric entries. The conversion of non-numeric to numeric data would decrease the

efficiency of the overall solution.

2.4.2 Automated Planning Techniques

The knowledge in event logs can also be acquired with the help domain model learning.

This approach takes a plan of actions (or plan traces) against a particular problem

and learns a domain action model to represent the knowledge. The learning process is

based on determining the expert actions and the relationship among their objects (i.e.

parameters). The domain model is then used by Artificial Intelligence (AI) planners to

determine a plan solution for unseen problems. The knowledge in the domain model

is required to be sufficiently efficient, so that it can be used for automated reasoning



Chapter 2. Background and Literature Review 22

and construction of a plan for output. Several tools and techniques are available that

can construct domain models either manually by human experts or autonomously using

machine learning techniques.

For manual construction, several tools are available that provide interface for the de-

sign, validation and verification of domain models. For example, an open source tool,

called itSIMPLE [46], uses Object Oriented architecture and Unified Modelling Language

(UML) to enable the users for building, visualising and modifying domain models. The

knowledge is initially constructed in the form of UML, which is then converted to Petri

Net graph and shown as domain model. This tools is also capable of analysing dy-

namic aspects of the modelling requirements, such as deadlocks and invariants. Another

tool, called GIPO (Graphical Interface for Planning with Objects) [47], was created to

increase the efficiency of domain modelling and validation process. This tool uses its

own object-centred language to encode knowledge, domain structure and several other

features. It also includes a built-in visual editor that allows the user to inspect and

verify the produced plans graphically. Another tool, named EUROPA (The Extensible

Universal Remote Operations Planning Architecture) [48], was developed by National

Aeronautics and Space Administration (NASA) to tackle real-world problems. It allows

an interactive planning process, and provides support in domain modelling and plan

visualisation.

Researchers have also produced several autonomous domain learning and modelling tech-

niques. An algorithm, called SLAF (Simultaneous Learning and Filtering) [49], was

created to learn the actions using partially observable (unfamiliar and uncertain) do-

main knowledge. It takes action-observation sequence, states of the world and partial

observations of intermediate transition states between action executions as input. As

a result, it produces action model that consists of preconditions and effects containing

implicit objects and unstated relationships between objects. Another automated tool,

called Opmaker [50], takes a partial domain model and a set of training data for plan-

ning, and outputs a complete domain action model. An important feature of this tool is

the heuristics that are part of the output and can be used to make plan extraction more

efficient. The tool automatically determines the intermediate transition states by track-

ing and generalising the object changes provided in the training set. It was observed

during the experiments that some objects have multiple aspects and behaviours, and

thus require Finite State Machines (FSM) to completely represent them. A FSM is a



Chapter 2. Background and Literature Review 23

computation model that simulates sequential logic and presents all possible states of an

object. With this motivation, a tool called LOCM (Learning object-centric models) [51]

was developed that induces the domain model by allowing multiple state machines to

represent a single object using FSM characterised by a set of transitions. The extracted

domain models only include dynamic facts. A major limitation of LOCM is lack of

compatibility with domains having static facts (i.e. remain unchanged throughout the

planning process [52]). Recent advancements have started to address this issue, such as

in Automated Static Constraint Learner or ASCol [53]. The ASCol exploits a directed

graph representation of operator arguments in a plan solution and uses that to discover

pairwise static relations among preconditions and effects.

The learning process of the aforementioned tools is dynamic and usually takes additional

information, e.g. partial domains and uncertainty factors, for building the complete

domain model. The input used is gathered from goal-based solutions and manual ob-

servations or experiments. Despite the advantages of state-of-the-art domain learning

solutions, a major drawback is the need for pre-existing domain knowledge in the form

of plan traces and human assistance. A plan trace is the sequence of actions that rep-

resent a solution to achieve a desired goal. Almost all of the existing solutions require

plan traces in some form, and as such conducting autonomous learning in a previously

unseen application area would first require the construction of a plan trace. In prac-

tical and real time domain modelling processes, this is not feasible because creating

well-formed plan traces could be viewed as almost as challenging as building a domain

model. More specifically, a plan trace can only be constructed once the domain is fully

comprehended. In addition, it would also require expert knowledge, something which is

not guaranteed to be always available. These issues can be resolved by applying different

techniques, like, crowd-sourcing to acquire action models [54] or learning from human

demonstrations to perform case-based planning [55]. However, such techniques are ex-

pensive and require large amount effort to prevent human-errors and perform conflict

resolution. Another significant challenge is that the learning solutions cannot acquire

complete and sound domain model if the data sources are noisy and incomplete. This

motivates the research challenge of developing an autonomous approach to acquire and

use security domain knowledge directly from the available data sources, without having

prior knowledge and human expert support. The output plan will be capable of helping

experts and non-experts alike for the improvement of security in any new or previously



Chapter 2. Background and Literature Review 24

unseen machines.

2.4.2.1 Domain Representation Languages

After acquiring the domain knowledge, whether through manual or autonomous ap-

proach, a variety of modelling languages are available that can be used for encoding

domain knowledge. The following sections explain some of the existing domain mod-

elling languages.

Stanford Research Institute Problem Solver (STRIPS) – The STRIPS language was

developed in 1971 [56] and is the base for most of the latest languages in use today. A

STRIPS planning problem contains the following three components: (1) initial state,

(2) goal state and (3) declarative actions containing preconditions and post-conditions.

This language only supports positive literals along with their conjunctions (combining

multiple literals into a single literal). The capability of defining preconditions in each

action is the major accomplishment of STRIPS as no assumptions are made regarding the

structure and validity of domain, and also allows the domain-independent planning. In

early days of AP, STRIPS was considered as the most popular representation language.

Action Description Language (ADL) – The ADL is considered as a successor of STRIPS

and was particularly developed for robots in 1987 [57]. An ADL contains the following

four components: (1) actions, (2) optional parameters for each action, (3) optional

clauses for preconditions and (4) add, delete and update parameter list that is not part

of the action schema. The ADL supports both positive and negative literals and their

conjunctions, unlike STRIPS.

Planning Domain Definition Language (PDDL) – Considering the existing literature

on domain model generation, the Planning Domain Definition Language (PDDL) along

with its variants are the best-known languages for modelling domains and planning

problems. The PDDL is a successor of STRIPS and ADL and was developed for the

planning competition with the aim of having a single and common domain representation

language. Many planners support PDDL due to its wide usage and acceptance in the

AP community. The PDDL is a standard, action-centred language and is also based

on first-order predicates. Some of the important versions of PDDL are explained in the

following:



Chapter 2. Background and Literature Review 25

1. PDDL 1.2 – This version of PDDL was the official language of first and second

International Planning Competition (IPC) in 1998 and 2000, respectively. The

PDDL 1.2 [58] divides a planning problem into the following two components: (1)

domain action model to represent knowledge and (2) a problem instance to describe

the problem. It is suitable for classical planning as it includes few additional

features, such as object types and conditional effects;

2. PDDL 2.1 – This version was the official language of third IPC in 2002. Appen-

dices B.1 and B.2 provide detailed schemata of domain model and problem in-

stance, respectively. The PDDL 2.1 [59] is more equipped to represent real-world

problems as it introduced numeric fluents, plan-metrics and durative-actions. A

numeric fluent (also referred as a function) is a type of state variable or predicate

that is used to model non-binary resources in the form of real numbers, such as

distance, volume, weight etc. These fluents can be used in both precondition and

effect definitions. In precondition, a fluent simulates an if-statement, where the

comparison between fluents and real numbers is performed with the help of fol-

lowing symbols: less than or equal to (≤), less than (<), equals to (=), greater

than (>) and greater than or equals to (≥). In effect definition, a fluent can be

used as a then-statement that performs the following arithmetic operations: ad-

dition (+), subtraction (−), division (/) and multiplication (∗). Other operators

are also available that can modify a fluent, such as increase or decrease value by

certain amount and assign a new value. The plan metrics enabled the quantitative

evaluation of plan solutions using numeric fluents. This increases the capability of

goal-driven planning algorithms and performs plan optimisation through minimi-

sation and maximisation criterion. The durative-actions allow the simulation of

temporal aspects of plan solutions. The time is encoded with respect to action’s

duration, where preconditions and effects are defined for either beginning or end

of the action. The preconditions can also be defined for the entire duration of the

action;

3. PDDL 3.0 – This version was the official language of fifth IPC in 2006. The PDDL

3.0 [60] improved the previous PDDL versions by adding numeric constraints to

perform arithmetic operations. It was the first version, where temporal planning

was introduced by adding features to durative actions. It also includes hard and

soft constraints, where hard constraints must be true during the plan execution



Chapter 2. Background and Literature Review 26

while soft constraints (or preferences) if found to be true, will increase the quality

of plan;

4. PDDL 3.1 – This version was the official language of deterministic track of sixth

and seventh IPC in 2008 and 2011, respectively. The PDDL 3.1 [61] introduced

object fluents, where the range is not limited to numbers but can also involve

any object type. The syntax of PDDL 3.1 is significantly expressive in terms of

semantic;

5. Other versions – Probabilistic PDDL (PPDDL) [62] and PDDL+ [63] are also

among useful extensions of PDDL. These two languages have been applied to

several real-world problems. The PPDDL was presented in the probabilistic track

of fourth IPC and incorporates probability distribution in actions. PDDL+ is

specially designed for continuous planning problem with respect to discrete-time, in

order to encode continuous processes. Another domain representational language

is New Domain Definition Language (NDDL) [64], which was developed by NASA

in 2003. The NDDL mainly focuses on space applications. It uses object fluents

and is capable of modelling continuous planning tasks. A major disadvantage of

NDDL is the lack of supporting planners.

2.4.2.2 Searching Techniques

After representing the knowledge in a domain action model, Automated Planning (AP)

algorithms are applied to select and organise purposeful actions in achieving expected

outcomes [1]. Several AP algorithms are implemented in software solutions, known

as automated planners. Every planner employs a searching technique [65] to find a

sequence of actions from initial to goal state. The searching can be classified into either

uninformed or informed approach that explores or traverses the state space to determine

one or more solutions P by using a forward chaining mechanism. The state space is a set

of all available states that are organised in a graph structure, where the nodes represent

states, the edges are indicative of domain actions (representing state transition) and the

path from initial to goal nodes represent a plan.

The uninformed search – This approach traverses the graph without using any addi-

tional knowledge, and is based on two basic algorithms: breadth-first and depth-first



Chapter 2. Background and Literature Review 27

search [66]. The breadth-first search (BFS) first traverses all the nodes on the same

level before moving to the next level. The BFS repeats this process until there are no

more states left to traverse or the goal state is reached. The space and time complexity

of BFS is O(bd), where d is the depth of goal node and b is the number of successors of

all non-goal nodes (branching factor). The BFS is complete and optimal but uses a large

amount of space. On the other hand, the depth-first search (DFS) first selects a node

and completely traverses it until either the solution is found or there is no successor of

the current nodes. The DFS will then backtrack one level in the path and traverse the

successor node in the same manner. The time complexity of DFS is O(bm) and the space

complexity is O(b ∗m), where b is the branching factor and m is the maximum depth of

any node. The DFS is neither complete nor optimal but uses less space and resources.

The informed search – This approach makes guided decisions based on some prior knowl-

edge or a heuristic function other than the domain model. The heuristic function is used

to obtain the optimal path between two nodes of the graph. It can also enable a ‘greedy’

search, where the nodes that appear closest to the goal are traversed first in order to

find a quick solution. Several algorithms are available to perform the informed search,

such as A* [67] and branch-and-bound optimisation [68]. The A* algorithm is one of

the most common algorithms. The aim of this algorithm is to perform the best-first

search and avoid traversing nodes that appear to be expensive. On current node n, this

is done by an evaluation function f(n) = g(n) + h(n), which determines the cost of the

previous path g(n) and an estimated cost of the remaining path all the way to the goal

h(n). The other informed search algorithm, branch-and-bound optimisation, maintains

lower and upper bounds on the global objective value over a given region. The upper

bound B denotes the best solution found so far during the search. The lower bound is

calculated on traversing a new node by a heuristic function I that estimates the cost of

the path currently being explored. If I > B, then the algorithm removes the new node

from path as it will not result in a better solution with a lower cost than B. Most of the

new planning algorithms employ heuristic functions to improve their accuracy, efficiency

and productivity [69], hence employing informed search approach.



Chapter 2. Background and Literature Review 28

2.4.2.3 Applications Of Planning In Cybersecurity

The plans are generated by considering optimisation constraints defined in terms of qual-

ity and quantity. It is demonstrated through experimental analysis that such (computer-

generated) plans provide better and more efficient security solutions depending on the

quality of domain model knowledge [70] because the planner search and explore a wide

array of possibilities before finding the most feasible solution. Therefore, AP has be-

come an integral part of numerous security-related areas, which is also evident from the

literature discussed in the section below.

There have been successful exploration of the use of AP in producing attack plans for

penetration testing. One of the earlier work involves utilising classical planning to gen-

erate hypothetical attack scenarios that can exploit a web-based system [71]. This study

simulates realistic adversary courses of action, with the main focus on malicious insider

threat. The presented domain model includes 25 objects (hosts, processes, programs,

files, etc.), 124 propositions representing information about system (configurations, vul-

nerabilities, etc.) and 56 actions to denote the adversary’s objectives. The problem

instance is based on 200 − 300 facts of the underlying system. A classical planner,

named FF-Metric [72], was used to extract the plan of attack actions. The domain

model was constructed by human expert using a semi-manual (i.e. employing assistive

tools) approach. The study also presented a post plan processing tool, which was written

in Perl script, to convert the planner output in a human-readable format.

Another research study [73] used planning to assess the degree of network security. It

starts by transforming the attacks into domain models, which represents the require-

ments and exploits, whereas the information about system, such networks, ports, op-

erating systems, machines and services are encoded in problem files. The proposed

approach analyses the entire network using the domain mode, which has up-to 1800 ac-

tions and hosts 700 exploits. A similar research work [74] presented a solution that can

generate sequences of actions to compromise a network in the low cost, shortest path

possible. The actions comply with the network environment and configuration and are

aimed at exploiting a series of vulnerabilities for adversarial gain. A commercial tool

(Core Impact) has also been developed that uses AP to generate possible attack plans

and is capable of conducting real-time penetration testing [75]. The tool extends the

domain model to encode probabilities of attacks. The tool also builds AND−OR trees



Chapter 2. Background and Literature Review 29

to determine all possible attack paths against a certain asset. The tool is claimed to be

efficient with respect to execution time and amount of network traffic. The computa-

tional complexity is described as O(n log n), where n is the total number of actions in

domain file.

One of the main issue in these solutions is the lack of ability to handle incomplete

knowledge and scalability limitations. Partially Observable Markov Decision Processes

(POMDP), can be used to eliminate the problem of incomplete knowledge and uncer-

tainties [76]. POMDPs are capable of ranking the domain actions based on expected

reward, which is composed of asset value and time/risk of detection to accomplish the

desired goal. Further research [77] emphasises how to produce better attack plans for

a particular machine within the shortest time possible. The proposed solution uses in-

telligent vulnerability scanning actions with the help POMDPs and discovers feasible

attacks for each individual machine. Despite all the advantages of POMDPs, construct-

ing them is a complex task and they also require large computational resources. It is

also difficult to calculate the probability values for every attack scenario. To address the

scalability issues, a study [78] proposed a middle ground between classical planning and

POMDPs, called MDPs. The probability value depends on the level of attacker’s uncer-

tainty in launching that particular action. The values will remain constant throughout

the planning process and assigned regardless of environment or configuration.

2.4.3 Association Rule Mining Techniques

Considering the importance of creating a domain model in an autonomous manner, this

research pursues potential Association Rule Mining (ARM) techniques that are unsu-

pervised and can discover relationships among a diverse set of event log entries. ARM

is a sub-domain of data mining that refers the method of identifying patterns to reveal

strong/frequent co-occurrences in the form of correlation rules, containing antecedent

and consequent, among seemingly unrelated items [79]. The first ARM algorithm [80]

was created to identify regular co-occurrences between the products in large transaction

data. The data was recorded by point-of-sale systems used in supermarkets. This initial

approach could only have one consequence statement in the rule, i.e. it can determine

X ∩Y → Z, but not X → Y ∩Z types of rules. Following this, two new algorithms were

introduced called Apriori and AprioriTid [81], which were based on breath-first search.



Chapter 2. Background and Literature Review 30

A detailed working example of Apriori algorithm is provided in [82]. The main target

of these algorithms was to improve the performance of ARM process by reducing the

execution time. Apriori was the first algorithm to pioneer efficient pruning scheme and

prevent the exponential growth of possible frequent itemsets. The algorithm iteratively

generates sets of items in increasing arity; singletons, pairs, triplets etc. The general idea

to increase efficiency was based on the Monotonicity Principle [83]. Given an itemset

ABCD, first determine all of its subsets ABC, AB etc. If a subset, say ABC, does not

generate a rule, remove it as there is no need to process its further subsets. Similarly,

if any itemset is found to be frequent, then every subset of the itemset will also be con-

sidered frequent. This property is known as the Apriori Principle. Another approach

was introduced to further increase the performance of ARM by storing the itemsets

in a hash tree format [84]. The proposed algorithm, called DHP (direct hashing and

pruning), uses a hashing technique to trims unnecessary itemsets in every iteration, thus

reducing the number of transactions for further processing. According to a study [85],

there are 38 measures that can be used either individually or combined to improve the

quality of rule mining process. Some of the measures are support, confidence, lift, re-

call, precision, specificity, etc. The proposed solution in this research uses the ARM

technique, which relies on support, confidence and some other metrics to determine the

correlations among data items. It enables searching for valuable information based on

frequency and is combinatorial and symbolic in nature.

ARM has been widely exploited in many different application areas. A research study

proposed a tool, called LogMaster [86], which uses ARM to find the correlation between

failure and non-failure events in the logs data, and predict future crashes of the system.

This tool starts by pre-processing the events data and applies the Apriori algorithm

to mine correlation rules. The extracted rules are collectively represented as an event

correlation graph. After that, the tool uses events timings and statistical measures

on the graph to build event prediction model The LogMaster was tested on three sets

of Cloud event logs, with the average precision rate of 83.66%, 81.19% and 79.82%,

respectively. A similar study, which is only based on frequent itemset mining, has been

used for knowledge discovery in the event logs [87]. This study presented a solution,

called AllMining, which consists of the following three steps: pre-processing of event logs

data, discovering frequent co-occurrence in events and pruning the irrelevant frequent

itemsets increase the quality of knowledge discovery and decision-making process. The



Chapter 2. Background and Literature Review 31

evaluation of AllMining shows that it is scalable and efficient tool, and provides better

coverage of knowledge. Researchers have also proposed a variant of ARM that can

identify irregular rights/permissions in a file system [88]. This solution finds the rules

with least frequent or irregular co-occurrences, as oppose to finding strongly correlated

rules like in the most applications of ARM. This allows them to identify anomalies or

rather suspicious permissions that should be removed to improve the protection of user

data.

A research study has proposed the use of ARM in analysing server logs [89]. It provides a

new variant of FP-Growth, called a Long Sequence Frequent Pattern (LSFP) algorithm.

The LSFP takes the log files, produces association rules as a directed graph and creates

a description or timeline of the user behaviour. According to the authors, support value

has a direct impact on the quality and efficiency of the overall solution. Another research

work used an ARM technique to detect phishing URLs [90]. First, a set of features is

produced that can help in distinguishing between the legitimate and phishing URLs, such

as length of the host URL, number of slashes, dots in hostname, etc. After that, Apriori

algorithm is applied to find interesting patterns and combination of features in the form

of rules. The developed solution was tested on a dataset containing 1400 URLs and

achieved 93% accuracy. A recent paper has used ARM to categorise Darknet network

traffic streams to gain a better understanding of global trends in cyber-attacks [91]. This

paper considers two cases; correlation between attacking hosts and destination ports,

and the correlation between Darknet traffic probing sensors. The ARM discovered some

significant rules as they comply with the behaviour of known botnets. Therefore, this

paper claims that the mined rules can facilitate in building secure strategies.

It should be noted here that the existence of association relationship among mutually

exclusive items of the dataset does not necessarily imply the actual connection [92]. The

rules are subjective and usually applicable to the given data (i.e. the results are local,

not universal). In other words, a rule is a just depiction of strong correlation between the

antecedent and consequent data items. Hence, there is a need to improve the quality and

confidence of the rules. This is can be achieved by adding an extra measure to determine

meaningful correlation, as evident from many studies. One such measure is temporality

or time-based ordering, which can be used to identify and extract interesting association

rules among items [93]. It provides complementary evidence for the relationship to

exist. For example, consider event X (antecedent) and event B (consequence) are in



Chapter 2. Background and Literature Review 32

associative relationship. Finding whether event A always happens before event B can

help in establishing a higher confidence. Several research studies are available that

developed different methods for temporal ARM and obtained quality results. One of

the earlier work proposed using temporal metric as an interestingness measure for ARM

(based on a survey) and demonstrated the numerous benefits in terms of relevancy

and quality of knowledge discovery in rules. It also showed that the incorporation

of temporal dependencies in ARM can group and (re)arrange rule items into correct

semantic sequences [94]. Later on, a research work developed a new algorithm, called

T-Apriori [95], which integrated a time-based constraint in Apriori algorithm and used

it for analysing ordered ecological events set. The algorithm requires an additional layer

of data pre-processing using K-Means clustering algorithm, which reduces the overall

performance. Also, according to the authors, the efficiency of the algorithm has not been

tested on larger datasets. Another study presents an algorithm, called ARMADA [96],

which uses time dependency to discover sequential frequent patterns. The algorithm

was tested on large, interval-based data that was constructed synthetically. The authors

claim that the quality temporal association rules were extracted and provided richer

knowledge with respect to semantics.

A recent study has proposed a new mining algorithm for time-series dataset, called

temporal association rules with frequent itemsets tree (T-FS-tree) algorithm [97]. This

algorithm mines frequent itemsets and builds a FS-tree structure in parallel, hence ef-

fectively reducing the computational cost by skipping the candidate itemset generation

phase. The algorithm outputs interesting temporal association rules, which are acquired

by traversing and pruning the irrelevant rules in the tree. Another work proposed a

Multi-level Intensive Subset Learning (MISL) algorithm [98], which modifies frequent

itemset mining to include a temporal metric. The algorithm uses temporal metric to

identify and remove such rules that have occurred by chance. It was successfully used

on financial time series data and identified profitable trades by generating association

rules, which lead to uncover hidden knowledge. Another study takes presents a dif-

ferent technique that first generates a complete set of association rules from the given

time-stamped data, and then convert them into temporal-association rules based on the

co-appearance of sequences [99]. This approaches requires input of states and events

of interest. It has been successfully tested on live systems where data belonged to fish

movement in a river. Another correlation technique for heterogeneous data has also been



Chapter 2. Background and Literature Review 33

developed that connects the security events of a system based on clustering, properties

and temporal precedence [100]. The output is presented as a graph, which shows both di-

rect and indirect connection of events. For testing, the data was collected from multiple

sources and the resultant graph contained 1309 nodes identifying many malicious activ-

ities regarding malware, network attacks and user behaviours. Another research study

presented a solution for assisted living using a temporal metric in Apriori algorithm that

can be used for activity reminder and abnormal behaviour detection systems [101]. This

solution recognised temporal relations of user activities, such as start time and duration,

and used that to construct a predictive activity model.

Despite having significant advantages, the existing ARM approaches are unable to yield

a suitable solution for identifying temporal correlation rules in raw data streams using a

fully automated mechanism. They usually either rely on the manual input by human or

operate in a determined, constrained, specific and predictable environment to extract the

rules. Some of the solutions require additional configuration and processing layers, which

might not suit large-scale and complex models. Furthermore, the need for manual input

again leads towards the human assistance and expertise, which as discussed before lacks

efficiency and are in short supply. Another significant lacking in the existing techniques

is the incapability of finding the initial (starting) item of a temporal sequence/pattern of

multiple correlated events. As the results are shown as a graph or cluster, they cannot

provide the basis to develop a domain action model.

2.4.4 Causal Inference Techniques

The existence of correlation does signify a strong statistical relationship among the linked

items (or events in our case), but it is not always true [102]. The relationship between

events can be made certain by finding evidence of causation. A cause and effect connec-

tion demonstrates that the events are dependent on each other given certain conditions

and are defined with the help of Markov chains [103]. A Markov chain is a sequence and

description of random events that cause the system to transition from one state to any

other state. It also includes the probability of each transition, which depends on the

state reached due to the previous event only. A number of algorithms have been devised

that can find causality among items. The process of determining causal relationships can

be broadly classified into two main categories: CCC and CCU triplets causality [104].



Chapter 2. Background and Literature Review 34

Both techniques are based on induction and statistical probability principles. Assume

there are items: A, B and C. The CCC mechanism considers all three possible pairs of

items as correlated and one variable is already known to have no cause. For example, in

case of (A, B), (B, C) and (A, C) pairs, if A has no causes then the causal relation will

be A causes B and remaining B causes C. On the other hand, the CCU mechanism

is that only two pairs are in associative relationship, and one pair is not correlated.

For example, if the pairs (A, B) and (A, C) are correlated and (B, C) pair is not in

association, then B and C cause A. The CCU causality mechanism is deemed as better

in performance, while the CCC is better in producing quality results.

Many techniques have been introduced in previous years that can discover causal re-

lationships. Most of the algorithms are based on either Bayesian [105] or Constraint-

based [106] approaches. Both approaches are based on Markov chain but differ in theory

and practice. The Constraint-based approach can make categorical decisions about the

conditional dependence and independence constraints among the data items, whereas the

Bayesian approach weighs the degree in terms of probability to which these constraints

hold. If two items are conditionally dependent (or not conditionally independent), it

means they are in cause and effect relationship. Any Constraint-based approach is

based on two steps: conduct statistical tests to determine conditional (in)dependence

among the data items, and use the tests to define the types of causal connection that ex-

ist among the items. This approach uses different kinds of statistical tests to reduce the

complexity and complete the process in a reasonable time. Furthermore, the Constraint-

based solution have been widely utilised in several real-world problems as they are more

generalised. On the other hand, Bayesian solutions find all possible causal structures

and use a probabilistic framework to determine if ‘Event A cause Event B’? This ap-

proach requires user-specified probabilities in the graph structure. If it is not feasible

for the user to provide this information, then non-informative priors can be used. For a

large and complex observational data, Bayesian solutions will require high computation

power to identify and process all causal structures. Moreover, the incomplete or hidden

variables may also make it difficult to directly observe the data and produce accurate

results.

One of the earlier research studies presented an algorithm, called Local causal discov-

ery (LCD) [107], which uses a Constraint-based approach to determine pairwise causal



Chapter 2. Background and Literature Review 35

relationships in a completely observational data. The LCD algorithm uses CCC mech-

anism (but not the CCU) to conduct independence tests between all data items. It

uses a function, called Independent(A, B, C), which implicitly scans the entire set of

relationships R to determine whether A is independent of B, given C. If found indepen-

dent, then the function returns true, or else, it returns false. This function is applied

to each pair of items and causal structures are represented as a graph. A recent study

presented an algorithm, called Logical Causal Inference (LoCI), that conducts minimal

conditional (in)dependent tests and then convert them into logical statements to form

initial causal relations. After that, the algorithm combines all statements using aggrega-

tion, elimination and basic properties of causality to output a complete causal structure.

Another study presented a Constraint-based algorithm, called Markov blanket/collider

set (MBCS*) [108], which starts by finding a Markov Blanket (MB) of each item to

determine all items (parents and children) that shield this particular item from the rest

of the network. So, instead of conducting conditional-independence tests for all pairs of

items in the data to infer causal relationships, it only considers MB of each item and

provides better results in terms of accuracy and efficiency. Several Constraint-based

approaches are also developed for learning a single, collective causal structure from joint

observational datasets. One simple algorithm for this purpose is Structure learning us-

ing prior results (SLPR) [109]. The algorithm starts by finding the causal structure for

each dataset individually and then combines them by removing common edges to get a

full graph. After that, it reapplies causal inference mechanism to the graph and output

a final causal structure.

A research work presented a method for discovering causation through Bayesian ap-

proach by using a mixture of observed (deterministic) and experimental (non-deterministic)

data [110]. The proposed model was tested on a manually created dataset of potential

anaesthesia problems in the operating room that contains 37 nodes and 46 edges. An

improvement made by this solution is the automatic assignment of initial probabilities,

which are then used to build a Bayesian network. After that, it used joint probability

distribution to successfully infer the causal structures and parameters among randomly

selected item-pairs. A variant of LCD algorithm has also been proposed, called Bayesian

Local Causal Discovery algorithm, which reduced the amount of false positives and in-

creased efficiency [111]. It uses a Bayesian scoring metric instead of conditional inde-

pendence testing. The results are modelled as a probabilistic graph of connected items,



Chapter 2. Background and Literature Review 36

known as Bayesian network. The Bayesian network satisfies Markov chain property and

the availability of probability distribution allows the efficient inference between two ran-

dom items. After that, it applies a heuristic-based greedy search in the Bayesian network

to derive Markov Blanket (MB) for each node. By limiting the causal learning to the MB

of each node, the algorithm significantly reduces the size of probability-based inference

calculations, and thus have improved accuracy and efficiency. A similar research study

presents two hybrid (Bayesian- and Constraint-based) algorithms CD-B and CD-H that

can discover causal relationships from observational data [112]. The CD-B algorithm

employs a greedy search to determine the MB of a node, and then use it in a scoring

method to identify the parents and children. This process is repeated for every node and

a global Bayesian network is constructed to discover all causal structures. On the other

hand, the CD-H algorithm is based on a two-step mechanism to perform conditional

dependence and independence tests and determine the parent-child relationships of all

nodes. The rest of the process is similar to the CD-B algorithm.

There are also other causal mining techniques that are not based on Bayesian/Constraint-

based approaches. An algorithm, called causal association rule discovery [113], presented

a correlation mining approach to determine causal rules in observational data. It starts

by extracting all association rules, and for each rule (A − B), it hypothesises that the

left (A) causes right (B) item. After that, it applies retrospective cohort studies mecha-

nism to find odds ratio for each corresponding hypothesis and discover persistent causal

rules. Another study presents a Relational causal discovery algorithm [114], which uses

automated relational blocking to determine causal relationships, instead of statistical

tests. The relational blocking is essentially a manual technique that divides the data

into unrelated groups based on certain criteria (blocking factor). In the proposed algo-

rithm, groups are defined based on a graph structure that aims at reducing variation

and adjusting for common causes. The groups are then used to determine causal struc-

tures. However, unlike conditional (in)dependence tests, the relational blocking is not

capable of inducing dependence when discovering common effects. Apart from the al-

gorithms, certain mechanisms are developed to obtain evidence of a causal connection

between a presumed cause and an observed effect, for example, the Bradford Hill [115]

and Granger [116] models. They claim that a causal rule should satisfy the following

factors: association, specificity, consistency, plausibility, temporal order, coherence and

experimental evidence. Another approach to infer causality is presented by Popper,



Chapter 2. Background and Literature Review 37

which is based on three considerations: temporal precedence, dependency, and no hid-

den variables [117]. This approach constructs incremental causal network and has been

successfully exploited in the unbounded data streams of events to build causal networks.

2.5 Literature Analysis

This section provides a brief discussion on the current state of knowledge acquisition

systems:

1. Several data sources are available that can provide security knowledge to the non-

expert users;

2. The manual or assistive techniques are heavily reliant on the manual processing

of knowledge, which requires human experts, domain-specific experience, error

and conflict management and continuous maintenance in terms of updating and

constructing new knowledge. These techniques might also be counterproductive for

large-scale knowledge acquisition as it would be time, cost and resource-intensive,

and demand additional expertise in building, representing and storing complex

patterns for utilisation. Such methods are not feasible for our research as we are

aiming to acquire knowledge in an automated manner that does not require any

human intervention;

3. Most of the security-based applications of manual or assistive event correlation

techniques are in monitoring and fault/anomaly detection;

4. The applications of automated planning mostly lies in the domain of offensive

security, i.e. penetration testing and attack planning;

5. The existing automated technologies have shown strong theoretical foundation,

but are not fully equipped to process the data sources in generating actionable

intelligence of higher quality and accuracy. The solutions are either too simple or

difficult to reach out to the necessary audiences. Also, they require a high use of

expert knowledge and results in high costs and poor scalability; and

6. The existing literature shows that no research has been conducted to extract a set

of security-related actions performed on a system and utilise them to create plans

for improving the security of vulnerable machines, all without any human support.



Chapter 2. Background and Literature Review 38

2.6 Chapter Summary

This chapter presents the relevant background theory that establishes the basis of this

research. It starts by introducing main areas with the emphasis on automated knowledge

acquisition, representation and utilisation. This chapter aims to provide a reader with

the background of contributions made in this research, along with surveying past research

in the closely related areas. This chapter starts by investigating the data sources that

can provide useful security knowledge. After that, it explains some manual and assistive

knowledge acquisition techniques along with their lacking and drawbacks. Further ahead,

the chapter explores the state-of-art research on the role of Automated Planning in

cyber security-related applications, correlation and causal rule mining techniques, and

how they are extensively used for automated knowledge acquisition. All references are

provided against discussed literature. The chapter does not provide detailed review and

analysis of all aforementioned techniques but provides a context of important concepts

to aid the understanding of the contribution of this thesis.



Chapter 3

Automated Knowledge

Acquisition

Automated knowledge acquisition (KA) is an alternative to the laborious procedures of

collecting the right knowledge from given data sources. This chapter explains the novel

mechanism of acquiring ‘rules’ from Microsoft security event logs that contains the expert

knowledge. The entire process is performed in an automated manner, i.e. computer-

mediated discovery and representation of knowledge that allows the elevation in the

performance, effectiveness, efficiency, coverage and continuous updating of a knowledge-

based system. Following are the five steps and their corresponding components that

have been developed as part of this process, and also shown in Figure 3.1:

1. Data pre-processing:

(a) Identify and remove routine events from the given event log dataset; and

(b) Convert the remaining event log entries to an object-based model.

2. Association rule mining:

(a) Determine both minimum and maximum support values from the object-

based model;

(b) Identify object-based rules from the model using the support values in an

association rule mining algorithm; and

(c) Determine the event-based rules, such that any two events are associated by

the object-based rules.

39



Chapter 3. Automated Knowledge Acquisition 40

Figure 3.1: Summarised steps of proposed automated knowledge acquisition process,
where same coloured components belong to a single step.

3. Sequences of event relationships:

(a) Improve the quality of relationships based on the temporal order of events,

alongside discarding insignificant relationships; and

(b) Combine and expand the individual relationships to form and validate se-

quences of events.

4. Determining causality:

(a) Convert the sequences of events into directed acyclic graph and infer a causal

rank for each relationship.

5. Storing Rules:

(a) Store all relationships in a database along with all relevant information.



Chapter 3. Automated Knowledge Acquisition 41

3.1 Data Pre-Processing

This section presents the pre-processing phase of security event log entries. It has two

steps and prepares the data for passing to rule mining algorithms. The first step is to

read security events log of a system and remove routine log entries. The second step is

to build an object-based model from the remaining entries for further processing.

3.1.1 Filtering Routine Entries

During system use, a large quantity of the routine entries are created and stored, re-

porting on events that are not security configuration related. These entries do not

contain object-value pairs and contain little, if any, information. For example, event

1105 is logged in the Microsoft system to denote that the maximum log size is reached

and the operating system starts saving the new event log entries in another file, as an

alternative to over-writing the existing one. The description of event 1105 is ‘Event

log automatic backup’ and it only contains a single object-value pair, such as File:

C:\Windows\System32\Winevt\Logs\Archive-Security-2019-02-11-18-37-03-002.evtx, to

display the file name where new entries will be saved. Similarly, the event type 4608

does not show any security related activity. The description of event 4608 is ‘Windows

is starting up’ and has no object-value pair as it is only logged for information.

Although the routine events provide valuable information for forensic analysis and sys-

tem management, it can be the case that they do not depict any security expert knowl-

edge or the reason behind why it was performed. In this research, such routine events

are considered as noise due to their relatively high frequency of occurrence, lack of in-

formation and their strong relationship amongst a large volume of system users and

resources. Also, if these events are allowed to be processed in the rule mining process,

their respective event entries will dominate and correlate with all other entries, hence

having an negative impact on the techniques effectiveness. Furthermore, when the rules

are encoded into a domain action model for knowledge utilisation as described in the

next Chapter 4, the resultant action plan for the identification and ramification of se-

curity issues loses conciseness, hence creating unnecessary difficulty for the non-expert

users.



Chapter 3. Automated Knowledge Acquisition 42

To remove routine events, the first step is to create a frequency distribution (FD) of

the event types in a given dataset. The size of FD will be equal to size of unique event

types, where each element corresponds to the number of total entries of a particular

event type. The following shows an example of FD from a live system:

FD = {152, 35, 158, 2148, 10, 36, 4, 4, 2121, 32, 8, 44, 44, 23, 1, 1, 1, 8, 2, 1, 2, 1, 26, 1, 2, 2,

5, 152, 1, 1, 1}
(3.1)

Here we make an assumption: events that have occurred significantly more than others

are routine. This assumption is based on empirical observation from several event log

datasets. For a human being, it would be an easier task to determine that the event types

against fourth (2148) and ninth (2121) elements of FD are routine, as their occurrence

is relatively greater than others. For the similar detection and elimination of the routine

events in an automated manner, Mean (µ) and Standard Deviation (s) values can be

used. A µ is the central value of any given set, more specifically, it is the sum of

elements divided by the number of elements. The s is a measure of spread of elements

in a set [118], and determines that how much they differ from the mean value (µ). A

low s depicts that the elements are closer to the µ, while a high s value shows that the

elements are distant from the µ. In other words, lower s means that the elements do

not have substantial numerical difference among each other, while higher s means that

the elements are dispersed over a wider range of values. The formula of s is shown in

Equation 3.2:

s =

√√√√ 1

N − 1

N∑
i=1

(xi − x)2 (3.2)

Where N denotes the number of elements, xi is the ith element and x is the average of

FD. It is possible that the given set of event log entries does not contain a complete

record of security-related activities due to insufficient computing resources for event

logging mechanism, memory or storage corruption while saving continuous stream of

events, lack of defining time period in filtering events etc. Hence the proposed solution

uses Sample Standard Deviation to form an estimate of larger population and output

a generalised result. Instead of using N , which is used in the Population Standard



Chapter 3. Automated Knowledge Acquisition 43

Deviation, it uses N − 1 in the denominator of Equation 3.2, which is known as Bessel’s

correction [119].

The ratio of the s to the µ is called the coefficient of variation (Cv), which is a measure

of variability [120]. If the value of Cv is greater 1 (or 100%), it means the set contains

one or more outliers [121], i.e. the frequency of certain event types is significantly higher

or lower than others. The routine event types can be filtered if all those event types are

removed whose frequency is higher than s. For FD1 in Equation 3.1, the s is 528.44,

µ is 162.16 and Cv is 3.26. As Cv > 1, two elements (2148 and 2121) are found to

be higher than s and hence the corresponding event types will be eliminated from the

further processing. The remaining elements of FD1 are shown in Equation 3.3.

FD1 = {152, 35, 158, 10, 36, 4, 4, 32, 8, 44, 44, 23, 1, 1, 1, 8, 2, 1, 2, 1, 26, 1, 2, 2, 5,

152, 1, 1, 1}
(3.3)

3.1.2 Preparing Object-Based Model

To enable a structured mechanism of processing event log entries for automated knowl-

edge acquisition, it is necessary to extract meaningful parts of each event and model all

entries into a uniform format. In this research, the normalisation of event log entries

is called as ‘object-based model’. Each event in the object-based model is represented

in terms of the system objects (or properties) found in the entry. These could, for ex-

ample, be account names, machines names, system resources, permission levels, security

identification etc.

In the following discussion, D is used to model a dataset of event entries, where D =

{E1, E2, ..., EN}. The event, E = {id,O}, where id is a numeric event type, and O is the

set of event objects. The set O belongs to set I = {o1, o2, ..., on}, such that O ⊆ I. Each

entry, Ei, contains corresponding objects from I to represent an occurrence of event.

Note that the event types are not part of D as it is only used for mining object-based

correlation rules. For example, D = {E1, E2, E3, E4}, where:



Chapter 3. Automated Knowledge Acquisition 44

7:53:50 7:54:10

45
67

7:
53
:5
1

12
34

7:
53
:5
7

23
45

7:
54
:0
1

56
78

7:
54
:0
8

Figure 3.2: A visual time line representation of D covering a time span of 20 seconds.

E1 = {{4567}, {User1,Win7, Port : 53176, NTLM}}

E2 = {{1234}, {User1, ReadEA, svchost.exe, IKE}}

E3 = {{2345}, {User2, ReadEA, System,NTLM}}

E4 = {{5678}, {User2,Win7, NtLmSsp,Winlogon}}

In this trivial dataset, each entry consists of an event type (e.g. 4567 and 1234) and

4 objects (e.g. User1 and Win7). A sequential timeline of the dataset is presented in

Figure 3.2, where the events occur over a 20 second period. Both event type and objects

involved are necessary to understand the occurrence of any event.

It should be noted that the real time event log entries are much more diverse than

the presented example. They contain large number of objects and require computing-

resource efficient solution for processing. One example of a live entry from Microsoft

system is shown in Figure 3.3. This entry contains 33 object-value pairs and is typically

generated while modifying the user-group security policies. Each entry is tagged with

a time stamp as well to denote creation time. The events only occur over the duration

that a system is running and they appear in sequence; although, simultaneous execution

of multiple processes can generate intricate entries.

As mentioned before, it is fairly straightforward to acquire the object-value pairs from

a structured event log dataset. However, there are some event logging mechanisms that

store each entry in a textual format as it is easier to create and provides better readability

for the users. In that case, text mining approaches will be employed to analyse the

data from different aspects and then extract properties (or features) for constructing an

object-based model. Several text mining techniques have been gathered and reviewed in

this book [122]. These techniques use a standard representation model for text, called



Chapter 3. Automated Knowledge Acquisition 45

Figure 3.3: A live entry of event type, 5447, acquired using the Event Viewer appli-
cation of a Microsoft system. It shows the description of event, list of all object-value

pairs and other relevant information.

bag-of-words. This model disregards grammar and word order, and produces a two-

dimensional binary vector based on word appearance. The vector can be processed by

several types of statistical, machine learning and natural language processing techniques

for extracting the features.



Chapter 3. Automated Knowledge Acquisition 46

3.2 Association Rule Mining

As discussed in the literature review (Section 2.3.3), there is a potential of using asso-

ciation rule mining (ARM) to identify relationships amongst the objects of event log

entries. It is evident from the evaluation of existing solutions that the ARM can suc-

cessfully discover quality knowledge from all the data streams. ARM is an unsupervised

process [123], and employed as a method for explaining, analysing and illustrating as-

sociation rules that satisfy the condition of (strong or rare) co-occurrence. Identifying

an association rule between the objects of two events will demonstrate the existence of

connection between the events.

The application of ARM in the proposed solution consists of multiple steps. It starts

by calculating minimum and maximum support values for ARM algorithm. Following

on, object-based rules are first identified before being used to establish into event-based

rules. More specifically, the strong relationships amongst event objects are utilised to

discover correlation between events.

3.2.1 Object-Based Association Rules

The purpose of object-based rule mining is to identify such objects that are likely to

occur together. The premise here is that if the objects are co-occurring, the respective

events will co-occur too. The proposed solution uses Apriori algorithm [81] for ARM.

The association rules are discovered within a tabular dataset of objects that uses different

measures to mine interesting results. ARM takes two fundamental steps to extract usable

rules:

• Frequent itemset : scan the entire dataset to discover the set of all items that

appears more than a certain number of times. The number is pre-defined by the

user; and

• Correlation: identify co-occurrences among the sets and their subsets of frequent

items. The degree of which a certain group of items have occurred together defines

the strength of their relationship.



Chapter 3. Automated Knowledge Acquisition 47

The reason behind using Apriori algorithm is that it performs exhaustive search in the

dataset to produce large number of frequent itemsets [124], which consequently results in

finding complete set of correlation rules. Consider the set D of event log entries and the

set I of total unique objects from Section 3.1.2. The fundamental idea behind generating

correlation rules is to determine frequent co-occurrence of objects. They identify different

objects in event log entries that have appeared multiple times together. The following

three steps are taken in order to discover interesting relationships [125]. In these steps,

both X and Y contains objects from I. More specifically, X = {oi, ...} and Y = {oj , ...},

where the values of i and j are between 0 and size of I.

Step 1 (Association rule). X → Y is an Association Rule (AR), where X and Y contain

one or more objects each from I. X is the LHS (left-hand side) or body and Y is RHS

(right-hand side) or head of rule. Both X and Y are disjoint objects, i.e. X ∩ Y =

∅. X → Y means whenever E contains X then E probably contains Y too. In the

continuing example, an AR would be {User1} → {Win7}.

Step 2 (Support of an AR). The support (supp(X)) of an AR is defined as the percentage

of event log entries that contain bothX and Y . It can also be construed as the probability

P
(
X∪Y

)
. The support value is also known as statistical significance and ranges between

0.01-1. The example AR has a support of 1/4 = 0.25, since it occurred in 1 out of 4

event log entries.

Step 3 (Confidence of an AR). The confidence of an AR is defined as the ratio between

the number of transactions that contain X ∪ Y and the number of transactions that

contain X. It can also be defined as P
(
X ∪Y |X

)
= P

(
X ∪Y

)
/P
(
X
)

= conf(X → Y ).

The confidence value ranges between 0.01-1. In the example, the confidence (supp(X ⊂

Y )/supp(X)) of rule {User1} → {Win7} would be equal to 0.25/0.5 = 0.5. This shows

that for 50% or 2 of the 4 entries that contains Win7 are related to User1.

Researchers have demonstrated that the ARM technique generates a high quantity of

rules and has a complexity of O(N2), where N is the total number of unique items in

the given data [126]. In our case, N is the total number of unique objects across all

log entries. It should be noted here that any rule with a required support count and

confidence value is deemed relevant by the algorithm; however they might still not be

interesting or useful to the users. The ARM process performs scans entire dataset for

items that have strong co-occurrences. The term ‘strong’ is defined by the amount of

support and confidence. According to an analysis of 61 interestingness measures on 110



Chapter 3. Automated Knowledge Acquisition 48

different datasets [127], using a right support value with respect to a dataset is essential

for producing high quality rules.

3.2.2 Establishing Support Value

Given the fact that ARM algorithm has no prior knowledge about the dataset and the

output is based on frequent itemsets, there is a possibility of extracting meaningless

rules that do not add value to the security knowledge. For this reason, choosing a right

support for ARM algorithm is critical for generating rules of better quality and quantity.

In traditional ARM, the algorithm takes a single support value and outputs each rule

with that support value or above. For example, if the input support is 0.5, all rules

having support between 0.5-1 will be displayed.

Events triggered due to the security activities may be lesser in number as compared to

the routine events. This is because system administrators do not often repeat the same

security actions on a frequent basis. So, we can form an assumption that quality results

be produced by lowering the support value. But, if the support value is kept at minimal

to identify low frequency activities, it would allow more routine events to correlate, hence

generating large amount of meaningless rules. Due to these issues, there is a need to

define both minimum and maximum support values, hereafter termed as support range

(SR), at the same time to guide the algorithm to consider less frequent events whilst

avoiding large number of routine events. As each dataset has different properties and

specifying appropriate support thresholds without the knowledge of dataset can be diffi-

cult, we have devised an automated mechanism to determine the SR. The implemented

ARM algorithm takes both minimum (minsup) and maximum (maxsup) support values

and finds all those rules having minsup 6 support > maxsup. Moreover, as the aim is

to generate high quality association rules and the SR may come out as quite low (e.g.

3%-10%), the confidence is always set to maximum. The confidence value is an indi-

cation of how often the rule has been found to be true, and setting it to 100% ensures

the discovery of the most interesting as well as reliable association rules [128] within the

limits of SR.

The SR is calculated based on the object frequency distribution (OFD) of events types.

The OFD is a set of positive numbers, where each element describes the number of

times a unique object has appeared in a given event log dataset. Two other techniques



Chapter 3. Automated Knowledge Acquisition 49

of a similar nature have also been developed [129, 130]; however, they do not calculate

support values from the dataset but rather rely on the confidence to define threshold

and filter interesting rules. The first approach is not capable of finding those interesting

rules, which are composed of more than two items. This approach is unsuitable for

events correlation as more than two events can exist in an associative relationship.

The second approach generates all possible association rules, regardless of support and

confidence thresholds, and then use transitive set property and manual examination to

filter interesting patterns [131]. This approach too is not reasonable as it would require

huge computing resources (or manual effort) for large-scale datasets. So in this research,

the ARM algorithm employs frequency of objects to estimate the SR. The formulae used

to determine the minimum and maximum support values from an OFD are shown in

Equations 3.4a and 3.4b. It should be noticed here that the algorithm uses frequency of

objects rather than frequency of events for SR calculation as the rules are mined from

object-based model, not directly from event log dataset.

SR =


Fmin

Ftot
to

Fmax

Ftot
if OFD is normal (3.4a)

Favg

Ftot
to

Fmax

Ftot
if OFD is not normal (3.4b)

Where Fmin is the minimum of OFD, Fmax is the maximum of OFD, Favg is the average

of OFD and Ftot is the sum of all elements of OFD. In any normal distribution, the data

points are in symmetrical order and if the size of distribution is relatively small, there will

not be a substantial difference between the minimum and maximum elements [132]. So

the minimum support value is calculated as the ratio of minimum frequency to the total

of the OFD, while the maximum support value is calculated as the ratio of maximum

frequency to the total of OFD. However, if the distribution is not normal, the minimum

support value is calculated as the ratio of average frequency to the total of OFD, while

the maximum support value is calculated as the ratio of maximum frequency to the total

of OFD. If the same Equation 3.4a is used here to calculate the SR, the large difference

between Fmin and Fmax will generate a wider SR, i.e. the Fmin/Ftot value becomes

significantly lower and that will subsequently force the ARM algorithm to include less

interesting and redundant rules. Hence the distinction between a normal and abnormal



Chapter 3. Automated Knowledge Acquisition 50

distribution is necessary during the calculation of SR. This can be performed using a

normality test, which will allow the ARM algorithm to include interesting and useful

rules, meanwhile, preventing the extraction of irrelevant rules.

3.2.2.1 Normality Test

Many methods are available to determine whether a given distribution is normal, such as

Shapiro–Wilk (SW) and Two-Sample Kolmogorov–Smirnov (TSKS) tests. The distri-

bution size can grow large as there are hundreds of distinct events that can be triggered.

The SW test only provides better results for small (50 or less) sample sizes [133]. Re-

cent comparisons [134, 135] show that the TSKS test is an effective method among

others and is suitable for large sample sizes. The TSKS test takes two one-dimensional

distributions and decides if they significantly differ from each other. The TSKS is a

non-parametric test [136], which means it does not make any assumptions about the

distribution and quantifies a distance between the empirical distribution functions of

samples. The process of normality test is provided in the following:

Step 1 (Generate a random normal distribution). The first step in the TSKS test is

to produce a known, standard normal distribution, which will be used as a reference

against the object frequency distribution (OFD) of the dataset. We used an algorithm

proposed in [137] that either takes a pair of standard deviation and mean values or first

and last elements of the OFD to generate a reference normal distribution (RND). The

RND has similar range of values as of OFD, which helps in increasing the accuracy of

normality test.

Step 2 (Determine empirical distribution functions). The next step of TSKS test is to

determine the empirical distribution function (EDF) [138] of both OFD and RND. The

EDF assigns 1
n probability to n elements and outputs a discrete distribution. This uses

the formula provided in Equation 3.5.

EDFn(x) =
1

n

n∑
i=1

1xi≤t (3.5)

where 1xi≤t is the indicator function. It is a step function and outputs 1 if xi ≤ t is true

or else 0.

Step 3 (Test the hypothesis). The next step is to test the empirical distributions of RND

(EDFOFD) and OFD (EDFRND) under the hypothesis that both samples come from



Chapter 3. Automated Knowledge Acquisition 51

a common distribution. If the hypothesis is accepted, then OFD is normal as RND is

known to be normal. Otherwise if the hypothesis is refuted, then the OFD is not normal.

This is determined by finding the maximum set of distances (or differences) between the

items of EDFOFD and EDFRND using Equation 3.6:

D = sup |EDFOFD − EDFRND| (3.6)

where sup is the supremum or maximum of found distances. The maximum distance

value, D, is used to determine if the hypothesis is acceptable or void by calculating a

critical value using the Equation 3.7.

D > 1.36

√
n+m

nm
(critical value) (3.7)

where n is the size of EDFOFD and m is the size EDFRND. If D is greater than the

critical value, the hypothesis is acceptable, and hence the OFD will be considered as a

normal distribution, otherwise not normal [139].

Step 4 (Step-4: Repeat the test for better accuracy). This process is repeated with

several, distinct reference normal distributions that are generated from the same pair of

values from OFD. The dominant outcome of hypothesis, which is either true or false,

is considered as a final outcome. The multiple tests improves the consistency of TSKS

tests, which consequently provisions better support values for correlation mining.

Consider an OFD shown in Equation 3.8. The total number of objects in OFD1 is 12,

minimum value is 1, maximum value is 144, average is 41.58 and sum of all elements is

499. The empirical distribution of OFD, EDFOFD1 , is presented in Equation 3.9.

OFD1 = {1, 2, 3, 4, 14, 22, 31, 59, 60, 68, 91, 144} (3.8)

EDFOFD1 = {0.08, 0.17, 0.25, 0.33, 0.42, 0.5, 0.58, 0.67, 0.75, 0.83, 0.92, 1.00} (3.9)



Chapter 3. Automated Knowledge Acquisition 52

Now consider the RND shown in Equation 3.10. It is generated using the minimum

(1) and maximum (144) values of OFD1. The total number of objects in RND1 is 12,

minimum value is 9.80, maximum value is 137.35, average is 71.09 and sum of all elements

is 853.09. The empirical distribution of RND, EDFRND1 , is presented in Equation 3.11.

RND1 = {9.80, 40.60, 43.03, 57.11, 60.50, 73.42, 74.15, 79.30, 82.98,

90.93, 103.92, 137.35}
(3.10)

EDFRND1 = {0.08, 0.17, 0.25, 0.33, 0.42, 0.5, 0.58, 0.67, 0.75, 0.83, 0.92, 1.00} (3.11)

After applying Equations 3.6 and 3.7 on EDFOFD1 and EDFRND1 , the value of D is

found to be 0, which is not greater than the critical value 0.54. Hence, the hypothesis

is proven false. After repeating this process for 12 times (as there are 12 elements),

the dominant output still comes out as false. This means OFD1 has failed the TSKS

test and is considered as not normal. The Equation 3.4b will used to define a range

of support values for OFD1. The minimum support value would be
41.58

499
= 0.08,

whereas the maximum support would be
144

499
= 0.29. Therefore, the ARM algorithm

will mine all those (object-based) association rules, whose support is between 0.08-0.29.

At this stage, correlations amongst event objects have been discovered and extracted,

and the next stage is to translate these relationships to determine connections among

event types. The object-based rules describe how objects contained in event entries are

related in a particular machine; however, the aim of this work is to determine generic

relationships amongst event types.

3.2.3 Event-Type Association Rules

As previously defined and repeated to increase readability, the object-based rules are

in the form of Xi → Yi, where (Xi, Yi) ⊆ O and Xi 6= Yi. The process of convert-

ing them into event-type rules requires matching objects belonging to both Xi and Yi

separately within all event entries, and extracting the event types of matched entries.

This matching process accounts for both similarities and dissimilarities by considering:

the number of matched objects (matched), the number of objects missing from a rule



Chapter 3. Automated Knowledge Acquisition 53

but exists in the event entry (missing) and number of objects that are in the rule

but missing from event entry (additional). The formula used to determine similarity is

(matched/(matched+missing + additional)). If a similarity of 0.70 or above is found

between the objects of Xi or Yi of a rule and event entry, it is considered a strong match

to extract feasible event types. The similarity threshold is flexible and depends on the

user, where a high value will generate higher quality rules but lower in quantity, whereas

a lower value will generate a higher number of rules that might be of a lower quality.

For example, consider an object-based rule X0 → Y0, where X0 = {a, b, c} and Y0 =

{a, b, c, d, e, g} and two event log entries E0 = {a, b, c, d, e, f} and E1 = {a, b, c, d}. All

elements of X0 are fully matched with E0, but X0 is missing 3 elements that are present

in E0. Hence the similarity amount will be
3

(3 + 3 + 0)
= 0.167. Again, all elements of

X0 are fully matched with E1 as well, but X0 is missing 1 element that is present in E1.

Hence the similarity amount will be
3

(3 + 1 + 0)
= 0.75. On the other hand, the elements

of Y0 are not a full match with E0, and the similarity amount is
5

(5 + 1 + 1)
= 0.71.

Likewise, the elements of Y0 are not a full match with E1, and the similarity amount is
4

(4 + 0 + 2)
= 0.67. Therefore, the rule X0 → Y0 will become E1 → E0 as X0 and E1

have 75% similarity, whilst, the Y0 and E0 have 71% similarity.

In this manner, the proposed solution processes LHS and RHS of all object-based rules,

which are then replaced with corresponding event types (numeric identifiers). At this

point, there is a possibility of same event type occurring in both LHS and RHS. In that

case, the event type having the highest similarity with rule objects remains, whilst the

other one is removed. If both events have equal similarity to their respective LHS and

RHS of a rule, both events will be excluded from the event-based rule to remove the

error and prevent any ambiguity as well.

The correlation rules among events are now grouped together. It is clear that rela-

tionships exist between events as evident from the object-based rules. However, the

information of temporal ordering of events, i.e. which event occurred first, second and

so on, is currently missing from the rules. This is problematic as temporal ordering is

important to identify the order by which events occurred, and thus the order of actions

performed on the monitored system. For now, due to unknown temporal ordering, an

undirected edge symbol (−) is used to represent the undefined direction in the event-

based association rules. For example, in an object-based rule, if the LHS objects match



Chapter 3. Automated Knowledge Acquisition 54

with 1234 and 4567 event types, while the RHS objects 5678, the resultant event-based

rule will be denoted as {1234, 4567} − {5678}.

3.3 Sequences Of Event Relationships

This section presents the process of identifying the order of events in event-based rules

by employing a temporal metric. Following on, individual rules are formulated into

sequences of events which are later validated as well.

3.3.1 Temporal-Association Relationships

Now that the event-based correlation rules have been established, it is necessary to

determine the ordering of events within each association relationship. The event logging

mechanism attaches time-stamp with every entry. The proposed algorithm utilises a

temporal metric for ordering of events, which is based on the time-stamp of entries. In

other words, the ordering of events in all rules is determined based on when the events

were generated and logged. According to a survey [140], applying temporal metric to

several algorithms has improved the quality and efficiency of results in different domains,

such as statistics, machine learning and databases. The survey mainly targeted those

algorithms that take sequential data streams and discover interesting patterns. This

research presents a new Algorithm 1, which takes the event-based rules and the event

log dataset as input and assigns a direction to each event relationship, based on the

temporal accuracy values.

The algorithm starts by iterating over event-based rules on line 3 and determines all

pairwise subset combinations between the items of LHS and RHS on line 5. For a rule

(x1, x2) − (y1, y2), the subset would be (x1 − y1), (x1 − y2), (x2 − y1) and (x2 − y2).

The total number of subsets is the product of the number of elements on LHS and

RHS, which is 2 × 2 = 4 in the example. The main reason behind this approach of

finding all subset combinations is to determine if there exists a temporal link between

each pair of correlated events. Processing each subset combination of all rules is a

computationally expensive task, especially if there are large number of event-based rules.

Several techniques do exist that can decrease the number of rules, and as a result decrease

the time and resource consumption of overall process, such as iterative rule pruning based



Chapter 3. Automated Knowledge Acquisition 55

Algorithm 1 Identifying and filtering temporal-association rules.

Input: Set of event-based rules R = {r1, ..., rn}, where r = (rx − ry), and rx and
ry consist of at least one EventType each

Input: Set of ordered event log entries D containing 2-tuple of EventTypes and
their corresponding objects, which were used in creating object-based associa-
tive rules

Output: Set of temporal-association rules C = {(c1, TAA1), ..., (cn, TAAn)},
where c = (cx → cy) and cx results in cy event and TAA is the temporal
accuracy of relationship

1: procedure Temporal-Association-Relationship
2: Initialise C ← ∅
3: for all ri ∈ R do
4: (rx, ry)← ri
5: for all EventTypex, EventTypey ∈ rx, ry do
6: PosEx ← GetIndicies(EventTypex, D)
7: PosEy ← GetIndicies(EventTypey, D)
8: tf ← Count(∀x ∈ PosEx < (∀y ∈ PosEy))
9: ts ← Count(∀y ∈ PosEy < (∀x ∈ PosEx))

10: Initialise TAA← 0
11: Initialise direction← 0
12: if tf > ts then
13: TAA← tf/(tf + ts)× 100
14: direction← 1 . means X → Y
15: else if tf < ts then
16: TAA← ts/(tf + ts)× 100
17: direction← −1 . means Y → X
18: end if
19: if TAA > 50 and direction is 1 then
20: C.Add((EventTypex, EventTypey), TAA)
21: end if
22: if TAA > 50 and direction is −1 then
23: C.Add((EventTypey, EventTypex), TAA)
24: end if
25: end for
26: end for
27: end procedure

on a user-defined criteria [141] and rule pruning based on a probabilistic classifier [142].

However, inspecting each subset combination reduces the risk of missing any interesting

rule that can be beneficial for the user, hence improving the quality of overall process.

In this research, we trade-off time and resource consumption with quality, therefore

generating high accuracy rules.

The next step is to determine the temporal-association accuracy (TAA) of all subset

combinations from each event-based rule. This will facilitate the conversion of correlation



Chapter 3. Automated Knowledge Acquisition 56

rules into temporal-association relationships. The TAA value depicts the number of

times a certain relationship was found accurate according to the given dataset, i.e.

correct event ordering based on the temporal sequencing of events. So if an event was

logged first with respect to time, it will appear first in the event ordering as well. It

is also demonstrated by Pearl [143] that the temporal ordering of entities can provide

beneficial results in inferring the practical and useful event connections. Processing

events based on their temporal sequence does introduce a degree of uncertainly as we

cannot measure reliability of the temporal sequence. For example, it could be possible

that the event logging processes operate at a low system priority and the process of

raising an event may be queued during high priority processing of other applications.

Hence to eliminate or at-least reduce this issue, we have used the event-generation rather

than event-written timestamp. Event-generation timestamp denotes the time at which

this event was triggered and submitted to the logging service, whereas, event-written is

time at which this event was received and written to the log file1.

To determine TAA value, the indices of event type from LHS (line 6), as well as RHS

(line 7) of a subset are gathered and saved in PosEx and PosEy lists, respectively.

The indices are acquired from database D and sorted in timely order. After that, by

comparing the elements of PosEx and PosEy lists, calculate the number of times each

LHS event occurred before every RHS event and save the count in tf , as shown in line 8.

Similarly, determine how many times each RHS event occurred before every LHS event

and count the value in ts (line 9). If the value of tf is found to be greater than the

value of ts on line 12, it means the LHS event (mostly) occurred before the RHS and

the direction of rule will be X → Y . Otherwise the direction will be Y → X due to else

condition on line 15. In case tf and ts are equal, the correlation rule becomes ambiguous

and the subset rule is ignored. The reason behind this two-way comparison is to find

the direction based on temporal validity and individually establish the TAA of every

subset. The TAA value is calculated as a percentage of times any correlation rule was

found correct as shown in lines 13 and 16. Every output subset rule has a minimum of

50% TAA value due to the two-way comparison. All subset rules are accumulated in

a set C for further processing along with the newly found directions (lines 20 and 23)

between event relationships.

1https://docs.microsoft.com/en-us/windows/win32/api/winnt/ns-winnt-eventlogrecord



Chapter 3. Automated Knowledge Acquisition 57

A threshold value of above 50% TAA is chosen to select temporal-association rules as

shown in lines 19 and 22. Due to these conditions, only those rules will be selected for

further processing, where LHS event occurred before RHS more than half of the times,

or vice versa. The purpose of the TAA value is to show the accuracy of respective

relationship, regardless of what it represents. From a deterministic view point, any rule

whose TAA value is less than 100% might be spurious, but 50% threshold value was

applied for three major reasons. First, higher threshold values lead to empty results

in some datasets, which may be due to the large amount of noise consisting of routine,

repetitive log entries. This produces a relatively inconsistent object-model and therefore

makes it difficult to obtain rules with 100% TAA. Second, rules with a lower TAA value

can still provide beneficial knowledge to user. Third, choosing TAA value above 50%

means that the LHS event occurred at-least once before in time than the RHS event or

vice versa in other case. Hence we selected this threshold value create a balance between

the quality and quantity of rules by tolerating somewhat ‘inaccurate’ rules, rather than

having none at all. The threshold value depends on the user and can range from 50%-

100%. This can either increase or decrease the quality results; however, 50% is sufficient

based on our empirical analysis.

For example, consider a hypothetical event log dataset containing 200 entries, and the

proposed solution outputs (1234, 4567 − 5678) event-based rule (as explained in Sec-

tion 3.2.3). The first step is to divide the rule into two subsets, i.e. (1234 − 5678) and

(4567 − 5678). Considering the rule subset (1234 − 5678), the event type from LHS

(1234) might potentially occur at E9, E36, E59, E73, E105 and the event type from RHS

(5678) at E21, E43, E57, E88, E112. The tf and ts values of (1234−5678) would be 14 and

11 respectively. As the tf value is greater than ts, the final temporal-association would

be (1234 → 5678) with 14/(14 + 11) × 100 = 56% TAA. Similarly, assume the same

process is repeated on (4567 − 5678) and the other subset comes out as 4567 → 5678

with TAA value of 70%.

3.3.2 Forming And Validating Sequences Of Events

Now that we have a set of temporal-association rules, the next step is to consider their

relationships as it is probable that the underlying security task performed by a hu-

man expert will be described by more than two events. In this section, we present



Chapter 3. Automated Knowledge Acquisition 58

a process to construct sequences of temporal-association relationships. The temporal-

association sequences demonstrate a complete set of events that were triggered while

conducting security-related activities. The approach starts by iterating over all subsets

{(cx0 → cy0), . . . , (cxn → cyn)} ⊆ C and creates groups of subsets that have common

RHS event type. After that, the solution combines the LHS event types of each group.

The reason behind this step is to identify and connect all similar events (taken from

the LHS of subsets) into separate groups that were performed to achieve corresponding

common goals (identical RHS of all subsets). Although at this point, each group is

an unordered set of events that represents one or more particular actions to conduct

a single security-related activity or configuration. For example, consider the following

subset rules: (cx0 → cy3), (cx1 → cy3) and (cx2 → cy3). The combined subset rules are:

(cx0 , cx1 , cx2 → cy3). This outputs a group, G, containing the combined subsets. Again,

each member g ∈ G will have one or more event types on LHS linking a single event

type on RHS.

The next step is to create an ordered set of events within every g ∈ G, so that each

group of correlated events can be formulated into a chain to depict the correct sequence

of events. The first step is to identify those two event entries, which have a maximum

time difference between them. Such two events will be used as the starting and ending

events of action(s) that were performed on the underlying system. Similarly, determine

the second to last event based on the time that had happened before the ending event.

Repeat the process until all events are covered. This process will organise the event en-

tries within g with respect to time; hence, creating the initial set of temporal-association

rules (or sequences of events). The next step is to validate the extracted rules. This

process calculates a TAA value of each pair again in the sequence. After that, it mea-

sures a average/mean of all TAA values, which is considered a collective TAA value of

the sequence. The final TAA value of each sequence will be at-least 50%. The sequences

having high TAA values that are more closer to 100% are deemed as more accurate and

fine-grained for the user.

Continuing the same example from Section 3.3.1, g = (1234, 4567 → 5678), and G

would be equal to g as there are only two subsets in total. Set G implies that all

events from LHS (1234, 4567) lead towards a single event on RHS (5678), which would

be considered as a common goal. Referring back to Figure 3.2, it can be seen that the

time difference between 1234 and 5678 is 11 seconds and 4567 and 5678 is 17 seconds.



Chapter 3. Automated Knowledge Acquisition 59

This means 4567 occurred 6 seconds before 1234, which is why it would be considered

a starting point. The final chain or sequence of temporally associated events would be

(4567→ 1234→ 5678). The TAA values will be calculated between the following pairs:

(4567 → 1234) and (1234 → 5678). Assuming the values were found to be 70% and

80% respectively, the collective TAA of the sequence will be (70 + 80)/2 = 75%. Hence

the chains of events are formulated using frequent pattern observation of events (ARM

algorithm) and temporal evidence yielded by Algorithm 1.

At this stage, temporally associated events have been arranged into appropriate se-

quences, which can describe the set of actions required to perform a certain assessment

or configuration task. However, according to the Simpson Paradox [144], correlation

does not necessarily imply causality. The presence of correlation between events does

not suggest that one event is the result of the occurrence of the other event. For ex-

ample, before it was known that smoking causes cancer, researchers assumed that the

symptoms like yellow teeth, hair loss and pale skin cause cancer. These symptoms are in

fact effects of smoking, which also leads towards the cancer. So first of all, if two events,

say 4567 and 1234, are not in an associative relationship, they cannot form a cause

and effect relationship. But if both events are directly associated and the correlation is

falsified when a third event 5678 is introduced, they are still not causally connected. It

means that 4567 and 1234 are dependent on 5678 and 4567 is not a direct cause of 1234.

Hence it is necessary to identify the most feasible cause, amongst a group of different

correlated events, as multiple events can lead to a single event. The discovery of cause

and effect relationships will indicate the progression of events, such that the first event

is (fully or partially) responsible for the second event. Moreover, the additional infor-

mation of whether a certain correlation is in cause and effect relationship will increase

the confidence in the accuracy of extracted knowledge. This motivates the need to find

the strength of causality in the extracted sequences of events.

3.4 Determining Causality

Causality may have different meanings for different datasets, which makes it difficult

to discover causal connections in a unified and standard form. The causal relationships

are also hard to explain as their justification depends on intuition. In the presented

work, causality defines what (one or more) activities in the underlying machine led to



Chapter 3. Automated Knowledge Acquisition 60

a particular activity. To put it differently, causality refers to the relationship of two

or more events, such that they inform of a finite sequence of actions, which were per-

formed one after another by an expert in order to improve the security of a vulnerable

machine. The causal relationship can be both static and dynamic. The static causality

means that ‘Event A must always occur for Event B to happen’, whilst, the dynamic

causality is ‘Event A caused Event B’ depending upon the circumstances, system envi-

ronment and runtime conditions in which the events were generated. As the extracted

temporal-association sequences (process described in Section 3.3.2) are not universal,

but subjective to the event log dataset, the causal relationships in our case are dynamic.

As discussed in Section 2.3.4, the existing algorithms are based on either Bayesian or

Constraint-based approaches. The Bayesian approach defines the cause and effect re-

lationship in terms of probability, whereas the Constraint-based approach establishes

it conclusively, i.e. either conditionally dependent or independent. Moreover, the

Constraint-based approach is considered as high in performance and efficiency for large-

scale datasets. Due to these reasons and benefits, this research uses constraint-based

approach to discover causal relationships among the correlated events. We first create

a directed acyclic graph from the given set of temporal-associative relationships as it

is a requirement for causal inference algorithms. This involves the careful elimination

of relationships, which do not satisfy the criteria. Following on, an algorithm is used

to determine the causality or causal rank of each relationship. In the output, the rules

with higher causal rank are deemed as more reliable.

3.4.1 Building Directed Acyclic Graph

A graph (G) is defined as a set of vertices (V) and edges (E), i.e. G = (V,E), where

V = {1, . . . , n} and E ⊆ V ×V . The set of edges is a subset of all ordered pairs of distinct

nodes. The set V contains n number of elements and corresponds to all unique event

types, whereas the set E represents their associations. An edge between event type i and

j is called directed if the condition (i→ j) ∈ E but (j → i) /∈ E is satisfied. A directed

acyclic graph (DAG) is a type of graph, where every edge is directed, i.e. does not have

conflicting edges and cycles. It is important to create a DAG for finding causality as the

conflicts and cycles would present inaccurate, confusing and recurring event relationships



Chapter 3. Automated Knowledge Acquisition 61

instead of providing useful knowledge. The remaining section explains the procedure of

creating DAG.

The first step is to iterate over all temporally associated sequences and create subset

(one-to-one event) rules of relationships. This atomisation process makes the implemen-

tation easier for further processing. The next step is to remove duplicate and conflict-

ing subset rules based on temporal-association accuracy (TAA) value. For example, if

E1 = (i → j), E2 = (i → j) and E3 = (j → i), and all three edges exist in G at

the same time, find the TAA value of each edge to prioritise them. First, the E1 and

E2 are duplicate edges. If TAAE1 ≥ TAAE2, then remove E2, otherwise E1. Second,

the E1/E2 and E3 are conflicting edges and the one with the lower TAA value will be

removed. These steps are necessary to eliminate ambiguities from the final result and is

also a condition to build DAG. It should be noticed here that the number of event types

will remain the same overall, and only the associations will be removed.

The next step is to remove cycles from the graph G. A cycle is defined as the path of

edges and vertices, wherein at least one vertex is reachable from itself and the vertices

and edges cannot repeat. The cycles are important to remove for an automated solution

as it would prevent continuous repetition/duplication of rules in the final results. The

proposed solution uses topological sorting using Kahn’s Algorithm to detect cycles [145].

The overall time complexity of Kahn’s algorithm is O(V + E). Kahn’s algorithm first

determines the number of incoming (in-degree) and outgoing (out-degree) edges for each

vertex. The process is started by traversing the neighbours of a vertex, whose in-degree is

initially zero, i.e. no incoming edge. The algorithm maintains an ordered list of vertices,

whose in-degree is or becomes zero during the process. For every traversed neighbour of

the vertex, the out-degree of the vertex and in-degree of the neighbour is reduced. The

vertices are added into the list as soon as their in-degree becomes zero. In case there is

a loop in the graph, the in-degree of any vertex on a cycle never becomes zero, and it

would not be added into the list. In current settings, we take all such (remaining) edges

and rank them on basis of TAA value. An edge with a lowest TAA is eliminated, and

the graph is checked for cycles again. This process is continued until the graph becomes

completely acyclic.

Consider the event temporal-association rules and their TAA values (in brackets) pre-

sented in the first column of Table 3.1. The event types are represented in terms of A,



Chapter 3. Automated Knowledge Acquisition 62

Original rules Stage-1: Re-
move Conflicts

Stage-2: Re-
move Dupli-
cates

Stage-3: Re-
move Cycles

1. A→ B (1.0) A→ B A→ B A→ B
2. C → B (0.9) C → B C → B C → B
3. D → B (0.8) D → B D → B D → B
4. B → E (1) B → E B → E B → E
5. F → E (0.7) F → E F → E F → E
6. B → A (0.5) × × ×
7. B → C (0.6) × × ×
8. B → E (1) B → E × ×
9. E → D (0.5) E → D E → D ×

Table 3.1: Example of converting temporal-association rules to a DAG by removing
conflicts, duplicates and cycles.

B, C and so on. There are nine rules in total and the table demonstrates the three-step

process of converting those rules into a DAG. In the first stage, conflicting rules are

removed based on the TAA value. The rules (A→ B) and (C → B) are in conflict with

(B → A) and (B → C) respectively, where the later two rules have lower TAA values

and hence eliminated from further processing as shown in second column. In the second

stage, the rule (B → E) occurred two times (at number 4 and 8), and one of them is

removed as shown in third column. In final stage, Kahn’s algorithm discovered a cycle

containing the rules (B → E), (E → D) and (D → B), where TAA values are 1, 0.5

and 0.8 respectively. Within these rules, the one with the lowest TAA will be removed,

i.e. (E → D). The remaining cycle-free rules are shown in the last column of Table 3.1,

which represents the conversion of temporal-association rules into a DAG. This DAG

will be now used as input to the causal inference algorithm to determine the strength of

causal relationship for each edge.

3.4.2 Inferring Causal Rank

Several models and algorithms are available to perform causality analysis in a graph.

Most of them are the variants of following two algorithms: Peter-Clark algorithm

(PC) [146] and the subsequent improved version named Fast Causal Inference (FCI) [147].

For this research, the FCI algorithm is applied as it allows hidden variables, is scalable to

high-dimensional data and has better accuracy. Moreover, the first half of FCI is same

as the PC algorithm, so the following section starts by explaining the PC algorithm

and then proceeds on to the FCI algorithm. Both PC and FCI are the commonly used



Chapter 3. Automated Knowledge Acquisition 63

constraint-based algorithms [148] that search for causal constraints among all vertices

and edges of a DAG, and output a unified model of causality.

3.4.2.1 PC Algorithm

The PC algorithm is a fundamental and powerful structure-learning algorithm for DAGs.

It evaluates patterns in the DAG to determine whether they are consistent with hypo-

thetical DAGs representing possible causal structures. The PC algorithm has also been

used in several real time applications, such as analysing orthopaedic implant data for

hip replacement signal detection [149] and discovering relationships among the daily

index values of the four prominent teleconnection patterns in the atmosphere [150]. An

efficient implementation of the PC algorithm for high-dimensional data is presented by

Kalisch and Buhlmann [151]. It consists of the following steps:

1. Create DAG skeleton;

2. Perform conditional independence tests;

3. Orient v-structures; and

4. Orient other remaining edges.

Step 1 (Create DAG skeleton). The skeleton of a DAG is created by converting all

directed edges into undirected ones of a graph. Consider three events X, Y and Z,

where X is connected to Y and Y is connected to Z. Regardless of the direction of

relationships in this graph, the PC algorithm considers them as the X−Y −Z skeleton.

Processing the skeleton of a DAG creates an additional layer of validation and assertion

of previously acquired relationships as the directions are nullified for this stage and it will

infer the causality without any bias. Following on, the algorithm creates an adjacency

matrix of the skeleton and performs a conditional independence (CI) test between each

adjacent pair of vertices (event types) in the skeleton. An adjacency matrix is a N ×N

matrix that is used to represent a finite graph of N vertices. The elements of the

matrix depict whether pairs of vertices are connected and represents a complete graph.

The CI test is based on the Causal Markov Condition, i.e. given parents, the event is

conditionally independent of all non-descendants or the event is conditionally dependent

on its parents (direct causes). In other words, the occurrence of event is independent of

every other event in the DAG, except its effects.



Chapter 3. Automated Knowledge Acquisition 64

1. X → Y ← Z

2. X → Y → Z

3. X ← Y ← Z

4. X ← Y → Z

Figure 3.4: Possible edges between a pair of variables (X and Z) given a third variable
(Y )

Step 2 (Perform conditional independence tests). The PC algorithm employs a d-separation

technique to perform CI test [152]. The ‘d’ in d-separation stands for dependence. It

claims that two variables X and Z are d-separated relative to a set of variables Y in a

directed graph, then they are conditionally independent on Y in all probability distribu-

tions such a graph can represent. In other words, the events X and Z are d-separated

if all paths that join them are inactive relative to other events, or simply, there is no

active path between them [153]. This means that the knowledge of whether X occurs

provides no information of Z occurring and vice versa. In our settings, the CI prop-

erty means that the connected events in a sub-path of graph are not related to each

other, and hence either the whole sequence of events is either incorrect or it is missing

some crucial events that are necessary to define events sequence (i.e. a complete expert

security action). Hence, the event relationships where the Causal Markov Condition

is satisfied are the least reliable in terms of causality as they are not dependent on

each other. In the original PC algorithm, the conditionally independent vertices and

respective edges are eliminated from the graph. However in the proposed solution, we

keep track of such relationships in another set and assign them a low priority. These

relationships, although having a low priority, are still temporally associated and might

bring interesting information to the user.

Step 3 (Orient v-structures). After performing the CI tests on the adjacency matrix,

the PC algorithm applies orientation rules to the skeleton of the DAG. The orientation

is a process of assigning directions to the two ends of undirected edges, forming an

equivalence class of the DAG. The first step is to consider each triplet of vertices (X,

Y and Z), such that the pairs (X, Y ) and (Y , Z) are each adjacent in the skeleton

but (X, Z) is not, based on Y being empty or not. Consider the first path presented

in Figure 3.4 in terms of X is conditionally independent of Z, i.e. X ⊥ Z. Both

events X and Z cause Y , but there is no connection between them. This is known



Chapter 3. Automated Knowledge Acquisition 65

as inactive path or conditionally independent, where Y is called collider in the theory

of d-separation [154]. This path will be assigned a low priority with respect to causal

strength by the proposed solution. Now consider the same path again, but assume that

the event Y is already known or observed. It means that Y has now become a condition

for X and Z (X ⊥ Z|Y ), so the conditioning set, unlike before, is not empty. The

independent causes between (X, Y ) and (Z, Y ) are made dependent by conditioning on

a common effect. Knowing X → Y can provide information about event Z, as Y ← Z is

the only other connection left and makes this path active. Hence such triplets of vertices

will be oriented into X → Y ← Z shape. This orientation is called ‘v-structure’ and

will be applied to all triplets of vertices in the DAG.

Step 4 (Orient other remaining edges). After identifying all v-structures, the PC algo-

rithm orients the remaining edges in a way that does not introduce a new v-structure

or a directed cycle. The directions are assigned based on whether a path is active or

inactive between a pair of items from adjacency matrix. This can be determined by

examining the remaining paths (2, 3 and 4) of Figure 3.4:

• Empty conditioning set – The event Y is unobserved. All of the following paths

are active, as Y is the non-collider, and allows X and Z to be connected without

any condition:

– In the second path, the event X is an indirect cause of event Z;

– In the third path, Z is an indirect cause of X; and

– In the fourth path, Y causes both X and Z;

• Non-empty conditioning set – The event Y is known. All of the following paths

are rendered inactive, as Y is the non-collider and blocking a connection between

X and Z:

– In the second path, the event X can cause Z, if and only if event Y occurs;

– In the third path, the event Z can cause X, if Y occurs; and

– In the fourth path, only event Y can trigger X and Z.

All inactive paths are assigned a low rank in terms of causality due to d-separation.

Table 3.2 provides a summary of finding active and inactive paths based on whether the

conditioning set is empty or non-empty.



Chapter 3. Automated Knowledge Acquisition 66

Table 3.2: Determining the active and inactive paths

Collider Non-Collider
Empty Conditioning set Inactive Active
Non-Empty Conditioning set Active Inactive

Based on the above discussion, the PC algorithm processes the skeleton of DAG and

assigns appropriate directions. As all graphs are represented by an adjacency matrix,

it allows the algorithm to be more efficient for the high edge-density graphs. However,

a drawback of PC algorithm is that it can propagate errors if a mistake is made in the

earlier stages. Furthermore, the presence of hidden variables limits the algorithm to

consider only subsets of the adjacent vertices of X and Z to decide whether they are

d-separated. It is therefore safe to assume that the initial skeleton may contain some

superfluous edges, due to lack of fully accurate CI tests, that can be eliminated (or

assigned low priority in our case). Such edges can be determined by the FCI algorithm,

which is described in Section 3.4.2.2.

3.4.2.2 FCI Algorithm

The FCI algorithm is an extension and more generalised version of the PC algorithm

that takes the output of PC algorithm and applies additional CI tests [155] to learn

the structure of graph. The PC algorithm alone might produce incomplete results due

to the presence of hidden variables in the DAG. A hidden variable, sometimes also

referred as confounding or latent, is an unrelated or rather meaningless variable that

correlates with both dependent and independent variables, i.e. it is an unobserved

hidden common cause [156]. In the current solution’s context, a true causal structure

among events cannot be inferred without exposing all hidden variables as there might be

other connections influencing the relationship. The FCI algorithm includes additional

orientation rules to discover and represent such relationships, and consequently provide

complete and sound output.

To perform the CI tests between the items of an edge (e.g. X and Z), the FCI algorithm

applies two additional functions; Possible-D-SEP(X, Z) and Possible-D-SEP(Z, X). The

Possible-D-SEP (PDS) of X and Z is defined as follows: any vertex Vi of graph G will

be in PDS, if there is a sequence of distinct adjacent vertices (path) φ between Vi and

X or Vi and Z, such that either (a) φ contains a collider; or (b) φ is not marked as



Chapter 3. Automated Knowledge Acquisition 67

a non-collider and X − φ − Z form a triangle. A triangle is a set of three vertices all

adjacent to one another. Hence all of those vertices that are not yet determined to be

conditionally independent are placed in PDS. The CI tests are performed for arbitrarily

many hidden variables that are found in PDS. This larger exploration leads towards

discovering relationships that were missed by the PC algorithm. Secondly, any vertex

that is not PDS does not require the CI test [157]. Hence the FCI algorithm is capable

of providing complete and sound set of causal relationships in a reasonable amount of

time.

The FCI algorithm uses a type of mixed graph, called Maximal Ancestral Graphs

(MAGs), for representing the collection of all conditionally independent relationships

between the observed variables (depicting events in our case). A mixed graph is a

vertex-edge graph that can have three possible edges: directed (→), bi-directional (↔)

and undirected (−). It can have at most one edge between any two vertices. A mixed

graph is ancestral if (a) there are no directed cycles and (b) no such vertex X, which is

an ancestor of any of its parents or any of its spouses. The MAG is a type of ancestral

graph, in which for every pair of adjacent vertices X and Z, there exists one or more

vertices Y that ‘m-separates’ them [158]. The m-separation is a graphical criterion to

encode conditionally independent relationships, and can also be defined as an equivalent

of d-separation in the DAG. It measures the graphical disconnectedness in MAGs. To

define m-separation, first consider the definition of its opposite ‘m-connecting’. A path

φ between two distinct X and Z vertices of the ancestral graph is m-connecting (or

active) relative to a (possibly empty) set of vertices Y , where (X,Z) /∈ Y , if (a) every

non-collider on φ is not a member of Y and (b) every collider on φ has a descendant

in Y . The two vertices X and Z will be m-separated given Y in G, if there is no path

m-connecting X and Z.

Another property of MAGs is the representation of marginal independence (MI) models

of DAGs. Consider the following scenario: given any DAG containing a set of both

observed and latent variables, there is a MAG of observed variables, such that X and

Z are d-separated by Y , if and only if X and Z are m-separated by Y . So, MI means

that only two events (X and Z) are considered independent while the third (Y ) is

completely ignored, i.e. the knowledge of event Y does not affect the occurring of events

X and Z. Based on MI property of MAGs, several MAGs can describe the same set

of conditionally independent relations, which were identified by (a) d-separation and



Chapter 3. Automated Knowledge Acquisition 68

(b) Possible-D-SEP with respect to latent variables, and graphically encoded by the m-

separation [159]. Such MAGs are considered to be Markov equivalent [160]. The multiple

MAGs generated by the FCI algorithm can have same adjacent vertices and (usually)

common edge orientations [161], which is why it is not fully testable with observational

data. This raises the need for a single, unified graph that is capable of representing

all MAGs simultaneously. The unified graph is the output of FCI algorithm and called

Partial Ancestral Graph (PAG).

A PAG describes causal features common to every MAG in the Markov equivalence

class. It has been proven [162, 163] that the output of FCI algorithm is maximally infor-

mative due to PAG being capable of holistically representing the directed, undirected,

partially directed and double-headed edges. A PAG can have three end marks for edges:

arrowhead (>), tail (−) and circle (o). It can form four kinds of directed edges: →, o−o,

o→ and ↔. The PAG has the same set of adjacencies as of MAGs and represents all

types of causal connections found by FCI algorithm. The presence of any edge shows the

conditionally dependent relationship, whereas the tail and arrowhead on an edge means

that they occurred in all MAGs. Following is interpretation of output edges [164, 165]

with respect to proposed solution’s context. Each edge is assigned a specific causal rank

between 0 and 4, where 0 is the lowest and 4 is highest causal strength:

1. X → Z: both X and Z are conditionally dependent, and X is a direct cause of

Z. This is the strongest causal relationship of all, and we have assigned this the

highest rank 4;

2. X o→Z: the algorithm is certain that Z is not the cause of X, but not sure

about the other way around as this relationship was found in all MAGs. We have

assigned this a rank 3;

3. X o−o Z: the algorithm is uncertain about whether X caused Z or Z caused

X. This uncertainty occurred because both of these relationships were found in

different MAGs. We have assigned this a rank 2;

4. X ↔ Z: the bi-direction indicates that this edge was influenced by one or more

hidden variables, and that lead to X and Z having a common cause. However

neither X causes Z nor Z causes X, they are spouses. We have assigned this a

rank 1 due to the lowest form of causality; and



Chapter 3. Automated Knowledge Acquisition 69

5. All other associations, where the FCI algorithm assigned either (a) undirected

edges to show lack of sufficient knowledge to form causal structures; or (b) no edge

at all to show the conditional independence between vertices, are given rank 0.

The reason being FCI could not establish any evidence of causal connection.

Our solution uses the R package called, pcalg, to obtain the PAG in the form of an

adjacency matrix, in which circle is denoted by 1, arrowhead by 2 and tail by 3 [166].

For example, to represent X → Z in terms of adjacency matrix, the algorithm will

insert 3 at Xth row and Y th column, 2 at Y th row and Xth column. Using the adjacency

matrix of PAG generated by FCI algorithm, all (directed) event correlations in the DAG

are assigned corresponding causality ranks based on the aforementioned criteria. The

implementation of FCI in proposed solution is somewhat similar to Linear Non-Gaussian

Acyclic Model (LiNGAM) algorithm [167] in assigning scores to edge directions. The

LiNGAM algorithm uses a statistical method known as independent component analysis

to develop causal structures and prune edges in the DAG. However, instead of removing

the event temporal-association relationships, the solution assigns a causal rank (priority)

to signify the strength of causal relationship. The conversion of temporal-association

into causal rules, referred as temporal-association-causal rules from this point, provides

an additional layer of confidence in terms of reliability and accuracy [168].

Continuing the example from Table 3.1, the extracted DAG is shown in Figure 3.5 (L),

whereas a resultant PAG along with an assignment of causal rank on each edge is shown

in Figure 3.5 (R). The PAG represents the temporal-association-causal rules and has 6

vertices (A, B, C, D, E and F ) and 5 edges. Notice that the vertices represent the

events and the edges are the relationships. Each (o→) edge between (D, A and C)

and B shows that B is not the cause of D, A and C, however the algorithm is not

certain if D, A and C cause B. Due to this uncertainty, the assigned causal rank is 3.

Similarly (Fo→E) shows that E is not the cause of F , but there is no evidence that

F causes E. At the point, the vertices D, A, C and F have been observed, where B

is conditionally dependent on (D, A and C) and E is conditionally dependent on F .

Given these dependence conditions, the algorithm decides that B is the cause of E, and

is assigned a causal rank of 4. In other words, if the conditionally independent events D,

A, C and F have occurred regardless of the order, then B is the cause event, whereas E

is the effect event. This categorical separation of events, which becomes known due to

the different causal ranks of temporal-association rules, helps in distinguishing between



Chapter 3. Automated Knowledge Acquisition 70

Figure 3.5: (L) DAG created from the temporal-association rules given in Table 3.1
and (R) a PAG created from DAG where each edge is assigned a causal rank, using the

FCI algorithm.

the (user) actions and (administrative) responses in terms of security as the actions have

no cause events, unlike responses.

3.5 Storing Rules

Now the temporal-association-causal rules have been established and will be stored in

a simple database. The schema of the database is shown in Figure 3.6. The database

contains two tables; (a) ‘Events’ to store event information and (b) ‘Rules’ to store the

rules. The ‘Events’ table contains a list event types, their descriptions and corresponding

objects. This information is used to elaborate the rules that makes it easier for the non-

experts user to understand. All event data is anonymised, such that it does not contain

any sensitive or personal information. In the ‘Rules’ table, each row represents a rule,

which consists of one cause and one effect event, and has three associated values: number

of times a rule was found in different datasets (counter), temporal-association accuracy

(TAA) and causal rank. These values are calculated as follows:

• Counter – When a new rule is inserted in the database, the counter starts at one.

After processing a new dataset, if the solution finds one or more rules that already

exist in the database, the corresponding counters of rules are increased by one.

The counter value depicts the persistence of a rule, i.e. if a certain rule occurs

multiple times, there is more chance of it to be true;

• Temporal-association accuracy (TAA) – This numeric value (50−100) is calculated

by Algorithm 1; and

• Causal Rank – This numeric value (0 − 4) is calculated by FCI algorithm as de-

scribed in Section 3.4.2.



Chapter 3. Automated Knowledge Acquisition 71

Figure 3.6: Database schema to store temporal-association-causal rules along with
the anonymised event type information

The rules acquired from all event log datasets are stored in a same table. The database

acts as a central repository of rules, and further allows the exploration of a larger

knowledge-base from multiple sources for a given problem. When new set of TAC

rules are extracted from an unseen dataset, the new and existing rules collectively go

through the process of inferring causal ranks again. Although this is a resource intensive

task, it is necessary to always keep updated rules and values, which are also free from

cycles, redundancies and conflicting rules. In case a mismatch is found between new and

existing rule, the rule with higher set of values will be stored in the database and the

rest will either be updated or removed.

3.6 Chapter Summary

In this chapter, a novel mechanism of acquiring knowledge from event log entries of

an operating system has been described. The knowledge is extracted in the form of

temporal-association-causal (TAC) rules, which are essentially a sequence or pattern

of connected events. Each sequence depicts specific action(s) performed for security

configuration or to remediate a security issue. All TAC rules are stored in the database

along with the relevant information for application.

The process starts by removing the routine entries from given event log dataset, and

then creates an object-based model of the remaining entries. The object-based model is

used as an input for the association rule mining (ARM) algorithm to learn correlation

rules among events. The support for the ARM algorithm is calculated automatically

using the same object-based model. The correlation rules are then transformed into



Chapter 3. Automated Knowledge Acquisition 72

sequences of temporally-associated rules using the timestamps of events. At the end,

causal inference algorithm is applied to the temporal-association rules that assigns a rank

to each relationship in terms of causal strength. In a nutshell, the event relationships

are defined by associations, ordered by time and consolidated by causation.

Most of the existing solutions for discovering event relationships use manual approach,

where human experts are involved at certain stage in producing the correlation rules.

Such techniques are not feasible for the complex and large-scale datasets as it would

require massive amounts of time and effort in processing and continuously updating the

rules. The proposed solution is fully automated and can process any number of event log

entries. Furthermore, the proposed solution applies dynamic causal inference for finding

cause and effect between events to produce more reliable results.



Chapter 4

Automated Planning

Utilising the extracted knowledge in the form of temporal-association-causal (TAC) rules

on a previously unseen machine is not feasible as algorithmic support is required. The

TAC rules present a collective set of expert security actions that can be applied to any

machine. However, it is unknown which actions will serve the purpose, i.e. only a

subset of actions might be required and useful for a particular security issue or missing

configuration. Another important aspect to consider is the order of acquired actions,

which might not be in the same order that would be applied on an unseen machine.

Therefore, a precise, intelligent and clear decision-making process is needed regarding

which actions to select for any given machine. The problem of selecting appropriate

actions for different settings is a deliberation problem, which is traditionally performed

manually by human experts. However, the manual technique demands knowledge, can

be error-prone and requires a significant amount of time, effort and resources. So we

overcome this challenge by employing automated deliberation techniques in the form

of Automated Planning (AP). This is particularly an attractive solution for security

assessment and configuration as previous applications in the similar areas have shown

that it can potentially provide a method of eliminating representation and planning

complexities along with finding the most efficient solution and reduce manual effort.

Hence, this chapter describes the final stage of the research, which is to model the TAC

rules into discrete actions with a precondition and effect, and utilise AP techniques to

increase the usability of the proposed solution.

73



Chapter 4. Automated Planning 74

4.1 Classical Planning

The origin of AP can be traced back to a General Problem Solver (GPS) developed in

1963 [169]. The GPS takes a problem and divides it into sub-goals before reaching the

final goal. It uses means-ends analysis to identify and reduce the differences between the

current state and the goal state. Later on, another approach for planning was introduced,

called as situation calculus [170]. This approach provides a theoretical framework to

represent actions with clear semantics by ‘reify’ situations. The meaning of reify is

to treat something abstract as an object. This introduced the concept of functions,

planning strategy, actions and logic along with the predicates containing variables and

constants to describe a situation or state of the world. Classical planning is the name

that is given to such earlier methods of planning.

In Artificial Intelligence (AI), problem solving is defined as an organised search through

a range of predefined actions to achieve particular goal from a present condition. It also

involves synthesising domain models and domain-specific constraints. The AP is a type

of general problem solving and has been a widely researched discipline of AI for nearly

six decades. The problem solving is performed by planning algorithms, also referred

as planners, which generally take (1) domain model that describes the knowledge in

the form of permitted actions and (2) a stand-alone problem instance that needs to be

solved as input and generate plan of actions to solve the given problem [1]. The planners

mainly deal with the order in which the activities should be performed, i.e. ‘what has

to be done’. Formally, the planners are responsible for the deliberation process, which

consists of reasoning with a knowledge-base of actions against a given problem and

explicitly arranges the output in a particular sequence to yield a sensible plan solution.

A complete plan solution starts from an initial state of the world and depicts all legal

actions to achieve desired goal state of the world. Notice that having sufficient and

correct knowledge, which is TAC rules in our case, is integral to the efficiency of planner

to produce useful plans and enable the autonomic properties.

4.1.1 Conceptual Model Of Classical Planning

To explain the fundamental idea of autonomous planning, a full conceptual model is

shown in Figure 4.1. It consists of the following three components:



Chapter 4. Automated Planning 75

Figure 4.1: Concept of AI planning (inspired from [1])

• Planner – produces a plan (ordered set of actions) for a specified problem instance

using the knowledge encoded in a domain action model;

• Observer – examines the current state of the system and chooses an action from

the plan based on a state-transition function; and

• State transitions – a system that progressively performs the state transitions ac-

cording to the actions received from the observer.

4.1.2 Formalisation

The formalisation is based on the state transitions system, which is the dynamic mod-

elling of transitions from initial to goal states. A dynamic model describes that how one

state transforms into another state. The state transitions system employed by the AP

algorithms is a 3-tuple
∑

= (S,A, γ), where:

1. S = (s1, s2, . . . ) is a finite set of states;

2. A = (a1, a2, . . . ) is a finite set of actions; and

3. γ : S ×A→ 2s is a state-transition function.

A state is the factored representation of a ‘state of the world’ containing the combined

domain knowledge, which is gathered through agents in manual, automated or both

ways. Actions are transitions that are determined by the planer. If a ∈ A is an action

and γ(s, a) 6= ∅, the action a is valid for state s.

A solution P is a sequence of actions (a1, a2, . . . , ak) respective to a sequence of state

transitions (s1, s2, . . . , sk), such that s1 = γ(s0, a1), . . . , sk = γ(sk−1, ak), and sk is the



Chapter 4. Automated Planning 76

desired goal state. The model’s configuration is represented by a set of first-order pred-

icates that uses quantified variables over non-logical objects. The predicates are subse-

quently modified through the execution of each action, a = {pre+, pre−, eff+, eff−},

where pre+ and pre− are the first-order preconditions that are positive and negative in

the action’s precondition list, respectively. Similarly, eff+ and eff− shows the action’s

positive and negative effects.

4.1.3 General Assumptions

Following list provides the common assumptions that are made while modelling the

knowledge. Such assumptions limits the complexity through abstracting the problem,

as well as defines the boundaries of the modelling process:

1. The system
∑

is fully observable. The domain model contains complete knowledge

regarding security assessments and configuration;

2. The system
∑

is deterministic, which means applying an action to a state always

outputs a single successor state [171]. The domain model and problem instances

are already known and there is no uncertainty involved, i.e. the output plan is

predictable and will be found if it exists;

3. The system
∑

contains finite number of actions, where each action represents a

relationship between two events;

4. The system
∑

is static. It is fully controlled by the planner;

5. The goals are restricted and explicitly specified. The objective is to identify any

sequence of state transitions that reaches the goal state(s);

6. A solution plan contains a linearly ordered finite sequence of actions;

7. A domain-independent planning approach is used, which enables general use of

constraints and resources to represent actions. This also eliminates future mainte-

nance challenges and allows the reusability of domains models across related areas,

including the development of new planning techniques;

8. The actions have no duration and there is no explicit notion of time; and



Chapter 4. Automated Planning 77

9. Any change in
∑

during planning will not effect the planning process, i.e. offline

planning.

4.2 Process Of Knowledge Representation And Modelling

Knowledge Representation (KR) is a method of describing expert knowledge and is

usually considered as a main issue of AP. The KR encodes the knowledge using symbols

that can be processed and manipulated by a software tool to take intelligent decisions.

It should include consistent and precise description of notions, facts, constraints and

actions of the world. A major aspect of AP process involves converting expert knowledge

into a formal domain model, such that it is valid, aligned with machine representation

formalism to solve complex problems and can be utilised by a large variety of application

domains. Another notable aspect is selecting a feasible representation language that can

comprehend the complexity of planning problems at hand.

To define a well-modelled scenario, consider the two constants D and K, where D is a

domain model and K is the real-world knowledge that D is representing [172]. The D

consists of symbols that describe and map the attributes and operations of K. A simple

example of K can be an administrative action, where a user creates a new password

that includes both lowercase and uppercase letters. To represent this as D, we can use

a symbol called, ‘Password’, along with corresponding arguments ‘User-1’, ‘Lowercase’

and ‘Uppercase’. The statements (or actions) of D correspond to a true value in the

real-world. So, if true in real-world, the D has ‘password of User-1 contains lowercase

and uppercase letters’ action to reflect the situation. Thus, by using a mapping function,

D represents a logical structure and an abstraction of K.

Modelling real-world scenarios can be a complex process, and correctness is of the essence

to obtain a quality plan solution. Hence it is necessary to validate domain models against

the knowledge. It is a challenging task as comparing domain model with real-world

scenario is not possible, and the consistency/equivalency cannot be proved formally.

However, several research studies [173, 174] have identified the following factors, which

should be considered while creating a domain model:

1. Accuracy – It is an informal process that matches the features represented in

domain model D with the real domain experts [175]. It checks the accuracy of



Chapter 4. Automated Planning 78

assertions in every state through comparison. It also involves checking consistency

within D that can identify errors;

2. Adequacy – The domain D would be considered as adequate, if it is neither missing

nor has any additional details with respect to real-world knowledge K;

3. Completeness – The domain D is considered as complete if it satisfies both accu-

racy and adequacy conditions. In addition, all real-world requirements should be

present in D, such that every acceptable action plan to a related problem should

be derivable from D; and

4. Operationality – There can be several domain models (D1, D2, · · · ) of any given

knowledge that output quality plan solutions. However, some of the models would

be more efficient in terms of computational resources in finding an acceptable plan.

Such models would be considered more operational.

4.2.1 Modelling Process

Although there is no standard process to convert the knowledge into a formal domain

model, but there are some general recommendations that can be used to perform sys-

tematic domain modelling process [176]. The first step is to conduct an early analysis

to identify the sources and environmental characteristics of the knowledge. This can be

done through the survey of similar applications and technical literature in that partic-

ular knowledge category. The survey will also help in collecting domain requirements.

The next step is to choose a modelling language to represent the actions and their rela-

tionships along with the identification of state variables, types, constraints and precon-

ditions/effects. After that, acquire the knowledge from available sources through either

manual or automated mechanisms. Following on, encode the domain model (manually

or automatically) to represent the knowledge using declarative descriptions. After de-

signing the domain, it is important to perform the verification and validation checks

to determine the model’s accuracy and completeness. Further steps include continuous

maintenance and improvement of the domain model according to the new additions in

the knowledge.

In this research, the knowledge acquisition and domain modelling process is performed

in an automated manner. The knowledge is present in the form of TAC rules among



Chapter 4. Automated Planning 79

other relevant information as described in previous chapter 2 and stored in the database.

The knowledge modelling is performed by a software tool that takes the TAC rules and

output a complete domain action model that can be utilised by supporting planners.

4.3 Representation And Utilisation Of Extracted Rules

A variety of knowledge representation languages has long been available to encode do-

main action models as described in previous Section 2.4.2.1. The choice of language

partially depends on the requirements of the planning application itself along with some

other factors, for example, is language commonly used, how many planner tools support

the language, level of support for operational aspects of the domain model, availability

of sufficient documentation etc. The language should be expressive, customisable and

structured, so that it can capture and represent complex scenarios of the real-world. It

should also contain a strong set of operator definitions that enables inference capability.

Apart from these attributes, the language should have a clear syntax and semantics.

The PDDL version 2.1 has been chosen in this research to represent event relationships

using the acquired temporal-association-causal (TAC) rules. It is a classical represen-

tation that allowed the use of typed state variables, numeric fluents and plan-metrics

in our research. It also improves the efficiency of a planning system in terms of mem-

ory usage by decreasing the number of instances it needs to create [177]. The PDDL

serves as a bridge between the knowledge acquisition phase and planning algorithm. It

uses simple and intuitive constructs that are sufficient to express the problem. Since

TAC rules have strict parameter, type and sequence requirements, failing to accurately

fulfil those requirements in the domain model would result in plans that would not be

beneficial for the users. This forces our PDDL representation of the TAC rules to be

quite verbose. On top of that, we take advantage of the optimisation metric of planning

algorithms that increases the quality and quantity of selected actions in an output plan.



Chapter 4. Automated Planning 80

4.3.1 System Definition

Choosing PDDL allows a categorical separation of elements belonging to domain and

problem representations. This common format of representation has been widely ex-

tended and provides better knowledge distribution and more direct comparison of sys-

tems and approaches. The PDDL-based encoding of extracted rules also made it possible

to choose an efficient AP algorithm out of many, therefore producing a quality plan of

actions. The following sections provide the detailed explanation of encoding TAC rules

that are stored in the database into a domain action model and the event log entries of a

vulnerable machine into a problem instance. Specific to our research, a PDDL planning

problem can be formally defined as a 5-tuple P = (s, f, a, i, g), where:

1. s is the set of all possible predicates along with their parameters. Each predicate

represents a unique event type and its relevant property/object names;

2. f is the set of all possible numeric fluents. A single fluent is used in our domain

model to accumulate action costs;

3. a is the set of all possible actions that can be applied to a given problem. Each

action represents a cause and effect relationship between two event types;

4. i is the set of predicates representing the initial state of a vulnerable machine.

Each predicate is initialised with the respective event type property/object values;

5. g is the description of goal that should be achieved; and

6. P is the output plan that contains sequence of actions discovered from initial to goal

state. Ideally, the plan should identify security issues and missing configurations

of the vulnerable machine, and then propose solutions as well.

4.3.2 Domain Modelling

Consider an example of TAC rule presented in Table 4.1. This information is used to

produce a domain action. It shows a cause and effect relationship between two events

4720 and 4673. The event type 4720 means that a new user account was created, whereas

4732 informs that the account was created by using administrative permissions. The

object names and other information given in the rule are imperative for the planning



Chapter 4. Automated Planning 81

Rule property Value

Cause
event

Type: 4720
Object names: DisplayName, HomeDirectory, HomePath, Pass-
wordLastSet, ProfilePath, SamAccountName, ScriptPath, Sub-
jectDomainName, SubjectLogonId, SubjectUserName, Subjec-
tUserSid, TargetDomainName, TargetSid, TargetUserName,
UserWorkstations

Effect
event

Type: 4673
Object names: ObjectServer, PrivilegeList, ProcessId, Process-
Name, SubjectDomainName, SubjectLogonId, SubjectUserName,
SubjectUserSid

Counter 3

Temporal-
association
accuracy

95

Causal rank 3

Table 4.1: An example of TAC rule for generating a PDDL domain action

algorithm to generate a quality plan of actions, which will consequently provide the

non-experts with an actionable knowledge. The remaining section will use the example

TAC rule to demonstrate the domain modelling process.

In this research, we encode the TAC rules and output a PDDL domain model file.

A domain model consists of types of objects, predicates modelling facts, functions to

handle numerical operations and actions. The objects and predicates are used to model

the underlying system and an action represents an evaluation or configuration step to

increase the security. A precondition depicts at what point the action is selectable

with respect to a problem, and an effect models a change to the objects, predicates

and functions, and is a step towards achieving desired goal. The cause becomes the

precondition, whilst, the effect event of a rule becomes the effect part of an action. This

is due to the reason that cause lead to the effect event and they are also ordered through

temporal metric.

4.3.2.1 Domain Name, Requirements And Types

The domain name is formatted as {EventRelations–<Number>}, e.g. EventRelations–

1. The domain model uses ‘typing’ and ‘fluents’ requirements. All unique object names

of cause and effect events in a TAC rule are encoded as variable names and types.

While the objects describe the entities involved in the occurrence of an event, defining



Chapter 4. Automated Planning 82

variables with types will also inform the particular entities required to perform the do-

main action. All variables that are used in the domain model have types, hence the

need for typing requirement. Using the example, a typed variable would be ‘?Display-

Name - DisplayName’. Furthermore, every TAC rule has three numeric values: counter,

temporal-association accuracy and causal rank. The representation of these numeric

constraints in the PDDL domain model needs fluent requirement.

4.3.2.2 Predicates

The predicates represent the set of unique events found in the TAC rules. A pred-

icate is a combination of event type and its corresponding parameter list. It is for-

matted as ‘(e <EventType> TYPED-PARAMETER-LIST)’. Using the example TAC

rule, ‘(e 4720 ?DisplayName - DisplayName ?HomeDirectory - HomeDirectory · · · ?User-

Workstations - UserWorkstations)’ is a predicate to model event type 4720. Notice that

the variables and types have same names, except the variables starts with question mark

symbol (‘?’).

4.3.2.3 Functions

A function or numeric fluent is way of storing numeric values in the domains actions,

initial state and goal state, and the values are accessible during the execution of planning

algorithm. A function named accumulative-weight is used in the domain model to

hold the amount of confidence or importance of every modelled rule. This function is

increased upon the selection of underlying action by a value that is the sum of counter,

temporal-association accuracy and causal rank values of the rule. Using the example,

the TAC rule (4720→ 4673) has a sum of 3 + 95 + 3 = 101.

4.3.2.4 Actions

The actions are responsible for changing the current state of the world. In our research,

the cause and effect relationship between events in the TAC rules is represented as a

action, and there are same number of domain actions as there are number of rules in the

database. An action has four components: name, parameters, precondition and effect.

The name of an action is formatted as {e <Cause event>-to-e <Effect event>}, e.g.



Chapter 4. Automated Planning 83

e 4720-to-e 4673. The combined list of unique object names from both cause and effect

of a TAC rule constitutes as a parameter list. Each domain action encodes all objects

(in the form of one or more parameters) that are required to make any configuration

change in the underlying system.

The precondition and effect are always written as and/or conjunctions. The precondi-

tion is composed of a single predicate that models the cause event, whereas the effect part

represents the effect event of a TAC rule, as well as the accumulative-weight function

that assigns a cost/confidence value to the action. A negative predicate is also placed in

the effect that prevents the consecutive selection of the same actions, involving the same

objects. It is false (void or inapplicable) before the action selection and means that the

given arguments have not been processed yet, and consequently marked true to depict

that the same arguments cannot be executed again. Note that the negative predicate

would not limit the repetition of actions in a plan. It would just prevent successive re-

dundancy that can occur due to absence of goal state and use of maximisation metric in

a problem instance (explained in Section 4.3.3.3). So the planning algorithm would not

allow the duplication of the same set of actions to forge a maximum accumulative-weight

value, and only generate a precise plan of actions.

4.3.2.5 Domain Model Example

Continuing the example, a complete domain action model of the TAC rule is provided

in Figure 4.2. The event types 4720 and 4673 have some objects in common, e.g.

‘SubjectDomainName’ and ‘SubjectUserName’. Such duplicate objects will be removed

for the parameter list.

4.3.3 Problem Instances

Problem instances are automatically constructed using a given domain action model and

the event log entries of a vulnerable machine. A problem instance contains the following

components: objects, initial state, goal state and an optimisation metric. The reason

behind using the domain model is to ensures that the object types and initial state of a

problem instance are restricted to the types and predicates of the domain model, thus

avoiding any execution errors during the planning.



Chapter 4. Automated Planning 84

(define (domain EventRelations--1)

(:requirements :typing :fluents)

(:types DisplayName HomeDirectory HomePath ObjectServer PasswordLastSet

· · · TargetDomainName TargetSid TargetUserName UserWorkstations)

(:predicates

(e 4720 ?DisplayName - DisplayName

· · · ?UserWorkstations - UserWorkstations)

(e 4673 ?ObjectServer - ObjectServer

· · · ?SubjectUserSid - SubjectUserSid)

)

(:functions

(accumulative-weight)

)

(:action e 4720-to-e 4673

:parameters (?DisplayName - DisplayName · · ·
· · · ?UserWorkstations - UserWorkstations)

:precondition (and (e 4720 ?DisplayName - DisplayName · · ·
· · · ?UserWorkstations - UserWorkstations))

:effect (and (increase (accumulative-weight) 101)

(not (e 4720 ?DisplayName - DisplayName · · ·
· · · ?UserWorkstations - UserWorkstations))

(e 4673 ?ObjectServer - ObjectServer · · ·
· · · ?SubjectUserSid - SubjectUserSid))

)

)

Figure 4.2: An example of PDDL action, which is created from the temporal-
association-causal relationship of two events. It also shows the relevant objects/pa-

rameters and an accumulative-weight value.

4.3.3.1 Problem Name And Objects

The problem instance is formatted as {Problem–<Domain name>}, e.g. Problem-

EventRelations–1. Using object or property name-value pairs of the event entries, values

will be used as objects, whereas the respective names will be assigned as types. Defining

types improves the quality of domain model as it categorises the objects of problem in-

stance. The planning algorithm uses these objects as constant arguments to the domain

actions. This is quite beneficial for the non-experts as these objects will be involved in

carrying out the security-related actions.

4.3.3.2 Initial State

The initial state models the current state of a vulnerable machine by using its security

event logs. It is a set of predicates, whose variable parameters are initialised/replaced



Chapter 4. Automated Planning 85

with the corresponding objects or constants. Such predicates are known as grounded

predicates. Each predicate represents a unique event type of a vulnerable machine. Only

those predicates are included in the initial state, which also occur in the domain action

model. In other words, all predicates of the initial state are also found in the domain

model. The order of predicates (or events) is not important as they are considered as a

collection in the initial state.

4.3.3.3 Goal State And Optimisation Metric

Defining a goal state in this particular case is a challenging task. First of all, we cannot

determine or even predict beforehand what actions need to be scheduled. Secondly, there

is no way of finding the set of one or all missing configurations in the target machine.

Several scenarios can be speculated at this stage. Let us consider a scenario where a

new predicate, say Goal-reached, is introduced. This predicate becomes part of every

action’s effect in the domain model as well as a goal state. Doing so will not work

because as soon as the planner finds a single action with respect to the initial state, it

would have reached goal and the planning process will be terminated. Again, consider

a similar scenario where each domain action is assigned its own unique predicate, for

example Goal-reached-1, Goal-reached-2, · · · , Goal-reached-N. All these predicates

form a goal state. This is not an acceptable solution as the planner would never reach

the goal unless every single action is found to be included in the plan solution.

Considering the aforementioned discussion, the goal state is kept empty. Also, a max-

imisation plan metric is applied in the problem instance to obtain the complete set of

actions or those with the highest accumulative-weight value in the specified planning

time. As the PDDL does not allow more than one metrics in a single problem instance,

we have used the sum of counter, temporal-association accuracy and causal rank as

an accumulative-weight. A combination of empty goal state and maximisation metric

enables the planning algorithm to explore all possibilities with respect to initial state

and find a quality solution. The planning algorithm will seek for the maximum total

accumulative-weight value of a plan, which is the sum of accumulative-weight of each

chosen action. In other words, the planning algorithm will choose the maximum number

of actions that have relatively higher accumulative values, hence finding an accurate and

complete plan solution for a given problem.



Chapter 4. Automated Planning 86

(define (problem Problem-EventRelations--1)

(:domain EventRelations--1)

(:objects

Test1 - DisplayName

NULL - HomeDirectory

NULL - HomePath

DS - ObjectServer

O 1794 - PasswordLastSet

SeTcbPrivilege - PrivilegeList

0x238 - ProcessId

C:\Windows\System32\lsass.exe - ProcessName

NULL - ProfilePath

test1@local - SamAccountName

NULL - ScriptPath

WORKGROUP - SubjectDomainName

O 0x3e7 O 0x105f5 - SubjectLogonId

IE8SAAD$ IEUser1 - SubjectUserName

S 1 5 18 S 1 5 19 - SubjectUserSid

IE8Win7 - TargetDomainName

S 1 5 32 - TargetSid

Administrators - TargetUserName

NULL - UserWorkstations

)

(:init

(= (accumulative-weight) 0)

(e 4720 Test1, NULL, NULL, O 1794, NULL, test1@local, NULL,

WORKGROUP, O 0x105f5, IE8SAAD$, S 1 5 18, IE8Win7, S 1 5 32,

Administrators, NULL)
...

(:goal (and ) )

(:metric maximize (accumulative-weight))

)

Figure 4.3: An example of problem instance generated automatically from a machine
that has poor security configurations

4.3.3.4 Problem Instance Example

A problem instance from a live system is presented in Figure 4.3. It was extracted from

a machine having poor security configurations. Every object is assigned to a type, for

example, Test1 - DisplayName represents an object Test1, which is of DisplayName

type. Same goes for the WORKGROUP - SubjectDomainName, where domain name of

underlying subject is WORKGOUP. The initial state is comprised of the grounded predicates,

and the goal is not explicitly specified. The accumulative-weight value is initialised with

zero and will be incremented (to maximum extent) according to the execution of domain

actions.



Chapter 4. Automated Planning 87

4.3.4 Automated Plan Generation

The plans (sequence of actions) are produced by a planning algorithm or planner,

which is capable of processing PDDL-based domain action model and problem instance

files [178]. The purpose of a plan is to show the progression of actions to achieve the

goal within specified constraints. In our context, a plan presents the series of steps for a

particular machine that shows the security assessment process and proposes a solution.

The planning algorithms can be categorised into two main types [179]: (1) guarantee

to discover the optimal solution, provided they are given enough time and resources,

and (2) generate the best possible plans within a predefined time with no assurance of

optimality. The domain model used in this research involves large number of actions

alongside numeric computations, and the problem instance might contain large number

of objects as well. Furthermore, there is a limited amount of time and computing re-

sources available for the planner. Hence, we have chosen a planning algorithm from the

second category.

The remaining section reviews the problem solving techniques to obtain a quality plan

of actions and also provides the concepts related to the general working of existing

planning algorithms. After that, it explains the process of generating plan solutions

with an example.

4.3.4.1 Planners

The first problem-solving planner, called Nets of Actions Hierarchies (NOAH), was de-

veloped in 1975 [180] that presented a practical implementation of conjunctive goals

and treated them as independent and additive. After that, a system known as Graph-

plan [181] was developed in 1997 that converted STRIPS-style specification into a plan-

ning graph, and then applied a graph analysis technique (satisfiability planning) to

produce partial-order plan solution. These solutions represent a sub-graph of the plan-

ning graph, contains all the facts from the initial and goal states, and might have several

parallel predicates occurring at the same time step. The main focus of Graphplan was

to increase the planning productivity and efficiency by generating the shortest possible

plan. Another similar system was developed in 1997 that integrated a stochastic/random

search algorithm into the satisfiability planning and improved the scalability issues [182].



Chapter 4. Automated Planning 88

One of the most successful planner was introduced in 2001, called Fast-Forward (FF) [183].

It proposed a new forward-chaining approach that unified a variant of hill-climbing ap-

proach with the Graphplan. The hill-climbing is used to perform a local and systematic

search, whereas the Graphplan acts as a heuristic estimator function that reduces the

search space. The FF planner also includes goal prioritisation mechanism that helps in

saving time on achieving goals that should to be considered in later stages. The repre-

sentation of numeric constraints is essential for modelling real-world problems. For this

purpose, the FF was extended to Metric-FF [184] planner in 2003 that allowed the use of

numeric constraints to enable arithmetic operations and the user-specified optimisation

metric, i.e. minimisation and maximisation of action costs for improving plan solution

quality.

Another planner, called Local search for Planning Graphs (LPG) [185], was introduced

in 2003 that combined stochastic and local search algorithms to support the features

of PDDL 2.1. The LPG is a domain-independent planner that employs an informed

search technique (described in previous Section 2.4.2.2). It is a winner of both third

and fourth IPCs. It is a complete planner but does not guarantee an optimal output.

It is also the first incremental planner that generates more than one valid plans, each

of which has improved the plan’s quality over the previous one. The plan quality is

flexible and defined through multiple criterion, such as number of plans to generate,

time restrictions and computing resource allocation. The LPG planner is also capable

of utilising best-first search to determine the search and execution costs of achieving a

precondition. These costs are calculated by using heuristic estimator functions [186].

Another important feature of the LPG is a better performance on large-scale planning

problems [187], which is achieved by creating a balance between finding quick and best

solutions.

Exploring a complete list of planners is beyond the scope of this thesis. However, the

above discussion shows that various planners are available to satisfy our requirements, i.e.

heuristics-based search planning, scalable to manage large datasets, and process PDDL-

based numeric fluents and optimisation metrics. For this research, we have adopted

the LGP planner to extract the ordered set of actions from our domain model and

problem instances that can improve the security of vulnerable machines. The order of

plan actions is important to perform the configuration tasks. The main reason of using



Chapter 4. Automated Planning 89

[0]: (E 4720-TO-E 4673 Test1, NULL, NULL, DS, O 1794, SeTcbPrivilege,

0x238, C:\Windows\System32\lsass.exe, NULL, test1@local, NULL,

WORKGROUP, O 0x3e7 O 0x105f5, IE8SAAD$ IEUser1, S 1 5 18 S 1 5 19,

IE8Win7, S 1 5 32, Administrators, NULL)

Figure 4.4: A simple plan generated by by the LPG planner

LPG is to exploit its incremental planning capability for identifying plans of increasing

quality within a user-specified time.

It should be noticed here that we can void the stochastic nature of the LPG planner by

adding a new predicate, say Check-all-Objects, to the precondition of every domain

action, and initialised in the problem instance. As this predicate will be true from the

beginning of planning, it will enable the planner to consider all objects and actions

before reaching a decision, regardless of the initial state. However, for a large-scale

domain model, this will require a significant amount of time and computing resources

that might not be always available. As this research is aimed at building an efficient

solution, we did not apply this technique.

4.3.4.2 Example

Using the simple domain action presented in Figure 4.2 and the problem instance pro-

vided in Figure 4.3, the LPG algorithm will generate a plan solution as shown in Fig-

ure 4.4. Although the plan is quite simple, it describes the plan generation process.

The objects correspond to the parameter list of the domain action and describe the

information that is required to perform the proposed operation. The plans shows that a

user account IE8SAAD$ was created in a network by another account Administrators.

The Administrators account performed the process with ‘SeTcbPrivilege’ permission,

which means it had system-wide authorisation to access any resource.

There is a possibility of multiple actions having same a precondition but different effects.

In that case, the action with highest accumulative-weight value will be included in the

plan and the rest of them will be discarded. Still, if the accumulative-weight is identical

as well in such actions, the LPG planner will employ the heuristic function to choose the

action that, in later stages of planning, will maximise the overall accumulative-weight

value.



Chapter 4. Automated Planning 90

It should also be noticed here that the plan solution includes only those actions from the

domain model, which were selected by the planner based on matching the initial state

of the problem instance. The matched initial state of a plan describes the security con-

cerns or some missing configurations, while the remaining part manifests the mitigation

actions. As the routine/meaningless events are filtered in early stages of creating TAC

rules and assuming the domain model comprises of relevant and sufficient knowledge,

the actions in a plan can perform one of the following tasks: (1) recognise pattern of

a security issue and (2) identify a security issue and propose a method to resolve it as

well. It is also possible that the plan delivers partial information; however, it would still

provide useful insight to some extent for the non-experts. Furthermore, the objects of

each action in a plan play an important role in conveying the desired level of information

as they belong to the vulnerable machine.

4.4 Chapter Summary

This chapter describes the representation and utilisation of knowledge acquired as the

TAC rules. This chapter begins by describing the conceptual model of classical planning

along with general assumptions. After that, it explains the process of knowledge rep-

resentation and domain modelling. The chapter also presents an overview of common

domain representation languages.

The representation of TAC rules is performed in two fully automated steps: (1) encoding

the rules into a PDDL domain action model and (2) converting event log entries of a

given vulnerable machine into a PDDL problem instance. After that, the domain model

and problem instance are used as input for the LPG planner to search a plan solution in

reasonable time. The plan is complete and sub-optimal, and it proposes the sequences

of actions that can provide security assessment and configuration steps relevant to the

vulnerable machine.

As mentioned before, the AP techniques have been successfully used to conduct pene-

tration testing on systems and networks. The application of AP is also integral in our

research as it provides several benefits, which are provided in the following list:

1. AP algorithms provide a fully automated and systematised deliberation mecha-

nisms to replicate the human expert actions;



Chapter 4. Automated Planning 91

2. The parameters and accumulative-weight values of domain actions enabled the

modelling of additional information specified in the TAC rule;

3. Objects in the actions of a plan belong to the underlying machine, hence providing

usable and relevant results for non-experts;

4. Ability to generate an optimal plan based on a metric, ensuring that actions with

the maximum accumulative-weight values are chosen to output the best results

against a given situation; and

5. The knowledge is presented in a standardised format and can be utilised by any

PDDL supporting planner, and thus distributing a benchmark domain model for

the AP community.



Chapter 5

Implementation and Evaluation

This chapter provides the details of proof-of-concept implementation along with the

evaluation process of the solution proposed in this research. The implementation in-

cludes the explanation of complete software development process, which is supported by

figures and and other visual aids for evidence and better understanding of the reader.

The software application is based on the theoretical foundation of the proposed solu-

tion, which is provided in the previous chapters. After building the application, it is

evaluated against the security expert knowledge to determine the quality, accuracy and

validity of the underlying concepts. This is based on the empirical analysis of evaluation

data and further includes performance and scalability comparison with manual security

assessment and configuration procedures. This chapter also discusses the limitations

and bottlenecks of the developed application in terms of live operation, environment

and usage.

5.1 Implementation

This section presents the specific details of software requirements, design and imple-

mentation of the proposed solution. Various aspects were considered during the design

and development stages of the solution, such as ease of usability for all users having

different technical knowledge, robust and suitable programming languages, clear and

precise format of input/output, error and exception handling, and higher flexibility. It

is important to use a structured approach to build the proposed solution as any logical

92



Chapter 5. Implementation and Evaluation 93

error/bug in the application will lead to the incorrect output, and negatively impact the

quantity and quality of final results.

5.1.1 Software Requirements

The proposed solution is implemented with the help of two separate, prototype software

applications. The requirements of both software applications are described in Chapter 3

and Chapter 4. To get a better understanding of the overall scheme, Figure 5.1 shows all

components of both applications: knowledge acquisition (1A) and representation (1B),

and knowledge utilisation (2). This figure summarises the steps taken from processing

the event log entries to producing a security action plan. Both applications should be

fully automated and fulfil all functional requirements. The synopsis of each application

is described in the following:

1. An application to perform the knowledge acquisition and representation process,

which consists of the following two modules:

(a) For the first module, read the event log entries of a machine that was config-

ured by security experts, remove the routine events and acquire the expert

security knowledge by learning user-activity patterns in the form of TAC

rules;

(b) Convert the TAC rules into a PDDL domain action model file, such that it

represents the acquired knowledge from a particular event log dataset. The

users should be able to enable or disable this feature;

(c) Store every TAC rule in a MySQL database. Each rule should have the

following information: properties of every event in the form of object-value

pairs, number of times this specific rule was found in different datasets, a

temporal accuracy value and a causal rank; and

(d) For the second module, collect all TAC rules from the database that were

acquired from one or more distinct event log datasets and convert them into

a single PDDL domain action model file to represent and utilise the acquired

knowledge.

2. The second application will perform the knowledge utilisation process, which also

consists of two modules:



Chapter 5. Implementation and Evaluation 94

Figure 5.1: Overview of the proposed solution represented in two phases. The first
phase is further divided into two segments; first, extract temporal-association-causal
(TAC) rules from the given event log dataset and second, represent the TAC rules in a
PDDL domain action model file. In second phase, a plan solution is generated for the

vulnerable machine to improve its security.



Chapter 5. Implementation and Evaluation 95

(a) For the first module, read the event log entries of a previously unseen, vul-

nerable machine along with the existing domain model to generate a PDDL

problem instance;

(b) Modify the default parameters of existing LPG planner software tool (details

are in Section 5.1.2.2) to accommodate the processing of domain models and

problems instances with a large number of objects, and use it to generate

a sequence of actions that can be used to perform security assessment and

configuration on the vulnerable machine; and

(c) For the second module, create a simple parsing tool that essentially converts

the output plan solution of LPG planner in a clear, descriptive format for

presenting the discovered security risks and proposed mitigation actions to

non-expert users.

Flexibility is one of the significant requirements for building the application. This is be-

cause the working of some features needs exploration before finding the best performing

implementation methodology. This will also allow the users to configure the software

application in a desired manner. For example, the proposed solution calculates the sup-

port range automatically for Apriori algorithm (Section 3.2.2); however, users should

also be allowed to manually input the minimum and maximum support values in case of

incorrect automated values. Another example is the elimination of temporal-association

rules based on a 50% threshold of temporal-association accuracy value (Section 3.3.1).

This threshold should be changeable by the user to achieve a desired balance between

the quantity and quality of rules.

Another requirement is the design of both applications that should cater the need of

all the potential users. For the knowledge acquisition and representation application,

the main focus should be on the expert-level users, who want to acquire domain action

models from configured machines. For the knowledge utilisation application, the main

focus should be on the non-expert users, who want to analyse and understand the secu-

rity status of vulnerable machines. Furthermore, in order to provide a better experience

to all kinds of users, both applications should display and explain the step-by-step out-

put of each module in a well-known and clear format, e.g. within console and HTML.

This is not an essential requirement for the developed solution to operate; however, it



Chapter 5. Implementation and Evaluation 96

can benefit both expert and non-expert users in terms of debugging and visualising the

results of overall process as shown in Appendix C.

The proposed solution should also aim to reuse the open-source code of existing tools

and libraries during the development of both applications (where possible). Such code

is generally reliable, tested, verified, crowd-sourced and will also minimise the develop-

ment effort [188]. For example, the Two-Sample Kolmogorov–Smirnov normality test,

performed in Section 3.2.2.1, has already been implemented in Accord.NET1 library.

Similarly, the source code of graph analysis and several causal inference algorithms used

in Section 3.4 is available in a Pcalg2 library of R language. Furthermore, the source

code of LPG planner3 used in Section 4.3.4.2 is also available and can be easily modi-

fied to fit our needs. The format of input and output of different components in both

applications are designed to be compatible with external tools.

5.1.2 Development Of Applications

Both applications have been developed using standard software engineering techniques.

The source code is written in the C#, Python and R programming languages. The

C# is used for graphical user interface, reading and processing event log entries, and

generating domain models and problem instances. The Python is used to implement

Apriori algorithm for association rule mining. The R language is used for causal analysis

by implementing Fast Causal Inference algorithm. Both applications are configured as

desktop-based and contain several modules, where every module is responsible for a

specific operation. Both applications are low in coupling and high in cohesion. The

coupling refers to the degree of different modules depending on each other, whereas

the cohesion refers to the degree of elements within a module belonging together [189].

Therefore, all modules are independent of each other, and at the same time all related

code is joined as close as possible. This approach also ensures high ‘Separation of

Concerns’, where every module can easily be modified without affecting the workings of

other modules in the application.



Chapter 5. Implementation and Evaluation 97

Figure 5.2: Screenshot of console application demonstrating the generation of (live)
PDDL domain action model using event log entries. This domain model only represents

the rules extracted from a single event log dataset.

5.1.2.1 Knowledge Acquisition And Representation

The knowledge acquisition and representation tasks are performed through a command-

line application. It has two parts that perform two distinct operations. First, generate

temporal-association-causal (TAC) rules directly from the event log entries and store

them in a database along with encoding the rules into a PDDL domain action model.

Second, generate a domain action model from the database by consolidating all stored

rules.

Figure 5.2 demonstrates the execution of first part of this application using an event

log file, named ‘5.evtx’, and producing a domain action model file, named ‘live-domain-

5.pddl’. It mainly consists of twelve steps. The input event log dataset contains 1,079

1http://accord-framework.net/docs/html/TAccordStatisticsT estingKolmogorovSmirnovTest.htm
2https://cran.r-project.org/web/packages/pcalg/index.html
3http://zeus.ing.unibs.it/lpg/



Chapter 5. Implementation and Evaluation 98

entries. The application extracted all unique event types, which are 28 in number, and

created an event frequency distribution (FD). The Standard Deviation (SD) and Mean

(M) of FD was found to be 70.93 and 38.54, respectively. As the coefficient of variation

(
SD

M
) is greater than 1, 5 event types were removed as their frequencies were higher than

the SD. After that, the application created the object frequency distribution (OFD) of

the remaining entries and conducted a Two-Sample Kolmogorov–Smirnov normality

test. The OFD was determined as normal distribution and the support range (SR) was

calculated as 5%−33%. Using the SR and 100% confidence value, the Apriori algorithm

generated 64,931 object-based association rules. These rules produced 9 chains of events,

which resulted in 10 temporal-association rules using a 50% threshold of temporal-

association-accuracy value. The entire set of these rules formed a Directed Acyclic

Graph (DAG) as no cycles, conflicts and redundancies were found. After that, a causal

rank was calculated and assigned to each rule in the DAG using Fast Causal Inference

algorithm. This produced the final set of TAC rules, which was stored into the MySQL

database and represented as a PDDL domain action model as well. Every step of this

application is performed in a fully automated manner, and are also capable of error

management and exception handling. It is worth mentioning here that the processing

of this application is based on batches. It can process a batch of event logs, specified by

a directory path, and generate individual domain action models against each dataset.

Every time an event log dataset is processed, the resulting TAC rules alongside other

relevant information are stored in the database. Another Figure 5.3 presents the second

part of the same application. It shows the process of generating a PDDL domain action

model file, named ‘database-to-domain.pddl’, directly from the database that contains

347 TAC rules. After creating a DAG of the rules, only 134 of them remained and

were encoded into a domain action model. Rest of the rules were eliminated by the

application due to cycles, conflicts and redundancies.

5.1.2.2 Knowledge Utilisation

The knowledge utilisation phase is based on three steps: first, generate the problem

instance; second, produce a plan solution; and third, convert the plan into a user-friendly



Chapter 5. Implementation and Evaluation 99

Figure 5.3: Screenshot of the same application demonstrating the generation of PDDL
domain action model from the existing rules stored in database. This domain model
represents the set of all those rules, which were previously acquired from one or more

event log datasets.

format. The knowledge utilisation mechanism is implemented through a graphical user-

interface application that guides the user to appropriately perform all steps in an ordered

manner.

The first part of the application takes event log entries along with the domain action

model that contains the security expert knowledge, and produces a problem instance as

shown in Figure 5.4. It is possible that the objects extracted from the event log entries

and used in the problem instance do not align with the input format of planner, and hence

will require alteration. For example, objects starting with a number or fully numeric

objects are not acceptable, so we added a ‘O <numeric object>’ prefix to denote them

as alpha-numeric objects. Similarly, some objects might contain special characters, such

as round brackets, colons, commas and so on, which are not permitted. Such characters

raise syntax errors during the planning process and will be completely removed if found

in any object.

The second part of the same application is to use the domain action model and problem

instance as input to LPG planner and produce a plan solution. The LPG produces

multiple plans as it is an incremental planner, where each increment or iteration has

increased quality. Therefore, only the last plan is displayed as an output as it would be



Chapter 5. Implementation and Evaluation 100

Figure 5.4: Screenshot of application that takes the domain action model and event
log entries of a vulnerable machine to generate a problem instance, representing the

current security state of the machine.

of the highest quality. As the source code of LPG is available, we increased the value

of constants MAX RELEVANT FACTS to 40,000 and MAX TYPE INTERSECTIONS

to 10,000 and recompiled the code to accommodate all problem instances, especially the

ones with higher number of objects. The developed application limits the maximum

amount of plans to 15 and time to 30 minutes. The reason behind enforcing 15 plans

limit is to find as many plans as possible; however, this limit is flexible and can be any

number from 2 and onward. The 30 minute execution time of the planner is programmed



Chapter 5. Implementation and Evaluation 101

Figure 5.5: Screenshot of the same application that takes the domain model and newly
generated problem instance to produce an action plan for expert security assessment

and configuration actions.

by-default and can be changed as well. Due to these limits, the execution of planner

will automatically terminate if it either finds 15 plans or exceeds 30 minutes of planning

process. The user can also manually signal the planner to exit. An example of plan

is shown in Figure 5.5, which is the 12th plan solution. This plan was found in 95.47

seconds, which means that the planner executed for 30 minutes and could not find more

than 12 plans. It should be noticed here that there is a repetition of actions in the plan.

This is due to the planner providing a collective solution for multiple objects of the same

types.

The final part of the same application is to convert the planner output into a more usable

and explanatory format, as shown in Figure 5.6. This is achieved by implementing a

simple plan parser that splits every action name into separate cause and effect events,

along with adding their event descriptions. The parser processes the entire plan to

describe the security issue and suggested solution. The order of parsed plan is kept same



Chapter 5. Implementation and Evaluation 102

Figure 5.6: Screenshot of the same application that contains a simple plan parser to
display the LPG planner output in an easy-to-understand format.

as the original plan. Also, every object-value in the action parameter list is assigned a

corresponding object-name to make it more descriptive. The object-names are extracted

from the given event log entries. The plan parser also includes a searching mechanism

that uses a simple string matching as well as regular expressions to find keywords in

event types, descriptions and object-value pairs.

5.2 Evaluation

This section presents an evaluation framework to explore the accuracy and performance

of the implemented solution. This involves empirical analysis of the automated learning

behaviour of the developed solution using test data. The implementation is a prototype



Chapter 5. Implementation and Evaluation 103

of this research and has been developed with the intention to assess the proposed tech-

nique from multiple aspects. The aims of the evaluation framework are stated in the

following:

1. Test the ability of the developed solution to automatically discover the patterns

of event relationships, which accurately depict the expert user actions for security

improvements; and

2. Determine the efficiency and performance of using automated over manual plan

solution in identifying security issues of the underlying machine and proposing

mitigation actions.

5.2.1 Challenges

According to a recent study [190], there is a critical deficiency of security event log

datasets that are operational and publicly available, especially from Microsoft Windows-

based operating systems. This is due to the security and privacy related concerns of

sharing data. The available datasets have limited access and other constraints regard-

ing their usage. Most of the datasets are not suitable for research purposes as they

do not provide a complete understanding of the context/environment and information

about the user activities that triggered the events. This can lead researchers to forge

assumptions about the fidelity and utility of event log datasets. So, one of the main

challenge in evaluating the developed solution is to find or rather produce benchmark

datasets that contain events depicting mitigation action(s) for predefined security vul-

nerabilities. Generating such datatsets would need a thorough understanding of event

logging mechanism and security auditing and policies, along with the expert security

knowledge. Without understanding the knowledge inside the datasets, it would be quite

challenging to evaluate the extracted sequences of event relationships.

The PDDL domain action model, which represents Temporal-Association-Causal (TAC)

rules acquired from the event log datasets, acts as a knowledge base for generating plan

solutions against specified problems. Therefore, the correctness of the domain knowledge

and modelling process is a critical factor to determine the overall quality of problem

solving process. According to multiple research studies [191, 192], the validation and

verification (V&V) of planning systems are one of the biggest challenges. In our context,



Chapter 5. Implementation and Evaluation 104

verification is the process of finding whether the actions of a plan are correct with respect

to the expert security knowledge, whilst, validation is the process of finding whether the

actions of a plan are correct with respect to the domain model.

As mentioned in Section 4.2, the V&V process is performed based on the ability of

operating in real-world settings, completeness and accuracy measures. Some tools are

available that can validate a plan solution against the respective domain model, such as

VAL [193]; however, there is no standard and dedicated process, automated or otherwise,

which can be used for verification. The knowledge acquisition and representation are not

mathematical procedures, thus a domain model cannot be measured on any accuracy

scale. To encourage automated planning researchers, the International Competition on

Knowledge Engineering for Planning and Scheduling (ICKEPS) has devoted a section

to present novel domain debugging, validation and verification mechanisms. It is con-

cluded in recent ICKEPS that the verification process is still relied on human expertise,

and there is a lack of cooperation and coordination between the experts and domain

modelling process [194].

The developed solution is the first system of its kind in terms of integrating automated

rule mining, domain modelling and knowledge utilisation mechanisms. The previously

proposed solutions employ human experts to define the event relationships, create and

encode rules, and then perform automated or semi-automated deliberation process. As

the aim of our solution is to replicate human expert actions for security assessment

and configuration of a machine, it would require a human expert to decide whether the

proposed sequence of actions for the problem instance is correct in terms of security

resolution. Therefore, accuracy analysis of the solution would require human assistance.

5.2.2 Methodology

The evaluation methodology adopted in this research is inspired from the testing of

several automated knowledge acquisition techniques [195, 196]. An overview of the

methodology is shown in Figure 5.7, and described in the following:

1. Obtain the event log datasets, where they are already known to contain events

describing expert mitigation and configuration actions for specific vulnerabilities;



Chapter 5. Implementation and Evaluation 105

Figure 5.7: Overview of the evaluation methodology

2. Using the datasets, generate automated domain models from the developed solu-

tion and manual domain models with the help of human experts;

3. Extract a problem instance from a machine that is known to be vulnerable;

4. Find plan solutions from both automated and manual domain models against the

same problem instance; and

5. Conduct a comparison between manual and automated plan solutions with re-

spect to sequences of actions and time to determine accuracy and performance,

respectively.



Chapter 5. Implementation and Evaluation 106

5.2.3 Process Of Evaluation

The developed solution has been evaluated using a set of security event logs acquired

from multiple, live computing machines. Here the term ‘live’ is used to express that

the machines are regularly used in the real-world operations and not solely for research

purposes. The reason behind including multiple machines in the evaluation process

is to verify that the developed solution is sufficiently adaptable and applicable under

different circumstances. The accuracy of the developed solution is based on whether it

was successfully able to extract knowledge from the configured machines, and then use

the knowledge to propose human-like security actions for unseen vulnerable machines.

This evaluation also determines the effectiveness and performance against a manual log

analysis approach that requires significant security knowledge and human resources in

terms of time and effort. It should be noticed here that the measured time displayed in

the evaluation results is subjected to change. It depends on the hardware specification

of a machine, and availability and amount of free computing resources. The remaining

section provides a detailed explanation of the evaluation process.

5.2.3.1 Data Collection

To acquire data for evaluating the solution, 21 machines are chosen that are part of

a university network and used on a daily basis by different kinds of users. All ma-

chines are configured by security administrators according to the university’s policies.

In addition, a tool called, Microsoft Security Compliance Toolkit4, was used to confirm

the implemented policies. This tool performs the comparison of actual and expected

machine configuration based on the given security policies, hence verifying the ground

truth. These machines have different operational roles/settings (e.g. student, staff,

administrator etc.) and configurations. Each event log dataset has a distinct set of

characteristics, such as amount of routine events, security-related activity, number of

entries and so on. As the specifications of security policies are already known, their in-

terpretation provided the ground truth and made it possible to determine the accuracy

domain model generated by the proposed solution.

4https://www.microsoft.com/en-us/download/details.aspx?id=55319



Chapter 5. Implementation and Evaluation 107

5.2.3.2 Knowledge In The Events

As described in Section 1.2, the security event log of a Windows-based system contains

a complete and organised information regarding the security-related activities of appli-

cations, system and users. Event logs are stored in local files and contain a repository of

different activities, such as adding, deleting and updating the firewall rules, modifying

the access permissions of a file or application, all attempts to log on a machine, change in

system configurations, escalating or deescalating rights of user accounts, cryptographic

operations, etc. An ordered collection of such activities creates a complete and holistic

view of a security-related operation, thus providing beneficial knowledge for conducting

security assessment and system configuration. A few examples of the patterns that exist

in the 21 datasets are shown in Table 5.1. The table provides an evidence of how a se-

quence of events can describe a security-related operation that includes the identification

of a security issue and its remedial action. Extracting such patterns in an automated

manner and applying it to vulnerable machines will enable the users to perform expert

security configuration, without having significant security knowledge.

5.2.3.3 Automated Plan Generation

To generate the plan solutions, the first step is to extract the security event logs of 21

Microsoft Windows-based machines, which are in the form of ‘.evtx’ files. The second

step is to process each file using the developed automated tool to generate TAC rules of

event relationships, which are further encoded into respective domain action models. The

third step is to create a problem instance from a vulnerable machine, which is essentially

an entirely unconfigured machine containing a new copy of Microsoft Windows OS and

requires various security improvements. The reason behind selecting such a machine is

to evaluate the developed solution under adverse circumstances, and determine if the

solution can recognise all security issues. Finally, using the acquired domain models

and the problem instance, 21 plans are produced using the Local search for Planning

Graphs (LPG) planner to test the accuracy of the solution, which is based on the ability

of discovering correct set of vulnerabilities and suggesting mitigation actions for the

machine.



Chapter 5. Implementation and Evaluation 108

Description Events pattern
A user account was locked after several
failed logon attempts. The account was
deleted

1. 4625: An account failed to log on;

2. 4740: A user account was locked out;
and

3. 4726: A user account was deleted.

An administrator probed the system for
user accounts that have no password.
Upon finding such an account, the user
password was changed from empty to a
certain string

1. 4797: An attempt was made to query
the existence of a blank password for
an account;

2. 4724: An attempt was made to reset an
accounts password; and

3. 4624: An account was successfully
logged on.

An unauthorised user account altered
the security configuration settings of the
machine. The user account was identi-
fied and suspended

1. 4673: A privileged service was called;

2. 4891: A configuration entry changed in
Certificate Services;

3. 4739: Domain Policy was changed; and

4. 4725: A user account was disabled.

The remote security access was enabled
on the machine, and several system ob-
jects were accessed by a user account.
The remote access was removed along
with the user rights

1. 1149: A successful RDP network con-
nection was established;

2. 4624: An account was successfully
logged on;

3. 4656: A handle to an object was re-
quested;

4. 4663: An attempt was made to access
an object;

5. 4705: A user right was removed; and

6. 4729: A member was removed from a
security-enabled global group.

Critical services like Firewall, event log-
ging and IPsec failed to start on the user
logon. All services became operational

1. 4712: IPsec Services encountered a po-
tentially serious failure; and

2. 4709: IPsec Services was started. Or

1. 5030: The Windows Firewall Service
failed to start; and

2. 5024: The Windows Firewall Service
has started successfully.

Table 5.1: Examples of security-related operations expressed in terms of order set of
events. The events are displayed as <Event type>: <Description> format.



Chapter 5. Implementation and Evaluation 109

Figure 5.8: Process of manually extracting the knowledge from an event log dataset.
The user can view all event entries along with their types, descriptions and objects. The
event relationships and corresponding ‘accumulative-weight’ values are defined that are

further encoded into a domain action model using PDDL.

5.2.3.4 Manual Plan Generation

Using the same set of security event logs, 21 domain action models are manually pro-

duced by three university security auditors. The auditors are experts in their domains

and have a day-to-day job to monitor event logs and identify interesting patterns in

terms of user activities. The reason behind using three experts to create a manual

domain model is to perform a fair and impartial evaluation. A manual domain model,

similar to automated domain model, also represents the set of actions that were taken by

the security expert for either configuration or to resolve a particular issue in an underly-

ing machine; however, the only difference is that the event patterns are extracted by the

human experts. Processing a number of event log datasets, each with a large number

of entries, can be a time-consuming, exhaustive and error-prone task. To make it less

difficult, we developed another software application as shown in Figure 5.8. This simple

application does not play any role in the proposed solution, and it is only developed for

assisting the human experts in creating manual domain models. The feature set of this

tool includes:



Chapter 5. Implementation and Evaluation 110

1. Load event log dataset from an underlying machine or a stored file;

2. View all event log entries including types, descriptions and all empty/non-empty

object-value pairs;

3. Determine and display the frequency of all unique event types;

4. Search events based on a string or regular expressions matching. Both features

are implemented in a single search bar;

5. Allow the user to define sequences of events along with the ‘accumulative-weight’

value for each event relationship; and

6. Producing a PDDL domain action model file based on the event relationships

without manual encoding. The acquired PDDL domain is complete and without

syntax errors, such that it can be processed by the LPG planner.

Using the manually constructed domain models and the problem instance, 21 plan so-

lutions were produced. Each plan depicts the set of actions that human experts would

take to resolve security issues of the same vulnerable machine. The manual plan is cre-

ated using a combined knowledge of ground truth (i.e. security policies implemented on

the 21 machines) and expert opinions with respect to the security issues. Note that the

large amount of time, effect and security knowledge is required to generate a manual set

of security actions from large-scale event datasets. This further motivates the need for

our proposed automated solution, where the complete process is accomplished without

human intervention.

5.2.3.5 Accuracy

Accuracy is defined as a degree of similarity between a measured and a standard or

accepted value. In our case, the accuracy of developed solution is determined by com-

paring the plan solutions of manually and autonomously acquired domain models. As

mentioned before, each action in the plan solution involves action name and parameters.

The action name represents the relationship between cause and effect events, whereas,

the parameters represent the objects required to perform that particular operation. The

comparison process determines the number of correct, incorrect, additional and missing

actions of the automated plan, where:



Chapter 5. Implementation and Evaluation 111

1. An action of automated plan would be considered as ‘correct’ if the same rela-

tionship, i.e. have identical events and direction, is found in the manual plan as

well;

2. An action of automated plan would be considered as ‘incorrect’ if the same events

are discovered in the manual plan, but with an opposite relationship direction;

3. An action would be considered as ‘missing’ if it exists in the manual plan, but is

absent from the automated plan; and

4. An action would be considered as ‘additional’ if it exists in the automated plan, but

is not found in the manual plan. An important point here is that the additional

rules, even if they are proved to be correct, reduces the accuracy of automated

plan.

After finding these values, the second step is to apply the Equation 5.1 to calculate

accuracy. Note that if the automated domain model is complete and accurate, the

generated plans will represent similar steps that were taken by the human experts to

perform a certain security assessment and/or configuration task.

Accuracy =
correct

correct+ incorrect+missing + additional
× 100 (5.1)

It is possible that some of the extracted sequences of event relationships are obvious for

the security experts; however, novice users might still be unfamiliar with them. The

complexity and novelty of the knowledge presented by an automated plan is determined

by the problem instance, i.e. amount and severity of vulnerabilities in a underlying

test machine. If the machine has poor security, the automated plan would be large

and complex due to suggesting multiple sequences of actions. Otherwise, the plan will

involve relatively simpler and easy-to-configure actions. Further to that, the perception

of complexity of the presented knowledge is subjective to the experience and background

of the user. Henceforth, this empirical analysis only determines quantitative accuracy

of the event patterns, rather than the qualitative accuracy. This accuracy measure does

not examine how simple or difficult would it be for the user to implement the proposed

security solution. It only determines whether the set of actions are capable enough to



Chapter 5. Implementation and Evaluation 112

discover the security issues and recommend one or more solutions for the vulnerable

machine.

5.2.3.6 Performance

The performance of the developed solution is calculated by comparing the time required

for producing automated and manual domain models from a given event log dataset.

For automated domain modelling, the time refers to the overall execution time of the

knowledge acquisition and representation application. The time is measured between

reading the event log entries, discovering event relationships and the generation of the

PDDL domain file. On the order hand, time required for the manual domain modelling

process is the time taken by a human expert to manually probe the dataset and discover

event relationships using the assistive application, as discussed in Section 5.2.3.4. The

performance of the automated solution is demonstrated against the manual approach

by comparing the number of entries in each event log dataset and corresponding time

to create domain model from it. If the automated approach generates a domain model

similar to the manual approach in less time, it will be deemed as more productive.

Otherwise, if it takes more time, it will be considered as less effective.

5.2.4 Results

This section provides the evaluation results of the developed solution. The results are

based on the empirical analysis of multiple datasets, and demonstrate the accuracy,

scalability and performance of the proposed solution. The evaluation was conducted on

a 32-bit Microsoft Windows-7 virtual machine with two cores of Intel i7 CPU at 3.50GHz

and 4GB of RAM. All tools and applications described in previous sections are involved

in the evaluation process.

Table 5.2 presents the results from each phase of processing for all 21 event log datasets.

The table describes different kinds of information about each dataset, such as number of

entries, computed minimum and maximum support values, number of rules, generated

actions in the plan solution, etc. The table also includes the planner execution time of

each domain model and problem instance, along with the percentage of accuracy using

Equation 5.1. Notice that the time to produce any plan solution follows a consistent,



Chapter 5. Implementation and Evaluation 113

E
v
en

t
lo

g
d
a
ta

se
t

N
u
m

b
er

o
f

ev
en

ts
M

in
im

u
m

S
u
p
p
o
rt

M
a
x
im

u
m

S
u
p
p
o
rt

N
u
m

b
er

o
f

O
b

je
ct

-b
a
se

d
ru

le
s

N
u
m

b
er

o
f

E
v
en

t-
b
a
se

d
ru

le
s

N
u
m

b
er

o
f

T
em

p
o
ra

l-
A

ss
o
ci

a
ti

o
n

ru
le

s

N
u
m

b
er

o
f

T
em

p
o
ra

l-
A

ss
o
ci

a
ti

o
n
-C

a
u
sa

l
ru

le
s

N
u
m

b
er

o
f

a
ct

io
n
s

in
p
la

n

P
la

n
n
er

ex
ec

u
ti

o
n

ti
m

e
(s

ec
o
n
d
s)

P
la

n
a
cc

u
ra

cy

Event logs Rule Mining and Domain Modelling Automated Planning
1 5,027 0.07 0.59 516,608 14 84 32 37 123.03 87%
2 8,253 0.08 0.49 107,503 5 19 11 30 31 85%
3 521 0.25 0.49 147 6 11 9 5 10.55 83%
4 1,122 0.05 0.53 266,671 5 5 5 4 3.06 74%
5 1,079 0.05 0.33 64,931 9 17 10 9 6.19 88%
6 1,691 0.05 0.20 263,800 4 6 6 6 9.87 80%
7 1,714 0.13 0.46 978 9 58 21 32 72.64 87%
8 9,721 0.08 0.33 4,252 8 11 9 6 13.17 83%
9 9,770 0.05 0.32 4,027 9 21 12 5 5.38 73%
10 13,026 0.06 0.72 1,176 8 8 7 10 22.5 85%
11 10,948 0.05 0.62 1,349 5 33 11 9 8.69 85%
12 8,832 0.07 0.41 15,729 4 12 10 10 15.62 90%
13 3,403 0.05 0.37 97,574 10 7 6 9 8.27 78%
14 31,719 0.11 0.69 150,593 3 13 9 49 185.48 82%
15 1,072 0.07 0.26 14,681 7 15 11 6 6.62 86%
16 1,991 0.05 0.39 4,959 17 160 75 82 291.1 91%
17 826 0.05 0.40 280,482 4 8 5 6 8.27 81%
18 5,309 0.06 0.23 46,151 5 4 4 4 10.56 75%
19 69,854 0.05 0.37 66,600 10 16 15 72 263.55 92%
20 313,470 0.05 0.34 215 6 115 43 80 452.14 87%
21 32,688 0.15 0.43 237,155 4 6 6 7 6.69 80%

Table 5.2: Results of the empirical analysis of automated knowledge acquisition,
representation and utilisation mechanism proposed in this thesis. The evaluation is
performed on 21 different event log datasets obtained from live machines, which were
configured based on expert security knowledge. The results are presented as output
values from each stage of processing along with the amount of accuracy of each plan

solution against a given problem.



Chapter 5. Implementation and Evaluation 114

proportional relationship with number of TAC rules, i.e. if there are more number of

TAC rules, it will take more time and vice versa. The table presents the following

specifications about the evaluation data and results:

1. Number of event log entries ranges from 521 to 313,470;

2. Minimum support value ranges from 0.05 to 0.25;

3. Maximum support value ranges from 0.20 to 0.72;

4. Number of object-based rules ranges from 147 to 516,608;

5. Number of event-based rules ranges from 3 to 17;

6. Number of Temporal-Association rules ranges from 4 to 160;

7. Number of Temporal-Association-Causal rules ranges from 4 to 75;

8. Number of actions in plan solutions ranges from 4 to 82;

9. Amount of time to produce plan solution by the planner ranges from 3.06 to 452.14

seconds; and

10. Amount of accuracy of plan solutions ranges from 73% to 92%, where 4 are between

70%− 79%, 14 are between 80%− 89% and 3 are between 90%− 92%.

It should be noticed that the table only mentions the number of Temporal-Association-

Causal (TAC) rules, not the actions in PDDL domain model, as both are the same. The

acquired knowledge from individual datasets has shown reasonable accuracy. Different

kinds of plan solutions present varying amount of knowledge for a given security problem.

The amount of accuracy depicts that how much of the plan solution was correctly able

to resolve the problem. There is potential for a degree of uncertainty in finding the

accuracy as the human expert might not know the exact, complete set of events that are

produced when a particular security configuration activity is performed on a machine.

Moreover, there can be one or more alternative ways of executing the same task, which

might produce a different set of event entries. This can lead the expert to make erroneous

judgement regarding the validity of sequences of events. There is also uncertainty around

the security plan solution as LPG is a sub-optimal planner; however, its ability to

apply stochastic local search to draw plan without any goal state motivated the use.



Chapter 5. Implementation and Evaluation 115

Furthermore, any successfully found plan, optimal or otherwise, will provide one of the

many ways to conduct a certain security configuration.

Event
dataset

Number of
unique events
(total entries)

Automated do-
main modelling
time

Manual domain
modelling time

1 29 (5,027) 00h:08m:03s 00h:17m:54s
2 31 (8,253) 00h:04m:46s 00h:20m:40s
3 16 (521) 00h:00m:18s 00h:08m:53s
4 20 (1,122) 00h:03m:21s 00h:11m:54s
5 23 (1,079) 00h:01m:09s 00h:13m:27s
6 27 (1,691) 00h:02m:58s 00h:17m:18s
7 25 (1,714) 00h:02m:53s 00h:16m:40s
8 31 (9,721) 00h:04m:34s 00h:22m:28s
9 29 (9,770) 00h:04m:37s 00h:17m:15s
10 29 (13,026) 00h:07m:02s 00h:21m:58s
11 13 (10,948) 00h:05m:29s 00h:14m:26s
12 19 (8,832) 00h:05m:05s 00h:13m:46s
13 32 (3,403) 00h:07m:00s 00h:21m:20s
14 14 (31,719) 00h:26m:04s 00h:29m:10s
15 18 (1,072) 00h:00m:47s 00h:11m:06s
16 33 (1,991) 00h:01m:42s 00h:18m:20s
17 23 (826) 00h:05m:01s 00h:12m:46s
18 29 (5,309) 00h:03m:10s 00h:16m:54s
19 67 (69,854) 00h:38m:33s 01h:05m:41s
20 44 (313,470) 00h:30m:45s 02h:26m:41s
21 21 (32,688) 00h:27m:51s 00h:38m:53s

Table 5.3: Comparison of automated and manual domain action models with re-
spect to knowledge acquisition and representation time. The ‘Automated domain mod-
elling time’ is the execution time of developed solution producing an automated domain
model, whilst, the ‘Manual domain modelling time’ is the time taken by three human
experts for creating a manual domain model from the event log dataset. The time is

expressed in ‘h’ for hours, ‘m’ for minutes and ‘s’ for seconds.

Table 5.3 presents the amount of time required to generate automated (generated by

proposed solution) and manual (created by human expert) domain actions models. For

automated domain model, time depicts the execution period of a complete processing

cycle; reading the event log dataset, building event relationships and writing results in

a PDDL file. For manual domain model, the time only depicts the duration of creating

event relationships. The table mentions both total and unique number of events in a

dataset as these factors highly influence the increase or decrease in the processing time.

Following specifications are gathered from the table by comparing the processing time

of automated and manual approaches:



Chapter 5. Implementation and Evaluation 116

1. The maximum automated domain modelling time, 38 minutes and 33 seconds, was

taken by dataset-19 to process 69,854 entries having 67 unique events. The same

dataset took 1 hours, 5 minutes and 41 seconds for manual processing;

2. The maximum manual domain modelling time, 2 hours, 26 minutes and 41 seconds,

was taken by dataset-20 to process 313,470 entries having 44 unique events. The

same dataset took 30 minutes and 45 seconds for automated processing;

3. The minimum automated domain modelling time, 47 seconds, was taken by dataset-

15 to process 1,079 entries having 23 unique events. The same dataset took 11

minutes and 6 seconds for manual processing; and

4. The minimum manual domain modelling time, 8 minutes and 53 seconds, was

taken by dataset-3 to process 521 entries having 16 unique events. The same

dataset took 18 seconds for automated processing.

5.2.5 Discussion

This section presents the key findings and interpretation of the evaluation results along

with the demonstration of their significance.

5.2.5.1 Completeness

Consider the following enumeration of datasets from Tables 5.2 and 5.3: the dataset-16

has 1,991 total and 33 unique entries; the dataset-19 has 69,854 total and 67 unique

entries; and the dataset-20 has 313,470 total and 44 unique entries. The dataset-16

generated the highest number of Temporal-Association-Causal (TAC) rules (75) and the

corresponding actions (82) in the plan solutions; although, it is dataset-20 that contains

the highest number of event entries out of others. On the contrary, the minimum number

of unique entries (13) relative to total entries (10,948) were found in dataset-11, which

only produced 11 TAC rules and 9 actions in the respective plan solution. This indicates

that the dataset-11 has relatively large number of routine events that occurred frequently

over time, but they were removed during the initial stages of processing, thus reducing

the number of final domain actions.



Chapter 5. Implementation and Evaluation 117

The higher ratio of unique to total event log entries implies substantial user activity

and fewer routine/repetitive tasks. As expected in this case, the developed solution

produces a larger object-based model, and therefore results in more number of TAC

rules or domain actions. The relationship between the number of unique events and

domain actions is directly proportional, i.e. higher number of unique events in a dataset

produces higher number of domain actions, which demonstrates the solution’s ability

to extract complete knowledge. This enables the planner to always find a plan for any

given security problem, assuming the targeted knowledge is present in the domain model.

Therefore, we claim that the proposed solution is fully data-driven and complete.

5.2.5.2 Efficiency

Consider the following observations from Table 5.2: the maximum number of associa-

tion rules (516,608) is produced by dataset-1 that contains 5,027 event log entries, and

resulted in 32 final TAC rules; the dataset-6 generated 263,800 association rules from

1,691 event entries, but only resulted in 6 final TAC rules; the dataset-13 contains 3,403

event entries, which produced 97,574 association rules and only 6 final TAC rules; and

the dataset-16 only used 4,959 association rules to output 75 TAC rules from 1,991

event entries. Based on this inconsistent pattern, we can deduce that the number of

object-based association rules, TAC rules/domain actions and event log entries are all

independent of each other. The output of proposed solution depends on the content

and characteristics of input data, for example, the amount of security-related activities

stored in the dataset, quantity of routine events and number of distinct object-value

pairs. Furthermore, due to the temporal validation of association rules and formation of

Partial Ancestral Graph (PAG) of event relationships, the majority of false positive and

conflicting rules are either corrected or removed. This signifies the efficiency of devel-

oped solution that is achieved by conducting both qualitative and quantitative analysis

of input event log entries.

5.2.5.3 Performance

The performance is measured as a time difference between creating a manual and auto-

mated domain action model from the same event log dataset. The results presented in

Table 5.3 clearly demonstrate that the automated solution is reasonably faster, efficient



Chapter 5. Implementation and Evaluation 118

and scalable than the manual approach. The automated domain modelling of every

dataset took less amount of time than manual domain modelling. Besides, unlike man-

ual domain modelling, the automated solution does not require any human resources,

hence making it more suitable for the real time environments. Furthermore, the de-

veloped solution eliminates incorrect and irrelevant rules during each phase, which also

contributes towards the reduction of overall processing time.

Regarding the manual processing, dataset-10 took 21 minutes and 58 seconds to iden-

tify event relationships within 13,026 entries, whilst, dataset-13 took 21 minutes and

20 seconds for 3,403 entries. There is a difference of 9,623 entries between the two

datasets; however, the time variation is only 38 seconds. The reason behind this appar-

ent discrepancy is the (approximately similar) amount of unique events, which is 29 and

32 for dataset-10 and dataset-13, respectively. This means dataset-10 contains a large

and continuous segment of routine event entries, possibly due to a lengthy user/appli-

cation/system inactivity, as compared to dataset-13. Such events were quickly skipped

by the human experts, thus reducing the manual processing time. Similarly, it took 14

minutes and 26 seconds to extract knowledge from 10,948 entries of dataset-11, whereas

for dataset-17, which has 826 entries, consumed 12 minutes and 46 seconds. So, a differ-

ence of 10,122 entries only added 1 minute and 41 seconds in time, which is again due

to a large portion of routine events.

5.2.5.4 Importance Of Causal Inference

Another important aspect of the evaluation results is the difference between the num-

ber of Temporal-Association (TA) and Temporal-Association-Causal (TAC) rules. The

TAC rules are always less or sometimes equal in number than the TA rules. The main

reason behind this difference is the formation of Directed Acyclic Graph (DAG), which

eliminates all redundancies, conflicts and cycles from the TA rules, therefore improv-

ing the quality of results. It also depends on the characteristics of event log dataset

and the extracted TA rules. For example, the dataset-1 has 84 TA and 32 TAC rules,

which means 52 event relationships were removed. Similarly, for dataset-2, 8 TA rules

were eliminated. In case of dataset-4, 6, 18 and 21, the number of TA and TAC rules

are equal, which shows that correlation can imply causality sometimes; however, it not

always true.



Chapter 5. Implementation and Evaluation 119

Furthermore, calculating and assigning a causal rank to each TAC rule either increases

or decreases its overall accumulative-weight value. So, besides temporal-association ac-

curacy and counter values, the causal rank becomes an additional measure that enforces

the planner to select the most feasible plan of actions (from entire domain knowledge)

to solve a given security issue. This signifies the importance of application of causality

that lead towards better accuracy.

5.2.5.5 Other Findings

It has also been observed that the datasets with comparatively lower accuracy con-

sists of such kind of rules, where a single event is connected to several other events

simultaneously. To minimise this issue, Automated Planning plays an important role to

determine the most feasible set of actions by maximising the accumulative-weight val-

ues. Hence, the planner always selects those actions, which will result in the maximum

overall accumulative-weight value.

Another observation is that, sometimes, a dataset contains a large number of event

log entries, but they are only comprised of few unique event types. Such datasets

should not produce many actions in their respective domain models. It is clear from

Table 5.2 that the solution does not force event relationships, where they are not present,

regardless of number of entries in a dataset. Some of the datasets were excluded during

the evaluation phase as they did not produce any domain actions at all. The object-

based event associations ensure that a rule, and consequently a domain action, is created

only where there exists a relationship among the properties of event log entries.

Another observation is that the automated solution has not shown full accuracy; the

maximum accuracy achieved is 92%. Although, the manual approach is capable of pro-

viding a fully accurate domain action model from event logs, there still can be errors

considering the tiresome as well as continuous creation, updation and alteration of secu-

rity knowledge (as the process is conducted by human beings). Moreover, there is also

a possibility of incomplete knowledge acquisition and representation due to missing one

or more relationships.

Apart from the results, it is important to acknowledge that the solution will provide

better accuracy if the configuration, environment and intended use of the vulnerable



Chapter 5. Implementation and Evaluation 120

Automated plan Manual plan

Actions Relevant Objects Actions

1. 5145→ 5140 Share name: Users, Subject: IEUser1, SID:
S 1 5 18

1. 5145→ 5140

2. 5140→ 4648 Target-domain: IE8Win7, server: localhost 2. 5140→ 4648

3. 4648→ 4657 Operation: registry value added, Type:
Mult-String

3. 4648→ 4657

4. 4657→ 4798 Subject: IEUser1, Domain: WORKGROUP, Pro-
cess: mmc

4. 4657→ 4798

5. 4798→ 4647 Subject: IEUser1 5. 4798→ 4728

6. 4647→ 4624 Subject: IEUser1, SID: S 1 5 19, Domain:
WORKGROUP

6. 4728→ 4738

7. 4624→ 4726 Subject: IEUser1, Domain: WORKGROUP 7. 4738→ 4647

8. 4726→ 4729 Target: IEUser1, SID: S 1 5 19, Subject:
Administrator

8. 4647→ 4624

- - 9. 4624→ 4726

- - 10. 4726→ 4729

Table 5.4: Automated and manual plans to solve same problem instance. The con-
version of plans in a user-friendly format is performed by the plan parser that shows

actions and object-value pairs.

machine are same as of the machine from which the domain action model was extracted.

The similar settings and context/properties of events will improve the compatibility of

learnt security knowledge and help the users, in a better and easier way, to perform the

necessary changes.

5.2.6 Accuracy Analysis Of An Automated Plan

This section presents a comparison between an automated and manual plan that show-

cases the ability of the proposed solution to suggest human-like actions. Both plans are

complete, which means they include valid sets of actions for security identification and

mitigation. The plans are shown in Table 5.4, whereas a detailed elaboration of the

automated plan actions is provided in Section 5.2.7. As mentioned before, the actions of

a plan might be difficult for the non-expert to understand, so we used the plan parsing

application to elaborate all related events and parameters. The accuracy calculation

mechanism covers all aspects for any given plan solution by finding the number of cor-

rect, incorrect, additional and missing actions. For the current automated plan, all 8

actions are correct as they are found in the manual plan, and there are no incorrect

and additional actions. However, the automated plan is not entirely accurate as it is

missing three actions (5, 6 and 7) that are present in the manual plan. The missing



Chapter 5. Implementation and Evaluation 121

Figure 5.9: A complete timeline of events extracted in the form of an automated
plan. The related events and corresponding objects reflect the security-related actions
of human expert on a particular machine. The red and blue coloured boxes show the
events found in vulnerable machine, whilst, the green coloured box shows the mitigation

plan.

actions are: 4798 → 4728, 4728 → 4738 and 4738 → 4647. Hence the accuracy would

be: (8/(8 + 0 + 3 + 0))× 100 = 73%.

5.2.7 Interpretation Of The Plan For Usability

The domain action models are the representatives of TAC rules that vary on the basis

of scenarios they are captured in, and how the proposed solution assigns accumulative-

weight in the actions. The event entries are logged as soon as they are generated by

multiple system activities running in parallel, and there is no way of knowing which of

the events are linked corresponding to a single human expert action. So, the solution

provided in this research can be used to find those sequences and connections in the pres-

ence of large number of routine event entries, and facilitate the autonomous replication

of human expert actions.

A timeline demonstrating the automated mitigation plan for a security concern (pre-

sented in Table 5.4) is shown in Figure 5.9. The timeline consists of a complete list of

actions found in the plan; however, it is important to mention here that a large portion

of the actions have already been discovered in the event log of a vulnerable machine

and represented in the corresponding problem instance. This section also demonstrates

that the proposed solution is easy-to-use as it does not require any human aid. It also

shows that an automated plan only requires a fundamental knowledge of computing to

interpret and implement the actions. It should be noticed here that the sequences of

events generated from a single dataset are not universally applicable, they are subjective



Chapter 5. Implementation and Evaluation 122

and based on the expert activities performed on the underlying machine. Following is

the brief interpretation of automated planner output:

• Matched – This part of the plan determines security issue of the vulnerable

machine and was identified by matching one or more initial state(s) of the problem

instance with the domain action model:

– User Logon – Event 5145 shows that a certain user, with a S 1 5 18 group

security identifier (SID) and IEUser1 username, tried to access file-share ser-

vice on a remote server. The group SID is a unique value of variable length

that is used to identify a trustee and issued by an authority. The event 5140

shows that server access was allowed for IEUser1. After that, the remote

server requested the login credentials from IEUser1. The required username

and password were provided to the server as evident by event 4648; and

– Privilege Escalation attack – Following the login, event 4657 is triggered to

show that the IEUser1 added a new registry value. After that, event 4798

informs that the IEUser1 probed all local users of the server. The next two

events (4647 and 4624) reveal that the IEUser1 logged out of the server, and

then successfully logged back in, but, with a different group SID S 1 5 19.

It should be noticed here that both events 4648 and 4624 indicate the user

account login; however, the event 4648 shows that the login occurred through

‘RunAs’ command or third-party local application.

• Partially Matched – This part of the plan provides the security solution, which

was discovered by the planner based on the propagation of linked domain actions:

– Elimination of security issue – The next event 4726 shows that the IEUser1

account was deleted from the remote server. The last event 4729 further

informs that the account was removed from global security group by a server

administrator.

Based on the sequence of events in Figure 5.9, it is shown that an administrator found

a suspicious activity in terms of system registry modification by a local user account

(possibly malicious insider), which lead to the discovery of a privilege escalation attack

on a remote server. Initially, it is unknown whether the user account actually became

a legitimised member of another user-group, but it became apparent later on when the



Chapter 5. Implementation and Evaluation 123

security identifier (SID) was changed from S 1 5 18 to S 1 5 19 upon a second login. The

user might have exploited a server vulnerability to login and added a registry value, which

allowed the scanning and identification of other existing users. This process enabled the

user to find and change to a user-group with higher access permissions. Furthermore,

the plan shows that the newly added value in the registry was a string, which is done

through a ‘net’ command to add the current user in an administrator group, and placed

in registry path HKLM\Software\Microsoft\Windows\currentversion\run. As the user

attempted (and failed) to access the file-share service of the server, the new user-group

provisioned sufficient rights to gain unauthorised access to the service. The administrator

resolved this security issue by completely removing the malicious user account from the

server to prevent any future issues.

Continuing the discussion from Section 5.2.6, the automated plan is missing information

as it does not fully match (only 73%) with the manual plan. It depends on the amount

of absent event relationships and level of expertise of the user to determine the severity

of the missing information in an automated plan solution. As evident by this sequence

(4798 → 4728 → 4738 → 4647), after gathering the user-groups (event 4798), the

account of IEUser1 was added to a security-enabled global group (event 4728). This

change in the user account IEUser1 is depicted by the event 4738. Later on, IEUser1

logged off from the server that triggered the event 4647.

5.2.8 Example Of An Incorrect Automated Plan

Based on our analysis, there is also a potential of generating an incorrect plan solu-

tion, where the extracted sequence of actions present inaccurate method of conduct-

ing security-related activities. This happens due to the erroneous extraction of event

relationships. An example of incorrect plan is presented in Figure 5.10. The ob-

ject names of the plan are extracted by the plan parser application and explained in

the following: RSA is the algorithm name, d5 0e7b98a02239 represents the address of

cryptographic-key file path, SMS is the key name, O 2499 is the key type, AD is the

subject’s domain name, O 0x3e7 login ID of subject, CES000963029$ is the subject

username, S 1 5 18 is the SID, O 16390 presents a specific cryptographic-related action,

GUID MFE TCP STREAM CALLOUT V4 is the callout function name of Windows Filtering

Platform (WFP), DataFinder is the filter name of WFP, Kerberos is an authentication



Chapter 5. Implementation and Evaluation 124

0: E 5058-TO-E 5061 RSA d5 0e7b98a02239 SMS O 2499 AD O 0x3e7 CES000963029$

· · · S 1 5 18 )

1: (E 5061-TO-E 5441 RSA d5 0e7b98a02239 O 16390 GUID MFE TCP STREAM CALLOUT V4

· · · DataFinder )

2: (E 5441-TO-E 4625 Kerberos AD O 0x3e7 CES000963029$ · · · S 1 5 18 S 1 0 0)

Figure 5.10: Incorrect sequence of actions extracted for the test machine using the
acquired domain knowledge.

protocol and S 1 0 0 is the SID of target user. At first, the events 5058 and 5061 show

that a cryptographic operation was performed on a Key Storage Provider file. The op-

eration can be one of: create, delete, export, import, open and store cryptographic keys.

The next event is 5441, which is recorded for every filter of Windows Filtering Platform

at every system start-up. This event just documents the time of system startup and

does not indicate any configuration change. The last event 4624 indicates that a user-

account failed to login by providing a bad username or password. This plan is wrong

because it has linked two separate system activities, i.e. key operation of Cryptography

and Windows logon service, with each other in a single sequence. The order of events

is also incorrect as all cryptographic operations are performed after the user is logged

onto the machine. Furthermore, these actions do not provide any useful or actionable

knowledge to the non-experts that might improve their systems’ security.

5.2.9 A different approach to evaluation

The automated knowledge acquisition (KA) is performed by the developed solution,

whereas, the manual KA is conducted by the human experts as mentioned in Sec-

tion 5.2.3.4. Both kinds of expert security knowledge are acquired in the form of

Temporal-Association-Causal (TAC) rules. In the following discussion, the TAC rules

acquired through developed solution are referred as ‘automated TAC rules’, whereas,

the TAC rules acquired from human experts are referred as ‘manual TAC rules’. As

the human involvement terminates after the ‘Manual extraction of event relationships’

stage in the evaluation process shown in Figure 5.7, a direct comparison between the

automated and manual TAC rules will help in evaluating the acquired knowledge itself,

rather than the utilisation of the acquired knowledge. In other words, this comparison



Chapter 5. Implementation and Evaluation 125

will determine how accurately the developed solution identified patterns of security-

related actions in a given event log dataset, instead of how accurately the developed

solution suggested the human expert-like actions in resolving a certain security threat

or an issue (as described in Section 5.2.3.5). Therefore, this comparison can provide

another perspective regarding the accuracy of knowledge acquisition in the developed

solution.

Event
dataset

TAC rules
accuracy

1 84%
2 83%
3 75%
4 75%
5 90%
6 83%
7 90%
8 78%
9 91%
10 86%
11 81%
12 81%
13 75%
14 80%
15 83%
16 97%
17 83%
18 80%
19 93%
20 89%
21 86%

Table 5.5: Evaluation of knowledge acquisition phase in terms of accuracy using a
different approach, i.e. direct comparison between manually and automatically acquired

TAC rules.

The results of comparing automated and manual TAC rules from each dataset are shown

in Table 5.5. The amount of accuracy ranges from 73% to 97%, where 4 are between

70%− 79%, 12 are between 80%− 89% and 5 are between 90%− 92%. These results are

calculated using the same accuracy formula presented in Equation 5.1. An automated

TAC rule would be considered as ‘correct’ if the same relationship, having identical

events and direction, is found in the set of manual TAC rules as well. An automated

TAC rule would be considered as ‘incorrect’ if a rule with the same events is discovered

in the set of manual TAC rules, but with opposite relationship direction. An automated



Chapter 5. Implementation and Evaluation 126

TAC rule would be considered as ‘missing’ if it exists in the set of manual TAC rules,

but is absent from the set of automated TAC rules. An automated TAC rule would be

considered as ‘additional’ if it exists in the set of automated TAC rules but is not found

in the set of manual TAC rules.

Using Table 5.2 and Table 5.5, it is visible that for 12 datasets, the accuracy of TAC rules

is greater than the accuracy of its corresponding automated plan, whereas, for remaining

9 datasets, the accuracy of automated plan is greater than the accuracy of its respective

TAC rules. This inconsistency has occurred mainly due to the following reasons. First,

for the given problem, only those actions were found applicable from the domain model

that had relatively lower/higher accuracy than other actions. In other words, as the

action plan usually presents a subset of the domain model (which is the representation

of all TAC rules), it is possible that depending on the problem instance, only those

specific actions were included in the plan that had comparatively lower/higher accuracy.

Second, the LPG, which is a sub-optimal and stochastic algorithm, randomly selected

low/high priority actions. The priority is defined based on the accumulative-weight

value. If lower or higher priority actions were chosen, it would result in a decreased

or increased accuracy of the automated plan, respectively. Third, the empty goal state

forces the planner to choose a plan (albeit valid); however it might not be the best

possible plan.

5.3 Limitations

The research work presented in this thesis is novel and demonstrates a reasonably ac-

curate approach of autonomous elicitation and utilisation of security knowledge by pro-

cessing existing event log sources. However, the approach is a first step in this direction

and has the following limitations:

1. The associating rule mining is a compute-intensive task as it is an iterative ap-

proach and processes all possible itemset. This significantly decreases the overall

efficiency of the developed solution. On the other hand, applying a mechanism

that reduces the number of iterations and candidate itemsets for relatively quicker

processing, will decrease the quality of association rules;



Chapter 5. Implementation and Evaluation 127

2. The proposed solution is not capable of modelling complex scenarios, where con-

secutive repetition of an event is part of the sequence of actions. For example,

if an event dataset contains ‘suspend the user account for more than three failed

log-on attempts’ knowledge, it cannot be extracted as an automated rule and rep-

resented in PDDL as the proposed solution is not capable of correlating events

with themselves;

3. Another issue with the developed solution is that it cannot distinguish between

a correct and incorrect plan solution against a given problem instance. In other

words, there is no automated mechanism of providing an accuracy value for the

generated plan. If a user, especially non-expert, is unaware of a plan being fully

or partially incorrect, it can mislead him/her into performing wrong security as-

sessment or configuration;

4. The generalisation of modelling security knowledge has restricted the solution to

use domain-independent planners. However, the range of planners can be increased

by introducing human assistance in the domain designing and modelling process,

which also might result in plans that do not represent the real-world security issues

and solutions.

5. The environment, type and context of problem instance are unavailable, whilst,

the planner is searching for a solution in the domain action model. This uncer-

tainty can lead to a plan solution, which is not fully applicable to the identified

vulnerabilities of the underlying machine.

5.4 Chapter Summary

The purpose of this chapter is to present the implementation and evaluation process

of the proposed solution. The implementation consists of two applications. The first

application is console-based that extracts the knowledge from event log datasets, stores

it in a database and represents in a PDDL-based domain action model. This application

can process one or more datasets in a single execution and output both separate and

combined domain action models. The second application has a graphical user interface

and is capable of applying the domain action model on any vulnerable/unconfigured

machine to strengthen its security. This application is integrated with the LPG planner



Chapter 5. Implementation and Evaluation 128

as well as a plan validator. Both applications are designed simply and efficiently so that

they can be used by both expert and non-expert users.

The evaluation of the developed solution includes accuracy and performance analysis. It

is performed with the help of three human experts. The event log datasets for evaluation

are obtained from 21 live machines, which were configured by experts according to

different security policies. The domain action models are produced from each dataset

using manual and automated approaches. After that, their comparison is performed to

demonstrate: if the automated approach generated a similar domain action model as

of human experts (accuracy) and how much time was saved by using the automated

tool (performance). The results have shown suitable accuracy, i.e. between 73% and

92%, and a significant reduction of time for every dataset. At the end, this chapter

provides a real-world scenario, where the automated tool identified a security issue and

presented an acceptable solution. The scenario also helps in demonstrating the usage of

the developed tool.



Chapter 6

Conclusion and Future work

6.1 Conclusion

The Chapter 2 of this thesis indicates that there is no existing method to automatically

extract security knowledge from a machine and apply it to other machines for strength-

ening their security. Although a good amount of previous research has been done in the

construction of domain action models and automated planning (AP) for security appli-

cations, it has two major problems: manual knowledge modelling and attack planning as

the only area of focus. The manual domain designing process is quite resource-intensive

and a big challenge for human operator as it is not efficient, and requires intimate

knowledge of the area. The automated knowledge extraction and modelling of event

relationships is a complex task, so is the manual process. Furthermore, we argue and

demonstrate that the AP can play an important role in the deliberation of security

knowledge as well. Therefore, in this thesis, we present a novel technique that automat-

ically extracts a domain action model from the security event logs of a system, without

any assistance from a human operator. The main purpose of this technique is to allow

non-expert users to perform expert security analysis of the new or previously unseen

(vulnerable) machines without investing significant amount of effort, cost and time in

acquiring the required knowledge. This technique provides a computer-based alternative

of a scenario, where a human expert performs a security assessment or configuration of

a machine.

129



Chapter 6. Conclusion and Future work 130

As mentioned in Section 1.2, all system changes and actions are explicitly recorded

by the event logging mechanism. Learning is a fundamental aspect of autonomous

behaviour and it can be defined in many different ways. Initially, several techniques

were considered for automated learning, such as using clustering algorithm to group

events against security actions, developing assistive tools for human experts to produce

security templates and applying deep learning algorithms to the text of security-based

academic papers and online forums to find security problem-solution pairs. Upon careful

examination, these techniques were found unsuitable for the real-time environments

due to lack of decision-making criteria and intelligent reasoning for probing security

issues and suggesting remedial actions. However, the experimentation by constructing

manual domain model using event logs showed promising results in terms of accuracy

and performance. So, it was identified that the most suitable method is to adopt the

state-of-the-art AP technology, where the knowledge is acquired and encoded using a

domain-independent language and utilised using an increased range planning algorithms.

Hence, learning domain models for AP is what motivated this research, and a technique

was developed to extract temporal-association-causal (TAC) relationships from the event

log entries and encode them into PDDL-based domain action model. After that, a

planning algorithm utilises the domain model to output one or more sequences of actions,

which were performed by the human expert user to identify and mitigate the particular

vulnerabilities of the machine. In other words, the proposed technique orchestrates the

security evaluation of a system, in a similar way, as a human expert would.

The main contributions of this research work are presented in the following:

1. An automated procedure to determine and eliminate noise from the event logs;

2. A new scheme to find support for association rule mining algorithms;

3. A novel algorithm to create ordered sequences of correlated events based on a

temporality metric;

4. A method to define and rank strength of causality within a graph of connected

events; and

5. An intelligent mechanism to utilise knowledge on new or previous unknown ma-

chines.



Chapter 6. Conclusion and Future work 131

6.1.1 Summary

The proposed solution is split into two parts; automated rule mining from event logs

to gain and store knowledge (presented in Chapter 3) and intelligent application of the

knowledge on vulnerable machines using planning algorithms for security improvements

(presented in Chapter 4).

For the rule mining part, the first step is to read all security event log entries of a

given system. After that, determine routine events in the given dataset and eliminate

them. Next, the solution creates an object-based model to represent event log entries in

a unified format, and determines minimum and maximum support values (referred as a

support range in the thesis) for the association rule mining (ARM) algorithm. In the next

step, the solution mines strong object-based correlation rules using a modified Apriori

algorithm. The object-based rules are converted into the event-based rules where any two

event types are associated by the object-based rules. The quality of event relationships

is improved by ordering the events based on a temporal metric, whilst, filtering all

insignificant relationships where the temporal value is below threshold. After that, the

event-based correlation rules are combined and validated into sequences of temporally-

associated rules. These rules are further converted into a directed acyclic graph and

assigned a causal rank using the FCI algorithm, hence obtaining temporal-association-

causal (TAC) rules. All TAC are stored into MySQL database as well for future use.

For automated planning part, the knowledge extracted in the form of TAC rules is

encoded into a stand-alone domain action model using PDDL version 2.1. The PDDL

format provides a standardised mechanism of representing and storing the extracted

knowledge, along with fulfilling the required level of expressiveness to support domains.

It also increases the adoption of the solution due to wider understanding and presence

of domain independent automated planners. Apart from domain model, the developed

solution is also capable of automatically generating problem instances by processing

live events and their objects from any (vulnerable) machine. Given the domain and

problem files, LPG planner is used to produce relevant actions in the form of a plan that

can be utilised by the non-expert users to enhance the machine’s security. The plan is

responsible for identifying security issues and providing mitigation actions. The LPG

is one of the most powerful domain-independent planners that has the ability to solve

problems of a large variety with diverse requirements (numeric fluents, minimisation and



Chapter 6. Conclusion and Future work 132

maximisation metrics, etc.). It should be noticed here that the research into domain-

independent planners is progressing rapidly, and new planners are being continuously

developed. It is envisaged that in the future, there will be an increased variety of planners

to solve the current domain model with better performance and accuracy.

Through an extensive empirical analysis, the proposed automated solution has shown

to be effective. The technique was implemented as two separate applications; one for

knowledge acquisition and representation, and other for knowledge utilisation. The

developed solution was evaluated on live, real-world event log datasets to determine the

accuracy, completeness and performance measures. The solution achieved 73% − 92%

accuracy for 21 datasets and a significant performance increase against the manual

approach. Furthermore, a detailed comparison between an automated and manual plan

solution has been performed to demonstrate the autonomous replication of human expert

actions along with the ease of usability and applicability in real time environments. The

event log entries are generally produced in high frequency, but a significant portion of

them represents routine events (noise). Despite this, the proposed solution has clearly

demonstrated that it is capable of extracting the domain knowledge with a reasonable

accuracy and be applicable in practical environments, meanwhile, reducing manual time

and effort and financial cost without the assistance from a human expert.

6.2 Suggested Future Work

The research work presented in this thesis several potential areas for research. Moreover,

there are several avenues that can be explored for future development of this solution.

Some are summarised below based on their importance:

1. To apply the proposed technique on other operating systems and applications,

there is a need to create parsing tools or software modules that can process the

respective event log datasets to generate object-based models. The event log entries

are found in different text-formats, and requires different parsing and analysis

mechanisms to obtain objects (as described in Section 3.1.2). Doing this will

increase the applicability and adoption of the proposed solution;



Chapter 6. Conclusion and Future work 133

2. There are some event logging mechanisms, e.g. application-specific security event

logs, that do not assign a numeric identifier to an event. In general, it is consid-

ered a good practice to add a unique identifier for every event type as it increases

the parsing accuracy [197]. A small amount of research has been done that au-

tomatically introduces event identifiers in the raw event entries [198]. Extending

and incorporating such software modules in the developed solution will also lead

towards wider adoption;

3. The next stage of this research is the augmentation of plan parser tool, which is

described in Section 5.1.2.2. The would include the development of automated

tools and techniques, which are capable of translating any valid plan solution into

concrete set of actions. After that, the actions will be converted into (a) system

commands (where possible) and (b) complete step-by-step guideline that can be

executed on the vulnerable machine. This will remove or reduce the manual effort

of non-expert users implementing the recommended security measures;

4. From the utilisation perspective, the developed solution described in Section 5.1

can be expanded into a web-application that can be easily used by numerous

individuals/organisations, simultaneously. A large and diverse set of event logs

from multiple sources would create a bigger, central repository of TAC rules. This

would allow the domain action model to contain more and better knowledge for

identifying security issues and suggesting solutions; and

5. As highlighted in Section 4.3 and Section 4.3.4.1, PDDL-based representation of

knowledge and LPG planning algorithm, respectively, have shown great potential

to solve large and complicated planning problems. This motivates the further

advancement of tools and languages for knowledge engineering, so that they can

be utilised in commercial settings. The improvements will increase the efficiency,

quality and performance of plan generation along with benefiting all application

areas of automated planning.



References

[1] Malik Ghallab, Dana Nau, and Paolo Traverso. Automated Planning: theory and

practice. Elsevier, 2004.

[2] Valentina Viduto, Carsten Maple, Wei Huang, and David LóPez-PeréZ. A novel

risk assessment and o model for a multi-objective network security countermeasure

selection problem. Decision Support Systems, 53(3):599–610, 2012.

[3] Leonardo Mariani, Mauro Pezzè, and Mauro Santoro. Gk-tail+ an efficient ap-

proach to learn software models. IEEE Transactions on Software Engineering, 43

(8):715–738, 2017.

[4] Tien-Duy B Le and David Lo. Deep specification mining. In Proceedings of the

27th ACM SIGSOFT International Symposium on Software Testing and Analysis,

pages 106–117. ACM, 2018.

[5] Tien-Duy B Le, Xuan-Bach D Le, David Lo, and Ivan Beschastnikh. Synergizing

specification miners through model fissions and fusions (t). In Automated Software

Engineering (ASE), 2015 30th IEEE/ACM International Conference on, pages

115–125. IEEE, 2015.

[6] Andrzej Wasylkowski and Andreas Zeller. Mining temporal specifications from

object usage. Automated Software Engineering, 18(3-4):263–292, 2011.

[7] Derek Schauland and Donald Jacobs. Managing the windows event log. In Trou-

bleshooting Windows Server with PowerShell, pages 17–33. Springer, 2016.

[8] Cristina Simache, Mohamed Kaâniche, and Ayda Saidane. Event log based de-

pendability analysis of windows nt and 2k systems. In Dependable Computing,

2002. Proceedings. 2002 Pacific Rim International Symposium on, pages 311–315.

IEEE, 2002.

134



References 135

[9] Muhammad Faheem Mushtaq, Urooj Akram, Irfan Khan, Sundas Naqeeb Khan,

Asim Shahzad, and Arif Ullah. Cloud computing environment and security chal-

lenges: A review. INTERNATIONAL JOURNAL OF ADVANCED COMPUTER

SCIENCE AND APPLICATIONS, 8(10):183–195, 2017.

[10] Saad Khan, Simon Parkinson, and Yongrui Qin. Fog computing security: a review

of current applications and security solutions. Journal of Cloud Computing, 6(1):

19, Aug 2017. ISSN 2192-113X. doi: 10.1186/s13677-017-0090-3. URL https:

//doi.org/10.1186/s13677-017-0090-3.

[11] David Luckham. The power of events: An introduction to complex event process-

ing in distributed enterprise systems. In International Workshop on Rules and

Rule Markup Languages for the Semantic Web, pages 3–3. Springer, 2008.

[12] Changwei Liu, Anoop Singhal, and Duminda Wijesekera. A model towards using

evidence from security events for network attack analysis. In WOSIS, pages 83–95,

2014.

[13] Risto Vaarandi. Mining event logs with slct and loghound. In Network Operations

and Management Symposium, 2008. NOMS 2008. IEEE, pages 1071–1074. IEEE,

2008.

[14] Justin Myers, Michael R Grimaila, and Robert F Mills. Log-based distributed se-

curity event detection using simple event correlator. In System Sciences (HICSS),

2011 44th Hawaii International Conference on, pages 1–7. IEEE, 2011.

[15] Judea Pearl et al. Causal inference in statistics: An overview. Statistics surveys,

3:96–146, 2009.

[16] Clemens Sauerwein, Irdin Pekaric, Michael Felderer, and Ruth Breu. An analysis

and classification of public information security data sources used in research and

practice. Computers & Security, 82:140–155, 2019.

[17] Peter Holdt Christensen. Knowledge sharing: moving away from the obsession

with best practices. Journal of knowledge management, 11(1):36–47, 2007.

[18] Thomas R Gruber. Automated knowledge acquisition for strategic knowledge.

In Knowledge Acquisition: Selected Research and Commentary, pages 47–90.

Springer, 1989.

https://doi.org/10.1186/s13677-017-0090-3
https://doi.org/10.1186/s13677-017-0090-3


References 136

[19] Tu Bao Ho, Saori Kawasaki, and Janusz Granat. Knowledge acquisition by ma-

chine learning and data mining. In Creative Environments, pages 69–91. Springer,

2007.

[20] Amit Agarwal, David Ahrens, Rod Livingood, Mahalingam Mani, Navjot Singh,

and Andrew Zmolek. Multi-tier security event correlation and mitigation, Octo-

ber 8 2009. US Patent App. 12/234,248.

[21] John P Rouillard. Real-time log file analysis using the simple event correlator

(sec). In LISA, volume 4, pages 133–150, 2004.

[22] James E Prewett. Analyzing cluster log files using logsurfer. In Proceedings of the

4th Annual Conference on Linux Clusters. Citeseer, 2003.

[23] Paul Krizak. Log analysis and event correlation using variable temporal event

correlator (vtec). In LISA, 2010.

[24] Manuel Peña, Félix Biscarri, Juan Ignacio Guerrero, Iñigo Monedero, and Carlos

León. Rule-based system to detect energy efficiency anomalies in smart buildings,

a data mining approach. Expert Systems with Applications, 56:242–255, 2016.

[25] Nada Sharaf, Slim Abdennadher, and Thom Frühwirth. A rule-based approach

for animating java algorithms. In 2016 20th International Conference Information

Visualisation (IV), pages 141–145. IEEE, 2016.

[26] Mark Devaney, Ashwin Ram, Hai Qiu, and Jay Lee. Preventing failures by mining

maintenance logs with case-based reasoning. In Proceedings of the 59th meeting of

the society for machinery failure prevention technology (MFPT-59), 2005.

[27] Stylianos Kapetanakis, Miltiadis Petridis, Jixin Ma, and Liz Bacon. Workflow

monitoring and diagnosis using case based reasoning on incomplete temporal log

data. In Proceedings of the 8th International Conference on Case Based Reasoning,

Seattle, USA. University of Brighton, 2009.

[28] Stelios Kapetanakis, Avgoustinos Filippoupolitis, George Loukas, and Tariq Saad

Al Murayziq. Profiling cyber attackers using case-based reasoning. 2014.

[29] Robert F Erbacher and Steve E Hutchinson. Extending case-based reasoning to

network alert reporting. In 2012 International Conference on Cyber Security, pages

187–194. IEEE, 2012.



References 137

[30] Padraig Cunningham. Cbr: Strengths and weaknesses. In International Con-

ference on Industrial, Engineering and Other Applications of Applied Intelligent

Systems, pages 517–524. Springer, 1998.

[31] Shaula Alexander Yemini, Shmuel Kliger, Eyal Mozes, Yechiam Yemini, and David

Ohsie. High speed and robust event correlation. IEEE communications Magazine,

34(5):82–90, 1996.

[32] Jun Zheng and Mingzeng Hu. An anomaly intrusion detection system based on

vector quantization. IEICE transactions on information and systems, 89(1):201–

210, 2006.

[33] Fabien Pouget and Marc Dacier. Alert correlation: Review of the state of the art.

TechnicalReport EURECOM, 1271, 2003.

[34] Xiaojiang Du, Mark A Shayman, and Ronald A Skoog. Using neural network in

distributed management to identify control and management plane poison mes-

sages. In IEEE Military Communications Conference, 2003. MILCOM 2003.,

volume 1, pages 458–463. IEEE, 2003.

[35] Shraddha S More and Pranit P Gaikwad. Trust-based voting method for efficient

malware detection. Procedia Computer Science, 79:657–667, 2016.

[36] Plamen P Angelov. Autonomous learning systems: from data streams to knowl-

edge in real-time. 2013.

[37] Rui Xu and Donald Wunsch. Survey of clustering algorithms. IEEE Transactions

on neural networks, 16(3):645–678, 2005.

[38] Piyush Rai. Data clustering: K-means and hierarchical clustering. CS5350/6350:

Machine Learning Oct, 4:24, 2011.

[39] Charu C Aggarwal and Chandan K Reddy. Data clustering: algorithms and ap-

plications. CRC press, 2013.

[40] Tapas Kanungo, David M Mount, Nathan S Netanyahu, Christine D Piatko, Ruth

Silverman, and Angela Y Wu. An efficient k-means clustering algorithm: Analysis

and implementation. IEEE transactions on pattern analysis and machine intelli-

gence, 24(7):881–892, 2002.



References 138

[41] Dorin Comaniciu and Peter Meer. Mean shift: A robust approach toward feature

space analysis. IEEE Transactions on pattern analysis and machine intelligence,

24(5):603–619, 2002.

[42] Pavel Berkhin et al. A survey of clustering data mining techniques. Grouping

multidimensional data, 25:71, 2006.

[43] Ruizhi Zhang, Jieren Cheng, Xiangyan Tang, Qiang Liu, and Xiangfeng He. Ddos

attack security situation assessment model using fusion feature based on fuzzy

c-means clustering algorithm. In International Conference on Cloud Computing

and Security, pages 654–669. Springer, 2018.

[44] Shi-Jinn Horng, Ming-Yang Su, Yuan-Hsin Chen, Tzong-Wann Kao, Rong-Jian

Chen, Jui-Lin Lai, and Citra Dwi Perkasa. A novel intrusion detection system

based on hierarchical clustering and support vector machines. Expert systems with

Applications, 38(1):306–313, 2011.

[45] Risto Vaarandi. A data clustering algorithm for mining patterns from event logs.

In IP Operations & Management, 2003.(IPOM 2003). 3rd IEEE Workshop on,

pages 119–126. IEEE, 2003.

[46] TS Vaquero, Rosimarci Tonaco, Gustavo Costa, Flavio Tonidandel, José Reinaldo

Silva, and J Christopher Beck. itsimple4. 0: Enhancing the modeling experience

of planning problems. In System Demonstration–Proceedings of the 22nd Interna-

tional Conference on Automated Planning & Scheduling (ICAPS-12), pages 11–14,

2012.

[47] Ron M Simpson, T Lee McCluskey, Weihong Zhao, Ruth S Aylett, and Christophe

Doniat. Gipo: an integrated graphical tool to support knowledge engineering in

ai planning. In Sixth European Conference on Planning, 2014.

[48] Javier Barreiro, Matthew Boyce, Minh Do, Jeremy Frank, Michael Iatauro, Ta-

tiana Kichkaylo, Paul Morris, James Ong, Emilio Remolina, Tristan Smith, et al.

Europa: a platform for ai planning, scheduling, constraint programming, and opti-

mization. 4th International Competition on Knowledge Engineering for Planning

and Scheduling (ICKEPS), 2012.

[49] Dafna Shahaf and Eyal Amir. Learning partially observable action schemas. In

Proceedings of the National Conference on Artificial Intelligence, volume 21, page



References 139

913. Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999,

2006.

[50] Thomas Leo McCluskey, SN Cresswell, N Elisabeth Richardson, and Mar-

garet Mary West. Action knowledge acquisition with opmaker2. In International

Conference on Agents and Artificial Intelligence, pages 137–150. Springer, 2009.

[51] Stephen N Cresswell, Thomas L McCluskey, and Margaret M West. Acquiring

planning domain models using locm. The Knowledge Engineering Review, 28(2):

195–213, 2013.

[52] Adi Botea, Markus Enzenberger, Martin Müller, and Jonathan Schaeffer. Macro-

ff: Improving ai planning with automatically learned macro-operators. Journal of

Artificial Intelligence Research, 24:581–621, 2005.

[53] Rabia Jilani, Andrew Crampton, Diane Kitchin, and Mauro Vallati. Ascol: A tool

for improving automatic planning domain model acquisition. In Congress of the

Italian Association for Artificial Intelligence, pages 438–451. Springer, 2015.

[54] Hankz Hankui Zhuo. Crowdsourced action-model acquisition for planning. In

AAAI, pages 3439–3446, 2015.

[55] Katie Long, Jainarayan Radhakrishnan, Rushabh Shah, and Ashwin Ram. Learn-

ing from human demonstrations for real-time case-based planning. 2009.

[56] Richard E Fikes and Nils J Nilsson. Strips: A new approach to the application of

theorem proving to problem solving. Artificial intelligence, 2(3-4):189–208, 1971.

[57] Edwin PD Pednault. Formulating multiagent, dynamic-world problems in the

classical planning framework. In Reasoning about actions & plans, pages 47–82.

Elsevier, 1987.

[58] Drew McDermott, Malik Ghallab, Adele Howe, Craig Knoblock, Ashwin Ram,

Manuela Veloso, Daniel Weld, and David Wilkins. Pddl-the planning domain

definition language. 1998.

[59] Maria Fox and Derek Long. Pddl2.1: An extension to pddl for expressing temporal

planning domains. Journal of artificial intelligence research, 20:61–124, 2003.



References 140

[60] Alfonso Gerevini and Derek Long. Bnf description of pddl3. 0. Unpublished

manuscript from the IPC-5 website, 2005.

[61] M Helmert. Changes in pddl 3.1. Unpublished summary from the IPC-2008 website,

2008.

[62] H̊akan LS Younes and Michael L Littman. Ppddl1. 0: An extension to pddl for

expressing planning domains with probabilistic effects. Techn. Rep. CMU-CS-04-

162, 2004.

[63] Maria Fox and Derek Long. Modelling mixed discrete-continuous domains for

planning. Journal of Artificial Intelligence Research, 27:235–297, 2006.

[64] Jeremy Frank and Ari Jónsson. Constraint-based attribute and interval planning.

Constraints, 8(4):339–364, 2003.

[65] Stuart J Russell and Peter Norvig. Artificial intelligence: a modern approach.

Malaysia; Pearson Education Limited,, 2016.

[66] Tom Everitt and Marcus Hutter. Analytical results on the bfs vs. dfs algorithm se-

lection problem. part i: tree search. In Australasian Joint Conference on Artificial

Intelligence, pages 157–165. Springer, 2015.

[67] Jürgen Lerner, Dorothea Wagner, and Katharina Zweig. Algorithmics of large and

complex networks: design, analysis, and simulation, volume 5515. Springer, 2009.

[68] Mohit Tawarmalani and Nikolaos V Sahinidis. A polyhedral branch-and-cut ap-

proach to global optimization. Mathematical Programming, 103(2):225–249, 2005.

[69] Mauro Vallati, Lukáš Chrpa, Marek Grzes, Thomas L McCluskey, Mark Roberts,

and Scott Sanner. The 2014 international planning competition: Progress and

trends. AI Magazine, 36(3):90–98, 2015.

[70] Saad Khan and Simon Parkinson. Towards automated vulnerability assessment.

2017.

[71] Mark S Boddy, Johnathan Gohde, Thomas Haigh, and Steven A Harp. Course

of action generation for cyber security using classical planning. In International

Conference on Automated Planning and Scheduling (ICAPS), pages 12–21, 2005.



References 141

[72] Jörg Hoffmann. The metric-ff planning system: Translating“ignoring delete

lists”to numeric state variables. Journal of Artificial Intelligence Research, 20:

291–341, 2003.

[73] Jorge Lucangeli Obes, Carlos Sarraute, and Gerardo Richarte. Attack planning in

the real world. arXiv preprint arXiv:1306.4044, 2013.

[74] Anton Riabov, Shirin Sohrabi, Octavian Udrea, and Oktie Hassanzadeh. Efficient

high quality plan exploration for network security. In 11th Scheduling and Planning

Applications woRKshop(SPARK), 2016.

[75] Carlos Sarraute, Gerardo Richarte, and Jorge Lucángeli Obes. An algorithm to

find optimal attack paths in nondeterministic scenarios. In Proceedings of the 4th

ACM workshop on Security and artificial intelligence, pages 71–80. ACM, 2011.

[76] Carlos Sarraute, Olivier Buffet, and Jörg Hoffmann. Penetration testing== pomdp

solving? arXiv preprint arXiv:1306.4714, 2013.

[77] Carlos Sarraute, Olivier Buffet, and Jörg Hoffmann. Pomdps make better hackers:

Accounting for uncertainty in penetration testing. arXiv preprint arXiv:1307.8182,

2013.

[78] Jörg Hoffmann. Simulated penetration testing: From” dijkstra” to” turing

test++”. In ICAPS, pages 364–372, 2015.

[79] Jochen Hipp, Ulrich Güntzer, and Gholamreza Nakhaeizadeh. Algorithms for

association rule mininga general survey and comparison. ACM sigkdd explorations

newsletter, 2(1):58–64, 2000.

[80] Rakesh Agrawal, Tomasz Imieliński, and Arun Swami. Mining association rules

between sets of items in large databases. In Acm sigmod record, volume 22, pages

207–216. ACM, 1993.

[81] Rakesh Agrawal, Ramakrishnan Srikant, et al. Fast algorithms for mining asso-

ciation rules. In Proc. 20th int. conf. very large data bases, VLDB, volume 1215,

pages 487–499, 1994.

[82] Markus Hegland. The apriori algorithm–a tutorial. In Mathematics and com-

putation in imaging science and information processing, pages 209–262. World

Scientific, 2007.



References 142

[83] Avigdor Gal. Evaluating matching algorithms: the monotonicity principle. In

Semantic Integration Workshop (SI-2003), page 167, 2003.

[84] Jong Soo Park, Ming-Syan Chen, and Philip S Yu. An effective hash-based algo-

rithm for mining association rules, volume 24. ACM, 1995.

[85] Zherui Cao, Yuan Tian, Tien-Duy B Le, and David Lo. Rule-based specification

mining leveraging learning to rank. Automated Software Engineering, pages 1–30,

2018.

[86] Xiaoyu Fu, Rui Ren, Jianfeng Zhan, Wei Zhou, Zhen Jia, and Gang Lu. Logmaster:

Mining event correlations in logs of large-scale cluster systems. In 2012 IEEE 31st

Symposium on Reliable Distributed Systems, pages 71–80. IEEE, 2012.

[87] Youcef Djenouri, Asma Belhadi, and Philippe Fournier-Viger. Extracting useful

knowledge from event logs: a frequent itemset mining approach. Knowledge-Based

Systems, 139:132–148, 2018.

[88] S. Parkinson, V. Somaraki, and R. Ward. Auditing file system permissions using

association rule mining. Expert Systems with Applications, 55:274 – 283, 2016.

ISSN 0957-4174. doi: https://doi.org/10.1016/j.eswa.2016.02.027. URL http:

//www.sciencedirect.com/science/article/pii/S0957417416300586.

[89] Chunye Zhao, Shanshan Tu, Haoyu Chen, and Yongfeng Huang. Efficient associa-

tion rule mining algorithm based on user behavior for cloud security auditing. In

2016 IEEE International Conference of Online Analysis and Computing Science

(ICOACS), pages 145–149. IEEE, 2016.

[90] S Carolin Jeeva and Elijah Blessing Rajsingh. Intelligent phishing url detection us-

ing association rule mining. Human-centric Computing and Information Sciences,

6(1):10, 2016.

[91] Tao Ban, Masashi Eto, Shanqing Guo, Daisuke Inoue, Koji Nakao, and Runhe

Huang. A study on association rule mining of darknet big data. In 2015 Interna-

tional Joint Conference on Neural Networks (IJCNN), pages 1–7. IEEE, 2015.

[92] Stephen L Morgan and Christopher Winship. Counterfactuals and causal infer-

ence. Cambridge University Press, 2014.

http://www.sciencedirect.com/science/article/pii/S0957417416300586
http://www.sciencedirect.com/science/article/pii/S0957417416300586


References 143

[93] George EP Box, Gwilym M Jenkins, Gregory C Reinsel, and Greta M Ljung. Time

series analysis: forecasting and control. John Wiley & Sons, 2015.

[94] John F Roddick and Myra Spiliopoulou. A survey of temporal knowledge discovery

paradigms and methods. IEEE Transactions on Knowledge and data engineering,

14(4):750–767, 2002.

[95] Zhai Liang, Tang Xinming, Li Lin, and Jiang Wenliang. Temporal association

rule mining based on t-apriori algorithm and its typical application. In Proceed-

ings of International Symposium on Spatio-temporal Modeling, Spatial Reasoning,

Analysis, Data Mining and Data Fusion, 2005.

[96] Edi Winarko and John F Roddick. Armada–an algorithm for discovering richer

relative temporal association rules from interval-based data. Data & Knowledge

Engineering, 63(1):76–90, 2007.

[97] Ling Wang, Jianyao Meng, Peipei Xu, and Kaixiang Peng. Mining temporal as-

sociation rules with frequent itemsets tree. Applied Soft Computing, 62:817–829,

2018.

[98] Ting-Feng Tan, Qing-Guo Wang, Tian-He Phang, Xian Li, Jiangshuai Huang,

and Dan Zhang. Temporal association rule mining. In International Conference

on Intelligent Science and Big Data Engineering, pages 247–257. Springer, 2015.

[99] Susanne Bleisch, Matt Duckham, Antony Galton, Patrick Laube, and Jarod Lyon.

Mining candidate causal relationships in movement patterns. International Journal

of Geographical Information Science, 28(2):363–382, 2014.

[100] Andrey Fedorchenko, Igor Kotenko, and Didier El Baz. Correlation of security

events based on the analysis of structures of event types. In Intelligent Data Acqui-

sition and Advanced Computing Systems: Technology and Applications (IDAACS),

2017 9th IEEE International Conference on, volume 1, pages 270–276. IEEE, 2017.

[101] Ehsan Nazerfard, Parisa Rashidi, and Diane J Cook. Using association rule mining

to discover temporal relations of daily activities. In International Conference On

Smart homes and health Telematics, pages 49–56. Springer, 2011.

[102] John Aldrich et al. Correlations genuine and spurious in pearson and yule. Sta-

tistical science, 10(4):364–376, 1995.



References 144

[103] Karim Chalak and Halbert White. Causality, conditional independence, and

graphical separation in settable systems. Neural Computation, 24(7):1611–1668,

2012.

[104] Craig Silverstein, Sergey Brin, Rajeev Motwani, and Jeff Ullman. Scalable tech-

niques for mining causal structures. Data Mining and Knowledge Discovery, 4

(2-3):163–192, 2000.

[105] David Heckerman, Christopher Meek, and Gregory Cooper. A bayesian approach

to causal discovery. In Innovations in Machine Learning, pages 1–28. Springer,

2006.

[106] Kui Yu, Jiuyong Li, and Lin Liu. A review on algorithms for constraint-based

causal discovery. arXiv preprint arXiv:1611.03977, 2016.

[107] Gregory F Cooper. A simple constraint-based algorithm for efficiently mining

observational databases for causal relationships. Data Mining and Knowledge

Discovery, 1(2):203–224, 1997.

[108] Jean-Philippe Pellet and André Elisseeff. Finding latent causes in causal networks:

an efficient approach based on markov blankets. In Advances in Neural Information

Processing Systems, pages 1249–1256, 2009.

[109] David Danks. Learning the causal structure of overlapping variable sets. In Inter-

national Conference on Discovery Science, pages 178–191. Springer, 2002.

[110] Gregory F Cooper and Changwon Yoo. Causal discovery from a mixture of ex-

perimental and observational data. In Proceedings of the Fifteenth conference on

Uncertainty in artificial intelligence, pages 116–125. Morgan Kaufmann Publishers

Inc., 1999.

[111] Subramani Mani and Gregory F Cooper. Causal discovery using a bayesian local

causal discovery algorithm. In Medinfo, pages 731–735, 2004.

[112] Constantin F Aliferis, Alexander Statnikov, Ioannis Tsamardinos, Subramani

Mani, and Xenofon D Koutsoukos. Local causal and markov blanket induction

for causal discovery and feature selection for classification part ii: Analysis and

extensions. Journal of Machine Learning Research, 11(Jan):235–284, 2010.



References 145

[113] Jiuyong Li, Thuc Duy Le, Lin Liu, Jixue Liu, Zhou Jin, and Bingyu Sun. Mining

causal association rules. In Data Mining Workshops (ICDMW), 2013 IEEE 13th

International Conference on, pages 114–123. IEEE, 2013.

[114] Matthew J Rattigan, Marc E Maier, and David D Jensen. Relational blocking for

causal discovery. In AAAI, 2011.

[115] Holger Schünemann, Suzanne Hill, Gordon Guyatt, Elie A Akl, and Faruque

Ahmed. The grade approach and bradford hill’s criteria for causation. Journal of

Epidemiology & Community Health, 65(5):392–395, 2011.

[116] Amy Sliva, Scott Neal Reilly, Randy Casstevens, and John Chamberlain. Tools

for validating causal and predictive claims in social science models. Procedia Man-

ufacturing, 3:3925–3932, 2015.

[117] Saurav Acharya and Byung Suk Lee. Incremental causal network construction

over event streams. Information Sciences, 261:32–51, 2014.

[118] J Martin Bland and Douglas G Altman. Statistics notes: measurement error. Bmj,

313(7059):744, 1996.

[119] Paul R Wolf and Charles D Ghilani. Adjustment computations: statistics and least

squares in surveying and GIS. Wiley-Interscience, 1997.

[120] Hervé Abdi. Coefficient of variation. Encyclopedia of research design, 1:169–171,

2010.

[121] Christophe Leys, Christophe Ley, Olivier Klein, Philippe Bernard, and Laurent

Licata. Detecting outliers: Do not use standard deviation around the mean, use

absolute deviation around the median. Journal of Experimental Social Psychology,

49(4):764–766, 2013.

[122] Charu C Aggarwal and ChengXiang Zhai. Mining text data. Springer Science &

Business Media, 2012.

[123] Johannes Ledolter. Data mining and business analytics with R. John Wiley &

Sons, 2013.

[124] Kanwal Garg and Deepak Kumar. Comparing the performance of frequent pattern

mining algorithms. International Journal of Computer Applications, 69(25), 2013.



References 146

[125] Hisao Ishibuchi, Isao Kuwajima, and Yusuke Nojima. Prescreening of candidate

rules using association rule mining and pareto-optimality in genetic rule selection.

In Knowledge-Based Intelligent Information and Engineering Systems, pages 509–

516. Springer, 2007.

[126] Pankaj Kumar Deva Sarma and Anjana Kakati Mahanta. Reduction of number of

association rules with inter itemset distance in transaction databases. International

Journal of Database Management Systems, 4(5):61, 2012.

[127] C Tew, C Giraud-Carrier, K Tanner, and S Burton. Behavior-based clustering

and analysis of interestingness measures for association rule mining. Data Mining

and Knowledge Discovery, 28(4):1004–1045, 2014.

[128] Sunitha Vanamala, L Padma Sree, and S Durga Bhavani. Rare association rule

mining for data stream. In Computer and Communications Technologies (ICCCT),

2014 International Conference on, pages 1–6. IEEE, 2014.

[129] Wen-Yang Lin and Ming-Cheng Tseng. Automated support specification for effi-

cient mining of interesting association rules. Journal of Information Science, 32

(3):238–250, 2006.

[130] CS Kanimozhi Selvi and A Tamilarasi. An automated association rule mining

technique with cumulative support thresholds. Int. J. Open Problems in Compt.

Math, 2(3), 2009.

[131] Dimitar Hristovski, Janez Stare, Borut Peterlin, and Saso Dzeroski. Supporting

discovery in medicine by association rule mining in medline and umls. Studies in

health technology and informatics, (2):1344–1348, 2001.

[132] Bernard W Silverman. Density estimation for statistics and data analysis. Rout-

ledge, 2018.

[133] Samuel Sanford Shapiro and Martin B Wilk. An analysis of variance test for

normality (complete samples). Biometrika, 52(3/4):591–611, 1965.

[134] Nornadiah Mohd Razali, Yap Bee Wah, et al. Power comparisons of shapiro-wilk,

kolmogorov-smirnov, lilliefors and anderson-darling tests. Journal of statistical

modeling and analytics, 2(1):21–33, 2011.



References 147

[135] AA Makarov and GI Simonova. Comparative analysis of the powers of the two-

sample kolmogorov–smirnov and anderson–darling tests under various alternatives.

Journal of Mathematical Sciences, pages 1–6, 2018.

[136] Yuanhui Xiao. A fast algorithm for two-dimensional kolmogorov–smirnov two

sample tests. Computational Statistics & Data Analysis, 105:53–58, 2017.

[137] TW Kirkman. Statistics to use. 1996. URL: http://www. physics. csbsju. edu/s-

tats/Accessed, 31:12, 2007.

[138] Aad W Van der Vaart. Asymptotic statistics, volume 3. Cambridge university

press, 1998.

[139] A Makarov and G Simonova. Some properties of two-sample kolmogorov-smirnov

test in the case of contamination of one of the samples. Journal of Mathematical

Sciences, 220(6), 2017.

[140] Srivatsan Laxman and P Shanti Sastry. A survey of temporal data mining. Sad-

hana, 31(2):173–198, 2006.

[141] Rafael S Parpinelli, Heitor S Lopes, and Alex Alves Freitas. Data mining with an

ant colony optimization algorithm. IEEE transactions on evolutionary computa-

tion, 6(4):321–332, 2002.

[142] Biao Qin, Yuni Xia, Sunil Prabhakar, and Yicheng Tu. A rule-based classification

algorithm for uncertain data. In 2009 IEEE 25th International Conference on

Data Engineering, pages 1633–1640. IEEE, 2009.

[143] Judea Pearl. Causality: models, reasoning, and inference. Cam-

bridge University Press, Cambridge, 2nd edition, 2009. ISBN

9780521773621;052189560X;9780521895606;0521773628;.

[144] Judea Pearl. Causality: models, reasoning, and inference. Econometric Theory,

19(675-685):46, 2003.

[145] Jiri Barnat, Lubos Brim, and Petr Rockai. Parallel partial order reduction with

topological sort proviso. In Software Engineering and Formal Methods (SEFM),

2010 8th IEEE International Conference on, pages 222–231. IEEE, 2010.



References 148

[146] Peter Spirtes and Clark Glymour. An algorithm for fast recovery of sparse causal

graphs. Social science computer review, 9(1):62–72, 1991.

[147] Peter Spirtes, Clark N Glymour, and Richard Scheines. Causation, prediction, and

search. Cambridge MA: MIT Press, 2000.

[148] Tom Claassen and Tom Heskes. A logical characterization of constraint-based

causal discovery. arXiv preprint arXiv:1202.3711, 2012.

[149] Camden Cheek, Huiyong Zheng, Brian R Hallstrom, and Richard E Hughes. Appli-

cation of a causal discovery algorithm to the analysis of arthroplasty registry data.

Biomedical engineering and computational biology, 9:1179597218756896, 2018.

[150] Imme Ebert-Uphoff and Yi Deng. Causal discovery for climate research using

graphical models. Journal of Climate, 25(17):5648–5665, 2012.

[151] Markus Kalisch and Peter Bühlmann. Estimating high-dimensional directed

acyclic graphs with the pc-algorithm. Journal of Machine Learning Research,

8(Mar):613–636, 2007.

[152] Dan Geiger, Thomas Verma, and Judea Pearl. d-separation: From theorems to

algorithms. In Machine Intelligence and Pattern Recognition, volume 10, pages

139–148. Elsevier, 1990.

[153] Peter Spirtes. Using d-separation to calculate zero partial correlations in linear

models with correlated errors. 1996.

[154] Richard Scheines. D-separation. urlhttps://www.andrew.cmu.edu/user/-

scheines/tutor/d-sep.html/, 2018. [Online; accessed 07-April-2018].

[155] Doris Entner and Patrik O Hoyer. On causal discovery from time series data using

fci. Probabilistic graphical models, pages 121–128, 2010.

[156] Patrik O Hoyer, Shohei Shimizu, Antti J Kerminen, and Markus Palviainen. Es-

timation of causal effects using linear non-gaussian causal models with hidden

variables. International Journal of Approximate Reasoning, 49(2):362–378, 2008.

[157] Diego Colombo and Marloes H Maathuis. Order-independent constraint-based

causal structure learning. The Journal of Machine Learning Research, 15(1):3741–

3782, 2014.



References 149

[158] Jin Tian. Generating markov equivalent maximal ancestral graphs by single edge

replacement. arXiv preprint arXiv:1207.1428, 2012.

[159] Diego Colombo, Marloes H Maathuis, Markus Kalisch, and Thomas S Richard-

son. Learning high-dimensional directed acyclic graphs with latent and selection

variables. The Annals of Statistics, pages 294–321, 2012.

[160] R Ayesha Ali, Thomas S Richardson, Peter Spirtes, et al. Markov equivalence for

ancestral graphs. The Annals of Statistics, 37(5B):2808–2837, 2009.

[161] Jiji Zhang. A characterization of markov equivalence classes for directed acyclic

graphs with latent variables. arXiv preprint arXiv:1206.5282, 2012.

[162] P Spirtes, C Meek, and T Richardson. An algorithm for causal inference in the

presence of latent variables and selection bias in computation, causation and dis-

covery, 1999, 1999.

[163] Jiji Zhang. On the completeness of orientation rules for causal discovery in the

presence of latent confounders and selection bias. Artificial Intelligence, 172(16-

17):1873–1896, 2008.

[164] R Ayesha Ali and Thomas S Richardson. Markov equivalence classes for maximal

ancestral graphs. In Proceedings of the Eighteenth conference on Uncertainty in

artificial intelligence, pages 1–9. Morgan Kaufmann Publishers Inc., 2002.

[165] Jiji Zhang. Causal reasoning with ancestral graphs. Journal of Machine Learning

Research, 9(Jul):1437–1474, 2008.

[166] Markus Kalisch, Martin Mächler, Diego Colombo, Marloes H Maathuis, Peter

Bühlmann, et al. Causal inference using graphical models with the r package

pcalg. Journal of Statistical Software, 47(11):1–26, 2012.

[167] Shohei Shimizu, Patrik O Hoyer, Aapo Hyvärinen, and Antti Kerminen. A linear

non-gaussian acyclic model for causal discovery. Journal of Machine Learning

Research, 7(Oct):2003–2030, 2006.

[168] Christos Bechlivanidis and David A Lagnado. Time reordered: Causal perception

guides the interpretation of temporal order. Cognition, 146:58–66, 2016.



References 150

[169] ALLEN Newell and HA Simon. Gps a program that simulates human thoughts in

ea feigenbaum and j. feldman eds., computer and thoughts, 1963.

[170] J. McCarthy and P.J. Hayes. Some philosophical problems from the stand-

point of artificial intelligence. In Bonnie Lynn Webber and Nils J. Nils-

son, editors, Readings in Artificial Intelligence, pages 431–450. Morgan

Kaufmann, 1981. ISBN 978-0-934613-03-3. doi: https://doi.org/10.1016/

B978-0-934613-03-3.50033-7. URL http://www.sciencedirect.com/science/

article/pii/B9780934613033500337.

[171] Stuart Jonathan Russell, Peter Norvig, John F Canny, Jitendra M Malik, and Dou-

glas D Edwards. Artificial intelligence: a modern approach, volume 74. Prentice

hall Englewood Cliffs, 1995.

[172] Austin Tate, Gerhard Wickler, Lee McCluskey, and Lukáš Chrpa. Machine learn-

ing and adaptation of domain models to support real time planning in autonomous

systems. HEdLAMP–Huddersfield+ Edinburgh: Learning and Adaptation of Mod-

els for Planning, University of Edinburgh, 2012.

[173] S Shoeeb and T.L. McCluskey. On comparing planning domain models. In The

29th Workshop of the UK Planning and Scheduling Special Interest Group PlanSIG

2011, pages 92–94. UK PLANNING AND SCHEDULING Special Interest Group,

December 2011. URL http://eprints.hud.ac.uk/id/eprint/12717/.

[174] Arturo González Ferrer. Knowledge engineering techniques for the translation of

process models into temporal hierarchical planning and scheduling domains. PhD

thesis, Ph. D. Dissertation, Universidad de Granada, 2011.

[175] Thomas L McCluskey, Tiago Vaquero, and Mauro Vallati. Issues in planning

domain model engineering. 2016.

[176] Susanne Biundo, Ruth Aylett, Michael Beetz, Daniel Borrajo, Amedeo Cesta,

Tim Grant, TL McCluskey, Alfredo Milani, and Gerard Verfaille. Technological

roadmap on ai planning and scheduling. 2003.

[177] Derek Long and Maria Fox. The 3rd international planning competition: Results

and analysis. Journal of Artificial Intelligence Research, 20:1–59, 2003.

http://www.sciencedirect.com/science/article/pii/B9780934613033500337
http://www.sciencedirect.com/science/article/pii/B9780934613033500337
http://eprints.hud.ac.uk/id/eprint/12717/


References 151

[178] Pablo Munoz, Maŕıa D R-Moreno, and Bonifacio Castano. Integrating a pddl-

based planner and a plexil-executor into the ptinto robot. In International Con-

ference on Industrial, Engineering and Other Applications of Applied Intelligent

Systems, pages 72–81. Springer, 2010.

[179] Dana S Nau. Current trends in automated planning. AI magazine, 28(4):43–43,

2007.

[180] Earl D Sacerdoti. The nonlinear nature of plans. Technical report, STANFORD

RESEARCH INST MENLO PARK CA, 1975.

[181] Avrim L Blum and Merrick L Furst. Fast planning through planning graph anal-

ysis. Artificial intelligence, 90(1-2):281–300, 1997.

[182] Henry Kautz and Bart Selman. Phusing the envelope: Planning, propositional

logic, and stochastic search. (1-8):1194–1201, 1997.

[183] Jörg Hoffmann and Bernhard Nebel. The ff planning system: Fast plan generation

through heuristic search. Journal of Artificial Intelligence Research, 14:253–302,

2001.

[184] Jörg Hoffmann. The metric-ff planning system: Translating“ignoring delete

lists”to numeric state variables. Journal of artificial intelligence research, 20:

291–341, 2003.

[185] Alfonso Gerevini, Alessandro Saetti, and Ivan Serina. Planning through stochastic

local search and temporal action graphs in lpg. Journal of Artificial Intelligence

Research, 20:239–290, 2003.

[186] Alfonso Gerevini Alessandro Saetti Ivan Serina. An empirical analysis of some

heuristic features for local search in lpg. 2004.

[187] Alfonso Gerevini, Alessandro Saetti, and Ivan Serina. Temporal planning with

problems requiring concurrency through action graphs and local search. In Twen-

tieth International Conference on Automated Planning and Scheduling, 2010.

[188] Manuel Sojer and Joachim Henkel. Code reuse in open source software develop-

ment: Quantitative evidence, drivers, and impediments. Journal of the Association

for Information Systems, 11(12):868–901, 2010.



References 152

[189] Martin Hitz and Behzad Montazeri. Measuring coupling and cohesion in object-

oriented systems. na, 1995.

[190] Melissa JM Turcotte, Alexander D Kent, and Curtis Hash. Unified host and

network data set. ArXiv e-prints, 2017.

[191] Derek Long, Maria Fox, and Richard Howey. Planning domains and plans: val-

idation, verification and analysis. In Proc. Workshop on V&V of Planning and

Scheduling Systems, 2009.

[192] Saddek Bensalem, Klaus Havelund, and Andrea Orlandini. Verification and vali-

dation meet planning and scheduling, 2014.

[193] Richard Howey, Derek Long, and Maria Fox. Val: Automatic plan validation,

continuous effects and mixed initiative planning using pddl. In 16th IEEE Inter-

national Conference on Tools with Artificial Intelligence, pages 294–301. IEEE,

2004.

[194] Lukáš Chrpa, Thomas Leo McCluskey, Mauro Vallati, and Tiago Vaquero. The

fifth international competition on knowledge engineering for planning and schedul-

ing: Summary and trends. Ai Magazine, 38(1):104–106, 2017.

[195] Mohammed Al Qady and Amr Kandil. Techniques for evaluating automated

knowledge acquisition from contract documents. In Construction Research

Congress 2009: Building a Sustainable Future, pages 1479–1488, 2009.

[196] Zhiyuan Chen, Arjun Mukherjee, and Bing Liu. Aspect extraction with automated

prior knowledge learning. In Proceedings of the 52nd Annual Meeting of the Asso-

ciation for Computational Linguistics (Volume 1: Long Papers), volume 1, pages

347–358, 2014.

[197] Felix Salfner, Steffen Tschirpke, and Miroslaw Malek. Comprehensive logfiles for

autonomic systems. In 18th International Parallel and Distributed Processing Sym-

posium, 2004. Proceedings., page 211. IEEE, 2004.

[198] Pinjia He, Jieming Zhu, Pengcheng Xu, Zibin Zheng, and Michael R Lyu.

A directed acyclic graph approach to online log parsing. arXiv preprint

arXiv:1806.04356, 2018.



Appendix A

Description of Microsoft events

According to Microsoft documentation1, there are five categories of events that can be
logged in Windows operating system. All event entries have structured data and an entry
can only be of a single type. Table A.1 explains each category used by the event logging
mechanism. Similar events are organised into separate collections that are explained in
the following:

1. Application – all events generated by the applications installed on the machine;

2. Security – events triggered by the security auditing policies. All categories of
security events are shown in Table A.2;

3. Setup – events related to the domain controller servers;

4. System – all events related to the Windows file system; and

5. Forwarded – events sent by other machines in the network.

1https://docs.microsoft.com/en-us/windows/desktop/eventlog/event-types

1



Appendix A. Description of Microsoft events 2

Event category Description
Information Describes about the successful operation performed by

a user-application, hardware driver or background ser-
vice. For example, if user starts a MS-SQL service on a
machine, it will log an Information event 26022 with a
message ‘Server is listening on [‘any’ <ipv4> 1433]’.

Warning Indicates an issue that is not significant at the
moment, but might cause future problems. For
example, if user attempts to restart the MS-
SQL server and it fails, the event logging mecha-
nism will log a Warning event 10010 with a mes-
sage ‘Application ‘C:\Program Files\Microsoft SQL
Server\130\LocalDB\Binn\sqlservr.exe’ (pid 4984) can-
not be restarted’. The warning events are still logged if
the application or service recovers without losing data
or operations.

Error Notifies about a significant problem. For example, if
the MS-SQL service fails to load upon user request, it
will log an Error event 1000 with a message ‘Faulting
application name: sqlservr.exe · · · ’.

Success Audit Describes the successful completion of an operation for
which security auditing is enabled. For example, if a user
tries to login and enters correct credentials, it will log a
Success Audit event 4624 with a message ‘An account
was successfully logged on’.

Failure Audit Records the failed attempt of an operation for which
security auditing is enabled. For example, if a user tries
logs on and enters incorrect credentials, it will log a
Failure Audit success event 4625 with a message ‘An
account failed to log on’.

Table A.1: Event categories of a Microsoft Windows operating system



Appendix A. Description of Microsoft events 3

Category of security policy Description
Account logon events Stores all information regarding users logging

on and off, timestamp, valid/invalid creden-
tials, etc.

Account management Keeps track of all activities related to user
account, such as account creation and dele-
tion, password change and so on.

Directory service access Records all information regarding the system
access control list.

Object access Stores all events where user tried to access
an object, such as printer, file, registry key,
etc.

Policy change Records all changes in security, audit and
trust policies, and user right assignment.

Privilege use Keeps track of all instances where user exer-
cised authorised-permissions.

Process tracking Stores activities of a process, such as duplica-
tion, start/exit, indirect resource access and
so on.

System events Stores all security events during the start and
shutdown of a machine.

Table A.2: Security event categories of a Microsoft Windows operating system



Appendix B

Elements of PDDL-based
representation

Every PDDL planning problem consists of two components: domain model and problem
instance. The schemata are given in the following:

B.1 Domain model

(define (domain DOMAIN-NAME)

(:requirements [:strips] [:equality] [:typing] [:adl] [:fluents])

(:types T1 T2 · · · TN)

(:predicates

(PREDICATE-NAME-1 ?P1 ?P2 · · · ?PN)

(PREDICATE-NAME-2 ?P1 ?P2 · · · ?PN)

· · ·
)

(:functions

(FUNCTION-NAME-1 ?F1 ?F2 · · · ?FN)

(FUNCTION-NAME-2 ?F1 ?F2 · · · ?FN)

· · ·
)

(:action ACTION-NAME-1

:parameters (?P1 ?P2 · · · ?PN)

:precondition (PRECOND-CONJUNCTION)

:effect (EFFECT-CONJUNCTION)

)

· · ·
)

Figure B.1: Domain action model schema of PDDL

The domain schema is shown in Figure B.1, where elements written inside square brack-
ets (‘[]’) depends on the user requirements. It contains the following elements:

4



Appendix B. Elements of PDDL-based representation 5

1. Domain-name – This represents the domain’s name, which allows alphanumeric
characters, hyphens and underscores;

2. Requirements – As PDDL is a generic language, specifying syntax requirements
makes it easier for the planning algorithm to interpret the domain model. For
example, [:strips] shows that the current model uses STRIPS representation, [:flu-
ents] depicts the usage of numeric fluents, etc.;

3. Types – These are used to represent the state variable types. The types are optional
and require explicit definition by the user;

4. Predicates – These are the descriptive, logical expressions containing a set of pa-
rameters, which can be null as well. Each parameter is a variable name, starts with
a question mark (‘?’) and can also have a type. The predicates have no intrinsic
meaning in terms of domain definition;

5. Functions – These are the numeric fluents, which are used within actions to per-
form arithmetic operations; and

6. Actions – These represent the pre-condition and effect relationships among predi-
cates to depict an operation. Each action has a name and takes a list of parameters
along with their types. Both pre-conditions and effects contain the and/or con-
junctions of one or more predicates, where each predicate can be formulated as
either positive or negative. The negation is defined by a not operator. The effect
conjunction can also have an action cost value, which is modelled and manipulated
by numeric fluents.

B.2 Problem instance

(define (problem PROBLEM-NAME)

(:domain DOMAIN-NAME)

(:objects OBJECT-1 OBJECT-2 · · · OBJECT-N )

(:init INITIAL-1 INITIAL-2 · · · INITIAL-N )

(:goal GOAL-1 GOAL-2 · · · GOAL-N )

(:metric MINIMIZE|MAXIMIZE (NUMERIC-FLUENT))

)

Figure B.2: Problem instance schema of PDDL

The problem schema is shown in Figure B.2, which contains the following elements:

1. Problem-name – This defines the problem instance name, which can have alphanu-
meric characters, hyphens and underscores;

2. Domain-name – This specifies the name of domain model, which will be used for
this particular problem instance;



Appendix B. Elements of PDDL-based representation 6

3. Objects – This is the list of constant objects, which are usually categorised into
respective types. The type of an object is assigned using Constant − ObjectType
syntax. The objects are used as arguments for the action parameters;

4. Init – This contains a list of predicates or facts that are true in the initial state.
All other predicates are considered as false. The numeric fluents are also initialised
here;

5. Goal – This contains a list of predicates, which are fully or partially satisfied upon
successful planning process. The predicates with one or more parameters in both
initial state and goal description are grounded, i.e. the variable parameters are
replaced with constant objects; and

6. Metric – These are used to improve the quality of plan by maximising or minimising
the accumulative value of numeric fluents encoded in domain actions.



Appendix C

Example of
Temporal-Association-Causal
(TAC) rules in HTML format

Figure C.1 presents an example of HTML representation of TAC rules that provides the
following information to the user:

1. List of all TAC rules, where all events are depicted by their corresponding event
types;

2. Complete information about the event type (by clicking the hyperlink). This
information is collected from the online resources12;

3. Temporality of all TAC rules;

4. List of one or more security event categories involved in each TAC rule; and

5. At the end, a summary stating number of total rules, rules with 100% temporality,
rules belonging to a single category and single category rules with full temporality.

1https://docs.microsoft.com/en-us/windows/security/threat-protection/
2https://www.ultimatewindowssecurity.com/securitylog/encyclopedia/

7



Appendix C. Example of TAC rules in HTML format 8

Figure C.1: An example of TAC rules represented in the HTML format.


	Copyright Statement
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Abbreviations
	Symbols
	1 Introduction
	1.1 Overview
	1.2 What Are Event logs?
	1.3 Assumptions
	1.4 Research Question
	1.5 Scope, Motivation And Aim
	1.6 Objectives
	1.7 Contributions
	1.8 Publications
	1.8.1 Journal Papers
	1.8.2 Conference Papers
	1.8.3 Book Chapters

	1.9 Thesis Structure

	2 Background and Literature Review
	2.1 Data Sources
	2.2 What Is Knowledge Acquisition?
	2.3 Manual And Assistive Knowledge Acquisition
	2.3.1 Rule-Based Systems
	2.3.2 Case-Based Reasoning Systems
	2.3.3 Codebook-Based Systems
	2.3.4 Voting-Based Approach
	2.3.5 Commercial Event Correlation Software

	2.4 Automated Knowledge Acquisition Approaches
	2.4.1 Clustering Techniques
	2.4.2 Automated Planning Techniques
	2.4.2.1 Domain Representation Languages
	2.4.2.2 Searching Techniques
	2.4.2.3 Applications Of Planning In Cybersecurity

	2.4.3 Association Rule Mining Techniques
	2.4.4 Causal Inference Techniques

	2.5 Literature Analysis
	2.6 Chapter Summary

	3 Automated Knowledge Acquisition
	3.1 Data Pre-Processing
	3.1.1 Filtering Routine Entries
	3.1.2 Preparing Object-Based Model

	3.2 Association Rule Mining
	3.2.1 Object-Based Association Rules
	3.2.2 Establishing Support Value
	3.2.2.1 Normality Test

	3.2.3 Event-Type Association Rules

	3.3 Sequences Of Event Relationships
	3.3.1 Temporal-Association Relationships
	3.3.2 Forming And Validating Sequences Of Events

	3.4 Determining Causality
	3.4.1 Building Directed Acyclic Graph
	3.4.2 Inferring Causal Rank
	3.4.2.1 PC Algorithm
	3.4.2.2 FCI Algorithm


	3.5 Storing Rules
	3.6 Chapter Summary

	4 Automated Planning
	4.1 Classical Planning
	4.1.1 Conceptual Model Of Classical Planning
	4.1.2 Formalisation
	4.1.3 General Assumptions

	4.2 Process Of Knowledge Representation And Modelling
	4.2.1 Modelling Process

	4.3 Representation And Utilisation Of Extracted Rules
	4.3.1 System Definition
	4.3.2 Domain Modelling
	4.3.2.1 Domain Name, Requirements And Types
	4.3.2.2 Predicates
	4.3.2.3 Functions
	4.3.2.4 Actions
	4.3.2.5 Domain Model Example

	4.3.3 Problem Instances
	4.3.3.1 Problem Name And Objects
	4.3.3.2 Initial State
	4.3.3.3 Goal State And Optimisation Metric
	4.3.3.4 Problem Instance Example

	4.3.4 Automated Plan Generation
	4.3.4.1 Planners
	4.3.4.2 Example


	4.4 Chapter Summary

	5 Implementation and Evaluation
	5.1 Implementation
	5.1.1 Software Requirements
	5.1.2 Development Of Applications
	5.1.2.1 Knowledge Acquisition And Representation
	5.1.2.2 Knowledge Utilisation


	5.2 Evaluation
	5.2.1 Challenges
	5.2.2 Methodology
	5.2.3 Process Of Evaluation
	5.2.3.1 Data Collection
	5.2.3.2 Knowledge In The Events
	5.2.3.3 Automated Plan Generation
	5.2.3.4 Manual Plan Generation
	5.2.3.5 Accuracy
	5.2.3.6 Performance

	5.2.4 Results
	5.2.5 Discussion
	5.2.5.1 Completeness
	5.2.5.2 Efficiency
	5.2.5.3 Performance
	5.2.5.4 Importance Of Causal Inference
	5.2.5.5 Other Findings

	5.2.6 Accuracy Analysis Of An Automated Plan
	5.2.7 Interpretation Of The Plan For Usability
	5.2.8 Example Of An Incorrect Automated Plan
	5.2.9 A different approach to evaluation

	5.3 Limitations
	5.4 Chapter Summary

	6 Conclusion and Future work 
	6.1 Conclusion
	6.1.1 Summary

	6.2 Suggested Future Work

	References
	A Description of Microsoft events
	B Elements of PDDL-based representation
	B.1 Domain model
	B.2 Problem instance

	C Example of Temporal-Association-Causal (TAC) rules in HTML format

