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Abstract. A generalized thermoelastic problem with temperature- dependent modulus of
elasticity and thermal conductivity has been considered in an infinite medium with a cylin-
drical cavity. A fter applying Laplace-transformation the basic equations are presented
in the form of a vector-matrix differential equation and then are solved by eigen-value
method. Finally, the expressions of radial displacement, temperature and stress distribu-
tion are shown graphically for two different cases to compare the situations between the
temperature-dependent and temperature-independent material properties in the inverse-
Laplace domain.
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1. Introduction

Lord and Shulman [1] introduced the theory of generalized thermoelasticity with one relaxation
time parameter for the special case of an isotropic body. Dhaliwal and Sherief[2] extended this
theory to include the anisotropic case. In this theory, a modified law of heat conduction includ-
ing both the heat flux and its time derivative replaces the conventional Fourier’s law. The heat
equation associate with this theory is hyperbolic and hence predicts finite speed of propaga-
tion for heat waves. The uniqueness of solution for this theory was proved by Ignaczak[3,4], by
Dhaliwal and Sherief[2] and by Sherief[5].
Green and Lindsay[6] obtained the theory of thermoelasticity with two relaxation time parame-
ters. In this theory, the classical Fourier’s law of heat conduction is not violated when the body
under consideration has a centre of symmetry. The uniqueness of solution of this solution was
established by Green[7]. The fundamental solution was obtained by Sherief[8].
Indealing with coupled or generalized thermoelastic problems, the solution procedure is to
choose a suitable thermoelastic potential function, but this method has certain limitations as
discussed by Bahar and Hetnarski[9]. Here we prefer to adopt the eigenvalue method as in Das
et.al.[10] and as such, the physical quantities involved in the boundary and initial conditions
are directly solvable from the governing equations.
Previously, most of the investigations of thermoelasticity were done under the assumption of
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temperature-independent material properties, but at high temperature the material character-
istics such as modulus of elasticity, Poisson’s ratio, coefficient of thermal expansion and the
thermal conductivity are no longer constants[11]. In recent years, it has become necessary to
take into account the actual behavior of material characteristics.
In this paper, we have considered a infinite medium with a cylindrical cavity where the modulus
of elasticity and thermal conductivity are temperature dependent and comparisons are made
graphically between the temperature dependent and temperature independent material prop-
erties.

NOMENCLATURE

λ, µ= Lamè constants.
u = Displacement component.
t = Time variable.
σij=Stress component.
T= Absolute temperature.
T0 = Reference temperature.
ρ = Mass density.
Ce = Specific heat.
K = Coefficient of thermal conductivity.
κ=Coefficient of thermal diffusivity.
γ = (3λ+ 2µ)αt.
α∗ = Empirical material constant.
τ0= Thermal relaxation time parameter.
H(t)= Heaviside unit step function.

2. Formulation of the problem

We have taken into account the generalized thermoelasticity with one relaxation time in an
isotropic infinite medium which has a cylindrical cavity of radius R.
We use cylindrical co-ordinate system (r, ψ, z) with z-axis lying along the axis of the cylinder.
Due to symmetry, all functions are dependent only on r and t.
i.e. if −→u=(ur, uψ, uz) be the displacement vector, then
ur=u(r, t) ; uψ(r, t) = 0 = uz(r, t)
In this paper, the modulus of elasticity and the heat conductivity are taken to be temperature
dependent as
λ = λ0f(T ); µ = µ0f(T ); K = K0f(T ); γ = γ0f(T );
where f(T ) ≈ f(T0)=1− α∗T0 = 1

αT
considering |T−T0

T0
| << 1

The equation of motion and the heat conduction equations are :

ραT ü = (α0 + 2µ0)
∂e

∂r
− γ0

∂θ

∂r
(1)

and

∇2θ = (
∂

∂t
+ τ0

∂2

∂t2
)(
θ

κ
+
γ0T0e

K0
) (2)
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where e = 1
r
∂(ru)
∂r ; θ = T − T0 ; ∇2 = ∂2

∂r2 + 1
r
∂
∂r

The stress components are :

αTσrr = 2µ0
∂u

∂r
+ λ0e− γ0θ

αTσψψ = 2µ0
u

r
+ λ0e− γ0θ

αTσzz = λ0e− γ0θ
σzr = σψr = σzψ = 0 (3)

We define the following non-dimensional variables :

r
′

=
√

λ0+2µ0

ρ
r
κ ;u

′
=
√

λ0+2µ0

ρ
u
κ ; t

′
=
√

λ0+2µ0

ρ
t
κ ; τ

′

0 =
√

λ0+2µ0

ρ
τ0
κ ; R

′
=
√

λ0+2µ0

ρ
R
κ ;

θ
′

= θ
T0

;σ
′

= σ
µ0

Using the above non-dimensional quantities in equations (1), (2) and (3), we get(omiting the
primes) :

αT
∂2u

∂t2
=
∂2u

∂r2
+

1

r

∂u

∂r
− u

r2
− a∂θ

∂r
(4)

∂2θ

∂r2
+

1

r

∂θ

∂r
− (θ̇ + τ0θ̈) = g(

∂

∂t
+ τ0

∂2

∂t2
)(
u

r
+
∂u

∂r
) (5)

αTσrr = β2 ∂u

∂r
+ (β2 − 2)

u

r
− bθ

αTσψψ = (β2 − 2)
∂u

∂r
+ β2u

r
− bθ

αTσzz = (β2 − 2)(
∂u

∂r
+
u

r
− bθ (6)

3. Method of Solution

Consider the definition of Laplace transform :

T̄ (r, p) =

∫ ∞
0

T (r, t)exp(−pt)dt (7)

Using the above Laplace transform on time t to the equations (4), (5) and (6), we get:

αT p
2u =

d2u

dr2
+

1

r

du

dr
− u

r2
− adθ

dr
(8)

d2θ

dr2
+

1

r

dθ

dr
− (p+ τ0p

2)θ = g(p+ τ0p
2)(

u

r
+
du

dr
) (9)

αTσrr = β2 du

dr
+ (β2 − 2)

u

r
− bθ

αTσψψ = (β2 − 2)
du

r
+ β2u

r
− bθ

αTσzz = (β2 − 2)(
du

dr
+
u

r
− bθ (10)

Differentiating (9) with respect to r and using (8) in the resulting equation :

d3θ

dr3
+

1

r

d2θ

dr2
− 1

r2
dθ

dr
= p(1 + τ0p)(1 + ag)

dθ

dr
+ αT gp

3(1 + τ0p)u (11)
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Now we write equations (8) and (11) in the form of a vector-matrix differential equation
as :

LV = A V (12)

where L ≡ d2

dR2 + 1
R

d
dR −

1
R2 is a Bessel operator.

v =
[
u dθ
dr

]T
; A =

[
a11 a12
a21 a22

]
a11 = αT p

2 ; a12 = a ; a21 = αT gp
3(1 + τ0p) ; a22 = p(1 + τ0p)(1 + ε)

Let λi = α2
i , i = 1, 2 be the two eigen values of the matrix A which can be determined

from the following characteristic equation :-
α4 − (a11 + a22)α2 + (a11a22 − a12a21) = 0
The eigen vectors corresponding to the eigen values λi = α2

i , i = 1, 2 are respectively :-

Vi =

[
−a12

a11 − α2
i

]
Hence by Eigenvalue Method [ Appendix ], the solution of v can be written as :-

v =

[
u
dθ
dr

]
=

2∑
i=1

[AiViK1(αir) +BiViI1(αir)] (13)

where K1 and I1 are the modified Bessel Functions of second kind of order 1.
The radial displacement and the temperature in the Laplace transformed domain which are
both bounded at infinity, are now can be written as :-

u = −a12[A1K1(α1r) +A2K1(α2r)] (14)

θ = −[A1
a11 − α2

1

α1
K0(α1r) +A2

a11 − α2
2

α2
K0(α2r)] (15)

4. Boundary Conditions

To calculate the unknown constants A1 and A2 , we use the following boundary conditions on
the internal boundary r = R :-

Case I:-
In this case the cavity surface is assumed to be maintained at zero temperature and is subjected
to a ramp-type boundary load , i.e.

σrr(R, t) = −σ0H(t) , θ(R, t) = 0 (16)

Using Laplace Transformation on above :-

σrr(R, p) = −σ0
p
, θ(R, p) = 0 (17)

Case II:-
Considering the thermoelastic interactions when the surface of the cavity is stress-free and kept
at a temperature θ(R, t) ,then the boundary condition takes the form

σrr(R, t) = 0 , θ(R, t) = θ0e
−ωt (18)

Using Laplace Transformation on above :-

σrr(R, p) = 0 , θ(R, p) =
θ0

p+ ω
(19)
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5. Numerical Results

For our final result we have to find out the Laplace-inversion of radial displacement , tempera-
ture and stress distribution which are very complicated in nature.
To evaluate these we have used the Zakian method [12] . For our numerical calculation we have
chosen the Copper material . The values of the constants are given by :-
λ0 = 7.76 ; µ0 = 3.86 ; γ0 = (3λ0 + 2µ0)αt = 55.18 ; αt = 1.78 ; K0 = 386 ; cE = 3.831 ; ρ =
8954 ; T0 = 293K ; β2 = 4.01 ; b = 0.042 ; a = 0.0105 ; g = 1.61 ; τ0 = 0.01 ; ε=ag=0.017 ; R =
1 ; t = 0.3 ; σ0 = 1.2 ; θ0 = 1.5 ; ω = 0.5

Finally the expressions of radial displacement u , temperature θ and stress distribu-
tion σrr for the above two cases are presented graphically ( shown below ) where the curves are
plotted for different values of αT ( viz. 0.3 , 1 , 1.7 ). From the following graphs we observe that :-

i) we see that the three quantities stated above have their maximum values (absolute
value) for temperature independent case i.e. when αT = 1 for both case I and case II.

ii) for case I :-
• the distribution of displacement has greater absolute values for αT = 1.7 (i.e. αT > 1 ) than
for αT = 0.3(i.e. αT < 1 ).
• the temperature distribution has values near about zero for αT = 0.3.
• for stress distribution the absolute values are more or less same for αT > 1 and αT < 1.

iii) for case II :-
• the displacement distribution has greater absolute values for αT < 1 than for αT > 1 which
is the reverse of case I.
• for temperature distribution the absolute values are almost same for both αT > 1 and αT < 1.
• the radial tress distribution has greater absolute values for αT < 1 than for αT > 1.
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Appendix

Consider the differential equation in the form :

LV = A V (20)

where L ≡ d2

dx2 + 1
x
d
dx −

n2

x2 is a Bessel operator.
Let

A = V ΛV −1 (21)

where Λ=


λ1 ... 0
... λ2 ...
... ... ...
0 ... λn


is a diagonal matrix whose elements λ1. λ2. ....,λn are the distinct eigenvalues of A. Let V 1.
V 2. .....,V n be the eigenvectors of A corresponding to λ1. λ2. ....,λn respectively, and

V = [V 1 V 2 ... V n] (22)

Substituting (21) in (20) and premultiplying by V −1, we get

Ly = Λy ; y = V −1v (23)

as a system of decoupled equations.
A typical rth equation of (23) is

Lyr = λryr

d2yr
dx2

+
1

x

dyr
dx
− (λr +

n2

x2
)yr = 0 (24)

Case (i)

When λr = α2
r, the solution of equation (24) can be written as,

yr = ArKn(αrx) +BrIn(αrx) (25)

n is integer and Ar, Br are constants. Kn, In are modified Bessel functions of the second kind
of order n.

Case (ii)

When λr = −α2
r, the solution can be written as

yr = ArJn(αrx) +BrYn(αrx) (26)

n is integer and Jn, Yn are Bessel functions of the first kind of order n.
Hence the complete solution in this case can be written as v =

∑n
r=1 VrYr.
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