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Abstract

Understanding the causal relationship between intervention and outcome is at the heart
of most research in the health sciences, and a variety of statistical methods have been
developed to address causality. However, noncompliance with treatment assignment is a
key source of complication for causal inference. Estimation of causal effects is likely to be
compounded by the presence of noncompliance in both treatment arms of clinical trials
where the intention-to-treat (ITT) analysis produces a biased estimator for the true causal
estimate even under homogeneous treatment effects assumption. Principal stratification
method has been developed to address such posttreatment complications by stratifying
the population into partially latent classes (principal strata) based on potential values
observed after randomization (e.g. noncompliance) under each of the levels of randomized
intervention. The present work combines the two strategies of model selection and principal
stratification with a novel application to a real data from a trial conducted to ascertain
whether or not unopposed oestrogen (hormone replacement therapy - HRT) reduced the
risk of further cardiac events in postmenopausal women who survive a first myocardial
infarction. The causal model links the resulting two marginal prediction models with a
user-defined sensitivity parameter which is a function of the correlation between the two
compliance behaviours. The method’s key assumption of conditional prediction is verified
for our data via sensitivity analysis comparing results of causal estimates using different sets
of predictors of compliance. We adjust for noncompliance in both treatment arms under a
Bayesian framework to produce causal risk ratio estimates for each principal stratum. The
results suggested better efficacy for HRT among those who would comply with it compared
to those who would comply with either HRT or placebo: compliance with HRT treatment
only and with either treatment allocation would reduce the risk for death (reinfarction) by
47%(25%) and 13%(60%) respectively.
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Abstract. Understanding the causal relationship between intervention and outcome is at

the heart of most research in the health sciences, and a variety of statistical methods have

been developed to address causality. However, noncompliance with treatment assignment

is a key source of complication for causal inference. Estimation of causal effects is likely

to be compounded by the presence of noncompliance in both treatment arms of clinical

trials where the intention-to-treat (ITT) analysis produces a biased estimator for the true

causal estimate even under homogeneous treatment effects assumption. Principal stratifica-

tion method has been developed to address such posttreatment complications by stratifying

the population into partially latent classes (principal strata) based on potential values ob-

served after randomization (e.g. noncompliance) under each of the levels of randomized

intervention. The present work combines the two strategies of model selection and principal

stratification with a novel application to a real data from a trial conducted to ascertain

whether or not unopposed oestrogen (hormone replacement therapy - HRT) reduced the

risk of further cardiac events in postmenopausal women who survive a first myocardial

infarction. The causal model links the resulting two marginal prediction models with a

user-defined sensitivity parameter which is a function of the correlation between the two

compliance behaviours. The method’s key assumption of conditional prediction is verified

for our data via sensitivity analysis comparing results of causal estimates using different sets

of predictors of compliance. We adjust for noncompliance in both treatment arms under a

Bayesian framework to produce causal risk ratio estimates for each principal stratum. The

results suggested better efficacy for HRT among those who would comply with it compared

to those who would comply with either HRT or placebo: compliance with HRT treatment

only and with either treatment allocation would reduce the risk for death (reinfarction) by

47%(25%) and 13%(60%) respectively.
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I. Introduction

Valid causal inference is a central motivation in the analysis of data from randomised controlled

trials when comparing two or more interventions. Effective randomization of subjects between

the treatment groups plays a key role in permitting such statistical comparison [22, 19]. How-

ever, the presence of intermediate variables in the intervention-outcome causal pathway is likely

to complicate estimation of causal effects by introducing selection bias since they often manifest

themselves as non-random phenomena [41, 24]. Noncompliance with treatment assignment one

such phenomenon which may often manifests itself as treatment discontinuation, switching or

subject dropout from the study. Intention-to-treat (ITT) is the standard analysis for estimating

causal effects under perfect compliance with treatment assignment. By comparing treatment

groups as assigned, the ITT analysis preserves the baseline comparability between treatment

groups. However, using ITT results in presence of treatment noncompliance are likely to under-

estimate the treatment efficacy by mixing the effects of treatment compliers and non-compliers

[43]. Since noncompliance mostly manifests itself as a non-random phenomenon, it is a challenge

adjusting for its corresponding informative characteristics.

Applying standard regression methods to adjust for intermediate variables produce

estimates which lack causal interpretation [29]. One reason for failure in causal analysis is be-

cause such methods make the very strong but often implausible assumption of unmeasured

confounders between the intermediate variable and outcome. In the presence of noncompliance,

per-protocol and as-treated analyses are commonly used to supplement ITT in evaluating ef-

ficacy [42, 20]. But these post-hoc analyses lack the benefits of randomization, for example,

selection bias in these methods may be evident in different compliance behaviour in different

treatment arms. Efron and Feldman [9] in their seminal work used compliance as a covari-

ate in a regression adjustment for a placebo-controlled clinical trial evaluating the efficacy of

Cholestyramine in lowering serum cholesterol levels towards reducing the risk of coronary heart

disease. However, their method has been criticized for the implicit strong assumption of com-

parability in compliance between the active treatment and placebo arms [1, 3]. In the presence

of selectivity effects, many methods have been developed to account for noncompliance in more

than one treatment arm.

Frangakis and Rubin [11] developed the principal stratification as a general framework

to adjust for intermediate variables observed post-randomization. The method basically strat-

ifies the population into partially latent classes (principal strata) based on potential values of

posttreatment variable, like a noncompliance status. Principal strata comprise units having the

same values of the intermediate potential outcomes and are not affected by treatment assign-

ment hence retains the tenets of randomization and so provide valid and well-defined causal

effect estimates for selected subgroup/strata.

Imhotep Proc.
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Principal stratification is a flexible method for causal modelling which may be extended

to adjusting for noncompliance in more than one treatment arm. But owing to the latent nature

of principal strata, causal inference using the method often requires making structural assump-

tions to allow parameter identification. According to Cole and Frangakis [6], causal estimates

are generally identifiable under three sufficient assumptions: exchangeability (no unmeasured

confounders), positivity (existence of a non-zero probability to receive treatment) and consis-

tency (relating observed data to counterfactual data). In the presence of more than one active

treatment, a joint analysis may provide additional analytical insights than pairwise efficacy com-

parisons [4]. In general, comparing more than one active treatment compounds the challenge of

identification of causal estimates due to possible multiple forms/degrees of noncompliance with

treatment assignment [30, 21].

Crucial to parameter identification under principal stratification method is selection of

good baseline covariates which are predictive of the intermediate status (e.g. noncompliance).

The implicit challenge of model selection is not only a statistical problem [17] but may be

compounded when applied to intermediate variables occurring on the causal pathway and ob-

served post-randomisation. An efficient selection of plausible predictors of intermediate variables

can be used to effectively address identification problem of causal estimands by reducing bias

in addition to relaxing implicit causal assumptions [20]. From a clinical perspective, adequate

knowledge about predictors of treatment compliance may be a valuable tool to inform treatment

decisions. Shrinkage principle is a common strategy of reducing regression coefficients to im-

prove the quality of predictions through bias-variance tradeoff so as to produce stable models in

the presence of many predictors [34]. For example, Tibshirani [38] introduced the least absolute

shrinkage and selection operator (Lasso) as an efficient model selection method which performs

the twin tasks of variable selection and regression coefficient estimation simultaneously.

To adjust for noncompliance with treatment assignment, Roy et al. [30] proposed a

principal stratification framework for trials to compare two active treatments using baseline

covariates to address identification problem. Long et al. [21] also proposed a likelihood esti-

mation method to provide point causal estimands for a three-armed trial by using Bayesian

methods to model the arm-specific compliances directly while treating the principal compliance

status as missing. And by using Bayesian methods in a potential outcome framework, Zigler

and Belin [44] recently used a key covariate predictive of compliance for causal effect estimation

in an active-control trial. On the other hand, Fischer et al. [10] proposed a structural mean

modelling approach using baseline covariates predictive of compliance in each arm to obtain

compliance-adjusted efficacy in a randomized controlled trial comparing two-active treatments.

Central to the application of Roy et al. [30] model is the conditional prediction assump-

tion that potential outcomes are statistically independent of the set of covariates predictive of
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compliance given a stratum and treatment assignment. In the presence of many recorded base-

line covariates and given this defining assumption, this underscores the crucial role of selecting

efficient and meaningful predictors of compliance with treatment assignment for each trial arm.

Using a Bayesian approach, the present work modifies and extends the principal stratification

method of Roy et al. [30] to integrate optimal model selection procedures using plausible sep-

arate predictors of compliance in each arm and apply it to analyze survival data in terms of

causal risk ratio estimates for each principal stratum of the Esprit study.

The rest of the paper is organized as follows: Section 2 describes the motivating data

from the Esprit study. In Section 3, we describe the relevant causal modeling assumptions.

Section 4 provide a brief outline of the methods of analysis by first presenting model selection

predicting arm-specific compliance followed by the causal model framework linking the marginal

compliance models and the resulting Bayesian inference. Section 5 present an application and

results from analysis of the Esprit data. Finally, Section 6 presents a broad discussion.

II. Motivating data: The Esprit study

The onset of menopause is often characterized by diminishing production of oestrogen hormones

due to a decline in ovarian function whose unpleasant symptoms (e.g. vasomotor, insomnia,

fatigue and depression) can impact negatively on the body leading to low quality of life among

such women for the better part of the last third of their lives [27]. Hormone replacement therapy

(HRT) is a treatment for oestrogen-deficiency symptoms which is mainly administered in two

broad forms depending on whether a woman has her uterus intact or not: unopposed oestrogen

(oestrogen taken by itself) for those who have had hysterectomy (removal of the uterus) or

oestrogen with progestin for the non-hysterectomized. The addition of progestin is meant to

counteract the effects of estrogen on the uterus like endometrial cancer. Although observational

studies conducted in the last quarter of last Century showed benefits of HRT in lowering rates

of coronary heart disease [12], follow-up clinical trials failed to confirm such beneficial effects

among postmenopausal women.

The oEStrogen in the Prevention of ReiInfarction Trial (Esprit) study was one of the

trials whose ITT results revealed no HRT benefit among postmenopausal women [5]. Esprit was

a two-armed placebo-controlled double blind clinical trial conducted to ascertain whether or

not unopposed oestrogen reduces the risk of further cardiac events in postmenopausal women

aged between 50 − 69 years who survived a first myocardial infarction in England and Wales.

The study comprised a total of 1017 subjects: 513 and 504 women were randomized to HRT

treatment and placebo arms respectively and monitored over 24 months period. The primary

outcomes were cardiac deaths and all-cause mortality or reinfarction. Although ITT analysis

Imhotep Proc.



Vol. 1 (2014) Optimal compliance prediction models for estimating causal effects 5

of the data has been previously published, however the analysis took no account of compliance

data which we use in this paper to estimate true causal effects.

III. Notation and assumptions

We consider a parallel two-armed clinical trial set up. Let Z ∈ {0, 1} denote a randomization

indicator: Z = 1 indicate randomization to the new treatment and Z = 0 indicates randomiza-

tion to control. In our application, 1 (Z = 1) and 0 (Z = 0) will represent randomization to

HRT tablets and placebo treatment respectively. We define Y ∈ {0, 1} to be the outcome of

interest (e.g. death). Also let A ∈ {0, 1} denote compliance with assigned treatment. For the

Esprit study we define compliance as actual taking of assigned treatment up to a day before

experiencing event of interest (death/reinfarction) or end of study, whichever occurred first.

Although this all-or-nothing compliance definition may appear restrictive, it was considered

adequate and plausible since any potential treatment switches are assumed to occur soon af-

ter randomization and HRT tablets are presumed to have no carryover effects, i.e. assuming

no residual effect of treatment once a subject is classified a non-complier. We note that each

subject has two potential compliance levels A0 and A1 (compliance with placebo and HRT treat-

ment respectively) and two potential outcomes Y0 and Y1 (outcome under placebo and HRT

treatment respectively). But the observed compliance and outcomes are respectively given by

A=ZA1 + (1− Z)A0 and Y =ZY1 + (1− Z)Y0.

Analysis under the principal stratification formulation utilizes baseline covariates X

to modify the standard assumptions (a)-(e) for causal modelling [18, 2] together with a new

assumption (f):

(a) Randomization: Z ⊥ {Y0, Y1, A0, A1, X}, i.e. ignorable treatment assignment assumption.

(b) Stable unit-treatment value assumption (SUTVA), i.e. no interference between treatment

units.

(c) Treatment access restriction: which posits no treatment switches among subjects.

(d) Exclusion restriction: Pr(Y1|AZ , X) = Pr(Y0|AZ , X), i.e. treatment assignment has no

effect on outcome except only through treatment received (knowledge of treatment assign-

ment alone has no effect on outcome).

(e) Monotonicity: Pr(A1 = 1|A0 = 1, X) ≥ Pr(A1 = 1|A0 = 0, X), i.e. the probability of

compliance with treatment assigned by Z = 1 is higher among those who would comply

with treatment assigned by Z=0, compared to those who would not.

(f) Conditional prediction: Y ⊥ X|S,Z, i.e potential outcome is statistically independent

(ignorable) of the set of covariates predictive of compliance for a given principal stratum

and treatment assignment.

Imhotep Proc.
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Any switching of treatment is assumed to have occurred soon after randomization such

that a subject is assumed to have completely taken HRT or placebo treatment. Assuming no

other form of treatment interruptions among patients and no carryover effects of treatment,

the all-or-nothing compliance definition above may be considered plausible with respect to the

exclusion restriction assumption. The monotonicity assumption as applied here helps tighten

the bounds of causal effects, i.e. ensures compliance type is observable when Z 6= A [4, 30, 37].

In addition to the basic monotonicity assumption (no treatment defiers), the ‘extended’ mono-

tonicity assumption posits similar compliance behaviour for both treatment arms. Plausibility

of the ‘extended’ version of monotonicity assumption for the Esprit study may be discerned

from the fact that there was no preference for one treatment over the other, i.e compliance with

HRT treatment would be more prevalent among those who would comply with placebo. In our

application, this assumption is reflected through a user-defined positive correlation (sensitivity

parameter φ) between A0 and A1.

The conditional prediction assumption (f) is crucial for parameter identification in the

Roy et al. [30] model. The assumption underscores an integral component of the method which

involves selecting suitable predictors of compliance. The first part of this paper will address

this challenge through a comprehensive model selection of the Esprit study to obtain optimal

arm-specific predictors compliance. We will use penalized maximum likelihood (shrinkage) pro-

cedures to select plausible separate predictors of compliance for HRT treatment and placebo

arms. Although this is an untestable assumption, we will compare results from different sets of

predictors as a form of sensitivity analysis.

Each subject is assumed to belong to one of four basic principal strata defined by unique

combinations of (A0, A1) where the principal strata comprise the set S={(0, 0),(1, 0),(0, 1),(1, 1)}.
The causal inference of interest (Section IV.2) will be to seek the joint distributions [(Y0, Y1)|S=

s] ∀ s ∈ S which provides principal effects of interest for each stratum.

IV. Methods for analysis

IV.1. Compliance prediction models and validation

We use the logistic models to predict compliance to treatment allocation for each arm separately

given a selected set of predictors of compliance x0 =1 and x1, . . . ,xn:

logit [µj(x)]=

(
n∑
i=0

γjixi

)
, j=0, 1, (1)

where µj(x) is the probability of compliance with allocated treatment j given a set of covariates

X: the estimated probabilities of complying with arm-specific treatment allocation may then
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be obtained using

µ̂j(x)=

[
1 + exp

(
−

n∑
i=0

γ̂jixi

)]−1

, j=0, 1, (2)

where γ represent the log odds ratio estimates of compliance.

How the two compliance behaviours are correlated is a crucial issue. Following Roy

et al. [30], we define a non-negative sensitivity parameter φ as a function of the correlation ρ

between compliances to treatment allocation (0/1): if µ̂0(x) > µ̂1(x) then

φ = ρ

√
¯̂µ0(x)[1− ¯̂µ1(x)]
¯̂µ1(x)[1− ¯̂µ0(x)]

. (3)

The compliance models for each treatment arm provided by Equations (1) and (2) may

be obtained through comprehensive model selection for predictive covariates, i.e. selecting both

clinically sensible and statistically concise predictors of compliance with treatment assignment

for each trial arm. With many covariates, the classical stepwise model selection procedures are

likely to produce suboptimal prediction models [39, 13]. In comparison, penalized maximum

likelihood methods have been shown to perform relatively better in selecting optimal predictors

[15]. But a selected statistical prediction model also needs validation to evaluate its predictive

ability, for example, external validation enables assessment of the performance of prediction in

new data [34, 32]. But in the absence of further data, bootstrap validation provides reliable

results by allowing calculation of predicted probabilities from a model which can be compared

with the actually observed outcomes [8].

Percentage of optimism and both calibration and discrimination indices are among the

most effective and commonly used measures of validation performance [14]. While calibration

is a reliability measure of how well the model predictions compare with the observed outcomes,

discrimination refers to the ability of the model to distinguish between subjects with positive or

negative outcomes (e.g. the ability of a model to distinguish compliers with treatment allocation

from non-compliers). Calibration is often quantified in practice by the calibration slope [7]

obtainable from the validation plot which is a plot of observed probabilities against the predicted

probabilities. On the other hand, discrimination is commonly measured using the concordance

c-statistic as widely expressed in terms of the Somers rank correlation [33]: Dxy = 2(c − 0.5).

This is a measure of the difference between concordance and discordance probabilities [13], such

that c= 0.5 (1) implies random predictions (perfect discriminations). We can readily discern

that larger values of calibration and discrimination (concordance) indicate better prediction

and such models should indicate lower percentage of optimism.

IV.2. Causal model joining the marginal compliance models

The main causal inference of interest is obtainable from the joint distributions [(Y0, Y1)|S =

s]. Following Roy et al. [30], the joint probability distribution of compliance to the standard

Imhotep Proc.
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treatment 0 and compliance to new treatment 1 is a function of the arm-specific marginal

compliance probabilities and φ and can be estimated for a given value of φ. We however note

that φ is unknown, in general. Specifically if U(x) = min{1, µ̂1(x)
µ̂0(x)} then Roy et al. [30] showed

that the joint probabilities are given by

µ̂11(x) = Pr(A0 = 1|X)P (A1 = 1|A0 = 1, X)

= µ̂0(x)µ̂1(x) + φµ̂0(x)[U(x)−µ̂1(x)],

µ̂01(x) = Pr(A0 = 0|X)P (A1 = 1|A0 = 0, X)

= µ̂1(x)− µ̂0(x)µ̂1(x)− φµ̂0(x)[U(x)− µ̂1(x)],

µ̂10(x) = Pr(A0 = 1|X)P (A1 = 0|A0 = 1, X)

= µ̂0(x)− µ̂0(x)µ̂1(x)− φµ̂0(x)[U(x)− µ̂1(x)],

µ̂00(x) = Pr(A0 = 0|X)P (A1 = 0|A0 = 0, X)

= 1−µ̂0(x)−µ̂1(x) + µ̂0(x)µ̂1(x) + φµ̂0(x)[U(x)−µ̂1(x)],

(4)

where X is the set of covariates predictive of compliance in both arms and A1(A0) is an indicator

of compliance to HRT treatment (placebo) and µ̂ij(x) denote the probability of being in the

compliance subgroup ij (i.e. estimated proportion of compliance per stratum).

Following the principal stratification framework developed by Frangakis and Rubin [11],

the possible values of A0 and A1 define a stratification factor S for the population of patients.

For a defined outcome variable Y (mortality/reinfarction for the Esprit study), let Y0 and

Y1 refer to potential outcomes under placebo and HRT treatments respectively. There are four

possible realizations of (Y0, Y1) at each level of S (for example $11 =Pr[Y0 =1, Y1 =1]). The joint

distribution of potential outcomes (Y0, Y1) for each stratum S, f(Y0, Y1|S,$) may be assumed

to be multinomial with probabilities $(S) = Pr(Y0 = y0, Y1 = y1|S = s). And by the exclusion

restriction, the expression for stratum S=(0, 0) differs from the others: $10(0, 0)=$01(0, 0)=0.

After reparameterizing in terms of π (probability of experiencing event, e.g. death or

myocardial reinfarction) and β=f(γ, φ)) (log odds ratio of compliance for specified sensitivity),

Roy et al. showed that the observed-data likelihood is

L(π, β|Y,A,Z,X)=

3∑
s=0

[πS=sZ ]Y [1− πS=sZ ]1−Y Pr(S=s|X,β)G(s,A, Z), (5)

where πS=sZ is the probability that observed Y =1, given S=s and allocation to arm Z, and

G(s,A, Z) =I(s=0){1−A}+ I(s=1){A(1− Z) + (1−A)Z}
+ I(s=2){AZ + (1−A)(1− Z)}+ I(s=3)A.

Now Y and A are observed values; e.g. A = A1 (A0) if allocated to active treatment

(placebo). We can decompose the expression (5) for each stratum:

Imhotep Proc.
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L(π, β|Y =1, A=1, Z = 1, X) = π
s=(0,1)
1 Pr (S=(0, 1)|X,β)

+ π
s=,(1,1)
1 Pr (S=(1, 1)|X,β) ,

L(π, β|Y = 0, A=1, Z=1, X) =[1− πs=(0,1)
1 ] Pr (S=(0, 1)|X,β)

+ [1− πs=(1,1)
1 ] Pr (S=(1, 1)|X,β) ,

L(π, β|Y = 1, A=0, Z=1, X) =π
s=(0,0)
1 Pr (S=(0, 0)|X,β)

+ π
s=(1,0)
1 Pr (S=(1, 0)|X,β) ,

L(π, β|Y = 0, A=0, Z=1, X) = [1− πs=(0,0)
1 ] Pr (S=(0, 0)|X,β)

+[1− πs=(1,0)
1 ] Pr (S=(1, 0)|X,β) ,

L(π, β|Y = 1, A=1, Z=0, X) = π
s=(1,0)
0 Pr (S=(1, 0)|X,β)

+ π
s=(1,1)
0 Pr (S=(1, 1)|X,β) ,

L(π, β|Y = 0, A=1, Z=0, X) = [1− πs=(1,0)
0 ] Pr (S=(1, 0)|X,β)

+ [1− πs=(1,1)
0 ] Pr (S=(1, 1)|X,β) ,

L(π, β|Y = 1, A=0, Z=0, X) = π
s=(0,0)
0 Pr (S=(0, 0)|X,β)

+ π
s=(0,1)
0 Pr (S=(0, 1)|X,β) ,

L(π, β|Y = 0, A=0, Z=0, X) = [1− πs=(0,0)
0 ] Pr (S=(0, 0)|X,β)

+ [1− πs=(0,1)
0 ] Pr (S=(0, 1)|X,β) .

(6)

By the exclusion restriction π
s=(0,0)
1 = π

s=(0,0)
0 , i.e.the risk of experiencing event of

interest (e.g. death) is independent of the arm of allocation among the people who would

comply with neither allocation. Writing

π1 = π
s=(0,1)
1 , π2 =π

s=(1,1)
1 , π3 =π

s=(0,0)
1 , π4 =π

s=(1,0)
1 ,

π5 =π
s=(1,0)
0 , π6 =π

s=(1,1)
0 , π7 =π

s=(0,1)
0 ,

(7)

we obtain 7 parameters captured by π from the likelihoods above using logistic models:

Pr[Y =1|A=1, Z=1]=π1µ01 + π2µ11,

Pr[Y =1|A=0, Z=1]=π3µ00 + π4µ10,

Pr[Y =1|A=1, Z=0]=π5µ10 + π6µ11,

Pr[Y =1|A=0, Z=0]=π3µ00 + π7µ01.

(8)

We then obtain the stratum-specific relative risks for experiencing an event (death/reinfarction)

as

τ11 =
π
s=(1,1)
1

π
s=(1,1)
0

=
π̂2

π̂6
, τ01 =

π
s=(0,1)
1

π
s=(0,1)
0

=
π̂1

π̂7
, τ10 =

π
s=(1,0)
1

π
s=(1,0)
0

=
π̂4

π̂5
. (9)
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The τij above provides the desired principal (causal) effects in terms of causal risk ratios

obtained as medians of posterior relative risks of event (death or reinfarction) for each stratum

defined by compliance type:

(i) τ11: causal risk ratio of event due to compliance with HRT treatment relative to placebo

among the subgroup of patients who would comply with either treatment allocation, i.e.

S=(1, 1),

(ii) τ01: causal risk ratio of event due to compliance with HRT treatment only among women

who would comply if allocated to it, i.e. S=(0, 1) and

(iii) τ10: causal risk ratio of event due to compliance with placebo treatment only among the

subgroup who would comply if allocated to it, i.e. S=(1, 0).

The parameters above (Equation 9) can be estimated using Bayesian methods with

suitable priors. Using uninformative (flat) priors π∼U(0, 1), for example, may be satisfactory

for our analyses given the likelihood of a typical trial data to dominate such priors and the fact

that randomized trials are principally designed to be conclusive [16].

To extend the methods which adjust for noncompliance in one treatment arm to ad-

justing for noncompliance in two treatment arms, we will use a Bayesian approach to apply

principal stratification using the Roy et al. [30] model reviewed above for survival data but

which was originally proposed for binary data. Specifically we perform a comprehensive model

selection to obtain arm-specific optimal predictors of compliance and develop a causal model

linking the two marginal models from which we obtain causal effects for each stratum.

V. Application to the Esprit study

ITT analysis of the Esprit data showed no statistical difference between HRT and placebo

treatment with hazard ratio results (HR=exp(ψ̂)=0.795, p-value=0.335, 95%CI : 0.498, 1.268)

suggesting a beneficial effect of HRT over placebo with respect to death. However, the ITT

analysis took no account of compliance data. The rate of observed compliance was higher in

the placebo (63%) arm compared to the HRT (42%) treatment arm which may be attributed to

noncompliance as a result of possible unpleasant symptoms like bleeding. Utilizing compliance

data, we consider two outcomes (all-cause mortality and myocardial reinfarction) for causal

analysis using the methods described in the previous section.

When applying the Roy et al. [30] method for survival data, we use relative risks to

approximate hazard ratios. This is justifiable for our analysis given that under short follow-up

times (monthly) and small event rates conditions (death and myocardial reinfarctions), relative

risk has been shown to be an algebraic approximation of hazard ratio, i.e. exp(
¯̂
ψ) ∼= ˜̂τ [36].
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V.1. Predicting compliance in each arm

In predicting compliance for each arm, we first choose a full (saturated) model consisting of

all potential predictors of compliance to treatment allocation on the basis of both clinical and

statistical plausibility. In addition we consider penalized maximum likelihood estimation regres-

sion versions of this (saturated) model and also Lasso (Least Absolute Shrinkage and Selection

Operator) model obtained by the method which performs the twin tasks of parameter shrink-

age and model selection [38]. To evaluate the predictive performance of the selected models,

we used calibration slope, percentage of optimism and calculated discrimination’s concordance

c-statistics from the reported Somers Dxy statistics. These validation measures will be recorded

for each individual arm in five models:

(i) Original saturated model with all the 9 predictors without any selection:

logit(µj) = γ0 + γ1Hysterectomy + γ2Smoking status + γ3Social-class+

γ4Age + γ5CVD Risks + γ6Diabetes + γ7Fracture + γ8Alcohol + γ9HRT,

where µ is the probability of compliance with treatment (placebo/HRT) allocation and

histories of hysterectomy, cerebrovascular disease (CVD) risks, diabetes, fracture, alcohol,

HRT use together with smoking status are taken as binary 0/1 predictors.

(ii) Reduced model obtained from (i) above by stepwise backward elimination procedures using

Akaike information criterion (AIC) stopping rule and 0.10 significance level for a variable

to be retained in a model.

(iii) Model fitted with the retained predictors in reduced model (ii) above but the predictors

assumed pre-specified (following suggestion by Harrell et al. [14]).

(iv) Intermediate model composed of 6 variables constructed using penalized maximum likeli-

hood estimation with modified AIC (χ2>2df).

(v) Least Absolute Shrinkage and Selection Operator (Lasso) model selection from the original

(i) above.

V.2. Validation: evaluating performance of selected models

We used enhanced bootstrap on all aspects of models development (selection and estimation

procedures) to revalidate on samples taken with replacement from the whole sample and apply

on the five models specified above. The reduced model was obtained from the original model

using stepwise backward elimination procedures using AIC stopping rule and 0.10 significance

level for retaining a predictor in a model. The variables selected for the reduced model were

consistently (90%) selected across bootstrap resamples. These were the same predictors deemed

important by the backward elimination algorithm.

Table 1 provide results showing the performance of the 5 prediction models in terms of

validation indices outlined earlier (see Section IV.1). The saturated (original) model consisting
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Table 1. Validation performance of 5 models in terms of calibration, concordance

and optimism (Section IV.1)

Calibration Optimism Concordance

Model Selected predictors slope (%) c-statistics

(i) Original

HRT 0.818 6.1 0.639

Placebo 0.671 8.6 0.573

(ii) Reduced

HRT (hyst+smk+CVD) 0.827 5.8 0.620

Placebo (hyst+smk+alc) 0.667 8.1 0.566

(iii) Reduced†

HRT (hyst+smk+CVD) 0.961 1.4 0.642

Placebo (hyst+smk+alc) 0.950 2.0 0.597

(iv) Intermediate

(6 predictors)

HRT 0.879 4.1 0.636

Placebo 0.766 6.0 0.580

(v) Lasso

HRT (hyst+smk+age+CVD) 0.935 2.3 0.647

Placebo (hyst+smk+alc) 0.925 2.3 0.595

hyst≡hysterectomy; smk≡ smoking status; alc≡alcohol; CVD≡cerebrovascular disease; †model assumed pre-specified

of 9 predictors produced better predictions of compliance to HRT than placebo. Here predicting

compliance to HRT and placebo, the original models would be overfitted by 18% and 33%

respectively. Also these models would be optimistic by 6% and 9% respectively in predicting

compliance to HRT and placebo. We note that although the observed rates of compliance for

placebo were higher than for HRT, the relatively ‘poor’ performance of the former compared to

the later predictive models may be attributed to poor quality of compliance data owing to the

common practice to monitor compliance with active treatment more accurately than placebo

treatment.

Compared to saturated model, the reduced model would perform relatively better in

predicting compliance to HRT compared to predicting placebo: specifically the reduced model
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predicting compliance to HRT would perform better at distinguishing compliers from non-

compliers (concordance c = 0.620) than the reduced model predicting compliance to placebo

(c= 0.566). Reduced models predicting compliance to placebo would be more optimistic (8%)

than those predicting compliance to HRT (6%). Predictions for compliance to HRT using the

reduced model would be equally well calibrated (slope = 0.83) compared to predictions from

the original full model (slope=0.82). As expected, the model with 3 predictors if assumed pre-

specified performed ‘best’ in terms of both calibration and discrimination among the 5 models

considered in predicting compliance to both HRT and placebo. These models also produced least

optimistic fits for predicting compliance to both arms. Specifically predictions of compliance

to both HRT and placebo using the 3 predictors assumed pre-specified were almost perfectly

calibrated (0.96 and 0.95) and least optimistic (1% and 2%).

Validation of the model with 6 predictors showed adequate performance with intermedi-

ate measures between the saturated models composed of 9 predictors and the Lasso models. We

observe that predictions of compliance to both HRT and placebo using the intermediate model

performed relatively ‘better’ than both predictions of compliance using the reduced model. For

example, predictions of compliance to placebo using the intermediate model is now equally op-

timistic (6%) as predictions of compliance to HRT using the reduced model, a result which may

make the assumption of ‘no preference to one treatment over the other’ (extended monotonicity)

plausible for the Esprit study.

Besides the reduced model fitted with predictors if assumed pre-specified, Lasso models

produced the best calibrated and discriminative models predictive of compliance to both HRT

and placebo (Table 1, lower panel). Predictions of compliance to both HRT and placebo using

the Lasso models were the least optimistic (2%) and almost perfectly calibrated (slope=0.93).

Although the Lasso prediction models performed ‘best’ compared to predictions from the other

four models, we note that the method uses the same tuning parameter for all coefficients. The

drawback of shrinking all coefficients by a constant, even for those non-zero coefficients, may

result in suboptimal choice of covariates with the potential to exclude potential predictors,

i.e. data wastage. Moreover, Lasso is known to fail efficient model selection in the presence of

correlated variable where it tends to select one variable from a group and ignore the others [45].

Overall, the intermediate models provided substantially improved predictions of compliance to

both HRT and placebo in terms of calibration and optimism without affecting the capability

to discriminate between compliers and non-compliers.

Table 2 provides estimated median compliance proportion for each of the four strata

for both all-cause mortality and myocardial reinfarction outcomes. On average, the estimated

median probabilities of compliance was higher among those patients allocated to placebo for

both all-cause mortality (myocardial reinfarction) outcomes (¯̂µ0(x)=0.567 (0.565)) compared to
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Table 2. Median compliance proportion per principal stratum for different

values of φ

Stratum Outcome: All-cause mortality Outcome: Reinfarction

φ φ

0 0.2 0.5 0.8 1 0 0.2 0.5 0.8 1

µ̂11(x) 0.264 0.296 0.353 0.406 0.460 0.266 0.303 0.359 0.417 0.456

µ̂01(x) 0.197 0.165 0.105 0.047 0 0.200 0.164 0.111 0.059 0.023

µ̂10(x) 0.303 0.262 0.211 0.155 0.105 0.300 0.263 0.206 0.142 0.102

µ̂00(x) 0.236 0.277 0.330 0.391 0.435 0.235 0.270 0.325 0.382 0.419

those on HRT tablets (¯̂µ1(x)=0.461 (0.470)), i.e. the ratio U(x)=min{1, ¯̂µ1(x)
¯̂µ0(x)
}=0.795 (0.810).

We note a likelihood that a higher prevalence (proportion) of placebo compliance compared to

HRT may be a limitation of the model to effectively evaluate active HRT efficacy.

For all the four strata at mild value of sensitivity parameter (φ=0.2), the group with the

highest prevalence was patients who would comply with either treatment (¯̂µ11 =0.296 (0.303))

and the group with the lowest prevalence is those who would only comply with HRT tablets

(¯̂µ01 = 0.165 (0.164)). The median proportion of compliance among those patients who would

comply with placebo only and those who would not comply with either treatment allocation

were ¯̂µ10 = 0.262 (0.263) and ¯̂µ00 = 0.277 (0.270) respectively. Overall the estimated rates of

potential compliance were generally similar in each stratum for a given value of φ (except for

perfect correlation φ= 1). The apparent independence between the potential compliance rates

and outcome may be an indication of the plausibility of conditional compliance assumption

with respect to the Esprit data.

V.3. Causal risk ratio inference

We estimated the causal risk ratio parameters τij (Eq. 9) in a Bayesian setting using non-

informative priors for all log odds ratio parameters γj for potential predictors of compli-

ance. We specified uniform (0, 1) priors for the πS=sZ (πi, i = 1, . . . , 7) parameters, z = 0, 1,

S=(0,0),(1,0),(0,1),(1,1) and set the sensitivity parameter φ = 0, 0.2, 0.5 and 0.8. The choice

of φ were motivated by the need to explore all possible compliance behaviours including con-

ditional independence (φ = 0) and almost-perfect correlation (φ = 0.8). We ran three chains:

null starting values for chain one, mean and median values from a trial run for chains two and

three respectively. For convergence assessment, we ran simulation for 101, 000 iterations for

each of the three chains and excluded the first 1, 000 as burn-in. Posterior median relative risks

provided Bayesian point estimates for each stratum.
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Table 3. Causal risk ratio estimates (means of median posterior relative risks) for

mortality and reinfarction (mean median 95% CI) for each stratum for different values

of φ: (a) All-cause mortality (b) Myocardial reinfarction.

Compliance with Compliance with Compliance with

both HRT and placebo HRT only placebo only

φ π̂2(π
s=(1,1)
1 ) π̂6(π

s=(1,1)
0 ) π̂1(π

s=(0,1)
1 ) π̂7(π

s=(0,1)
0 ) π̂4(π

s=(1,0)
1 ) π̂5(π

s=(1,0)
0 )

(a)

0 0.011 0.012 0.053 0.099 0.051 0.055

τ11 =0.941 (0.026,34.349) τ01 =0.534 (0.101, 1.347) τ10 =0.933 (0.340,3.0129)

0.2 0.011 0.012 0.063 0.118 0.056 0.060

τ11 =0.867 (0.023,31.489) τ01 =0.533 (0.083,1.522) τ10 =0.938 (0.267,4.038)

0.5 0.011 0.012 0.092 0.168 0.064 0.073

τ11 =0.878 (0.025,30.539) τ01 =0.533 (0.068,2.310) τ10 =0.874 (0.126,5.702)

0.8 0.012 0.012 0.179 0.243 0.053 0.097

τ11 =0.974 (0.032,30.698) τ01 =0.723 (0.065,10.399) τ10 =0.560 (0.024,5.423)

(b)

0 0.012 0.021 0.106 0.143 0.094 0.107

τ11 =0.561 (0.061,19.989) τ01 =0.733 (0.293,1.406) τ10 =0.881 (0.474,2.182)

0.2 0.010 0.026 0.130 0.172 0.105 0.113

τ11 =0.397 (0.011,13.839) τ01 =0.752 (0.301,1.561) τ10 =0.932 (0.448,3.804)

0.5 0.008 0.044 0.200 0.244 0.125 0.109

τ11 =0.204 (0.006,5.479) τ01 =0.835 (0.432,2.881) τ10 =1.138 (0.351,17.590)

0.8 0.008 0.069 0.419 0.256 0.119 0.059

τ11 =0.121 (0.004,1.186) τ01 =1.594 (0.465,45.238) τ10 =1.905 (0.100,69.149)

aAll-cause mortality; bMyocardial reinfarction

Table 3 provide causal risk ratio estimates (Bayesian principal effects) obtained from

mean posterior median relative risks for each stratum and corresponding mean 95% credible

intervals for different values of sensitivity parameter φ. Here a posterior relative risk τ was

obtained as the ratio of two probabilities of experiencing an event due to compliance with one

treatment allocation relative to another in a stratum. Most of results (not all) show posterior

median relative risks of less than one for all values of φ which indicates lower risks for mortality
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and myocardial reinfarction for those women randomized to HRT who would be highly compli-

ant with their treatment allocation. A primary interest is the quantity τ01 =[π
S=(0,1)
1 ][π

S=(0,1)
0 ]−1,

i.e. the posterior (causal) relative risk for mortality/reinfarction among the subgroup who would

comply with HRT treatment only. The results shows that the mean median 95% credible inter-

vals widened with increase in φ values, an indication of less correlation between HRT treatment

and placebo compliances. Overall, the results indicated that HRT tablets reduced risks for

myocardial reinfarction more than the reduction in risks for all-cause mortality.

For a mild correlation value (φ= 0.2), the results suggest that compliance with HRT

tablets only would substantially reduce the risk of death by about 47%, i.e. causal risk ratio

τ01 = 0.533, 95% CI : 0.083, 1.522. Also for this value of sensitivity parameter, the results

suggest that compliance with HRT treatment compared to taking placebo among those who

would comply with either treatment reduced the risk for all-cause mortality by 13%, i.e. causal

risk ratio τ11 =0.867, 95% CI : 0.023, 31.489. However, compliance with placebo treatment only

would marginally reduce the risk of death by about 6%, i.e. causal risk ratio τ01 =0.938, 95% CI :

0.267, 4.038. In general we note that compliance with HRT treatment only consistently suggested

reduction of risk for death at all sensitivity parameter values φ. For example, when φ=0.8, while

compliance with HRT treatment compared to taking placebo among those who would comply

with either treatment would essentially have no effect (τ11 = 0.974, 95% CI : 0.032, 30.698),

compliance with placebo treatment only would reduce the risk of death by about 44%, i.e.

causal risk ratio τ10 =0.560, 95% CI : 0.024, 5.423.

The size of causal (principal) effects varied according to the value of sensitivity param-

eter. Risks for myocardial reinfarction among those who would comply with placebo treatment

only increased with increase in the value of sensitivity parameter φ. On the other hand results

show reduction in risks for myocardial reinfarction among those who would comply with either

placebo or HRT treatment as the value of φ increased. As expected the risks for both death

and myocardial reinfarction outcomes were higher among those who would comply with placebo

only compared to those who would comply with HRT only for any chosen value of the sensitivity

parameter φ.

V.4. Sensitivity analysis

As outlined in assumptions (Section III), application of the Roy et al. [30] method is premised

on plausibility of the crucial, but untestable, conditional compliance assumption which posits

that the potential outcome is independent of the set of covariates predictive of treatment com-

pliance given a compliance type and treatment assignment. Hence the task of selecting suitable

predictors of treatment compliance constitutes an integral part of ensuring plausibility of this

assumption. A sensitivity analysis using different models (i.e sets of predictors) may be used to

assess how the causal estimates depend on departures from this crucial assumption [35].

Imhotep Proc.



Vol. 1 (2014) Optimal compliance prediction models for estimating causal effects 17

Table 4. Sensitivity analysis using 3, 6 and 9 predictors of compliance: Causal risk

ratio (median 95% CI)

All-cause mortality Myocardial reinfarction

φ Comply HRT Comply Comply Comply HRT Comply Comply

and placebo HRT only placebo only and placebo HRT only placebo only

A

0 1.126 0.546 0.872 0.539 0.739 0.874

(0.030,44.588) (0.106,1.417) (0.281,2.260) (0.014,19.650) (0.296,1.643) (0.462,2.522)

0.2 1.169 0.543 0.833 0.419 0.759 0.904

(0.031,42.058) (0.088,1.633) (0.210,2.428) (0.012,14.459) (0.298,1.839) (0.419,3.684)

0.5 1.247 0.590 0.716 0.250 0.839 1.004

(0.036,41.790) (0.070,3.136) (0.067,2.316) (0.007,6.184) (0.326,4.006) (0.248,9.907)

0.8 1.460 0.854 0.315 0.175 1.772 0.857

(0.050,44.267) (0.068,14.310) (0.012,1.769) (0.006,1.862) (0.447,52.647) (0.030,40.108)

B (τ11) (τ01) (τ10) (τ11) (τ01) (τ10)

0 0.941 0.534 0.933 0.561 0.733 0.881

(0.026,34.349) (0.101,1.347) (0.340,3.012) (0.061,19.989) (0.293,1.406) (0.474,2.182)

0.2 0.867 0.533 0.938 0.397 0.752 0.932

(0.023,31.489) (0.083,1.522) (0.267,4.038) (0.011,13.839) (0.301,1.561) (0.448,3.804)

0.5 0.878 0.533 0.874 0.204 0.835 1.138

(0.025,30.539) (0.068,2.310) (0.126,5.702) (0.006,5.479) (0.342,2.881) (0.351,17.590)

0.8 0.974 0.723 0.560 0.121 1.594 1.905

(0.032,30.698) (0.065,10.399) (0.024,5.423) (0.004,1.186) (0.465,45.238) (0.100,69.149)

C

0 1.264 0.533 0.889 0.707 0.737 0.841

(0.032,47.799) (0.102,1.323) (0.331,2.161) (0.018,26.389) (0.306,1.396) (0.455,1.702)

0.2 1.341 0.530 0.859 0.562 0.748 0.859

(0.035,47.004) (0.081,1.523) (0.254,2.151) (0.014,21.870) (0.288,1.575) (0.427,2.243)

0.5 1.413 0.553 0.782 0.356 0.810 0.900

(0.038,49.229) (0.065,2.290) (0.112,2.268) (0.010,10.390) (0.330,2.621) (0.296,4.480)

0.8 1.707 0.706 0.463 0.214 1.374 0.812

(0.055,49.708) (0.056,9.777) (0.022,1.856) (0.007,3.491) (0.423,30.800) (0.043,17.929)

Model comprising A3 (Lasso); B6 (Intermediate) and C9 (Saturated) predictors of compliance
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Table 4 show results in terms of causal relative risks for models predicting compliance

using three sets of predictors considered earlier: using 3, 6 and 9 predictors from Lasso, interme-

diate and all plausible predictors respectively. For mild values of sensitivity parameters, model

selection using penalized maximum procedures (6 predictors) produced ‘best’ causal risk ratio

estimates showing reduction of risks for both all-cause mortality and myocardial reinfarction.

Specifically HRT treatment was consistently effective (reduced risks) among those who would

comply with HRT only (τ01). The efficacy corresponding to this stratum was not dependent

on the chosen value of sensitivity parameter. On the other hand the causal risk ratio estimates

using 3 and 9 sets of predictors were comparable for all strata considered. In general, given a set

of predictors, the results show same trend in principal effects with respect to change in magni-

tude of the sensitivity parameter φ for both outcomes (mortality and myocardial reinfarction).

Surprisingly these results using 3 and 9 predictors of compliance now suggested harmful effects

(increased risks) of HRT treatment relative to placebo among those who would comply with

either treatment.

Results from the sensitivity analysis above (Table 4) may be a useful demonstration of

the phenomenon that causal (principal) effects are dependent on the choice of covariates pre-

dicting compliance. This may be an indication that the advantages of classical model selection

are transferable to the Roy et al. [30] method via use of optimal marginal compliance models,

i.e. comprehensive model selection may be useful in providing optimal predictors of compliance

to enrich principal stratification. However, we note that while selecting plausible predictors of

compliance is an integral component of the method, model selection only acts as an interme-

diate step that provides covariates for marginal compliance prediction models which are then

joined into a causal model using the crucial but unknown sensitivity parameter.

In general we observe from results in both Tables 3 and 4 that for a given stratum

and set of selected covariates predicting compliance, the change in resulting causal risk ratio

estimates were more pronounced for the reinfarction compared to all-cause mortality outcome.

This apparent interaction of outcome with sensitivity parameter φ may be attributed to fea-

tures of the two different outcomes. A possible explanation may be the fact that the choice of

optimal predictors of compliance to make the conditional compliance assumption (f) valid might

depend on outcome (death/reinfarction). Such an association may make conditional prediction

assumption questionable for the Esprit data especially with regard to history of hysterectomy

and cerebrovascular risks which are likely to be associated with better treatment compliance

and subsequently favourable outcome.
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VI. Discussion

By using optimal predictors of treatment compliance at mild values of the sensitivity parameter

φ, compliance with HRT tablets showed reduction in risks for both all-cause mortality and

myocardial reinfarction. Compliance with HRT treatment compared to taking placebo among

those who would comply with either treatment also indicated beneficial effects in reducing risks

for both outcomes. Compliance with HRT treatment suggested beneficial effects compared to

placebo for all other values of φ among the subgroup who would comply with HRT treatment

only and those who would comply with either treatment allocation. However, causal risk ratios

estimating efficacy of compliance to either treatment (τ11) had relatively wider mean 95%

credible intervals compared to estimates for efficacy of compliance with HRT only (τ01) or

placebo only (τ10). In general, the risk for myocardial reinfarction reduced with increase in the

value of sensitivity parameter φ among those women who would comply with either treatment.

On the other hand the risk of myocardial reinfarction increased with increase in φ among those

who would comply with placebo treatment only. Overall as expected, for any chosen value of

the sensitivity parameter φ, the risks for both death and myocardial reinfarction were higher

among those who would comply with placebo only compared to those who would comply with

HRT only.

The variation in the HRT efficacy estimates from the Roy et al. [30] model may be

an indication of difference in compliance behaviour between those allocated to placebo and

HRT treatment. By adjusting for noncompliance in both arms, the Roy et al. method perhaps

accounts for potential correlation between compliance behaviours in respective arms through

the chosen value of the sensitivity parameter which implicitly makes the results depend on

φ. The fact that the results vary a lot with φ and yet we do not know its value suggests

benefits of HRT treatment among those who comply when allocated it, i.e. strong monotonicity

assumption (strong correlation in compliance behaviour between the two arms). Finally our

analyses with flat priors may be considered adequate given the likelihood of a typical trial data

to dominate such priors in addition to the fact that randomized trials are principally designed

to be conclusive [16].

Noncompliance with treatment assignment in both arms of a clinical trial is likely to

complicate efficacy estimation. Here the ITT provide a biased estimator for the true causal esti-

mate even under homogeneous treatment effects assumption. Extending and applying the Roy

et al. model to survival data (Esprit study) may be suitable by utilizing key covariates predictive

of arm-specific compliance models to develop causal models linking the two marginal models.

The resulting principal effects provides efficacy estimates for the different subgroups defined by

compliance types. The method performed relatively ‘better’ than specialist randomization-based

causal methods adjusting for noncompliance in one treatment arm only [25]. Simulation studies

Imhotep Proc.



20 Lang’o Odondi

indicated satisfactory performance of the method however, the results were heavily dependent

on the choice of sensitivity parameters and hence may not be recommended in the presence

of known heterogeneous treatment effects which produced large bias and wider corresponding

95% credible intervals. As a result, the method may only be recommended in the presence of

sufficient information about compliance behaviours in respective arms.

Model selection in regression may be correctly considered as one of the most significant

challenges in modern statistics [17]. Hitherto this challenge has not been extended to include

prediction of compliance with treatment assignment in causal modelling. There are presently

limited studies integrating model selection for compliance prediction in causal inference. While

principal stratification has independently been demonstrated to provide better alternative iden-

tification strategies compared to selection model [23], integrating the two strategies may produce

even more flexible models under relaxed assumptions. A record of plausible predictors of com-

pliance can be used to effectively address identification problem of causal estimands by reducing

bias and relaxing the implicit assumptions [20]. From a clinical perspective, knowledge about

predictors of compliance may be a valuable tool to inform treatment decisions. As a result,

there is need to adopt comprehensive model selection methods for accurate prediction (of com-

pliance). After model selection, there is further need to use suitable validation indices (e.g.

optimism, calibration and discrimination indices) to evaluate performance of selected models.

With potentially many recorded baseline covariates, using penalized regression techniques may

be recommended for building compliance prediction models.

The merits of standard model selection procedures are transferable to the principal

stratification method adjusting for noncompliance in two treatment arms by linking the respec-

tive optimal marginal compliance models into an association model [26]. However, application

of the method is premised on the plausibility of a defining assumption that potential outcome is

independent of the set of covariates predicting treatment compliance for a given stratum. This

assumption may be questionable for the Esprit data especially with regard to history of hysterec-

tomy and cerebrovascular risks which potentially have a higher likelihood to be associated with

treatment compliance leading to possible efficacy. For example, while the unpleasant experience

of bleeding may affect treatment compliance negatively, those with history of cerebrovascular

risks may comply with their treatment allocation with a hope to derive potential protective

benefits. Further sensitivity analysis on the departure of conditional prediction assumption im-

plicit in the Roy et al. model may be conducted using alternative methods which incorporate

less stringent assumptions. For example, by adopting the Bayesian framework introduced by

Long et al. [21] to model the principal compliances directly in multitreatment arms and for

more general outcomes by treating the principal compliance status as missing data instead of

joining them with a user-defined sensitivity parameter φ.
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Although principal stratification provides a powerful framework which is extendible to

analyse complex surrogate outcomes like ‘truncation by death’ where death occurs before a

primary outcome of interest is recorded hence resulting in censored records [31], the method’s

application and usefulness may be limited to intermediates with fewer categories (e.g. binary)

[40]. Although the all-or-nothing compliance suitably applied to the Esprit data, principal

stratification in general produce inconsistent causal estimate for a truly continuous stratification

variable but which has been coarsened for analysis [28]. As a result, policy informed by analysis

based on principal stratification should be implemented with caution owing to the fact that the

principal strata themselves remain unidentified.
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