IMHOTEP

AFRICAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Imhotep Mathematical Journal Volume 2, Numéro 1, (2017), pp. 1-6.

The relations between φ-amenability and some special ideals
S. A. R. Hosseinioun

University of Arkansas,
Department of Mathematical sciences, Fayetteville, AR 72703, USA. shossein@uark.edu
A. Valadkhani arezou.valadkhani@yahoo.com

University of Simon Fraser, Department of Education, Vancouver, Canada.

Abstract

In this paper we determine φ-amenability of a Banach algebra A with some certain ideals in its second dual $A^{\prime \prime}$. We show that for an idempotent $m \in A^{\prime \prime}$, the set $\mathbb{C} \cdot m=\{\lambda \cdot m: \lambda \in \mathbb{C}\}$ is a left ideal in $A^{\prime \prime}$ if and only if m is a φ-mean. We also give some results on the relationships between weak amenability and φ-amenability of Banach algebras.

The relations between φ-amenability and some special ideals

S. A. R. Hosseinioun and A. Valadkhani

Abstract

In this paper we determine φ-amenability of a Banach algebra A with some certain ideals in its second dual $A^{\prime \prime}$. We show that for an idempotent $m \in A^{\prime \prime}$, the set $\mathbb{C} \cdot m=\{\lambda \cdot m: \lambda \in \mathbb{C}\}$ is a left ideal in $A^{\prime \prime}$ if and only if m is a φ-mean. We also give some results on the relationships between weak amenability and φ-amenability of Banach algebras.

Mathematics Subject Classification (2010). 46H25 (Primary), 43A07 (Secondary).
Keywords. Banach algebra, phi-amenability, Ideal, φ-mean, φ-amenability, extreme point.

1. Introduction

Let A be a Banach algebra, and let X be a Banach A-bimodule. Then a linear map $D: A \rightarrow X$ is a derivation if

$$
D(a b)=a \cdot D(b)+D(a) \cdot b \quad(a, b \in A)
$$

For example, let $x \in X$ and define $\delta_{x}: A \rightarrow X$ by $\delta_{x} a=a \cdot x-x \cdot a$ then δ_{x} is a derivation which is called an inner derivation.

The set of all bounded derivations from A into X is denoted by $Z^{1}(A, X)$, and $N^{1}(A, X)$ is the set of all inner derivations from A into X. Also, $H^{1}(A, X)=Z^{1}(A, X) / N^{1}(A, X)$ is the first cohomology group with coefficients in X.

The dual space of a Banach A-bimodule with the following multiplicatios can be made into a Banach A-bimodule

$$
a \cdot x^{\prime}(x)=x^{\prime}(x \cdot a) \quad, \quad x^{\prime} \cdot a(x)=x^{\prime}(a \cdot x)
$$

for each $x \in X, x^{\prime} \in X^{\prime}, a \in A$.
Let A be a Banach algebra and $A^{\prime \prime}$ be its second dual, for each $a, b \in A, f \in A^{\prime}$ and $F, G \in A^{\prime \prime}$ we define $f \cdot a, a \cdot f$ and $F \cdot f, f \cdot F \in A^{\prime}$ by

$$
\begin{array}{ll}
f \cdot a(b)=f(a \cdot b) \\
F \cdot f(a)=F(f \cdot a) & ,
\end{array} \quad a \cdot f(b)=f(b \cdot a)
$$

Now we define $F \cdot G, F \times G \in A^{\prime \prime}$ as follows

$$
F \cdot G(f)=F(G \cdot f), \quad F \times G(f)=G(f \cdot F)
$$

Then $A^{\prime \prime}$ is a Banach algebra with respect to either of the products \cdot and \times, these products are
called respectively, the first and the second Arens products on $A^{\prime \prime}$. The original definitions of the two Arens products were given by Arens in 1951, see [1] and [2]. A is called Arens regular if $F \cdot G=F \times G$, for all $F, G \in A^{\prime \prime}$.

A Banach algebra A is called amenable if $H^{1}\left(A, X^{\prime}\right)=Z^{1}\left(A, X^{\prime}\right) / N^{1}\left(A, X^{\prime}\right)=\{0\}$ for each Banach A-bimodule X. This concept was introduced by B. E. Johnson in [8].

The notion of weak amenability was introduced by W. G. Bade, P. C. Curtis and H. G. Dales in [3] for commutative Banach algebras. Later Johnson defined weak amenability for arbitrary Banach algebras in [7, in fact a Banach algebra A is weakly amenable if $H^{1}(A, A)=0$.

In [11] Lau introduced a large class of Banach algebras which are called F-algebras (or Lau algebras). Then E. Kaniuth, A. T. Lau and J. Pym in [9] and [10 investigated φ-amenability which is more general than left amenability for F-algebras.

Let A be a Banach algebra and φ a homomorphism from A onto \mathbb{C}, then A is called φ-amenable if there exists $m \in A^{\prime \prime}$ satisfying $m(\varphi)=1$ and $m(f \cdot a)=\varphi(a) m(f)$ for all $a \in A$ and $f \in A^{\prime}$ and m is called a φ-mean.

In [12], Monfared introduced and investigated the notion of right character amenability. A Banach algebra A is right character amenable if it has a bounded right approximate identity and is φ-amenable for each $\varphi \in \Delta(A)$, where $\Delta(A)$ is the space of all homomorphisms from A onto \mathbb{C}. For a locally compact group G, the Fourier algebra $A(G)$ is right character amenable if and only if G is amenable whereas, $A(G)$ is φ-amenable for each $\varphi \in \Delta(A)$, see [10] and 12]. Also, if for some $\varphi \in \Delta(A)$, $\operatorname{ker} \varphi$ has a bounded right approximate identity A is φ-amenable. Since every closed ideal of a C^{*}-algebra has a bounded approximate identity then every C^{*} algebra is φ-amenable for every φ. For more details see [9] and [10].

In this paper the second dual $A^{\prime \prime}$ of a Banach algebra A will always be considered with the first Arens product.
Now, we recall some theorems which are used in this paper.
Theorem 1.1. Let A be a Banach algebra and $\varphi \in \Delta(A)$. Then A is φ-amenable if and only if $H^{1}\left(A, X^{\prime}\right)=\{0\}$, for each Banach A-bimodule X with $a \cdot x=\varphi(a) x$ for all $x \in X$ and $a \in A$.

Proof. See Theorem 1.1 of 9 .

Let A be a Banach algebra then $m \in A^{\prime \prime}$ is a two-sided φ-mean if for each $f \in A^{\prime}$ and $a \in A$,

$$
m(f \cdot a)=m(a \cdot f)=\varphi(a) m(f)
$$

Theorem 1.2. $m \in A^{\prime \prime}$ is a two-sided φ-mean for a Banach algebra A, if and only if there exists a bounded net $\left(u_{\alpha}\right)_{\alpha}$ in A such that $m=w^{*}-\lim _{\alpha} \hat{u}_{\alpha}$ and

$$
\varphi\left(u_{\alpha}\right)=1, \quad\left\|a \cdot u_{\alpha}-\varphi(a) \cdot u_{\alpha}\right\| \rightarrow 0, \quad\left\|u_{\alpha} \cdot a-\varphi(a) \cdot u_{\alpha}\right\| \rightarrow 0
$$

Proof. See Theorem 1.4 of [10].

2. Determination of φ-amenability with special ideals

Let A be a Banach algebra and $m \in A^{\prime \prime}$ an idempotent. Then the subset

$$
J_{m}=\mathbb{C} \cdot m=\{\lambda m: \lambda \in \mathbb{C}\}
$$

is a closed one-dimensional subalgebra of $A^{\prime \prime}$.
Now consider subsets L_{m} and R_{m} in $A^{\prime \prime}$ as follows

$$
\begin{aligned}
L_{m} & =\left\{n \in A^{\prime \prime}: n \cdot m=\lambda m \text { for some } \lambda \in \mathbb{C}\right\} \\
R_{m} & =\left\{n \in A^{\prime \prime}: m \cdot n=\lambda m \text { for some } \lambda \in \mathbb{C}\right\}
\end{aligned}
$$

Afr. J. Pure Appl. Math.

Then L_{m} and R_{m} are closed subalgebras in $A^{\prime \prime} . L_{m}$ is always w^{*}-closed, and R_{m} is w^{*}-closed when A is Arens regular.

It is easy to see that J_{m} is a left (right) ideal in $A^{\prime \prime}$ if and only if $L_{m}=A^{\prime \prime}\left(R_{m}=A^{\prime \prime}\right)$. These subalgebras are examples of "residual quotients" of ideals, analagous to the concept of a "primitive ideal".

Theorem 2.1. Let A be a Banach algebra, $m \in A^{\prime \prime}$ be an idempotent and φ be a multiplicative functional. Then
(1) J_{m} is weakly amenable;
(2) $Z^{1}\left(J_{m}, X\right)=\{0\}$, for each symmetric Banach J_{m}-bimodule;
(3) For each Banach algebra B with $x y=\varphi(x) y(x, y \in B), J_{m} \hat{\otimes} B^{\#}$ is weakly amenable where $B^{\#}$ is the unitization of B;
(4) If m is a φ-mean, then $H^{1}\left(A, J_{m}^{\prime}\right)=\{0\}$.

Proof. (1) Let $D: J_{m} \rightarrow J_{m}^{\prime}$ be a bounded derivation. Since m is an idempotent and J_{m} is commutative, then $D m=D(m \cdot m)=2 m \cdot D m=4 m \cdot D m$. So $D m=0$.
(2) Use 2.8.63 of [5].
(3) Let $\mathcal{U}=J_{m} \hat{\otimes} B^{\#}$ and $D: \mathcal{U} \rightarrow \mathcal{U}^{\prime}$ be a bounded derivation and let $b_{0} \in B$ with $\varphi\left(b_{0}\right)=1$. Then $\lambda \in \mathcal{U}^{\prime}$ exists such that

$$
\lambda(n \otimes b)=D(m \otimes b)\left(n \otimes b_{0}\right) \quad\left(n \in J_{m}, b \in B^{\#}\right)
$$

For each $n \in J_{m}$ and $b, c \in B$ we have:

$$
\begin{aligned}
\delta_{\lambda}(m \otimes b)(n \otimes c) & =((m \otimes b) \cdot \lambda-\lambda \cdot(m \otimes b))(n \otimes c) \\
& =\lambda(n \otimes c \cdot b-n \otimes b c) \\
& =(\varphi(c) \cdot D(m \otimes b)-\varphi(b) \cdot D(m \otimes c))\left(n \otimes b_{0}\right) \\
& =((m \otimes c) \cdot D(m \otimes b))\left(n \otimes b_{0}\right) \\
& =(D(m \otimes b))(n \otimes b)
\end{aligned}
$$

So for each $b \in B, D(m \otimes b)=\delta_{\lambda}(m \otimes b)$. Now we show that $D\left(m \otimes e_{B}\right)=\delta_{\lambda}\left(m \otimes e_{B}\right)=0$. To this end we consider $D_{1}: J_{m} \rightarrow \mathcal{U}^{\prime}$ with the definition $D_{1}(n)=D\left(n \otimes e_{B}\right),\left(n \in J_{m}\right)$. Then D_{1} is a bounded derivation. It is easy to see that under the following multiplications, \mathcal{U}^{\prime} is a symmetric Banach J_{m}-bimodule

$$
n \cdot f=\left(n \otimes e_{B}\right) \cdot f \quad, \quad f \cdot n=f \cdot\left(n \otimes e_{B}\right) \quad\left(f \in \mathcal{U}^{\prime}, n \in J_{m}\right)
$$

Now by (2) we have $D_{1}=0$, i. e. $D\left(m \otimes e_{B}\right)=0$ and we have

$$
\begin{aligned}
D(m \otimes b) & =D\left(\left(m \otimes e_{B}\right) \cdot(m \otimes b)\right)=\left(m \otimes e_{B}\right) \cdot D(m \otimes b)+D\left(m \otimes e_{B}\right) \cdot(m \otimes b) \\
& =\left(m \otimes e_{B}\right) \cdot D(m \otimes b)=\left(m \otimes e_{B}\right) \cdot \delta_{\lambda}(m \otimes b)=\delta_{\lambda}(m \otimes b)
\end{aligned}
$$

So D is an inner derivation and $J_{m} \hat{\otimes} B^{\#}$ is weakly amenable.
Use Theorem 1.1 to prove (4).

Lemma 2.2. Let A be a Banach algebra and $m \in A^{\prime \prime}$ be a non-zero idempotent. If $\hat{A} \subseteq L_{m}$, then there exists $\varphi \in \Delta(A)$ such that A is φ-amenable.

Proof. Let $\hat{A} \subseteq L_{m}$ then $m \neq 0$ and for each $a \in A$ there exists $\lambda_{a} \in \mathbb{C}$ such that $a \cdot m=\lambda_{a} m$ and λ_{a} is unique. Now we define $\varphi: A \rightarrow \mathbb{C}$ with $\varphi(a)=\lambda_{a}(a \in A)$ then $\varphi \in \Delta(A)$. For each $f \in A^{\prime}$ and $a \in A$ we have $m(f \cdot a)=a m(f)=\varphi(a) m(f)$. Moreover $m(\varphi)=m(\varphi)(m \varphi)$ so $m(\varphi)=1$ and m is a φ-mean.

We denote the commutator of A in $A^{\prime \prime}$ with A^{c} which is defined as follows

$$
A^{c}=\left\{F \in A^{\prime \prime}: a \cdot F=F \cdot a, \forall a \in A\right\} .
$$

Lemma 2.3. Let A be a Banach algebra and $m \in A^{\prime \prime}$ be a non-zero idempotent. Then in each of the following cases, there exists $\varphi \in \Delta(A)$ such that m is a two-sided φ-mean:
(1) $\hat{A} \subseteq L_{m}$ and $m \in A^{c}$;
(2) $\hat{A} \subseteq L_{m} \cap R_{m}$.

Proof. (1) Use Lemma 2.2. For (2) Let $\hat{A} \subseteq L_{m} \cap R_{m}$ then by Lemma 2.2 there exists $\varphi \in \Delta(A)$ such that m is a φ-mean. $\hat{A} \subseteq R_{m}$ implies that for each $a \in A$ there exists $\alpha_{a} \in$ \mathbb{C} such that $m \cdot a=\alpha_{a} m$ and α_{a} is unique. So there exists $\psi \in \Delta(A)$ such that $m \cdot a=$ $\psi(a) m$ and $m(\psi)=1$.
If $\varphi \neq \psi$, since $\varphi, \psi \in \Delta(A)$ then $\operatorname{ker} \varphi$ and $\operatorname{ker} \psi$ are two different maximal ideals in A. So $a_{0} \in$ $\operatorname{ker} \psi$ exists for which $a_{0} \notin \operatorname{ker} \varphi$ and we can assume $\varphi\left(a_{0}\right)=1$. Then $\psi \cdot a_{0}(b)=\psi\left(a_{0}\right) \psi_{b}=0$, $(b \in A)$. Also, m is a φ-mean and $m(\psi)=m(\psi) \varphi\left(a_{0}\right)=m\left(\psi \cdot a_{0}\right)=0$, which is a contradiction. Therefore $\varphi=\psi$ and m is a two-sided φ-mean.

For a Banach algebra $A, Z\left(A^{\prime \prime}, \cdot\right)=\left\{m \in A^{\prime \prime}: m \cdot n=m \times n\right.$, for all $\left.n \in A^{\prime \prime}\right\}$ is called the center of $A^{\prime \prime}$.
Theorem 2.4. Let A be a Banach algebra. Then:
(1) $m \in A^{\prime \prime}$ is a φ-mean if and only if m is a non-zero idempotent and J_{m} is a left ideal in $A^{\prime \prime}$;
(2) $m \in Z\left(A^{\prime \prime}, \cdot\right)$ is a two-sided φ-mean if and only if m is a non-zero idempotent and J_{m} is a two-sided ideal in $A^{\prime \prime}$.

Proof. (1) Let m be a φ-mean, then for each $f \in A^{\prime}$ and $\left(x_{\alpha}\right)_{\alpha} \subseteq A$ with $m=w^{*}-\lim _{\alpha} \hat{x}_{\alpha}$ we have

$$
m(f) m=m(m \cdot f)=\lim _{\alpha} m\left(f \cdot x_{\alpha}\right)=\lim _{\alpha} m f \varphi\left(x_{\alpha}\right)=m(f)(m \varphi)=m(f)
$$

So m is a non-zero idempotent. For $n \in A^{\prime \prime}$ and for each $f \in A^{\prime}$ we have $n \cdot m(f)=m f \cdot n(\varphi)$. So $n \cdot m=n(\varphi) m \in J_{m}$. For the converse let J_{m} be a left ideal in $A^{\prime \prime}$ then $\hat{A} \subseteq L_{m}$ and by Lemma 2.2, $\varphi \in \Delta(A)$ exists such that m is a φ-mean.
(2) Let m be a two-sided φ-mean then J_{m} is a left ideal in $A^{\prime \prime}$ and m is a non-zero idempotent. For each $f \in A^{\prime}$ and $n \in A^{\prime \prime}$ with $n=w^{*}-\lim _{\beta} \hat{b}_{\beta}$ we have

$$
\begin{aligned}
m n(f) & =m \times n(f)=n(f \cdot m)=\lim _{\beta} f \cdot m\left(b_{\beta}\right)=\lim _{\beta} m \cdot b_{\beta}(f) \\
& =\lim _{\beta} \varphi\left(b_{\beta}\right)(m f)=n \varphi \cdot m f .
\end{aligned}
$$

So $m \cdot n=n(\varphi) m \in J_{m}$
For the converse let J_{m} be a two-sided ideal in $A^{\prime \prime}$. Then by Lemma 2.3, $\varphi \in \Delta(A)$ exists such that m is a two-sided φ-mean. Also for $n \in A^{\prime \prime}$ with $n=w^{*}-\lim _{\beta} \hat{b}_{\beta}$ and each $f \in A^{\prime}$ we have

$$
\begin{aligned}
m \times n(f) & =n(f \cdot m)=\lim _{\beta} m \cdot b_{\beta}(f)=\lim _{\beta} b_{\beta} \cdot m(f)=n \cdot m(f) \\
& =n(\varphi) m(f)=m \cdot n(f)
\end{aligned}
$$

so $m \in Z\left(\left(A^{\prime \prime}, \cdot\right)\right)$ and

$$
\begin{aligned}
m \cdot n(f) & =m \times n(f)=n(f \cdot m)=\lim _{\beta} f \cdot m\left(b_{\beta}\right)=\lim _{\beta} m \cdot b_{\beta}(f) \\
& =\lim _{\beta} \varphi\left(b_{\beta}\right) m(f)=n(\varphi) m(f)
\end{aligned}
$$

Afr. J. Pure Appl. Math.

Corollary 2.5. Let A be a Banach algebra and $m \in A^{\prime \prime}$ be a non-zero idempotent. Then the following statements are equivalent:
(1) m is a two-sided φ-mean;
(2) $\hat{A} \subseteq L_{m} \cap R_{m}$;
(3) $m \in A^{c}$ and $\hat{A} \subseteq L_{m}$.

Proof. Use Lemma 2.3 and Theorem 2.4.

Let I be a closed ideal of a Banach algebra A, then I has the trace extension property if for each $\lambda \in I^{\prime}$ with $a \cdot \lambda=\lambda \cdot a$ and each $a \in A$ there exists $f \in A^{\prime}$ such that $\left.f\right|_{I}=\lambda$ and $a \cdot f=f \cdot a(a \in A)$.

Corollary 2.6. Let A be a Banach algebra and $m \in Z\left(A^{\prime \prime}, \cdot\right)$ be a two-sided φ-mean. Then:
(1) J_{m} has the trace extension property;
(2) $A^{\prime \prime}$ is weakly amenable if and only if $A^{\prime \prime} / J_{m}$ is weakly amenable.

Proof. For (1), use Theorem 2.4. For (2), since J_{m} has the trace extension property then $A^{\prime \prime} / J_{m}$ is weakly amenable, see [6. For the converse by Theorem $2.1 J_{m}$ is weakly amenable and then $A^{\prime \prime}$ is weakly amenable.

Corollary 2.7. Let A be a Banach algebra and m be a two-sided φ-mean. If $H^{1}(A, \operatorname{ker} m)=\{0\}$, then A is weakly amenable.

Proof. Let $D: A \rightarrow A^{\prime}$ be a bounded derivation, by Theorem 1.2 there exists a bounded net $\left(u_{\alpha}\right)_{\alpha \in I}$ in A such that $\varphi\left(u_{\alpha}\right)=1$ and $\left\|u_{\alpha} \cdot a-\varphi(a) \cdot u_{\alpha}\right\| \rightarrow 0$.
For each $a \in A$ and each α we have

$$
\begin{aligned}
m \circ D\left(u_{\alpha} \cdot a\right) & =m\left(D u_{\alpha}\right) \cdot \varphi(a)+m(D(a)) \cdot \varphi\left(u_{\alpha}\right) \\
& =m \circ D\left(u_{\alpha}\right) \varphi(a)+m \circ D(a) .
\end{aligned}
$$

Also,

$$
\begin{aligned}
\|m \circ D(a)\| & =\left\|(m \circ D)\left(u_{\alpha} \cdot a-\varphi(a) u_{\alpha}\right)\right\| \\
& \leq\|m\|\|D\|\left(\lim _{\alpha} \sup \left\|u_{\alpha} \cdot a-\varphi(a) u_{\alpha}\right\|\right)=0 .
\end{aligned}
$$

So, for each $a \in A$ we have $m(D a)=0$ and $\operatorname{Im} D \subseteq \operatorname{ker} m$.

Remark 1. Let A be a Banach algebra. For $\varphi \in \Delta(A)$, consider $S_{\varphi}=\left\{m \in A^{\prime \prime}: m\right.$ is a φ-mean $\}$. If A is an Arens regular commutative Banach algebra then S_{φ} has at most one element. In the case A admits a φ-mean of norm 1, by using the Krein-Milman Theorem (see [13]) $S_{\varphi} \cap A_{[1]}^{\prime \prime}$ has an extreme point which also is the convex hull of its extreme points.

Remark 2. Let φ be the augmentation character(see [4]) on $l^{1}(G)$. If $l^{1}(G)$ is φ-amenable then G is amenable. Since there exists $m \in\left(l^{1}(G)\right)^{\prime \prime}$ such that $m(f \cdot a)=\varphi(a) m(f)\left(f \in\left(l^{1}(G)\right)^{\prime}\right.$ and $\left.a \in l^{1}(G)\right)$. For $f \in l^{\infty}(G)$, similar the method used in chapter 43 of 4 define $f^{\prime} \in\left(l^{1}(G)\right)^{\prime}$ with

$$
f^{\prime}(a)=\sum_{x \in G} a(x) \cdot f(x) \quad\left(a \in l^{1}(G)\right)
$$

then $\left(T_{x^{-1}} f\right)^{\prime}=f^{\prime}\left(\delta_{x}\right)$ where $\delta_{x}(x)=1$ and $\delta_{x}(a)=0(a \neq x)$ and $T_{x} f(a)=f\left(x^{-1} a\right)$ for each $a, x \in G$. Now, consider $\psi \in\left(l^{\infty}(G)\right)^{\prime}$ by $\psi\left(T_{x} f\right)=\psi(f)$, for each $f \in l^{\infty}(G)$ and $x \in G$. Let $l_{+}^{\infty}(G)=\left\{g \in l^{\infty}(G): g \geq 0\right\}$ and for each $g \in l_{+}^{\infty}(G)$ take $\theta(g)=\sup \left\{\operatorname{Re}(\psi(f)): f \in l^{\infty}(G):\right.$ $|f| \leq g\}$. Then the extension of $(\theta(1))^{-1} \theta$ to $l^{\infty}(G)$ is an invariant mean which means G is amenable.

References

1. R. Arens. Operations induced in function classes. Monatsh. Math 55 (1951), 1-19.
2. R. Arens. The adjoint of a bilinear operation. Proc. Amer. Math Soc. 2 (1951), 839-848.
3. W. G. Bade, P. C. Curtis and H. G. Dales, Amenability and weak amenability for Beurling and Lipschits algebras , Proc. London Math. Soc. (3) 55 (1987), 359-377.
4. F. F. Bonsall and J. Duncan, Complete normed algebras, Springer, Berlin, (1973).
5. H. G. Dales, Banach algebras and automatic continuity, Oxford University Press, 2000.
6. N. Gronbak, Weak and cyclic amenability for non-commutative Banach algebras, Proc. Edinburgh Math. Soc. 35 (1992), 315-328.
7. B. E. Johnson, Weak amenability of group algebras, Bull. Lodon Math. Soc. 23 (1991), 281-284.
8. B. E. Johnson, Cohomology in Banach algebras, Mem. Ame. Math. Soc. 127 (1972).
9. E. Kaniuth, A. T. Lau and J. Pym, On φ-amenability of Banach algebras, Math. Proc. Cambridge Philos. Soc. 144 (2008), 85-96.
10. E. Kaniuth, A. T. Lau and J. Pym, On character amenability of Banach algebras, J. Math. Anal. Appl. 344 (2008), 942-955.
11. A. T. Lau, Analysis on a class of Banach algebras with applications to harmonic analysis on locally compact groups and semigroups, Fund. Math. 118 (1983), 161-175.
12. M. S. Monfared, Character amenability of Banach algebras, Math. Proc. Cambridge Philos. Soc. 144 (2008), 697-706.
13. W. Rudin, Functional Analysis, New York, McGrow-Hill, (1973).
S. A. R. Hosseinioun
e-mail: shossein@uark.edu
University of Arkansas, Department of Mathematical sciences, Fayetteville, AR 72703, USA.
A. Valadkhani
e-mail: arezou.valadkhani@yahoo.com
University of Simon Fraser, Department of Education, Vancouver, Canada.
Submitted: 9 Juin 2016
Revised: 26 November 2016
Accepted: 12 January 2017

Afr. J. Pure Appl. Math.

