AFRICAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Imhotep Mathematical Journal Volume 2, Numéro 1, (2017), pp. 1 – 6.

The relations between φ -amenability and some special ideals

S. A. R. Hosseinioun

University of Arkansas, Department of Mathematical sciences, Fayetteville, AR 72703, USA. shossein@uark.edu

A. Valadkhani arezou.valadkhani@yahoo.com

> University of Simon Fraser, Department of Education, Vancouver, Canada.

Abstract

In this paper we determine φ -amenability of a Banach algebra A with some certain ideals in its second dual A''. We show that for an idempotent $m \in A''$, the set $\mathbb{C} \cdot m = \{\lambda \cdot m : \lambda \in \mathbb{C}\}$ is a left ideal in A'' if and only if m is a φ -mean. We also give some results on the relationships between weak amenability and φ -amenability of Banach algebras.

©Imhotep-Journal.org/Cameroon

http://imhotep-journal.org/index.php/imhotep/ Imhotep Mathematical Journal

IMHOTEP - Afr. J. Pure Appl. Math. 2 (2017), 1–6 1608-9324/010001-0, DOI 13.1007/s00009-003-0000 © 2017 Imhotep-Journal.org/Cameroon

The relations between φ -amenability and some special ideals

S. A. R. Hosseinioun and A. Valadkhani

Abstract. In this paper we determine φ -amenability of a Banach algebra A with some certain ideals in its second dual A''. We show that for an idempotent $m \in A''$, the set $\mathbb{C} \cdot m = \{\lambda \cdot m : \lambda \in \mathbb{C}\}$ is a left ideal in A'' if and only if m is a φ -mean. We also give some results on the relationships between weak amenability and φ -amenability of Banach algebras.

Mathematics Subject Classification (2010). 46H25 (Primary), 43A07 (Secondary).

Keywords. Banach algebra, phi-amenability, Ideal, φ -mean, φ -amenability, extreme point.

1. Introduction

Let A be a Banach algebra, and let X be a Banach A-bimodule. Then a linear map $D: A \to X$ is a derivation if

$$D(ab) = a \cdot D(b) + D(a) \cdot b \qquad (a, b \in A).$$

For example, let $x \in X$ and define $\delta_x : A \to X$ by $\delta_x a = a \cdot x - x \cdot a$ then δ_x is a derivation which is called an inner derivation.

The set of all bounded derivations from A into X is denoted by $Z^1(A, X)$, and $N^1(A, X)$ is the set of all inner derivations from A into X. Also, $H^1(A, X) = Z^1(A, X)/N^1(A, X)$ is the first cohomology group with coefficients in X.

The dual space of a Banach A-bimodule with the following multiplicatios can be made into a Banach A-bimodule

$$a \cdot x'(x) = x'(x \cdot a)$$
 , $x' \cdot a(x) = x'(a \cdot x)$

for each $x \in X, x' \in X', a \in A$.

Let A be a Banach algebra and A'' be its second dual, for each $a, b \in A$, $f \in A'$ and $F, G \in A''$ we define $f \cdot a, a \cdot f$ and $F \cdot f, f \cdot F \in A'$ by

$$\begin{aligned} f \cdot a(b) &= f(a \cdot b) \\ F \cdot f(a) &= F(f \cdot a) \end{aligned}, \qquad \begin{aligned} a \cdot f(b) &= f(b \cdot a) \\ f \cdot F(a) &= F(a \cdot f). \end{aligned}$$

Now we define $F \cdot G, F \times G \in A''$ as follows

$$F \cdot G(f) = F(G \cdot f), \qquad F \times G(f) = G(f \cdot F).$$

Then A'' is a Banach algebra with respect to either of the products \cdot and \times , these products are

called respectively, the first and the second Arens products on A''. The original definitions of the two Arens products were given by Arens in 1951, see [1] and [2]. A is called Arens regular if $F \cdot G = F \times G$, for all $F, G \in A''$.

A Banach algebra A is called amenable if $H^1(A, X') = Z^1(A, X')/N^1(A, X') = \{0\}$ for each Banach A-bimodule X. This concept was introduced by B. E. Johnson in [8].

The notion of weak amenability was introduced by W. G. Bade, P. C. Curtis and H. G. Dales in [3] for commutative Banach algebras. Later Johnson defined weak amenability for arbitrary Banach algebras in [7], in fact a Banach algebra A is weakly amenable if $H^1(A, A) = 0$.

In [11] Lau introduced a large class of Banach algebras which are called *F*-algebras (or Lau algebras). Then E. Kaniuth, A. T. Lau and J. Pym in [9] and [10] investigated φ -amenability which is more general than left amenability for *F*-algebras.

Let A be a Banach algebra and φ a homomorphism from A onto \mathbb{C} , then A is called φ -amenable if there exists $m \in A''$ satisfying $m(\varphi) = 1$ and $m(f \cdot a) = \varphi(a)m(f)$ for all $a \in A$ and $f \in A'$ and m is called a φ -mean.

In [12], Monfared introduced and investigated the notion of right character amenability. A Banach algebra A is right character amenable if it has a bounded right approximate identity and is φ -amenable for each $\varphi \in \Delta(A)$, where $\Delta(A)$ is the space of all homomorphisms from Aonto \mathbb{C} . For a locally compact group G, the Fourier algebra A(G) is right character amenable if and only if G is amenable whereas, A(G) is φ -amenable for each $\varphi \in \Delta(A)$, see [10] and [12]. Also, if for some $\varphi \in \Delta(A)$, ker φ has a bounded right approximate identity A is φ -amenable. Since every closed ideal of a C^* -algebra has a bounded approximate identity then every C^* algebra is φ -amenable for every φ . For more details see [9] and [10]].

In this paper the second dual A'' of a Banach algebra A will always be considered with the first Arens product.

Now, we recall some theorems which are used in this paper.

Theorem 1.1. Let A be a Banach algebra and $\varphi \in \Delta(A)$. Then A is φ -amenable if and only if $H^1(A, X') = \{0\}$, for each Banach A-bimodule X with $a \cdot x = \varphi(a)x$ for all $x \in X$ and $a \in A$.

Proof. See Theorem 1.1 of [9].

Let A be a Banach algebra then $m \in A''$ is a two-sided φ -mean if for each $f \in A'$ and $a \in A$,

$$m(f \cdot a) = m(a \cdot f) = \varphi(a)m(f).$$

Theorem 1.2. $m \in A''$ is a two-sided φ -mean for a Banach algebra A, if and only if there exists a bounded net $(u_{\alpha})_{\alpha}$ in A such that $m = w^* - \lim \hat{u}_{\alpha}$ and

$$\varphi(u_{\alpha}) = 1, \quad \|a \cdot u_{\alpha} - \varphi(a) \cdot u_{\alpha}\| \to 0, \quad \|u_{\alpha} \cdot a - \varphi(a) \cdot u_{\alpha}\| \to 0.$$

Proof. See Theorem 1.4 of [10].

2. Determination of φ -amenability with special ideals

Let A be a Banach algebra and $m \in A''$ an idempotent. Then the subset

$$J_m = \mathbb{C} \cdot m = \{\lambda m : \lambda \in \mathbb{C}\}$$

is a closed one-dimensional subalgebra of A''.

Now consider subsets L_m and R_m in A'' as follows

$$L_m = \{ n \in A'' : n \cdot m = \lambda m \text{ for some } \lambda \in \mathbb{C} \}$$

$$R_m = \{ n \in A'' : m \cdot n = \lambda m \text{ for some } \lambda \in \mathbb{C} \}.$$

Afr. J. Pure Appl. Math.

Vol. 2 (2017) The relations between φ -amenability and some special ideals

Then L_m and R_m are closed subalgebras in A''. L_m is always w^* -closed, and R_m is w^* -closed when A is Arens regular.

It is easy to see that J_m is a left (right) ideal in A'' if and only if $L_m = A''$ ($R_m = A''$). These subalgebras are examples of "residual quotients" of ideals, analogous to the concept of a "primitive ideal".

Theorem 2.1. Let A be a Banach algebra, $m \in A''$ be an idempotent and φ be a multiplicative functional. Then

- (1) J_m is weakly amenable;
- (2) $Z^1(J_m, X) = \{0\}$, for each symmetric Banach J_m -bimodule;
- (3) For each Banach algebra B with $xy = \varphi(x)y$ $(x, y \in B)$, $J_m \hat{\otimes} B^{\#}$ is weakly amenable where $B^{\#}$ is the unitization of B;
- (4) If *m* is a φ -mean, then $H^1(A, J'_m) = \{0\}$.

Proof. (1) Let $D: J_m \to J'_m$ be a bounded derivation. Since m is an idempotent and J_m is commutative, then $Dm = D(m \cdot m) = 2m \cdot Dm = 4m \cdot Dm$. So Dm = 0. (2) Use 2.8.63 of [5].

(3) Let $\mathcal{U} = J_m \hat{\otimes} B^{\#}$ and $D : \mathcal{U} \to \mathcal{U}'$ be a bounded derivation and let $b_0 \in B$ with $\varphi(b_0) = 1$. Then $\lambda \in \mathcal{U}'$ exists such that

$$\lambda(n \otimes b) = D(m \otimes b)(n \otimes b_0) \qquad (n \in J_m, b \in B^{\#}).$$

For each $n \in J_m$ and $b, c \in B$ we have:

$$\begin{split} \delta_{\lambda}(m \otimes b)(n \otimes c) &= ((m \otimes b) \cdot \lambda - \lambda \cdot (m \otimes b))(n \otimes c) \\ &= \lambda(n \otimes c \cdot b - n \otimes bc) \\ &= (\varphi(c) \cdot D(m \otimes b) - \varphi(b) \cdot D(m \otimes c))(n \otimes b_0) \\ &= ((m \otimes c) \cdot D(m \otimes b))(n \otimes b_0) \\ &= (D(m \otimes b))(n \otimes b). \end{split}$$

So for each $b \in B$, $D(m \otimes b) = \delta_{\lambda}(m \otimes b)$. Now we show that $D(m \otimes e_B) = \delta_{\lambda}(m \otimes e_B) = 0$. To this end we consider $D_1 : J_m \to \mathcal{U}'$ with the definition $D_1(n) = D(n \otimes e_B)$, $(n \in J_m)$. Then D_1 is a bounded derivation. It is easy to see that under the following multiplications, \mathcal{U}' is a symmetric Banach J_m -bimodule

$$n \cdot f = (n \otimes e_B) \cdot f$$
, $f \cdot n = f \cdot (n \otimes e_B)$ $(f \in \mathcal{U}', n \in J_m).$

Now by (2) we have $D_1 = 0$, i. e. $D(m \otimes e_B) = 0$ and we have

$$D(m \otimes b) = D((m \otimes e_B) \cdot (m \otimes b)) = (m \otimes e_B) \cdot D(m \otimes b) + D(m \otimes e_B) \cdot (m \otimes b)$$

= $(m \otimes e_B) \cdot D(m \otimes b) = (m \otimes e_B) \cdot \delta_{\lambda}(m \otimes b) = \delta_{\lambda}(m \otimes b).$

So D is an inner derivation and $J_m \hat{\otimes} B^{\#}$ is weakly amenable. Use Theorem 1.1 to prove (4).

Lemma 2.2. Let A be a Banach algebra and $m \in A''$ be a non-zero idempotent. If $\hat{A} \subseteq L_m$, then there exists $\varphi \in \Delta(A)$ such that A is φ -amenable.

Proof. Let $\hat{A} \subseteq L_m$ then $m \neq 0$ and for each $a \in A$ there exists $\lambda_a \in \mathbb{C}$ such that $a \cdot m = \lambda_a m$ and λ_a is unique. Now we define $\varphi : A \to \mathbb{C}$ with $\varphi(a) = \lambda_a$ $(a \in A)$ then $\varphi \in \Delta(A)$. For each $f \in A'$ and $a \in A$ we have $m(f \cdot a) = am(f) = \varphi(a)m(f)$. Moreover $m(\varphi) = m(\varphi)(m\varphi)$ so $m(\varphi) = 1$ and m is a φ -mean.

Afr. J. Pure Appl. Math.

We denote the commutator of A in A'' with A^c which is defined as follows

$$A^c = \{ F \in A'' : a \cdot F = F \cdot a, \forall a \in A \}.$$

Lemma 2.3. Let A be a Banach algebra and $m \in A''$ be a non-zero idempotent. Then in each of the following cases, there exists $\varphi \in \Delta(A)$ such that m is a two-sided φ -mean:

(1) $\hat{A} \subseteq L_m$ and $m \in A^c$;

(2) $A \subseteq L_m \cap R_m$.

Proof. (1) Use Lemma 2.2. For (2) Let $A \subseteq L_m \cap R_m$ then by Lemma 2.2 there exists $\varphi \in \Delta(A)$ such that m is a φ -mean. $\hat{A} \subseteq R_m$ implies that for each $a \in A$ there exists $\alpha_a \in \mathbb{C}$ such that $m \cdot a = \alpha_a m$ and α_a is unique. So there exists $\psi \in \Delta(A)$ such that $m \cdot a = \psi(a)m$ and $m(\psi) = 1$.

If $\varphi \neq \psi$, since $\varphi, \psi \in \Delta(A)$ then ker φ and ker ψ are two different maximal ideals in A. So $a_0 \in \ker \psi$ exists for which $a_0 \notin \ker \varphi$ and we can assume $\varphi(a_0) = 1$. Then $\psi \cdot a_0(b) = \psi(a_0)\psi_b = 0$, $(b \in A)$. Also, m is a φ -mean and $m(\psi) = m(\psi)\varphi(a_0) = m(\psi \cdot a_0) = 0$, which is a contradiction. Therefore $\varphi = \psi$ and m is a two-sided φ -mean.

For a Banach algebra $A, Z(A'', \cdot) = \{m \in A'' : m \cdot n = m \times n, \text{ for all } n \in A''\}$ is called the center of A''.

Theorem 2.4. Let A be a Banach algebra. Then:

- (1) $m \in A''$ is a φ -mean if and only if m is a non-zero idempotent and J_m is a left ideal in A'';
- (2) $m \in Z(A'', \cdot)$ is a two-sided φ -mean if and only if m is a non-zero idempotent and J_m is a two-sided ideal in A''.

Proof. (1) Let m be a φ -mean, then for each $f \in A'$ and $(x_{\alpha})_{\alpha} \subseteq A$ with $m = w^* - \lim_{\alpha} \hat{x}_{\alpha}$ we have

$$m(f)m = m(m \cdot f) = \lim_{\alpha} m(f \cdot x_{\alpha}) = \lim_{\alpha} mf\varphi(x_{\alpha}) = m(f)(m\varphi) = m(f).$$

So *m* is a non-zero idempotent. For $n \in A''$ and for each $f \in A'$ we have $n \cdot m(f) = mf \cdot n(\varphi)$. So $n \cdot m = n(\varphi)m \in J_m$. For the converse let J_m be a left ideal in A'' then $\hat{A} \subseteq L_m$ and by Lemma 2.2, $\varphi \in \Delta(A)$ exists such that *m* is a φ -mean.

(2) Let *m* be a two-sided φ -mean then J_m is a left ideal in A'' and *m* is a non-zero idempotent. For each $f \in A'$ and $n \in A''$ with $n = w^* - \lim_{\beta} \hat{b}_{\beta}$ we have

$$mn(f) = m \times n(f) = n(f \cdot m) = \lim_{\beta} f \cdot m(b_{\beta}) = \lim_{\beta} m \cdot b_{\beta}(f)$$
$$= \lim_{\beta} \varphi(b_{\beta})(mf) = n\varphi \cdot mf.$$

So $m \cdot n = n(\varphi)m \in J_m$

For the converse let J_m be a two-sided ideal in A''. Then by Lemma 2.3, $\varphi \in \Delta(A)$ exists such that m is a two-sided φ -mean. Also for $n \in A''$ with $n = w^* - \lim_{\beta} \hat{b}_{\beta}$ and each $f \in A'$ we have

$$m \times n(f) = n(f \cdot m) = \lim_{\beta} m \cdot b_{\beta}(f) = \lim_{\beta} b_{\beta} \cdot m(f) = n \cdot m(f)$$
$$= n(\varphi)m(f) = m \cdot n(f)$$

so $m \in Z((A'', \cdot))$ and

$$m \cdot n(f) = m \times n(f) = n(f \cdot m) = \lim_{\beta} f \cdot m(b_{\beta}) = \lim_{\beta} m \cdot b_{\beta}(f)$$
$$= \lim_{\beta} \varphi(b_{\beta})m(f) = n(\varphi)m(f).$$

Afr. J. Pure Appl. Math.

Corollary 2.5. Let A be a Banach algebra and $m \in A''$ be a non-zero idempotent. Then the following statements are equivalent:

(1) *m* is a two-sided φ -mean;

(2) $\hat{A} \subseteq L_m \cap R_m;$

(3) $m \in A^c$ and $\hat{A} \subseteq L_m$.

Proof. Use Lemma 2.3 and Theorem 2.4.

Let *I* be a closed ideal of a Banach algebra *A*, then *I* has the **trace extension property** if for each $\lambda \in I'$ with $a \cdot \lambda = \lambda \cdot a$ and each $a \in A$ there exists $f \in A'$ such that $f|_I = \lambda$ and $a \cdot f = f \cdot a$ $(a \in A)$.

Corollary 2.6. Let A be a Banach algebra and $m \in Z(A'', \cdot)$ be a two-sided φ -mean. Then:

- (1) J_m has the trace extension property;
- (2) A'' is weakly amenable if and only if A''/J_m is weakly amenable.

Proof. For (1), use Theorem 2.4. For (2), since J_m has the trace extension property then A''/J_m is weakly amenable, see [6]. For the converse by Theorem 2.1 J_m is weakly amenable and then A'' is weakly amenable.

Corollary 2.7. Let A be a Banach algebra and m be a two-sided φ -mean. If $H^1(A, \ker m) = \{0\}$, then A is weakly amenable.

Proof. Let $D: A \to A'$ be a bounded derivation, by Theorem1.2 there exists a bounded net $(u_{\alpha})_{\alpha \in I}$ in A such that $\varphi(u_{\alpha}) = 1$ and $||u_{\alpha} \cdot a - \varphi(a) \cdot u_{\alpha}|| \to 0$. For each $a \in A$ and each α we have

$$\begin{split} m \circ D(u_{\alpha} \cdot a) &= m(Du_{\alpha}) \cdot \varphi(a) + m(D(a)) \cdot \varphi(u_{\alpha}) \\ &= m \circ D(u_{\alpha})\varphi(a) + m \circ D(a). \end{split}$$

Also,

$$\|m \circ D(a)\| = \|(m \circ D)(u_{\alpha} \cdot a - \varphi(a)u_{\alpha})\|$$

$$\leq \|m\| \|D\| \left(\limsup_{\alpha} \sup \|u_{\alpha} \cdot a - \varphi(a)u_{\alpha}\|\right) = 0.$$

So, for each $a \in A$ we have m(Da) = 0 and $\operatorname{Im} D \subseteq \ker m$.

Remark 1. Let A be a Banach algebra. For $\varphi \in \Delta(A)$, consider $S_{\varphi} = \{m \in A'' : m \text{ is a } \varphi - \text{mean}\}$. If A is an Arens regular commutative Banach algebra then S_{φ} has at most one element. In the case A admits a φ -mean of norm 1, by using the Krein-Milman Theorem (see [13]) $S_{\varphi} \cap A''_{[1]}$ has an extreme point which also is the convex hull of its extreme points.

Remark 2. Let φ be the augmentation character(see [4]) on $l^1(G)$. If $l^1(G)$ is φ -amenable then G is amenable. Since there exists $m \in (l^1(G))''$ such that $m(f \cdot a) = \varphi(a)m(f)$ $(f \in (l^1(G))'$ and $a \in l^1(G)$). For $f \in l^{\infty}(G)$, similar the method used in chapter 43 of [4] define $f' \in (l^1(G))'$ with

$$f'(a) = \sum_{x \in G} a(x) \cdot f(x) \qquad (a \in l^1(G))$$

Afr. J. Pure Appl. Math.

then $(T_{x^{-1}}f)' = f'(\delta_x)$ where $\delta_x(x) = 1$ and $\delta_x(a) = 0$ $(a \neq x)$ and $T_x f(a) = f(x^{-1}a)$ for each $a, x \in G$. Now, consider $\psi \in (l^{\infty}(G))'$ by $\psi(T_x f) = \psi(f)$, for each $f \in l^{\infty}(G)$ and $x \in G$. Let $l^{\infty}_+(G) = \{g \in l^{\infty}(G) : g \geq 0\}$ and for each $g \in l^{\infty}_+(G)$ take $\theta(g) = \sup\{Re(\psi(f)) : f \in l^{\infty}(G) : |f| \leq g\}$. Then the extension of $(\theta(1))^{-1}\theta$ to $l^{\infty}(G)$ is an invariant mean which means G is amenable.

References

- 1. R. Arens. Operations induced in function classes. Monatsh. Math 55 (1951), 1–19.
- 2. R. Arens. The adjoint of a bilinear operation. Proc. Amer. Math Soc. 2 (1951), 839-848.
- W. G. Bade, P. C. Curtis and H. G. Dales, Amenability and weak amenability for Beurling and Lipschits algebras, Proc. London Math. Soc. (3) 55 (1987), 359–377.
- 4. F. F. Bonsall and J. Duncan, Complete normed algebras, Springer, Berlin, (1973).
- 5. H. G. Dales, Banach algebras and automatic continuity, Oxford University Press, 2000.
- N. Gronbak, Weak and cyclic amenability for non-commutative Banach algebras, Proc. Edinburgh Math. Soc. 35 (1992), 315–328.
- 7. B. E. Johnson, Weak amenability of group algebras, Bull. Lodon Math. Soc. 23 (1991), 281–284.
- 8. B. E. Johnson, Cohomology in Banach algebras, Mem. Ame. Math. Soc. 127 (1972).
- E. Kaniuth, A. T. Lau and J. Pym, On φ-amenability of Banach algebras, Math. Proc. Cambridge Philos. Soc. 144 (2008), 85–96.
- E. Kaniuth, A. T. Lau and J. Pym, On character amenability of Banach algebras, J. Math. Anal. Appl. 344 (2008), 942–955.
- 11. A. T. Lau, Analysis on a class of Banach algebras with applications to harmonic analysis on locally compact groups and semigroups, Fund. Math. 118 (1983), 161–175.
- M. S. Monfared, Character amenability of Banach algebras, Math. Proc. Cambridge Philos. Soc. 144 (2008), 697–706.
- 13. W. Rudin, Functional Analysis, New York, McGrow-Hill, (1973).

S. A. R. Hosseinioun

e-mail: shossein@uark.edu

University of Arkansas, Department of Mathematical sciences, Fayetteville, AR 72703, USA.

A. Valadkhani

e-mail: arezou.valadkhani@yahoo.com University of Simon Fraser, Department of Education, Vancouver, Canada.

Submitted: 9 Juin 2016 Revised: 26 November 2016 Accepted: 12 January 2017

Afr. J. Pure Appl. Math.