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Abstract

In this paper we determine ϕ-amenability of a Banach algebra
A with some certain ideals in its second dual A′′. We show that for
an idempotent m ∈ A′′, the set C ·m = {λ ·m : λ ∈ C} is a left
ideal in A′′ if and only if m is a ϕ-mean. We also give some results
on the relationships between weak amenability and ϕ-amenability of
Banach algebras.
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1. Introduction

Let A be a Banach algebra, and let X be a Banach A-bimodule. Then a linear map D : A→ X
is a derivation if

D(ab) = a ·D(b) +D(a) · b (a, b ∈ A).

For example, let x ∈ X and define δx : A → X by δxa = a · x − x · a then δx is a derivation
which is called an inner derivation.

The set of all bounded derivations from A into X is denoted by Z1(A,X), and N1(A,X)
is the set of all inner derivations from A into X. Also, H1(A,X) = Z1(A,X)/N1(A,X) is the
first cohomology group with coefficients in X.

The dual space of a Banach A-bimodule with the following multiplicatios can be made
into a Banach A-bimodule

a · x′(x) = x′(x · a) , x′ · a(x) = x′(a · x)

for each x ∈ X,x′ ∈ X ′, a ∈ A.
Let A be a Banach algebra and A′′ be its second dual, for each a, b ∈ A, f ∈ A′ and

F,G ∈ A′′ we define f · a, a · f and F · f, f · F ∈ A′ by

f · a(b) = f(a · b) , a · f(b) = f(b · a)
F · f(a) = F (f · a) , f · F (a) = F (a · f).

Now we define F ·G,F ×G ∈ A′′ as follows

F ·G(f) = F (G · f), F ×G(f) = G(f · F ).

Then A′′ is a Banach algebra with respect to either of the products · and ×, these products are
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called respectively, the first and the second Arens products on A′′. The original definitions of
the two Arens products were given by Arens in 1951, see [1] and [2]. A is called Arens regular
if F ·G = F ×G, for all F,G ∈ A′′.

A Banach algebra A is called amenable if H1(A,X ′) = Z1(A,X ′)/N1(A,X ′) = {0} for
each Banach A-bimodule X. This concept was introduced by B. E. Johnson in [8].

The notion of weak amenability was introduced by W. G. Bade, P. C. Curtis and H.
G. Dales in [3] for commutative Banach algebras. Later Johnson defined weak amenability for
arbitrary Banach algebras in [7], in fact a Banach algebra A is weakly amenable if H1(A,A) = 0.

In [11] Lau introduced a large class of Banach algebras which are called F -algebras (or
Lau algebras). Then E. Kaniuth, A. T. Lau and J. Pym in [9] and [10] investigated ϕ-amenability
which is more general than left amenability for F -algebras.

Let A be a Banach algebra and ϕ a homomorphism from A onto C, then A is called
ϕ-amenable if there exists m ∈ A′′ satisfying m(ϕ) = 1 and m(f · a) = ϕ(a)m(f) for all a ∈ A
and f ∈ A′ and m is called a ϕ-mean.

In [12], Monfared introduced and investigated the notion of right character amenability.
A Banach algebra A is right character amenable if it has a bounded right approximate identity
and is ϕ-amenable for each ϕ ∈ ∆(A), where ∆(A) is the space of all homomorphisms from A
onto C. For a locally compact group G, the Fourier algebra A(G) is right character amenable
if and only if G is amenable whereas, A(G) is ϕ-amenable for each ϕ ∈ ∆(A), see [10] and [12].
Also, if for some ϕ ∈ ∆(A), kerϕ has a bounded right approximate identity A is ϕ-amenable.
Since every closed ideal of a C∗-algebra has a bounded approximate identity then every C∗-
algebra is ϕ-amenable for every ϕ. For more details see [9] and [10]].

In this paper the second dual A′′ of a Banach algebra A will always be considered with
the first Arens product.
Now, we recall some theorems which are used in this paper.

Theorem 1.1. Let A be a Banach algebra and ϕ ∈ ∆(A). Then A is ϕ-amenable if and only if
H1(A,X ′) = {0}, for each Banach A-bimodule X with a · x = ϕ(a)x for all x ∈ X and a ∈ A.

Proof. See Theorem 1.1 of [9].

�

Let A be a Banach algebra then m ∈ A′′ is a two-sided ϕ-mean if for each f ∈ A′ and
a ∈ A,

m(f · a) = m(a · f) = ϕ(a)m(f).

Theorem 1.2. m ∈ A′′ is a two-sided ϕ-mean for a Banach algebra A, if and only if there exists
a bounded net (uα)α in A such that m = w∗ − lim

α
ûα and

ϕ(uα) = 1, ‖a · uα − ϕ(a) · uα‖ → 0, ‖uα · a− ϕ(a) · uα‖ → 0.

Proof. See Theorem 1.4 of [10].

�

2. Determination of ϕ-amenability with special ideals

Let A be a Banach algebra and m ∈ A′′ an idempotent. Then the subset

Jm = C ·m = {λm : λ ∈ C}
is a closed one-dimensional subalgebra of A′′.

Now consider subsets Lm and Rm in A′′ as follows

Lm = {n ∈ A′′ : n ·m = λm for some λ ∈ C}
Rm = {n ∈ A′′ : m · n = λm for some λ ∈ C}.

Afr. J. Pure Appl. Math.
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Then Lm and Rm are closed subalgebras in A′′. Lm is always w∗-closed, and Rm is w∗-closed
when A is Arens regular.

It is easy to see that Jm is a left (right) ideal in A′′ if and only if Lm = A′′ (Rm = A′′).
These subalgebras are examples of “residual quotients” of ideals, analagous to the concept of a
“primitive ideal”.

Theorem 2.1. Let A be a Banach algebra, m ∈ A′′ be an idempotent and ϕ be a multiplicative
functional. Then

(1) Jm is weakly amenable;
(2) Z1(Jm, X) = {0}, for each symmetric Banach Jm-bimodule;
(3) For each Banach algebra B with xy = ϕ(x)y (x, y ∈ B), Jm⊗̂B# is weakly amenable where

B# is the unitization of B;
(4) If m is a ϕ-mean, then H1(A, J ′m) = {0}.

Proof. (1) Let D : Jm → J ′m be a bounded derivation. Since m is an idempotent and
Jm is commutative, then Dm = D(m ·m) = 2m ·Dm = 4m ·Dm. So Dm = 0.
(2) Use 2.8.63 of [5].
(3) Let U = Jm⊗̂B# and D : U → U ′ be a bounded derivation and let b0 ∈ B with ϕ(b0) = 1.
Then λ ∈ U ′ exists such that

λ(n⊗ b) = D(m⊗ b)(n⊗ b0) (n ∈ Jm, b ∈ B#).

For each n ∈ Jm and b, c ∈ B we have:

δλ(m⊗ b)(n⊗ c) = ((m⊗ b) · λ− λ · (m⊗ b)) (n⊗ c)
= λ(n⊗ c · b− n⊗ bc)
= (ϕ(c) ·D(m⊗ b)− ϕ(b) ·D(m⊗ c)) (n⊗ b0)

= ((m⊗ c) ·D(m⊗ b)) (n⊗ b0)

= (D(m⊗ b)) (n⊗ b).

So for each b ∈ B, D(m ⊗ b) = δλ(m ⊗ b). Now we show that D(m ⊗ eB) = δλ(m ⊗ eB) = 0.
To this end we consider D1 : Jm → U ′ with the definition D1(n) = D(n⊗ eB), (n ∈ Jm). Then
D1 is a bounded derivation. It is easy to see that under the following multiplications, U ′ is a
symmetric Banach Jm-bimodule

n · f = (n⊗ eB) · f , f · n = f · (n⊗ eB) (f ∈ U ′, n ∈ Jm).

Now by (2) we have D1 = 0, i. e. D(m⊗ eB) = 0 and we have

D(m⊗ b) = D ((m⊗ eB) · (m⊗ b)) = (m⊗ eB) ·D(m⊗ b) +D(m⊗ eB) · (m⊗ b)
= (m⊗ eB) ·D(m⊗ b) = (m⊗ eB) · δλ(m⊗ b) = δλ(m⊗ b).

So D is an inner derivation and Jm⊗̂B# is weakly amenable.
Use Theorem 1.1 to prove (4).

�

Lemma 2.2. Let A be a Banach algebra and m ∈ A′′ be a non-zero idempotent. If Â ⊆ Lm, then
there exists ϕ ∈ ∆(A) such that A is ϕ-amenable.

Proof. Let Â ⊆ Lm then m 6= 0 and for each a ∈ A there exists λa ∈ C such that
a · m = λam and λa is unique. Now we define ϕ : A → C with ϕ(a) = λa (a ∈ A) then
ϕ ∈ ∆(A). For each f ∈ A′ and a ∈ A we have m(f · a) = am(f) = ϕ(a)m(f). Moreover
m(ϕ) = m(ϕ)(mϕ) so m(ϕ) = 1 and m is a ϕ-mean.

�
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We denote the commutator of A in A′′ with Ac which is defined as follows

Ac = {F ∈ A′′ : a · F = F · a, ∀a ∈ A}.
Lemma 2.3. Let A be a Banach algebra and m ∈ A′′ be a non-zero idempotent. Then in each
of the following cases, there exists ϕ ∈ ∆(A) such that m is a two-sided ϕ-mean:

(1) Â ⊆ Lm and m ∈ Ac;
(2) Â ⊆ Lm ∩Rm.

Proof. (1) Use Lemma 2.2. For (2) Let Â ⊆ Lm ∩ Rm then by Lemma 2.2 there exists

ϕ ∈ ∆(A) such that m is a ϕ-mean. Â ⊆ Rm implies that for each a ∈ A there exists αa ∈
C such that m · a = αam and αa is unique. So there exists ψ ∈ ∆(A) such that m · a =
ψ(a)m and m(ψ) = 1.
If ϕ 6= ψ, since ϕ,ψ ∈ ∆(A) then kerϕ and kerψ are two different maximal ideals in A. So a0 ∈
kerψ exists for which a0 6∈ kerϕ and we can assume ϕ(a0) = 1. Then ψ · a0(b) = ψ(a0)ψb = 0,
(b ∈ A). Also, m is a ϕ-mean and m(ψ) = m(ψ)ϕ(a0) = m(ψ ·a0) = 0, which is a contradiction.
Therefore ϕ = ψ and m is a two-sided ϕ-mean.

�

For a Banach algebra A, Z(A′′, ·) = {m ∈ A′′ : m · n = m × n, for all n ∈ A′′} is called the
center of A′′.

Theorem 2.4. Let A be a Banach algebra. Then:

(1) m ∈ A′′ is a ϕ-mean if and only if m is a non-zero idempotent and Jm is a left ideal in
A′′;

(2) m ∈ Z(A′′, ·) is a two-sided ϕ-mean if and only if m is a non-zero idempotent and Jm is
a two-sided ideal in A′′.

Proof. (1) Let m be a ϕ-mean, then for each f ∈ A′ and (xα)α ⊆ A with m = w∗−lim
α
x̂α

we have

m(f)m = m(m · f) = lim
α
m(f · xα) = lim

α
mfϕ(xα) = m(f)(mϕ) = m(f).

So m is a non-zero idempotent. For n ∈ A′′ and for each f ∈ A′ we have n ·m(f) = mf · n(ϕ).

So n ·m = n(ϕ)m ∈ Jm. For the converse let Jm be a left ideal in A′′ then Â ⊆ Lm and by
Lemma 2.2, ϕ ∈ ∆(A) exists such that m is a ϕ-mean.
(2) Let m be a two-sided ϕ-mean then Jm is a left ideal in A′′ and m is a non-zero idempotent.

For each f ∈ A′ and n ∈ A′′ with n = w∗ − lim
β
b̂β we have

mn(f) = m× n(f) = n(f ·m) = lim
β
f ·m(bβ) = lim

β
m · bβ(f)

= lim
β
ϕ(bβ)(mf) = nϕ ·mf.

So m · n = n(ϕ)m ∈ Jm
For the converse let Jm be a two-sided ideal in A′′. Then by Lemma 2.3, ϕ ∈ ∆(A) exists such

that m is a two-sided ϕ-mean. Also for n ∈ A′′ with n = w∗ − lim
β
b̂β and each f ∈ A′ we have

m× n(f) = n(f ·m) = lim
β
m · bβ(f) = lim

β
bβ ·m(f) = n ·m(f)

= n(ϕ)m(f) = m · n(f)

so m ∈ Z((A′′, ·)) and

m · n(f) = m× n(f) = n(f ·m) = lim
β
f ·m(bβ) = lim

β
m · bβ(f)

= lim
β
ϕ(bβ)m(f) = n(ϕ)m(f).

Afr. J. Pure Appl. Math.
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�

Corollary 2.5. Let A be a Banach algebra and m ∈ A′′ be a non-zero idempotent. Then the
following statements are equivalent:

(1) m is a two-sided ϕ-mean;

(2) Â ⊆ Lm ∩Rm;

(3) m ∈ Ac and Â ⊆ Lm.

Proof. Use Lemma 2.3 and Theorem 2.4.

�

Let I be a closed ideal of a Banach algebra A, then I has the trace extension property
if for each λ ∈ I ′ with a · λ = λ · a and each a ∈ A there exists f ∈ A′ such that f

∣∣
I

= λ and

a · f = f · a (a ∈ A).

Corollary 2.6. Let A be a Banach algebra and m ∈ Z(A′′, ·) be a two-sided ϕ-mean. Then:

(1) Jm has the trace extension property;
(2) A′′ is weakly amenable if and only if A′′/Jm is weakly amenable.

Proof. For (1), use Theorem 2.4. For (2), since Jm has the trace extension property then
A′′/Jm is weakly amenable, see [6]. For the converse by Theorem 2.1 Jm is weakly amenable
and then A′′ is weakly amenable.

�

Corollary 2.7. Let A be a Banach algebra and m be a two-sided ϕ-mean. If H1(A, kerm) = {0},
then A is weakly amenable.

Proof. Let D : A → A′ be a bounded derivation, by Theorem1.2 there exists a bounded net
(uα)α∈I in A such that ϕ(uα) = 1 and ‖uα · a− ϕ(a) · uα‖ → 0.
For each a ∈ A and each α we have

m ◦D(uα · a) = m(Duα) · ϕ(a) +m(D(a)) · ϕ(uα)

= m ◦D(uα)ϕ(a) +m ◦D(a).

Also,

‖m ◦D(a)‖ = ‖(m ◦D)(uα · a− ϕ(a)uα)‖

≤ ‖m‖ ‖D‖
(

lim
α

sup ‖uα · a− ϕ(a)uα‖
)

= 0.

So, for each a ∈ A we have m(Da) = 0 and ImD ⊆ kerm.

�

Remark 1. LetA be a Banach algebra. For ϕ ∈ ∆(A), consider Sϕ = {m ∈ A′′ : m is a ϕ−mean}.
If A is an Arens regular commutative Banach algebra then Sϕ has at most one element. In the
case A admits a ϕ-mean of norm 1, by using the Krein-Milman Theorem (see [13]) Sϕ ∩ A′′[1]
has an extreme point which also is the convex hull of its extreme points.

Remark 2. Let ϕ be the augmentation character(see [4]) on l1(G). If l1(G) is ϕ-amenable then
G is amenable. Since there exists m ∈ (l1(G))′′ such that m(f · a) = ϕ(a)m(f) (f ∈ (l1(G))′

and a ∈ l1(G)). For f ∈ l∞(G), similar the method used in chapter 43 of [4] define f ′ ∈ (l1(G))′

with
f ′(a) =

∑
x∈G

a(x).f(x) (a ∈ l1(G))

Afr. J. Pure Appl. Math.
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then (Tx−1f)′ = f ′(δx) where δx(x) = 1 and δx(a) = 0 (a 6= x) and Txf(a) = f(x−1a) for each
a, x ∈ G. Now, consider ψ ∈ (l∞(G))′ by ψ(Txf) = ψ(f), for each f ∈ l∞(G) and x ∈ G. Let
l∞+ (G) = {g ∈ l∞(G) : g ≥ 0} and for each g ∈ l∞+ (G) take θ(g) = sup{Re(ψ(f)) : f ∈ l∞(G) :
|f | ≤ g}. Then the extension of (θ(1))−1θ to l∞(G) is an invariant mean which means G is
amenable.
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