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Abstract: Microorganisms living inside plants can promote plant growth and health, but their 

genomic and functional diversity remain largely elusive. Here, metagenomics and network 

inference showed that fungal infection of plant roots enriched for Chitinophagaceae and 

Flavobacteriaceae in the root endosphere and boosted expression of chitinase genes and 

various unknown biosynthetic gene clusters encoding the production of nonribosomal 5 

peptides (NRPS) and polyketides (PKS). Following strain-level genome reconstruction, a 

consortium of Chitinophaga and Flavobacterium was designed that consistently suppressed 

fungal root disease. Site-directed mutagenesis then revealed that a novel NRPS-PKS gene 

cluster from Flavobacterium was essential for disease suppression by the endophytic 

consortium. Our results highlight that endophytic root microbiomes harbor a wealth of yet 10 

unknown functional traits that, in concert, can protect the plant inside out. 

 

 

 

 15 

One Sentence Summary: metagenomics-guided microbiome reconstruction 
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Main Text:  

Past and present plant microbiome studies have generated a large amount of sequence data 

and a wealth of (mostly) descriptive information on the diversity and relative abundance of 

different taxonomic groups in the rhizosphere, phyllosphere, spermosphere and endosphere of 5 

a multitude of plant species (1, 2). To date, however, relatively few studies have 

demonstrated the functional importance of microbiomes for specific plant phenotypes, i.e., 

plant growth, development and health (3-9). Furthermore, the molecular and chemical basis 

of the causal relationships between these plant phenotypes and microbiome structure and 

functions are in most cases still unknown. The aim of this study was to investigate the 10 

genomic diversity and functional potential of the endophytic root microbiome in protection of 

plants against fungal infections. To this end, we integrated multiple approaches including 

network inference and metagenomics to identify root endophytic bacterial consortia and 

functional gene clusters associated with a soil that is suppressive to disease caused by 

Rhizoctonia solani, a fungal root pathogen of several plant species, including rice, wheat and 15 

sugar beet. 

Disease-suppressive soils are exceptional ecosystems in which plants are protected from root 

pathogens as a result of antagonistic activities of the root-associated microbiome. Suppressive 

soils have been described for various soil-borne pathogens, including fungi, bacteria, 

oomycetes and nematodes (3, 5, 10-15). Disease suppression can be eliminated by selective 20 

heat treatment and can be transplanted to non-suppressive (conducive) soils, analogous to 

fecal transplants in humans (5, 16). Specific suppression of soils to fungal root pathogens, 

such as R. solani, is induced in field soils by a disease outbreak during continuous cultivation 

of a susceptible host plant (17). Once established, the suppression can dissipate if non-host 

plants are grown but is regained in the presence of the host plant and the specific fungal 25 
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pathogen. Therefore, the three-way interactions between the fungal pathogen, the host plant 

and its root microbiome are key elements of the onset and persistence of specific disease 

suppression. We previously showed that in a soil suppressive to the fungal root pathogen R. 

solani, several bacterial genera inhabiting the rhizosphere of sugar beet, in particular 

Paraburkholderia, Pseudomonas and Streptomyces (5, 18, 19), act as a first line of defense. 5 

To understand what role microorganisms that live within plant root tissues (endophytes) play 

in disease suppression, we conducted a metagenomic analysis of the endosphere of sugar beet 

seedlings grown in field soil suppressive to R. solani and identified the microorganisms 

associated with disease suppression, characterized biosynthetic gene clusters (BGCs) that 

were upregulated during infection, reconstructed synthetic endosphere consortia and finally 10 

made site-directed mutations to test the role of specific BGCs in disease suppression.  

 

Taxonomic diversity and network inference of the endophytic microbiome  

Sugar beet plants were grown in disease-conducive (C) and disease-suppressive (S) soils 

inoculated (or not) with the root pathogen R. solani (Fig. S1). Disease incidence in the 15 

pathogen-inoculated suppressive soil (S+R) was 15-30%, whereas disease incidence in the 

pathogen-inoculated conducive soil (C+R) exceeded 80% (Fig. S1A), typical of our previous 

studies (5, 16). Given the high disease incidence in C+R, there was not enough root material 

left for in-depth microbiome analysis of this condition. The taxonomic diversity and 

functional potential of the root endophytic microbiome of plants grown in the remaining three 20 

soil conditions (C, S, S+R) was investigated after 4 weeks of plant growth. Following 

metagenome sequencing and bioinformatic analyses (Fig. S2, table S1 and S2), taxonomic 

assignment of the microbial cell fraction from the sugar beet endosphere showed that 76.1%, 

10.5% and 0.0065% of the sequence reads corresponded to the domains Bacteria, Eukaryotes 

and Archaea, respectively (Fig. S3, A and B). For the Eukaryotic reads, Constrained Analysis 25 
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of Principal Coordinates (CAP) showed significant differences (PERMANOVA, P < 0.05) 

between the endophytic fungal community composition in C, S and S+R (Fig. S4A). This 

was largely due to a significant increase in Rhizoctonia-related sequence reads in the 

suppressive soil inoculated with R. solani (S+R) (Fig. S4, B and C). Most of the other 

sequence reads could not be reliably assigned to specific fungal phyla. Collectively, these 5 

results indicate that after inoculation into the disease-suppressive soil, R. solani colonized and 

penetrated the plant roots but caused little disease. 

16S rRNA data from the metagenome sequences (Fig. S2) showed that Proteobacteria 

and Bacteroidetes dominated the endophytic bacterial community with ten OTUs spanning 

Pseudomonadaceae (2), Xanthomonadaceae (4), Chitinophagaceae (1), Flavobacteriaceae 10 

(2) and Veillonellaceae (1) (Fig. S5), all of which became enriched in the S+R condition 

compared with the S condition (Fig. 1A). Co-occurrence network analysis revealed increased 

complexity in the S+R condition (Table S3, Fig. S6, A, B and C) compared with C and S 

conditions (Table S3). Highly connected networks, like those in the S+R samples, can occur 

when microbiota face environmental perturbation, such as pathogen invasion (20). 15 

Interestingly, 80% of the interacting nodes in the S+R network belonged to Chitinophaga, 

Flavobacterium and Pseudomonas spp. (Table S4). When sequence reads from the 

Bacteroidetes were removed from the datasets, the endophytic signal from the C and S soils 

were indistinguishable (Fig. S7, A and B), once again indicating an association of the 

Bacteroidetes genera Chitinophaga and Flavobacterium with the disease-suppressive 20 

phenotype.  

Functional diversity of the endophytic microbiome 

Fifty to seventy percent of the genes retrieved from the metagenome data were assigned to a 

known function (Fig. S3, C, D and E). For the other genes, grouping annotations indicated 

56,175 taxa-associated functions of which 402 functions were significantly enriched in the 25 
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endophytic bacterial community of plants grown in the S soil compared with plants in the C 

soil (FDR < 0.1; Fig. S8, B and C). In the S+R condition, this proportion of functional 

enrichment increased over ten-fold (4,443) (FDR < 0.1; Fig. 1B). These genes belonged 

mainly to pathways classified as ‘carbohydrate transport and metabolism’ and ‘signal 

transduction mechanisms’. Several endophytic bacterial families, including 5 

Chitinophagaceae and Flavobacteriaceae (Bacteroidetes), Pseudomonadaceae and 

Xanthomonadaceae (Gammaproteobacteria), Hyphomicrobiaceae and Rhizobiaceae 

(Alphaproteobacteria), and Burkholderiaceae (Betaproteobacteria) were specifically 

associated with the functional enrichment we observed (Fig. 1B, C and Fig. S9A). The 

majority of the overrepresented genes in S+R (3,138 genes of 4,443) were associated with 10 

Chitinophagaceae and Flavobacteriaceae (Fig. 1B, Fig. S9A). When we used a more 

stringent significance level of P<0.05, 2,063 of 56,175 taxa-associated functions were 

overrepresented with 461 functions associated mainly with Chitinophagaceae and 

Flavobacteriaceae. Cumulative differential abundance analyses of all Bacteroidetes’ genes 

between samples highlighted that genes from COG category Q (secondary metabolites 15 

biosynthesis, transport, and catabolism) were among the most differentially abundant 

between S+R and S, while genes from category G (carbohydrate transport and metabolism) 

were among the most differentially abundant between S and C (Fig. 1C). 

 For more detailed resolution of the specific functions associated with COGs G and Q, 

we searched for carbohydrate-active enzymes and secondary metabolite biosynthetic gene 20 

clusters within the metagenome sequences using dbCAN (21, 22) and antiSMASH (23), 

respectively. Using dbCAN we were able to annotate 1,822 genes in the endophytic 

metagenome with glycoside hydrolase (GH), glycosyltransferase (GT), polysaccharide lyase 

(PL), and carbohydrate esterase (CE) domains as well as non-catalytic carbohydrate-binding 

modules (CBMs). Because many of these domains are evolutionary related and have related 25 
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functionalities, we mapped the domain diversity in a protein family similarity network using 

the hhsearch algorithm (24). Glycoside hydrolases and glycosyltransferases were more 

abundant in the S+R endophytic microbiome and correlated with disease suppression (Fig. 

2A, Fig. S9, B and C). Three endophyte families (Chitinophagaceae, Burkholderiaceae, 

Xanthomonadaceae) showed statistically significant differences in CAzyme composition 5 

between S+R and S (FDR < 0.1, Fig. 2A, Fig. S9, A and B). Further, we found that 

Chitinophagaceae harbored several enzymes with domains associated with fungal cell wall 

degradation, such as chitinases, beta-glucanases, endoglucanases (Fig. 2A), and also 

possessed de-branching enzymes, including α-1,6-mannanase and α-L-rhamnosidase. 

Burkholderiaceae and Xanthomonadaceae families (Fig. S9B, C) also contributed two 10 

chitinase domains and three other enzymes involved in chitin degradation, including chitin 

deacetylase and chitosanase. Only five domains were shared between Chitinophagaceae, 

Burkholderiaceae and Xanthomonadaceae (Fig. 2B), indicating limited functional 

redundancy among these endophytes for this trait. The enrichment of genes encoding chitin-

degrading enzymes points to a role in disease suppression for these endophytes (25).  15 

Bacterial genomes contain a large diversity of biosynthetic gene clusters (BGCs), the 

vast majority of which have not yet been linked to specific molecules or functions (5, 26-28). 

Our antiSMASH analysis for secondary metabolites revealed a total of 730 BGCs associated 

with the biosynthesis of nonribosomal peptides, polyketides, terpenes, aryl polyenes, 

ribosomally synthesized and post-translationally modified peptides (RiPPs), phosphonates, 20 

phenazines, and siderophores (Fig. 3A, figs. S10, 11, 12). Of these 730 BGCs, only 12 BGCs 

have previously been described and the chemical structure of their products elucidated (Table 

S5, Fig. S11). Among these were the BGCs for thanamycin and brabantamide, which are two 

NRPS-derived products previously detected in the rhizosphere microbiome of plants grown 

in Rhizoctonia-suppressive soil (5, 26, 29). For the other 718 BGCs, no near or exact matches 25 
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were found for their genetic architecture and predicted products in the MIBiG repository (27). 

Of the BGCs detected, several proteobacterial RiPPs and NRPSs were noted (Fig. 3C), as 

well as NRPS and aryl polyene clusters originating from Bacteroidetes (mainly 

Flavobacterium and Chitinophaga [Fig. 3D]) and a larger proportion of NRPS clusters from a 

group of unclassified phyla (Fig. 3E). Altogether, 117 BGCs were significantly 5 

overrepresented (two-tailed Welch's T-test, P <0.1) in the endosphere under the S+R 

conditions with 34 BGCs belonging to Bacteroidetes (Fig. 3A-F, Fig. S10, S11and S12). 

Notably, these did not include the thanamycin and brabantamide BGCs identified previously 

for the disease-suppressive Pseudomonas spp. from the rhizosphere (5, 29). For the 

Bacteroidetes species, 10 NRPS gene clusters out of the 117 were overrepresented under S+R 10 

conditions and none of these had a match in antiSMASH with gene clusters from MIBiG.  

De novo assembly of endophytic bacterial genomes 

From the 730 BGCs identified in the metagenome by antiSMASH, 157 were found in a set of 

25 metagenome-assembled genomes (MAGs) we reconstructed (Table S6, Fig. S13 and S14). 

The MAGs, housekeeping genes and identified BGCs were subsequently used to generate 15 

specific primer sets for transcriptome analyses and to associate the BGCs to isolates in the 

bacterial endophyte collection.  

The initial collection of 935 bacterial endophyte isolates (Fig. S1) were taxonomically 

characterized by 16S rRNA sequencing (Fig. S15, A and B, Table S7), revealing eight 

different genera, mostly represented by Bacteroidetes and Gammaproteobacteria. Although 20 

no BGCs associated with Chitinophaga or Pseudomonas spp. (Table S8) were detected, four 

BCGs (298, 396, 471 and 592) were found in the endophytic Flavobacterium isolates 

obtained from the S+R condition. Three of these encoded an NRPS (BCGs 396, 471, 592) 

and the fourth a hybrid NRPS-PKS gene cluster (BGC298, Fig. 4A). A similar approach 

confirmed the presence of glycosyl hydrolase (GH18) genes in three endophytic 25 
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Chitinophaga isolates obtained from the S+R condition (Fig. 2A). Subsequent in vitro assays 

with the bacterial isolate collection showed that the three Chitinophaga isolates also had 

extracellular chitinolytic activity.  

Subsequent genome sequencing of the three Chitinophaga and four Flavobacterium 

isolates showed >99% similarity among the isolates within each genus (table S9, Fig. S15C 5 

and S16A). The isolate genomes also clustered with MAGs assigned to each of these genera 

(Fig. S15B and C), confirming that they correspond to taxa abundant in the microbiome. For 

the key BGCs, no signs of metagenome mis-assemblies were identified based on comparisons 

with the complete genome sequences of the Bacteroidetes isolates (Fig. S16B and C, and 

S17A, B and C).  10 

Reconstruction and functional analysis of disease-suppressive consortia  

We selected the seven sequenced Bacteroidetes isolates for root colonization assays and 

BGC-transcript analysis. All isolates colonized the rhizosphere and the root endosphere of 

sugar beet seedlings (Fig. S18 and S19). Transcriptional analysis showed that chitinase 

expression was significantly (P < 0.05) higher in the consortium colonizing the rhizosphere 15 

and endosphere compartments inoculated with the fungal pathogen (Fig. 4B and C, Fig. S20). 

Of the four Flavobacterium gene clusters, BGC298 was expressed at significantly (P < 0.05) 

higher levels in the endosphere than in the rhizosphere when the plant roots were challenged 

with the fungal pathogen R. solani (Fig. 4C). This BGC was consistently assembled in all 

four Flavobacterium genomes and in a MAG (Fig. S16B) and showed no match with known 20 

BGCs in MIBiG (Fig. S17).   

The central place of Flavobacterium and Chitinophaga in the functional network of 

plants grown in the disease suppressive soil, their ability to colonize the endosphere and the 

fact that expression of BGC298 and chitinase genes in the synthetic consortium are induced 

by the fungal pathogen indicate a role in R. solani-disease suppression. To test this 25 
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hypothesis, three independent bioassays showed that the consortium of Chitinophaga and 

Flavobacterium conferred more significant and more consistent protection against fungal root 

infection than the individual consortium members (Fig. 4D, E and F, and Fig. S21A, B and 

C). Even when single isolates showed little benefit against disease, consortia always showed 

a greater degree of protection (Fig. 4D-F, Fig. S21A-C). The apparent ‘minimal’ consortium 5 

to reconstitute the plant phenotype consisted of one Chitinophaga isolate and one 

Flavobacterium isolate (syncom-2) as this consortium showed the same level of disease 

control observed for the seven-member consortium (syncom-7; Fig. 4F).  

To confirm the role of the Flavobacterium BGC298 in the disease-suppressive 

activity, we developed a SpyCas9-mediated system for introduction of double-stranded DNA 10 

breaks in Flavobacterium sp. 98. We obtained two independent BGC298 mutants (table S10, 

11 and 12, and Fig. S22A, B, C and D), for which the PKS gene deletion was verified by 

Sanger sequencing with specific primers (Fig. S22D). The two mutants colonized the 

rhizosphere and endosphere to the same extent as wild type Flavobacterium sp. 98 when 

introduced alone or with Chitinophaga sp. 94 (Table S13). When the two independent 15 

BGC298 mutants were tested in the disease bioassay, the mutation reduced disease-

suppressive activity of Fl98 alone and when paired with the Chitinophaga isolate (Fig. 4F).  

 

Conclusions 

In our previous studies on soils suppressive to fungal root diseases, we have shown that 20 

rhizosphere bacteria act as first line of defense (5-7, 10). If the pathogen breaks through this 

first line of defense, it will encounter the basal and induced defense mechanisms of the plant 

(30). Here, we show that in this second stage of pathogen invasion of the plant roots, the 

endophytic microbiome can provide an additional layer of protection. Our experiments 

showed that on pathogen invasion, members of the Chitinophagaceae and Flavobacteriaceae 25 
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became enriched within the plant endosphere and showed enhanced enzymatic activities 

associated with fungal cell wall degradation, as well as secondary metabolite biosynthesis 

encoded by NRPSs and PKSs. Following de novo assembly of 25 bacterial genomes from 

metagenome sequences we were able to reconstruct a synthetic community (syncom) of 

Flavobacterium and Chitinophaga that provided disease protection. Site-directed 5 

mutagenesis further confirmed the contribution of BGC298 in Flavobacterium to this 

phenotype. Where these two bacterial genera are localized inside the root tissue and how they 

interact at the molecular level in the endosphere is not yet known. Possibly, chitinase-

generated chitooligosaccharides induce expression of the Flavobacterium BGC298. Whether 

BCG298 encodes a metabolite that exerts direct antifungal activity or acts as a regulator of 10 

other protective traits is not yet known. Another consideration is that the consortium may 

have indirect effects via induction of local or systemic resistance in the roots. The results of 

this study highlight the wealth of yet unknown microbial genera and functional traits in the 

endophytic root microbiome. Adopting metagenome-guided analyses and network inference 

was successful in pinpointing taxa and functions for targeted design of microbial consortia to 15 

attain a specific microbiome-associated plant phenotype. 
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Fig. 1. Pathogen-induced changes in endophytic microbiome diversity and functions. 

Differential abundance of endophytic bacterial communities from plants grown in 

suppressive soil (S) or in suppressive soil inoculated with the fungal root pathogen R. solani 5 

(S+R). (A) Taxonomic differences are based on 16S rRNA sequences extracted from the 

metagenome. The largest circles represent Phylum level, the inner circles represent Class, 

Family and Genus. (B) Functional differences are based on the metagenome sequence data 

and assigned to taxonomic groups. The smallest circles represent the COG categories groups. 

The circle sizes represent the mean read relative abundance of the differentially abundant 10 

taxa and functions. Bacterial taxa or functions that are significantly enriched (FDR<0.1) in 
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the comparison between S and S+R are indicated in green for S and in blue for S+R; non-

significant taxa and functions are indicated in yellow. (C) Strip plot depicting the average 

abundance ratios of all genes from Bacteroidetes belonging to core COG functional 

categories that contain significantly enriched genes in S+R compared with S, and in S 

compared with C. Categories are sorted by S+R/S and S/C ratios. Each COG type has been 5 

abbreviated as follows: C: energy production and conversion, D: cell cycle control, cell 

division, and chromosome partitioning, E: amino acid transport and metabolism, F: 

nucleotide transport and metabolism, G: carbohydrate transport and metabolism, H: 

coenzyme transport and metabolism, I: lipid transport and metabolism, J: translation, 

ribosomal structure, and biogenesis, K: Transcription, L: replication, recombination, and 10 

repair, M: cell wall/membrane/envelope biogenesis, O: post-translational modification, 

protein turnover, and chaperones, P: inorganic ion transport and metabolism, Q: secondary 

metabolites biosynthesis, transport, and catabolism, T: signal transduction mechanisms, U: 

intracellular trafficking, secretion, and vesicular transport, V: defense mechanisms, W: 

extracellular structures. 15 
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Fig. 2. Diversity and distribution of carbohydrate-active enzymes in the endophytic 

microbiome (A) similarity network of known and putative HMM domains of enzymes 

involved in carbohydrate metabolism (CAzymes). From the endophytic metagenome of 

plants grown in suppressive soil (S) or in suppressive soil inoculated with the fungal root 5 

pathogen R. solani (S+R), a total of 1,822 genes were annotated as CAzymes. Domain-

domain distances and their relatedness are shown in the network. Nodes were grouped into 

five functional classes: glycoside hydrolases (GH, blue), glycosyltransferases (GTs, orange), 

polysaccharide lyases (PL, purple), carbohydrate esterases (CE, green) and the non-catalytic 

carbohydrate-binding modules (CBM, red). Unknown domains or domains for which the 10 

function has not been experimentally validated are shown in yellow. Squared nodes represent 

enzymes that are significantly overrepresented (FDR < 0.1) in S+R compared with S, and 

taxonomically assigned to the Chitinophagaceae. Enzymes significantly overrepresented in 

S+R and taxonomically classified as Burkholderiaceae and Xanthomonadaceae are shown in 

Fig. S9B and C, respectively. (B) Venn diagram with different CAzymes annotated for three 15 

endophytic bacterial families enriched in S+R, i.e. Burkholderiaceae, Chitinophagaceae and 

Xanthomonadaceae. For each of the CAzymes, the Pfam number is shown between brackets. 
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The Venn diagram shows the number of domains detected exclusively for each bacterial 

family and the domains shared by these endophytic bacterial families.  

 

Fig. 3. Diversity and distribution of biosynthetic gene clusters (BGCs) in the endophytic 

microbiome. (A) Sequence similarity network (constructed with BiG-SCAPE [69], 5 

threshold: 0.8) of the different classes of BGCs detected in the endophytic microbiome. 

Taxonomic assignment and BGC class annotation of the nodes are shown. Nodes with less 



 

16 
 

than three connections were removed - original network with all nodes can be found in Fig. 

S10. Node colors represent statistical significance based on a Welch test (FDR < 0.1): yellow 

nodes are non-significant and blue nodes are significantly overrepresented in S+R condition. 

(B) Number of overrepresented BGCs (two-tailed Welch's T-test, P <0.1) detected by the 

antiSMASH and Clusterfinder algorithms for the different bacterial phyla in the endophytic 5 

root microbiome of plants grown in conducive (C), suppressive (S) and suppressive soils 

challenged with the fungal pathogen R. solani (S+R). (C, D and E) Number and type of 

BGCs assigned to Proteobacteria, Bacteroidetes and unclassified bacterial phyla, respectively, 

that were significantly (two-tailed Welch's T-test, P <0.1) more enriched in S+R. (F) 

Clustered heat map of relative abundances (CSS-normalized RPKM values) of the 33 NRPS 10 

gene clusters that were significantly overrepresented in the different replicate samples of S or 

S+R versus C. The NRPS cluster number and the corresponding taxonomic assignment are 

shown on the right side of the panel.  
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Fig. 4. Transcriptional and functional analyses of disease-suppressive consortia. (A) 

Genetic organization of BGCs 298, 396, 471 and 592 identified in both the Flavobacterium 

MAG nbed44b64, and in the genome sequences of the four endophytic Flavobacterium 

isolates. Shown below the nonribosomal peptide synthetase (NRPS) and polyketide synthase 5 

(PKS) genes are the module and domain organizations of the encoded proteins. The domains 

are labeled as: C, condensation; A, adenylation; KS, ketosynthase; AT, acyltransferase; and 

TE, thioesterase. Predicted substrates of the NRPS and PKS modules in BGC298 are glycine, 

malonyl-CoA and again glycine. (B and C) qPCR-based analysis of the expression of 

BGC298, BGC396, BGC471, BGC592, and chitinase genes (GH18) in the rhizosphere and 10 

endosphere of sugar beet seedlings treated with the synthetic endophytic consortium of 

Chitinophaga and Flavobacterium isolates (syncom). LogRQ represents the gene expression 

levels by relative quantification scores: values below 0 indicate lower expression of the BGC 
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relative to that of the housekeeping gene (glyA) used for data normalization. Bars represent 

the average of 3-5 biological replicates per treatment and error bars indicate the standard 

error of the mean. Different letters indicate statistically significant differences between 

treatments as determined by one-way ANOVA with post-hoc Tukey HSD (P < 0.05). (D) and 

(E) Rhizoctonia damping-off disease incidence of sugar beet seedlings treated with single 5 

Chitinophaga (Ch93, 94, 95) and Flavobacterium (Fl96, 97,98 and 5B) isolates and with a 

consortium of all seven endophytic isolates (synthetic community, syncom 7), and (F) single 

Chitinophaga (Ch94), Flavobacterium (Fl98) isolates, two independent Fl98-mutants (Fl98-1 

and Fl98-2) with a deletion in BGC298, syncom 7 and the consortium of Chitinophaga sp. 94 

and Flavobacterium sp. 98 (syncom 2). Single isolates and the two syncoms were applied at 10 

an initial density of 107 CFU g-1 of Rhizoctonia-conducive field soil. Bars represent the 

average of 4-8 biological replicates per treatment and error bars represent the standard error 

of the mean. Disease incidence was scored 21- 28 days after R. solani inoculation. Different 

letters indicate statistically significant differences between treatments as determined by one-

way ANOVA with post-hoc Tukey HSD (P < 0.05). Note: for Fig. 4B-F, box plots with the 15 

individual data of each replicate are provided in Figures S20 and S21. 
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