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ONCE UPON A TIME...
It is in the nature of humans to wonder and try to make sense off everything they 
see and all things they encounter (Bod, 2019). Already since the start of humankind, 
humans have been observing, describing, and recording patterns in the natural 
world around them. 500.000 years ago, Homo erectus scratched a geometric pattern 
on a shell (Bod, 2019), of which the meaning is unclear. 40.000 years ago, humans 
recorded the lunar cycle by carving stripes of different lengths on a mammoth tusk. 
The grouping of stones in a circle, attributed to Neolithic communities tracking 
the summer and winter equinox, is another fascinating example. For instance 
Stonehenge, and many more of these stone groupings, scattered around the British 
landscape. 

EVER SINCE DARWIN
i.a. Aristotle, Goethe, de Candolle, Cuvier, L’Héritier have all contributed to our 
understanding of species, morphology, and nature in a large way (Wheeler, 2012), 
and Linnaeus already started to systematically order all the natural diversity known 
(Linnaeus, 1758). But the person in whose work pattern recognition and interpretation 
all came together was Darwin who saw the underlying patterns and formulated his 
theory of the process of evolution and natural selection (Darwin, 1859). His theory 
is well illustrated by the well-known example of the Galápagos finches, whereby 
every island is occupied by a different species of passerine bird with a differently 
shaped beak that is adapted to the food available on the island (Darwin, 1836; 
Lack, 1947, 1940; Petren et al., 1999; Ponting et al., 2013). Darwin’s ideas caused 
a paradigm shift in the way we look at the world  (Berra, 2008). Although ‘standing 
on the shoulders of giants’, ever since Darwin’s On the Origin of Species (Darwin, 
1859) researchers have been seized by the tremendous variety in shape among 
living organisms (i.a Briggs and Walters, 2016; Endler, 1977; Tremblay et al., 2005; 
Winemiller, 1990). 

SHAPE
But what is shape? Mathematically, shape is defined as what is left when we subtract 
the size component from form (Goodall, 1991; Klingenberg, 2016; Zelditch, 2012). 
In other words, shape is the true variation in morphological parts, irrespective of the 
size of the individuals studied (Klingenberg, 2016). There is tremendous variation 
in shape within and among all living organisms that have ever existed. Birds and 
flowers are excellent examples of clades that are able to utilize and showcase their 
morphological potential. 

The variation in shape within a clade is captured in what is called the morphospace. 
The morphospace encompasses all known shapes of species within a clade (or, for 
that matter, in any group of individuals) and represents the realized morphological 
diversity that has evolved (Lowery and Fraass, 2019). When reconstructing the 
morphospace of a clade, a coherent picture of shape variation is formed. This allows 
the exploration of possible avenues of change and how different components of 
shape may be correlated (Whibley et al., 2006). This can also help give insight into 
how various shapes have evolved, as in the case of Darwin’s finches where beak 
shape is a direct adaptation for food availability. Or the way bivalves are shaped 
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in order to cope with different beach types (McLahlan et al., 1995). However, as 
has been pointed out in the past, one should be cautious when attributing such 
direct cause – effect relations to potential drivers of shape (Gould and Lewontin, 
1979; Prum, 2012). Not everything has to be adaptive, as has never been Darwin’s 
intention to convey (Gould and Lewontin, 1979; Prum, 2012).

Sometimes, a part of the potential morphospace has not been realized by the clade 
due to several reasons. First, the non-sampled morphospace is biologically not 
possible (a ‘forbidden area’). An example is given in foraminiferal shells whereby in 
a forbidden area the shells chambers did not touch (Tyszka, 2006). Second, it might 
be the case that species have gone extinct that once occupied the now empty 
part of the morphospace. For instance the hunt for the missing shape in human 
evolution has long been thought to solve the evolutionary gap between great 
apes and Hominoids (Johanson et al., 1990). A major influence on these ‘gaps’ are 
mass extinction events whereby abruptly an enormous amount of shape variation 
is wiped out and only a limited range is left over (Gould, 1990; Lowery and Fraass, 
2019; Raup, 1994, 1986). Following from these extinctions, it might be the case that 
the clade has not yet ‘recolonised’ the empty part of the morphospace. The shape 
variation of the species in this clade is possible, but there has not yet been adequate 
pressure on the clade to mine this potential shape variation, or the genetic variation 
in order to ‘get there’ has been lost. Under influence of outside pressure, shape 
might change and this could lead to the formation of new species.

SPECIATION IN PLANTS
For flowering plants, there are multiple 
potential influences and drivers of 
speciation (Figure 1). For example, 
phylogenetic ‘canalisation’ means that 
certain clades will never be able to 
evolve certain morphologies because 
of genetic constraints, i.e. a species is 
part of a genomic make-up and cannot 
escape even over long evolutionary 
time periods. On the other hand, shifts 
in pollinator pressure can lead to rapid 
speciation. Pollinator-induced changes 
are often highly dynamic and often 
associated with climatic changes.

Phylogeny
Flowering species have to ‘deal’ with relicts from the past and are thus constrained 
by their phylogenetic placement. Evolutionary changes that at one time were 
preferable to increase fitness, might in the present circumstances turn out to no 
longer be beneficial. A curious example of this is the section Otidia in the genus 
Pelargonium. Species in this section all have nectar spurs that are typical for 
Pelargonium and must have developed in deeper evolutionary time. On the other 
hand, characteristic for this section are the ‘ears’ on the petals which are thought 

Phylogeny
Edaphics

Pollination

Floral 
shape

Speciation

Figure 1. A conceptual visualisation of how floral 
evolution is driven, and how it ties in with speciation.
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to close off the nectar spur. Why it is beneficial for these species to deny their 
pollinators access to the spur is not known, but for some reason a more recent 
evolutionary event has triggered the development of these structures which seems 
to give the species in this clade some advantage. 

Pollinator speciation
The relation between a flower and its pollinator is a special one. Darwin already 
proposed that the floral characteristics of a plant are shaped by their interaction 
with pollinators (Darwin, 1877a, 1877b). Since then, pollination biologists have 
categorised sets of floral traits shaped by pollinator-driven selection into pollinator 
syndromes (Faegri and van der Pijl, 2013). The idea being that a certain pollinator 
group has a specialised preference for a certain set of floral traits collectively 
referred to as a pollinator syndrome. Therefore, plants sharing a pollinator 
syndrome will be pollinated by the same set of pollinators and are referred to as 
‘guilds’  (Faegri and van der Pijl, 2013; Fenster et al., 2004; Schiestl and Johnson, 
2013). An example of this is the bombyliid fly Megapalpus capensis (characterised 
by a fairly short proboscid) which is known to pollinate i.a. Gorteria (Asteraceae), 
Ursinia (Asteraceae), Dimorphotheca (Asteraceae), and a number of Pelargonium 
species. All these species are characterised by dark ‘eye spots’ on their petals that 
resemble female Megapalpus flies (Jager and Ellis, 2017; Johnson, 2010; Johnson 
and Midgley, 1997; Röschenbleck et al., 2014; Struck, 1997), making this guild one 
of the few examples of sexual deception outside of the Orchids (Ellis and Johnson, 
2010). Other examples of specialised preferences of pollinators groups are those 
attracted by specific scents (Johnson and Hobbhahn, 2010; Shuttleworth and 
Johnson, 2010; van der Niet et al., 2010), flower colours (Newman et al., 2014), and 
nectar guide patterns (Medel et al., 2003; Schiestl and Johnson, 2013). 

Spur pollination
In contrast with generalist pollination syndromes, spur pollination is specialised 
in that it spatially separates pollination reward (the nectar) from the corolla. This 
is considered to result in a Darwinian ‘arms-race’ between plants and pollinators, 
increasing effective pollen transfer, and, ultimately, fitness for both (Whittall and 
Hodges, 2007). It has been shown for Aquilegia that there is an evolutionary trend 
towards longer nectar spurs (Whittall and Hodges, 2007). This trend could be 
explained by pollinator fidelity (Kay and Sargent, 2009). Plants with longer nectar 
spurs will not be pollinated by insects with shorter proboscids because they are not 
able to reach the nectar reward at the base of the nectar spur. Thus, the flowers 
will solely be pollinated by insects that are able to reach the reward. Therefore, 
by elongating their spur, flowers apply a ‘pollinator-filter’ keeping often more 
generalist pollinators out (Struck, 1997) and effectively forming a relationship with 
a more specialised pollinator that gives a higher pollination efficiency (Kay and 
Sargent, 2009). Hodges (1997) compared the twelve known ‘spurred’ Angiosperm 
clades with their unspurred sister-clades and concluded that floral nectar spurs can 
be considered as evolutionary key innovation, as spurred clades mostly are more 
species rich than their unspurred sister-clades. 
A unique type of spur-pollination is found in Pelargonium that has a sepal-spur 
growing adnate to the pedicel, not found in its smaller sister-clade (i.e. the remainder 
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of Geraniaceae). Bakker et al. (2005), inferred spur length evolution in Pelargonium 
and concluded bees to have been ancestral and that three switches towards longer-
tongued pollinators had occurred during Pelargonium clade proliferation. Whereas 
an overall trend towards longer spurs was found, speciation rate and spur lengths 
are negatively correlated, i.e. highly specialised flowers are found in smaller clades 
(Ringelberg, 2012). This is the opposite trend as was observed in most other 
angiosperm clades (Hodges, 1997). 

PELARGONIUM, A BUDDING MODELSYSTEM
I have touched upon the genus Pelargonium above, giving a few concrete examples 
of how evolution has proceeded. In this section, I give an overview of the general 
research on Pelargonium, providing background information on the genus. We 
are aware botanically speaking Pelargonium does not possess a ‘nectar spur’ (Tsai 
et al., 2018) but rather, ontogenetically the nectar tube is an outgrowth of the 
receptacle. However, given the functional similarity between the structures as well 
as the frequent use of the word ‘spur’ and ‘spur pollination’ in literature regarding 
Pelargonium, we here use these terms as substitutes. In addition, when using the 
term ‘spur evolution’ we mean ‘spur-like evolution’.

Taxonomy
In the seventeenth century, Pelargonium species where discovered around the Cape 
of Good Hope during voyages of the Dutch East India Company (VOC, Miller 2002). 
Linnaeus, after having been sent material of Pelargonium triste (the only species 
that managed to survive the journey to Europe due to its tuberous roots), assigned 
it to the genus Geranium within the Geraniaceae in 1753. The Dutch botanists 
Johannes and Nicolaas Burman determined this classification was incorrect, and the 
species occurring around the South African Cape should form a genus separate of 
Geranium. This view was shared by the Frenchman Charles Louis L’Héritier, in whose 
manuscript the names Pelargonium, Geranium and Erodium were established 
between 1787-1788 (Miller, 2002). Unfortunately, L’Héritier was killed in the French 
revolution before he was able to publish his manuscript but it was incorporated in 
the publication of Aiton (1789). 

Pelargonium has subsequently become an extremely popular clade for plant 
breeders for over a century (James, 2002) and it is a ubiquitous  component of  
flower boxes around the world.  Thus, there has been and continues to be a need 
for correct descriptions and classification of the species. Over the years, a general 
consensus established by the Pelargonium research community concerning the 
taxonomic units. After L’Héritier described Pelargonium, many new species where 
discovered and described by various collectors exploring the Cape flora. The 
first serious taxonomic classification was done by Sweet in 1820, who created ten 
new genera related to Pelargonium. Not long after, De Candolle demoted these 
to section level within the genus (Miller, 2002). Growth form was the foundation 
of his infrageneric classification (Miller, 2002; Röschenbleck et al., 2014). Other 
classifications followed based on ecological parameters, morphology, and karyology 
(Miller, 2002; Röschenbleck et al., 2014). The most recent classification was by 
Röschenbleck, who recognised sixteen sections based on molecular phylogenetic 
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analyses (Röschenbleck et al., 2014). Currently ~280 taxa (at varying taxonomic 
levels) are accepted for Pelargonium (Bakker et al., 2005; Röschenbleck et al., 2014; 
Weng et al., 2012) with continual changes and additions (Manning et al., 2015; 
Manning and le Roux, 2016; Marais, 2017, 2016).

Overall morphology
The genus Pelargonium is sister to all other genera within the Geraniaceae: Erodium 
L’Héritier in Aiton (Aiton, 1789), Geranium Linnaeus (Linnaeus, 1799), Monsonia 
Linnaeus (Linnaeus, 1799), and California  (Aldasoro et al., 2001; Fiz et al., 2008; 
Price and Palmer, 1993). Morphologically, Pelargonium is distinguished from the 
rest of the family by having a nectar spur that is adnate to the pedicel, zygomorphic 
flowers, and a hypanthium (Albers and van der Walt, 2007; Röschenbleck et al., 
2014).
The ~280 species in the genus are morphologically grouped in sixteen sections 
according to Röschenbleck (Röschenbleck et al., 2014). Among these sections, 
there is extensive morphological variation not only in flowers, but also in growth 
form (Albers and van der Walt, 2007; Bakker et al, 1999b). For example, the sections 
Peristera and Campylia form large herbaceous structures, while the sections 
Myrrhidium, Jenkinsona, and Chorisma form woody shrubs (Jones et al., 2009). 
Pelargonium also displays a wide-range of leaf morphology (Figure 2), which is not 

Figure 2. Sample of variety in leaf shape in Pelargonium. After Nicotra et al. (2011).
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constrained by environmental conditions or relationships (Jones et al., 2009; Nicotra 
et al., 2011). In addition, there is a wide variety of scents reported for numerous 
species, ranging from spicy-clover like (i.a P. triste and P. lobatum; Röschenbleck et 
al., 2014) to heave rose scented (as in P. graveolens; Boukhris et al., 2013).

Floral morphology and pollination
While most flowers of Geraniaceae are actinomorphic, almost all Pelargonium 
species have generally zygomorphic flowers which are arranged in inflorescences 
(Figure 3; Albers and van der Walt, 2007). Each flower usually consists of five petals 
and five sepals which are arranged as two posterior and three anterior petals. The 
two posterior petals are most often clearly distinguishable from the other three; 
be it in size, colour, or by petal markings. The variation in petal copy number 
that occurs in Pelargonium is present in the number of anterior petals. In some 
species (P. tetragonum.), the middle anterior petal is largely reduced, giving the 
illusion the petal is absent. In other species the petal actually is not present. This 
variation in petal copy number can occur within a species and even within one 
plant (i.a. P. caucalifolium and P. myrrhifolium). The orientation of the petals also 
varies and ranges from highly zygomorphic (P. fulgidum) to almost actinomorphic 
(P. cotyledonis). Also, the shape of the petals is highly variable: from slender and 
elongated (P. paniculatum) to almost round (P. inquinans).

Figure 3. Sample of variety in floral shape in Pelargonium. Top row: (Left) P. lobatum (15204363); (middle) 
P. candicans (38062357); (right) P. fulgidum (24075355). Bottom row: (Left) P. myrrhifolium (36584104); 
(middle) P. australe (4269162); (right) P. asarifolium (14175021). Source:www.inaturalist.org.
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Pelargonium is well-known for its brightly coloured flowers and it is no surprise flower 
colour is an important target for plant breeding (Forkmann, 1991). In Pelargonium, 
especially red or pink coloured flowers are common, while yellow and blue flowers 
are rare (Sukhumpinij et al., 2012). The colour  is due to the accumulation of the 
anthocyanin pelargonidin (named after Pelargonium; Forkmann, 1991; Rausher, 
2008). Colour is also affected by the accumulation of betalains and carotenoids in in 
different ratios and assemblies. The colour of the pigments is effected by cellular pH 
of the petals, since some of the compounds display slightly different colours under 
a pH gradient (Mitchell et al., 1998). An example of a rare lightly yellow coloured 
Pelargonium species is P. quinquelobatum (Sukhumpinij et al., 2012). 

Pelargonium essential oils and compounds are widely used for commercial purposes 
(Blerot et al., 2015). In the cosmetics industry, so called ‘Rose scented’ Pelargonium 
are used in soaps and perfumes (Bendahmane et al., 2013). In pharmaceutical 
research, Pelargonium has been in use as a model system. Based on its use as a 
traditional medicine, Pelargonium has been found to contain many compounds that 
are antimicrobial (Boukhris et al., 2013; Lis-Balchin et al., 1998a; Lis-Balchin and 
Deans, 1996; Mativandlela et al., 2006) and antibacterial in particular (Ghannadi et 
al., 2012; Kayser and Kolodziej, 1997; Kolodziej et al., 2003; Lewu et al., 2007; Lis-
Balchin et al., 1998b). In addition, P. sidoides has been proposed as a candidate for 
anti-HIV therapy (Helfer et al., 2014).

The nectar spur is a distinctive feature in Pelargonium. Spurs are not common 
in angiosperms but are present in for example Aquilegia (Ranunculaceae), 
Tropaeolaceae and Orchidaceae (Weberling, 1992; Whittall and Hodges, 2007). 
The nectar spur is an outgrowth of floral parts (usually petals), which is formed into 
a hollow tube (Endress, 2001; Hodges and Arnold, 1995). In Pelargonium, the spur 
is formed by one of the posterior sepals (Miller, 2002). Spurs are a way to increase 
the distance between the flower show and reward apparatus. This is critical for 
controlling the type of pollinator that is able to reach the reward. They therefore 
are an important component of reproductive isolation and thus speciation (Hodges 
and Arnold, 1995). In most cases, for example in Aquilegia, the nectar spurs are 
quite prominent. In Pelargonium however, the spur is much less obvious by being 
adnate with the pedicel of the flower (Hodges, 1997; Hodges and Arnold, 1995; 
but see Tsai et al., 2018). Often, spurs contain nectar which doesn’t have to be 
produced within the spur itself (Endress, 2001; Struck and Van der Walt, 1996), but 
in Pelargonium nectar is produced in the hypanthium which is fused with the pedicel 
at the base of the spur (Miller, 2002). The length of the spur relative to the pedicel 
is often used as a way to distinguish between species (Miller, 2002).

The combination of reward and show in Pelargonium is important for pollination. 
The role of the show apparatus (the corolla) is to lure possible pollinators. Not only 
overall flower colour is important for this, but also the nectar guides that often 
decorate the petals are thought to play an important role (Hansen et al., 2012; 
Röschenbleck et al., 2014). These, and other spatial cues, are thought to align the 
pollinator, helping it to forage on the flower (Hansen et al., 2012; Kaczorowski et 
al., 2012). 
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Since Pelargonium is a morphological diverse genus, it is not surprising that there 
are a number of different pollination syndromes described for it. Also, many 
multiple transitions between syndromes have occurred (Struck, 1997). The first 
one to research these syndromes in Pelargonium was Delpino in the 1870s, where 
he described sphingophilous (hawkmoth pollination) and melittophilous (bee 
pollination) syndromes for a number of Pelargonium species (Struck, 1997). Later, 
Vogel (1954) added the psychophilous (butterfly pollination), ornithophilous (bird 
pollination), and myiophilous (fly pollinated) syndromes (Struck, 1997). Manning, 
Goldblatt and Bernhardt described long-tongued hovering fly pollination guilds for 
Southern Africa, and included a number of Pelargonium species in their analysis 
(Goldblatt et al., 1995; Goldblatt and Manning, 2006; Manning and Goldblatt, 
1996).

Phylogenetics
Since 1993, much molecular work has been done to infer a correct phylogenetic 
tree for the genus Pelargonium. Price and Palmer (1993) published the first 
phylogenetic inference of the Geraniaceae studying the relationships between the 
five genera within the family using rbcL. They found that Pelargonium is the first 
splitting genus within the Geraniaceae. Later, a subgeneric split was inferred based 
on chromosome size variation into large and small chromosome clades (Bakker et 
al., 1999). In 1996, Jones and Price performed the first sequence-based analysis 
based on the rDNA ITS region for thirteen species. This study was expanded by 
Bakker et al. who added the cpDNA trnL-F markers, first for seventeen species from 
the section Peristera, and subsequently using seventy-three species from the small 
chromosome clade (Bakker et al., 1999, 1998). In 2000, Bakker et al. conducted 
the first study that included the mitochondrial marker nad1 in combination with the 
chloroplast trnL-F region for twenty large chromosome species in addition to five 
species from the small chromosome clade using the extraordinary high substitution 
levels found in Pelargonium mitochondrial genomes (see below). The first genus-
wide phylogenetic study came in 2004, and included markers from all genomic 
compartments: nad1 (mitochondrial), trnL-F (chloroplast) and ITS (nuclear) for 149 
Pelargonium species and four outgroups (Bakker et al., 2004). In this study, Bakker et 
al. proposed the division of the genus in an A, B, and C clade: (((A1,A2),B),(C1,C2)). 
In 2009, Jones et al. used the data of Bakker et al. (2004) for a new phylogenetic 
tree but with a different inference method (MrBayes instead of PAUP*). With this 
analysis, they confirmed the previously found division of clades (A1, A2, B, C1 and 
C2). However, P. nanum was omitted from this analysis because it was found to 
obstruct convergence of the MCMC's used. In 2012, Weng et al. (2012) expanded 
the gene-set, but achieved only a limited taxon sampling with only fifty-eight species. 
Röschenbleck based his phylogenetic inference on the atpB-rbcL spacer and trnL-F 
data of 104 species. Röschenbleck also found the A, B, and C clades as did previous 
studies, and recognized these as subgenera. In addition, he divided the C clade is 
a C1 and C2 clade, thus forming four subgenera. These subgenera were further 
divided in sixteen clades. These divisions are supported by floral morphological 
data (Röschenbleck et al., 2014). 
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Genomic instability
In addition to the phylogenetic studies describes above, much research has 
been performed on the cytogenetics of Pelargonium. For example, studies of 
chromosome numbers, ploidy level, and chromosome size have been performed 
(Gibby et al., 1990; Van der Walt et al., 1990; Van der Walt and Vorster, 1983, 1981; 
Weng et al., 2012). The most basal split in the genus, between clade AB and C, is 
based on chromosome size and divides the genus in a large (1.5-3 μm) and small 
(<1.5 μm) clade (Bakker et al., 2005, 2004; Röschenbleck et al., 2014; Weng et al., 
2012). As described earlier, this split is confirmed by phylogenetic studies, but is not 
taxonomically formalised since there is no morphological basis found (Röschenbleck 
et al., 2014). In addition to nuclear differences, there are major differences in their 
cytoplasmic genomes.

In contrast to most angiosperms, Pelargonium (and Geraniaceae in general) possess 
atypical organellar genomes (Ruhlman and Jansen, 2018). Pelargonium x hortorum 
contains one of the largest plastomes on the planet (~218kb, compared with an 
average of ~151kb for angiosperms) and expansion of the Inverted Repeat (IR) has 
been a major contributor (Ruhlman and Jansen, 2018). The Pelargonium genome 
has been as a result found to be exceptionally rearranged, containing many changes 
in gene order, and gene loss and duplication (Chumley et al., 2006; Guisinger et al., 
2011; Palmer et al., 1987). The mitochondrial silent substitution rate is exceptionally 
elevated (Bakker et al., 2006; Parkinson et al., 2005) and the mitochondrial genome 
also suffered extensive gene loss (Parkinson et al., 2005). Nucleotide substitution in 
mitochondrial and plastid genomes are accelerated (Weng et al., 2012). Genomes 
in Pelargonium have thus been found to be relatively unstable (Guisinger et al., 
2008). 

A beautiful example of genomic instability in Pelargonium  is the incompatibility 
between the different genomes to correctly communicate, which is a critical issue 
for breeding (Baur, 1908; Weihe et al., 2009). Due to cytonuclear incompatibility, 
the leaves of F1 progeny of Pelargonium crosses can display variegation: yellow 
or white zones in their green leaves, petioles, and even meristems (Breman, pers. 
comm; Greiner and Bock, 2013; Ruhlman and Jansen, 2018). This phenomenon 
is related with biparental inheritance of the plastome that occurs in Pelargonium 
(Greiner and Bock, 2013; Weihe et al., 2009).

Historical biogeography and the Greater Cape Floristic Region
The bulk of the genus Pelargonium occurs in the South African Cape Floristic Region. 
This region is known to be a biodiversity hotspot, with high levels of endemism 
not only on species, but also on generic and family level (Cowling et al., 2009; 
Goldblatt and Manning, 2002; Linder, 2005; Linder and Hardy, 2004; van der Niet 
and Johnson, 2009; Verboom et al., 2009b, 2009a). Pelargonium is one of the prime 
examples of a nested radiation in this region (Bakker et al., 2005). Thirty of these 
radiations make up half of the species richness of the Cape flora (Linder, 2005). 

Since the coming of phylogenetic analyses, the composition of the Cape flora is 
found the be much more complex than initially thought. At first, it was thought 
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that the flora was influenced by three components. The ‘Antarctic’ (a relic of the 
Cretaceous Gondwanan flora), the African (shared with tropical Africa), and the 
Eurasian (migrated south along the African mountains; Linder, 2005). But now, it is 
found that a number of lineages have a close relationship with sister lineages on 
all other continents, but that the relation with Australia is the most common. An 
example of this is Pelargonium, with the Australia based clade Peristera (Linder, 
2005). This phenomenon is not unique, the flora of New Zealand is another example 
(Linder, 2005). 

Bakker et al. (2005) are the first who attempted a (narrative) historical biogeographical 
analysis for Pelargonium (Figure 4). According to their analysis, the deepest split in 
Pelargonium (between the AB and C clades) occurred 30 Mya in the Oligocene 
mesic subtropical climate. This split, which divides the genus into the large and 
small chromosome clades, could be the result of climatic changes during that time. 
Although only species from clade B and C occur outside southern Africa, this split 
is not a direct geographical indication of the region of origin of Pelargonium since 
these all have sister species occurring in the CFR. The split between clade A and 
B seems to be the result of contrasting life strategies: while clade A species are 
predominantly perennial woody shrubs, clade B species are mostly annual herbs.
Although the vast majority of species occurs in the CFR, there is a number of 
remarkable ‘escapees’ from this region. One of the clearest is the dispersal to 

Figure 4. Narrative historical biogeography of Pelargonium. After Bakker et al. (2005).
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Australia of a small group of species from within the B clade section Peristera. Also 
found in the B clade are two island endemics: P. cotyledonis on St. Helena and P. 
grossularioides on Tristan da Cunha. Also, a number of species occur in Kenya, 
Tanzania and Ethiopia and even as far north as Yemen and Asia minor.

AIM OF THE THESIS
This thesis aims to bring together multiple layers of potential influences on floral 
shape in Pelargonium in order to paint a comprehensive picture of the evolution of 
this clade. I accomplish this by studying the historical biogeography and ancestral 
conditions of the genus, within- and between species differences in floral shape, 
and their relation with the adaptation of Pelargonium species to local conditions. 
By building upon the extensive knowledge on speciation processes in the Greater 
Cape Floristic Region, we are now able to mine this research and infer speciation 
processes for the Pelargonium clade.

THESIS OUTLINE 
The chapters in this thesis all have their own focus, but build upon each other and 
together paint the intricate picture of speciation in Pelargonium. 

Chapter 2 presents a new phylogenetic tree for Pelargonium based on 74 plastome 
exons and nuclear rDNA ITS regions for 120 species. We used material obtained 
from the wild as well as botanical gardens, which gave us the opportunity to 
represent 43% of the genus. Phylogenetic analyses of nucleotide, amino acid, 
and ITS alignments resolved relationships within the genus and a dating analysis 
examined the timing of the major radiations.

In chapter 3 we use this newly formed, time-calibrated phylogenetic tree to infer the 
ancestral area as well as ancestral climatic conditions of Pelargonium. We manually 
craft an additional 136 species to the plastome-based backbone based on known 
phylogenetic and taxonomic relationships, composing a 256 terminal phylogenetic 
tree. We use available distribution data for these species to infer the historical 
biogeographical events that occurred within the genus and use BIOCLIM data for 
the georeferenced coordinates to infer paleo-climatic patterns.

In Chapter 4 we quantify floral shape by using geometric morphometrics on a 
3D model based on 2D photographical data and demonstrate its performance 
in capturing shape variation. We quantify Pelargonium floral shapes using 117 
landmarks and show similarities in reconstructed morphospaces for spur, corolla (2D 
datasets), and a combined 3D dataset. Through our approach, we find that adding 
the third dimension to the data is crucial to accurately interpret the manner of, as 
well as levels of, shape variation in flowers. 

In Chapter 5 we dive into this variation in shape and explore the Pelargonium floral 
morphospace and examine to what extent the floral parts within the Pelargonium 
flower are integrated, i.e. whether they evolve in concert, and whether different, 
show-, reward-, and transfer- apparatus specific, selective pressures may exist.
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Finally, in Chapter 6 we bring together all existing knowledge on these different 
aspects of plant speciation specifically for the Cape lineage Pelargonium and explore 
the relation between historical-biogeography, edaphic influences, pollinators, 
flowering time, and floral shape in a multi-variate analysis. We want to know to 
what extend there is a relation between floral shape and the spatial distribution of 
the species and whether local environmental conditions are an influence on floral 
shape. We  find speciation in Pelargonium to be a complex patchwork of interaction 
between environmental conditions, pollinator distributions, flowering time, and 
historical biogeographical influences.
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ABSTRACT
The predominantly South-African plant genus Pelargonium L’Hér. (Geraniaceae) 
displays remarkable morphological diversity, several basic chromosome numbers 
as well as high levels of organelle genomic rearrangements, and represents the 7th 
largest Cape Floristic Region clade. In this study, we reconstructed a phylogenetic 
tree based on 74 plastome exons and nuclear rDNA ITS regions for 120 species, 
which represents 43 % taxon coverage for Pelargonium. We also performed a dating 
analysis to examine the timing of the major radiations in the genus.
Phylogenetic analyses of nucleotide, amino acid, and ITS alignments confirmed the 
previously-documented subgeneric split into five main clades ((C1,C2),(B(A1,A2))) 
although clade only A1 received low bootstrap support.
Using calibration evidence from a range of sources the Pelargonium crown age was 
estimated to be 9.7 My old, much younger than previous estimates for the genus 
but similar to recent studies of other Cape Floristic lineages that are part of both 
Fynbos and Succulent Karoo biomes.

Keywords: Pelargonium; Geraniaceae; phylogeny; plastome; time-calibrated
Abbreviations: Polyactium-Otidia-Cortusina clade (POC clade), Greater Cape 
Floristic Region (GCFR) 
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INTRODUCTION
The predominantly South African genus Pelargonium L’Hér. (Geraniaceae) is 
morphologically diverse both in life forms, ranging from herbaceous annuals, woody 
(sub)shrubs, geophytes, rosette herbs to stem succulents and by remarkable variation 
in floral and leaf morphology (Bakker et al., 2005, 1999, Jones et al., 2009, 2003; 
Nicotra et al., 2008; Röschenbleck et al., 2014). Pelargonium is also characterised by 
extensive genomic variability, with six different basic chromosome numbers (Bakker 
et al., 2005), substantial variation in nuclear genome size (Weng et al., 2012), the 
independent occurrence of several polyploid series and unprecedented levels of 
variation in organelle genomes (Bakker et al., 2006; Chumley et al., 2006; Guisinger 
et al., 2008, 2011; Mower et al., 2007; Parkinson et al., 2005; Weng et al., 2014; 
Weng et al., 2012). In addition, many species exhibit biparental inheritance and 
cytonuclear incompatibility (Ruhlman and Jansen, 2018). Pelargonium is one of 
a handful of speciose Cape lineages that span multiple biomes in Greater Cape 
Floristic Region, making this clade a promising model system for testing ecological 
and evolutionary hypotheses (e.g. Moore et al., 2018; Verboom et al., 2009).

Of the ~280 species of Pelargonium, approximately 200 species occur in the Greater 
Cape Floristic Region (GCFR) in South Africa (Linder, 2003; Manning and Goldblatt, 
2012; Snijman, 2013) and have been well-documented taxonomically (Van der Walt 
and Vorster, 1977, 1981, 1988). Morphological, palynological, phytochemical and 
karyological data have been used in an extensive range of taxonomic studies (e.g. 
Van der Walt et al., 1990; Van der Walt and Vorster, 1983, 1981; see Röschenbleck 
et al., 2014 for an overview). New species are still being described, especially in the 
geophytic sect. Hoarea (Manning et al., 2015; Marais, 2016), which was considered 
a non-adaptive radiation nested within an adaptive radiation by Bakker et al. (2005). 
Their appeal as garden plants (dating back to Victorian times, Sweet (1826)) has 
led to interspecific crosses of Pelargonium that have resulted in a wide variety 
of highly valued commercial cultivars (Albers & van der Walt, 2007), especially in 
the P. x hortorum hybrid complex, P. peltatum, P. cucullatum, and P. tricolor, and 
some species such as P. citronellum and P. graveolens are important for essential oil 
production (Blerot et al., 2015). 

Phylogenetics of Pelargonium has been investigated in a series of studies spanning 
the last three decades. Price and Palmer (1993) published the first DNA-based 
generic-level phylogenetic tree of Geraniaceae and found Pelargonium to be sister 
to the rest of the family (except Hypseocharis) and inferred a subgeneric split that 
correlated with chromosome size. Subsequent phylogenetic studies using increased 
taxon sampling confirmed this pattern for both the internal transcribed spacer (ITS) 
of nuclear ribosomal DNA (rDNA) and the plastid trnL-F group I intron and trnL-F 
spacer regions for small and large chromosome species (Bakker et al., 1999, 1998; 
Jones and Price, 1996). Making use of the remarkably elevated substitution rates 
in Geraniaceae mitochondrial DNA (mtDNA), Bakker et al. (2000) found species-
level phylogenetic resolution using exons 4 and 5 of mitochondrial-encoded nad1, 
which is otherwise fairly conserved across angiosperms. Using markers from all three 
genome compartments (nad1, trnL-F, and rDNA ITS) for 149 Pelargonium species 
(i.e. 53% taxonomic sampling), Bakker et al. (2005, 2004b) inferred a phylogeny 
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and proposed a (C(B,A)) division of the genus with A and C clades each divided 
into two main clades. This analysis used weighted parsimony and heavily relied on 
non-coding sequences and recoded insertions and deletions (indels; Bakker et al., 
2004), which were found to provide ~20% of the total plastid DNA signal (Bakker 
& al. 1999). The ((C1,C2),(B(A1,A2))) Pelargonium phylogenetic pattern was later 
confirmed using Bayesian Inference on the same data (Jones et al., 2009). 

Weng et al. (2012) noted the lack of overlap in taxonomic sampling of the different 
gene sequences in previous studies and recommended expanded gene and 
taxon sampling. The authors partially fulfilled this need by adding additional gene 
sequence data for the markers nad5, ndhF, rbcL, matK, rpoC1, in addition to trnL-F. 
However, Pelargonium taxon sampling remained limited (only 21%) in that study. By 
adding the atpB-rbcL spacer to an increased taxon sampling for the trnL-F data set 
of Bakker et al. (2004), Röschenbleck et al. (2014) achieved a taxonomic coverage of 
38% and confirmed a ((C1,C2),(B(A1,A2))) (but not A1 and A2) topology. However, 
nuclear and mitochondrial data were not included. Röschenbleck et al. (2014) 
proposed raising these four clades to the subgenus level. These subgenera were 
then further divided into sixteen sections, most of which confirmed the previously-
proposed sectional classification (Bakker et al., 2004), and are supported by floral 
morphological data (Röschenbleck et al., 2014), although a general morphology 
based key has not been developed for Pelargonium.

Phylogenetic studies focusing on single Pelargonium clades have been performed 
for Clade C (James et al., 2004, based on plastome RFLPs), sect. Hoarea 
(Touloumenidou et al., 2003, based on rDNA ITS sequences), clade B (Bakker et al., 
1998) and the Australian clade (Nicotra et al., 2016, using a population genomic 
approach). For sect. Otidia, an AFLP approach was used to study relationships in 
the P. carnosum - P. paniculatum and P. alternans complexes (Becker and Albers, 
2010, 2009).
Four molecular dating studies have been performed in Pelargonium, but the 
results are contradictory. In 2005, using r8s and the non-parametric rate smoothing 
approach on trnL-F and nuclear rDNA ITS sequences, Bakker et al. estimated the 
Pelargonium crown node to have originated around 30 Mya. Based on the same 
data, but using BEAST analyses, Verboom et al. (2009) came to a similar estimate 
of 34.54 My, making it the oldest Fynbos biome clade giving rise to Succulent 
Karoo clades (Verboom et al., 2009). The deepest split into clades A,B versus C 
(with different chromosome size), would coincide with climatic changes in the 
Oligocene/Miocene (Goldblatt et al., 2002). Additionaly, the estimated age of 
the winter-rainfall clade A2 of 22 My coincides with the Early Miocene and was 
interpreted to be linked with the emergence of summer drought by Bakker et al. 
(2005). During the Miocene-Pliocene climate change around 10 Mya, upwelling 
of the cold Benguela current was established and, in combination with a 
strengthened South Atlantic pressure cell, could well have caused dry summers 
along the west coast of southern Africa. This is considered to be associated with 
the formation of the Succulent Karoo biome and the radiation of new, xerophytic, 
Pelargonium species (Bakker et al., 2005; Linder, 2003; Verboom et al., 2009).  
In contrast, both Fiz et al. (2008) and Palazzesi et al. (2012) estimated the date for 
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the Pelargonium crown node to be 10-15 Mya, corresponding with a transition to a 
drier and colder climate in the mid-Miocene (Linder, 2003). These studies both used 
fossilized pollen as evidence for their analyses (see Supplementary Table S1 for 
an overview of these studies). Given the discrepancies among Pelargonium dating 
studies, an update using increased numbers of characters and taxa is needed. 

The aims of this study are to resolve phylogenetic relationships within Pelargonium 
using extended character sampling (74 plastome protein-coding genes as well 
as nuclear rDNA ITS) and to provide robust age estimate. Previous Pelargonium 
phylogenetic studies have relied on plastome intergenic and Group I intron 
sequences (such as trnL-F and the atpB-rbcL spacer), in addition to indels in the same 
spacers. Our approach using exons provides sufficient data to resolve remaining 
phylogenetic issues in Pelargonium, and results in an improved phylogenetic 
framework for future genomic, morphological and evolutionary studies.

MATERIAL AND METHODS
Taxon sampling
Leaf material was obtained from various sources (see Supplementary Table S2), 
including plants obtained in the field and from botanical gardens. One collection 
series was sampled from various wild populations collected across South Africa 
and was silica gel dried by Schlichting, Jones and collaborators during 2012-2015. 
Vouchers are deposited at CONN. Another series comes from the Jansen lab with 
material obtained from Geraniaceae.com. Plants were maintained in the University 
of Texas at Austin greenhouse and vouchers were made for each species and 
deposited in TEX-LL. Based on previous phylogenetic studies, we selected samples 
to represent all five major clades within Pelargonium. This resulted in a combined set 
of 148 accessions representing 120 species (approximately 43% of all Pelargonium 
species). We chose two accessions of Hypseocharis biloba (NC_023260.1; (Bakker 
et al., 2016) as outgroups. 

DNA isolation, Illumina sequencing and plastome assembly
DNA from the wild collected samples was isolated from silica gel dried leaf material 
in the Bakker lab using a modified CTAB protocol (Bakker et al., 1998; Doyle, 1991) 
after grinding in liquid nitrogen. Following Isopropanol precipitation, the Wizard® 
DNA Clean-Up System was used to further purify the samples. DNA quantity was 
determined using a Qbit spectrophotometer. Samples yielding > 20 ng were shipped 
to BGI Hong Kong for library preparation and Illumina paired end (PE) sequencing. 
A few accessions with low total yield (between 20 and 50 ng) underwent a whole 
genome amplification step. 

For the plastome dataset, Illumina PE reads were assembled using IOGA, an 
automated bioinformatics pipeline (Bakker et al., 2016), which uses both de novo 
and reference-based assembly, by mapping reads against a panel of reference 
genomes that need not be closely related to the target. As a reference library, the 
same reference plastomes as in Bakker et al. (2016) were used, including complete 
plastomes of P. alternans (NC_023261.1) and P. x hortorum (DQ897681.1). IOGA 
uses SOAPdeNovo (Xie et al., 2014) in order to assemble mapped reads into 
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contigs. A range of k-mer sizes was used (33, 55, 75, 95) to optimise the assembly, 
assuming an insert size of 250 bp. Plastome-derived reads remaining in the initial 
total read pool that overlapped with the assembled contigs were mapped to the 
contigs and assembled de novo. New iterations of mapping and assembly were 
then performed until no new reads could be added to the contigs. Final assembly, 
usually producing a range of contigs, was performed using SPADES (Bankevich et 
al., 2012) as implemented in IOGA, followed by selection of candidate assemblies 
using either Assembly Likelihood Estimation (ALE) score (Clark et al., 2013), overall 
coverage or N50. When plastome read coverage was exceptionally high for a 
particular sample (i.e. > 1000), a subsample of one to five million reads was taken 
before re-assembly. 

The methods for DNA isolation, Illumina sequencing, assembly and annotation for 
the 61 species contributed from the Jansen collection are described in Blazier et 
al. (2016a) and Weng et al. (2014). For 21 of the 61 Pelargonium species, complete 
plastomes were completed and 74 protein coding genes were extracted. For 
the remaining species, the genes were extracted from contigs of draft genome 
assemblies.

For the nuclear rDNA dataset, both the Bakker and Jansen collection underwent 
the IOGA assembly procedure as described above. A collection containing all 
previously published rDNA ITS accessions for Pelargonium available in GenBank 
was used as reference.

Annotation and gene selection
All plastid assemblies from the Bakker lab were annotated in Geneious 8.1.6 (Kearse 
et al., 2012) using P. alternans (Weng et al., 2014) as reference and setting the 
sequence similarity threshold at 75%. In total, a set of 74 protein coding genes was 
extracted from the assembly data and gene alignments were compiled. Each gene 
alignment was split into separate intron/exon alignments with the use of the TAIR 
webtool (https://www.arabidopsis.org/index.jsp; Supplementary Table S3 and S4). 
The complete plastome sequence of Hypseocharis biloba (NC_023260.1) chosen as 
outgroup underwent the same procedure of gene extraction and alignment.

All nuclear rDNA assemblies were annotated using Brassica rapa (KM538956.1) as 
reference for the ribosomal (18S, 5.8S, and 26S) as well as ITS1 and ITS2. In cases 
when not all components of the rDNA region could be retrieved in one piece, we 
used the universal primers as designed by White et al. (1990) to find the ITS1 and 
ITS2 boundaries. 

Alignment and data matrix construction
For both plastome and nuclear data, MAFFT v. 7 was used for optimising each 
alignment under ‘auto’ settings (Katoh and Standley, 2013). All alignments were 
visually inspected in Mesquite v. 3.04 (Maddison and Maddison, 2015) and manually 
adjusted where needed. Reading frames were set for all coding region alignments 
using the ‘Minimize stop codons’ function. Alignments were trimmed accordingly 
to reading frame in order to eliminate incomplete codons. A ‘Plastome Introns 
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and Exons’ (PIE) matrix included all above described alignments, concatenated 
using SequenceMatrix (Vaidya et al., 2011) into a single alignment. In addition, a 
‘Plastome Exons AminoAcid’ (PE-A) matrix contained an amino-acid version of the 
exon-only data. The number of parsimony informative sites was calculated using 
PAUP* (Swofford, 2002).

Phylogenetic analyses
Maximum likelihood-based phylogenetic analysis of plastome matrices was 
performed using RAxML v. 8.2.8 on the XSEDE supercomputer at the CIPRES Science 
Gateway platform (Miller et al., 2010; Stamatakis, 2014). Two partition schemes 
for the PIE matrix were compared: 1. unpartitioned and 2. partition assigned by 
PartitionFinder v. 1.1.1 (Lanfear et al., 2012), which selects from alternative gene- 
or codon-position level partitioning on the basis of the Bayesian Information 
Criterion (BIC). The PE-A matrix was analysed under an unpartitioned model (using 
the PROTGAMMADAYHOFF amino acid substitution model) as optimising AA 
models in multiple partitions is computationally prohibitive. RAxML analyses of 
DNA sequence data was performed using the GTR+GAMMA model. All analyses 
included inference of the ‘best tree’ as well as generation of 1000 bootstrap trees, to 
obtain node support measures. In addition, we used MrBayes v. 3.2.6 (Huelsenbeck 
and Ronquist, 2001; Ronquist et al., 2012) for a Bayesian inference of our plastome 
alignments (500 million generations, nruns=2, four chains, sampled every 30.000th 
generation, nst=mixed, temp=0.05/0.2). 

Phylogenetic analysis of the rDNA ITS matrix was performed under ML using IQ-
TREE with standard settings on the IQ-TREE web server (iqtree.cibiv.univie.ac.at) 
generating 1000 bootstrap trees (Hoang et al., 2018; Kalyaanamoorthy et al., 2017; 
Nguyen et al., 2015; Trifinopoulos et al., 2016). The analysis includes Ultrafast model 
selection (ModelFinder) and Ultrafast bootstrap (UFBoot).
All resulting phylogenetic trees were visualised using TreeGraph2 (Stöver and 
Müller, 2010).

Divergence date estimates
We used BEAST v1.8.4 (Drummond et al., 2012) to infer a time-calibrated 
phylogenetic tree of Pelargonium using the PIE matrix, adding fourteen Geraniales 
genomes in order to accommodate all available fossil calibrations (Supplementary 
Table S5). We used three calibration methods: (1) Fossil calibration, using estimated 
ages of available fossils of Geranium, Erodium, Vivianaceae and Pelargonium set 
with a log-normal distribution for each calibration prior which has an unbound 
tail reflecting the uncertainty of the maximum age of the node (Ho and Phillips, 
2009; Palazzesi et al., 2012). (2) Secondary calibration, in which the crown node age 
corresponding to Geraniales as estimated by Wang et al. (2009) was used to calibrate 
our phylogenetic tree using a normal prior. (3) Ecological calibration, in which we 
assumed that clade A2 (the ‘Winter Rainfall Region’ clade in Bakker et al. 2005) 
could have emerged in response to the establishment of the Mediterranean type 
climate in the South Western Cape, which has been estimated as late-Miocene: the 
tertiary fossil record of southern Africa suggests that the earliest summer-drought 
conditions became established approximately 10 Mya (Linder 2003). We therefore 
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calibrated the A2 node with this age using a normal prior distribution. In order 
to assess possible calibration incongruence, we explored the following calibration 
combinations: Fossils, 2nd, and Ecological calibration separate, the combination of 
Fossils and 2nd calibration, the combination of 2nd and Ecological calibration, and all 
three methods combined (Table 1).

We used the uncorrelated lognormal relaxed molecular clock (UCLD) models to 
account for rate variability among lineages and chose the Yule speciation model, 
which is considered the most appropriate model for species-level datasets (Bouckaert 
et al., 2014). We set the prior distribution for mean rate of the clock model as 
recommended by Ferreira and Suchard (2008) and used the GTR substitution model 
and assumed site rates to be 4Γ distributed (as suggested by IQ-tree, not shown). 
We performed one MCMC analysis per dating scenario of 400 million generations 
each, sampling every 10.000 steps. For the scenario combining all calibration 
methods, we performed four additional MCMC analyses.

We combined log and tree files using LogCombiner v.1.8.4. (Drummond et al., 
2012) and checked for convergence using VMCMC (Visual Markov chain Monte 
Carlo, Ali et al., 2017) to diagnose global convergence of the whole MCMC chain to 
the target distribution by calculating Gelmen-Rubin and Gewek parameters (Ali et 
al., 2017). Split frequency plots that measure topological differences among chains 
were generated in RWTY (Warren et al., 2017). In case of appropriate convergence, 
frequencies in the cumulative plot should level off, indicating that clade/split is 
present in both posterior distributions. We used TreeAnnotator v1.8.4 (implemented 
in BEAST tools package) with a burn-in of 10% to summarize the tree results.

Node Fossils 2nd Ecological
Age1 Prior Age Prior Age Prior

GAL 99-109      Normal 
104 (2)3

G 7.25 (0.005) Lognormal 7.25 (4, 7.24)2
E 7.25 (0.005) Lognormal 7.25 (4, 7.24)2

MFV 10 (0.3) Lognormal 10 (2.5, 9.7)2
GexH 28.4 (0.1) Lognormal 28.4 (3,28.3)2

A2 8-10 Normal 9 (0.4)3
Combination I Combination II Combination III

Combination IV

Combination V
Combination VI

Table1. Prior setting for calibration evidence for different calibration combinations.

1Age range in Mya; 
2 mean, sd, hard minimum bound (= offset) (in real space), 
3mean, sd; G, E, MFV, GexH, A2 and GAL indicate calibrating node.
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RESULTS
Assembly and alignments 
In the Bakker lab, 80 new Pelargonium specimens were sampled for DNA extraction 
and Illumina sequencing in this study. After library preparation and sequencing, 
the total number of reads ranged from 5,286,525 (P. minimum) to 29,102,984 (P. 
saxifragoides). For the specimens from the Jansen lab sequencing depth was much 
higher, around 60M reads each (see Supplementary Table S6). Average assembly 
size of the plastomes was 154,624 bp with an average read coverage of 690 after 
sub-sampling for the Bakker lab samples and on average over 1500X for those 
from the Jansen lab. The total concatenated PIE alignment (Plastome Introns and 
Exons) was 64,388 bp in length with 6,305 (9.8%) potentially parsimony informative 
sites, and covered 43% of all known Pelargonium species, whereas the PE-A 
matrix contained 18,800 amino acid residues of which 3,187 (17%) were parsimony 
informative. All sequences have been deposited in GenBank (Supplementary Table 
S7) and the final PIE and ITS alignments and resulting phylogenetic trees can be 
found in Supplementary File S8 and S9 and under TreeBase Submission ID 24185.

Phylogenetic patterns
PartitionFinder analysis suggested the data be partitioned over 22 different 
partitions (Supplementary Table S10 and S11) that corresponded to codon position 
rather than gene functional group as in Guisinger et al. (2008). 

Comparisons of ML tree topologies and support values for the unpartitioned PIE 
matrix, the partitioned PIE matrix and the unpartitioned  PE-A matrix detected few 
topological discrepancies (indicated by * in Figure 1): five within clade C1, five within 
clade B, two within the sect. Pelargonium and one within the Hoarea clade. When 
bootstrap support values differed, higher values were generally obtained for the 
unpartitioned PIE data set. Tree topologies for MrBayes analyses were congruent 
with those for RAxML. The phylogenetic tree inferred from the nuclear rDNA ITS 
matrix produced the same topology as the plastome matrices, for major clades 
of Pelargonium although the topologies of species within clades were different 
(Figure 2). For example, based on plastome sequences P. plurisectum is, together 
with P. barklyi, P. articulatum, and P. alchemilloides, confidently placed as sister 
to the remainder of the clade corresponding to the section Ciconium while the 
nuclear rDNA patterns suggests P. plurisectum to be placed more central in the 
clade. The same small species-level shift within clades occurred for P. cucculatum, 
P. cordifolium, P. capitatum, P. glutinosum, P. ionidiflorum, P. alchemilloides, and P. 
wuppertalense. Larger incongruences occur for P. klinghardtense which shifts from 
the clade corresponding to its taxonomic section in the plastome based phylogeny 
to sister species of the section Magnistipulacea based on nuclear rDNA. The reverse 

Figure 1. (next page) (A) RAxML tree based on matrix PIE (unpartitioned) and PE-A matrices 
(GTR+GAMMA), in cladogram style. Bootstrap values indicate support at node for PIE/PE-A analysis 
respectively. Brackets indicate conflict between analyses. Clade labels sensu section- and subgenus level 
classification of Röschenbleck et al. (2014). Capital letters correspond to main clades. (B) Same tree as A 
showing branch lengths in nucleotide substitutions per site (outgroup pruned from tree).
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is the case for P. desertorum whose position is likewise flexible but also has the 
status of ‘unassigned species’ within the subgenus Pelargonium (Röschenbleck et 
al., 2014). Also P. panduriforme ends up in the ‘wrong’ clade based on nuclear rDNA 
sequences. The trio P. gibbosum, P. crithmifolium, and P. crassicaule group together 
between the clades of their respective taxonomic sections, albeit based on rather 
low bootstrap support.

Divergence date estimates
In order to compare the calibration results for the single MCMC runs based on 
different combinations of calibration methods, we focus on the Pelargonium 
main crown nodes (Figure 3), i.e. ‘Winter-rainfall’ clade A, clade A1, ‘xerophytic’ 
clade A2, clade B and clade C . The estimated age of Pelargonium nodes for the 
Fossil and Ecological calibration separately are overall comparable, while the 2nd 
calibration methods shows quite a different pattern with much older age estimates. 
In addition, the range of HPD’s is much larger. When combining the Fossil and 2nd 
calibration methods, age estimates appear to be predominantly influenced by the 
2nd calibration evidence. The combination of 2nd and Ecological calibration does not 
appear to be subject to this influence as results are comparable with the separate 
Ecological calibration results. The result of the combination of all three calibration 
methods fits in this pattern with mean age estimates again congruent with the 
Ecological calibration.

We consider the scenario including fossil, secondary, as well as ecological calibration 
as the final result because it is based on maximum evidence (Figure 4). Based on 
the four extra MCMC runs for this scenario, Geraniaceae crown node appears to 
have proliferated in the Middle Eocene (~35.8, 95% HPD = 29.5-45.1 Mya) with the 
Pelargonium crown node proliferating in the Late Miocene (9.7 Mya, 95% HPD = 
9.0-10.5 Mya). Based on our results, the crown of the oldest clade of Pelargonium, 
clade C, diverged around 8.6 Mya (95% HPD = 7.5-9.7 Mya) while the diversification 
of B, A1 and ‘xerophytic’ A2 occurred in the Early Pliocene and the Late Miocene 
(4.5 Mya, 95% HPD = 2.7-6.3 Mya, 4.5 Mya, 95% HPD = 2.8-6.2 Mya, and 5.3 Mya, 
95% HPD = 3.9-6.7 Mya, respectively). 

DISCUSSION
Pelargonium has been the focus of an expanding series of phylogenetic studies 
(Bakker et al., 2004, 1999, 1998; Jones et al., 2009; Price and Palmer, 1993; 
Röschenbleck et al., 2014; Weng et al., 2012). In those studies, an increasing number 
of phylogenetic markers has been utilized from all three genomic compartments 
and taxonomic coverage has been substantially expanded up to 53%. However, 
a common set of markers needed to link these studies has so far been missing, 

Figure 2. (previous page) (A) RAxML tree based on ITS matrix (IQ-TREE), with bootstrap values indicated. 
Clade labels sensu section- and subgenus level classification of Röschenbleck et al. (2014). Red squares 
indicate species-level plasto-ribo incongruence. Capital letters correspond to main clades. (B) Phylogram 
showing branch lengths in substitutions per site (outgroup pruned from tree) resulting from the RAxML 
analyses on ITS matrix (IQ-TREE). 
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leaving unclear to what extent missing data in the phylogenetic matrices has been 
influential and whether inter-genomic topological incongruence may have occurred. 
We compiled a matrix of 74 plastid genes as well as the nuclear ITS region for 120 
Pelargonium species, achieving 43% taxonomic coverage of the genus. Although 
our taxon coverage is far from complete, our extensive gene sampling includes 
species representing all previously reported main clades.

Bakker et al. (2004) found that incongruence between phylogenetic trees generated 
from nuclear rDNA and plastome sequences was limited to the species-level and 
occurred predominantly within clades that corresponded to previously described 
taxonomic sections. Our findings reveal the same pattern detected by Bakker et al. 
(2004): incongruence between phylogenetic trees generated from nuclear rDNA 
and plastome sequences is limited to the species-level and occurs predominantly 
within clades (Figures 1 and 2). Overall, we feel there are no major incongruences 
between the plastome and nuclear rDNA perspective and, considering the relatively 
low bootstrap support values for the latter, decided focus on the plastome markers, 
leaving the nuclear and mitochondrial perspectives for future studies. Arguably, 
combining all genomic compartments in an overarching phylogenetic analysis 
would require a species tree estimation approach using multi-species coalescent 
methods (Liu et al., 2009).
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We restricted our plastome-based analyses to predominantly protein-coding exon 
sequence data, ignoring fast-evolving spacer regions (i.e. the Plastome Exon and 
Intron (PIE) data partition). Spacer regions have been useful at the species level in 
Pelargonium and, for instance, the length variation present in the trnL-F regions 
(using indel coding) represented 20% of the phylogenetic signal (Bakker et al., 1999). 
However, the high frequency of rearrangements and indels observed in Geraniaceae 
plastomes (Guisinger et al., 2011) can confound homology assessment among sites 
in most spacer regions. Instead we relied here on the 6,305 informative characters 
residing in the 74 plastome exons and 10 corresponding introns, and expect that 
adding additional spacer regions or indel characters would not significantly alter the 
results. The resulting tree topology for Bayesian and maximum likelihood analyses 
were congruent and overall comparable to previous studies (Bakker et al., 2004; 
Röschenbleck et al., 2014; Weng et al., 2012). 

Pelargonium species – level patterns
Although in some phylogenetic studies deeper nodes appear to be well-supported, 
studies using larger taxon sampling (e.g. Bakker & al. 2004) show poor support 
for these nodes, suggesting the high-support for deep nodes in these low 
taxon sampling studies is artefactual. The subgeneric split into a small and large 
chromosome clade was confirmed here (Bakker et al., 2004; Price and Palmer, 1993; 
Van der Walt et al., 1990; Weng et al., 2012). We found 100% bootstrap support 
for four of the five major clades. Support was low for clade A1 (75/70%) similar to 
all previous studies, challenging its validity . Clade A1 includes species from sect. 
Pelargonium that are characterised by shrub and sub-shrub life-forms making them 
a well-defined clade morphologically. This clade is the type section for Pelargonium 
(De Candolle, 1824; Röschenbleck et al., 2014; Sweet, 1822; van der Walt, 1985) 
but apparently its distinctness is not supported by DNA data in all cases.

The position of P. nanum has been a longstanding issue in Pelargonium phylogenetics 
(Bakker et al., 1999). Pelargonium nanum has floral and vegetative morphology 
more typical of species in clade B, with small, bicolored flowers and an annual 
habit (Röschenbleck et al., 2014). However, over the years, it has been proposed 
as part of clade A1 (Bakker et al., 2004), sister to clade A2 (Weng et al., 2012) or 
sister to the entire clade A (Röschenbleck et al., 2014). The inclusion of P. nanum 
prevented Markov Chain convergence in Jones et al. (2009), suggesting possible 
conflicting signals in the sequence. Our analyses agree with the findings of Weng et 
al. (2012) and place P. nanum sister to the rest of clade A2, albeit with poor support. 
This finding is in conflict with other studies (Bakker et al., 2004; Röschenbleck et 
al., 2014) that used plastome indel coding as well as rDNA ITS sequence data. 
Therefore, confirmation from additional nuclear genomic data is needed. 

Figure 4. (previous page) (A) Time-calibrated phylogenetic tree of Pelargonium. Horizontal bars 
represent 95% highest posterior density (HPD) around mean node ages. Green line indicates Miocene-
Pliocene climate change, used for ecological calibration (see text). (B) Cartoon style phylogenetic tree 
of Pelargonium showing outgroups used (dates are based on this study). Capital letters correspond 
to main clades: V=Viviania,F=Francoa,M=Melianthus,H=Hypseocharis biloba,G=Geranium, 
E=Erodium,P=Pelargonium. 
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The placement of P. karooicum within section Subsucculentia based on rbcL data and 
chromosome number (x = 10) by van der Walt et al. (1995) has been problematic. 
Section Subsucculentia species were previously considered monophyletic based 
on a shared base chromosome number of x = 10 (van der Walt et al., 1995). This 
was in conflict with findings from previous cpDNA based phylogenetic studies that 
indicated P. karooicum (x = 10) is part of a clade including P. quercetorum (x = 
17), P. endlicherianum (x = 17) and P. caylae (x = 9) (Bakker et al. 2004, 2000a; 
Röschenbleck et al., 2014) Our analyses place P. karooicum as sister to a small clade 
formed by these x = 9, 10 17 species, still making the x = 10 species paraphyletic. 
This unresolved placement, the shared base chromosome number with sect. 
Subsucculentia but similar morphology to sect. Jenkinsonia species and multiple 
ribotypes (Bakker, unpubl. data), suggests that P. karooicum might be the result of 
an ancient hybridisation event (Röschenbleck et al., 2014; van der Walt et al., 1995).
In contrast to Röschenbleck et al. (2014), sections Ligularia and Hoarea are each 
monophyletic and we recovered increased resolution for the section Ligularia. This 
finding is important as the evolution of the formation of tunicate tubers coupled 
with a geophytic growth form in sect. Hoarea can now be studied in a proper sister-
group context. 

Although the existence of a Polyactium-Otidia-Cortusina clade has been disputed 
by Röschenbleck et al. (2014) and Weng et al. (2012), we find a highly supported 
(100%) POC clade that also includes P. desertorum, P. alternans and P. xerophyton. 
The latter three were designated ‘unplaced’ taxonomically within subgenus 
Pelargonium by Röschenbleck et al. (2014). Pelargonium desertorum as well as P. 
xerophyton have previously been assigned to section Cortusina sensu stricto (based 
on vegetative characters, Dreyer et al., 1992; Röschenbleck et al., 2014) and P. 
alternans for a long time has been part of the sect. Otidia based on its succulent 
stems (Röschenbleck et al., 2014). Rather than leaving them 'unplaced', we suggest 
restoring these species to their respective sections taxonomically and affirm the 
POC clade including P. desertorum, P. xerophyton and P. alternans. Upon further 
character and taxon sampling, it is possible that these species will be resolved in 
their respective Otidia and Cortusina clades.

Section Campylia, here represented by only P. elegans, appears to be sister to clade 
A2, which is in line with findings by Röschenbleck et al. (2014). However, as with P. 
nanum and its placement sister to clade A1, support for this finding is surprisingly 
weak. Again, data from different genomic compartments may help to clarify the 
phylogeny of this section. In addition, the inclusion of remaining species from the 
section is desirable since this will help to resolve the phylogenetic placement of the 
species in this section. 

As in Röschenbleck et al. (2014), we retrieved the species P. transvaalense, P. caylae, 
P. endlicherianum and P. karooicum taxonomically unplaced as sister species to 
a clade formed by section Subsucculentia. We realize that phylogenetic patterns 
alone may be insufficient evidence to change existing taxonomic opinion and 
that corroboration from morphology and other evidence is necessary. With all the 
resources now at our disposal, it would be desirable to develop and classify all 



2

Phylogeny and time-calibration

39

known species in the genus Pelargonium, i.e. to avoid having unplaced species. 
This would mean having a broader concept for groups such as sect. Subsucculentia.

Pelargonium dating
In our dating analysis, the influence of the 2nd calibration method on estimation of 
dates is apparent (Figure 3). In the analysis for the calibration methods separately, 
the age estimates resulting from this method are much older compared with the 
Fossil and Ecological calibration methods. In combination with Fossil evidence, there 
still is a heavy influence of the 2nd calibration method visible in the resulting dates. 
We consider these results with some hesitancy because of the known problems 
with dating analyses based on solely 2nd calibration (Schenk, 2016), such as ”false 
impression of precision”  and ”age estimates shifting away from those based on 
primary calibration”. 
Compared with the influence of 2nd calibration, the influence of Fossil evidence on 
date estimates is much less evident. We expected larger uncertainty in the Fossil 
based age estimates since all available fossils correspond to clades that are rather 
distantly related to Pelargonium. For example, since the Vivianaceae fossil dated at 
~10 Mya is on a relatively long branch from Pelargonium it could be expected to 
introduce considerable dating uncertainty. 
The inclusion of ecological calibration (based on climatic data) seems to have a 
much larger influence on the age estimates. In the separate analysis, the results are 
in the same range as the Fossil based results. The combination with 2nd calibration 
caused the (otherwise much older date estimates) to be dramatically lowered.

Based on the total evidence scenario (which we prefer since it is most inclusive, 
Figure 4), our findings are similar to Fiz et al. (2008) and Palazessi et al. (2014) who 
estimated an age of 10 – 15 My old for the Pelargonium crown node age based on 
pollen fossils, but have lower estimated node ages than in Bakker et al. (2005) and 
Verboom et al. (2009). The latter estimated Pelargonium crown to be approximately 
30-35 Mya, and Pelargonium was considered to be older than most CFR lineages 
included in that study. Our findings, however, indicate the Pelargonium crown 
node originated around 9.7 Mya, which would be consistent with the average 
age of Fynbos lineages of 8.5±1.85 Mya, and that of Succulent Karoo lineages of 
5.17±0.64 Mya as inferred across CFR clades by Verboom et al. (2009). In our study 
the Xerophytic clade A2 crown node, harbouring many Succulent Karoo species, was 
dated 5.3 Mya, consistent with the radiations found for other typical Cape Floristic 
Region clades (Bouchenak-Khelladi and Linder, 2017; Hughes et al., 2015; Linder, 
2008, 2003; Linder and Verboom, 2015). As suggested previously,  the pattern of 
nested radiations in Pelargonium Winter-rainfall region clade A2 could be the result 
of a radiation in response to aridification in the mid-Miocene , in addition to the 
ensuing fragmentation of niches, and could be an explanation for the high number 
of growth forms found in Pelargonium (Bakker et al., 2005; Verboom et al. 2009). 

These finding shed new light on the remarkable biogeographic disjunctions in Cape 
– non Cape sister species distributions found in Pelargonium. Several Pelargonium 
species, especially from clade C, occur in high-altitude East African regions, 
extending to Ethiopia and Asia Minor, and stemming from Eastern Cape affinities 
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(Bakker et al. 2005). These splits with such divergent distributions have all become 
much more recent compared with findings of Bakker et al. (2005). For example, 
the disjunction of P. karooicum (Cape) – P. caylae (Madagascar) – P. endlicherianum 
(Asia Minor) has now become as recent as ~5 Mya (early Pliocene). This and other 
occurrences of Pelargonium species outside the Greater Cape Floristic Region 
could be consistent with a ‘Cape to Cairo’ scenario as hypothesised for Erica, 
grasses and other clades in which the East African mountain range (starting from 
the Drakensbergen) provides a corridor across the equator (Galley et al., 2007). 
Whether the ancestral area for Pelargonium would have been inside or outside of 
the CFR remains unsolved.

CONCLUSIONS
Pelargonium phylogenetic relationships were estimated using a plastome-based 
data set including 74 plastid genes as well as the nuclear ITS region for 120 
Pelargonium species, covering 43% of known species and 100% of known main 
clades. All species were retrieved within their expected major clade, i.e. consistent 
with previous phylogenetic studies. Resolution within clades has been increased 
compared to the last and most-inclusive study by Röschenbleck et al. (2014). We 
used different calibration approaches that have so far not been combined in one 
dating analysis yielding a crown node age for Pelargonium of 9.7 My, a much 
younger than previously expected. We present an improved, time-calibrated, 
phylogenetic framework for Pelargonium that can serve a diverse array of future 
studies. In particular we find the Pelargonium crown clade to be significantly 
younger than previously estimated, which makes it ‘fit in’ hypotheses of Fynbos and 
Succulent Karoo evolution much better.  In order to arrive at a monophyletic section-
level classification more sequence data from additional genomic compartments is 
needed. Ideally, a combination of population sampling and multispecies coalescent 
analysis (Kubatko and Degnan, 2007) yielding formal species trees would form the 
basis for such a classification.
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ABSTRACT
The Greater Cape Floristic Region (GCFR) is known for its hyperdiverse flora with 
extraordinary high levels of endemism and species richness. Although being a 
hyperdiverse region, the GCFR is dominated by a relatively small number of clades, 
one of which is Pelargonium. Biogeographic distribution patterns in Pelargonium 
are striking and complex and the ancestral geographic range of the genus is 
circumspect. Within Pelargonium, a number of long-range dispersal events towards 
Australia, St. Helena, Eastern Africa and Asia minor appear to have happened, 
predominantly within main clades B and C. The aim of this study is to infer the 
ancestral range of Pelargonium and assess whether dispersal and/or vicariance 
has been the cause of the current species distribution patterns. In addition, we 
infer ancestral environmental conditions. We find the ancestral geographic range 
of Pelargonium to be a range including the Winter and Summer rainfall region, the 
Karoo region, and the Natal region in South Africa. Long-range dispersal events 
appear to have occurred mainly in clade B, C1, and C2.
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INTRODUCTION
The Greater Cape Floristic Region (GCFR) is known for its hyperdiverse flora with 
extraordinary high levels of endemism and species richness and has been named 
one of the six Floristic Kingdoms of the world (Born et al., 2007; Goldblatt, 1978; 
Goldblatt et al., 2000; Morrone, 2015; Takhtajan et al., 1986). The GCFR comprises 
two biomes: the Fynbos (containing heathy, small-leaved sclerophyllous evergreen 
shrubs) and the Succulent Karoo (containing leaf-succulent shrubs tolerant to 
extreme drought; Linder and Verboom, 2015). The unprecedentedly high numbers 
of species in this relatively small area (~9000 in 90.000 km2) has been the subject of 
numerous studies (e.g. Barthlott et al., 2005; Verboom et al., 2009) and is attributed 
to high rates of speciation thought to be driven by adaptation to highly variable 
local environmental conditions resulting in distinct niches and combined with low 
extinction rates (Ellis et al., 2014; Goldblatt and Manning, 2002; Linder, 2003; van 
der Niet and Johnson, 2009). Although being hyperdiverse at the species-level, 
the GCFR is dominated by a relatively small number of plant clades (Linder, 2003). 
These so called ‘Cape lineages’ include Disa (Orchidaceae), Erica (Ericaceae), 
Oxalis (Oxalidaeceae), and Moraea (Iridaceae), Aspalathus (Fabaceae), Cliffortia 
(Rosaceae), Restio (Restionaceae), Agathosma (Rutaceae), Senecio (Asteraceae), 
and Pelargonium (Geraniaceae). Pelargonium is well known for its stunning floral 
and vegetative diversity across its ~280 species (Bakker et al., 2005, 1999; Jones et 
al., 2009, 2003; Linder, 2003; Linder and Verboom, 2015; Manning and Goldblatt, 
2012; Nicotra et al., 2008; Röschenbleck et al., 2014; Struck, 1997). Reconstruction 
of phylogenetic relationships within the genus have recently been expanded and 
refined (Chapter 2; van de Kerke et al., 2019). Roughly 70% of the genus occurs in 
the GCFR (Linder, 2003; Manning and Goldblatt, 2012; Snijman, 2013), with other 
species occurring in Mozambique, Madagascar, Tanzania, Kenya, Ethiopia, Somalia, 
Yemen, Oman, Turkey, Namibia, and Australia (Dreyer et al., 1992; Van der Walt et 
al., 1990; Van der Walt and Vorster, 1983). 

Distribution patterns in Pelargonium are striking and complex due to multiple disjunct 
sister-species distributions (Bakker et al., 2005, 1998). In addition, the ancestral 
geographic range is circumspect (Bakker et al., 2005, 1998). The majority of 
Pelargonium species occur predominantly in the GCFR, which has been hypothesised 
to be the centre of divergence for the genus (Bakker et al., 2005; Fiz et al., 2008). In 
addition, the ancestral lineage for Geraniaceae has been inferred to be in southern 
Africa (Fiz et al., 2008). However, the outgroup Hypseocharis is currently distributed 
in the South American Andes that started to form during the Oligocene (around 33 
Mya; Fiz et al., 2008; Taylor, 1991). It has been hypothesised previously that the 
ancestral lineage of Hypseocharis and Geraniaceae had a wide distributional range 
over southern America, Antarctica, and southern Africa (F.T. Bakker, pers. comm.). The 
current pattern of distributions would then be the result of vicariance due to the 
breakup of Gondwanaland. Whereas the continental breakup started 145 Mya, the 
divergence between the two lineages is dated at only ~36 Mya (Chapter 2; van de 
Kerke et al., 2019). Therefore, the break-up of a widespread ancestor is increasingly 
unlikely. Another scenario for the arrival of Pelargonium in South Africa might be 
a (single) long-range dispersal event from South America, which could explain the 
disjunct distribution with Hypseocharis in the Andes. Such a scenario is not implausible 
considering the more recent history of Pelargonium.  
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Within Pelargonium, a number of long-range dispersal events appear to have 
happened, predominantly within main clades B and C. In clade B, the section 
Peristera escaped the GCFR east towards Australia/New Zealand as well as well as 
west onto the Atlantic ocean islands of St. Helena and Tristan da Cunha (Bakker et 
al., 2005). In main clade C, the distribution of P. aridum (eastern Cape region), sister 
species to P. quinquelobatum (east Africa) and P. insularis (Socotra) was hypothesised 
to be the result of the uplift of the East African Rift during the Pleistocene that acted 
as migratory corridor (Axelrod and Raven, 1978; Bakker et al., 2005). This disjunct 
distribution hypothesised for Pelargonium has been attributed to the so called ‘East 
African highway’ (Bakker et al., 2005). The uplift of the East African plateau during 
the mid-Miocene (~15 Mya; Linder, 2017) is thought to have provided a refuge 
for many plant lineages from the (sub)tropical climate of the African lowlands and 
deserts (Axelrod and Raven, 1978; Koch et al., 2006). In addition, these mountains 
acted as a corridor across Africa connecting the hyperdiverse GCFR with the north 
(Clark et al., 2011; Galley et al., 2007; Schwery et al., 2015). 

The dated plastome-based phylogenetic tree (Chapter 2; van de Kerke et al., 
2019) places these observations in a new light. First and foremost because the age 
of Pelargonium has become much younger (9.7 My instead of 30 My as estimated 
by Bakker et al. (2005)). Thus, the Pelargonium evolutionary history is now more 
congruent with the general pattern for GCFR lineages and the average age of other 
Fynbos lineages (8.5 ± 1.85 Mya; Verboom et al., 2009). In addition, the radiation of 
the Xerophytic A2 main clade (5.3 Mya, harbouring many Succulent Karoo species), 
is congruent with the inferred age of other Succulent Karoo lineages (5.17 ± 0.64 
Mya; Verboom et al., 2009). 
Second, van de Kerke et al. (Chapter 2; 2019) and Röschenbleck et al. (2014) find 
a number of subtle topological differences in the phylogenetic tree compared with 
earlier studies (Bakker et al., 2005) that are relevant for the historical biogeographical 
patterns of the genus. For example, the disjunct distribution of P. caucalifolium 
– P. longicaule (Cape) vs P. whytei (East Africa) and P. tetragonum (Cape) vs (P. 
boranense) as described by Bakker et al. (2005) is no longer applicable as they are 
no longer sister species (Chapter 2; van de Kerke et al., 2019). The same applies to 
the disjunction in the above-mentioned P. aridum (East Cape), P. quinquelobatum 
(Kenya), and P. insularis (Socotra) that no longer have a direct sister-relationship. 

In order to interpret these historical biogeographical patterns and give meaning 
to the dispersal events that likely occurred, phyloclimatic studies are increasingly 
needed (Yesson and Culham, 2006a, 2006b). In phyloclimatics, the phylogenetic 
tree of a clade is combined with present climatic data for the terminals in order to 
infer ancestral states for these climatic conditions. This helps to shed light on past 
distributions and shifts therein. In combination with bioclimatic models, ancestral 
climate envelopes and distributions can be inferred which will aid our understanding 
of the clades resilience in current climatic changes (Keppel et al., 2012; Pearman et 
al., 2008). The aim of this study is to infer the ancestral range of Pelargonium and find 
out whether dispersal and/or vicariance has been the cause of the current species 
distribution patterns given the dated plastome study of van de Kerke et al. (Chapter 
2; 2019). In addition, we infer ancestral climate to explore under what conditions 
shifts occurred.  
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MATERIAL AND METHODS
Ancestral geographic range reconstruction
We reconstructed ancestral geographic ranges using the program BioGeoBEARS 
(Matzke, 2014), which is event-based and offers the opportunity to include a 
‘jump dispersal’ (J) parameter that treats dispersal as a cladogenetic process 
and that has been shown to have a significant effect on the likelihood of tested 
models (Matzke, 2014). Models included the following parameters: the dispersal, 
extinction, vicariance, and cladogenesis. We tested the DEC (Dispersal-Extinction-
Cladogenesis; Ree and Smith, 2008), DIVA (Dispersal-Vicariance Analysis; Yu et al., 
2010) and BayArea (Landis et al., 2013) models, with and without the J parameter. 
Likelihoods for different models are compared using AIC values. In addition to the 
ancestral state estimation we ran a biogeographical stochastic mapping analysis 
for the best fitting model (BayArea + J; Dupin et al., 2017) with 50 replicates. The 
purpose of this is to estimate the number and type of biogeographical events that 
led to the current species distribution of Pelargonium.

The division in floristic patterns in South Africa is complicated and thus we decided 
to follow Linder (2014, 2003). We identified 12 geographic areas (Figure 1) relevant 
for the distribution of Pelargonium and local climatic and geographical boundaries: 
(A) South African Winter Rainfall region, (B) South African Summer Rainfall region, 
(C) South Africa Karoo Region, (D) Natal, (E) Mozambique and Southern Malawi, (F) 
Tanzania, Kenya and Northern Malawi, (G) Ethiopia, (H) Madagascar, (I) Socotra, (J) 
Asia minor, (K) St. Helena, (L) Australia + New Zealand. We included South America 
in an exploratory analysis as geographic area for the outgroup Hypseocharis, but 
we decided to exclude this taxon and corresponding area from the analysis once we 
found it did not affect ancestral geographic range estimations (not shown). Areas 
are based on differences in seasonality in rainfall (A and B) and niche type (D). Area 
C is largely enveloped by the areas A, B, and D and corresponds to the Karoo 
region. No definite northern boundary was defined (gradient in Figure 1). Areas E, 
F, and G cover the eastern branch of the East African Rift system (EAR, Koptev et 
al., 2018; Linder, 2017, 2014), whereby E and F relate to the East African tropical 
lowland, and G to the Ethiopian highland. For areas E and F no western boundary 
was defined, corresponding with the colour gradient (Figure 1). Species distribution 
were obtained from the Global Biodiversity Information Facility (GBIF, www.gbif.
org) and from primary taxonomic sources (see Supplementary Table S1) and were 
verified by hand to ensure accurate species distributions.

Phylogenetic relationships
We used the Pelargonium and Hypseocharis lineages from our time-calibrated 
phylogenetic tree (Chapter 2; van de Kerke et al., 2019) as the basis for our historical 
biogeographical study. We grafted species not present in our phylogenetic analysis, 
but with distribution data, halfway between their terminal sister-species based on 
previous phylogenetic and taxonomic findings (Bakker et al., 2005; Becker and 
Albers, 2009; Jones et al., 2009; Nicotra et al., 2016; Röschenbleck et al., 2014; van 
der Walt, 1985). When sister-species relations were not exactly known (i.e. were part 
of a polytomy), the species was included in the clade corresponding to that known 
polytomy in a sister group position with 0.01*branch-length distance. Otherwise, 
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the species was grafted to the base of the clade representing their taxonomic 
section sensu Röschenbleck et al. (2014; Supplementary File S2). We chose to 
include species in this way because subsequent historical biogeographic analyses 
require fully bifurcating phylogenetic trees. This resulted in two phylogenetic trees: 
(1) the original plastome phylogenetic tree (106 terminals) and (2) an extended 
phylogenetic tree including all species with georeferenced distribution datas 
(258 species). Analyses were performed using the packages ‘phytools’ and ‘APE’ 
in R (Paradis et al., 2004; Revell, 2012). Supplementary Figure S3 shows the two 
phylogenetic trees as used in this study.

Ancestral environment
We chose three environmental variables that are thought to correlate with many 
other environmental factors (T.M. Moore, pers. comm): Mean annual precipitation, 
mean annual temperature and elevation. Mean annual precipitation and mean 
annual temperature were selected because they give a good indication of the type 
of climatic conditions at the locality of the plant, and elevation because it highly 
correlates with general conditions on site and with potential pollinators in a generic 
way. We extracted these climatic variables for all georeferenced coordinates found 
for the current species distributions. We performed an ancestral state reconstruction 
using square change parsimony optimisation on our continuously-distributed 
characters in Mesquite v. 3.6 (Maddison and Maddison, 2018) to infer ancestral 
states for each of these variables.

RESULTS
Historical biogeographical model testing
Including jump dispersal parameter along with the dispersal, extinction, and 
cladogenesis parameters in the tested models, gave a significantly better model. 
The BayAreaJ model (containing dispersal and allowing for jumps, LnL = -724, P = 
1.20E-10) was the best model for both phylogenetic trees. The inferred ancestral 
geographic range estimation for almost all nodes are identical for BayArea and 
BayAreaJ. Figure 1 shows the 258-terminal phylogenetic tree showing ancestral 
geographic range estimations under the BayAreaJ model at selected nodes. 
Ancestral geographic range for the core and extended phylogenetic trees gave 
corresponding results. We based all subsequent ancestral geographic range 
discussions on the extend phylogenetic tree constructed on the BayAreaJ model 
(Figure 1 and 2).

The 50 biogeographical stochastic mappings (BSM) in BioGeoBEARS provided 
probability distributions across the branches of the extended phylogenetic tree 
for each of the different cladogenetic events. Given the parameters of this model, 
91.98% of cladogenetic events involve sympatry, 0% involve vicariance, and 8.02% 
involve jump-dispersals (Figure 3). 

Biogeographical patterns
When we include the geographic area of outgroup Hypseocharis in the 
biogeographical analysis (South America), the ancestor of the two lineages is 
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Figure 1. Historical biogeographical history of Pelargonium. Grafted phylogenetic tree of Pelargonium 
based on plastome core by van de Kerke et al. (2019; with core terminals in black and grafted terminals 
in grey) showing estimated ancestral history of the genus. Coloured blocks refer to areas as defined for 
this study and are shown on map.
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estimated to have occurred in an area encompassing all of South America, the 
South African Winter Rainfall region, the South African Summer Rainfall region, the 
South Africa Karoo Region, as well as the South Africa Eastern Cape (not shown). 
Overall, the majority of species reside in a combination of the South African Winter 
and Summer Rainfall region, and the South Africa Karoo Region (Figure 1). 

Distribution patterns in Clade A are quite conservative. An overwhelming majority 
of species occurs in the South African Winter Rainfall region, sometimes in 
combination with the South African Summer Rainfall or Karoo region. Only in a 
few occurrences a species is only present in one of the latter areas. The taxonomic 
section Magnistipulacea, in particular appears to have ‘escaped’ the South African 
Winter rainfall region and moved into the South African Eastern Cape region (Figure 
1).
In the diversification of the main clade with the oldest crown node within Pelargonium, 
clade C, multiple shifts from this ancestral range into the East African Highway and 
Asia Minor have occurred: Pelargonium mutans into the South African Eastern Cape 
area,  P. whytei into the Tanzania, Kenya and Northern Malawi area,  P. boranense, 
P. multibracteatum and P. hararense to the Ethiopia area, P. caylae to Madagascar, 
P. quercetorum and P. endlicherianum into Asia minor, and P. quinquelobatum into 
both the Tanzania, Kenya and Northern Malawi area as well as the Ethiopia area 
(Figure 2).
Species from clade B also predominantly occur in the South African CFR regions 
(Figure 2). This clade is dominated by two jump dispersal events towards the Australia 
+ New Zealand area by species from sect. Peristera (1 Mya in the Pliocene) and an 
independent event towards St. Helena by P. cotyledonis (3 Mya in the Pleiocene).

Figure 3 shows the flow and direction between areas as calculated by BioGeoBEARS 
(founder events per area, Supplementary Table S4). A relatively high number of 
events occurred based on areas A, B, and to a lesser extent C. We considered this 
to be driven by the comparatively high number of species in this area. We find 
there is a lot of flux of species from area A into all other areas, but there is also 
movement of species back into area A from area B and C. Dispersal into areas E, 
F, and H also appear to have occurred from A, B, and C. The event of Pelargonium 
arriving in Socotra (I) we find has probably happened out of Ethiopia (G). Dispersal 
into Madagascar (H) is more complex because we find influx from multiple sources 
as plausible (A, C, and/or J). The pattern of the ancestral geographic range 
reconstruction with an event out of Asia Minor by P. caylae is corroborated, but 
there also is a chance of movement in the other direction. 

Figure 2. (previous page) Historical biogeographical history of Pelargonium for main clades C1, C2, and 
B. Grafted phylogenetic tree of Pelargonium based on plastome core by van de Kerke et al. (2019; with 
core terminals in black and grafted terminals in grey) showing estimated ancestral history of the genus. 
Coloured blocks refer to areas as defined for this study and are shown on map.
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Ancestral environment
We reconstructed ancestral conditions for mean annual temperature, mean annual 
precipitation, and elevation for all Pelargonium species present in the extended 
phylogenetic tree using georeferenced occurrence data obtained from GBIF. We 
infer the ancestral lineage leading to Pelargonium to have occurred at between 
~600 – 900 m elevation, around ~18°C, and around 550 mm annual precipitation 
(Figure 4). Most clades quickly shifted to lower temperatures (~13°C, Figure 4B), 
and lower precipitation (~400 mm, Figure 4C) while estimated elevation remains 
similar with a few jumps of major clades to lower altitudes (~300 – 600 m, Figure 4A). 
The overall pattern for elevation seems to be that for the deep nodes conditions 
are stable between 300 – 900 m. Within clades, there are jumps of species shifting 
to either lower (19 – 300) or higher altitudes (900 – 3250 m). Switches are spread 
evenly over the phylogenetic tree.
With respect to temperature, the ancestral lineage for clade C1 and C2 is inferred 
to have remained the same as for the ancestral Pelargonium lineage (~18°C, Figure 
4B). The other clades have shifted to a cooler temperature of ~13°C (Figure 4B), 
which has remained steady for most lineages in Pelargonium. Again, we find multiple 
transitions towards either cooler (7 - 13°C) or warmer (18 – 26.5°C) climates. 
Precipitation levels have shifted much more in our ancestral state reconstruction in 
comparison with elevation and temperature. Conditions for the ancestral lineage of 
clade C1 and C2 are inferred to have remained the same as the ancestral Pelargonium 
lineage (~550 mm annual precipitation) while conditions for the ancestral lineage 
of all other clades have shifted to ~400 mm. Especially in clade A1 and A2, a large 
number of switches towards even lower precipitation levels (39 – 300 mm annually) 
happened while in clade C1, C2, and B relatively more species switched to wetter 
climates.

DISCUSSION
We find the ancestral geographic range of Pelargonium to include the Winter and 
Summer rainfall region, the Karoo region , and the Natal region of South Africa and 
which started to diverge around 9.7 Mya (Chapter 2; van de Kerke et al., 2019). This 
diversification coincides with the average age for other Fynbos lineages (Verboom 
et al., 2009) and hence provides additional support of these general patterns. The 
climatic conditions underlying the current Mediterranean type climate were already 
established at that time (Axelrod and Raven, 1978; Bakker et al., 2005).

Including the outgroup lineage Hypseocharis in the analysis simply stretches the 
ancestral range estimation to include the Andes region and seems to suggest a 
common ancestor on Antarctica, as has been inferred for Palms (Baker and Couvreur, 
2013). However, an ancestral Pelargonium lineage on Antarctica seems to be highly 
unlikely given the crown clade estimate age of 9.7 Mya (Chapter 2; van de Kerke et 
al., 2019). Although the African, South American, and Antarctican continents where 
separated ~100 Mya (Jokat et al., 2003), Antarctica only became fully covered in ice 

Figure 3. (previous page) River plot summarising dispersal events estimated with stochastic mapping. 
Lines correspond with size and direction of flow  between areas as defined for this study and shown on 
map (see Supplementary Table S4).
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around 35 Mya (Carter et al., 2017). Since this is congruent with the divergence date 
of Hypseocharis and the lineage leading to the Geraniaceae, a long-range event 
during the Oligocene of an ancestral Pelargonium or Geraniaceae lineage from 
Antarctica into the Cape region is still possible and would coincide with the arrival 
of Iridaceae lineages during a mediterranean type climate period (Linder, 2003).

Pelargonium as a clade started to diversify around 9.7 Mya. Climatic conditions in the 
Late Miocene (i.e. 11.63 to 5.3 Mya) were comparable with modern conditions after 
having gone through major changes during the Early Miocene (Linder, 2003). At that 
time, climatic conditions globally became tropical and a concomitant vegetation with 
palms established in the CFR (Linder, 2003). During the Middle and Late Miocene, 
these tropical conditions were replaced by the Mediterranean type climate still 
seen today. The upwelling of the Benguela current around 10 Mya, accentuated 
by the glaciation of Antarctica during that time, coincided with offshore blowing 
trade winds (removing moisture from land) and the southern Atlantic pressure cell 
that limits moist airflow, resulted in aridification. This formed the current east-west 
rainfall gradient. Around the same time (10 Mya) the Great Escarpment lifted in the 
central southern African plateau. The eastern margins (Drakensbergen) raised more 
than the margings in the west (Cederbergen), and the east-west rainfall gradient 
became more pronounced. ‘Consequently the eastern CFR (windward slope of 
the escarpment mountains) would have become wetter, while summer aridity in 
Namaqualand and the succulent Karoo (leeward side) would have been enhanced’ 
(Linder, 2003). Our imaginary ancestral Pelargonium could then have come out of a 
mountain refuge, where the moderate Cape flora established in the Early Miocene 
had retreated from the tropical conditions (van der Niet and Johnson, 2009). This 
coincides with the inferred elevation of the ancestral Pelargonium lineage, which is 
found to be between ~600 – 800 meters (Figure 4A). The inferred mean temperature 
for the ancestral lineage is relatively low (~18°C), which is congruent with a cooler, 
mountainous climate (Figure 4B). This scenario is congruent with those suggested 
for other Cape lineages, as for example Restionaceae (Linder and Hardy, 2004).

The ancestral geographic range estimation (Winter and Summer rainfall region, 
the Karoo, and the Natal) is congruent with the current distribution of Pelargonium 
species, not surprisingly especially for clade A1 and A2 of which an overwhelming 
majority of species occur in the Winter and Summer rainfall regions and the Karoo. 
These clades were referred to previously as the “Winter Rainfall region clade” 
and are characterised by a wide array in life forms including woody shrubs, stem 
succulents, geophytes, and herbaceous annuals (Bakker et al., 2005; Figure 1). Only 
the small clade corresponding with the section Magnistipulaceae (a.o. P. luridum 
and P. caffrum) appear to have escaped the Winter rainfall region and migrated to 
the Natal region on the South African East coast. This coincides with higher levels 
of precipitation we find for the clade. The Magnistipulaceae, as well as the section 
Polyactium occurring in the Winter rainfall region, was inferred to have shifted to 
hawkmoth pollination (Bakker et al., 2005), with its concomitant night-scentedness 
and dull petal colours. The competition in pollinator accessibility between these 
two clades might well have resulted in this geographic split. 
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The clade B species are well based in the ancestral range of Winter - Summer rainfall 
and Karoo regions, although we find more disjunct distributions than in clade A. 
Whereas clade A species have a solid base in the Winter rainfall region and from 
there seem to expand into other regions, clade B species more often occur in sub-
areas of the ancestral range. A number of species have escaped the ancestral range 
altogether, moving into Mozambique (E; P. mossambicense), Tanzania, Kenya and 
Northern Malawi (F; P. rungvense and P. apetalum), Ethiopia (G; P. wonchiense and P. 
glechomoides), and most notably St. Helena (K; P. cotyledonis) and Australia + New 
Zealand (L, i.a. P. australe, P. littorale, and P. rodneyanum). For most of these species 
in this main clade, we can only note that they have a disjunct distribution but cannot 
go any further because they reflect species that are grafted to the phylogenetic 
tree and actual sister-species relations are unknown (grey lineages, Figure 2). Only 
the distribution patterns of P. cotyledonis and the ‘Australia’ clade are based on 
phylogenetic analyses, but how these relatively close species dispersed in such 
opposite directions remains elusive. Long-range dispersal by birds seems unlikely 
since Pelargonium does not bear any appetising fruits. A scenario of Pelargonium 
seeds sticking to the fur of prey eaten by birds and deposited either on St. Helena 
or in Australia is similarly farfetched. More plausible could be a scenario whereby 
a combination of thermodynamics and wind currents drifted Pelargonium seeds 
across the respective oceans (Bakker et al., 1998; van der Does et al., 2018).
The oceanic island endemic P. cotyledonis, occurring on St. Helena (K, ~2.5 Mya) has 
long been hypothesised to have ‘reverted back’ to a symplesiomorphic Geranium 
flower shape, having lost its characteristic Pelargonium zygomorphy and nectar 
spur. However, we found that other Pelargonium species have highly similar floral 
shapes to P. cotyledonis, undermining its presumed uniqueness (Chapter 2; van de 
Kerke et al., 2019). Apparently, the ancestral lineage of P. cotyledonis arriving on St. 
Helena has not been in the position to diversify on the island (although two forms 
have been recognised within this species) and until now remains the only species in 
the Isopetalum section (Röschenbleck et al., 2014).
Similar to the dispersal of P. cotyledonis, but around ~1.5 Mya, an ancestral lineage 
dispersed east toward Australia. Contrary to P. cotyledonis, this lineage did diversify 
in the new area (Bakker et al., 1998; Nicotra et al., 2016). Arguably, the climatic 
conditions this clade found itself in are rather similar to those of the South African 
Cape region, which is generally corroborated in the ancestral climate reconstruction. 
Radiation into this new biome does not appear to have happened on a large scale. 
The notable exception is P. helmsii, which occurs in an area with high precipitation 
levels. This would suggest that the ancestral lineage dispersing to Australia, which 
indeed escaped from the ancestral geographic range of Winter - Summer rainfall 
and Karoo regions, was not able to adapt to other environmental circumstances.

Similarly disjunct as the species distribution of clade B is that of clade C, which is 
the earliest diverging lineage and has the oldest crown-node age (~9 My) of the 
Pelargonium main clades. Also, the most shifts relative to the estimated ancestral 
range of Winter - Summer rainfall, Karoo and Natal regions have occurred within this 
clade. The first of these is the loss of the Natal region in the ancestral geographic 
range reconstruction for the entire C1 main clade, with only one escapee (P. mutans) 
into the Natal area. Most of the remainder of the shifts in this clade are within sub-
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areas of the estimated ancestral range of Winter - Summer rainfall, Karoo and Natal 
regions, with distributions often becoming increasingly narrower.
The disjunct distribution patterns of P. karooicum (Winter rainfall area), P. caylae 
(Madagascar), and P. endlicherianum – P. quercetorum (Asia minor) has previously 
been attributed to the uplift of the East African plateau (Bakker et al., 2005). The 
distribution of this group of species was thought to suggest a step-like spread of 
species from the Cape region, over de Drakensbergen in the Natal region, over 
the East African plateau into Ethiopia and onwards to Asia minor via Yemen. The 
timescale this was hypothesised to have occurred at was much larger and allowed for 
extinct species ‘filling the gaps’ between the previously mentioned three steps (this 
disjunction was then dated at 18 Mya, Bakker et al., 2005). In light of the more recent 
dating analysis by van de Kerke et al. (Chapter 2; 2019) who found the diversification 
of P. karooicum to be ~5 Mya and the P. caylae (Madagascar) vs P. endlicherianum 
- P. quercetorum split around ~ 2.5 My, this scenario is now unlikely. The uplift of 
the East African plateau took placing during the middle Miocene and would have 
been well established around the divergence times of these Pelargonium species 
(Linder, 2017). Contrary to previous findings, of a step like dispersal from Cape 
to Madagascar to Asia Minor, our results suggest P. caylae dispersed back from 
Asia Minor to Madagascar around ~ 2.5 Mya (Figure 2) since we find the ancestral 
geographic range of P. caylae (Madagascar) vs P. endlicherianum - P. quercetorum 
to be Asia Minor. 
The disjunct dispersal hypothesised for P. aridum (East Cape), P. quinquelobatum 
(Kenya), and P. insularis (Socotra) as suggested by Bakker et al. (2005) is not 
supported by the plastome data (Chapter 2; van de Kerke et al., 2019). Instead, 
we now encounter a clade including ((P. quinquelobatum, P. multibracteatum 
(Ethiopia)), and P. insularis (Socotra)) for which the ancestral geographic range is 
found to be Ethiopia (P. aridum is now in a sister-species position at the base of 
the clade). A single long-range dispersal event would then underlie the jump from 
the Cape region into Ethiopia around 2 Mya, from where a lineage leading to P. 
insularis would have dispersed onto Socotra around 1 Mya. The inclusion of other 
Pelargonium species occurring in this region and their correct placement in the 
core phylogenetic tree (as well as that of P. hararense) will undoubtedly shed more 
light on these dispersals. Unfortunately, pollinators for these species are unknown 
and therefore we cannot find an explanation for the dispersal events in that area. 
However, the seeds in sect. Ciconium are reported to be rather sticky and the species 
make for notoriously good cuttings which opens the possibility of hitchhiking with 
an unknowing carrier (F.C. Breman, pers. comm.). 
The other species disjunctions previously hypothesised for Pelargonium (P. 
caucalifolium – P. longicaule (Cape) vs P. whytei (East Africa) and P. tetragonium 
(Cape) vs (P. boranense) (Bakker et al., 2005) similarly are not supported by our 
analysis. This is due to topological shifts in the plastome phylogenetic tree, but 
also potentially because a number of them were not included in the plastome 
phylogenetic analyses and were grafted to the phylogeny (Figure 2, grey terminals). 
Although we have made an effort to phylogenetically place these species as 
accurately as possible in the grafted phylogenetic tree, relationships inferred in 
other studies where not always fully resolved (Bakker et al., 2005; Röschenbleck 
et al., 2014). However, contrary to the study by Bakker et al. (2005) we retrieve P. 
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boranense and P. whytei in the same clade, dated ~1.5 Mya. We hypothesise their 
distribution to be the result of a single dispersal event, but in this case (given the 
long, empty branch leading to this clade) a step-like distribution with now extinct 
species spreading from the Cape over the Drakensbergen into the East African 
plateau would be equally plausible. 

Disjunct distribution and migration patterns have been inferred for numerous 
African plant clades. Sanmartín et al. (2010) found that while exchange between 
northern and southern Africa appears very low, the migration that took place seems 
to have gone through the east. Ali et al. (2013) found several dispersal events in 
the Hyacinthaceae subfamily Urgineoideae from South Africa to eastern Africa. 
These patterns match well with our inferences of Pelargonium. It is suggested that 
the Pleistocene uplift in Africa might have formed a corridor through and over the 
tropical forests that acted as a barrier (Axelrod and Raven, 1978). Bellstedt et al. 
(2012) identified five migrations from south-west to north-east Africa in the plant 
family Zygophylloideae that can be explained by a migration corridor in eastern 
Africa. Chala et al. (2017) showed that drought-tolerant plant species inhabiting 
alpine environments could have used grassland and forest present in the Pleistocene 
to cross otherwise inhabitable mountain ridges. More evidence of an Arid belt 
across eastern Africa was collected by Jürgens (1997), who demonstrated that floral 
habitats show patterns of fragmentation, suggesting that what was once an arid 
migration corridor has now broken up into several habitable ranges. It is possible 
that the trail of Pelargonium species across Eastern and Northern Africa have been 
similarly divided by habitat fragmentation in an Arid belt.
Jump dispersal is thought to be the cause behind the North-Eastern Euryops species 
(Devos et al., 2010). These species, however, form a monophyletic group, and this 
is not the case with the Ethiopian Pelargonium species. Several dispersal events in 
the same direction suggest a pattern, which means that these events were possibly 
facilitated in some way by external factors. One possible influence on Pelargonium 
dispersal could therefor well be the East African Highway (Bellstedt et al., 2012).

We find that long range dispersal seems to be the prime cause of the disjunct 
distribution patterns in Pelargonium, both to Australia, Madagascar, along the East 
African Highway, and into Asia minor. Long distance dispersal of plants to Australia 
is not rare (Bergh and Linder, 2009). Crisp and Cook (2013) studied 85 Australian 
plants clades and found that 48% arrived in Australia through long-distance 
dispersal. Concordant dispersal patterns, dispersal facilitated by various abiotic 
factors, are also present in plants (Sanmartín and Ronquist, 2004). The expansion 
into New-Zealand may be explained by Trans-Tasman winds (Pole, 2001).
There are multiple ways for a plant to disperse over long distances (wind, water, fur 
or feathers, and droppings) and the general dispersal ability of a plant can often be 
linked to seed morphology (Heleno and Vargas, 2015). However, seed morphology 
has been found not to be a reliable predictor of long range dispersals. Rather, 
long range dispersals in plants are often attributed to different methods than the 
‘standard’ for the clade (Heleno and Vargas, 2015; Higgins et al., 2003; Myers et 
al., 2004; Nathan, 2006). In addition, unpredictable and rare dispersal mechanisms 
can be a cause of these chance, long range, dispersals. Extreme weather can carry 
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seeds, even those that are not normally dispersed by wind, much further than normal 
(Heleno and Vargas, 2015; Nathan et al., 2008; Waters and Roy, 2004). Extreme 
weather may even offer the benefit of disturbing the environment it deposits the 
seeds in, giving the invading species an advantage (Wu et al., 2018). In addition, 
natural rafts can be carried by ocean currents while preserving the seeds they carry. 
It has been shown for Urticaceae that non-germinated seeds can survive in sea 
water long enough to travel long distances to isolated islands (Wu et al., 2018). 
These could all have been options for Pelargonium, although general durability of 
Pelargonium seeds in these rough (wet) conditions has not been studied. 

One disadvantage of dispersal through extremely rare events is that it often takes 
multiple seeds for a species to settle, especially if plants are not self-compatible, 
or dioecious (De Waal et al., 2014; Wu et al., 2018). While the focus in historical 
biogeography studies tends to lie on the journey to different locations, the 
establishment of a species in a new location can be just as challenging. In Pelargonium 
sect. Peristera the species that have diverged in Australia are small weeds that can 
colonise new regions relatively easily and have been found to have increased levels 
of self-compatibility, a strategy often used in newly-diverged species to ensure 
establishment (Bakker et al., 1998; Nicotra et al., 2016). 

CONCLUSION
We find the ancestral geographic range of Pelargonium to be a range including 
the Winter (A) and Summer (B) rainfall region, the Karoo region (C), and the Natal 
(D) region in South Africa. The inferred environmental conditions for Pelargonium 
concur with existing knowledge on local climatic conditions (Linder, 2003). A long-
range event during the Oligocene of an ancestral Pelargonium and/or Geraniaceae 
lineage from Antarctica into the Cape region (Linder, 2003) is still possible based 
on our data and reconstructions. The ancestral geographic range estimation is 
congruent with the current distribution of Pelargonium species, especially for the 
species rich clades A1 and A2. Dispersal events appear to have occurred mainly in 
clade B, C1, and C2. Understanding the Pelargonium biogeographic history enables 
researchers to understand trait evolution within the genus. 
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P. parvipetalumP. nervifoliumP. carolihenriciP. fumarifoliumP. confertumP. grenvilleaeP. moniliformeP. vinaceumP. luteolumP. wuppertalenseP. torulosumP. leipoldtiiP. fissifoliumP. aestivaleP. luteumP. aristatumP. petroselinifoliumP. triphyllumP. undulatumP. pinnatumP. violiflorumP. carneumP. rapaceumP. aciculatumP. connivensP. ellaphieaeP. glabriphyllumP. reflexipetalumP. auritumP. longiflorumP. asarifoliumP. radiatumP. caledonicumP. fasciculaceumP. fergusoniaeP. leptumP. ternifoliumP. incrassatumP. angustipetalumP. aridicolaP. attenuatumP. bubonifoliumP. calviniaeP. campestreP. chelidoniumP. curviandrumP. dipetalumP. elandsmontanumP. flavidumP. githagineumP. gracilipesP. gracillimumP. hemicyclicumP. heterophyllumP. hirtipetalumP. longifoliumP. nephrophyllumP. naviculifoliumP. nummulifoliumP. oblongatumP. ochroleucumP. oxaloidesP. pallidoflavumP. pilosellifoliumP. proliferumP. psammophilumP. pubipetalumP. punctatumP. triandumP. quarciticolaP. radicatumP. reflexumP. rubiginosumP. sabulosumP. tenellumP. trifoliolatumP. tripalmatumP. viciifoliumP. weberiP. salmoneumP. fulgidumP. sericifoliumP. hirtumP. pulchellumP. appendiculatumP. hystrixP. stipulaceumP. crassipesP. oreophillumP. luridumP. flabellifoliumP. caffrumP. bowkeriP. schizopetalumP. carnosumP. crithmifoliumP. dasyphyllumP. laxumP. rotundipetalumP. klinghardtenseP. paniculatumP. adriaaniiP. albersiiP. brevipetalumP. ceratophyllumP. keerombergenseP. parviflorumP. polycephalumP. tristeP. lobatumP. anethifoliumP. pulverulentumP. multiradiatumP. pillansiiP. radulifoliumP. gibbosumP. xerophytonP. alternansP. desertorumP. echinatumP. cortusifoliumP. magenteumP. crassicauleP. sibthorpiifoliumP. vanderwaltiiP. caespitosumP. coronopifoliumP. capillareP. ovaleP. tricolorP. elegansP. althaeoidesP. burgerianumP. ocellatumP. oenotheraP. nanumP. incarnatumP. setulosumP. scabrumP. ternatumP. citronellumP. grandiflorumP. alpinumP. sublignosumP. englerianumP. crispumP. patulumP. fruticosumP. cordifoliumP. cucculatumP. betulinumP. hermanniifoliumP. laevigatumP. lanceolatumP. graveolensP. radensP. vitifoliumP. hispidumP. papilionaceumP. tomentosumP. pseudoglutinosumP. denticulatumP. quercifoliumP. glutinosumP. panduriformeP. capitatumP. ribifoliumP. greytonenseP. scabroideP. tabulareP. exstipulatumP. dichondrifoliumP. ionidiflorumP. reniformeP. sidoidesP. odoratissimumP. albumP. abrotanifoliumP. australeP. drummondiiP. havlaseP. rodneyanumP. littoraleP. helmsiiP. inodorumP. grossularoidesP. hypoleucumP. glechomoidesP. cotyledonisP. ancepsP. apetalumP. brevirostreP. capituliformeP. columbinumP. filicauleP. geniculatumP. gilgianumP. leucophyllumP. nelsoniiP. parvirostreP. rungvenseP. setosiusculumP. wonchienseP. buysiiP. iocastumP. minimumP. pseudofumarioidesP. disparP. mossambicenseP. inquinansP. frutetorumP. acetosumP. zonaleP. acraeumP. tongaenseP. peltatumP. quinquelobatumP. insularisP. multibracteatumP. articulatumP. alchemilloidesP. barklyiiP. plurisectumP. aridumP. ranunculophyllumP. elongatumP. endlicherianumP. quercetorumP. caylaeP. otavienseP. grandicalcaratumP. spinosumP. karooicumP. transvaalenseP. hararenseP. caucalifoliumP. multicauleP. candicansP. myrrhifoliumP. suburbanumP. longicauleP. whyteiP. boranenseP. worcesteraeP. exhibensP. tetragonumP. tragacanthoidesP. griseumP. dolomiticumP. redactumP. senecioidesP. tenuicauleP. trifidumP. praemorsumP. mutansP. divisifoliumP. antidysentericumP. erlangerianum

Suppl. Figure S3A. Manually grafted phylogenetic 
tree including 258 tips representing same amount of
Pelargonium species.
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P. petroselenifolium
P. torulosum
P. wuppertalense
P. luteolum
P. moniliforme
P. leipoldtii
P. undulatum
P. fissifolium
P. pinnatum
P. violiflorum
P. rapaceum
P. incrassatum
P. pulchellum
P. appendiculatum
P. hirtum
P. fulgidum
P. bowkeri
P. luridum
P. schizopetalum
P. carnosum
P. laxum
P. klinghardtense
P. paniculatum
P. triste1
P. lobatum
P. pillansii
P. gibbosum
P. xerophyton
P. alternans
P. desertorum
P. echinatum
P. magenteum
P. crassicaule
P. elegans
P. nanum
P. ternatum
P. scabrum
P. citronellum
P. englerianum
P. crispum
P. grandiflorum1
P. patulum
P. fruticosum
P. cordifolium
P. cucculalum
P. graveolens 
P. hispidum
P. pseudoglutinosum1
P. denticulatum
P. quercifolium
P. glutinosum
P. panduriforme
P. capitatum
P. ribifolium
P. exstipulatum
P. dichondrifolium
P. ionidiflorum
P. reniforme
P. sidoides
P. odoratissimum
P. album
P. rodneyanum
P. australe
P. littorale
P. grossularoides
P. cotyledonis
P. buysii
P. minimum
P. inquinans
P. frutetorum
P. acetosum
P. zonale
P. acraeum
P. tongaense
P. peltatum
P. multibracteatum
P. quinquelobatum
P. articulatum
P. alchemilloides 1
P. barklyii
P. plurisectum
P. aridum
P. elongatum
P. otaviense
P. grandicalcaratum
P. spinosum
P. endlicherianum
P. caylae
P. karooicum1
P. transvaalense
P. tragacanthoides
P. griseum
P. dolomiticum
P. senecioides
P. tenuicaule
P. trifidum
P. praemorsum
P. mutans
P. caucalifolium
P. multicaule
P. candicans1
P. myrrhifolium
P. worcesterae
P. exhibens
P. tetragonum
P. antidysentericum

Suppl. Figure S3B. Trimmed down phylogenetic tree 
(based on original plastome phylogenetic tree) including 
106 tips representing same amount of Pelargonium 
species.
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ABSTRACT
Background. Variation in floral shapes has long fascinated biologists and its 
modelling enables testing of evolutionary hypotheses. Recent comparative 
studies that explore floral shape have largely ignored 3D floral shape. We propose 
quantifying floral shape by using geometric morphometrics on a 3D model based 
on 2D photographical data and demonstrate its performance in capturing shape 
variation. 
Methods. This approach offers unique benefits to complement established imaging 
techniques i) by enabling adequate coverage of the potential morphospace of large 
and diverse flowering-plant clades; (ii) by circumventing asynchronicity in anthesis 
of different floral parts; and (iii) by incorporating variation in copy number of floral 
organs within structures. We demonstrate our approach by analysing 90 florally-
diverse species of the Southern African genus Pelargonium (Geraniaceae). We 
quantify Pelargonium floral shapes using 117 landmarks and show similarities in 
reconstructed morphospaces for spur, corolla (2D datasets), and a combined 3D 
dataset. 
Results. Our results indicate that Pelargonium species differ in floral shape, which 
can also vary extensively within a species. PCA results of the reconstructed 3D floral 
models are highly congruent with the separate 2D morphospaces, indicating it is an 
accurate, virtual, representation of floral shape. Through our approach, we find that 
adding the third dimension to the data is crucial to accurately interpret the manner 
of, as well as levels of, shape variation in flowers. 
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INTRODUCTION
Variation in floral form continues to be an inspiration for a wide variety of research 
fields, ranging from taxonomy (Linnaeus, 1758), developmental biology (Carr and 
Fenster, 1994; Coen and Meyerowitz, 1991; Cubas et al., 1999; Fenster et al., 1995; 
Luo et al., 1995; Mummenhoff et al., 2009; Parenicova et al., 2003), evolution 
(Darwin, 1877a; Reyes et al., 2016; Sauquet et al., 2017), adaptation, to pollination 
biology and speciation (Darwin, 1877a, 1877b; Fernández-Mazuecos et al., 2013; 
Gómez et al., 2016; Grant, 1949; van der Niet and Johnson, 2012). The term ‘form’ 
refers to a combination of size and shape (Goodall, 1991; Zelditch, 2012). Whereas 
allometry is the study of the effect of size on the variation in morphological traits 
(Klingenberg, 2016) , shape is defined as ”those geometrical attributes that remain 
unchanged when the figure is translated, rotated and scaled” (Goodall, 1991). 
The total variation in shape of a clade after scaling and aligning forms its 
‘morphospace’ (Chartier et al., 2014), which can change depending on the taxa 
included in the study. Traditional versus geometric morphological methods (GMM) 
have been the subject of debate (see Adams et al., 2004; Rohlf and Marcus, 1993). 
In GMM, landmarks placed on homologous structures capture the geometry of 
the studied object. Shape is maintained throughout the analyses, preserving the 
geometric relationships between structures (Adams et al., 2004; Rohlf and Marcus, 
1993). 

Challenges for any morphometric study are measurement accuracy and precision. 
For accuracy, including as many taxa as possible seems important in GMM studies, 
because the aim is to cover variation in shape. Taxonomic coverage is often used 
here as a proxy to determine inclusiveness or accuracy. However, more important 
might be to include a broad representation of the expected morphological diversity 
in the sampling, irrespective of phylogenetic diversity. In general, larger clades are 
considered to be more informative because more taxa means more data, likely 
increasing the accuracy in measuring the studied shape variation. But when the 
taxon- and total potential morphospaces cannot be adequately covered, studying 
large clades is less meaningful. 

When a floral GMM analysis is performed on a plant clade , maintaining the precision 
of gathering the data poses an additional challenge. Since plant morphology can 
be considered  “a process” (Sattler, 1996, 1990), i.e. development, it is important 
to make sure that there is no noise from developmental signals in the data and 
its resulting morphospace, and hence that comparisons are made for the same 
ontogenetic stage across individual flowers. Ontogenetic noise can be prevented by 
deciding on a particular developmental stage for all individuals when measured. Full 
anthesis of the corolla is an example thereof (Gómez et al., 2016). However, studies 
have shown that different floral parts are not synchronised in their development 
(Ronse De Craene, 2018) and that species differ in the synchronisation of their floral 
parts (van de Kerke, unpublished data). Therefore, the floral parts of all individuals 
included in the study should be captured during the same ontogenetic stages, 
which poses a practical problem in data gathering.
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Another, practical, challenge in floral GMM is the variation in copy number of included 
structures. For example, a species can display a range in number of stamens or 
petals within its flowers. This can be problematic because GMM studies are based 
on capturing homologous structures and therefore retaining accurate homology 
assessment is essential. Simply omitting copy number-variable structures from the 
analysis is not desirable since they represent evidence on shape. Assuming serial 
homology and ‘filling in’ missing copies could be one solution but the ensemble 
shape may be affected. Thus, how to handle such morphs and their varying copy 
numbers is not straight-forward. 

We aim to address the GMM challenges outlined above, using the predominantly 
South African genus Pelargonium (Geraniaceae) as a model. The genus is known 
for its stunning floral and vegetative diversity across its ~280 species (Bakker et 
al., 2005, 1999, Jones et al., 2009, 2003; Nicotra et al., 2008; Röschenbleck et al., 
2014; Struck, 1997, Figure 1) and has been the subject of wide-spread breeding 
and horticulture (Becher et al., 2000; James, 2002; Miller, 2002). Roughly 70% of 
the genus occurs in the South African Greater Cape Floristic Region (GCFR; Linder, 
2003; Manning and Goldblatt, 2012; Snijman, 2013), other species occur in eastern 
Africa, Namibia, Asia Minor, the Arabian peninsula, Madagascar and Australia 
(Bakker et al., 2005). Phylogenetic relationships within the genus are well known 
(Bakker et al., 2005; Röschenbleck et al., 2014; Chapter 2; van de Kerke et al., 2019) 
and show a pattern of deep splits as well as more recent species radiations (i.e. the 
geophytic sect. Hoarea; Bakker et al., 2005). 
Pelargonium flowers are specialised when compared with the remainder of the 
Geraniaceae clade (i.e. Geranium, Erodium, Monsonia and California), as they 
exhibit strongly zygomorphic corollas and possess nectar spurs that are formed 
adnate to the pedicels (Albers and van der Walt, 2007; Bakker et al., 2005; Goldblatt 
et al., 2000; Hodges, 1997; Hodges and Arnold, 1995; Manning and Goldblatt, 
2012; but see Tsai et al., 2018; Van der Walt and Vorster, 1988), which is unique in 
angiosperms (Hodges, 1997; but see Tsai et al., 2018). Throughout Pelargonium, 
variation in floral shape occurs in a number of ways. Most strikingly, the orientation 
of the petals ranges from highly zygomorphic (P. fulgidum) to almost actinomorphic 
(P. cotyledonis). Secondly, the variation in petal copy number occurs between and 
within a species (i.e. P. caucalifolium) and alters between five (the ‘standard’ in 
Geraniaceae), four (P. tetragonum), two (P. dipetalum), and can even be missing 
(P. apetalum). Third, the shape of the petals varies tremendously: from slender and 
elongated (P. paniculatum) to almost round (P. inquinans). Pelargonium exhibits a 
range of pollination syndromes, including species of long-tongued hovering flies 
(Tabanidae, Bombyliidae, and Nemestrinidae), bees (Apidae, Anthophoridae, 
Megachilidae), wasps (Vespidae), and beetles (Scarabaeidae; Struck, 1997). Some 
syndromes are highly-specialised, as in the oceanic island endemic P. cotyledonis 
(occurring on St. Helena) where the nectar spur is reduced to a few millimetres. 
Another extreme example is the geophytic P. appendiculatum (with a limited 
distribution range along the South African west coast (see Marais, 1999)) which has 
a nectar spur of 10 cm long, while no pollinator with a suitable proboscid is known. 
Spur length in Pelargonium appears to be a driver of speciation rate, whereby 
speciation rate seems to decrease with an increase in spur length and is associated 
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with small clade size (Ringelberg, 2012). The wide variety of known pollinators for 
Pelargonium is reflected in spur length, whereby the spur matches the proboscis of 
the pollinator species. The extent to which the pedicel is covered by the spur differs 
greatly among species (Bakker et al., 2005; Manning and Goldblatt, 2012; Tsai et 
al., 2018). This could indicate pedicel length is independent from spur length, and 
thus is a potential constraint on spur length change. 

In this study, we infer the floral morphospace for the corolla and the nectar spur 
across Pelargonium. We use two-dimensional (2D) photographs to form three-
dimensional (3D) representations of virtual flowers in order to quantify floral shape 
in 90 Pelargonium species. We explore the diversity of floral forms within the genus 
and using this dataset as a case study we apply GMM methods to determine and 
compare natural variation in floral shape. 

MATERIALS & METHODS
Flower data sampling
Floral shape was compared for 90 Pelargonium species growing in living collections 
in The Netherlands, Germany and in South Africa (see Supplementary Table 1 for 
an overview of species, numbers of individuals, and location). The sampling covers 
approximately 32% of known species in the genus and includes 378 individual 
flowers. We covered the potential morphospace as adequately as possible (based 
on known extreme floral forms from taxonomic studies; Albers et al., 1995; van der 
Walt, 1985; van der Walt and Boucher, 1986; van der Walt and van Zyl (nee Hugo), 
1988) but not-necessarily representing phylogenetic diversity.

Figure 1. Variation in Pelargonium floral shape. (A) P. caucalifolium, (B) P. sidoides, (C) P. caffrum, (D) P. 
cotyledonis, (E) P. columbinum, (F) P. tricolor. Pictures by F.T. Bakker and S.J. van de Kerke. 
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Geometric morphometric data collection
We selected flowers with corollas and flowers with stamens (used a proxy for full 
anthesis of the spurs, which was confirmed by eye) in full anthesis separately to limit 
possible ontogenetic effects on measured shape. We digitally photographed each 
flower using a standardised procedure in front and side view to avoid positional 
effects on measured shape. For each photograph, we defined a set of landmarks to 
provide comprehensive coverage of the specimen. We used both primary landmarks 
on homologous positions as well as sliding landmarks along a curve between two 
fixed primary landmarks. A datafile was created using tpsUtil (Rohlf, 2004) and 
landmarks were placed using tpsDig v. 232 (Rohlf, 2010).
For the side view photograph, covering the spur aspect, we defined a set of 10 
landmarks and 75 sliding landmarks covering the spur outline and tracking its 
curvature, as well as that of the shortest, longest and an average stamen (Figure 
2A; grey labels). We labelled this data set SPUR (containing 134 individuals, 
Supplementary Table S1). 
For the front view photograph, we followed the corolla shape landmarks as defined 
by Gómez et al. (2006) and placed 32 landmarks along the outline of the corolla 
and the opening of the nectar spur using midrib, primary and secondary veins 
and petal attachment as a guide (Figure 2B; grey labels). We labelled this data set 
PETAL (containing 287 individuals, Supplementary Table S1). For specimens with 
four petals, we assumed that for the middle anterior petal the meristem is present 
but does not develop (Ronse De Craene, 2018). Therefore, landmarks allocated for 
this petal were placed but with zero length from the missing petal base (Figure 2B 
(pink labels)). A 5 mm scale bar was included in each picture to be able to represent 
all landmark coordinates on the same interval scale. 

Creating 3D virtual representation from two 2D photographs
To be able to understand how shape variation happens at the level of the complete 
flower we linked individuals from both datasets at the species level. One-on-one 
pairing of individuals in the separate SPUR and PETAL databases was not possible 
because the flowers we used are not the same for both datasets (as a result of 
the separate sampling in order to avoid of asynchronisation), nor were individuals 
sampled from the same plant. Therefore, we designed a random sampling 
bootstrapping method based on the SPUR and PETAL datasets (see below, Figure 
3). 

First, we reoriented all individuals in both SPUR and PETAL dataset in the same 
position before we connected them to assure a virtual 3D flower that is as congruent 
with actual morphology as possible. To that extent, we performed an initial 
Generalised Procrustes Analysis (GPA) on the SPUR and PETAL datasets separately 
in order to align specimens and remove size components. Subsequently, we 
reintegrated the size component in order to retain actual size of the individual when 
coupling them from SPUR and PETAL datasets (via an anchor point, see below and 
Figure 3D). This was accomplished by multiplying each individual with its calculated 
centroid size. In this way, we orientated all specimens in the same position based on 
their landmarks, without removing size information (Figure 3B). 
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Next, we selected the species present in both SPUR and PETAL datasets. For each 
species, the number of individuals in each dataset was counted and we recorded at 
which row in the dataset a new species starts. In a linking step, a random individual 
from a certain species in dataset SPUR was then drawn and combined with a random 
individual of the same species from dataset PETAL. This was done six times per 
species, with replacement (Figure 3C). 
To integrate the two 2D datasets into a single 3D dataset, a common anchor point 
was defined in both the SPUR and the PETAL datasets, corresponding to the top 
of the opening of the spur. In the SPUR dataset, the first landmark was chosen as 
anchor and for PETAL we defined the anchor to be the average of landmarks 22 and 
23, as these anchors are homologous (Figure 3D). 
A third coordinate was then added to the two 2D coordinate datasets (PETAL and 
SPUR), effectively making a virtual 3D image (dataset VIRTUAL3D). For the PETAL 
data set we kept the original x and y values and add a z = 0 coordinate to all 
landmarks. In this way, we ‘forced’ the corolla of the flower to be flat because we 
do not have data on the curvature of the petals. For SPUR the coordinate system 
was altered from x,y to z,y, which effectively becomes the depth of the flower. This 
alteration is relative to the coordinate combination of the anchor point defined 
previously, landmark SPUR 1 and landmarks PETAL 22-23, i.e. they are placed 
perpendicular to each other, around the anchor. Therefore the coordinates became 
negative for the spur and positive for the stamens. The value x = 0 was added for all 
SPUR landmarks, again resulting in a flat object. The new x and y SPUR coordinates 
were then transposed relative to the landmarks 22-23 anchor point of PETAL (Figure 
3D), with which they were subsequently combined. The new 3D coordinates were 
written to a file using a format that is suitable for later analysis with Geomorph. This 
process was repeated for all combinations of individuals in the set selected in the 
linking step described above (Figure 3E). 
This process is repeated 20 times to assess the structure in the virtual 3D flower 
data, and hence its stability, resulting in 20 bootstrap pseudoreplicate datasets 
containing 6 x 68 species = 408 virtual flowers, which we label VIRTUAL3Di (with i 
=1, …,20). We combined all resulting 8160 virtual flowers in VIRTUAL3D, a dataset 
which we use for further analyses. 

Figure 3. (previous page) Creating one 3D virtual flower from two 2d photographs. (A) The two separate 
datasets (SPUR and PETAL), with limited overlap between and within species. (B) Generalised Procrustes 
Analysis is performed on the SPUR and PETAL datasets separately in order to filter out all non-shape 
variation. Size component is then reintegrated by multiplying each individual with it calculated centroid 
size. In this way, all specimens are aligned based on their landmarks, without removing size information. 
(C) Species present in both SPUR and PETAL datasets are selected. In order to link species in both data 
sets, a random individual from dataset SPUR is then drawn for the first species and combined with a 
random individual of the same species from dataset SPUR. This was done six times per species, with 
replacement. (D) To integrate the two 2D datasets into a single 3D dataset, a common anchor point is 
defined in both the SPUR and the PETAL datasets, corresponding here with the top of the opening of the 
spur. A third coordinate is then added to the coordinate data, effectively making it 3D. see text for further 
details (E) This process is repeated for all individuals in the set selected in the linking step.
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Morphometric analysis
Landmark coordinates in the SPUR, PETAL, VIRTUAL3D, and all VIRTUAL3Di 
datasets were each aligned using a final Generalised Procrustes Analysis, extracting 
the shape information (Rohlf and Slice, 1990). Results were projected into tangent 
space to summarise and explore actual (SPUR, PETAL) and virtual (VIRTUAL3D) 
floral shape variation across Pelargonium species. Shape changes associated with 
principal components where illustrated using thin-plate spline deformation plots. 

We conducted a Principal Component Analysis (PCA) on the GPA-aligned 
coordinates for each of the VIRTUAL3Di datasets. PCA results for the 20 VIRTUAL3Di 
datasets are highly congruent (results not shown, data will be made available). This 
indicates that there is high consistency in our data and that bootstrap subsampling 
seems justified for connecting the differently samples SPUR and PETAL datasets. We 
therefore decided to continue our analyses with the VIRTUAL3D dataset including 
all 8160 virtual flowers, as this dataset assures an even coverage of all included 
species and is the most inclusive.

Spurs occur adnate to the pedicel in Pelargonium species and pedicels can be 
‘occupied’ by spurs to varying degrees. As this may in fact present limits to spur 
length it could constrain spur evolution and be relevant to floral shape exploration. 
We therefore decided to extract ‘spur-filling’ levels from our data in the following 
way: for each individual in the SPUR dataset, we extracted relative spur and pedicel 
length from the SPUR dataset using the function ‘interlmkdist’. We calculated the 
ratio between the spur and pedicel length as a measure for the ‘filling’ of the pedicel 
by the spur. This ratio is visualised in the SPUR PCA plot as the transparency of the 
individual. 
All analyses were performed in R v.3.2.2 (R Core Team, 2015) using the Geomorph 
library v.3.0 (Adams and Otárola-Castillo, 2013). All R scripts can be found in 
Supplementary R scripts S2, S3, and S4.

RESULTS
Our analysis on 68 Pelargonium species identified a wide variety of floral shapes 
across and within the species examined (see also Fig. 1). Supplementary Figure S5 
shows the mean consensus configuration and Procrustes residuals (i.e. differences 
between observed and estimated value) calculated for the SPUR and PETAL 
datasets using the generalised Procrustes analysis (GPA). The figure illustrates the 
variability in landmarks around the calculated mean shape (in blue). What is striking 
is that halfway through the spur we see a constrained area where variation is limited 
compared with the base of the pedicel (Sup. Fig S5A). In addition, in Figure S5B it 
is conspicuous that the anterior petals are more restricted in shape variation than 
the posterior petals.
We conducted a Principal Component Analysis (PCA) on the GPA aligned coordinates 
for each of the  SPUR, PETAL, and VIRTUAL3D datasets in order to assess variation 
in shape. For the SPUR dataset, the first PC accounts for 47% of the total variation 
present across the species and the first four axes explaining more than 90% of the 
data (Figure 4A, Supplementary Figure S6). The first two PCs and corresponding 
shape outlines of the extremes are plotted in Figure 4A and 4B, respectively. The 
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variation in shape explained by the first PC corresponds with the coverage of the spur 
relative to the pedicel. On the negative extreme of the axis, spurs are elongated and 
are the same length as the pedicel. On the positive extreme, spurs are much shorter 
than the length of the pedicel and, in addition, the opening of the spur is wide. PC2 
corresponds with the curve of the stamens. Individuals on the negative extreme of 
the PC have stamens that are so curved they are doubled up on themselves, while 
those on the positive side have elongated stamens (Fig 4B, PC2). In Fig 4A some 
species, represented by multiple samples, are spread in varying degrees around the 
morphospace, such as P. mutans (in green) and P. crithmifolium (in red) along both 
PC1 and PC2. Other species appear to be much more clustered, such as P. triste 
(in brown) and P. pseudoglutinosum (in orange). Overall, a clear pattern emerges of 
individuals distributed along a trajectory corresponding with the ratio between the 
length of the spur and pedicel (indicated by transparency of the markers in Fig 4A). 
with individuals with a low spur-pedicel ratio occupying the lower region of the PC 
plot while individuals towards the top have an increasingly higher spur-pedicel ratio, 
i.e. each having nearly the same length, towards a boundary reflecting a physical 
barrier. This boundary is also reflected in the ‘avoided area’ in the Pelargonium 
SPUR morphospace just above it. In this area, the spur of a hypothetical flower 
would be longer than the pedicel of that individual, and this is not possible for 
Pelargonium flowers as spurs and pedicels are adnate. 
Compared with the results of the SPUR dataset, the PCA results of the PETAL dataset 
are more centralised. In Figure 4C and 4D, the first two PCs and shape outlines 
are plotted. The first PC (explaining 40% variation, Supplementary Figure S6) 
corresponds with the position and number of petals in the flower. On the negative 
extreme of the axis, flowers consist of five petals with the two posterior ones close 
together and the three anterior petals spread out. On the positive extreme, the two 
posterior petals are enlarged and only two anterior petals appear to be present. 
PC2 (13%) corresponds with the distribution of the petals over the corolla. On the 
positive extreme of the PC, the posterior petals are narrow and overlap, while on 
the negative side the posterior petals are rounded. Overall, individuals cluster 
around the mean shape (as P. multibracteatum (yellow)) while other species show 
within-species variation with individuals that spread toward the positive extreme 
of PC1 (P. myrrhifolium (darkgreen)). A few species (as P. mutans (green)), with high 
within-species variation, found across the entire PCA spectrum. 

For the VIRTUAL3D dataset, containing 8160 virtual flowers, the first PC accounts 
for 41% of the total variation present across species, with the first 5 axes collectively 
explaining > 80% of the data (Figure 5A, Figure 5B, and Supplementary Figure S6). 
Shape outlines illustrating the extreme forms are shown in Figure 5C. The variation in 
shape explained by the first PC corresponds with a zygomorphic flower, with corolla 
size varying with regards to pedicel length. On the positive extreme, individuals 
have a short pedicel and spur and a large corolla while flowers on the negative 
extreme show a more elongated spur and a relatively small corolla. Individuals from 
all species are spread along this axis, showing a high variability in spur and pedicel 
elongation and no clustering. PC2 (19%) corresponds with the length and curvature 
in stamens, with virtual flowers on the negative extreme showing straight stamens 
and those on the positive extreme showing highly curved ones. More importantly, 
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this PC appears to correspond with the ‘filling’ of the pedicel by the spur, whereby we 
either see a long pedicel and relatively short spur (positive side) or a spur that ‘spills 
over’ the pedicel (negative side). Individuals from all species are spread along the 
axis but with an emphasis toward the negative extreme, suggesting a trend towards 
individuals with a high filling ratio. PC3 (14%) again (as PC1) appears to correspond 
with the filling of the pedicel by the spur as well as the length and orientation of 
the stamens. In individuals toward the positive end of this axis, the spur completely 
fills the pedicel and stamens are stretched out. On the negative side, only a small 
part of the pedicel is taken up by the spur and stamens are small. No clustering is 
observed and individuals are spread along the axis but with a strong emphasis on 
the negative end of the spectrum. Individuals within species are spread in varying 
degrees around the morphospace, such as P. mutans (in green) along PC1, PC2, and 
PC3. Other species vary along a number of PC axes, as P. crithmifolium (in dark blue) 
is variable along PC1 and PC3, but not along PC2. Lastly, some species are overall 
much more clustered, such as P. pseudoglutinosum (in orange). 

DISCUSSION
In this study, we explore the potential of combining two 2D photograph-based 
datasets of floral morphology into a single 3D virtual flower giving us the opportunity 
to bring together multiple layers of shape variation. Using this method, we are able 
to investigate the tremendous floral diversity of Pelargonium species using 3D 
geometric morphometrics based on the spur plus corolla perspective. Our virtual 
3D dataset gives a more nuanced view on shape variation in Pelargonium than the 
separate SPUR and PETAL perspectives, as we find the corolla perspective to be 
of less importance (see below). Our approach can serve as a low-cost alternative 
to emerging high-tech robotic and photogrammetry- based approaches to 3D 
geometric morphometrics. 

Geometric morphometrics
Pelargonium flowers exhibit high variability in their floral shape with species 
ranging between zygomorphic to near-actinomorphic corolla shape (P. cotyledonis), 
varying in petal copy number (between five (most common in Geraniaceae), four 
(i.e. P. caucalifolium), two (in P. dipetalum; not included) and zero (in P. apetalum; 
not included)), and with lengths of nectar spurs varying between zero to ten cm 
(P. appendiculatum; not included). The variation in floral shape present in the 
VIRTUAL3D dataset as depicted in Figure 5 corresponds with this known variation in 
Pelargonium flowers, as well as with the separate PETAL and SPUR datasets (Figure 

Figure 4. (previous page) PCA analysis on SPUR and PETAL datasets. (A) PC1 and PC2 of PCA on SPUR 
dataset. Colours correspond with selected species: P. triste (brown), P. mutans (blue), P. patulum (green), 
P. crithmifolium (red), and P. pseudoglutinosum (orange). (B) Shape outlines corresponding to extremes 
on axes for PC1 and PC2 of SPUR dataset showing calculated mean shape (grey) and warped extreme 
shape (black). (C) PC1 and PC2 of PCA on PETAL dataset. Colours correspond with selected species: 
P. multibracteatum (yellow),  P. myrrhifolium (darkgreen), and P. mutans (green). (D) Shape outlines 
corresponding to extremes on axes for PC1 and PC2 of PETAL dataset showing calculated mean shape 
(grey) and warped extreme shape (black). 
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3 and 4). Findings of the separate PETAL and SPUR datasets have now been put 
into perspective, giving us a better understanding of which changes in Pelargonium 
floral shape are relevant. 

Resembling the results of the SPUR dataset, the elongation of the spur and size 
of the corolla are the most variable traits among the species included in the 
VIRTUAL3D morphospace (PC1, 41%). This trait corresponds with the unique spur 
pollinator syndrome featured in Pelargonium and correlates with their highly variable 
pollinator types (Struck, 1997, 1994). We know in some species the spur is almost 
completely missing (Figure 5C, as for example in the oceanic island endemic P. 
cotyledonis, probably pollinated by bees) or in P. hirtum with 3 mm short spurs. The 
latter is closely related to P. appendiculatum (probably pollinated by long-tongued 
hovering flies) where the spur is elongated to almost ten cm length (Struck, 1997).

Corresponding to PC2 (19%), and linked to inferred shifts in pollinators, is the 
curvature of the stamens. Along the PC, we find a shift of stamen shape ranging 
from short and straight to long and curved. For some hovering pollinator species, 
the stamens are thought to ‘move out of the way’ of the spur entrance by means of 
a large curve in the filament, both increasing accessibility to the flower (Goldblatt 
and Manning, 1999; Manning and Goldblatt, 1996) and enhancing contact of 
anthers and insect abdomen and head (Goldblatt and Manning, 1999). This would 
correspond to the long and curved stamens of Pelargonium species pollinated by 
long-tongued, hovering insects such as species from the Tabanidae, Bombyliidae, 
and Nemestrinidae (Struck, 1997). The short and straight stamens on the other end 
of the spectrum would then correspond with the association with short-proboscid, 
landing pollinator species, such as Anthophoridae, Megachilidae, and Vespidae to 
increase potential pollen transfer. 

The ‘filling’ of the pedicel by the spur, which corresponds to both the second as well 
as the third PC (11%) in the VIRTUAL3D as well as the SPUR dataset is a relatively 
unexplored trait in Pelargonium literature. Recent studies found spur length to be 
dependent on both rate of cell division and duration of spur growth (Tsai et al., 2018). 
As the authors indicate, these mechanisms do not fully account for differences in 
spur length, suggesting other evolutionary influences. Ringelberg (2012) found spur 
length to be significantly correlated with speciation rate, whereby speciation rate 
appeared to decrease with increased spur length. 

The distribution of virtual flowers over the first three PCs of the VIRTUAL3D 
morphospace varies and appears to be the results of interaction between the SPUR 
and PETAL morphospaces. In the SPUR morphospace, we see a clear boundary 

Figure 5. (previous page) PCA analysis on VIRTUAL3D datasets. (A) PC1 and PC2 and (B) PC3 and PC2. 
Colours correspond with selected species: P. multibracteatum (light blue), P. triste (brown), P. mutans 
(grey), P. myrrhifolium (yellow), P. patulum (brown), P. crithmifolium (dark blue), and P. pseudoglutinosum 
(orange). Intensity of colours indicated number of individuals stacked. (C) Shape outlines corresponding 
to extremes on axes for PC1, PC2, and PC3 of VIRTUAL3D dataset showing calculated mean shape (grey) 
and warped extreme shape (black). 
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limiting the distribution of individuals based on the ratio of spur and pedicel length 
(Figure 4A). In the PETAL morphospace on the other hand, the majority of species 
cluster together around the mean shape, indicating that there is variation to a 
limited extend. Some species in the VIRTUAL3D morphospace are highly variable 
and occur throughout large areas of the morphospace (for instance P. mutans (grey)) 
while others occupy a much smaller area (e.g. P. multibracteatum (light blue)). 
The former pattern does not directly correspond with a high individual count in 
PETAL and SPUR datasets. Certainly, in cases as P. crispum the low variability is the 
consequence of there being only one individual in the PETAL and SPUR datasets. 
As a result, over all the bootstrap iterations, only a single virtual-flower is included 
in the final analysis. But in other cases, as for instance with P. multibracteatum, 
multiple individuals are included in the separate datasets and still we find a narrow 
distribution in the morphospace.  

Surprisingly, the results of the VIRTUAL3D dataset as discussed above are highly 
congruent with the results of the SPUR dataset while the PETAL dataset does not 
appear to have much influence since we do not find the variation in shape along 
PC1 in the PETAL dataset (variability in length of the fifth petal) until the third PC 
(14%). Rather the size of the corolla relative to the length of the spur is found to be 
of more influence in the VIRTUAL3D dataset. The variability in spur and stamens, 
combined with this relative size difference of the corolla, thus seem to be more 
relevant for distinguishing different shapes and presumably for attraction. 

3D connection of 2D data sets
The combining of separate 2D datasets into a single 3D dataset by creating virtual 
flowers as we demonstrate here complements existing 3D approaches (van der 
Niet et al., 2010). We find the main PCs of the VIRTUAL3D dataset summarise the 
variability in shapes as presented in the separate SPUR and PETAL datasets and 
accurately portray the natural variation found in Pelargonium flowers (based on 
visual inspection). Having rendered the flower in 3D, we can now investigate the 
interaction between floral parts in more detail.

Our method enables us to circumvent a main issue in morphometric studies on flowers 
and thus to increase the precision of the data: asynchronicity in anthesis of floral parts. 
The moment of anthesis of floral parts differs both between and within species. This 
makes it impossible to pinpoint an ontogenetic stage for the entire flower that is the 
same for all species. We argue that anthesis is the most relevant ontogenetic stage 
for reproduction as well as pollinator attraction and thus is the most meaningful stage 
to include in our study. Following other plant studies (Gómez et al., 2006, 2014; 
Savriama et al., 2012; Savriama and Klingenberg, 2011), we decided to include all 
floral parts at their own, separate, anthesis. This results in the separate datasets of 
the SPUR (containing the spur and stamens) and the PETAL (containing the corolla). 
We consider the combination of spur and stamen floral parts in the SPUR dataset 
plausible since we suspect the flower’s reward system to develop approximately 
in concert with the contact apparatus, in order to ‘fit’ the visiting pollinator.  
A drawback of combining the different floral parts each at their own anthesis is that 
we construct ‘virtual-flowers’ from our data. As a result, the morphospace is arguably 
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not biologically and temporally accurate. However, we argue that gathering the 
data in the same ontogenetic stage gives us the advantage of not polluting our 
data with unwanted developmental signal and enables the testing of evolutionary 
hypotheses regarding dynamic (un)coupling of compartments (van de Kerke et al., 
unpublished data). 

Another problematic issue in plant geometric morphometrics is the variability in copy 
number within floral parts. A striking example of this phenomenon in Pelargonium is 
the variability in petal number, varying to four from the symplesiomorphic five. This 
variability makes it seemingly impossible to include all intended landmarks since 
they have to be placed on homologous structures. Not including these landmarks 
in the study is not desirable as they represent an important difference in shape 
between species. Likewise, it is not an option to treat these landmarks as ‘missing’ 
or ‘NA’ since the flower did not drop the petal by accident, but it is simply not 
present. Ideally, we would like to confirm the presence of petal primordia in an 
electron microscopy study. Based on literature describing the occasional loss of 
petals (Ronse De Craene, 2018, 2015), we now chose to simulate this ‘missing’ petal 
as if it is present, but with a length of zero (Figure 2). The influence of this simulation 
on morphospace results is limited since the variation between four and five petals is 
only visible on the fifth PC (4%) of the VIRTUAL3D dataset. We admit this approach 
is conceptually problematic because we assume the petal to be present, but 
operationally warranted because we find the corresponding difference in shape to 
be rather unimportant. Therefore we conclude this is a justifiable decision that can 
be put into practise for other similar cases that will occur in plant morphometric 
studies. 

Unfortunately, we were not able to achieve complete matching in taxonomic 
coverage between the separate SPUR and PETAL datasets because sometimes there 
were no flowers in anthesis available for both datasets. The separate morphospaces 
therefore have a higher taxonomic sampling than the VIRTUAL3D dataset (68 for the 
VIRTUAL3D compared with 82 in SPUR and 90 in PETAL). This is an insurmountable 
drawback in combining the datasets, since in morphometric studies all landmarks 
need to be present in all included specimens. Estimating missing landmarks, as 
is available in the geomorph package, is not desirable when a large part of the 
studied shape of an entire species is missing because then the average Pelargonium 
shape is superimposed on a set of individuals and their unique shape is lost.

More important than high taxonomic coverage in the VIRTUAL3D dataset is to 
ensure accuracy of the data by good coverage of morphological extremes in the 
morphospace, which is not driven by the number of species included but by the 
shapes. In the case of Pelargonium, we have several ‘missing’ shapes that we were 
not able to include in the sampling (we did not encounter them while flowering) 
that will probably change the morphospace were they to be included. For example, 
we did not have the opportunity to include species such as P. endlicherianum and 
P. dipetalum, that only have two posterior petals. Likewise, we could not include 
species showing highly reflexed petals (for example P. luridum) as well as the 
peculiar, keel-flowered shaped P. rapaceum and the allopolyploid P. quercetorum. 
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Notwithstanding these gaps in the prospective morphospace, we are confident 
we reconstructed a fair representation of overall variability in floral shape found in 
Pelargonium and therefore provide a solid base for exploring floral shape in this 
clade.

CONCLUSIONS
This study provides a new approach for geometric morphometrics to analyse floral 
shape in 3D. Our method uses a semi-automated approach to combine 2D shape 
data of various data sets to include multiple morphological modules. It offers 
unique benefits to complement established imaging techniques by i) providing 
a bootstrapping method to help acquire adequate coverage of the potential 
morphospace of diverse flowering-plant clades when sampling of individual parts 
is unequal; (ii) by circumventing asynchronicity in anthesis of different floral parts; 
and (iii) by incorporating variation in copy number of parts within structures. This 
approach, for which the code is available as supplementary material, can be used 
for any flower as well as numerous plant structures and can be used to form an 
appropriate basis for future geometric morphometric and related studies starting 
from 2D pictures. 
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virtual3D using Geometric Morphometric Modelling. Available upon request.
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ABSTRACT
Flowers are functional modules composed of parts that co-operate to make 
pollination as effective as possible. We explore the Pelargonium floral morphospace 
to address three goals: (1) quantify the amount of morphological variation in 
Pelargonium flowers; (2) determine to what extent the different modules (i.e. 
show-, reward-, and transfer- apparatus) are integrated; and (3) examine to what 
extent flower shape is constrained by phylogenetic signal and what the relation 
is between floral shape and phylogeny. We do this by quantifying floral shape 
and by calculating integration and modularity for 68 Pelargonium species. The 
results indicate that each of the modules within Pelargonium is highly modular but 
also show high integration among modules within the flower. We show that floral 
shape is not related to phylogenetic placement, and examples of convergent and 
divergent evolution are nicely illustrated. We find that relation between floral shape 
and phylogeny is highly dependent on phylogenetic clade and differs per module.
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INTRODUCTION
Flowers are complex structures that are essential for plant reproduction as they 
increase the fitness of the species by optimising the match with a prospective pollinator 
(Sattler, 1978). Effective pollination is characterised by a close morphological ‘fit’ 
between flower and pollinator, as well as a temporal match (Armbruster et al., 
2004; Armbruster and Muchhala, 2009). Pollinators, considered to be drivers of 
change in floral morphological traits (Berg, 1960; Fenster et al., 2004; Gómez et 
al., 2014; Ordano et al., 2008; Schiestl and Johnson, 2013), can cause directional 
selection increasing the morphological integration of floral traits. Morphological 
integration between traits occurs when changes in one trait induce changes in 
others within a morphological structure. There is modularity when morphological 
integration is compartmentalised within specific parts  of the structure, called 
modules (Klingenberg, 2014). The parts that compose these modules can thus be 
morphologically integrated to varying degrees, often under the direct influence of 
the type of pollinator (Figure 1; Gómez et al., 2014; Rosas-Guerrero et al., 2014). For 
example, in specialised pollination systems (by animals) morphological integration 
is thought to be higher than in more generalist wind- and self-pollinated species 
(Gómez et al., 2014). 

A number of modules are present in all flowers. The ‘show’ apparatus, the corolla 
plus in many cases scent, generates maximum effect in attracting as many potential 
pollinators as possible from some distance as primary visual (and olfactorial) 
attractor. It is in this apparatus that the most splendid variation in form can be found. 
The ‘transfer’ apparatus, consisting of the stamens and stigma, is where transfer of 
pollen to and from the pollinator is maximised. In most species a third apparatus, 
containing the pollinator’s reward, is present either localised, as nectar glands, or 
distributed across florets, or contained in a spur. Nectar guides, pointing to the 
locality of nectar and usually present on petals, are part of the reward unit too. It is 
the functional as well as ontogenetic synchronisation of these show-, reward-, and 
transfer-apparatuses that makes them integrated and thus important for effective 
pollination.

Transfer module

Show module

Integration?

Figure 1. A conceptual visualisation of floral modules (consisting of parts) that may be integrated.
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The integrated sets of floral traits that are associated with the attraction of pollinators 
are united in what has been referred to as pollination syndromes (Faegri and van der 
Pijl, 2013; Fenster et al., 2004; Dodson, 1966). Syndromes can be selected for in 
pollination guilds, where convergence of floral shapes and pollinator types can occur 
(Goldblatt and Manning, 1999; Johnson and Steiner, 2000). In contrast with more 
generalist pollination syndromes (usually characterised by actinomorphic flowers 
that are easily accessed by a large range of pollinators; Armbruster and Muchhala, 
2009; Harder and Johnson, 2009; Rosas-Guerrero et al., 2014), spur pollination 
spatially separates reward (the nectar) from the show apparatus or corolla. Well- 
known examples of spur pollination are Aquilegia, where each petal has its own 
petal-spur, species of Orchidaceae, and Tropaeolum (Weberling, 1992; Whittall 
and Hodges, 2007). Hodges (1997) compared the 15 known ‘spurred’ Angiosperm 
clades with their unspurred sisters and found five of them to be larger and to have 
proliferated more; thus concluding that floral nectar spurs can be considered as 
evolutionary key innovations. Geraniaceae was the exception as the sister group 
of Pelargonium (i.e. the remainder of Geraniaceae) harbours several times more 
unspurred species. Whittall and Hodges (2007) hypothesized that speciation in spur 
pollination can happen in two ways, by gradual change or by jump-like evolution. 
In the first mode, for a flower – pollinator pair, a gradual change in flower (and 
pollinator) morphology can occur as the results of selection in order to maximise 
pollination success, i.e. ‘pollinator-filtering’, whereby low-efficient pollinators are 
kept out. A Darwinian ‘arms race’ between plant and pollinator would follow, 
increasing effective pollen transfer, and, ultimately, fitness for both. In the second 
mode, a pollinator shift can happen where the flower ‘jumps’ to another shape 
as the result of the presence of a new pollinator or the extinction of an existing 
pollinator (Whittall and Hodges, 2007). 

In addition to pollinator pressure, floral shape change is constrained by phylogeny 
(Gómez et al., 2016, 2015; Sauquet et al., 2017). A flower in the Eurosid II will not 
suddenly evolve a daisy-like flower structure and as sister species evolve, it is highly 
likely they have similar floral shape because they share a close phylogenetic history 
(Schnitzler et al., 2011). For deep-level patterns this seems straight-forward as the 
amount of change both in copy number and of synteny of key flower-development 
gene families like MADS-box or Cycloidia may have changed considerably (Zhao and 
Schranz, 2019). At the species-level however, gene-copy and synteny have probably 
not significantly diverged and other mechanisms, such as promoter elements or 
DNA methylation, control (switches in) floral shape in closely-related species (Corley 
et al., 2005; Cubas et al., 1999). In addition, because they share a phylogenetic 
history, it might be more favourable for sister species to ensure a much different 
shape in order to maximise attractability (van der Niet et al., 2006, 2014). van der 
Niet et al. (2006) showed that, based on sister-species comparisons in Geraniaceae, 
Iridaceae, and Orchideae in the Cape Floristic Region, shifts in pollinator system 
would have occurred after shifts in edaphic conditions. This finding shows the high 
dynamics of floral shape.

We address these questions using the predominantly South African genus 
Pelargonium (Geraniaceae), known for its stunning floral and vegetative diversity 
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across its ~280 species (Bakker et al., 2005, 1999; Jones et al., 2009, 2003; Nicotra 
et al., 2008; Röschenbleck et al., 2014; Struck, 1997). Roughly 70% of the genus 
occurs in the South African Greater Cape Floristic Region (GCFR; Linder, 2003; 
Manning and Goldblatt, 2012; Snijman, 2013), considered a hot-bed of plant 
evolution (Verboom et al., 2009) having led to high levels of endemicity and plant 
species hyperdiversity. The latter  (~9000 species in 90.000 km2) has been attributed 
to high rates of speciation driven by adaptation to local environmental conditions and 
lack of extinction (Goldblatt and Manning, 2002; Linder, 2003). Other Pelargonium 
species occur in eastern Africa, Namibia, the Arabian peninsula, Australia, Asia minor, 
and St. Helena (Dreyer et al., 1992; Van der Walt et al., 1990; Van der Walt and 
Vorster, 1983). Phylogenetic relationships within the genus are well known (Chapter 
2, van de Kerke et al., 2019).
Pelargonium flowers exhibit specialised pollination syndromes when compared with 
the remainder of the Geraniaceae clade (i.e. Geranium, Erodium, Monsonia and 
California), as they exhibit a strong zygomorphic corolla shape and possess nectar 
spurs that are formed adnate to the pedicels. Throughout Pelargonium, variation 
in floral shape appears to occur in a number of aspects. First, and perhaps most 
striking, the variation in petal copy number altering between five (>95% of species) 
and four, occurring between and even within a species (i.e. P. caucalifolium), two in 
P. dipetalum and zero in P. apetalum. Second is the orientation of the petals which 
ranges from highly zygomorphic (P. fulgidum, P. acetosum, P. oblongatum) to almost 
actinomorphic (P. cotyledonis). Also, the shape of the petals varies tremendously: 
from slender and elongated (P. paniculatum) to almost round (P. inquinans). 
As indicated above, Pelargonium has a unique spur pollination syndrome with the 
spur growing adnate to the pedicel (Albers and van der Walt, 2007; Goldblatt et 
al., 2000; Hodges, 1997; Hodges and Arnold, 1995; Manning and Goldblatt, 2012; 
but see Tsai et al., 2018). Whereas this is a synapomorphy for the entire clade, 
spur lengths vary greatly among species, matching pollinator type. In the ocean-
island St. Helena endemic P. cotyledonis the nectar spur seems to have almost 
disappeared, probably due to a switch to a new pollinator species present on St. 
Helena. While in P. appendiculatum the nectar spur is 10 centimetre in length, but 
no pollinator with such length proboscid is known. In addition, the extent to which 
the pedicel is ‘filled’ by the spur differs greatly among species (Chapter 4) and 
there appears to be a trend towards as long as possible nectar spurs, but being 
constrained by pedicel length.

Among the spurred clades, Pelargonium is unique as it is actually smaller than its 
sister clade (i.e. the remainder of Geraniaceae), and its spur is a sepal-spur, growing 
adnate to the pedicel. Bakker & al. (2005), based on parsimony, inferred spur length 
evolution in Pelargonium and concluded bees to have been ancestral and that three 
switches towards longer-tongued pollinators had occurred during clade proliferation. 
Based on QuaSSE modelling, an overall trend towards longer spurs could  be inferred, 
but speciation rate and spur lengths were found to be negatively correlated, i.e. 
highly specialised flowers are found in smaller clades (Ringelberg, 2012). 

In order to further explore the phenomenon of modularity within a flower, we wanted 
to know to what extent the modules within the Pelargonium flower are integrated, i.e. 



5

Chapter 5

94

whether they evolve in concert, and whether different, apparatus-specific selective 
pressures may exist. The goals of this study are therefore to: (1) quantify the amount 
of morphological variation in Pelargonium flowers; (2) determine to what extent the 
different modules (i.e. show-, reward-, and transfer- apparatus) are integrated; and 
(3) examine to what extent flower shape is constrained by phylogenetic signal and 
what the relation is between floral shape and phylogeny. We would expect three 
integrated apparatus to be present in the Pelargonium flower, corresponding with 
the show-, transfer-, and reward- apparatuses as described above. We expect the 
transfer- and reward apparatuses to show less individual modularity and be more 
dependent on each other than either is with the show apparatus, since they are 
both critical to pollination success and need to work in concert. We expect that 
overall floral shape is constrained by phylogenetic signal and expect to find specific 
floral shapes corresponding with clades.

MATERIAL AND METHODS
Flower data sampling and geometric morphometric data collection
Floral shape was compared for 68 Pelargonium species obtained from living 
collections in various locations in Western Europe and South Africa (see Chapter 
4 and Supplementary Table S1 for an overview of species, numbers of individuals, 
and location). Sampling and analysis was as in Chapter 4. The sampling covers 
approximately 25% of the species in the genus and includes 388 individual flowers. 
Sets of landmarks include 32 co-planar landmarks covering the corolla shape as well 
as 10 landmarks and 75 sliding landmarks covering the spur outline and tracking 
its curvature, as well as that of the shortest, longest and an average stamen (Figure 
2). We included as many different corolla shapes as possible, maximally covering 
the potential morphospace (based on known extreme forms), and not-necessarily 
representing phylogenetic relationships. For details, see Chapter 4.

Floral shape variation, disparity and integration
All analyses were performed in R v.3.2.2 (R Core Team, 2015) using the Geomorph 
package v.3.0 (Adams and Otárola-Castillo, 2013). From the 3D coordinates of 
the landmarks, we extracted shape information using the generalized Procrustes 
analysis (GPA) superposition method and we calculated the mean shape for each 
species. We performed a principal component analysis (PCA, Figure 3) to explore 
floral shape variation across all Pelargonium individuals as well as for mean species 
shape. For each individual in the dataset, we extracted relative spur and pedicel 
length using the function ‘interlmkdist’. We calculated the ratio between the spur 
and pedicel length as a measure for the ‘filling’ of the pedicel by the spur. This ratio 
is visualised in the PCA plot as the size of the dot corresponding to the individual 
(Figure 3A&B), and ratio frequencies are plotted in Figure 3D.

To test whether there are statistical differences in floral shape between species 
present in the data, we used the Procrustes ANOVA function with the F-test to test 
for significant differences in shape between species based on Procrustes distances 
(Goodall, 1991). The advanced Procrustes ANOVA test was used for pairwise 
comparisons between species. Statistical significance of the ANOVA was assessed 
using 500 random permutations using RRPP (Residual Randomization, Collyer et al., 
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Figure 2. Landmark placement for the SPUR (A) and PETAL (B) datasets. For the SPUR dataset 10 
landmarks and 75 sliding landmarks covering the spur outline and tracking its curvature, as well as that 
of the shortest, longest and an average stamen (grey labels) are defined. For the PETAL dataset 32 
landmarks were placed along the outline of the corolla and the opening of the nectar spur using midrib, 
primary and secondary veins and petal attachment as a guide (grey labels). For specimens with four 
petals, we assumed that for the middle anterior petal the meristem is present but does not develop and 
landmarks allocated for this petal were placed with zero length from the petal base (red labels).
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2015). We tested whether there is modularity between show-, transfer-, and reward-
apparatus using  ‘modularity.test’. This function quantifies modularity in partitions 
of Procrustes aligned coordinates using the average pairwise covariance ratio (CR) 
coefficient (the ratio of the covariation within and between modules, Adams, 2016) 
and test this distribution against randomly chosen subsets of coordinates. We then 
tested whether there is morphological integration between show-, transfer-, and 
reward-apparatuses by using the function ‘integration.test’, and all combinations of 
modules using the ‘two.b.pls’ function. These functions quantify the extent to which 
partitions of Procrustes aligned coordinates are morphologically integrated, based 
on a partial least squares analysis of trait covariation (Adams and Collyer, 2016).  

Phylogenetic relationships
In order to explore correlation with DNA-based phylogenetic relations in our floral 
shape dataset, we used the time calibrated phylogenetic tree as constructed by van 
de Kerke et al. (Chapter 2; 2019) as basis for our comparative study. Some species 
in our morphological dataset were not present in the van de Kerke et al. (Chapter 2; 
2019) study. When possible, we grafted these species to their sister species based 
on earlier phylogenetic and taxonomic findings (Bakker et al., 2005; Becker and 
Albers, 2009; Jones et al., 2009; Nicotra et al., 2016; Röschenbleck et al., 2014; van 
der Walt, 1985). When sister-species relations were not exactly known (i.e. were part 
of a polytomy), the species was included in the clade corresponding to that known 
polytomy, in a sister group position. Otherwise, the species was grafted to the base 
of the clade representing their taxonomic section sensu Röschenbleck et al. (2014) 
since van de Kerke et al. (Chapter 2; 2019) found these to correspond (Supplementary 
File S2). We chose to include the species in this way because subsequent analyses 
require fully bifurcating phylogenetic trees. We trimmed the resulting phylogenetic 
tree to only include species present in the morphological dataset. These analyses 
were performed using the packages ‘phytools’ and ‘APE’ in R (Paradis et al., 2004; 
Revell, 2012). Supplementary Figure S3 shows the phylogenetic tree as used in this 
study.

Phylogenetic signal
To further explore the relation between floral shape and phylogeny, and to assess to 
what extent the show-, transfer-, and transfer-apparatuses are influenced by it, we 
calculated the phylogenetic signal we find in the overall data and for the modules 
separately. We calculated the Kmult statistic (Adams, 2014) using the function 
‘physignal’ in the Geomorph R package to find to what degree phylogenetic signal 
constrains floral shape in general (Adams and Otárola-Castillo, 2013). The K statistic 
is based on Blomberg 2003’s K statistic test and is related to Pagel’s (1999) covariance-
based lambda statistic. Basically, the Kmult statistic measures phylogenetic signal in 
highly multivariate data such as comparative analysis of shapes (Adams, 2014). A 
value of K = 0 indicates there is no influence of phylogenetic signal on the shape 
data, K < 1 indicates less influence of phylogenetic signal than can be expected 
under Brownian motion, and K > 1 indicates more influence of phylogenetic signal 
than can be expected under Brownian motion. The statistical significance of K was 
calculated for the total shape dataset and show-, reward-, and transfer functional 
modules separately based on 10000 iterations.
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Figure 3. (next page) PCA analysis. (A) PC1 and PC2 and (B) PC3 and PC2. Colours correspond with 
selected species: P. multibracteatum (light blue) P. triste (brown), P. mutans (grey), P. myrrhifolium (yellow), 
P. patulum (brown), P. crithmifolium (dark blue), and P. pseudoglutinosum (orange). Intensity of colours 
indicated number of individuals stacked. Size of the dots corresponds with the ‘filling’ of the pedicel 
by the spur, as calculated by the ratio between the length of spur and pedicel. (C) Shape outlines 
corresponding to extremes on axes for PC1, PC2, and PC3 showing calculated mean shape (grey) and 
warped extreme shape (black). (D) Frequency plot of ratio between the length of spur and pedicel.

RESULTS
Variation in floral shape in a phylogenetic perspective
Figure 3 presents results of the Principal Component Analysis (PCA) on the GPA 
aligned coordinates of virtual individuals as in Chapter 4. The variation in shape 
explained by the first PC axis corresponds with a strongly zygomorphic corolla, 
with individuals on the negative side having a smaller corolla relative to the length 
of the pedicel and on the positive end a relatively large corolla (Figure 3C). PC2 
corresponds with the length and curvature in stamens, with individuals on the 
negative end showing straight stamens and on the positive end highly curved ones. 
PC3 (14%) again (as in PC1) appears to correspond with the filling of the pedicel 
by the spur as well as the length and orientation of the stamens. Overall, a pattern 
seems to emerge of individuals distributed around the morphospace but avoiding 
certain areas. From the PCA in Figure 3A especially P. patulum appears to be rather 
isolated, although this is put in perspective in the PCA plot (Figure 3B) where it 
groups with individuals from other species. The reverse seems to be the case for 
P. crispum, which is surrounded by individuals from other species in Figure 3A but 
is quite isolated in the alternative perspective of Figure 3B. A clearly ‘avoided 
area’ in Figure 3A is the lower left corner, which corresponds with the lower right 
corner in Figure 3B. Here we see what appears to be a shape boundary individuals 
cannot cross, with filling ratios of the pedicel by the spur, whereby individuals at 
this boundary have a ratio approaching 1. As Figure 3D presents (showing relative 
frequencies of filling ratios), we find that higher ratios are more frequent than lower 
ones. For details, see Chapter 4. 

When we examine the phylogenetic distribution of shapes (Supplementary Figure 
S4, S5, and S6), we find that all species are to some degree spread along these 
first 2 PC axes. Clade C2 in particular appears to be localised on the lower end 
of both PC1 and 2, while clade C1 is oriented more towards the positive end of 
PC1 and also slightly more along PC2. Clade A1 in contrast seems to have a more 
conservative distribution along the first PC axis (with a few outliers) and be more 
variable along PC2. Clade B and A2 are more evenly distributed along both axes. 
When we compare clade pairs C1-C2 and A1-A2, we find that certain areas in the 
morphospace are clade specific, while there is an overlap region of shapes occupied 
by both clades as well as outliers on both sides. 
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Figure 4. Phylomorphospace showing the relationship between phylogenetic relatedness and floral 
shape of Pelargonium species included in this study. (A) Pelargonium cotyledonis (taxonomic section 
Isopetalum, clade B). (B) Pelargonium graveolens (taxonomic section Pelargonium, clade A1). (C) 
Pelargonium tenuicaule (taxonomic section Jenkinsonia). (D) Pelargonium trifidum (taxonomic section 
Jenkinsonia). (E) PC 1 and 2 of morphospace per species (calculated average across individuals). Colours 
indicate confidence in grafted terminals with green: based on sister-species relation and red: based on 
section.
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Figure 4E shows the morphospace per species (calculated average across 
individuals) including the reconstructed phylogenetic tree, illustrating variation in 
floral shape found in Pelargonium in a phylogenetic framework. We find a number 
of sister-species pairs residing in rather different parts of the morphospace, while 
we also encounter species occupying the same area in the morphospace that are 
not closely related phylogenetically. For example, the island endemic P. cotyledonis 
(clade B, Figure 4A) and P. graveolens (clade A1, Figure 4B) are not closely related 
but occupy the same region in the morphospace. Both species have a short pedicel 
and a rather short spur and rounded, quite evenly distributed, petals. On the other 
hand, P. tenuicaule (Figure 4C) and P. trifidum (Figure 4D) are sister species in our 
reconstructed phylogenetic tree (and in other studies occupy the same taxonomic 
section, Jenkinsonia (Röschenbleck et al., 2014; Chapter 2; van de Kerke et al., 
2019)), but occupy different, non-overlapping, parts of the morphospace. P. trifidum 
has an elongated pedicel and spur and narrower petals than P. tenuicaule.

In Figure 5 we plotted phylogenetic distance (measured as sum of branch lengths 
between tips) against morphological distance (as calculated by the pairwise 
advanced ANOVA) per species. We found that morphological distance varies for 
all phylogenetic distances. The taxa with the largest phylogenetic distance are 
represented in ‘band’ of individuals at the utmost right. Here, distance between tips 
includes the deepest node in Pelargonium. All other band represent other, shallower 
nodes and corresponding distance. To the left, we find distances between sister 
species and other close relations. For some species pairs we could assess divergent 
evolution patterns as for example for Pelargonium parviflorum - P. carnosum and 
P. carnosum - P. laxum. For other species pairs, we find they are highly similar in 
their morphology while being phylogenetically not closely related, suggesting 
convergent evolution. Examples of this are P. tongaense - P. abrotanifolium, P. 
abrotanifolium - P. desertorum, and P. desertorum - P. aridum. 

Morphological modularity and integration
We find that the CR coefficient calculated to test for modularity within our dataset 
for our partitioning over show-, transfer-, and reward-apparatuses was significantly 
lower than 1 (CR = 0.6591, P = 0.001). This indicates that there is independence 
between the show-, transfer-, and reward-apparatuses and that there is no other, 
randomly assigned, alternative partitioning for Pelargonium plausible.
For overall floral shape over the partitions of show-, transfer-, and reward-apparatuses 
we find that morphological integration was large and highly significant (Table 1). In 
addition, we find that for all pairwise combination of show-, transfer-, and reward-
apparatuses, morphological integration was large and highly significant (Table 1).

Overall Spur Stamens
Overall 0.817 (p=0.001)
Corolla 0.936 (p=0.001) 0.761 (p=0.001)
Spur 0.813 (p=0.001)

Table 1. Integration between overall floral shape and combinations of show-, transfer-, and reward-
apparatuses.
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Phylogenetic signal in modules
We wanted to further explore the relation between floral shape and phylogeny, and 
assess to what extent the show-, transfer-, and reward-apparatuses are constrained 
by it. We therefore have calculated the phylogenetic signal we find for the overall 
floral shape data and the three modules separately for all species and per main 
clade (Figure 6). We find that for all species combined there is no phylogenetic 
pressure on floral shape, but that there are huge discrepancies between main 
clades. Clades B, C1, and C1 display a Kmult value of around 0.5 and higher for all 
modules indicating there is limited but significant influence of phylogenetic signal 
on floral shape. For the clades A1 and A2, harbouring extensive variation both 
morphologically and phylogenetically, Kmult values are close to zero, indicating an 
absence of phylogenetic constraint in the shape data for these clades.

0.00

0.25

0.50

0.75

All A1 A2 B C1 C2Clades

Km
ul

t

legend
All
Corolla
Spur
Stamens

Phylogenetic signal

Figure 6. Barplot showing Kmult values for Pelargonium species included in this study for the modules 
corolla (light blue), spur (turquoise), stamens (light green), and all combined (dark blue) per phylogenetic 
main clade.
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DISCUSSION
In this study, we (1) quantify the amount of morphological variation in Pelargonium 
flowers; (2) determine to what extent the different modules (i.e. show-, reward-, and 
transfer- apparatus) are integrated; and (3) examine to what extent flower shape is 
constrained by phylogenetic signal and what the relation is between floral shape and 
phylogeny. Combined, this work provides new insight in the coordinated evolution 
of modules and their phylogenetic constrains. 

Morphological variation 
The range of floral diversity found in Pelargonium is immense, including varying 
numbers of petals from five (most species in Geraniaceae), to four (i.e. P. 
caucalifolium), two (i.e. P. bipetalum), and even zero (P. apetalum), corolla shapes 
varying from highly zygomorphic to almost actinomorph (i.e. P. cotyledonis), and 
pedicel length ranging from zero to 100 mm (i.e. P. appendiculatum). In addition, 
there is extensive petal nectar guide and colour variation (which was not taken into 
account in this study). 

Indeed, the variation in floral shape as depicted in Figure 3 seems to have captured 
the variation in Pelargonium flowers outlined above. The elongation of the spur 
and size of the corolla are the most variable traits among the species included in 
the morphospace (PC1, 41%). This trait corresponds with the unique spur pollinator 
syndrome featured in Pelargonium and correlates with their highly variable pollinator 
types (Struck, 1997, 1994). Spur length evolution appears highly dynamic, with 
in some species the spur almost completely missing, as for example in P. hirtum 
(which has 3 mm short spurs) while in its closely related P. appendiculatum (probably 
pollinated by long-tongued hovering flies) the spur is elongated to almost ten cm 
length (Struck, 1997). Along PC2 (19%) we found a shift of stamen shape ranging 
from short and straight to long and curved. This corresponds with the variety 
of stamen shape in Pelargonium: the species with long and curved stamens are 
pollinated by long-tongued, hovering insects (such as species from the Tabanidae, 
Bombyliidae, and Nemestrinidae; Struck, 1997) while the short and straight stamens 
correspond with the association with short-proboscid, landing pollinator species 
(such as Anthophoridae, Megachilidae, and Vespidae). Figure 3 further illustrates a 
clearly ‘avoided area’ that individuals do not seem able to enter, which corresponds 
with filling ratios of the pedicel by the spur. At this boundary, individuals have a ratio 
approaching 1 which would suggest there is no pedicel left for the spur to further 
increase in size. In this sense, the pedicel length forms a clear physical boundary 
constraining spur length. In addition, there seems to be a trend towards higher 
filling ratios (Figure 3D), implying an overall trend towards as long as possible spur 
lengths. See Chapter 4 for more detail.

We explored the relation between floral shape and phylogenetic placement in 
detail by plotting the reconstructed phylogenetic tree in the morphospace resulting 
from a PCA analysis on the mean shapes per species (Figure 4). Here we found 
there is no patterning of species that are phylogenetically closely related. Examples 
of convergent and divergent evolution are nicely illustrated. For example, the 
distantly related P. cotyledonis (Figure 4A) and P. graveolens (Figure 4B), have 
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similar converging shapes. This is somewhat surprising, as P. cotyledonis has long 
been considered to be a morphological outlier in the Pelargonium floral spectrum. 
Being isolated on the remote island of St. Helena, P. cotyledonis is hypothesised 
to have ‘reverted back’ to a base Geranium-like shape in the absence of pressure 
by a clear pollinator. This is reflected in the almost actinomorphic distribution of 
petals in the corolla, the white petal colouration as well as the virtual loss of the, 
for Pelargonium so characteristic, nectar spur (Bakker et al., 1998; Van der Walt and 
Vorster, 1983). The closeness of P. graveolens in the floral morphospace we obtain, 
appears predominantly to be the result of the length of the pedicel and nectar spur 
related to the size of the corolla. These features approximate P. cotyledonis. Also, 
the shape of the petals as we have defined them here is strikingly similar. 

On the opposite side of the spectrum, we found P. tenuicaule (Figure 4C) and P. 
trifidum (Figure 4D) with highly diverged floral shapes. A clear difference between 
these species is the length of the pedicel, which is much elongated in the case of 
P. trifidum. This difference in pedicel and spur length could reflect differences in 
primary pollinators. Struck (1997) determined P. tenuicaule to be part of a floral guild 
of Pelargonium species that are primarily or exclusively pollinated by the bombyliid 
fly Megapalpus capensis, which is characterised by a fairly short proboscid (reflected 
in the ‘limited’ pedicel and spur length of the flower). The exact pollinator species 
of P. trifidum is yet unknown, but could be one of the long-proboscid hovering flies 
that are known to pollinate other species of this section (Struck, 1997).

We did not see a clear patterning of species from a main clade occupying a 
particular part of the morphospace (Supplementary Figure S3,4, and 5). However, 
when looking in more detail we did find that the two sister-pairs of main clades (A1-
A2 and C1-C2) in some degree are divided in the morphospace. The individuals 
belonging to clade C2 dominate the lower left quartile of the PC plot, while the 
individuals of clade C1 tend to be retrieved toward the positive ends of both PC 
axes, albeit with a large transition zone. We found the same phenomenon over 
PC1 for clades A2-A2, with a massive outlier in the avoided area for clade A1 by P. 
lanceolatum. 

The finding that there is no direct correlation between phylogeny and floral shape is 
corroborated when we plot phylogenetic versus morphological distance (Figure 5). 
We can clearly see there that an increased phylogenetic distance between species 
does not mean they are morphologically more diverse. Rather, morphological distance 
seems to be highly dynamic. This is illustrated by the species P. abrotanifolium, 
which shows a wide variety in morphological distance even with relatively closely 
related species as P. cotyledonis and P. drummondii while over a larger phylogenetic 
distance (i.e. toward P. desertorum and P. tongaense) morphological distance is 
remarkably low. This would suggest phylogenetic placement is not a strong driver 
of floral shape and that changes in floral shape can happen independently from 
phylogenetic signal, a finding already hinted at by previous studies comparing sister 
species in Pelargonium (van der Niet et al., 2006).
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We have to add the critical note that petal reflexion, which is known to be an 
important aspect of Pelargonium shape, was not accounted for in our GMM 
analyses. In addition, these results are often based on a single individual flower for 
both datasets. Within species variation is therefore not yet accounted for. When we 
are able to do so, we might find a shift in the morphospace.

Modularity in concert?
Shifts in floral shape can be caused by pollinator pressure. In the case of the 
specialised spur-pollinator syndrome, we are uncertain to what extent the different 
modules (show-, transfer-, and reward- apparatuses) are influenced by this pressure. 
To some extent, these apparatuses have to be integrated to maximise fertilisation 
success. These structures could be highly modular and all take their own evolutionary 
path, but this would probably not increase the fitness of the overall plant. When 
there is conflict between the optima of the different functional modules, or when 
they work in such a way that they start to oppose one another, this modularity is no 
longer in the species best interest and will thus be constrained. 
We indeed found modularity  within our floral data when partitioned over show-, 
transfer-, and reward- apparatuses, which suggests there are three evolutionary layers 
‘happening’ alongside each other. Each of these lines will undergo evolutionary 
pressure by a range of causes and each of these lines will thus undergo changes in 
shape. However, since we also found strong integration between these modules, 
independent evolution only goes to a certain extent and evolution therefore 
appears to be a sort of balancing act between the show-, transfer-, and reward-
apparatuses. Because what may be beneficial for one of the apparatuses, may be 
sub-optimal for the others. This interdependency of modules can be explained by 
the ‘tailored fit’ around the pollinator that is needed to ensure optimal pollination. 
All spatial aspects of the pollinator need to be met by the flower in order to maximise 
fitness. To some extent we saw this occurring within the reward apparatus (Figure 
3). There appears to be a tendency toward longer spur lengths because this would 
be beneficial in securing pollinators. Long spurs are associated with a specialised 
pollination syndrome, acting as ‘pollinator-filters’. However, in Pelargonium spur 
length will always be constrained by pedicel length. The length of the pedicel 
ultimately determines the maximum length of the spur, since a spur longer that the 
pedicel is not a possibility within Pelargonium (as it is in other flowering clades as 
Aquilegia). Therefore, the spur evolutionary trajectory will always be in some way 
limited by the pedicel evolutionary trajectory. 

This raises the question whether there is an optimum for pedicel length? The 
pedicel is a hugely important floral structure of which the length is known to be 
influenced by temperature and differences in the LEAFY gene expression (Catley et 
al., 2002; Yamaguchi et al., 2012). Whether pedicels in Pelargonium are involved in 
the Darwinian arm’s race as suggested by Whittall and Hodges (2007) for spurs, will 
be interesting to test. 

In addition to defining spur length, the pedicel also plays a critical role in the 
positioning of the flower. During development of the inflorescence, the individual 
flowers develop one by one and successively reach full anthesis. However, this is 
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of no meaning without the pedicel to lift the flower up and orient them in the 
position that is most beneficial for pollinator access. We saw as a result there are 
large differences in pedicel orientation, ranging from short and straight to long and 
curved (in effect turning the flower upside-down). 

Alternatively, and in a less adaptationist interpretation, an explanation for shifts in 
floral shape can possibly be found in population genetics. Floral shape shifts could 
be the result of genetic drift within small, isolated populations (effectively forming 
islands), indeed a feature of many Pelargonium species in the winter rainfall region. 
Due to reproductive isolation, changes in morphology can then more easily become 
established in the population. This could ultimately lead to speciation. We know 
that in Pelargonium post-zygotic barriers such as cytonuclear incompatibility and 
male sterility are a major influence on reproductive isolation (Chase, 2007; Weihe et 
al., 2009). The variety in floral shape we found in our data might therefore not only 
be driven by pollinator pressure, but simply be the result of chance. 

Phylogenetic signal in modules
From a Geometric morphometric analysis perspective we found modules within the 
overall flower structure seem to be highly integrated, and we assessed the influence 
of phylogenetic signal on this data. We found that the relation between floral shape 
and phylogeny is highly dependent on clade and differs per module. 
For example, stamen shape, when measured over all clades, has an extremely 
low Kmult value, indicating variation in shape is completely random and not under 
selective pressure. However, when we zoom in at the main clade level we found 
similar results for the A1 and A2 clades, but an increase of the Kmult value for the B, 
C1, and C2 clades. We found the same pattern for the corolla and spur. Surprisingly 
enough, it appears to vary across modules in which main clade selective pressure 
is highest. For stamens it is clade C2, for spur B, and for corolla C1 (although not 
significant). 

So the B, C1, and C2 clades appear to be under phylogenetic constraint, which, as 
we have seen in the PCA analysis, does not result in different shapes. Rather there 
appears to be a path towards the ‘typical’ Pelargonium flower. Both clade A1 and 
A2 on the other hand do not appear to be under any type of phylogenetic pressure 
at all. Rather their form and potential shifts therein appear to happen at random. 
This finding is reflected in the morphospace (Supplementary Figure S4, S5, and S6) 
where we saw an enormous spread in distribution of A1 and A2 species. 

A possible explanation for this finding can be found in the relative young age of 
the Pelargonium ‘winter-rainfall’ clade A (Chapter 2; van de Kerke et al., 2019). 
Pelargonium is found to have originated around 9.7 Mya, which would set the origin 
of clade A at 5.7 Mya (with 4.5 Mya for A1 and 4.8 for clade A2). Within this clade, 
itself being a radiation of species and main life forms, a second, non-adaptive, 
radiation consisting of geophytic species from P. sect. Hoarea, is thought have 
occurred (Bakker et al., 2005). These ‘nested radiations’ are associated with the 
high number of growth forms found in Pelargonium (Bakker et al., 2005; Chapter 
2; van de Kerke et al., 2019; Verboom et al., 2009), and could also be correlated 
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with the diversity of floral shapes found in this clade. Clades B, C1, and C2, being 
older and less speciose, could have had time to ‘settle down’ or canalise within their 
phylogenetic constraints on floral shape, converging around a ‘typical’ Pelargonium 
flower. While under the influence of this double burst of increased speciation rate 
in clades A1 and predominantly A2, floral shape could hitherto be highly dynamic. 
One explanation for this finding is that floral shape happens ‘just because’, i.e. 
not as adaptation. As if the clade is exploring all possibilities available in the 
morphospace at random, and time will filter out all freak accidents. Time will ‘weed 
out’ all experiments that have gone bad or will not stand a chance (bad horses). 
Another explanation could be that this highly dynamic floral shape is the result of 
high mutation rates in Pelargonium, especially in the mitome (Bakker et al., 2006; 
Mower et al., 2007) that could lead to rapid reproductive isolation (post-zygotic). 

This finding also raises the question to what extent Pelargonium flowers are adapted 
to their pollinators. Given the lack of correlation between phylogenetic signal and 
floral shape in clades A1 and A2, to what extent can this variation be explained 
by adaptation to potential pollinators? One might hypothesise about the relation 
between floral shape and pollinator in the light of mate choice, i.e sexual selection. 
Because the pollinator is the primary modus for the flower to ensure fertilisation, 
transmission of the pollen by the pollinator in a sense is the way two flowers mate. 
The sexual attraction in this system is not flower-flower, but rather flower-pollinator, 
which would mean the flower has to ‘seduce’ the insect and that sexual selective 
forces may be in place. 
We found the relation between flower and pollinator in Pelargonium to be highly 
specialised in the spur pollination syndrome. We showed this is not the only variation 
present in Pelargonium. There is variation in petal size and shape, curvature of the 
pedicel, petal nectar guides, size of the opening of the spur. This raises the question, 
what is all that variation for? We suggest this variation is a result of the mate-choice 
of the pollinators. Pelargonium occurs in the highly competitive environment of the 
Cape Floristic Region where species have to fight for a select range of available 
pollinator species. In some way, the species have to ensure their flowers are more 
attractive than those of the competing flowering plants nearby. Much like birds 
have developed their extensive range in sexually attractive displays. For example, 
the dense inflorescences some species in the Pelargonium sect. Hoarea form might 
in fact be a way to form a type of ‘superflower’ that is more attractive for potential 
pollinators. When the pollinator has been seduced to approach this superflower, the 
more close-contact signals kick-in to direct the pollinator to the flower. 

CONCLUSION
We explored the relation between floral shape and phylogenetic placement in 
detail by plotting the reconstructed phylogenetic tree in the morphospace resulting 
from a PCA analysis on the mean shapes per species (Figure 3). Here we found there 
is no patterning of species that are phylogenetically closely related. The finding that 
there is no direct correlation between phylogeny and floral shape is corroborated 
when we plot phylogenetic versus morphological distance. This finding suggests 
that the morphological structures within these modules are more integrated with 
each other than between modules. We found that relation between floral shape 
and phylogeny is highly dependent on phylogenetic clade and differs per module. 
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P. mutans
P. trifidum
P. tenuicule
P. divisifolium
P. myrrhifolium
P. caucalifolium
P. tetragonum
P. worcestarae
P. longicaule
P. elongatum
P. aridum
P. barklyi
P. articulatum
P. multibracteatum
P. quinquelobatum
P. alchemilloides
P. peltatum
P. tongaense
P. acraeum
P. zonale
P. inquinans
P. frutetorum
P. salmoneum
P. buysii
P. cotyledonis
P. rodneyanum
P. australe
P. drummondii
P. odoratissimum
P. album
P. reniforme
P. abrotanifolium
P. ribifolium
P. capitatum
P. panduriforme
P. glutinosum
P. quercifolium
P. denticulatum
P. pseudoglutinosum
P. greytonense
P. graveolens
P. radens
P. cucullatum
P. fruticosum
P. patulum
P. ternatum
P. scabrum
P. grandiflorum
P. englerianum
P. crispum
P. betulinum
P. tomentosum
P. lanceolatum
P. elegans
P. echinatum
P. magenteum
P. desertorum
P. carnosum
P. parviflorum
P. laxum
P. paniculatum
P. ceratophyllum
P. crithmifolium
P. lobatum
P. pulchellum
P. fulgidum
P. incrassatum
P. moniliforme

Suppl. Figure S3. Phylogenetic tree as used for this study, including grafted species based on known 
sister-species relations (blue) and other taxonomic information (red).
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ABSTRACT
Speciation in flowering plants is a complex and intricate process. It can be triggered 
by an enormously diverse set of factors such as shifts in environmental conditions, 
geological events, and pollinator interactions. In this chapter, we assess existing 
knowledge on these different aspects of plant speciation for the Cape lineage and 
radiation of Pelargonium in order to (1) examine whether there is a relation between 
floral shape, species distributions and environmental conditions and (2) determine 
to what extent aspects of floral shape are drivers of speciation rate in Pelargonium. 
We find speciation in Pelargonium to be a complex web of interactions between 
environmental conditions, pollinator distributions, flowering time, and historical 
biogeographical influences. Especially in the Cape region, Pelargonium appears 
to make the most of the circumstances. Species can occur in wet, dry, cold, warm, 
high elevation, and low elevation conditions and in all possible combinations of 
them. Floral shape seems to vary independently from these conditions. We find 
only the subset of corolla shape to have an influence on the speciation rate in our 
Pelargonium species. Floral shape appears to be an ‘extra layer’ of diversity in 
Pelargonium and seems not to be a driving force for speciation.
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INTRODUCTION
Speciation in flowering plants is a complex and intricate process (Greiner et al., 
2011; Rieseberg and Wendel, 2004; Rieseberg and Willis, 2007). It involves many 
facets and can be triggered by a diverse set of factors such as shifts in environmental 
conditions, geological events, pollinator interactions, and others (Dieckmann and 
Doebeli, 1999; Nosil, 2012; Nosil et al., 2017; Rundle and Nosil, 2005; Schulter, 
2001; Tank et al., 2015; Turelli et al., 2001; Whittall and Hodges, 2007).

The unevenness in plant species distribution around the world and its relation 
with environmental conditions has long intrigued scientists (Abbott et al., 2013; 
Kier et al., 2005; Martínez-Cabrera and Peres-Neto, 2013; Mutke and Barthlott, 
2005). Shifts to new habitats, climatic (in)stability and  fragmented landscapes are 
important for species diversification, i.e. ecological speciation (van der Niet and 
Johnson, 2009; Warren et al., 2011). A classic and often cited example of repeated 
ecological speciation is of the numerous independent lineages with hyper-diversity 
found in the Greater Cape Floristic Region of South Africa. The unprecedentedly 
high numbers of species in this relatively small area (~9000 in 90.000 km2) has been 
attributed to high rates of speciation driven by adaptation to local environmental 
conditions (Goldblatt and Manning, 2002; Linder, 2003). The idea being that there 
are so many distinct micro-niches formed by combinations of soil types, rainfall, 
altitude, frequently-occurring fires, different flowering times, and seasonality that 
closely related species can adapt to localised environmental conditions (Ellis et al., 
2014; van der Niet and Johnson, 2009; Warren et al., 2011). 

In addition to current environmental conditions, past conditions have also played 
an important role in triggering the emergence of what we now recognise as clades. 
For instance, geological and paleo-climatic events during a radiation can have 
a major influence on speciation patterns and the evolutionary history of a clade 
(Barba-Montoya et al., 2018; Li et al., 2019). The break-up of Gondwanaland as 
well as the occurrence of mass extinction events (such as the K/P boundary ~60-
50Mya) have had a tremendous influence on the diversity of life on earth (Barreda 
et al., 2015; Berger et al., 2016; Chartier et al., 2017; Gould, 1990; Meredith et al., 
2011). And, on a shorter evolutionary scale, the rise of numerous mountain ranges 
(i.a. Linder, 2017). Due to these geological events, new niches become available 
and populations become reproductively isolated, facilitating the formation of new 
species (Simões et al., 2016). 

The interaction between a flower and a pollinator is another critical factor considered 
to be a possible driver of plant speciation (Faegri and van der Pijl, 2013; Dodson, 
1966; Whittall and Hodges, 2007). Darwin proposed that the floral characteristics 
of plants are shaped by their interaction with pollinators (Darwin, 1877). Since then, 
pollination biologists have categorised sets of floral traits shaped by pollinator-
driven selection in pollinator syndromes or guilds (Faegri and van der Pijl, 2013). The 
idea being that a certain pollinator group has a specialised preference for a certain 
set of floral traits. Therefore, plants belonging to the same pollinator guild (having 
the same syndrome) will be pollinated by the same set of pollinators (Fenster et al., 
2004; Schiestl and Johnson, 2013). To allow for the functional attraction between 
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flower and pollinator there needs to be an anatomical match in morphology of both 
to guarantee effective pollen transfer. The pollinator must have sufficient access to 
the reward (i.e. nectar), otherwise pollinators will avoid these flowers in the future 
(Alexandersson and Johnson, 2002; Forest et al., 2014; Kay and Sargent, 2009; 
Pauw et al., 2009; van der Niet et al., 2014; Whittall and Hodges, 2007). Switches 
between pollinator syndromes have been found to be drivers of speciation and to 
correlate with clade radiations (Givnish and Sytsma, 2000; Johnson, 2010; Kay and 
Sargent, 2009; Weller and Sakai, 1999). A prime example is the South African genus 
Disa (Orchidaceae) where a pollinator switch took place in almost every speciation 
event (Johnson et al., 1998). Goldblatt and Manning (2006) found a pollinator switch 
for every five to six species for the genera Gladiolus and Babiana (Iridaceae).
The modularity of a flower and the potential independent evolution of these 
modules, whether or not under the influence of pollinator pressure, adds to the 
complexity of speciation in flowering plants (Edwards and Weinig, 2011; Wagner, 
1996; Wagner et al., 2007). When integration among floral traits within a module 
is high, independent evolution of traits within a module is found to be limited to 
prevent maladapted trait combinations (Edwards and Weinig, 2011; Klingenberg, 
2008; Wagner, 1996). Hence, the general adaptability of a flower is limited to fit the 
demands of the pollinator which may limit the flexibility to switch pollinator type. In 
contrast, the separate modules an sich follow their own evolutionary path (Chapter 
5; Wagner, 1996). As we have hown in Chapter 5, in Pelargonium (Geraniaceae), the 
flower itself consists of a number of modules that evolve independently.

Another important factor for speciation is divergence of flowering time. Flowering 
time is a critical component of a plants’ life cycle and determines reproductive 
success (Dreyer et al., 2006). Flowering time has been found to be subject to 
numerous influences including pollinator availability, soil moisture, and phylogenetic 
constrain (Brody, 1997; Dreyer et al., 2006; Johnson, 1992). Sympatric speciation 
can occur if two lineages have non-overlapping phenologies, since there will be no 
opportunity for pollen exchange. This can also reduce competition for the same 
set of pollinators. Shifts in flowering time are an important mechanism for plants to 
occupy new niches and ensure reproductive success in the area they occur in (Brody, 
1997; Du et al., 2015; Kessler et al., 2010; Ollerton and Lack, 2014).

Separate factors of environmental conditions, geological events, and pollinator 
interactions also influence each other. For example, elevation is thought to have 
an influence on speciation patterns. Harsh conditions at higher elevations often 
select for species to form single, relatively large, flowers (Fabbro and Körner, 2004; 
Herrera, 2005), possibly influencing pollinator attraction and thus reproduction. But 
altitude is also known to be highly correlated with pollinator occurrence (Arnold et 
al., 2009; Koski and Ashman, 2015).

We study the interplay between environmental conditions, geological events, and 
pollinator interactions using the predominantly South African genus Pelargonium 
(Geraniaceae). Pelargonium is well-known for its stunning floral and vegetative 
diversity across its ~280 species (Bakker et al., 2005, 1999; Jones et al., 2009, 
2003; Nicotra et al., 2008; Röschenbleck et al., 2014; Struck, 1997). Phylogenetic 
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relationships within the genus are resolved (Chapter 2; van de Kerke et al., 2019). 
Roughly 70% of the genus occurs in the South African Greater Cape Floristic Region 
(GCFR; Linder, 2003; Manning and Goldblatt, 2012; Snijman, 2013). Other species 
occur in eastern Africa, Namibia, Australia, the Arabian peninsula, Asia minor, and St. 
Helena (Dreyer et al., 1992; Van der Walt et al., 1990; Van der Walt and Vorster, 1983). 
Throughout Pelargonium, variation in diverse aspects of floral shape can be 
observed. First, and perhaps most striking, the orientation of the petals ranges 
from highly zygomorphic (P. fulgidum) to almost actinomorphic (P. cotyledonis). 
Second, the variation in petal copy number occurs between and within a species 
(i.e. P. caucalifolium) and alters between five (the ‘standard’ in Geraniaceae), four (P. 
tetragonum), two (P. dipetalum), and can even be missing (P. apetalum). Third, the 
shape of the petals varies tremendously: from slender and elongated (P. paniculatum) 
to almost round (P. inquinans).

Pelargonium has a unique spur pollination syndrome with the spur growing adnate 
to the pedicel (Albers and van der Walt, 2007; Goldblatt et al., 2000; Hodges, 
1997; Hodges and Arnold, 1995; Manning and Goldblatt, 2012; but see Tsai et al., 
2018) which is a synapomorphy for the entire clade. A range of pollinators matching 
varying spur length has been recorded for Pelargonium, including species of long-
tongued hovering flies (Tabanidae, Bombyliidae, and Nemestrinidae), bees (Apidae, 
Anthophoridae, Megachilidae), wasps (Vespidae), and beetles (Scarabaeidae; 
Struck, 1997). In some cases, the spur pollination syndrome is highly specialised. For 
example, in the Atlantic Ocean island-endemic P. cotyledonis the nectar spur seems 
to have almost disappeared probably due to the loss of the ancestral pollinator from 
mainland Africa and a subsequent switch to a new pollinator species present on 
St. Helena. While in P. appendiculatum the nectar spur is 10 centimetres in length, 
but no pollinator with such a long proboscid is known. In addition to varying spur 
length, the extent to which the pedicel is covered by the spur (pedicel occupation or 
filling) differs greatly among species (Chapter 4). When a trend towards longer spurs 
within a clade is found, speciation rates and spur lengths are negatively correlated 
(i.e. highly specialised flowers are found in smaller clades; Ringelberg, 2012). This 
would indicate that spur length is an important driver of speciation, but does not 
necessarily result in the radiation of large clades (Ringelberg, 2012).  

In this chapter we explore the relation between environmental conditions, geological 
events, pollinator interactions, flowering time, and floral shape in a multi-variate 
analysis for the GCFR lineage Pelargonium. The goals of this study are therefore to: 
(1) examine whether there is a relation between floral shape, species distributions 
and environmental conditions; and (2) determine to what extent aspects of floral 
shape are drivers of speciation rates in Pelargonium. 
We would expect there to be a relation between floral shape and species range 
distributions because of a relation with local pollinator populations (Forest et al., 
2014; Goldblatt and Manning, 1999; Manning and Goldblatt, 2005; van der Niet and 
Johnson, 2012). We expect that aspects of floral shape are correlated with climatic 
variables. In addition, we expect overall floral shape to be a driver of speciation, 
since all three functional units play an important role in ensuring pollination success. 
However, we expect the reward unit (i.e. the spur) will be the most important driver 
because of its highly specialised pollination function (Ringelberg, 2012). 
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MATERIAL AND METHODS
We included results from the historical biogeographical and ancestral environmental 
conditions study (Chapter 3) as well as the analysis on floral shape and modularity 
(Chapter 4 and 5). For details on the methods and results, we refer to these studies. 

Environmental data 
We chose three environmental variables that are thought to correlate with many 
other environmental factors and are linked to pollinator type. Mean annual 
precipitation (MAP) and mean annual temperature (MAT) were selected because 
they are good indicators of the type of climatic conditions at the locality of the 
plant. We selected elevation because it correlates with potential pollinators in a 
generic way. We extracted these three climatic variables for the 68 species for which 
floral morphological data was analysed (Chapter 4 and 5) and  for all biogeographic 
coordinates previously used (Chapter 3). We performed an ANOVA to test whether 
there were significant differences in mean floral shape per species using these 
variables and areas (scored by geographical area as in Chapter 3).

Pollinator perspective
We compiled a list of all known pollinators of Pelargonium and being as specific as 
possible. For these pollinator species, we extracted distribution data from GBIF and 
scored in which of the twelve geographic areas (as defined for the Ancestral area 
reconstruction in Chapter 3) they occur in. We graphed this data using the package 
‘ggplot’ in R (Wickham, 2009).

Flowering time
Flowering time was scored according to the month a species is known to flower for 
all species as reported by Van der Walt and Vorster (1988). We visualised this data 
using the package ‘ggplot’ in R (Wickham, 2009).

Floral shape and speciation rate estimates
We used the QuaSSE model (Quantitative State Speciation and Extinction; Fitzjohn, 
2010) to test trait-dependent diversification related to floral shape. QuaSSE 
calculates the probability of a phylogenetic tree, a morphological trait, and a model 
of cladogenesis using likelihood (Fitzjohn, 2010). Both speciation and extinction 
rates in the birth-death model may vary, and are based on the evolution of the 
morphological trait which is assumed to evolve under a diffusion model and can 
have a constant, linear, sigmoid, or parabolic effect on speciation and extinction 
rates. We chose the best fitting model based on AIC score, and performed a chi-
square test to test for significantly different results compared to the null model.

Since we did not measure single traits but overall floral shape based on landmarks, 
we instead decided to extract PC values as calculated in the PC analysis in Chapter 
4 along the first PC axes and rescale these values on a scale ranging from 0 to 1 
(Dr. Kaliontzopoulou, pers. comm.). We kept the extinction rate constant, because 
we do not have sufficient fossil data to properly use them for the estimation. We 
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performed both ‘normal’ and ‘split’ QuaSSE analyses, where we used previous 
knowledge on diversification rate shifts within the Pelargonium genus at the base 
of clade A to define the split (Ringelberg, 2012). No meaningful diversification rate 
analysis could be performed given our limited taxon sampling for our morphological 
data (data not shown). We performed both types of analyses for overall floral shape, 
as well as for the show-, transfer-, and reward-units separately.

RESULTS
Environmental data
We tested for a relationship between overall floral shape, and the separate floral 
modules, with specific environmental conditions using ANOVA (Table 1 and 
Supplementary File S1). The significant relation between stamen shape and the 
interaction between temperature and site is illustrated in Figure 1 and 2. We see 
that lower temperatures correspond with a higher PC2 value (shape aspect). We find 
this to be the case for the non-Cape areas. The relation between spur shape and the 
interaction between temperature and precipitation shows diverse patterns. Within 
the Cape region (Figure 1), species that occur in places with higher temperature 
correlate with a positive value on PC1. The species occurring at sites with lower 
precipitation are found around the centre of PC2 and precipitation values go up 
towards the extremes of the axis. Non-Cape species show a much more mixed 
pattern (Figure 2). The relation between corolla shape, elevation, and precipitation 
is most clearly shown for non-Cape species; an increase in PC2 correlates with more 
extreme elevations (both low and high). This pattern is less clear for the Cape species, 
indicating the importance of Site. Overall floral shape correlates with the interaction 
between temperature, precipitation, elevation, and site and is a combination of all 
above named separate floral parts and interactions.

Pollinator perspective
We found pollinator data records for 57 Pelargonium species (Supplementary Table 
S2). Overall, data on pollinator species is scarce for Pelargonium and resources are 
limited to a select number of publications (e.g. Combs and Pauw, 2009; Goldblatt 
et al., 2000; Struck, 1997). The majority of Pelargonium species are pollinated by 
long-proboscid flies (40 out of the scored 57), sometimes in combination with other 
pollinator types (beetles, bees, flies, and wasps). Bees also pollinate a number of 
Pelargonium species (19 recorded). Pelagronium flabellifolium and P. fulgidum are 
the only species reported to be pollinated by sunbirds (Nectarinia), and only P. 
minimum is reported to be pollinated by ants (unknown species, Figure 3).
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Table 1. Results of ANOVA test for a relationship between overall floral shape, and the separate floral 

modules, with specific environmental conditions.

All Corolla Spur Stamens
Temperature 0.1989 0.4397 0.0627 0.037
Precipitation 0.9834 0.523 0.5522 0.114
Elevation 0.4256 0.1967 0.1101 0.3653
Site 0.8749 0.1136 0.6289 0.3948
Temp*Prec 0.2866 0.3635 0.0448 0.0922
Temp*Elev 0.0861 0.5008 0.5743 0.7507
Prec*Elev 0.0977 0.0824 0.5328 0.7857
Temp*Site 0.2693 0.2435 0.2558 0.0335
Prec*Site 0.2338 0.8969 0.4915 0.6434
Elev*Site 0.7621 0.4013 0.8894 0.7535
Temp*Prec*Elev 0.1909 0.3286 0.3838 0.5584
Temp*Prec*Site 0.0666 0.7272 0.8274 0.8413
Temp*Elev*Site 0.3133 0.2169 0.7744 0.841
Prec*Elev*Site 0.0428 0.0405 0.1312 0.132
Temp*Prec*Elev*Site 0.0026 0.0558 0.309 0.5035

P. alchemilloides

P. betulinum

P. capitatum

P. crispum

P. crithmifolium

P. denticulatum

P. echinatum

P. elongatum

P. fruticosum
P. fulgidum

P. glutinosum

P. incrassatum

P. longicaule

P. magenteum
P. myrrhifolium

P. patulum

P. peltatum

P. reniforme

P. scabrum

P. tetragonum

P. zonale
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Figure 3. Figure showing PC1 and PC2 of PCA on overall shape with individuals coloured based on 
pollinator type.
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Flowering time
We scored flowering time for 60 species (Supplementary Table S3). We find that 
for areas A, B, and C (as defined in Chapter 3) species flower throughout the year 
(Figure 4). For area D, H, J, K, and L we cannot infer a reliable pattern because we 
do not have sufficient data. For all other areas, no flowering time data was available. 

Speciation rate estimates
We tested the influence of floral shape on speciation rate using QuaSSE (Fitzjohn, 
2010). For the overall floral dataset, as well as the spur and stamen functional units, 
we found no significant relationships (Supplementary Table S4). We did find the 
corolla morphological subset to have an influence on linear speciation rate in our 
Pelargonium species (linear = 0.029, drift.linear = 0.025). The negative value of the 
drift parameter (linear = -0.021) indicates that there is a trend towards lower values 
of the variable tested. This suggests there is a trend towards smaller corollas (Figure 
5, Chapter 4).

Dec

Nov

Oct

Sep

Aug

Jul

Jun

May

Apr

Mar

Feb

Jan

A F KB C D E G H I J L

Figure 4. Figure showing amount of species flowering per month in areas as defined in Chapter 3. 
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DISCUSSION
We have examined the relation between environmental conditions, geological 
events, pollinator interactions, flowering time, and floral shape for the GCFR lineage 
of Pelargonium. We wanted to examine the relation between floral shape and the 
spatial distribution of the species and whether local environmental conditions are 
an influence on floral shape. In other words, do Pelargonium species have locally 
adapted floral shapes, suggesting climate to be a driver of floral shape? Or can 
we find an influence of pollinator species distributions and/or flowering time on 
floral shape patterning? In addition, we want to know if the shape of the functional 
units within the Pelargonium flower are drivers of speciation, i.e. whether clade 
proliferation is caused by overall flower shape, or whether single or multiple 
integrated units are pushing for shifts in speciation rate. 

Environmental link 
We found that environmental variables had an influence on different aspects of 
floral shape. Stamen shape is for instance correlated with temperature and with the 
interaction between temperature and site. Spur shape showed a significant relation 
with the interaction between temperature and precipitation. We also found that 
the interaction between site, precipitation, and elevation is correlated significantly 
with corolla shape. For overall floral shape, there is a significant relation with the 
interaction between site, precipitation, temperature, and elevation as determined 
for these species in Chapter 3. 
All combinations of climatic variables, interactions between them, and the 
correlation with geography, in the relation with the different aspects of floral shape, 
paint quite a complicated picture. When we plot the variables over the respective 
morphospaces, an obvious pattern does not appear (Figure 3). CFR Pelargonium 
species (Figure 3) are present throughout the morphospace. We do not find a clear 
patterning of species occurring in the CFR clustering together. In the CFR, apparently, 
all floral shapes are possible. This would be consistent with the Cape region being 
the ‘cradle’ of Pelargonium, the home base where such an overwhelming majority 
of species occurs and we estimate to be the ancestral region of Pelargonium (see 
Chapter 3). This is especially true for species from the main A1 and A2 clades, for 

- +

Figure 5. Visualisation of floral shapes 
corresponding to extremities of PC values.
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which we in Chapter 5 found floral shape not to be under phylogenetic constraint. 
Floral shape appears to happen at random for these species and is attributed to the 
nested radiation of clades A and A2 (Chapter 5). These findings are congruent with 
findings of Moore et al. (2018), who found leaf traits to be differentiated among 
main clades. 

The variation in climatic variables that go with this broad spectrum of floral shape 
on the other hand are quite homogeneous. Temperature for all species (size of the 
dot) is overall more or less the same and only a few species occur in areas with 
a higher precipitation level (transparency; Figure 1). Only a few of these species 
coincide with more extreme elevation levels, either low (blue, P. tomentosum) 
or mountainous (red, P. ribifolium). Overall, the levels of these variables over the 
morphospace is rather homogeneous. In comparison, the levels of the variables for 
the species occurring outside of the Cape region are much more extreme. Species 
are able to deal with extremely low levels in temperature, coinciding with a low 
precipitation or elevation (P. australe) or can be found on much higher elevations in 
combination with high precipitation (P. multibracteatum).
Even though these ‘out of Cape’ species are also spread across the morphospace, 
there is no clear clustering of species from particular areas. This suggests floral 
shape in itself is not area or clade specific. Rather the circumstances where the 
species occur have become more extreme, as a way for the species to distinguish 
itself from their Cape region counterparts. This patterns of ‘escapees’ is reflected in 
the ancestral condition reconstructions (Chapter 3) where we found single species to 
shift their distribution areas and thus general conditions, rather than differentiation 
of clades on a larger scale.

Pollinator perspective
The diversity in flowering plants in the GCFR is enormous, with an estimated ~9000 
species in 90.000 km2 (Linder, 2003). The diversity in pollinator species is much lower 
in comparison (Ellis et al., 2014). We attempted to analyse the relation between 
Pelargonium species distributions and the distribution patterns of their known or 
hypothesised pollinator species. The first hurdle was the poorly studied relation 
between Pelargonium and its pollinator species. Only a few field studies have been 
able to observe visitations of a number of insect species on Pelargonium species 
(Combs and Pauw, 2009; Goldblatt et al., 2000; Struck, 1997). However, often a 
deduction based on other known pollinators and floral characteristics, such as a red 
colour, have been used to infer a pollinator (Struck, 1997). In these cases, often only 
a pollinator type (long-proboscid fly, bee, or bird) was inferred (Struck and Van der 
Walt, 1996).
The majority of Pelargonium species are pollinated by a range of long-proboscid 
flies (Bombyliidae, Nemestrinidae, and Tabanidae; Figure 3 and Supplementary File 
S2). These flies are well-known pollinators of flowering plant species in the Cape 
region and pollinator guilds are known to have formed across a diverse group of 
plants displaying similar floral characteristics (Goldblatt and Manning, 2006; Jager 
and Ellis, 2017; Johnson and Midgley, 1997; Newman et al., 2014). A striking 
example of this is the wide-spread Bombyliid fly Megapalpus capensis, one of the 
few examples of sexual deception in plants outside of the Orchids (Ellis et al., 2014; 
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Ellis and Johnson, 2010). Megapalpus capensis pollinates species in the Succulent 
Karoo as well as the Fynbos region, including Gorteria diffusa (Asteraceae) and 
Pelargonium longifolium, P. tricolor, and P. tenuicaule (de Jager and Ellis, 2017; 
Struck, 1997). This guild is characterised by the warty thickening on the base of 
some or all of the petals, resembling a M. capensis female (Ellis and Johnson, 2010). 
Other, well studied examples of pollinator guilds Pelargonium species are part of 
the long-proboscid flies Philoliche gulosa (Combs and Pauw, 2009) and Prosoeca 
peringueyi (Manning and Goldblatt, 1996).
The Pelargonium species that occur outside of the estimated ancestral area (Winter 
- Summer rainfall and Karoo regions) appear to be pollinated by wide-spread 
pollinator species. An example of this is the pollinator Nectarinia famosa, a wide-
spread sunbird that occurs throughout South Africa, Mozambique, Kenya, and 
Ethiopia. However, within Pelargonium it only pollinates P. flabellifolium which only 
occurs in the Natal region while it is known to pollinate many other species (Geerts 
and Pauw, 2009).

In contrast, for the Winter rainfall region (arguably the most diverse Pelargonium 
region) we find pollinator species to be more exclusive to the area. For example, the 
wasp species Celonites bergenwahliae and Celonites wahlenbergiae as well as the 
long-proboscid fly Parisus eurhynatus only occur in the Cape region while some of 
the Pelargonium species they pollinate (P. praemorsum and P. capitatum) are much 
more wide-spread and occur even in Australia. In these cases, where the distribution 
of the pollinator species is limited, we find the pollinator to be part of a larger set of 
pollinators that all pollinate the same Pelargonium species.

The dispersal of Pelargonium towards Australia must have been challenging, 
especially with respect to the availability of pollinators in the region. The dispersal 
event itself being a chance event, how likely would it have been to find a suitable 
pollinator ready to go on site? From Pelargonium species in botanical gardens 
throughout western Europe, as well as the occasional escapee (P. candicans) and 
the average ‘garden geranium’, we know Pelargonium in fact are quite easily 
pollinated by insect species that are present. Indeed, highly specialised Pelargonium 
species as P. appendiculatum (with a nectar spur of 10 cm) will not easily find a new 
pollinator and can be seen in living collections to have ‘reverted back’ to selfing. 
But Pelargonium species with readily available nectar seem to thrive in regions they 
would not naturally occur. A scenario similar to that of P. appendiculatum seems to 
have unfolded for the lineage that diversified over Australia for whose species an 
increased level of self-compatibility and autogamy have been found (Nicotra et al., 
2016). 

Flowering time
Diversity in flowering time is another mechanism for plants to occupy new niches 
and ensure reproductive success in the area they occur (Brody, 1997; Dreyer et al., 
2006; Johnson, 1992). This also appears to be the case for Pelargonium species. 
We find a number of species to flower throughout the year, with a peak in spring 
(P. denticulatum) and in the case of P. acraeum in autumn as well (Supplementary 
Table S3). Other species have a more restricted flowering time and flower for only 
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two- or three-months during the spring (P. alchemilloides and P. incrassatum). We 
find that for most areas Pelargonium species flower throughout the year (Figure 4). 
Surprisingly, the influences of local seasonality and conditions do not mean they 
only flower at particular seasons, but rather flower year-round. For example, the 
rainfall seasonality that is so characteristic for the Winter (A) and Summer (B) rainfall 
regions is not reflected in the flowering times of their respective species. In the both 
the Winter (A) and Summer (B) rainfall regions, there are flowering species year-
round. This would suggest that in these regions Pelargonium species maximally 
exploit the local conditions and are adapted to changes in seasonality in order to 
occupy a new niche in the area as was previously described (Warren et al., 2011). 

Speciation in Pelargonium
Pelargonium speciation is a complex patchwork of interaction between environmental 
conditions, pollinator distributions, flowering time, and historical biogeographical 
influences. One can only image the spectrum the ancestral Pelargonium lineage 
had before the radiation of the clade upon arrival in the South African Cape, around 
9.7 Mya in the Late Miocene. Pelargonium as a clade started to diversify around 
9.7 Mya (Chapter 3). Climatic conditions in the Late Miocene where comparable 
with modern conditions, after having gone through major changes during the Early 
Miocene (Linder, 2003). As a result, local conditions became both topologically 
and climatically complex, and in that regard the ancestral Pelargonium had ample 
diversification potential. 

This diversification potential is reflected in the diversity of climatic and topological 
conditions Pelargonium species occur in. Especially in the Cape region, Pelargonium 
appears to make the most of the circumstances. Species can occur in wet, dry, cold, 
warm, high, and low conditions as well as in all possible combinations of them. We do 
not find a clear correlation between these conditions and floral shape (Figure 1 and 
2). Rather, floral shape seems to vary independently from these conditions. We find 
species with highly similar shapes occurring in different environmental conditions 
(both low and high altitudes (P. tomentosum and P. ribifolium)) while species with 
highly diverged shapes occur in the same environmental conditions (P. patulum and 
P. graveolens). We also encounter species with similar shapes occurring in the same 
environmental conditions (P. parivflorum and P. ternatum). 
Outside of the Cape region, Pelargonium species appear to occur in more extreme 
conditions; lower and higher elevations, temperature and precipitation all play a 
role. Again, there is no clear link with floral shape as all combinations of these 
environmental conditions occur throughout the morphospace. However, we only 
have a limited morphological sampling for these species.
Unfortunately, we are only able to link the additional information layers of pollinator 
diversity and flowering time to a limited extent because of insufficient overlap 
between datasets (Figure 3). However, the way pollinator type can influence the 
availability of a new niche is nicely illustrated in this figure. The species group P. 
denticulatum, P. fruticosum, and P. myrrhifolium have comparable floral shapes 
and all three occur in the Cape region, but they are pollinated by different types 
of pollinators: long-proboscid fly, butterflies, and bees respectively. This is a clear 
example of species in sympatry tapping into a new niche by being able to switch 
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to different pollinators. As all three species have similar leaf shape, a differentiation 
on that level seems irrelevant.  What makes for the exact differences between these 
species that causes this separation remains to be discovered, as there is great 
overlap in flowering time between these species. 

The general pattern forms when we join all evidence layers: we find that all types of 
influences that have been described to play a role in the Cape region to influence 
Pelargonium. Species adapt their life habit by dispersing to new regions, switching 
pollinators, and changing flowering time. In that sense, all the processes that 
are proposed to play a role in Cape flora speciation are influences on drivers of 
differences in Pelargonium species. Contrary to what we had expected, there does 
not seem to be a clear link with floral shape. Rather, floral shape appears to be 
an ‘extra layer’ of diversity Pelargonium lineages can tap into in order to set them 
apart.
Then, how does the diversity in (aspects of) floral shape influence speciation rates 
in Pelargonium? Surprisingly, we find only the corolla morphological subset to 
have an influence on the speciation rate in our Pelargonium species (Table 2). The 
negative value of the drift parameter (linear = -0.021) indicates that there is a trend 
towards smaller corollas (Figure 5, Chapter 4). We had expected spur length to 
be highly important for speciation rate since it is directly correlated with pollinator 
type. Previous findings have corroborated this hypothesis (Ringelberg, 2012). An 
explanation why we do not find any indication for such a relation, could be our 
species sampling. In the gathering of our data, we have been limited by readily 
and ‘easy-to-grow’ species predominantly in western Europe. The harder-to-grow 
species, especially in the taxonomic section Hoarea, is where more of the variation 
in spur length can be found. This variation could be a potential source for driving 
speciation rate in Pelargonium.

CONCLUSION
We find speciation in Pelargonium to be a complex patchwork of interaction 
between environmental conditions, pollinator distributions, flowering time, and 
historical biogeographical influences. Especially in the Cape region, Pelargonium 
appears to make the most of the circumstances. Species can occur in wet, dry, cold, 
warm, high, and low conditions as well as in all possible combinations of them. 
Floral shape seems to vary independently from these conditions. We find only the 
corolla morphological subset to have an influence on the speciation rate in our 
Pelargonium species. Rather, floral shape appears to be an ‘extra layer’ of diversity 
Pelargonium and seems not to be a driving force for speciation. 
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Overview of flowering time scored for 60 Pelargonium species. Available upon 
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In this thesis, I examine multiple layers of influence on floral shape change in 
Pelargonium in order to paint a comprehensive picture of the evolution of floral 
diversity of this clade. I accomplished this by studying the historical biogeography 
and potential ancestral climate conditions for the clade, within- and between 
species differences in floral shape, and their relation with the possible adaptation of 
Pelargonium species to local conditions. By building upon the extensive knowledge 
on speciation processes in the Greater Cape Floristic Region, I have been able to 
research and infer speciation processes for the Pelargonium clade. Working with 
living material certainly has it’s analytical and practical challenges, and while I have 
overcome several of these, there is still room for improvement and new questions to 
explore. In this General Discussion I reflect on my findings on the relation between 
variation of floral shape and speciation in Pelargonium, and place them in the 
broader perspective of plant evolution in the Greater Cape Floristic Region. 
Here, I again want to stress we are aware that, botanically speaking, Pelargonium 
does not have a spur but rather a nectar tube developed from the receptacle (Tsai 
et al., 2018) and that we use these terms as substitutes, as we do with ‘spur-evolu-
tion’ and ‘spurlike-evolution’. We do not aim to make any morphological or devel-
opmental claims with our terminology, but rather use ‘spur’ in a functional sense, 
irrespective of its ontogeny.

MAIN FINDINGS AND CONCLUSIONS
This thesis starts with the construction of a new, time-calibrated, phylogenetic tree 
based on 74 plastome exons and nuclear rDNA ITS regions for 120 Pelargonium 
species that resolved relationships within the genus and helped clear up remaining 
species-level incongruences (Chapter 2). I find that the Pelargonium crown node 
originated around 9.7 Mya, in line with earlier estimates (Fiz et al., 2008; Palazzesi et 
al., 2012). This places the age of Pelargonium in agreement with general findings for 
other Fynbos (8.5 ± 1.85 Mya) and Succulent Karoo lineages (5.17 ± 0.64; Verboom 
et al., 2009). 

My new age calibration makes Pelargonium around 25 My younger than previously 
thought and opened up new opportunities for a historical biogeographical analysis. 
Chapter 3 describes the first formal biogeographical analysis for the clade (aside 
from the narrative by Bakker et al. (2005)). I found the ancestral geographic range 
of Pelargonium to include the Winter and Summer rainfall region, the Karoo region, 
and the Natal region in South Africa. I found that long range dispersal seems to be 
the prime cause of the disjunct distribution patterns in Pelargonium main clades, 
both to Australia, Madagascar, along the East African Highway, and into Asia minor.

Pelargonium flowers exhibit great variability in their floral forms. In Chapter 4 I 
combined two 2D photograph-based datasets of floral morphology into a single 
3D virtual flower and subsequently used this to examine multiple layers of shape 
variation. This approach offered unique benefits to complement established 
imaging techniques in a number of ways. Through my approach, I found that adding 
the third dimension to the data was crucial to accurately interpret the manner of, as 
well as levels of, shape variation in flowers. 
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The morphospace, based on virtual3D flowers as reconstructed in Chapter 4, 
formed the basis for the exploration of floral shape and floral modularity in Chapter 
5. I wanted to know to what extent the modules (show-, reward-, and transfer- 
apparatus) within the Pelargonium flower are integrated (i.e. whether they evolve 
in concert, and whether different, apparatus-specific selective pressures may exist). 
I indeed found there is modularity within the floral data when partitioned and also 
that they are highly integrated. In addition, I found that the relation between floral 
shape and phylogeny was highly dependent on the main clade and that it was 
different per module. 

In the final research chapter (Chapter 6) I examined whether there is a relation 
between floral shape, species distributions and environmental conditions and then 
determined to what extent aspects of floral shape (build in the previous chapter but 
also adding new evidence) are drivers of speciation rates in Pelargonium. I found 
that speciation in Pelargonium is a complex patchwork of interactions between 
environmental conditions, pollinator distributions, flowering time, and historical 
biogeographical influences and that corolla shape seemed to have an influence on 
the speciation rate of Pelargonium species. I concluded that floral shape appears to 
be an ‘extra layer’ of diversity of Pelargonium lineages, which set them apart, rather 
than the major driving force for their diversification. 

PLANT SPECIATION IN GENERAL
For flowering plants, there are multiple potential influences and drivers of speciation. 
For example, due to phylogenetic ‘canalisation’ a species has a particular genomic 
make-up that it cannot escape, and hence cannot evolve certain morphologies due 
to genetic constraints, even over long evolutionary time periods. On the other hand, 
rapid speciation can occur due to shifts in pollinators which are often highly dynamic. 
A highly specialised form of pollination is spur pollination whereby pollination 
reward (the nectar) and the corolla are spatially separated. This is considered to 
result in a Darwinian ‘arms-race’ between plants and pollinators, increasing effective 
pollen transfer, and, ultimately, fitness for both (Whittall and Hodges, 2007).

There are several other factors that also have to be taken into account. For example, 
there could very well be a difference in ‘types’ of speciation when regarded in an 
evolutionary timeframe. For example, a radiation-type speciation event (adaptive or 
not) triggers a sudden burst of new species (Hughes and Eastwood, 2006). While on 
an often slower pace, there will be speciation on a lower level for example due to 
local adaptations such as shifts in phenology and/or pollinators (Forest et al., 2014; 
Warren et al., 2011). In addition, species can react to changes in environment by 
either adapting or moving away (Warren et al., 2011)

POST-ZYGOTIC BARRIERS IN PELARGONIUM
So far, I have only considered possible pre-zygotic barriers (such as pollination 
and flowering time) in the speciation process of Pelargonium, while post-zygotic 
barriers also play an important role in plant speciation in general and Pelargonium 
in particular (Greiner et al., 2011; Lowry et al., 2008; Rieseberg and Willis, 2007; 
Weihe et al., 2009; Widmer et al., 2009). One example of post-zygotic isolation, 
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by which reproductive isolation (RI) and hence speciation in Pelargonium could 
occur, is through genomic incompatibility, i.e. between organelle and the nuclear 
genome (Barnard-Kubow et al., 2016; Greiner et al., 2011; Greiner and Bock, 2013). 
After successful pollination and the establishment of a zygote, when the individual 
genomic compartments are not able to (correctly) communicate, an individual 
with low fitness can result. Incompatibility between the nucleus and organelle 
genomes has been referred to as cytonuclear incompatibility (CNI) and is common 
in Pelargonium (Weihe et al., 2009). Incompatibility between the nucleus and the 
chloroplast can be detected by leaf variegation (the occurrence of white or yellow 
zones on green leaves or other plant structures (Greiner and Bock, 2013; Weihe et al., 
2009)). In case of yellow zoning (or not that much white zoning), offspring can grow 
into a viable plant. However, when the result of fertilisation is a truly white individual, 
most likely it will not be able to survive. An example of CNI at the mitome level is 
male sterility of offspring (Chase, 2007). This is a phenomenon that also occurs in 
Pelargonium, although it might be subject to temperature fluctuations (Breman, 
pers. comm.). In these ways, CNI forms a barrier for fertilisation and hybridisation 
(Breman, pers. comm.; Greiner and Bock, 2013). 

Cytonuclear incompatibility is of particular relevance in Pelargonium because it 
is known that plastid inheritance is biparental (Tilney-Bassett et al., 1992; Tilney-
Bassett and Almouslem, 1989; Tilney-Bassett and Birky, 1981; Weihe et al., 2009). 
This means that the plastid composition of offspring is often a mix of both parental 
lines, which could increase the chances of (a level of) CNI (Ruhlman and Jansen, 
2018). On the other hand, precisely because there are plastome copies from both 
parents present in the offspring, it is likely that at least part of them are able to 
communicate correctly and in this way act as an escape from CNI (Barnard-Kubow 
et al., 2017).

Pelargonium is also well-known for having increased levels of substitution rates of 
the mitome (Bakker et al., 2006; Guisinger et al., 2008; Parkinson et al., 2005; Weng 
et al., 2012). The combination of high rates of nucleotide substitutions, biparental 
inheritance, and CNI may be causes for the relatively small population sizes found 
for most Pelargonium species (Van der Walt and Vorster, 1988). Thus, there is ample 
opportunity for genetic drift (Crespi and Nosil, 2013). These diverse genomic 
conflicts and post-zygotic factors may in fact drive speciation. In small populations, 
the increased substitution rates in Pelargonium may cause rapid changes in mitome 
genomes on such a scale that they quickly become so different from other (small) 
populations that they are subject to CNI. Any morphological changes that occur 
may simply be a result of genetic drift since they could easily become established in 
the small populations and result in the rapid formation of a new species. Biparental 
inheritance then could act as a form of escape, enabling these diverged populations/
species to still form (a kind of) viable offspring. This could give rise to a hybrid zone 
between the populations, itself again a potential source for speciation. 

ECOLOGICAL SPECIATION IN PELARGONIUM
Another, important, mode for speciation in plants is through ecological speciation 
(Nosil, 2012; Rundle and Nosil, 2005; Schulter, 2009, 2001). Although arguably 
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pre-zygotic reproductive isolation induced by pollinator pressure is a form of 
ecological speciation (van der Niet et al., 2010, 2014a, 2014b), here I want to make 
the distinction between them and look at speciation as a result of environmental 
circumstances separately from pollinator driven speciation. The former being a 
direct reaction on (changes in) local condition, while the latter is a somewhat more 
indirect effect. 
Ecological speciation in Pelargonium has been found to occur on different levels 
(Bakker et al., 2005; Jones et al., 2009; Moore et al., 2018). Bakker et al. (2005) 
tied the radiation of main clade A2 to the adaptation to a xerophytic life habit 
triggered by the formation of stem- and leaf succulence, woody subshrubs and 
the formation of tubers. This was suggested to be a reaction to the aridification of 
the Cape region during the mid-Miocene, which Bakker et al. found to coincide. 
Within clade A2, including a number of xerophytic strategies as listed above, an 
specialised adaptation of section Hoarea forming tunicate tubers could be pointed 
out (Bakker et al., 2005).  

Research into the leaf functional traits and niches of Pelargonium have corroborated 
these findings. For the xerophytic A2 clade as well as for sect. Hoarea it has 
been found that there are few direct relations between traits and environment, 
suggesting that the adaptation of xerophytic strategies allowed species to be 
somewhat independent of the environment (Moore et al., 2018). This is in contrast 
with the findings for clade A2, where a strong relation between especially leaf area 
and environment is found (Martínez-Cabrera et al., 2012). This suggests a direct 
influence of the environment on the formation of these species (Moore et al., 2018). 
The general pattern for Pelargonium is that the environmental niches species occur 
in are quite independent of phylogenetic placement (Jones et al., 2013; Martínez-
Cabrera et al., 2012). Closely related species thus do not necessarily occur in similar 
climatic niches, although there appears to be a greater tendency toward niche 
conservatism than divergence (Martínez-Cabrera et al., 2012).

HOW DO THEY DO IT?
I have built upon the extensive body of literature on the Greater Cape Floristic 
Region (GCFR) to try and give a holistic perspective on speciation in Pelargonium. 
When I set out this project, I believed that changes in floral shape were triggered 
by pollinator pressure and that this was the driver of speciation processes for this 
clade. However, I found that floral shape may not be as important for Pelargonium 
speciation patterns as I had assumed. Rather, Pelargonium species occur in a wide 
range of wet, dry, cold, warm, high, and low altitude conditions as well as in all 
possible combinations of them (Jones et al., 2013, 2009, 2003; Mitchell et al., 2015; 
Mocko et al., 2017; Moore et al., 2018; Nicotra et al., 2008). Floral shape seems 
to vary independently from these conditions. In addition, floral shape does not 
seem to be phylogenetically canalised (i.e. there are no clear shape differences 
over the main clades) but some clades appear to be phylogenetically constrained 
to some degree. Whether this is the result of the relatively young age of the genus 
(having exploded in all possible floral shapes that can occur in the current potential 
morphospace) or is a non-adaptive response still remains to be tested.
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How then do the patterns of speciation in Pelargonium, i.e. whereby floral shape 
does not seem that important, compare with other GCFR lineages? Much research 
has been done on the hyperdiverse flora of the GCFR, one of the six Floristic 
Kingdoms and Mediterranean-climate biodiversity hotspots of the world (Barthlott 
et al., 2007, 2005; Linder, 2005, 2003; Morrone, 2015; Takhtajan et al., 1986). It 
has been found that the GCFR comprises a limited number of founding lineages, 
but that all of these have contributed the extraordinary high levels of endemism 
and species richness of the region (Born et al., 2007; Goldblatt, 1978; Goldblatt et 
al., 2000; Linder, 2003; Sauquet et al., 2009). In comparison, Southwest Australia 
(another Mediterranean type climate vegatation, called the Kwongan) is much more 
phylogenetically diverse in numbers of founding lineages, but many of them show 
lower diversification rates (Sauquet et al., 2009). The Mediterranean Basin 'Maquis' 
vegetation may show lower levels of diversity because it has been a less stable 
environment for a shorter period of time, leading to fewer opportunities for diversity 
to build-up (Valente and Vargas, 2013). In general, differences between these 
mediterranean type vegatation Floristic Kingdoms in terms of diversity, and the 
potential causes thereof, are suggested to be found in terms of rates in speciation 
and extinction, geological stability of the region, and differences in local versus 
long-distance colonisation (Hughes, 2017).

Within the GCFR, ecological speciation in combination with reduced levels of 
extinction was inferred (largely from comparative species-level analyses) to be the 
primary driver of plant diversity (the ‘hot-bed’  vs evolutionary ‘museum’ models 
(Pirie et al., 2016; Verboom et al., 2009; and see Ellis et al., 2014 for an overview). 
It is hypothesized that the mosaic of different habitats, geologies and soil types 
(Goldblatt and Manning, 2002) in combination with regular fire-cycles, would have 
driven this mode of speciation. In what way ecological speciation, as opposed to 
post-zygotic barriers and/or genetic drift, has resulted in such high levels of species 
numbers is still under debate as the interaction between ecological axes makes it 
difficult ‘to tease apart the influences of diversification drivers’ (Ellis et al., 2014). An 
additional factor that should be noted is what appears to be a general tendency 
in species distributions in the GCFR, namely that the diversity of clades declines 
along a west-east gradient (named Levyns’ Law (Cowling et al., 2017; Warren et 
al., 2011)). In addition, as Bouchenak-Khelladi et al. (2015) point out, both extrinsic 
conditions as well as intrinsic traits are required for a radiation to occur. Meaning, 
the opportunity has to be there for the potential to proliferate. I agree with the 
suggestion made by Ellis et al. that an answer for hyperdiversity in general may 
not necessarily be found in looking in all the ecological axes separately. Rather, 
understanding the complete GCFR ecological mosaic, as highlighted above, as well 
as non-adaptive responses, will give us more insight in the speciation processes in 
the GCFR. 

That ecological speciation is the primary driver of diversity in the GCFR does not 
necessarily imply that all lineages do ‘it’ exactly in the same way. Determining 
direct drivers of speciation for a clade is difficult and often many theories and 
possibilities are suggested, researched, and discarded one-by-one (van der Niet 
and Johnson, 2009). For example, the massive radiation of Erica (the largest of the 



General Discussion

137

7

Cape lineages;  Linder, 2003) has been attributed to mycorrhizal interactions which 
could have resulted in increased soil fertility. However, using orchids (for which 
the same relation was suggested) and global ericoid mycorrhizal interactions, this 
hypothesis has been overturned (Ellis et al., 2014). Now, it is proposed that Erica 
(and Ericaceae in general) have been able to radiate into a nutrient poor sandstone 
soil type, triggered by the ability to form though leathery leaves with high leaf 
longevity, a characteristic feature of plants in oligotrophic habitats, and of Fynbos 
plants in general (Schwery et al., 2015; van der Niet and Johnson, 2009). 

Whereas Erica thus appears to be constrained to a single soil type, the Restionaceae 
in comparison appear to utilise a different strategy: they seem to sample a 
wide array of different habitat types (Bouchenak-Khelladi and Linder, 2017). For 
Poaceae and Cyperaceae (Poales), the radiation is attributed to the development 
of CO2-concentrating mechanisms (C4 and CAM) in an environment that became 
increasingly aridified (Bouchenak-Khelladi et al., 2014). And although the diversity in 
pollination systems in Sub-Saharan Iridaceae could help explain part of the species 
diversity, it is suggested to be playing a secondary role (Goldblatt and Manning, 
2006). But what then is the primary facilitator of this radiation remains unclear. Also 
the Protea radiation has been labelled to be an adaptive response of vegetative 
traits on climate (Mitchell et al., 2018; Onstein et al., 2016). When taking all this 
into consideration, it becomes apparent that radiations in the GCFR do not show 
a clear-cut pattern. There does not seem to be a ‘one size fits all’ type of solution 
explaining why and how the region has become so hyperdiverse. But maybe it is 
also not that complicated. It was previously suggested in the ‘Levyns-Goldblatt’ 
hypothesis: the species richness of the (G)CFR flora is the result of radiation into 
aridifying habitats in the western CFR (Linder and Hardy, 2004). Geophytes, and the 
ability to make tubers, seems to be a typical ‘Cape response’ in this respect (Jones 
et al., 2009; Moore et al., 2018; Oberlander et al., 2009; Procheş et al., 2006, 2005). 
And from the summary above we see indeed just that. All of these Cape lineages 
have found a strategy to successfully radiate in the arid conditions of the habitat 
they occur in, and they all found their own way.  

One of the factors to take into consideration are the regular (seasonal) fires that 
occur in the Cape area and the influence these have on the vegetation. It has been 
suggested that the relative absence of forests in the Cape region is enhanced by 
the regular occurring fire cycle (Bond et al., 2003). However, recently it has been 
shown this might not necessarily be the case. Rather, the difference between open 
vegetation (i.e. Fynbos) and forest-type vegetation seems to be induced by a 
difference in soil nutrient levels (Cramer et al., 2019). Many of the Cape lineages 
have alternative fire survival strategies (‘seeders versus resprouters) which have 
been suggested to be the result of divergent selection under pressure of these 
fires (Cowling et al., 2018; Ellis et al., 2014). Seeders do not survive the fires, but 
need them to regenerate their populations and sometimes need smoke to break 
seed dormancy (Brown and Botha, 2004; Cowling et al., 2018). Resprouters on the 
other hand are resistant to fire. Regular fires with short intervals between them 
has favoured the resprouter strategy (fire frequency hypothesis, Ellis et al., 2014). 
What this means for the vegetation composition in light of urbanisation and climate 
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change (will there be no opportunity for reseeders as a result of scarce fires, that 
in addition do not keep the resprouters in check?) and how it could influence plant 
speciation should definitely be researched more (Jones et al., 2013). 

Another important component of speciation is pollination, which has been extensively 
researched for the Cape region (i.a. Bouman et al., 2017; Combs and Pauw, 2009; 
Forest et al., 2014; Goldblatt and Manning, 1999; Johnson et al., 2011; Johnson and 
Midgley, 1997; Manning and Goldblatt, 2011, 1997; Schiestl and Johnson, 2013; 
van der Niet et al., 2014b, 2014a). Sister-species switches between pollinator types 
are numerous, whereby it is suggested that the adaptation to specific pollinators 
can lead to reproductive isolation enhancing speciation (Forest et al., 2014; Linder, 
2003; van der Niet et al., 2006; Welsford et al., 2016). Although for some clades, 
adopting a single pollination strategy appears to work (as for example for the wind-
pollinated Restionaceae and Cliffortia (Johnson, 2010; Linder, 2003)). But generally, 
multiple pollination strategies are adopted within a clade, and often numerous and 
repeated switches occur between them (Forest et al., 2014). All in all, pollination 
seems to be an import component of speciation within the GCFR which can be 
expressed on both a deeper (radiation) as well a shallower (sister-species) level.
Of importance here is to note that, although the Cape region is hyperdiverse 
in plant species, this is not the case for insects (Ellis et al., 2014). As a result, an 
additional level of competition for the attention of the pollinators seems to be 
added (Ellis et al., 2014; Forest et al., 2014; Jager and Ellis, 2017). This is reflected 
in the convergence of flowering plant species, rising above family level, in the same 
pollinator guild (de Jager and Ellis, 2017; Goldblatt, 1978; Manning and Goldblatt, 
1997, 1996). 

I started this project with the understanding that Pelargonium was a prime example 
of a clade that had diverged driven by pre-zygotic speciation. i.e. For which 
speciation was driven by shifts in floral shape triggered by pollinator pressure and 
that especially spur length was a defining feature because of its direct relation with 
pollinator type. However, now that we have sampled the Pelargonium morphospace 
and have been able to put it in a broader context (in an evolutionary and geological 
sense as well as ecologically) I no longer think this necessarily is the case. Yes, 
Pelargonium displays a tremendous amount of floral diversity. However, as we have 
shown, this does not go hand in hand with segregation along any of the evolutionary 
axes I have compared it with (Chapter 6). Rather, floral shape appears to happen ‘just 
because’ and appears not to be induced by pollinator or environmental pressure, 
nor the result of phylogenetic canalisation (Chapter 5). The continued sampling of 
species for the floral morphospace, irrespective of their phylogenetic placement, 
could be a result of a nested radiation of Hoarea species nested in a deeper 
Pelargonium Xerophytic clade. These radiations have previously been attributed to 
the adaptation to a xerophytic life habit triggered by the formation of stem- and leaf 
succulence, woody subshrubs and the formation of tubers. The geophytic Hoarea 
radiation was suggested to be vegetative non-adaptive and  florally adaptive 
driven by pollinator pressure (Bakker et al., 2005). Based on our analyses, where 
we find that floral shape appears not to be under phylogenetic constraint (Chapter 
5), I think each of these radiations (whether or not an adaptive response in itself) 
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might have ‘reset’ the potential for floral diversity in the ensuing clade, allowing 
for repeated sampling of the floral morphospace. Genomic changes driven by TE 
mobile elements could also have played a role here (Lindqvist and Rajora, 2019). 
This view is further supported by the finding that different species with the same 
floral shape can occur in the same area while not being pollinated by the same 
pollinator type (Chapter 6). Aspects of leaf physiology and/or performance might 
be more important aspects for speciation in Pelargonium (Jones et al., 2013, 2009; 
Martínez-Cabrera et al., 2012; Mitchell et al., 2015; Mocko et al., 2017; Moore et al., 
2018; Nicotra et al., 2011).

I think speciation on the level of radiations should not be mistaken for speciation on 
a sister-species level. The finding that a clade has radiated on a deeper phylogenetic 
level does not mean the speciation process stopped there. The combination of 
opportunity (extrinsic conditions) and event (intrinsic traits) that come together 
(in whatever order) can give rise to an adaptive radiation (Bouchenak-Khelladi et 
al., 2015). Thus, the adaptation of the clade to circumstances (or the presence of 
the adaptation when circumstances changed) give the potential of the clade to 
‘reset’ and reuse it’s full morphological potential. The findings for Pelargonium as 
presented in this thesis together with the potential for speciation driven by post-
zygotic barriers as outlined above, combined with the plethora of research on 
speciation in other Cape lineages, will help us understand the process of speciation 
in the context of the GCFR. 

REFLECTIONS
The expression ‘hindsight is 20/20’ is often applicable to a research project and 
looking back there are always new insights or ‘could-have, would-have, should-
haves’. Without wanting to undermine the content and findings of this thesis, I do 
want to subject them to some reflection.

The basis of my study is the floral morphospace that I have constructed in Chapter 
4. Over the course of 3 years of data gathering, I have been able to include floral 
shapes for 68 species in the virtual3D dataset (with 134 for the SPUR and 287 for 
the PETAL datasets). While this corresponds with ~24% of known species, as I argue 
chapter 4, a good taxonomic coverage does not reflect a good morphological 
coverage. So, how good is my morphological sampling? Based on a general sense 
of floral diversity in Pelargonium, I feel we have been able to include a good portion 
of the variation in floral morphology in the genus. I was definitely able to sample the 
quintessential Pelargonium flower shape, including a wide range of different corolla 
shapes. One of the corolla types that I unfortunately was not able to include are the 
fibrillate species (i.a. P. caffrum and P. bowkeri). Although plants of these species 
were available, I did not include them for practical purposes. It would be impossible 
to correctly landmark the fibrillate petals because a clear homology is lost. However, 
I do not think including these species would have a major impact on the morphospace 
as the general morphology is largely congruent with a ‘standard’ Pelargonium floral 
shape. A number of species from the geophytic P. sect. Hoarea (comprising 77 
species) were included, and for some of the missing ones it could be imagined they 
would have had affected the resulting floral morphospace. For instance, the keel-
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flowered P. rapaceum, P. oblongatum or the conspicuous P. asarifolium may well be 
expected to occupy ‘new’ parts of the resulting morphospace. 
One major aspect of floral shape that I was not able to include are the ‘ears’ on 
the petals of many sect. Otidia species. This outgrowth of the pedicel is thought to 
close the nectar spur. Why it is beneficial for these species to deny their pollinators 
access to the spur is not known, but for some reason a more recent evolutionary 
event has triggered the development of these structures which seems to give the 
species in this clade some advantage. I was not able to include these structures in 
my current analysis because of the way landmarks are placed (i.e. based on venation 
patterns). However, it would be possible to include the curve of this particular part 
of the petal in future studies.

For spurs, I do think including a wider range and more extreme spur lengths would 
have had a major influence. I have now been fairly limited in the variation in spur and 
pedicel length, with P. stipulaceum as notable outlier. However, I found spur length 
to be such an important feature in Pelargonium floral shape that extending the 
included range would undoubtedly result in a shift in the generated morphospace. 
In addition, I expected spur length to be a major influence on speciation rates in 
Pelargonium (based on the study by (Ringelberg, 2012). That I do not find a similar 
pattern in my QuaSSE models is, I think, a direct result of the limited range in spur 
lengths sampled in the analysis. While the Ringelberg study included over 1500 
specimens with spur length ranging from 1 to ~85 mm, our study has been fairly 
limited in that regard (including ‘only’ 134 specimens in the SPUR dataset).
I could partially overcome this problem in the same way as I solved the addition 
of missing species for both the SPUR and PETAL datasets (i.e. missing from one 
of them). I have now made the decision to include only those species we have full 
coverage of in our virtual3D reconstruction. However, there could be made a case 
for generating an average shape per dataset (SPUR and PETAL) and use that as 
place holder to complement the sampled counterpart. The reason I have decided 
in this study not to do this is because I felt the number of individuals I have sampled 
was not sufficient to warrant relying so heavily on an average shape. However, when 
I would be able to sample more individuals per species, I would have a much more 
solid foundation allowing for such a solution. 

A feature of Pelargonium floral shape I was not been able to include is the reflexedness 
of the petals, although we do know there is quite some variation between species 
in this regard. The sect. Polyactium species for example all display highly-reflexed 
petals when in anthesis. As a result, I was not able to include these correctly in this 
study because landmarking petals with such divergent orientation was not feasible. 
How I could overcome this issue is for future experiments. 

I have tried to reflect the pollinator perspective by including their distribution 
patterns in the overarching speciation chapter (Chapter 6). However, a direct and 
clear link between pollinators and floral shape cannot be made. Since one-on-one 
relations between Pelargonium floral shape and pollinator species cannot be made 
until more visitations have been recorded, I should now turn to pollinator-derived 
features of floral shape such as the nectar guides (also known as petal markings) which 
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are extensive and conspicuous in Pelargonium, floral colour, nectar composition, 
and scent. Floral scent has not been recorded for many Pelargonium species. 
Pelargonium transvaalense is recorded as the only day-scented species, while sect. 
Magnistipulaceae and Polyactium species are night-scented (Röschenbleck et al., 
2014). Scent, as well as floral shape, generally can be used to infer a pollinator 
type. More specifically, petal markings can be used to identify a particular pollinator 
guild (as the Megapalpus capensis guild that is characterised by the warty petal 
markings).

IN AN IDEAL WORLD...
In addition to upgrading our current research on influences on the evolution of 
Pelargonium and the role floral shape plays therein, there are a number of new 
paths we could (or should?) begin exploring. A low-hanging fruit would definitely 
be performing a proper phyloclimatic analysis (Yesson and Culham, 2006a, 2006b). 
The ancestral state reconstruction for selected environmental variables as I have 
performed now gives good insight in the course of conditions for Pelargonium. The 
advantage of a phyloclimatic analysis in not only that a broader range of variables 
can be included, but an entire ‘climatic niche’ for ancestral nodes can be inferred. 
Combining this with a species distribution and niche modelling program such as 
Maxent, would give the opportunity to infer ancestral ranges for selected nodes 
in the Pelargonium phylogenetic tree based on climatic conditions (Phillips et al., 
2006).  

Another low-hanging fruit would be to explore how Pelargonium floral shape 
shifted through time. I have now focussed on current morphological variation and 
how that relates with phylogenetic relations. However, I did not yet look at what the 
ancestral Pelargonium flower looked like, and how the morphospace was filled in an 
evolutionary timeframe. This could be done using my current morphological data 
and phylogenetic framework to extrapolate the shape of an ancestral node.

Combining phyloclimatic analysis and ancestral shapes would really give great 
insight in the development of Pelargonium as a clade through time. In addition, 
it would help to further understand specific dispersal events. Did the long-range 
jump to Australia really correspond with a morphological bottleneck? Can we say 
the same for the Asia minor species after we have added them to our dataset? 
These types of analyses should be complemented with a deeper understanding 
of pollinator diversity for Pelargonium. As I have found, only for a select number 
of Pelargonium species do we know by what type of pollinator they are visited, 
and even then often only on a non-species level (Chapter 6). Thus, attempting to 
expand our knowledge (for example by observing pollinator visitations) would be 
an obvious first step. However, this type of research has been notoriously difficult (T. 
van der Niet, pers. comm.). 

In addition to my floral morphology analyses and their potential relation with 
speciation in Pelargonium, quite some research has been done on the leaf trait 
aspects in this clade (Jones et al., 2013, 2009; Martínez-Cabrera et al., 2012; 
Mitchell et al., 2015; Mocko et al., 2017; Moore et al., 2018; Nicotra et al., 2011). 
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Although there is scarce overlap between the underlying datasets, I find comparable 
patterns. Now that I have done an initial analysis into the ancestral conditions of 
Pelargonium, I can broaden both the floristic as well as the leaf perspective by 
combining these separate lines of evidence in an overarching analysis. This would 
be a great opportunity to study  pre-, post-, and ecological speciation processes 
within one clade. After all, the plant is a process. 
As many factors with their associated uncertainties are involved, a Bayesian 
approach using RevBayes seems an appropriate avenue to explore speciation in 
Pelargonium in a truly holistic approach (Hohna et al., 2016). Using RevBayes, 
I would be able to include all evidence lines in one, overarching, interacting 
analysis instead of using a phylogenetic hypothesis as basis and constraint for 
all subsequent analyses. The advantage of this approach thus seems to be that 
the evidence lines can complement each other (Hohna et al., 2016).

The NSF-funded Dimensions of Biodiversity project on parallel evolutionary 
radiations of the University of Connecticut was an unique example of a 
project comparing patterns and processes over multiple GCFR clades (Protea 
and Pelargonium). It would be time for other such overarching studies to be 
undertaken. As described above, there is a plethora of research on evolution 
and speciation within GCFR clades, but what is the bigger picture? 

Another avenue of opportunity would be morphogenesis modelling (Coen et al., 
2017; Coen and Rebocho, 2016; Rebocho et al., 2017; Tavares et al., 2018). In 
morphogenesis modelling, the development of an organism ontogenetically can 
be simulated and growth of certain organs can be tracked over time (Green et al., 
2010; Kennaway et al., 2011; Prusinkiewicz and Runions, 2012). When comparing 
the approaches of Morphometrics modelling with Morphogenesis modelling for one 
and the same group of species, the latter method offers an important advantage 
as it takes the developmental process into account and is, in principle, capable 
of inferring stable versus unstable (morphological) equilibria. Morphogenesis 
modelling tools, such as GFTbox, have been developed by prof. Enrico Coen’s 
group at the John Innes Centre in Norwich, UK. The approach is considered to 
be highly effective in finding the genetic variation (genes, alleles) behind specific 
switches in shape change.
For Pelargonium, this will be an interesting approach because, apart from 
learning more about the development of nectar spurs and petal nectar guides, 
morphogenesis modelling enables (in theory) inference of stable versus unstable 
equilibria in Pelargonium floral switches. The latter would be of great value in 
order to understand floral response to pollinator availability. A first step in a project 
like this will be to produce a Morphogenesis model for the Pelargonium spur, as 
mentioned before unique in the angiosperms, and infer whether the switches in 
spur length and shape, observed across the Pelargonium clade, are stable or not, 
and what parameters of the model are most sensitive. It has been found that the 
development of the Pelargonium spur follows a different pattern (i.e. cell division 
and elongation) opposed to the development of Aquilegia and Linaria that only 
display one or the other (E. Cullen, pers. comm.). Exploring the actual development 
of the Pelargonium spur could be an exciting addition to our understanding of it.
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Comparative transcriptomics would be an obvious approach to study floral 
developmental stages and find out which genes play a key role in floral shape 
formation. Based on the geometric morphometric study, we found a number of 
species pairs of which the two sisters represent contrasting floral shapes (Chapter 5). 
For instance, the formation of petal nectar guides could be an aspect of floral shape 
that could be studied in this way.
Extensive studies have been conducted into the genetics and biosynthetic 
pathways underlying floral colouration and pigmentation (Agati et al., 2012; Elomaa 
and Holton, 1994; Forkmann, 1991; Giusti et al., 1999; Grotewold, 2006; Holton 
and Cornish, 1995; Mol et al., 1998; Petroni and Tonelli, 2011; Quattrocchio et 
al., 2001; Rausher, 2008; Tanaka, 2006; Wang et al., 2004; Winkel, 1991; Zhao 
and Dixon, 2010). Therefore, there is quite a good understanding of the genes 
and pathways involved, for plants in general but also some for Pelargonium more 
specifically (Johnson and Özhatay, 1988; Mitchell et al., 1998; Palumbo et al., 2007; 
Sukhumpinij et al., 2012). These form a good basis for finding out more about the 
genetic triggers that result in differences between petal marking syndromes. In one 
entire Pelargonium clade (the subgenus ‘Paucisignata’ sensu Röschenbleck et al. 
2014, including the horticulturally important sect. Ciconium clade), petal markings 
are generally lacking or inconspicuous, which enables pathway comparisons with 
‘guided’ petal species.
In addition, we could study the volatiles composition and metabolomics involved in 
the differences in petal nectar guide colours and colour gradients. This could allow 
us to better understand how and what genetic switches may be underlying the 
colour differences observed in the species.

IN THE END
The aim of my thesis was to bring together multiple layers of potential influences on 
floral shape in Pelargonium in order to paint a comprehensive picture of the evolution 
of this clade. Now that I have done so, I find that speciation in this clade may not 
be as clear-cut as we had expected. My findings give us the opportunity to place 
Pelargonium in a broader, GCFR-wide, evolutionary perspective. I have definitely 
been able to take a step in that direction. The suggestions for future research, as 
outlined above for Pelargonium but also on a broader scale enveloping multiple 
GCFR clades and incorporating pre-, post-, and ecological speciation, could be 
undertaken to extend our current knowledge. The drastic changes in climate that 
are already showing in the Cape region (for example in terms of extended periods 
of drought) will only become more prominent. What effect these changes will have 
on the extraordinary diversity in plants and animals in the GCFR, should be (and 
remain) closely observed. 
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Summary

It is in the nature of humans to wonder about and try to make sense off everything 
they see and all things they encounter. Humans have always been observing, 
describing, and recording patterns in the world around them. Particularly since 
Darwin’s On the Origin of Species, researchers have been trying to interpret both 
the function and origins of the tremendous variety in shape among living organisms. 
But what is shape? Mathematically, shape is defined as what is left when we 
subtract the size component from form. In other words, shape is the true variation 
in morphological parts, irrespective of the size of the individuals studied. Under 
the influence of external pressure, shape might change and this could lead to the 
formation of new species. However, as has been pointed out in the past, one should 
be cautious when attributing direct cause – effect relations to potential drivers of 
shape. 

For flowering plants, there are multiple drivers of shape change that effect 
the process of speciation. In the background, species are constrained by their 
phylogenetic history, i.e. evolutionary changes that were advantageous to their 
ancestors, might in the present circumstances turn out to no longer be beneficial. 
At the same time, speciation brought about by pollinator pressure is highly dynamic 
and can happen quickly because changes in floral shape are triggered by current 
events. Spur pollination is a highly specialised pollination form in that it spatially 
separates pollination reward (the nectar) from the corolla. This is considered to 
result in a Darwinian ‘arms race’ between plant and pollinator, increasing effective 
pollen transfer, and, ultimately, fitness for both. 

In this thesis, I aim to bring together multiple layers of influence on floral shape in 
Pelargonium in order to paint a comprehensive picture of the evolution of floral 
diversity in this clade. I accomplish this by studying the historical biogeography 
and ancestral conditions of the genus, within- and between species differences in 
floral shape, and their relation with the adaptation of Pelargonium species to local 
conditions. By building upon the extensive knowledge on speciation processes in 
the Greater Cape Floristic Region, I am now able to research and infer speciation 
processes for the Pelargonium clade.

This thesis starts with the construction of a new phylogenetic tree based on 74 
plastome exons and nuclear rDNA ITS regions for 120 Pelargonium species 
(Chapter 2). This phylogenetic reconstruction including nucleotide, amino acid, and 
ITS alignments, resolved relationships within the genus and helped resolve several 
incongruences. I confirm the subgeneric split into a small and large chromosome 
clade and retrieved 100% bootstrap support for four of the five major clades The 
long standing issue of the position of P. nanum, now sister to the remainder of clade 
A2, is still uncertain. Pelargonium karooicum (x = 10) I find is sister of a small clade 
consisting of x = 9, 10, and 17 species. I find both sect. Ligularia and Hoarea to be 
monophyletic and confirm the existence of a Polyactium-Otidia-Cortusina clade. I 
find sect. Campylia to be sister to clade A2 but with surprisingly weak support. I find 
Pelargonium crown node to have originated around 9.7 Mya, which places the age 
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of Pelargonium in line with general findings for other Fynbos (8.5 ± 1.85 Mya) and 
Succulent Karoo lineages (5.17 ± 0.64). 

These new calibrations formed a great opportunity for a historical biogeographical 
analysis (Chapter 3). I find the ancestral geographic range of Pelargonium to include 
the Winter and Summer rainfall region, the Karoo region, and the Natal region 
in South Africa. This is congruent with the current distribution of Pelargonium, 
especially for clade A1 and A2 species (characterised by a wide array in life forms 
including woody shrubs, stem succulents, geophytes, and herbaceous annuals). 
Clade B species more often occur in subsets of the ancestral range. A number 
of species has escaped the ancestral range altogether, moving into Mozambique, 
Tanzania, Kenya and Northern Malawi, Ethiopia, and most notably St. Helena 
and Australia + New Zealand. Within clade C (containing a number of previously 
hypothesised disjunct distribution patterns) the most shifts relative to the estimated 
ancestral range for this clade of Winter - Summer rainfall, Karoo and Natal regions 
have occurred. I find that a single long-range dispersal event underlies the jump 
from the Cape region into Ethiopia around 2 Mya, from where a lineage would 
have dispersed onto Socotra around 1 Mya. I find that long range dispersal seems 
to be the prime cause of the disjunct distribution patterns in Pelargonium, both to 
Australia, Madagascar, along the East African Highway, and into Asia minor.

Pelargonium flowers are highly variable in their floral shape, with species ranging 
from zygomorphic to near-actinomorphic corolla shape, varying in petal copy 
number, and with lengths of nectar spurs varying between zero to ten cm. In 
Chapter 4 I explore the potential of combining two 2D photograph-based datasets 
of floral morphology into a single 3D virtual flower. This provides a method for 
bringing together multiple layers of shape variation which offers unique benefits 
to complement established imaging techniques. I analyse separate datasets for 
the side and front view of the flower, and a combined dataset based on virtual3D 
flowers. PCA results of the reconstructed 3D floral models are highly congruent with 
the separate 2D morphospaces, indicating it is an accurate, virtual, representation 
of floral shape. Through my approach, I find that adding the third dimension to 
the data is crucial to accurately interpret the manner of, as well as levels of, shape 
variation in flowers. 

The morphospace based on virtual3D flowers as reconstructed in Chapter 4 formed 
the basis for the exploration of floral shape and floral modularity in Chapter 5. I 
wanted to know to what extent the modules (show-, transfer-, and reward- apparatus) 
within the Pelargonium flower are integrated, i.e. whether they evolve in concert, 
and whether different, apparatus-specific selective pressures may exist. I indeed find 
there is modularity within our floral data when partitioned over show-, transfer-, and 
reward- apparatuses which suggests there are three evolutionary layers happening 
alongside each other. Each of these lines will undergo evolutionary pressure by 
a range of causes and each of these lines will thus undergo changes in shape. 
However, since I also find there is strong integration between these modules, 
independent evolution only goes to a certain extent and therefore appears to be a 
sort of balancing act. Based on this, I find that the relation between floral shape and 
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phylogeny is highly dependent on clade and different per module. The B, C1, and 
C2 clades appear to be under phylogenetic constraint, while both clade A1 and A2 
do not appear to be under any type of phylogenetic pressure. A possible explanation 
for this finding can be found in the relatively young age of the Pelargonium ‘winter-
rainfall’ clade A. 

In my final research chapter (Chapter 6), I examined whether there is a relation 
between floral shape, species distributions and environmental conditions and 
determine to what extent aspects of floral shape are drivers of speciation rates 
in Pelargonium. I bring together the separate layers developed in the previous 
chapters, and add pollinator diversity and flowering time. I find that speciation 
in Pelargonium is a complex patchwork of interactions between environmental 
conditions, pollinator distributions, flowering time, and historical biogeographical 
influences. Species can occur in wet, dry, cold, warm, high, and low conditions 
as well as in all possible combinations of them and floral shape seems to vary 
independently from these conditions. I find only corolla shape to have an influence 
on speciation rates of Pelargonium species. Rather, floral shape appears to be an 
‘extra layer’ of diversity Pelargonium lineages can tap into in order to set them apart. 
Now that I have brought together multiple layers of potential influences on floral 
shape in Pelargonium, I find that speciation in this clade may not be as clear-cut 
as expected. My findings give the opportunity to place Pelargonium in a broader, 
GCFR-wide, evolutionary perspective.
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