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   Introduction and thesis outline

1.1 Microalgae to produce biofuels

Microalgae  are  unicellular  microscopic  and  photosynthetic  organisms.  Due  to  their  long 

evolutionary history, their biodiversity is very broad, both phenotypically and genetically [1]. 

They can live individually as single cells,  in clusters or communities,  or in symbiosis with 

bacteria. They are found in all sorts of environments ranging from freshwater to hyper-saline 

conditions,  nutrient  rich  and  nutrient  limited  conditions,  and  in  environments  that  differ 

largely in temperature and pH [2]. Just like other micro-organisms, their importance within 

the planet’s ecosystem was overlooked for a long time. Among the many important roles algae 

play and have played on the planet are that they are in the origin of the planet’s oxygen rich 

atmosphere that paved the road for the evolution of other eukaryotes, and they are currently 

still accounted for producing half of the atmospheric oxygen  [3]. Microalgae have been the 

main contributors of the fossil fuels we use in everyday life, and they are now seen as a hope 

to  reduce our  dependence on these  same fossil  fuels  [3–7].  Indeed,  while  they have been 

studied  for  their  outstanding  capacity  to  clean  water  from excessive  content  in  nitrogen, 

phosphorus, and metals, the interest has now shifted towards biotechnological production of 

valuable  products  [8,  9]. Microalgae,  and notably  green algae,  are  valuable  candidates  for 

diverse  biotechnological  applications  because  they  are  fast  growing  photoautotrophic 

organisms that require minimal nutrition, do not require arable land to grow and thus do not 

compete  with  feed production,  have  superior  areal  productivity,  and are  more  efficient  at 

converting photons into biomass  than plants  [10–12].  Many microalgae are categorized as 

oleaginous because they can accumulate a large proportion of their dry-weight in fatty-acids 

(30-60%) [13–15]. The two species studied in this thesis are the oleaginous microalgae named 

Ettlia oleoabundans, formally known as Neochloris oleoabundans, and Tetradesmus obliquus, 

formally known as Scenedesmus obliquus  and  Acutodesmus obliquus. Like other oleaginous 

microalgae,  they  can  produce  triacylglycerides  (TAG),  which  can  be  extracted  and  easily 

converted into biodiesel [4, 7, 11]. Besides, TAGs are free of unwanted chemical constituents 

unlike the phospholipids and the glycolipids, leading to purer biofuel [14]. The main interests 

here are the renewable and sustainable aspects of growing microalgae, leading to a carbon-

neutral  biofuel  production.  While  promising,  the  current  state  of  biofuel  production using 

microalgae  is  not  economically  feasible  [16].  Besides  biofuels,  other  products  with  higher 
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added  value  can  be  produced,  such  as  pigments,  unsaturated  fatty  acids,  bioplastics  and 

proteins [6, 17–20]. 

Despite of its potential, the costs of lipid production in algae are currently still too high to 

make biofuel  production with microalgae economically feasible  considering the current oil 

prices. It was recently estimated that the cost of microalgal biomass could be as low as 0.50  

euros per  Kg,  and at  this  price level,  biofuel  production would be profitable  [16].  For the 

moment,  commercial  bioproduction from microalgae is  still  limited to high-value products. 

Applications  for  commodities  such  as  bulk  chemicals  and  biofuels  require  substantial 

improvements,  such as the increase of the total  solar-to-product conversion efficiency. One 

direct way to achieve this is to optimize the external conditions and to maintain these during 

scale-up. The production scale-up difficulties are studied at the Algae Production And Research 

Center (AlgaePARC) [21, 22]. Another way to increase efficiency is to modify the metabolism 

of the algae to reach a higher solar efficiency under production conditions. For this, a better 

understanding of algal metabolism and underlying mechanisms is needed. This is precisely the 

topic of this thesis, in which I analyze the internal phenotypes of microalgae in response to a 

number of  growth conditions  relevant  to  industrial  applications.  Specifically,  I  studied  the 

effect of light-dark cycles, salt water, intense light, and nitrogen limited or depleted conditions.

1.2 Limiting factors for profitable bioproduction

Microalgae can be grown in very diverse type of bioreactors, each coming with their  own 

advantages  and  disadvantages.  The  most  used  reactors  are  race-way  ponds,  diverse 

configurations of tubular systems, rectangular panels, and plastic foil based bags. Relying on 

freely available sunlight is an important factor to minimize costs. However, outdoor cultivation 

is subject to variations in temperature, light intensity, and a light-dark cycle. During the dark 

period, cellular respiration occurs and can lead up to 25% loss in daily produced biomass [23]. 

Commonly, this loss is due to the usage of a storage compound like starch that accumulates  

during the light period. Thus, starch is a transient energy and carbon storage compound that is 

used in the night for maintenance purposes and for preparation of the cells for the next day. As 

a  result,  mutants  that  cannot  produce  starch show a  decrease  in the  efficiency in  diurnal 

growth condition [24]. Lipids, another possible storage compound, are hardly used during the 

night, even by starchless mutants.
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In order to achieve high concentrations of lipids and TAG (30-60%), microalgae need to be 

exposed to adverse growth conditions. Commonly this is done by applying nitrogen limitation 

or complete depletion of nitrogen from the medium, which results in overflow of the photon 

energy into carbon-based molecules like starch and TAG [25]. Starch and TAG are the main 

forms of  carbon and energy storage and serve as  an electron sink when the synthesis  of 

reducing equivalents in the photosystems exceeds the requirement for cell growth  [14].  This 

mechanism has led to a simple two-step batch strategy for TAG production, starting with a 

growth  phase  under  replete  conditions,  followed  by  a  stress  phase  during  which  usually 

nitrogen is  depleted as  displayed in  Figure 1.1 [26].  However,  upon complete depletion of 

nitrogen the efficiency of photo-energy conversion decreases during the accumulation of TAG, 

leading eventually to a decrease in the yield of TAG on photons. Therefore, instead of complete 

starvation, a less stressful condition of continuous nitrogen limitation was proposed  [27]. In 

such a system there is simultaneous growth and accumulation of TAG for longer periods of 

time. Furthermore, constant photosynthetic efficiency can be maintained and the amount of 

down  time  for  cleaning  and  restarting  the  system  is  much  shorter.  Additionally,  such  a 

condition allows more flexibility to adjust the system with the changing outdoor conditions. A 

recent comparison against continuous production, batch production displayed higher photon-

to-TAG yield for both wild-type and the starchless mutant (slm1). Even though the starchless 

mutant had 20% lower photo-to-TAG yield, it accumulated 65% more TAG as part of its dry 

weight than the wild-type. Both strains were studied in this thesis in Chapters Error: Reference

source not found and Error: Reference source not found [28].
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Figure 1.1: Batch cultivation to increase TAG yield for biodiesel production. Batch cultivation is done in  

two-step process with a “growth phase” and a “stress phase”. The stress phase is induced by nitrogen  

depletion, resulting in lipids and TAGs accumulation. Current solutions are not optimal for biodiesel  

production at a competitive price.
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For large-scale production of biofuels using microalgae, salt water is the preferred medium 

basis over fresh water, since fresh water is or may become a limiting resource. Waste water is a 

possible alternative to salt water, since it would be detoxified all the while providing nutrients 

for growth  [29–31].  However,  not all  TAG-producing microalgae species  can survive high 

salinity and oxidative stress caused by salt or waste water and if they can survive they may 

suffer from a strong decrease in TAG yield on light [32].

One way to reduce the production costs of biofuels is to increase the TAG yield on light. This  

can be done through the development of processes that are more efficient like described in the 

previous paragraph, by changing algal metabolism or a combination of these. With respect to 

algal  metabolism  there  are  two  aspects  that  can  be  improved,  being  maintaining  a  high 

photosynthetic efficiency during the stress phase and preventing the formation of competing 

metabolites. The loss of photosynthetic efficiency is among others related to the breakdown of 

the  photosystems  and  chlorophyll.  However,  many  things  are  still  unknown  on  the 

mechanisms that cause a decrease in photosynthetic efficiency during the stress phase and 

more research is needed before the photosynthetic efficiency can be improved in a rational 

way.

The most important competing metabolite in many green algae is starch. During the stress 

phase (Figure 1.1) starch accumulation may account for nearly half of the energy stored with 

the  other  half  being  directed  towards  TAG  synthesis  [33–35].  Removing  the  ability  to 

synthesize such a competing metabolite could lead to a significant increase in the yield of TAG 

on light.

Last but not least, once the batch is ready for harvest, the microalgae cells should be collected 

and broken open in order to extract its content [4]. However, it would be most efficient to not 

destroy the batch and keep the cells in a production state. For this, the optimal solution would 

be to have TAG directly excreted by the cells, allowing continuous production without having 

to wait for growth and accumulation. The lipids excretion functionality could be genetically 

engineered based on observation from microalgae that already do it in nature, but on a more 

suitable organism regarding the aforementioned limiting factors.
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1.3 Strain improvement

For  strain  improvement,  a  number  of  techniques  exist  with  their  own  advantages  and 

disadvantages,  ranging from selective breeding,  forced evolution, to metabolic  engineering. 

Selective breeding is the most common method used to improve for example plants. The sexual 

reproduction of plants is an important factor that allows crossing breeds and combine wanted 

phenotypes. Forced evolution can be achieved by physically altering the DNA of an organism 

using  UV  light  and  selecting  wanted  phenotypes.  Both  methods  are  a  mimic  of  natural 

processes, known factors of evolution and biological diversity, and as a consequence, are easier 

accepted  by  general  public  than  metabolic  engineering  methods.  As  an  example,  forced 

evolution via random mutation (UV metagenesis) was used to generate the starchless mutant 

slm1 of Tetradesmus obliquus studied in this thesis. The metabolic engineering methods offer 

the best potential for strain improvement but can be very complex to design and require a 

detailed  knowledge  of  the  metabolism  and  regulation  of  the  organism.  Furthermore,  the 

metabolic engineering approach requires the availability of a genetic modification toolbox for 

the  specific  organism.  For  example,  CRIPR-CAS9 is  currently  the  state-of-the-art  tool  for 

genome editing, and it could be used to replace, add or remove genes, effectively allowing to 

modify the internal circuitry of the metabolism. While these synthetic biology methods can be 

easily applied in the better characterized organisms, they need to be developed for the specific 

microalgae. As stated above,  detailed knowledge of algal metabolism is required to find the 

gene targets to be engineered. This is a crucial step because trial and error in synthetic biology 

is laborious and time consuming in comparison to other methods. For this constraint based 

metabolic  models  can  be  used  to  predict  the  possible  outcomes  of  metabolic  engineering 

strategies thus increasing the chances of success.

1.4 Metabolic modeling

To help improving the knowledge from an organism’s internal phenotype, constraint-based 

metabolic models (CBMM) can be of great help. Metabolic flux balance analysis performed 

using CBMM can provide valuable information on the physiological state of the cells  [36]. 

With sufficient knowledge on the metabolic reactions occurring in the organism, it is possible 

to  model  the  system  as  a  network  of  these  reactions  and  estimate  their  rates,  based  on 

measured rates of nutrient uptake (including light) and product formation (including biomass 
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and storage compounds).  In  addition,  the models  can be used to  make predictions on,  for  

example,  the  maximum  yield  of  TAG  on  light  and  the  associated  flux  distributions.  As 

demonstrated  in  the  Error:  Reference  source  not  found,  predictions  can  be  made  on  the 

potential gain in yield of TAG on light upon the removal of a metabolic pathway responsible 

for the synthesis of a competing metabolite. The development of CBMMs for algae faces a 

number  of  obstacles.  These  include  the  difficulty  of  identifying  correct  protein  functions 

predicting protein localization in the cell, and of ascertaining transporters for all metabolites . 

We have shown that it is currently difficult to identify gene and protein functions in algae due 

to a lack of experimentally validated sequences of microalgae (Error: Reference source not

found). Nevertheless, the number of these validated proteins is steadily growing. In parallel, 

better methods have been developed during the time of this work to identify protein functions, 

and so the quality of computational annotation has also increased for microalgae. The second 

problem is the localization of the different proteins in the different algal compartments like the 

cytosol, chloroplast, mitochondrion and peroxisome. This is an important piece of information 

that is currently hard to obtain for microalgae. This is due to a lack of experimental data and 

consequently  a  lack  of  reliable  training  sets  specifically  for  microalgae.  For  example,  the 

quality of the predictions made by PredAlgo, a multi-subcellular localization prediction tool 

dedicated to microalgae, is directly limited by the quality and the quantity of experimental data 

used to train its neural network [37].

1.5 Using RNA-seq to fill the knowledge gap

To  do  rational  process  design  or  apply  rational  metabolic  engineering  approaches,  more 

knowledge  is  required  on  the  algal  physiological  in  responses  to  changing  environmental 

conditions such as the influence of day-night cycles [38]. To learn more about this, there is a 

choice between different high-throughput methods, ranging from genomics to proteomics and 

fluxomics  (Figure  8.1).  Using  transcriptomics  to  study  the  dynamics  of  the  transcriptome 

landscape is a convenient middle-ground, as it can be easily obtained by RNA sequencing that 

is  relatively  cheap  using  second generation  high throughput  sequencing  technology.  Gene 

transcripts can be reconstructed de novo from RNA-seq reads using read assembly methods or 

through alignment of RNA-seq reads with high quality genome sequences. The large quantities 

of RNA-seq reads favors accurate expression estimation, and finally, the information obtained 

can be extrapolated to proteomics. However, to provide a functional context, the transcripts 
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should  be  functionally  annotated,  which  is  done  by  sequence  alignment  with  previously 

annotated organisms and inference of homology. The main issue with microalgae is the large 

evolutionary  distance  between  the  currently  studied  microalgal  species  and  even  larger 

distance with its closest and well-enough studied organisms, being land plants.  While RNA 

sequencing allows to quantify how features of the genome are expressed, it  also allows to 

identify what protein sequence could be translated from it. While the quantity of RNA is not  

directly correlated to the absolute quantity of a protein in a cell,  the relative difference in 

quantity  between samples  (variation)  is  very  valuable  information.  The identified proteins 

sequences can be  coding for ( part of) an enzyme, and the absolute and relative change in 

expression can also be used to extrapolate whether there is more or less of the specific protein 

present.  Although  the  variation  in  protein  abundance  can  be  a  good  indicator  of  relative 

enzymatic activity, some other factors can have a strong influence on the enzymatic activity, 

which is discussed in more detail in  Error: Reference source not found. In this thesis, it was 

assumed  that  the  relative  changes  in  gene  expression  reflect  relative  changes  in  enzyme 

activity, unless there was complementary information.

1.6 Thesis aim and outline

The aim of this thesis is to obtain a better understanding of the physiology of lipid producing 

microalgae  under  conditions  relevant  for  large-scale  production  by  analyzing  the 

transcriptional landscape.

To analyze the transcriptome, it is necessary to know the functions of the proteins translated 

from  the  expressed  genes.  In  contrast  to  model  organisms  like  the  yeast  Saccharomyces  

cerevisiae or the plant Arabidopsis thaliana whose genomes have been deeply annotated and 

studied for a long time, microalgae are far from that state, and even nowadays, microalgal 

species with a sequenced genome are not very common. For both organisms studied in this 

thesis, Ettlia oleoabundans and Tetradesmus obliquus, it was necessary to annotate the genes 

and transcripts. To functionally annotate a gene, most methods rely on sequence similarities to 

identify the closest gene in known organisms. Green algae are a difficult case due to the large 

genetic distance between the currently studied species and the closest  reference organisms 

being the land plants. The  Error: Reference source not found discusses about the particular 

problem of protein annotation in microalgae. Here, we also discuss the prediction of protein 
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localization within the different subcellular compartment in microalgae. Finally, we stress the 

importance of a large-scale wet-lab efforts for a few selected microalgae in order to provide a 

solid foundation for the application of computational methods.

To obtain more insights into the metabolism of Ettlia oleoabundans in Error: Reference source

not found, a constraint-based metabolic model of  Ettlia oleoabundans was built around the 

central  carbon  metabolism.  This  model  was  built  based  on  the  knowledge  of  central 

metabolism  of  algae  at  that  moment  and  was  cross-checked  with  a  de  novo assembled 

annotated transcriptome. Experiments in controlled turbidostat  were conducted in different 

combinations of light intensity and nitrogen supply. The measurements from the experimental 

conditions  were  used  as  constraints  on  the  inputs  and  outputs  of  the  model,  effectively 

allowing us to estimate the metabolic flux distributions. In addition, RNA samples from the 

different  experimental  conditions  were  sequenced  and  analyzed.  These  data  were  used  to 

validate the model structure, to correlate expression levels with flux distributions, and to get a  

better understanding of the effect of light and nutrient conditions on algal physiology.

Water is a precious resource and fresh water may not be a sustainable resource for  microalgae 

bioproduction. In contrast, salt-water is abundantly available and would be cheaper to supply. 

Therefore, it  is important to understand how biotechnologically interesting microalgae deal 

with a salt water environment under production conditions. In  Error: Reference source not

found, we studied how the microalgae Ettlia oleoabundans deals with high salinity conditions 

under nitrogen replete (growth) and nitrogen deplete (TAG accumulation) conditions using a 

transcriptomics approach. This oleaginous microalgae was chosen as a model alga, since it can 

accumulate large amounts of TAG and can grow in both fresh and salt-water. Experiments 

were  done  in  fresh  water  and  salt  water,  both  in  combination  with  nitrogen  replete  and 

nitrogen  deplete  conditions.  In  addition  to  the  transcriptome,  we  analyzed  the  biomass 

composition  including  TAG and  starch  content  and  used  the  data  obtained  to  study  the 

different salt water resistance mechanisms.

Although the TAG content that can be reached in Ettlia oleoabundans is high, the volumetric 

TAG productivity in Tetradesmus obliquus was evaluated to be clearly higher, while reaching 

the  same  TAG  content.  This  was  mainly  due  to  the  ability  of  T.  obliquus to  maintain 

photosynthetic efficiency for a longer time longer during the nitrogen depletion phase  [13]. 

Therefore, it was decided to switch to T. obliquus as a model organism. To obtain an idea of 

the capabilities of  T. obliquus and to make transcriptome experiments easier to analyze, the 

genome of T. obliquus was sequenced. In Error: Reference source not found, the sequencing of 

the genome of  T. obliquus is presented. The assembly approach was unconventional as two 
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different  methods  were  used,  combining  the  higher  coverage  from  one  method  with  the 

precision of the other method. In this way, a high quality of draft assembly was obtained.

Production using microalgae will in many cases occur outdoors using sunlight. Consequently 

the algae will be exposed to the naturally occurring day night cycle. To better understand the  

effect of these day night cycles, in  Error: Reference source not found and  Error: Reference

source not found, the transcriptional response of algae to diurnal cycles was studied under 

nitrogen replete conditions and nitrogen limiting conditions for the wild type and a mutant 

that can not synthesize starch. In Error: Reference source not found, hourly samples of RNA of 

Tetradesmus  obliquus UTEX  393  were  taken  from  a  turbidostat  culture  operated  under 

nitrogen replete conditions over a diurnal cycle of 16 hour light and 8 hours dark, to obtain 

more  insight  in  in  the  transcriptional  response  towards  diurnal  cycles.  In  addition,  to 

understand the effects of a lack of starch, the major transient energy storage, we sequenced 

samples of the starchless mutant  slm1 that were collected every three hours under the same 

conditions. At the same time, samples were collected and measurements of the biochemical 

composition  of  biomass  and  the  specific  light  absorption  rate  were  performed  [24].  The 

genome features were annotated using more than 30 RNA-seq time samples obtained in this 

study, the SAPP tool, a newly developed semantic framework for FAIR genome annotation 

[39], was extended for transcriptome analysis is described in the discussion Error: Reference

source not found.

In  Error:  Reference  source  not  found a  similar  experimental  approach  was  taken,  where 

samples  were  taken  for  biochemical  and  transcriptome  analysis  every  3  hours  from  a 

turbidostat culture operated at the same diurnal cycle of 16 hours light and 8 hours dark, but 

this time in nitrogen limiting conditions, resulting in TAG accumulation. Again this was done 

for the wild type and the starchless mutant. The transcriptional landscape and biochemical 

data are compared to the nitrogen replete condition in Error: Reference source not found, to 

evaluate  the  effect  of  nitrogen  limitation  in  general  and  study  how the  lack  of  starch  is 

affecting TAG accumulation under nitrogen limiting conditions.

In Error: Reference source not found, the results of this thesis are discussed. The importance of 

analyzing the transcriptome of microalgae is explained. Pros and cons of current microalgal 

annotation methods are discussed. Basic numbers of  the  T. obliquus annotation results  are 

compared to the current status in UniProtKB. Particular points from the transcriptomics data 

are discussed, notably the expression of the slm1’s mutant gene, and the interests from using 

single-cell technologies. Suggestions are then made to improve the experimental conditions 

and the photobioreactors setups. The efforts made in the thesis to generate and store the data  
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according to the FAIR principles are explained. Finally, using the knowledge acquired during 

this  thesis,  suggestions  are  made  to  improve  the  growth conditions  and  to  improve  TAG 

production with diverse metabolic engineering strategies.
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Algal omics: the functional annotation challenge

This chapter is published as:

Maarten J.M.F. Reijnders§,, Benoit M. Carreres§, Peter J. Schaap

Algal Omics: The Functional Annotation Challenge.

Current Biotechnology (2015) 4(4) 457-463

§ Authors contributed equally



Background: To fully exploit the potential of microalgae as commercial green hosts, the 

scientific  community  has  to  improve  their  understanding  of  these  organisms from a 

systems  biology  perspective.  Compared  to  other  model  organisms,  our  genomic 

knowledge of the microalgae model species Chlamydomonas reinhardtii is very limited. 

Currently, almost 90% of the functional annotated proteins of C. reinhardtii and of other 

microalgal proteins are homologs of Arabidopsis thaliana proteins, which suggests that 

for the most part only the metabolic core conserved between these species is properly 

annotated. Objective: This review highlights how proteins outside of this core can be 

annotated by applying publically available tools and methods. These include the use of 

novel  state-of-the-art  prediction  tools,  combinations  of  these  tools,  and  the  use  of 

metabolic modeling-assisted functional annotation. Furthermore, we discuss the need for 

data  on  the  subcellular  location  of  microalgal  proteins.  Finally,  some  remaining 

bottlenecks  regarding  functional  annotation  of  microalgal  proteins  are  discussed. 

Conclusion:  We conclude that  both large dry-lab and wet-lab  efforts  are required to 

generate reliable functional annotations of microalgae.
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   Algal omics: the functional annotation challenge

2.1 Introduction

Microalgae are considered as promising organisms for a bio-based economy and unlocking 

their power potentially holds solutions for achieving global sustainability. In order to cope with 

some of the most demanding nutritional and energetic challenges of the future, research has 

focused  on  the  renewable  oil  that  can  be  extracted  in  significant  amounts  from  these 

microalgae  to  create  sustainable  consumer  products.  However,  compared  to  the  more 

traditional  sources,  economically  interesting  molecules,  such  as  triacylglycerides  and 

polysaccharides, are currently not produced at a cost competitive rate  [40]. To increase the 

yield it is important to understand the genomic makeup of microalgae. More specifically, it is  

important  to  understand  microalgae  as  biological  systems  at  such  a  level  of  detail  that 

mathematical models can be developed for these cell factories. These models can then predict 

the most optimal conditions for growth and production of interesting compounds, and can 

guide genetic precision engineering of these cell factories [41]. Such models, often in the form 

of genome-scale metabolic models, require a thorough functional annotation of the proteins 

encoded by the genomes.

In today's age of biology, computational annotation of protein functions is of vital importance.  

Sample throughput of the classical biochemical and genetic methods is simply too low to be 

considered as an alternative. However, there is large phylogenetic distance between microalgae 

and well characterized (model) species [42], and this distance hampers standard computational 

methods for genome annotation. Many of the popular computational methods for function 

prediction  try to  infer  homology by calculating sequence-based statistical  similarity  scores 

with proteins of known function [43, 44]. This works fairly well for a comparison between a 

well-studied model organism with a large set of proteins validated by biochemical and genetic 

methods, such as Arabidopsis thaliana and Escherichia coli, and close by plants and bacteria, 

but the efficiency of a sequence similarity based annotation method decreases drastically when 

it is used between a group of species with little experimentally validated proteins, or when it is  

used for species that have a large phylogenetic distance to a well- studied homologous species. 

The most studied microalgae species  Chlamydomonas reinhardtii became known early on as 

an excellent model species for microalgae because of its genetic amenability  [45],  but two 

decades later our genetic knowledge of this species still trails far behind that of other model  

species. Currently only some 150 proteins are characterized by direct biochemical methods. 
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Furthermore, due to the large phylogenetic distance to the closest well studied model organism 

[3],  Arabidopsis  thaliana,  only  the  most  conserved  genes  are  properly  computationally 

annotated.  Subsequently,  only  this  limited  set  can be  used as  a  reference  set  in  sequence 

similarity-based  methods  to  annotate  other  algal  species  of  interest.  As  a  result,  only  the 

conserved core metabolism of various microalgae is functionally annotated with a high level of 

confidence.  Most  of  these  microalgae  were,  however,  selected  for  their  ability  to  produce 

interesting and novel compounds [46]. To truly exploit microalgae for a bio-based economy, it 

is therefore important to know the function of the proteins that are not part of this metabolic 

core. By gaining more detailed genomic knowledge we will be able to produce more accurate 

algae  specific  genome-scale  metabolic  models.  This  allows  for  the  prediction  of  biomass 

composition and conditions for optimal growth rates of microalgae, as well as for diversifying 

between  the  unique  characteristics  and  capabilities  of  different  microalgae  and  strains. 

Recently, alternative methods to functionally annotate microalgae have been described [47]. In 

this review we assess the current state of microalgal functional annotation, standardly used 

methods and discuss some alternative methods and workflow based on novel annotation tools 

that are currently available to the scientific community. Finally, we address some bottlenecks 

that currently cannot be solved by computational methods.

2.2 Available data

From  early  on,  Chlamydomonas reinhardtii was  the  only  microalgae  species  that  was 

extensively studied on a molecular scale. This species was first proposed a model organism for 

algal genetics in 2001 [45], and a draft genome sequence was available in 2003 [48]. However, 

due to “unusual challenges” in generating a high-quality genome [48], the genome was only 

published as late as 2007 [49]. For  C. reinhardtii to serve as a model species to which other 

algae can be compared, it is important that many algal-specific protein functions and other key 

functions  are  based  on  experimental  evidence,  and  not  only  inferred  from  electronic 

annotations.  In  the UniProt  database (http://www.uniprot.org)  [50] there are currently 148 

proteins from C reinhardtii with an experimentally validated function, compared to 5,766 for 

Arabidopsis thaliana, and 3,255 for Escherichia coli.

The electronic annotation of C. reinhardtii  is an ongoing process, and so far out of a total of 

15,000 proteins there are roughly 7,000 proteins available in the UniProt database that are 

functionally  annotated  with  at  least  one  GO term.  However,  when  we  take  the  reviewed 
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proteins  of  Chlamydomonas  into account,  there are  only  299 proteins  with  a high-quality 

annotation available.

2.2.1 The state of microalgal annotations

For microalgae, the inability to obtain a high quality functional annotation for the majority of 

the proteins seems to be a returning trend. In  Table 2.1 we bring some recently annotated 

microalgae, and show how deep they are annotated. All of these microalgae were annotated 

using standard homology-based methods [51–59]. For each of these microalgae roughly half of 

the proteins lack any form of functional annotation documented in their  UniProt database 

entry  [49]. This is likely the direct result of a lack of phylogenetically close well-annotated 

model species. That does not necessarily mean that the annotations obtained are unspecific or 

inaccurate, but it does imply that accurate electronic annotations are retrieved only for highly 

conserved proteins common amongst many microalgae.
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Table  2.1: Number of computationally annotated and experimentally verified proteins in microalgae 
and reference species.

*Model species are in bold. Data were taken from UniProt (http://www.uniprot.org) on August 1 2015. 
Total proteins were taken by querying the species taxonomy, total annotated proteins were retrieved by 
including the query for proteins to have a GO term using any assertion method, and experimentally 
validated  proteins  were  obtained  by  only  including  proteins  that  have  a  GO  term  using  any 
experimental assertion.

Species Total Proteins Annotated Proteins Experimentally Validated Proteins

Arabidopsis thaliana 52178 32354 5766

6061 5399 2619

6729 5919 4162

Chlamydomonas reinhardtii 15.152 7.385 148

Auxenochlorella protothecoides 7.193 4.072 0

7.889 4.203 0

Chlorella variabilis 9879 5409 0

Coccomyxxa subellipsodae 9.802 5.27 0

Micromonas pusilla 10279 4782 0

Nannochloropsis gaditana 15361 7419 0

Ostreococcus tauri 7912 4555 2

Ostreococcus lucimarinus 7407 4326 0

Volvox carteri 14.833 6.292 18

Escherichia coli (strain K12)

Saccharomyces cerevisiae (strain ATCC)

Bathycoccus sp.
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2.2.2 Diversity of Microalgal Annotations

The diversity of microalgae makes them unique biological reservoirs for bioprospecting, and it 

would be interesting to see how a good quality functional annotation can contribute to this 

process. By taking the Gene Ontology (GO) annotations from the microalgae species presented 

in Table 2.1 into account, and by checking the occurrence of these terms in the nearest well-

studied model species A. thaliana, we can get hints about the diversity and origin of microalgal 

proteins annotations (Figure 2.1).  The figure shows that  88% of the GO terms assigned to 

microalgal proteins also occur in A. thaliana. Overall, 85% of the microalgal GO terms are used 

in the annotation of  C. reinhardtii  protein, but only 7% of the specific Chlamydomonas GO 

terms do not occur in A. thaliana.

For all other species the amount of mapped GO terms is far less than in C. reinhardtii, showing 

an even less diverse annotation. With such little amount of microalgal GO terms, that are not 

also mapped to Arabidopsis, it becomes clear that the current annotation of microalgae largely 

describes  the  conserved  core-metabolism  shared  between  eukaryotic  photosynthetic 

organisms, and as such will only provide a small contribution to the process of bioprospecting.

To  summarize,  microalgal  experimental  protein data  is  very  limited,  and due  to  the  large 

phylogenetic  distance  to  the  better-characterized  model  species  large  amounts  of  proteins 

remain unannotated (Table 2.1). To circumvent these bottlenecks it is necessary to use more 

advanced annotation methods.
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2.3 Improved functional annotations

2.3.1 Keeping up to date with annotation methods – the 

CAFA experiment

One way to improve the functional annotation of microalgae, is by applying the latest state-of-

the-art tools. The classical sequence similarity-based annotation methods often remain the first 

method of  choice  because  of  their  success  in  the  past.  However,  functional  annotation  of 
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Figure  2.1: Heatmap showing the presence of microalgal GO term annotations in microalgae and in  

model species. Y-axis, species presented in Table 2.1; X-axis, GO terms annotated to microalgae, sorted  

by their assignment to least one protein in descending order of the species list.

Arabidopsis thaliana

Escherichia coli

Saccharmoyces cerevisiea

Synechocystis sp

Chlamydomonas reinhardtii

Bathycoccus sp

Chlorella prothotecoides

Coccomyxa sp

Micromonas sp

Nannochloropsis sp

Ostreococcus tauri

Volvox sp

All Gene Ontology (GO) terms assigned to microalgal proteins

GO term present GO term not present
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proteins is a hot topic in the bioinformatics community and new tools are published every year. 

To keep track of these tools and how well they perform, the Critical Assessment of Protein 

Function  Annotation  (CAFA)  experiment  attempts  to  rank  them  according  to  their 

performance [60]. The first edition showed that as many as 33 new methods outperformed the 

standard BLAST-based method. This can be explained by the fact that many of these tools 

apply sequence similarity-based predictions in different ways, for example by using one-to-

many homology-based annotations, or by using context-aware principles, as described by [47]. 

An  example  of  a  new  method  that  uses  a  one-to-many  approach  is  Argot2  [61],  which 

combines BLAST results with sequence analysis using profile hidden Markov Models (HMM) 

and subsequently compares predictions using a semantic similarity approach. An example of a 

context-aware approach is FFPred2  [62], which attempts to transfer functional annotations 

from known (human) proteins to unknown proteins with similar biophysical attributes.

The CAFA experiment provides a good ranked overview of state-of-the-art annotation tools. 

However, most of these tools in part still rely on primary sequence similarity, and the structure 

and context based alternatives require extensive training sets. Thus, although these tools will 

most likely produce more reliable results than the classical mainstream functional annotation 

tools, they will still be unable to annotate many microalgal proteins.

2.3.2 Consensus-based annotation

An alternative way to improve the results of protein functional annotation is by using a set of 

complementary tools and combining individual predictions in a statistical solid manner. For 

example,  by  combining  FFPred2  with Argot2 we combine a  one-to-many homology-based 

annotation  method  with  a  context-aware  annotation  method.  This  can  be  further 

complemented with a protein domain homology-based transfer of annotation approach using 

InterProScan  [44]. If we would then take the GO term predictions of each of these methods  

and compare predicted GO terms using a semantic similarity approach as applied in Argot2,  

we obtain a comparison between predictions of each of these methods, and the specificity for 

each predicted GO term. By then applying a machine-learning algorithm such as Random 

Forest we are able to reassess the validity of each of these predictions.

As  a  test-case  we  applied  this  method  to  a  test-set  of  all  new  microalgal  SwissProt 

(http://www.uniprot.org) proteins entries between the 1 st of July 2014 and 1 st of July 2015, 

using the UniProtKB [50], Uniref90 [63], and Pfam [64] databases from before the 1 st of July 
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2014 as reference. The experiment was set up with double 10-fold cross validation. Ten data 

sets were generated with 90% of the predicted GO terms assigned to the training set, and 10% 

as test-set. The training set was used to train a Random Forest model on the input using 10-

fold cross-validation. In this way each final predicted GO term has no influence on the model 

used to predict these GO term, eliminating overfitting. The accuracy of this method largely 

improves over that of FFPred2, Argot2, and InterProScan (Figure 2.2A). A test-set of non-algal 

proteins (Figure 2.2B) was used to compare results with the algal data set. There is a noticeable 

difference in the performance of FFPred2, Argot2 and InterProScan. For microalgae, the latter 

two showed lower prediction accuracy.
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30

Figure  2.2:  Receiver  Operator  Curve  of  three  protein  function  prediction  methods,  as  well  as  the  

consensus-based method that combines these. The test-sets used consisted of protein entries not present  

in UniProt  (http://www.uniprot.org)  before  the 1 st  of  July 2014.  The test-set  of  (A) 246 reviewed  

microalgal proteins comprising 540 assigned GO terms, and (B) consisted of 2429 reviewed proteins  

comprising 11701 assigned GO terms. Predictions were done using database versions from before the  

1st of July 2014.

False positive rate

Tr
ue

 p
os

itiv
e 

ra
te

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

FFPred2
Argot2
Interproscan
Consensus−based

A

False positive rate

Tr
ue

 p
os

iti
ve

 ra
te

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

B

FFPred2
Argot2
Interproscan
Consensus−based



   Algal omics: the functional annotation challenge

2.3.3 Functional annotation with Hidden Markov Models

Profile Hidden Markov Models (HMM’s) provide a statistical description of a sequence family 

consensus  [65]. Effectively a profile HMM turns a multiple sequence alignment of a specific 

protein  family  into scoring system that  takes  into  account  position-dependent  amino acid 

distributions and position-dependent insertion and deletion gap penalties, which makes this 

technique suitable for searching remote homologs. To obtain the best model while keeping a 

high specificity, it is important to build it from experimentally validated proteins only. Because 

there is no database that contains HMM’s built from experimentally validated proteins only, 

for each specific function a new HMM has to be built, which makes this method not easily 

applicable  for  high  throughput  annotation.  Moreover,  when  selecting  only  experimentally 

validated  proteins  of  a  specific  function,  the  amount  of  experimentally  verified  sequences 

available can often be too limited.

2.3.4 Validation of matching proteins via 3D structure

An extension  to  sequence  similarity  techniques  is  3D structure  prediction.  Once  the  best 

matching  proteins  are  found,  they  can  be  used  in  homology-based  modeling  approaches. 

Homology-based modeling uses a reference protein as a base to predict the 3D structure of the 

protein  of  interest.  The two  3D structures  can  then  be  scored  for  overall  quality,  and  be 

compared.  Several  tools  are  capable  to  estimate  the  tertiary  and  quaternary  structure  of 

proteins in such a way. One example is SWISS-MODEL (http://www.swissmodel.expasy.org), a 

web-based tool aimed to provide easy access to predict protein 3D structure from its amino 

acid sequence, assisted by homology modeling techniques as explained above [66]. Regardless 

of the automated 3D modeling limitations, scores such as QMEAN, coverage, and identity, can 

provide an interesting addition to estimate the similarity between the protein of interest and 

the reference protein.

2.3.5 Model-assisted annotation

A genome scale metabolic reconstruction aims to integrate biochemical metabolic pathways in 

a  single  network  and  provides  a  structured  platform  to  correspond  metabolic  genes  with 
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metabolic pathways [67]. As an alternative to laborious manual metabolic model construction, 

tools  such as  SEED  [68] and Pathway Tools  [69] are capable  of  automatically generating 

metabolic  maps from pathway databases and enzyme annotations.  While  these tools  often 

provide only a basic overview of an organism’s metabolic capabilities, as the topology and 

breadth  of  the  network  is  largely  dependent  on available  data,  even for  microalgae  these 

models can provide valuable insights. For instance, an orphan reaction in metabolic pathways 

can simply be due to a missed or a too broad annotation. With this information in mind it 

becomes feasible  to use more elaborate,  case-by-case,  manual  annotation methods to close 

these gaps. A simple first step could be to take the GO term specific for the particular protein 

and link this to similar but more generic parental GO term(s). Proteins annotated with these 

less specific GO term(s) are then considered to be promising candidates for the missing GO 

term, and should be re-evaluated. One way to do this is by building a HMM based on UniProt  

proteins that are experimentally validated to have the specific GO term. This statistical model 

can then be applied to the candidate protein selection, and in this way we might be able to 

identify the correct protein.

2.3.6 Subcellular localization

Protein localization prediction is an important part of a proteins functional annotation. If two 

proteins  involved in the  same reaction are  functionally  assigned to  a  different  subcellular 

compartment, the reaction cannot occur. On the other hand microalgae are known to possess 

multiple  isofunctional  proteins  that  essentially  perform the  same reaction  but  in  different 

subcellular  compartments.  This  information  is  crucial  for  the  more  elaborate 

compartmentalized genome scale models of microalgae. One robust way of figuring out the 

subcellular location of (isofunctional) proteins is by performing subcellular proteomics  [70], 

but this is often technically difficult, expensive, and time consuming. The UniProt database 

currently contains 529 reviewed microalgal proteins with a subcellular location annotated, of 

which 54 are experimentally validated. Therefore it is necessary to computationally predict the 

subcellular location of proteins. For this purpose several tools are available, such as: Argot2 

[61] TargetP [71], SignalP [72], PSORTb [73], and PredAlgo [37]. However, with the exception 

of PredAlgo, most of these tools are trained with different types of species in mind, resulting in 

predictions that do not take into account the specific cellular arrangements and compartments 

in microalgal species.
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PredAlgo is a predictor specifically trained for microalgae, using a C. reinhardtii based training 

set of 79 chloroplast, 39 mitochondrial, 39 secretory pathway, and 89 cytosol proteins. It shows 

good prediction results for Chlamydomonas proteins and closely related microalgal proteins. 

However, for other more distantly related microalgal species predicting subcellular localization 

is difficult due to their polyphyletic nature. It is believed that different endosymbiotic events 

happened  in  parallel,  forming  the  first  microalgae  [74].  This  caused  a  difference  in  the 

arrangements  of  cellular  compartments,  or  even  different  types  of  cellular  compartments. 

Therefore, PredAlgo may not be accurate in predicting protein locations for microalgae not 

related to  C. reinhardtii. To circumvent this, the PredAlgo algorithm will have to be trained 

with proteins from additional microalgal clades. Alternatively, results from multiple predictors 

possibly can be combined as described above. Finally it should be noted that PredAlgo only 

predicts to which compartment a protein is targeted. If the compartment where translation of 

the protein takes place is unknown it is still not possible to know the final location, or to which  

membrane it  is  targeted.  Therefore,  compartmentalized omics  data is  needed to  accurately 

predict the final subcellular location of a protein. The UniProt database contains 8 Chlorophyta 

proteome  sets  based  on  genome  sequencing  data  that  are  fully  annotated.  Additionally, 

GenBank  (http://www.ncbi.nlm.nih.gov/genbank/)  harbors  many  chloroplast  and 

mitochondrial  datasets  that  can  be  used  for  this  purpose  [75].  These  datasets  could  be 

compared to assess the potential impact of the parallel endosymbiotic events, which in turn 

can be taken into account in cellular location predictions.

In  conclusion by using consensus-based protein  function  prediction,  and/or  model-assisted 

annotations, many improvements can be made in functional annotation of microalgal proteins.  

Nevertheless,  there  will  always  be  a  set  of  species-specific  proteins  that  will  remain 

unannotated using computational methods.
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2.4 Remaining bottlenecks

2.4.1 Unsupervised computational annotation can lead to 

error propagation

The GO project has become the standard way of annotating proteins [76]. All major databases 

use these terms for the documentation of protein functions and cellular locations. GO terms 

are accompanied with an evidence code, stating how a gene was assigned to a GO term [77]. 

In most cases the evidence code is “Inferred from Electronic Annotation”, meaning that an 

unsupervised computational method was used. Such annotations are error-prone. Furthermore, 

with an exponential-increasing amount of  sequencing data being generated every day, the 

amount of  unsupervised electronically  assigned GO terms also increases  exponentially.  To 

illustrate the problem, Schaid et al. showed that already in 2010, 50% of the 200,000 human  

protein GO term assignments were done electronically. Consequently, these gene annotations 

were likely to contain a number of errors [78]. If such an electronic annotation is done using, 

for example, a standard BLAST based transfer of annotation method and proteins that also 

have their GO terms electronically assigned were used as a reference, this can easily lead to 

error  propagation  of  GO  term  assignments.  Recording  the  provenance  of  unsupervised 

annotations to GO terms is therefore essential. Several annotation tools are scoring GO term 

annotations based on the GO structure and evidence codes [79]. The evidence ontology (ECO) 

[77] provides more descriptive evidence-based annotation to proteins in UniProt database by 

describing, for example, evidence types, methods and data curation. A detailed provenance can 

help to obtain more precise evidence scores than is possible with the standard evidence codes.

2.4.2 Orphan reactions

One of the direct results of a small amount of experimentally validated proteins is a large 

amount of orphan reactions. These are reactions catalyzed by enzymes of which it is assumed 

that they must occur, for instance through phenotypic analysis or because they bridge a gap in 

a metabolic pathway, but which do not have an encoding gene assigned. The Orphan Enzymes 

34



   Algal omics: the functional annotation challenge

Project  (http://www.orphanenzymes.org)  is  attempting  to  link  sequences  to  such  Orphan 

Enzymes, and a similar effort should be made regarding microalgal enzymes.

2.4.3 The lack of identified microalgal specific protein 

domains

An effective way of assigning GO terms to proteins is by linking GO terms to protein domains  

and searching proteins for the presence of these domains. However, as can be seen in Figure 

2.2B (InterProScan results),  microalgae proteins show a low level of  sequence similarity to 

domains  available  in  the  PFAM database  (http://www.pfam.xfam.org),  which suggests  that 

microalgae have accumulated many novel domains that are not yet identified by the scientific 

community. To start to identify these novel domains it might be useful to develop an algae 

specific domainome by routinely performing large-scale  comparative genomics  between all 

available microalgal genomics data, as was done with bacteria  [80]. Recurring patterns can 

then be assigned to specific domains with presently unknown function. If  specific domains 

keep recurring in proteins associated with specific traits, these domains can be linked to a 

function.

2.5 Concluding remarks

Systems  biology  approaches  to  unlock  the  potential  power  of  microalgae  are  seriously 

hampered by lack of genomic knowledge. Genome annotations of recently sequenced species 

still heavily depend on sequence similarity based functional annotation methods, which are 

less suitable for species that have no close by well-studied and annotated homologous species. 

As a result almost 90% of microalgal functional protein annotations is still for the most part  

describing the metabolic core shared between algae and plant species. The application of novel 

state-of-the-art  annotation methods,  as well  as approaches that combine multiple methods, 

may result in a more accurate and more diverse functional annotation. Genome scale modeling 

approaches could additionally help in identifying metabolic gaps, which can then be looked at 

more thoroughly. However, for microalgae to fulfill their promise as a biosynthetic host it is 

important to overcome at least some of the annotation bottlenecks that are not solvable by 

computational methods. We therefore suggest that a large-scale wet lab effort focused on a 
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number  of  selected  microalgal  reference  species  is  essential.  This  would  provide  the 

computational  methods  with  larger,  more  diverse  set  of  reference  genes,  and would  allow 

computational annotations methods to quickly tap into the promising biological reservoirs of 

industrially interesting algal species [81].
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The  microalga  Neochloris  oleoabundans accumulates  triacylglycerol  (TAG)  upon 

nitrogen limitation. TAG can be used in food products, feedstocks or easily converted 

into an effective and clean biofuel. Commercialization of algae-derived TAG currently 

requires a further reduction in production costs, which can be reached by optimizing 

TAG yield on light.

A constraint  based metabolic  model  of  central  (carbon)  metabolism was constructed, 

parameterized, and supported using turbidostat experiments and transcriptome data. The 

model was used to study changes in metabolic flux distribution and carbon and energy 

partitioning  as  a  result  of  nitrogen  limitation  and  changes  in  light  intensity.  Under 

nitrogen  limitation,  N.  oleoabundans  redistributes  photosynthetic  energy  supply  by 

reducing linear electron transport and by redirecting carbon and energy towards starch 

and  TAG  synthesis.  The  metabolic  model  calculates  a  maximum  TAG  yield  of  N. 

oleoabundans on  light  of  1.06  g  (mol photons)-1,  more  than  3  times  the  current 

experimental  yield under  optimal  conditions.  Nitrogen limitation has  direct  effect  on 

expression of nitrogen dependent pathways, while high light impacted gene expression 

of a wider number of pathways. The combination of high light and nitrogen limitation 

showed more changes in gene expression than the sum of the inductions alone.  We 

found  that  under  nitrogen  limitation,  starch  accumulation  correlates  with  down-

regulation of starch degrading enzymes and that TAG accumulation correlates with up-

regulation of few reactions in lipids and TAG biosynthesis pathways. Geranylgeranyl 

diphosphate reductase was found to have an opposite regulation than the other reactions 

from chlorophyll, terpenoid and carotenoid biosynthesis pathways.

Integration  of  predicted  metabolic  fluxes  and  expression  data  increased  our 

understanding  of  the  effect  of  the  studied  environmental  stresses  on  microalgal 

metabolism. Our metabolic model shows that TAG yield on light can be more efficiently 

improved  by  optimizing  photosynthetic  conversion  than  by  blocking  competing 

pathways. Geranylgeranyl diphosphate reductase was identified as a potential regulator 

for photosynthetic capability. It complements the fine-tuning of chlorophyll levels from 

synthesis  and degradation.  Finally,  we were able to identify some key reactions that 

could be targeted to improve TAG yield,  by not only specifically increasing the flux 

within the lipids and TAG pathways, but also potentially redirect carbons from other 

pathways.
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3.1 Background

The  oleaginous  microalga  Neochloris  oleoabundans is  able  to accumulate  relative  high 

amounts  of  triacylglycerol  (TAG).  Adverse  growth  conditions  as  for  example  nitrogen 

limitation  are  often  applied  to  microalgae  to  induce  production of  industrially  interesting 

compounds such as β-carotene or TAG [14, 82]. When nitrogen is limiting or absent, protein 

synthesis and growth are reduced or stopped, resulting in reduced demand for energy and 

electrons. Since light supply is maintained, this results in an excess of absorbed light energy, 

which in turn results in a surplus of electrons and reductive potential in the photosystems [83]. 

Accumulation of carbon-rich compounds, such as starch and TAG, provides a sink for these 

electrons [84] and can be seen as a strategy to safely channel away redundant electrons, while 

maintaining considerable carbon fixation rates.

There are three possible  fates for the excitation energy resulting from light  absorption by 

chlorophyll being: (i) photochemical transformation into energy carriers (NADPH and ATP), 

(ii)  dissipation  via  fluorescence  or  (iii)  dissipation  as  heat  (non-photochemical  quenching, 

NPQ).  Nitrogen limitation  causes  a  considerable  decline  in  photosynthetic  efficiency  [85]. 

Thus, the excess of energy is not only balanced by channeling redundant electrons towards 

starch and highly  reduced TAG but  also  by reducing  electron generation  itself  by  energy 

dissipation through heat production and fluorescence [86, 87].

High energy dissipation rates result in low areal TAG productivity and increased production 

costs [7]. Moreover, the synthesis of competing metabolites, such as a starch, direct additional 

energy away from TAG synthesis [88] again lowering the TAG productivity. This in particular 

poses a problem in industrial production of compounds for bulk applications, such as TAG 

intended  for  biofuels  [89].  Knowledge  on  the  interplay  between  photosynthesis,  nitrogen 

assimilation,  carbon  fixation,  and  energy  dissipation,  is  limited  and  would  provide  useful 

insights into how microalgae distribute energy and carbon fluxes that could be used to improve 

areal productivity of TAG.

The aim of this study is to obtain more insight into the molecular mechanism behind the loss 

of photosynthetic efficiency and the partitioning of carbon and energy towards TAG under 

nitrogen  limiting  conditions,  using  transcriptome  analysis  in  combination  with  metabolic 

modeling.
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Transcriptome  and  metabolic  data  were  collected  in  steady-state  conditions  in  controlled 

photobioreactors operated in turbidostat mode. Two different light absorption rates and several 

nitrogen supply rates were used resulting in 9 different steady states as described in [27] and 

depicted  in  Figure  3.1.  Comparison  of  gene  expression  was  done  for  four  conditions 

representing a low and high light absorption rate in combination with a nitrogen replete and 

nitrogen limiting conditions.

A  constraint  based  metabolic  model  (CBM)  was  build  based  on  general  biochemical 

considerations and on a previously published CBM of  Chlamydomonas reinhardtii [90]. De 

novo transcript assembly and annotation provided evidence for the transcript-protein-reaction 

associations underlying the CBM and to some extent for their compartmentalization. For this, 

better transcriptome coverage was obtained by combining 16 sequenced samples obtained from 

five ([A][C][E][F] and [I], Figure 3.1) experiments described in [27] and in Table 3.1 and eight 

RNA-seq datasets generated in our lab [91]. Functional annotation was performed using tools 

able to bridge the great genetic distance with available databases [44, 91, 92]. 

In this work, it is shown how integration of expression data and metabolic flux analysis can be 

used to evaluate several scenarios,  predict  optimal TAG production on available light,  find 

yield bottlenecks, and important reactions or mechanisms. These insights can be used to re-

direct carbon and energy fluxes towards TAG, leading to a higher areal productivity and thus a 

lower cost price of microalgal TAG.
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Table  3.1:  Biomass  composition  given  as  weight  fraction  (A)  and  balanced  rates  (B)  obtained  for  each  

experimental condition. Culture A and E in the gray shaded columns are the nitrogen replete cultures that are  

light limited at respectively low and high light. Figure 3.1 presents a graphical overview of all these experimental  

conditions. The condition balance were defined based on published model [88].

Aa Biomass composition (%w/w)
Experiment A* B C* D E* F G H I*
Ash 6.2 5.4 4.9 3.7 6.7 5.9 5.7 4.3 3.9
TAG 1.5 3.7 7.5 12.4 1.7 2.7 4.3 7.0 8.7
Starch 14.2 23.4 29.1 34.7 25.2 28.2 30.9 39.5 42.4
Functional Biomass 78.1 67.5 58.6 49.2 66.3 63.3 59.1 49.3 45.0
Protein 38.9 33.5 29.2 23.0 35.5 30.7 28.1 23.0 20.3
Carbohydrate 16.8 16.3 15.0 16.9 11.6 13.9 15.5 15.5 15.6
Membrane lipid 10.5 10.2 9.3 6.8 8.8 8.7 7.7 6.7 6.8
Chlorophyll 1.9 1.2 1.0 0.7 1.5 0.9 0.7 0.5 0.4
Carotenoid 0.3 0.2 0.2 0.1 0.3 0.2 0.2 0.2 0.1
RNA 8.2 4.7 2.7 1.1 7.6 7.6 5.7 2.5 1.3
DNA 1.5 1.3 1.1 0.6 1.0 1.3 1.2 0.8 0.5
B Balanced rates in mmol (g protein)-1 h-1

Experiment A* B C* D E* F G H I*
rϒ -124 -112 -107 -129 -271 -259 -259 -272 -304

rNO3- -0.83 -0.36 -0.21 -0.16 -1.34
-

0.76
-0.60 -0.41 -0.28

rX
b 0.71 0.33 0.20 0.17 1.08 0.64 0.54 0.41 0.30

rTAG (∙103) 2.45 4.15 5.25 7.76 4.82 5.62 7.76 10.3 9.55
rSTARCH 0.13 0.14 0.11 0.12 0.38 0.32 0.30 0.31 0.25

rCO2 -5.48 -3.22 -2.24 -2.24 -9.48
-

6.41
-5.69 -5.06 -3.97

rO2 7.47 4.19 2.88 2.81 12.64 8.27 7.24 6.28 4.88
a N≥ 3 for each measurement, with the exception of ash, which consisted of a single measurement.

b specific functional biomass production rate

*: Experimental conditions used for comparison in transcriptome and flux analysis.
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Figure 3.1: Experimental conditions. Average photon flux densities (PFDav) of 70 (LL) and 200 μmol m−2 

s−1 (HL) were combined with several  nitrogen supply rates (FN),  resulting in nine different growth  

conditions ([A] − [I]). The red dotted line represents the settings where light supply rate and nitrogen  

supply rate are in balance. With FN above this line (green area) the culture will be light limited, below  

the line it will  be nitrogen limited (yellow area),  where  FN is  equal to  rN.  The blue dashed arrows 

represent the five pair-wise comparisons performed when calculating differential flux and differential  

expression.  The arrow-head  side  represents  the  nominator  of  the  division.  For example,  FC=2  in  

[E]/[A] comparison indicates a two-fold higher expression at [E] (HL) than at [A] (LL). The condition  

balances were defined as described in a previous article [88].
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3.2 Methods

3.2.1 Reactor set-up and experiments

To  test  the  effect  of  nitrogen  limitation  on  the  energy  and  carbon  fluxes  in  oleaginous 

microalgae, Neochloris oleoabundans (UTEX 1185, The culture collection of Algae, university 

of  Texas,  Austin)  was  grown  in  a  turbidostat  operated  flat  panel  photobioreactor  under 

constant red-light conditions, with a nitrogen feed separate from the diluting medium. This 

type of system allows independent control of light absorption and nitrogen supply rates to the 

culture [27]. Setting the nitrogen supply rate below the nitrogen demand of the culture, which 

is dictated by the fixed light absorption rate, will result in nitrogen limited growth conditions.

Light  absorption  in  the  turbidostat  was  controlled  by  setting  a  fixed  photon  flux  density 

entering the system (PFDin in μmol m-2 s-1). The photon flux density leaving the system (PFDout 

in μmol m-2 s-1) was measured by a light sensor connected to the rear glass panel of the reactor 

and compared to a set point. When a value below this set point was detected, a diluting flow of 

nitrogen free medium was supplied to the system. This control loop ensured a constant PFD out 

and combined with the fixed PFDin, a constant light absorption (rϒ in mmol -1 L-1 h-1) over the 

entire culture depth (δpbr in m):

 

pbr

outin PFDPFD
r




6103600 


(Equation 2)

A nitrate containing feed was constantly supplied independently of the nitrogen free diluting 

medium. By setting the flow rate of this feed, the nitrate supply to the system (FNO3
-
.in in mmol 

L-1 h-1) was controlled and could be set above (N replete) or below (N limited) the required 

nitrogen consumption rate of the culture. The nitrogen consumption rate rNO3
- (mmol L-1 h-1) 

was calculated as follows:

outNOinNONO
CDFr

.. 333
 

(Equation 3)

With D (h-1) as the dilution rate that is the result of the culture growth, and CNO3
-
.out (mmol L-1) 

as the residual nitrate concentration in the reactor. Under N replete conditions, residual nitrate 

is present in the system, while under N limited conditions, all nitrate is consumed and rNO3
- 

equals FNO3
-
.in.

Two light absorption rates (Low light; LL and High light; HL) were combined with several  

nitrate  supply rates,  resulting in nine steady states ([A]-[I],  see  Table 3.2 and  Figure 3.1). 
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Steady  state  was  defined  as  a  constant  biomass  concentration,  cell  characteristics,  off gas 

concentrations and dilution rate during at least 6 consecutive days. 

More information about photobioreactor specifications and operation, as well  as a detailed 

description of culture media and conditions can be found in [27].

Table  3.2: Combinations of several nitrate supply rates with two light absorption rates resulted in 9  

steady states.  The nitrogen  replete  reference  conditions  [A]  and [E],  for  low light  and  high light  

respectively, are indicated in gray. *: Experimental conditions used in transcriptome analysis.

Experiment Low light conditions High light conditions
A* B C* D E* F G H I*

PFDin (μmol m-2 s-1) 193 193 193 193 460 460 460 460 460
PFDout (μmol m-2 s-1) 18 16 16 17 69 70 70 71 70
rϒ (mmol L-1 h-1) 32 32 32 32 70 70 70 70 70
FNO3-.in  (mmol  L-1  h-

1)

0.36 0.10 0.06 0.04 0.61 0.21 0.16 0.11 0.06

rNO3- (mmol L-1 h-1) 0.19 0.10 0.06 0.04 0.27 0.21 0.16 0.11 0.06

3.2.2 Biomass analysis and additional measurements

To monitor the culture, samples were taken every day at the same hour. These samples were 

analyzed for dry weight biomass concentration, optical density, cell concentration, cell size and 

residual nitrate in the supernatant, as described by [90].

The growth rate of the culture was equal to the steady state dilution rate, and was calculated  

by dividing the amount of overflow produced in 24h (V24 in L h-1) by the reactor volume (Vpbr in 

L):

pbrV

V
D 24

(Equation 4)

The composition of the gas mixture leaving the system was analyzed using a prima dB mass 

spectrometer  (ThermoFisher,  USA).  Additionally,  a  reference  measurement  was  done  by 

analyzing  the  composition  of  the  in-going  gas  mixture.  With  these  measurements,  the 

volumetric oxygen production rate (rO2,  mmol L-1 h-1)  and carbon dioxide consumption rate 

(rCO2, mmol L-1 h-1) rates could be calculated: 

inOingasoutOoutgasO xFxFr .... 222
 (Equation 5)
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inCOingasoutCOoutgasCO xFxFr .... 222
 (Equation 6)

With xO2.out, xO2.in, xCO2.out and xCO2.in as the molar fractions of O2 and CO2 (-), and Fgas.in and Fgas.out 

as the total molar gas flow rates entering and leaving the system (mmol L-1 h-1), respectively. To 

account for any difference between Fgas.in and Fgas.out due to CO2 consumption and O2 production 

inside the photobioreactor, the nitrogen gas feed flow (Fgas.in∙xN2.in) was used as a reference to 

determine Fgas.out:

ingas
outN

inN
outgas F

x

x
F .

.

.
.

2

2 

(Equation 7)

When steady state was reached, biomass was collected on ice over a period of exactly 24h. The 

obtained  biomass  was  centrifuged,  washed  and  lyophilized  as  described  by  [90].  The 

supernatant of the 24h samples was evaluated for TOC (Total Organic Carbon), which was 

measured as the difference between total carbon (TC) and inorganic carbon (IC), using a TOC-

VCPH/TOC-VCPN  Total  Organic  Carbon  Analyzer  (Shimadzu  corps,  Kyoto,  Japan).  This 

determination of dissolved organic carbon, allowed for the correction of the measured biomass 

concentrations for any biomass lost due to cell lysis, assuming that all organic material in 

solution had the same elemental composition as suspended biomass.

The  freeze-dried  algae  powder  collected  in  each  steady  state  was  used  for  all  biomass 

characterizations. The amino acid content per gram dry weigh was determined by Ansynth 

Service BV (Berkel en Roodenrijs, The Netherlands) for 20 individual amino acids, as described 

by  [90].  The total  amount of protein in biomass was assumed to be the sum of the water 

corrected mass of these 20 amino acids. The total fatty acid content and TAG content of dry 

biomass, and the fatty acid composition of each lipid pool was determined as described by [27]. 

Carbohydrates were measured by treating the freeze dried algae powder with a phenol solution 

and concentrated sulfuric acid, according to  [93] and  [94]. The absorbance of the resulting 

solution was measured at 483nm. Glucose was used as a standard. Starch was measured in the 

lyophilized  biomass  samples  using  a  commercial  kit  (Total  Starch  (AA/AMG),  Megazyme 

International, Bray, Ireland).

The carotenoid and porphyrin (i.e.  chlorophyll)  fractions were quantified using RP-

UHPLC as  previously  described  by  [95],  with  some minor  adaptations:  Lutein  (96%)  was 

purchased from Carotenature (Lupsingen, Switzerland). Chlorophyll-a (90.0%) was purchased 
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from  Wako  Pure  Chemical  Industries  (Osaka,  Japan).RP-UHPLC  identification  and 

quantification  of  carotenoids  and  porphyrins  was  performed  as  previously  described  by 

Weesepoel et al. (2013) with minor adaptations. The elution program was started from 25% (v/

v) A / 75% (v/v) B and then as follows: to 15 min – linear gradient to 100% (v/v) B; to 22.5 min 

– isocratic at 100% (v/v) B; to 29.5 min – linear gradient to 87.5% (v/v) B/ 12.5% (v/v) C; to 31.5 

min – linear gradient to 70% (v/v) B / 30% (v/v) C; to 41.5 min – linear gradient to 100% (v/v) 

C; to 42.5 min - isocratic at 100% (v/v) C. After 42.5 min, the eluent composition returned to its 

initial  composition  in  7.5  min,  followed  by  an  equilibration  phase  of  2.5  min.  Detection 

wavelengths for UV-Vis were set  at  450 nm (carotenoids c) and 660 nm (porphyrins).  For 

quantification, lutein and chlorophyll-a were used. Approximately 1 mg of lutein was first 

dissolved  in  dichloromethane,  and  subsequently  diluted  with  4  volumes  of  ethanol. 

Chlorophyll-a was first dissolved in ethyl acetate, and subsequently diluted with 3 volumes of 

90%  (v/v)  aqueous  acetone.  Standard  concentrations  were  measured  prior  to  RP-UHPLC 

analysis,  using their  respective absorption coefficients (A1%1cm):  2550 g L-1 cm-1 (445 nm, 

100%  ethanol)  for  lutein  and  887  g  L-1 cm-1 (664  nm,  90%  (v/v)  aqueous  acetone)  for 

chlorophyll-a  (Roy  et  al.  (2011)).  PDA  calibration  was  performed  using  five  different 

concentrations of the standards injected in duplicate. For this calibration, the response of the 

all-trans and cis form of the carotenoid standards was considered equal for quantification. The 

detector was found to be linear for lutein between 0.08 and 8.04 µg mL -1 with a R2 of 0.996. For 

chlorophyll-a,  the  detector  was linear  between 0.06 and 6.01 µg  mL-1 with  a  R2 of  0.968. 

Carotenoids  were  expressed  as  lutein  equivalents  using  the  lutein  calibration  curve.  The 

responses were corrected using the following carotenoids A1%1cm: 2330 g L -1 cm-1 (437 nm, 

100% ethanol) for 9’-cis neoxanthin, 2550 g L-1 cm-1 (433 nm, 100% ethanol) for violaxanthin, 

and 2500 g L-1 cm-1 for antheraxanthin and unknown carotenoids were used. Similar procedure 

was used for porphyrins using the calibration curve of chlorophyll-a: 1270 g L -1 cm-11 (664 nm, 

90%  (v/v)  acetone)  for  chlorophyllide  a,  742  g  L-1 cm-1 (667  nm,  90%  (v/v)  acetone)  for 

pheophorbide a, 514 g L-1 cm-1 (647 nm, 90% (v/v) acetone) for chlorophyll b and 512 g L-1 cm-

1667 nm, 90% (v/v) acetone) for pheophytin a (Roy et al. (2011), Britton et al. (1995)).

The ash content of biomass was determined as described by  [27]. The nucleic acids 

DNA  and  RNA  were  not  measured  directly,  but  determined  from  cell  number  data.  N. 
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oleoabundans has an estimated genome size of 68.2 Mb, with a CG content of 60% (internal 

communication). Assuming that each cell contains a single copy of DNA, it could be calculated 

that each cell contains 8.1x10-14 g DNA per cell. Transcriptome analysis revealed that RNA had 

an average GC content of 59%, and the RNA content was based on the observation that the 

cellular RNA:DNA ratio increase with increasing specific growth rate (μ, here in d -1) of [96]. 

Their equation, derived for three nitrogen limited marine phytoplankton cultures was used in 

our calculations:

287.0255.0 
DNA

RNA


(Equation 8)

3.2.3 Flux balance analysis

The metabolism of any organism can be described by a set of reaction equations that define the 

stoichiometry of the conversion of substrates into products  [97]. In this paper, a metabolic 

network is presented that describes the primary metabolism of the oleaginous green alga  N. 

oleoabundans. To calculate the fluxes through this network, flux balance analysis was applied,  

using the measured production and consumption rates of the nitrogen replete and nitrogen 

limited steady states.

The  stoichiometry  matrix  S  of  the  CBM  contains  the  stoichiometric  coefficients  of  the 

substrates  and products  for the different  reactions in the metabolic network,  including the 

transport reactions over the membranes. Mass balances are written for all the intracellular 

metabolites present in the network. Assuming steady state and neglecting the net production 

of intermediates results in the next set of linear equations, which are used to calculate the 

fluxes in the network:

S ∙ x = 0 (Equation 

9)

In which S is the stoichiometry matrix and x is the vector which contains the reaction rates.  

The solution space of equation 9 was studied to find possible dead ends in the presented CBM, 

which were subsequently removed.

Three redundancy relations were extracted from the model  stoichiometry being a nitrogen 

balance, a carbon balance and a redox balance. The measured production and consumption 

rates of functional biomass (i.e. biomass that does not contain starch, TAG and ash), starch,  
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TAG, nitrate, carbon dioxide and oxygen were checked for consistency using these redundancy 

relations and a Chi-Squared test. Subsequently, consistent rates were balanced according to 

[98]. 

Flux distributions were subsequently calculated using optimization of an objective function:

Objective function: max (c ∙ x)

Constraints: S ∙ x = 0

max (c ∙ x) (Equation 10)

In which c contains the objective function and LB and UB are the lower and upper boundary of 

reaction rate x. In this study, the objective functions ‘maximize ATP dissipation’ or ‘maximize 

product yield’ were used. Reactions that are irreversible were constrained to one direction by 

setting appropriate bounds. Constraints were set on transport fluxes depending on whether a 

compound was  consumed or  produced.  Measured rates,  rates  were  used to  constraint  the 

model of the corresponding reactions.

Due  to  underdetermined  reaction  sets,  the  obtained  solutions  for  the  flux  values  are  not 

unique. In order to find the underdetermined reaction sets equation 9 is converted to:

Sc • xc=−Sm• xm (Equation 11)

Where  xc contains  the  unknown  and  xm contains  the  measured  rates.  Sc  and  Sm are  the 

corresponding parts of S. Underdetermined reaction sets were next found by studying the null 

space of Sc using singular value decomposition. 

By studying the null-space of matrix Sc (Equation 11), it was revealed that the CBM contained 

13  underdetermined  parts.  By  constraining  irreversible  reactions  and  thermodynamically 

impossible combinations of reactions to the correct directions (Supplementary File 2), and by 

choosing the objective functions ‘maximize ATP  dissipation’ and ‘maximize product yield’, 

unique  values  could  be  calculated  for  all  but  one  underdetermined  part.  This 

underdeterminancy involved the anaplerotic routes between phosphoenolpyruvate, pyruvate, 

and oxaloacetate,  and was solved by disabling reaction 55 (oxaloacetate  carboxy-lyase),  as 

described by [90].

Mathcad 14.0 (M020, Parametric Technology Corporation, USA) was used for network analysis 

and Matlab (version 6.0.0.88,  release 12,  The MathWorks Inc.,  USA) was used for  in silico 

simulations.
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3.2.4 RNA sampling and transcriptome assembly

Biomass for RNA extraction was obtained from 50 mL of culture volume that was centrifuged 

at 3900 RCF at 4 ˚C for 5 minutes. Resulting biomass pellets were quickly frozen and stored at  

-80  ˚C.  Frozen  pellets  were  ground  using  a  mortar  and  pestle  under  liquid  nitrogen.  

Subsequently, the total nucleic acid fraction of 0.5 g of ground and frozen pellet was extracted, 

using  a  preheated  (65  ˚C)  mixture  of  1  mL  liquefied  phenol  and  1  mL  extraction  buffer 

containing 1% SDS (v/v), 10 mM EDTA, 0.2 M NaAc (pH 5) and 2% β-mercaptoethanol (v/v). 

When  samples  were  cooled  to  room temperature,  they  were  mixed  with  a  vortex  for  15 

seconds. Next, 1 mL of chloroform was added and samples were mixed again. The aqueous 

phase was collected after 15 minutes of centrifugation (13.000 RCF), and re-extracted with 1 

mL chloroform. The last obtained aqueous phase was diluted 4 times with an 8 M LiCl solution 

containing 1% β-mercaptoethanol (v/v). The RNA was allowed to precipitate overnight at 4 ˚C 

and collected by centrifugation (15 min at 13,000 RCF). The RNA pellet was washed once with 

2M LiCl and twice with 70% (v/v) ethanol, and finally dissolved in MilliQ water.

Sequencing libraries  for the Illumina platform were generated from the isolated RNA and 

subsequently  sequenced  at  BaseClear  BV (Leiden,  The  Netherlands).  Total  RNA was  first 

assessed for quality on a Bioanalyzer 2100 (Agilent Technologies Inc., Santa Clara, USA) and 

used as input for library preparation using the Illumina TruSeq RNA library preparation kit  

(Illumina Inc., San Diego, USA). Briefly, the mRNA fraction was purified from total RNA by 

polyA  capture,  fragmented  and  subjected  to  first-strand  cDNA  synthesis  with  random 

hexamers. After second-strand synthesis, barcoded DNA adapters were ligated to both ends of 

the  double-stranded  cDNA,  the  ligated  product  was  size-selected  and  subjected  to  PCR 

amplification for 15 cycles. The resultant sequencing library was checked on a Bioanalyzer 

(Agilent Technologies Inc., Santa Clara, USA) and quantified. The libraries were multiplexed, 

clustered, and sequenced on an Illumina HiSeq 2000 with paired-end protocol for 50 cycles. 

The  sequencing  run  was  analyzed  with  the  Illumina  CASAVA  pipeline  (v1.8.2),  with 

demultiplexing based on sample-specific barcodes.  The raw sequencing data produced was 

processed removing the sequence reads which were of too low quality (only "passing filter" 

reads were selected) and discarding reads containing adaptor sequences or PhiX control. For 

all the samples, the reads are 51nt long and the median insert size is of 129bp.

To  maximize  the  diversity  and  completeness  of  the  N.  oleoabundans de  novo  assembled 

transcripts, data from 16 RNAseq samples available in our lab were combined. Eight samples 

were generated from experimental conditions ([A],[C],[E],[F], and [I]) as described in [27] and 
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Figure 3.1,  available at  ArrayExpress (E-MTAB-3651) and at  ENA (ERP010848).  The other 

eight samples were generated from four experimental conditions, available at ArrayExpress (E-

MTAB-3746) and at ENA (ERP0011032). The combination of these 16 RNAseq samples yielded 

a total of 496,158,724 reads and assembled with IDBA-UD v1.1.0 [100]. QUAST v2.3 [99] was 

used to estimate the quality of the assembly. CDS were extracted using QUAST and translated 

into protein sequences for functional annotation.

3.2.5 Transcriptome annotation 

The protein sequences were annotated by aligning them using DELTA-BLAST 2.2.29+ (default 

parameters,  E-value  <  0.001)  [91].  To  this  end,  several  databases  were  used  sequentially: 

SwissProt,  Chlorophyceae  branch  from SwissProt,  Viridiplantae  and  Cyanobacteria  branch 

from NCBI, Uniprot (SwissProt + Trembl) filtered for proteins with an annotated enzymatic 

reaction.  Additionally,  the proteins were annotated using InterproScan 5  [44] with default 

parameters) for domain search analysis. Finally, Blast2GO V.2.7  [92] was used as the central 

tool to combine both analysis methods to assign GO terms to the protein sequences and to 

retrieve EC numbers.

Three tools were used to predict the subcellular location of the predicted enzymes: TargetP 

[100] , PredAlgo [37] and WoLF PSORT [101]. Four common cellular locations were identified: 

chloroplast, mitochondrion, secretory pathway, and cytoplasmic. In the case of WoLF-PSORT, 

the localization defined as extracellular or plasma membrane were considered as secretory 

pathways.

3.2.6 Expression analysis

Read abundance estimations were done using the RSEM script from TrinityRNAseq pipeline 

[102, 103] with the default settings. Reads from each experimental condition were mapped 

onto the set of coding sequences generated with QUAST from the assembled transcriptome.

Data were normalized using Trimmed Mean of M-values as implemented in EdgeR package 

[104]. They were further normalized by CDS length to compute Fragments Per Kilo base of  

exon per Million fragments mapped (FPKM) using TrinityRNAseq TMM normalization script. 

CDS  with  read  counts  lower  than  10  in  all  conditions  were  discarded  and  resulted  in  a 

reduction of ~18% of the transcripts. Finally, FPKM values corresponding to CDS annotated to 
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the  same enzyme  or  transporter  present  in  the  CBM were  added  up  to  provide  a  single 

expression value for each reactions. Differential expression values per reaction were computed 

using the merged FPKM and the EdgeR package.

3.2.7 GO enrichment analysis

Gene Ontology (GO) enrichment analysis was performed using the BINGO Cytoscape plugin 

[105] with  default  settings  (hypergeometric  test  and  Bejamini  -Hochberg  correction  for 

multiple testing). The fully annotated transcriptome was used as background set. The test was 

performed for  each pairwise  comparison (Figure  3.1)  and for  three  subsets  of  transcripts: 

down-regulated,  up-regulated,  and  both  up  or  down-regulated.  Only  terms  with  False 

Discovery Rate lower than 0.05 were retained for further analysis.

3.3 Results 

3.3.1 Turbidostat experiments

Photobioreactors  were  operated  in  continuous  mode  as  turbidostats,  combining  two  light 

absorption rates with several nitrate supply rates resulting in 9 steady states. Experiments are 

presented in detail in the paper of Klok et al and part of the data presented there are used in  

this  paper  [27,  106].  The  measured  biomass  compositions  can  be  found  in  Table  3.1A. 

Functional biomass is defined as biomass without ash, starch and TAG. The nitrogen, carbon, 

and redox balance closed, according to the Chi-Squared test, for all experiments except [E],  

which was only just outside the 95% confidence interval (Additional File 3). In [E], nitrogen 

consumption rate was slightly lower than expected based on the measured functional biomass 

production rate, which could be explained by an inaccurate nitrate measurement. Therefore, 

for  condition  [E],  the  specific  nitrate  consumption  rate  was  calculated  from the  nitrogen 

balance.  Next  for  all  conditions,  except  condition  [E],  the  rates  were  balanced  using  the 

nitrogen, redox and carbon balances. For condition [E] the redox and carbon balances were 

used for balancing the rates. The balanced rates obtained for each steady state, expressed in 

mmol (g protein)-1 h-1, can be found in Table 3.1B. Rates and fluxes are expressed per gram of 
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protein, because protein is representative for functional biomass and contains the enzymes that 

carry the fluxes.

To study the effect of light intensity and nitrogen limitation, four steady states, indicated in 

Figure 3.1, were selected to compare flux and transcript levels. For high light conditions steady 

state E, which is nitrogen replete, was chosen together with steady state I, which is the steady 

state that is most nitrogen limited. For the low light intensity steady state, A, which is nitrogen 

replete and steady state C, which is nitrogen limited and has a nitrogen supply rate that is 

comparable to steady state I, were selected.

3.3.2 De novo transcriptome assembly and annotation

De novo assembled transcripts were used to predict coding sequences (CDS) that were further 

translated into 28266 putative protein sequences. Using InterProScan5 we identified conserved 

protein domains in 54% (15306) of these putative proteins, of which 7021 could be associated 

with Gene Ontology (GO) terms, of which 83% (5861) were unique. Additionally, 3249 putative 

proteins were associated with EC numbers, 834 of which unique.

Using three subcellular location prediction tools (TargetP, PredAlgo and WoLF-PSORT), four 

common  cellular  locations  were  identified  for  the  putative  proteins:  chloroplast, 

mitochondrion, secretory pathway, and cytoplasm. It should be noted that protein localization 

prediction  remains  a  challenge  since  signal  peptides  need  to  be  further  characterized. 

Currently,  only  PredAlgo  is  trained  with  algal  sequences  and  solely  with  C.  reinhardtii. 

Functional microalgae annotation would greatly benefit from curated training sets [38, 47].

3.3.3 Metabolic reconstruction

An  initial  metabolic  network  was  constructed  describing  the  primary  metabolism  of  N. 

oleoabundans based on a previously published genome based reconstruction of  C. reinhardtii 

[90]. The CBM comprises 373 reactions, distributed over two compartments: chloroplast and 

the  cytosol.  All  reactions  not  located in the  chloroplast  were assigned to  the  cytosol.  The 

reactions are described by a total of 227 unique EC numbers. This  network of 373 reactions  

was  further  reduced  to  a  more  manageable  size  of  216  reactions  and  219  metabolites  by 

lumping linear pathways (Figure 3.2). In addition, complex processes such as photosynthesis 

and respiration were lumped into single reactions and not assigned to specific EC numbers. 
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Finally, transport reactions were included in the CBM, often as a result of gap filling to obtain 

a functional model, as many transporters have not been identified yet. EC numbers were cross-

checked with the  de novo  assembled and annotated transcriptome (additional  file  2)  of  N. 

oleoabundans,  and  the  presence  of  genes  coding  for  the  enzymes  catalyzing  the  modeled 

reactions  was  verified.  The  CBM  contains  only  one  enzymatic  reaction  for  which  the 

corresponding gene could not be identified: EC: 4.2.1.19, which is associated to the histidine 

biosynthesis pathway. 

Stoichiometry of the functional biomass synthesis reaction was calculated for each steady state 

based on the measured composition (Additional File 3).  As the amino acid composition of 

protein  and  fatty  acid  composition  of  TAG  and  membrane  lipids  did  not  exhibit  large 

variations throughout the tested experimental conditions,  the average composition of these 

molecules was used for determining the stoichiometry of their respective formation equations 

(Additional File 3). Based on their respective fractions, measured growth rates and biomass 

concentrations, the production rates of starch, TAG and functional biomass were calculated.

The non-growth associated maintenance was obtained from the C. reinhardtii CBM (7.1 mmol.

(g  protein)-1.h-1).The  growth  associated  maintenance  was  estimated  from  experimental 

condition A assuming that in this steady state light was not dissipated. Thus, a value of 29 

mmol.(g functional biomass)-1 was obtained. More details about the metabolic reconstruction 

can be found in additional file 1.
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3.3.4 Flux analysis

The balanced rates of  Table 3.1B were used to calculate the metabolic flux distributions of 

experimental conditions [A]-[I]. Results for all steady states are given in Additional File 4. For 

the  four  selected  steady  states,  these  flux  distributions  were  used  to  calculate  the  use  of 

NADPH  in  the  chloroplast,  which  represents  the  flow  of  electrons  and  energy  in  the 

chloroplast.  The results  are  shown in  Figure 3.3.  The formation of  NADPH occurs  in  the 

photosystems, where 10 photons are used to make 2 NADPH and 3 ATP. Thus, based on the 

total light absorption rate the potential rate of NADPH formation can be calculated, which 

represents the 100% value. However, part of the photons is dissipated as heat and fluorescence 

and are thus not used to make NADPH. This dissipation is  represented in  Figure 3.3A as 

fluorescence.  It  is  assumed that  in  steady state  A,  which has  a  low light  intensity and is 

nitrogen replete, all the light is 100% effectively used.  Figure 3.3B shows the distribution of 

NADPH usage as a percentage of the NADPH that is actually formed. Under nitrogen replete 

conditions (A and E) 17% of the NADPH that is actually generated is used directly in the 
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Figure  3.2:  Overview of  metabolic  processes.  A.  Simplified  overview of  the metabolic  network.  B.  

Schematic  overview  of  glycerolipid  biosynthesis  in  microalgae;  “?”  denotes  uncertainty  about  the  

existence of these enzymes. C. In the presented network, glycerolipid synthesis occurs only  de novo 

and is located in the chloroplast.
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chloroplast  for  nitrogen  assimilation  and  fatty  acid  synthesis.  However,  by  far  the  main 

fraction, 82%, is used to fix carbon. The electrons fixed in the C3 carbon sugars have different  

faiths. The majority (34%-38%) is respired again to generate energy for growth. The major 

remaining fates are protein (20%), starch (6-12%), membrane lipids (8-9%), TAG (3-5%) and 

other biomass components (1%) like carbohydrates other than starch, DNA and RNA. Thus, if 

the NADPH required to fix carbon for protein synthesis is included about 35% of the NADPH 

is involved in nitrogen assimilation and protein synthesis under replete conditions. This high 

NADPH  demand  for  nitrogen  assimilation  and  protein  synthesis  clearly  illustrates  the 

potential  ‘energy crisis’  that  a  growing alga  will  be  facing  when it  is  exposed to  sudden 

nitrogen depletion. When nitrogen fixation comes to an immediate halt, 14% of the generated 

NADPH has no direct sink anymore. Moreover, if no alternative is found for NADPH normally 

used in carbon fixation for protein synthesis, over one third of plastidic NADPH will become 

redundant. As a result, the photosynthetic electron transport chains will become over-reduced, 

which potentially triggers the redistribution of carbon towards highly reduced compounds such 

as TAG [107]. In Figure 3.3A, it can be seen that the main mechanism to deal with nitrogen 

limitation and the associated excess of energy is by reducing photosynthetic efficiency (53-75% 

of  the  energy is  dissipated).  When looking  at  the  total  energy supplied  (Figure 3.3A)  the 

increase in NADPH use for TAG formation upon nitrogen limitation is very small going from 

2%  (N-replete)  to  4%  (N-limitation)  under  low  light  and  from  1%  (N-replete)  to  2%  (N-

limitation) under high light. However, when looking at the redistribution of NADPH that is 

actually formed (Figure 3.3B) the increase in NADPH use for TAG becomes more substantial 

when facing nitrogen depletion. For low light conditions, it increases form 2% (N-replete) to 8% 

(N-limitation),  while  for high light  conditions  it  increases  from 2% (N-replete)  to 10% (N-

limitation). However, this increase is mainly accounted for by the carbon fixation in the Calvin 

cycle and not by the fatty acid synthesis from the C3 sugars. The evaluation of relative carbon 

and energy distributions only partially illustrates the effect of nitrogen limitation. Evaluation 

of absolute fluxes revealed that both NADPH and carbon use for all mentioned metabolites 

decreased  under  nitrogen  limitation,  with  the  exception  of  TAG  (additional  file  4).  This 

indicates,  that only TAG functioned as a sink in alleviating the NADPH imbalance in the 

plastid,  as  suggested  by  [107].  However,  considering  the  large  fraction  of  energy  that  is 

dissipated, it is more likely that the main function of TAG is storage of energy, carbon and 

electrons,  while  reduction  of  photosynthetic  efficiency is  the  mechanism to  deal  with  the 

energy excess.
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The maximum theoretical yield of TAG on light for this model is 1.06 g (mol photons) -1. TAG 

yields under nitrogen limited conditions are far from the theoretical maximum due to two 

factors being energy spent on other macromolecules, such as functional biomass and starch, 

and energy dissipation that progressively increases with nitrogen limitation.

To assess the impact of these effects, the TAG yield on light and the TAG productivity were 

estimated in three scenarios: starch-less mutant, conserved photosynthetic capacity in nitrogen 

limited condition, and both together. The results are shown in  Figure 3.4. Clearly the most 

important factor in increasing the TAG yield on light is the photosynthetic efficiency. Under 

nitrogen limitation, maintaining photosynthetic efficiency at 100% would result in an increase 

of TAG yield on light to 0.68 for low light [C] and 0.89 g(mol photons)-1 for high light [I]. 

Knock out of the starch pathway only leads to an increase of about 0.06 g.(mol photons) -1 for 

low light [C] and 0.07 g.(mol photons)-1 for high light [I]. Combination of both strategies leads 

to  a  yield  of  0.94  g.(mol  photons)-1 for  the  high  light  condition  I,  which  is  close  to  the 

theoretical maximum.

For the specific productivities, (Figure 3.4B) more or less the same reasoning applies, with the 

difference that the productivities in condition C are much lower than in condition I due to the 

lower light intensity applied.
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Figure  3.3:  Partitioning of NADPH for condition A, C, E and I. A: relative to the total light energy  

received, where fluorescence represents NADPH that is not formed due to dissipation of light energy.  

B: relative to the actual amount of NADPH formed.
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3.3.5 Metabolic phenotype predictions constrained by 

differential expression

3.3.5.1 GO enrichment analysis

Fragments Per Kilo base of exon per Million fragments mapped (FPKM) were calculated by 

mapping  RNAseq  reads  to  the  assembled  transcriptome.  Pairwise  comparisons  for  the 

conditions presented in Figure 3.1 were performed. Up- and down- regulated transcripts were 

selected based on their fold change (FC), (|log2FC|>1). GO enrichment analysis was performed 

in the selected sets (Table 3.3 and Additional file 5).
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Figure 3.4: A: Yield of TAG on light in g TAG. (mol photons)-1, B: specifc TAG productivity in g TAG.(g  

functional biomass)-1.day-1
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Comparisons  associated  to  nitrogen  limitation  ([C][A],  [I][E])  returned  only  few 

overrepresented GO terms, which were associated to up-regulation of fatty acid synthesis, cell  

wall biogenesis, transport activity and modifications in cell structure.

Comparisons associated to  high light  (HL)  conditions  ([E][A],  [I][C])  resulted in a higher 

amount of overrepresented GO terms. Terms related to cell growth and division were found 

within the up-regulated transcripts, consistent with the high growth rate of [E]. Moreover, HL 

conditions cause down-regulation of transcripts enriched in terms associated to chloroplast 

membrane,  thylakoid  membrane,  chlorophyll  and  carotenoids  synthesis.  This  is  clearly 

reflected in  the  reduced  amount  of  pigments  measured  under  HL (Table  3.1).  During  HL 

conditions, transcripts related to lipid synthesis and fatty-acids synthesis are down-regulated, 

while those related to the response to lipids term are up-regulated.

The comparison associated to combined induction of high light and nitrogen limitation ([I][A]) 

retains functions associated to HL induction, such as chlorophyll and carotenoids synthesis, 

which appear enriched in the down regulated gene set (Table 3.3) but none of the ones found 

in nitrogen limitation. This can at least in part be explained from opposite regulation for high 

light and nitrogen limitation. For example the down-regulation of fatty acid synthesis upon 

high  light  may  be  compensated  by  the  up-regulation  of  these  genes  under  N-limitation. 

Additional terms are found enriched in the combined induction. Those terms appear enriched 

by the six candidate proteins associated to the GOGAT being strongly up-regulated in the 

combined induction.

61



Chapter 3 

Table  3.3: Enrichment output for selected GO in up- and down-regulated transcripts.  “+” indicates  

overrepresentation (FDR < 0.05) for one pairwise comparison, while “++ indicates that both pairwise  

comparisons display an over-representation of the GO term group.

HL condition Nitrogen 

limitation

Combined 

induction
Selection UP DOWN UP DOWN UP DOWN
Cellular structure
Cell wall biogenesis + ++
Microtubules + ++
Transport activity ++
Lipid production
Acetyl-CoA +
Phosphopantetheine binding ++
Fatty acid synthesis + ++
Lipids synthesis +
Response to lipids +
Photo-acclimation
Carotenoids + +
Chloroplast membrane ++ +
Thylakoid membrane + +
Magnesium chelatase ++ +
Chlorophyll synthesis ++ +
PPP & NADPH regen + +
Cellular reproduction
Methylation ++
DNA synthesis +
Cell replication +
Oxydoreductase +
UMP / ATP / AMP +
Cell AA derivative +
Nitrogen dependency
Ammonium assimilation +
Resp. to ammonium +
Glutamate synthesis +

3.3.5.2 Comparing dynamics in flux and expression

Changes  in  flux  and  expression  levels  are  shown  in  Figure  3.5.  No  obvious  correlations 

between changes in flux and expression were found. Their correlations can be hampered by all 

kinds of post transcriptional regulatory events, by experimental set up, and by type and design 

of the model. In general, low correlations between transcript and protein measurements have 

been reported in different organisms  [108]. Therefore, the lack of obvious correlations, at a 
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global level, is not surprising when comparing even more distant levels such as transcription 

levels and fluxes. 

The  flux  values  directly  correlate  with  the  flux  through  the  light  reaction  meaning  they 

increase with light intensity and decrease when nitrogen is limited. This is logical since this 

reaction determines the availability of energy and reducing equivalents. 

For the change from LL to HL conditions, comparisons [E]/[A] and [I]/[C] (Figure 3.5, a and 

b),  flux variations  are  limited  in range,  while  relatively  large  variations  in expression are 

observed for pathways such as carotenoid metabolism, chlorophyll metabolism, and purine and 

pyrimidine metabolism. For the comparison of nitrogen replete to nitrogen deplete: [C]/[A] 

and [I]/[E] (Figure 3.5, c and d), both flux and expression values show a broader range of 

variation. The pronounced flux changes under nitrogen limitation can be associated to drastic 

changes  in  growth  rate  and  biomass  composition  (increased  TAG  content,  decreased 

pigmentation) as shown in Table 3.1.
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Figure  3.5:  Flux and expression comparisons. Comparison of changes in expression and changes in  

fluxes  for  the  5  pairwise  comparisons  from  Figure  3.1 (blue  arrows),  for  each  EC  or  transporter  

integrated in the CBM (colored by pathways and transport type). a) and b) correspond to an increase in  

light intensity;  c)  and d)  correspond to a decrease in nitrogen concentration, and e) correspond to  

combined induction (HL induction and nitrogen limitation).
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3.3.5.3 Carotenoid and chlorophyll biosynthesis

Figure 3.6 shows expression changes associated to transcripts annotated to enzymes in the 

carotene biosynthesis, chlorophyll biosynthesis and terpenoid backbone biosynthesis pathways. 

For  HL  induction  (comparisons  [E]/[A]  and  [I]/[C]),  the  transcripts  are  globally  down-

regulated in these pathways. The combined induction (comparison [I]/[A]) displays a behavior 

similar to HL induction and we conclude that HL has a stronger influence on the regulation of 

these three pathways than nitrogen limitation. Nitrogen limitation (comparisons [C]/[A] and 

[I]/[E])  affects  these  pathways  in  a  different  way.  Terpenoid  backbone  biosynthesis  and 

chlorophyll biosynthesis pathways are up-regulated especially at low light intensity. At the 

high light intensity the up regulation is present for fewer genes, which is possibly related to the 

dominant effect of light intensity on regulation in these pathways. The carotene biosynthesis 

appears slightly down-regulated except for EC1.3.5.5 that is strongly upregulated. However, 

this  transcript  has  extremely  low expression  in  all  analyzed  conditions  and  the  observed 

upregulation may not be relevant with respect to changes in the flux through this pathway. 

Geranylgeranyl-diphosphate  (GGPP)  reductase  (EC  1.3.1.83),  is  described  as  a  reversible 

reaction and connects the three aforementioned pathways. Its pattern of change opposes that 

of these pathways with over expression upon high light conditions and reduced expression 

under nitrogen limitation, as can be seen in  Figure 3.6. The over expression upon high light 

conditions may be related to the interconversion of chlorophyll to carotenes and the effect of 

photo damage, which occur at high light. Chlorophyllase (EC:3.1.1.14) exhibits a pattern of 

expression changes dissimilar from the rest of the enzymes in these pathways. Chlorophyllase 

is strongly down-regulated by HL with sufficient nitrogen supply ([E]). On the other hand, 

chlorophyllase is slightly up-regulated during HL with limited nitrogen supply ([I]), which is 

the condition with the lowest  chlorophyll  amount (Table  3.1).  This might  be linked to the 

inability of the organism to deal with the excess of energy under high light and low nitrogen 

condition thereby promoting active chlorophyll degradation to reduce this surplus.
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3.3.5.4 Nitrogen assimilation pathways

Differential expression of enzymes annotated to nitrogen assimilating reactions is summarized 

in  Figure 3.7.  During  nitrogen limitation,  transcripts  associated  to  nitrate  (EC:1.7.1.1)  and 

nitrite (EC:1.7.7.1) reductase are strongly up-regulated. These reactions are the initial point of 

nitrogen  assimilation  in  microalgae.  Transcripts  associated  to  GOGAT  (EC:1.4.1.14)  are 

strongly up-regulated both by nitrogen limitation and by HL induction. The GO enrichment 
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Figure 3.6: Crosstalk between Chlorophyll biosynthesis, terpenoid backbone biosynthesis and carotene  

biosynthesis pathways. This figure represents the reactions involved in the pathways of Chlorophyll  

biosynthesis, terpenoid backbone biosynthesis and carotene biosynthesis. All the reactions are ordered  

and named by their EC number. The differential expression of each reaction is given for the 5 pairwise  

comparisons from Figure 3.1 (blue arrows). The differential expression color representation is limited  

from -1 to +1 of the log2(FC), any values respectively lower or higher than this cannot be distinguished  

here.
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analysis for the nitrogen related terms is entirely due to the six candidate proteins associated 

to  GOGAT  being  up-regulated.  Furthermore,  when  both  inductions  are  combined  [I],  we 

observe that the aforementioned transcripts have the strongest expression. The expression of 

Glutamate dehydrogenase (GDH, EC:1.4.1.3) associated transcripts remains stable, therefore, 

we hypothesize GOGAT to be the preferred path for nitrogen assimilation in N. oleoabundans. 

The expression of Glutamine synthase (GS, EC:6.3.1.2) does not show this strong upregulation 

under all conditions, which could be explained by the fact that the activity of this enzyme is 

regulated in another way than transcriptional.

In the case of nitrogen limitation the upregulation of nitrogen assimilation reflects an attempt 

to fixate the scarcely available nitrogen quickly.  For the high light condition it reflects the 

higher growth rate under this condition, which also requires faster assimilation of nitrogen.

3.3.5.5 Starch biosynthesis

Higher relative levels of starch are found under HL conditions. (Table 3.1). This could be due to 

higher  expression  levels  of  starch  synthesis  genes  or  lower  expression  levels  of  starch 

degradation enzymes. For the HL conditions expression of both synthesis and degradation are 

slightly up-regulated (Figure 3.8), except 3.2.1.2 which is a starch degrading enzyme that is 
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Figure  3.7:  Nitrogen  Assimilation.  This  figure  summarizes  the  reactions  involved  in  nitrogen  

assimilation. The differential expression of each reaction is given for the 5 pairwise comparisons from  

Figure 3.1 (blue arrows). The differential expression color representation is limited from -1 to +1 of the  

log2(FC), any values respectively lower or higher than this cannot be distinguished here.
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down regulated under HL nitrogen replete conditions. The up-regulation of both synthesis and 

degradation suggests that under HL induction, starch turnover is increased, which agrees with 

its  function as  a transient  carbon and energy storage.  Furthermore,  the increase in starch 

content is not necessary due to transcriptional regulation but could also be due to a higher 

synthesis  flux  caused  by  a  higher  availability  of  sugars  under  HL  conditions  due  to  the 

increased photosynthetic rate.

Nitrogen limitation did not affect the net flux towards starch. Yet,  there is  a  strong over-

expression  of  starch  synthase  (2.4.1.21),  while  the  degradation  of  starch  to  single  sugars 

appears down regulated. The down regulation of starch breakdown does not agree with the 

constant net flux to starch. Possibly the biosynthesis rate is reduced due to low availability of 

sugars under nitrogen limitation and the transcriptional regulation as described compensates 

for this to keep a constant starch synthesis flux.
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3.3.5.6 Lipids and TAG biosynthesis

HL conditions leads to global down regulation of enzymes in fatty-acid and TAG synthesis 

pathways (Figure 3.9), which can be linked to the reduction in membrane lipid content under 

high light exposure (Table 3.1). On the other hand, nitrogen limitation induces a more diverse 
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Figure  3.8:  Starch biosynthesis. This figure summarizes the reactions involved in starch biosynthesis.  

The differential expression of each reaction is given for the 5 pairwise comparisons from  Figure 3.1 

(blue arrows). The differential expression color representation is limited from -1 to +1 of the log2(FC),  

any values respectively lower or higher than this cannot be distinguished here.
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pattern  of  expression  changes  with  a  few  enzymes  that  show  a  distinctive  pattern  of 

overexpression being: acetyl-CoA carboxylase (6.4.1.2), biotin carboxylase (6.3.4.14), acyl-ACP 

synthase I (2.3.1.41), acyl-ACP reductase (1.1.1.100), acyl-ACP hydrolase (3.1.2.14), Glycerol-3P 

acyltransferase (2.3.1.15),  the two acyl-CoA desaturases (1.14.19.1,  1.14.19.2),  and the three 

Glycerol-3-Posphate dehydrogenases (GPDH, 1.1.1.8,  1.1.1.94,  1.1.5.3).  These are interesting 

candidates for genetic engineering, as their over expression correlates with an increased TAG 

content and thus, these might be key controllers of lipid biosynthesis under nitrogen limitation. 

Among the three GPDHs, two are NAD dependent reactions (EC:1.1.1.94 and EC:1.1.1.8) and 

are annotated to the same transcript, while the third (EC:1.1.5.3) is a FAD dependent enzyme. 

The transcript associated to this last enzyme is the one with the highest expression.

We have not been able to identify PDAT (EC: 2.3.1.158) nor MGDG synthase (EC: 2.4.1.46) 

among our transcripts, and as a result the role of membrane lipid turnover remains uncertain.  

However, expression of diacylglycerol acyltransferase (DGAT, EC:2.3.1.20) associated protein 

increased strongly  under  nitrogen limitation and,  albeit  to  a  lesser  extent,  upon HL.  This 

expression pattern of DGAT suggests an important contribution of de novo synthesis to TAG 

production under nitrogen limitation. This agrees with previous suggestions in C. reinhardtii 

where  PDAT-mediated  membrane  lipid  turnover  is  strongly  associated  to  healthy  growth 

conditions and less prominent during stress or stationary conditions [109] and further justifies 

the decision to restrict the model to de novo lipid synthesis only.
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3.4 Discussion

3.4.1 Adaptations upon high light induction and nitrogen 

limitation

Transcript  level  changes  upon changes  in light  intensity and nitrogen concentration  show 

distinct characteristics (Figure 3.5 and Table 3.3).
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Figure  3.9:  Lipids and TAG biosynthesis. This figure summarizes the reactions involved in lipids and  

TAG biosynthesis. The differential expression of each reaction is given for the 5 pairwise comparisons  

from Figure 3.1 (blue arrows). The differential expression color representation is limited from -1 to +1  

of the log2(FC), any values respectively lower or higher than this cannot be distinguished here.
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Nitrogen limitation induces a targeted response, with few differentially expressed transcripts, 

mostly  related  to  cell  structure,  fatty-acids  synthesis,  transport  activity  and  nitrogen 

assimilation. Such behavior has been described in other microalgae [110–112]. The response is 

most  likely  propagated  through  nitrogen-responsive  regulators  [110].  HL  induces  a  wider 

regulatory response on transcripts related to cell growth, chloroplast, chlorophyll, carotenoids, 

and lipids synthesis.  Excessive light energy seems to primarily affect the regulation of  the 

photosystems. Similar behavior has been reported in C. reinhardtii and other photoautotrophic 

eukaryotes [113–115].

GO term enrichment analysis of differentially expressed genes uncovered processes directly 

related to nitrogen assimilation when both inductions are combined. This indicates a stronger 

response  than  separated  inductions.  This  response  suggests  that  while  the  cell  gets  more 

energy  from the  photosystems  or  oxidative  stress,  the  lack  of  nitrogen  becomes  a  bigger 

bottleneck  and  the  system  tries  to  compensate  by  forcing  higher  assimilation  rates.  The 

stronger impact from nitrogen limitation combined with HL stress can also be observed in the 

studied pathways shown in Figures 3.7,3.8, and 3.9.

3.4.2 Potential regulation for photo-protection

HL induction is known to induce degradation of chlorophyll and photosystems in plants and 

green algae  [116, 117]. Our experimental setup (Table 3.2) was set to keep a constant light 

absorption  rate  for  each  light  condition,  leaving  only  NPQ  to  alter  the  photochemical 

conversion rate. The interaction of carotenoids and chlorophylls is strongly dependent on the 

composition  and structural  arrangement within  the  antenna of  the  photosystem  [118].  As 

depicted  in  Figure  3.6,  the  expression  profiles  of  the  synthesis  pathways  for  terpenoids 

backbone, and chlorophyll, are very similar. High light conditions result in down regulation of 

these pathways,  which is  in agreement with the lower chlorophyll  content  at  higher  light 

intensities (photoadaptation). Also the carotenoid pathway is down regulated under high light 

conditions.  N.  oleoabundans is  known  not  to  accumulate  secondary  carotenoids  for 

photoprotection and thus only contains carotenoids as accessory pigments that are a structural 

part  of  the  photosystems  and  help  in  transferring  light  energy  to  the  reaction  centers.  

Consequently the down regulation of  this  pathway is  in  agreement with  the  reduction in 

photosystems due to photoadaptation. Under nitrogen limitation a global up-regulation of the 

terpenoid  backbone  and  chlorophyll  pathways  is  observed.  Apparently,  transcriptional 
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regulation is such as to compensate the loss of photosynthetic efficiency (Figure 3.3) and the 

limitation of nitrogen by increasing the chlorophyll content. 

The  regulation  of  GGPP  reductase  (EC:1.3.1.83),  in  which  GGPP  is  desaturated  to  form 

PhytylPP, is opposite the regulation of the terpenoid and chlorophyll pathway. This reaction is 

needed for the synthesis of chlorophyll, but also forms the connection between carotenoid and 

chlorophyll  pathways.  The  up-regulation  under  high  light  conditions  could  indicate  and 

increased turnover of chlorophyll to carotenoids or a change in balance between chlorophyll 

and carotenoids. Some of the carotenoids that are structurally present in the photosystems are 

known to be involved in scavenging reactive oxygen species that are increasingly formed if the 

light intensity increases. Based on this, it is expected that also the breakdown of chlorophyll 

would be stimulated under high light. However, chlorophyllase (EC:3.1.1.14), which removes 

the phytol group from chlorophyll is only up-regulated under high light if nitrogen is limiting. 

Under replete conditions it is even down regulated if the light intensity goes up. This could 

indicate that under replete conditions sufficient enzyme is present and regulation is especially 

on the metabolite level, whereas under N-limitation the amount of enzyme is limiting. Under 

nitrogen limitation the GGPP reductase is down regulated while chlorophyll synthase (2.5.1.62) 

is  up-regulated,  and under  high light  the chlorophyllase  (EC:3.1.1.14)  is  also  up-regulated, 

which could point to increased turnover in combination with a reduced net synthesis. 

With these results, we can only speculated about two possible reasons where GGPP reductase 

and chlorophyllase play a key role at the intersection of the three pathways depicted in Figure

3.6. The first is that the three pathways compete for the PhytylPP, which can be recovered 

from the chlorophyll by the chlorophyllase. It is also possible that the phytol recycled from 

chlorophyll  degradation  and  can  be  reused  for  tocochromanols  (vitamin  E)  and  possibly 

participate  in  photo-protective  activity  [119–124].  The  second  hypothesis  is  that  GGPP 

reductase  take  effect  only  after  the  chlorophyll  synthase  and  acts  as  an  activator  of  the 

chlorophyll [122, 125, 126]. Chlorophyll synthase can esterify chlorophyllide with either PhyPP 

or GGPP, respectively resulting in the “active” phytylated chlorophyll a (ChlaPhy) or “inactive” 

geranylgeranylated  chlorophyll  a  (Chlagg)  [127].  Hence,  the  microalgae  can  continue  to 

synthesize Chlagg during HL, and it can then rapidly activate its chlorophyll using the GGPP 

reductase when the HL stress is gone.

Overall, chlorophyll and carotenoid content is tightly regulated over three major points: the 

production  by  the  chlorophyll  and  carotenoid  synthesis  reactions  including  the  terpenoid 

backbone  pathway,  the  degradation  by  the  chlorophyllase,  and  the  connection  by  GGPP 

reductase.  The  chlorophyll  synthesis  reactions  and  chlorophyllase  regulate  together  the 
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turnover.  The  chlorophyll  synthase,  the  chlorophyllase  and  the  GGPP  reductase  possibly 

regulate  together  the  distribution  of  GGPP  and  PhyPP  between  the  carotenoids  and 

chlorophyll.

3.4.3 Carbon partitioning 

Under nitrogen limitation, the carbon flow towards proteins is decreased and is compensated 

by  a  higher  flux towards  TAG.  This  agrees  with  the  up-regulation  of  a  number  of  genes 

involved in the production of TAG. Furthermore, for each light condition the net flux to starch 

is maintained at nitrogen limitation due to a down regulation of the starch break down, which 

agrees with the decreased need for starch due to the lower specific growth rate. 

Under HL with sufficient nitrogen supply [E], there is an increased carbon flux towards starch. 

This  is  not  clearly  correlated  with  up-regulation  of  the  starch  synthesis  genes  or  down 

regulation of the starch break down genes. The only exception is the gene for glycogenase 

(Figure  3.8,  EC:3.2.1.2),  which  debranches  maltose  units  from  polysaccharides  and 

oligosaccharides. This enzyme that is part of the breakdown of starch is down regulated under 

the  high light  condition.  By avoiding  starch degradation into transportable  sugar,  the  cell 

actively tries to keep it as a form of energy storage. The lack of correlation between gene 

expression and the starch synthesis may indicate that regulation of starch synthesis occurs on 

the metabolite level, for example by a concentration increase for the metabolites that form a 

substrate for starch synthesis. For example the metabolites D-GA3P, and pyruvate (also the 

source of acetyl-CoA) form the starting point of the pigment (Figure 3.6) and lipid (Figure 3.9) 

synthesis pathways and are also part of the route towards Starch. Thus down-regulation of 

these indirectly competing pathways may increase the availability of these compounds and 

thus facilitate starch synthesis. 

3.5 Conclusion

A CBM was built describing the primary metabolism of  N. oleoabundans and was used to 

evaluate carbon and energy partitioning under steady state, nitrogen limited conditions with 

varying light intensities.  Simulations revealed that TAG yield on light can much better be 
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improved by  optimizing  photosynthetic  conversion than  by blocking  competing  pathways. 

Integration  of  expression  data  showed  a  direct  effect  of  nitrogen  limitation  on  nitrogen 

dependent  pathways,  while  HL impacted a wider  number of  pathways,  among which cell  

growth, chloroplast, chlorophyll, carotenoids, and lipids synthesis. Nevertheless, the response 

to the combined induction of HL and nitrogen limitations it seems that higher synthesis of 

glutamate  is  attempted,  possibly  to  sink  nitrogen  towards  protein  synthesis.  Our  analysis 

highlighted a possible interplay between synthesis of chlorophyll, carotenoids and a possible 

accumulation of inactive geranylgeranylated chlorophyll a. Finally, our analysis pinpoints eight 

reactions, such as the biotin carboxylase and GPDH, as prime choice reactions to increase 

TAG synthesis during nitrogen limitation, and some others, such as other forms of GPDH and 

Glycerol-3P acyltransferase, that could redistribute carbons towards TAG synthesis.
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Neochloris oleoabundans is an oleaginous microalgal species that can be cultivated in 

fresh  water  as  well  as  salt  water.  Using  salt  water  gives  the  opportunity  to  reduce 

production costs and the fresh water footprint for large scale cultivation. Production of 

triacylglycerols  (TAG)  usually  includes  a  biomass  growth  phase  in  nitrogen-replete 

conditions followed by a TAG accumulation phase under nitrogen-deplete conditions. 

This is the first report that provides insight in the saline resistance mechanism of a fresh 

water oleaginous microalgae. To better understand the osmoregulatory mechanism of N. 

oleoabundans during growth and TAG accumulating conditions, the transcriptome was 

sequenced  under  four  different  conditions:  fresh  water  nitrogen-replete  and  -deplete 

conditions, and salt water (525 mM dissolved salts, 448mM extra NaCl) nitrogen-replete 

and -deplete conditions. In this study, several pathways are identified to be responsible 

for salt water adaptation of  N.  oleoabundans under both nitrogen-replete and -deplete 

conditions.  Proline and the ascorbate-glutathione cycle seem to be of  importance for 

successful osmoregulation in  N.  oleoabundans. Genes involved in Proline biosynthesis 

were found to be upregulated in salt water. This was supported by Nuclear magnetic 

resonance (NMR) spectroscopy, which indicated an increase in proline content in the salt 

water  nitrogen-replete  condition.  Additionally,  the  lipid  accumulation  pathway  was 

studied to gain insight in the gene regulation in the first 24 hours after nitrogen was 

depleted.  Oil  accumulation  is  increased  under  nitrogen-deplete  conditions  in  a 

comparable way in both fresh and salt water. The mechanism behind the biosynthesis of 

compatible osmolytes can be used to improve  N.  oleoabundans and other industrially 

relevant microalgal strains to create a more robust and sustainable production platform 

for microalgae derived products in the future.
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4.1 Introduction

Sustainable and renewable production of energy and food for an increasing world population is 

an enduring challenge in present-day research. This challenge must be addressed with urgency, 

because of the world’s dependence on limited fossil fuels and the increase in living standards  

of emerging economies. Renewable energy platforms based on oleaginous agricultural crops 

such as rapeseed, palm oil,  corn, and soybean are being studied. Although these crops are  

considered renewable and bio-based, they increase the competition for food, fresh water, the 

amount of available arable land and result in deforestation to create plantations [11, 128–131]. 

Ideally,  we  would  use  land  that  is  not  suitable  for  traditional  agriculture  such  as  salt 

contaminated land or very dry areas like deserts  for this purpose.  A promising alternative 

feedstock  compared  to  traditional  crops  for  the  production  of  oil  are  microalgae  [4,  11]. 

Microalgae can produce high amounts of neutral lipids, triacylglycerol (TAG), when exposed to 

unfavorable growth conditions such as nitrogen depletion. TAG can be easily converted in 

biodiesels by methylation, which results in a pure and clean fuel that can replace petroleum-

derived fuels [11]. The TAG molecules can also be used directly in the food and feed industry 

as a sustainable vegetable oil replacement. For an acceptable sustainable production process 

with a reduced fresh water footprint the use of marine or salt tolerant microalgal species is  

essential.

Most organisms are not able to cope with a shift in osmotic pressure when the environment is 

changed from fresh water to salt water and their growth will be compromised. Some organisms 

are  able  to  adapt  to  such changes.  Plants  have developed different  strategies  to  deal  with 

osmotic stress. In addition to the strategies that involve structural traits such as waxes and 

adaptation of flowering time to the right conditions and moment, plants can also regulate their 

osmotic homeostasis by actively excluding salts from the cell to maintain water absorption 

[132–135].  Another  strategy  involves  the  accumulation  of  certain  compatible  organic 

osmolytes.  A few examples  of  these compatible  osmolytes  are proline and glycine betaine 

[136], cyclic polyols such as D-pinitol  [137], and sugars such as sucrose hexoses and sugar 

alcohols [132, 138].

Prokaryotic  microalgae  (cyanobacterias)  are  known  to  accumulate  sucrose  or  α-

glocosylglycerol under salt stress conditions  [139, 140]. In eukaryotic microalgae, there are 
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some  strategies  that  can  be  found  to  overcome  salt  stress  [141–145].  Some  species  of 

microalgae  are  known  to  be  able  to  survive  low  levels  of  saline  environments.  Known 

mechanisms for salt tolerance are glycerol production  [146], sucrose production  [147], and 

amino acid accumulation [132, 148].

The  oleaginous  salt  tolerant  microalgae  Neochloris  oleoabundans is  a  very  interesting 

candidate for lipid production [147, 149, 150]. In nitrogen-deplete conditions, N. oleoabundans 

can accumulate TAG at up to 44% of its dry weight resulting in a maximal productivity of 164 

mg L-1 day-1  [13, 151]. The harsh desert conditions from which this oleaginous microalgae 

was isolated [152], forced N. oleoabundans to be a highly flexible species to deal with the daily 

salt, drought and temperature stresses during the hot days and cold nights. These properties, 

combined with the high growth rate of N. oleoabundans (μ 2.2 D-1) [150], and its resistance to 

highly alkaline conditions (up to pH 10) [149], which enhances the CO2 transfer and reduces 

risk of contamination, makes it a very interesting candidate for sustainable oil production. The 

aim of this study is to identify the mechanisms used by the green microalgae N. oleoabundans 

to  cope  with  saline  conditions  under  growth  (nitrogen-replete)  and  TAG  accumulating 

(nitrogen-deplete)  conditions based on a transcriptomic approach.  To obtain insight  in  the 

pathways  and  metabolic  reactions  involved  in  salt  resistance  and  lipid  accumulation 

differential gene expression was studied between four conditions being: fresh water nitrogen-

replete and -deplete, and salt water nitrogen-replete and -deplete (Panel A in S1 Fig).

To  our  knowledge,  N.  oleoabundans is  the  first  fresh  water  microalgae,  studied  on 

transcriptomic and metabolite level, which is able to alleviate the osmotic stress under salt 

water conditions. We will discuss and compare the different pathways that are involved in the 

saline and nitrogen stress response. These findings can be used to get a better understanding of  

these  processes  and  to  define  targets  for  new strategies  to  enhance  microalgal  strains  to 

increase lipid productivity in the future.
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4.2 Material and methods

4.2.1 Strain, medium and pre-culture

Neochloris oleoabundans UTEX 1185 (University of Texas, Austin, USA) pre-cultures were 

maintained in 100 mL filter sterilized fresh or salt water medium in 250 mL Erlenmeyer shake 

flasks. The fresh water medium consisted of: KNO3 50.5 mM; Na2SO4 4.6 mM; HEPES 100 

mM;  MgSO4.7H2O  1  mM;  CaCl2.2H2O  0.5  mM;  K2HPO4 4.1  mM;  NaHCO3 10  mM; 

NaFeEDTA 0.14 mM; Na2.EDTA.2H2O 0.4 mM; MnCl2.4H2O 96 μM; ZnSO4.7H2O 21 μM; 

CoCl2.6H2O 6 μM; CuSO4.5H2O 6.6 μM; Na2MoO4.2H2O 0.5 μM; biotin 0.2 μM; vitamin B1 7.4 

μM;  vitamin  B12  0.2  μM.  The same medium was  used  for  salt  water  with  the  following 

modifications:  NaCl 448 mM; MgSO4.7H2O 5 mM; CaCl2.2H2O 2.4 mM. The pH for  both 

media was set to pH 7.5 using NaOH and the medium was filter sterilized (0.2 μm) prior to use. 

In  nitrogen-deplete  conditions  were  applied  the  KNO3 was  omitted  and  replaced  by  an 

equimolar amount of KCl. In the shake flasks, pH was buffered using HEPES, while in the 

bioreactor HEPES was omitted and the pH was controlled by CO2 addition.

4.2.2 Reactor design

All experiments were performed in flat-panel, Algaemist airlift-loop photobioreactors  [153]. 

The reactors, with a working volume of 0.38 L, were kept at 25°C and pH controlled using on  

demand CO2 (pH 7.5). Light was supplied continuously and the incident light intensity was 

adjusted to maintain constant  average light  intensity (80 μmol m-2 s-1).  The cultures were 

inoculated at a biomass concentration of 0.15 g L-1 in either fresh or salt water medium. When 

the biomass concentration reached approximately 4.5 g L-1, the cultures were harvested and 

washed with either salt or fresh water medium containing nitrogen or no nitrogen. The cells 

were cultivated for 24 hours before sampling. Samples for dry weight, total fatty acid, TAG, 

starch,  Nuclear  magnetic  resonance  (NMR)  analysis,  and  RNA extraction  were  taken.  All 

reactors were run in duplicate, resulting in 8 individual samples for four different conditions.
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4.2.3 Determination of dry weight concentration

Dry  weight  concentrations  were  determined  on  biological  replicates.  Around  1.5  mg  of 

biomass was filtered through pre-dried (100°C overnight) and pre-weight Whatman glass fiber 

filter paper (GF/F; Whatman International Ltd, Maidstone, UK). The filter was washed with 50 

mL  of  filtered  demineralized  water  supplemented  with  an  equimolar  concentration  of 

NH4HCO2 to  prevent  osmotic  shock  and  subsequently  dried  overnight  at  100°C  before 

weighing.

4.2.4 Starch analysis

The  starch  content  was  analyzed  using  the  Total  Starch  assay  (Megazyme  International, 

Wicklow, Ireland) following the protocol described previously  [33]. The method is based on 

enzymatic degradation of starch to glucose monomers by α-amylase and amyloglucosidase 

enzymes  and  measuring  glucose  monomers  in  a  spectrophotometric-based  assay  for 

quantification against a D-glucose calibration control series at a wavelength of 510 nm.

4.2.5 Total fatty acid analysis

Total fatty acid (TFA) extraction and quantification were executed as described by Breuer et al. 

[154] with the following adjustments. Around 5 mg of pellet was transferred to bead beating 

tubes (Lysing Matrix E; MP Biomedicals,  Santa Ana, CA, USA) and lyophilized overnight. 

Freeze-dried  cells  were  disrupted  by  a  30-min  bead  beating  step  in  the  presence  of  a 

chloroform-methanol mixture (1:1.25) to extract the lipids from the biomass. Tripentadecanoin 

(T4257;  Sigma-Aldrich,  St  Louis,  MO, USA) internal  standard was added to the extraction 

mixture to enable fatty acid quantification. For TFA analysis, samples were directly methylated 

(see below).  For TAG analysis,  directly after the TFA extraction, the chloroform methanol 

mixture was evaporated under N2 gas and the TFA fraction was dissolved in 1 mL hexane and 

separated based on polarity using a Sep-Pak Vac silica cartridge (6  cc,  1,000 mg;  Waters, 

Milford, MA, USA) prewashed with 6 mL of hexane. The neutral TAG fraction was eluted with 

10 mL of hexane-diethyl ether (87:13% v/v). The polar lipid fraction containing the glycolipids 

and phospholipids remained in the silica cartridge. Methylation of the fatty acids to fatty acid 
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methyl esters (FAMEs) and the quantification of the FAMEs were performed as described by 

Breuer [154].

4.2.6 Bodipy staining

The presence of neutral lipid bodies in  N.  oleoabundans was measured by staining the cells 

with  the  fluorescent  dye  BODIPY  505/515  (4,4-difluoro-1,3,5,7-tetramethyl-4-bora-3a,4a-

diazasindacene; Invitrogen Molecular Probes, Carlsbad, CA). An aliquot of 200 μL of cells was 

incubated for 10 minutes with 4μL of a 40 μM BODIPY stock solution (in 0.2% (v/v) DMSO) 

and subsequently studied using a confocal laser scanning microscope (LSM510; Carl Zeiss, 

Jena, Germany), using a 488 nm Argon Laser [27]. To increase the visualization, a color filter 

was applied to visualize the BODIPY fluorescence as yellow signal.

4.2.7 NMR analysis

NMR analysis was performed according to the protocol described by Kim et al. [155] with the 

following modifications. Freeze dried microalgal biomass (20 mg) was dissolved in 0.5 ml of 

50% deuterated methanol in buffer (90 mM KH2PO4 in D2O) containing 0.05% trimethyl silyl 

propionic  acid  sodium  salt  (TMSP,  w/v)  as  internal  standard.  To  effectively  extract  the 

metabolites, the cell suspension was vortexed and ultrasonicated for 10 min and centrifuged at 

17,000xg for 5 min. From the supernatant, 300 μl was used to perform NMR analysis. The 

NMR analysis and data analysis was carried out as described by Kim et al.  [156]. The NMR 

plots can be found in S3 Fig.

4.2.8 RNA extraction

Samples for RNA isolation were immediately processed after sampling and kept on ice. Cells 

were collected by centrifugation at 4.000xg at 0°C for three minutes and immediately frozen in 

liquid  nitrogen  before  storage  at  -80°C  until  further  extraction.  Cells  were  disrupted  by 

grinding the pellet using mortar and pestle and liquid nitrogen. A 5-ml volume of heated (65°C) 

phenol-chloroform and 5 ml of extraction buffer (10 mM EDTA, 1% sodium dodecyl sulphate 

(SDS),  2% 2-mercaptoethaol  and 200 mM sodium acetate,  pH 5)  was added to the ground 
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biomass.  The RNA was precipitated by addition of  1/3 volume 8M lithium chloride (LiCl) 

enriched with 1% 2-mercaptoethanol. The RNA pellet was washed with 2M LiCl and twice 

with 70% ethanol. After evaporation of the last residues of ethanol, the pellet was resuspended 

in  RNase  free  H2O and  sequencing  and  quality  control  was  outsourced  to  BaseClear  BV 

(Leiden, The Netherlands).

4.2.9 RNA sequencing and transcriptome assembly

RNA-seq library preparation and deep sequencing on Illumina HiSeq2500 instruments were 

carried  out  at  BaseClear,  (Leiden,  The  Netherlands).  The  Illumina  TruSeq  RNA  sample 

preparation protocol was used to prepare libraries with a median fragment insert size of 230 

bp. For all samples, 51 nt paired-end sequencing runs were carried out, data was delivered in 

Illumina format 1.8 and filtered for reads that did not pass the Illumina chastity filter, reads 

that aligned to the phiX control genome and reads that contained Illumina TruSeq adapters. 

The sequence data can be found at EBI ArrayExpress with accession number E-MTAB-3746.

To  maximize  the  diversity  and  completeness  of  the  N.  oleoabundans  de  novo assembled 

transcripts,  the data from 16 transcriptomes were combined yielding a total of 496,158,724 

high quality reads and assembled with IDBA-UD v1.1.0 [157]. QUAST v2.3 [99] was used to 

estimate the quality of the assembly. The average number of read pairs per experiments was 

approximately 18 million, the GC content was 59%. Coding sequences (CDS) were extracted 

using QUAST and translated into protein sequences for functional annotation.

4.2.10 Transcriptome annotation

The protein sequences were annotated by aligning them against different databases by using 

DELTA-BLAST 2.2.29+ (default parameters, E-value < 0.001) [91] and by using InterproScan 5 

(default parameters) for domain search analysis. Blast2GO V.2.7 [92] was used as the central 

tool to combine both analysis methods to assign GO terms to the protein sequences and to 

retrieve  EC numbers.  For  DELTA-BLAST the  following  databases  were  sequentially  used: 

SwissProt,  Chlorophyceae  branch  from SwissProt,  Viridiplantae  and  Cyanobacteria  branch 

from NCBI, Uniprot (SwissProt + Trembl) filtered for proteins with an annotated enzymatic 

reaction.
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Three tools were used to predict the subcellular location of the predicted enzymes: TargetP 

[100], PredAlgo [37] and WoLF PSORT [101]. Four common cellular locations were identified: 

chloroplast, mitochondrion, secretory pathway, and cytoplasmic. In the case of WoLF-PSORT, 

the localizations defined as extracellular or plasma membrane were considered as secretory 

pathways.

4.2.11 Expression analysis

Read abundance estimations were done using the RSEM script from TrinityRNAseq [102] with 

the default  settings.  Reads from each experimental condition were mapped onto the set of  

coding sequences generated with QUAST from the assembled transcriptome.

Data was normalized taking into account the library sizes using Trimmed Mean of M-values 

[104]. They were further normalized by the CDS length to compute Fragments Per Kilo base of 

exon per Million fragments mapped (FPKM) using TrinityRNAseq TMM normalization script. 

CDS with FPKM values  lower than 10 in all  conditions  were discarded and resulted in a  

reduction of ~13%. Finally, FPKM values corresponding to CDS annotated to the same enzyme 

or transporter were added up to provide a single expression value for the reactions in the 

model.

4.3 Results and discussion

4.3.1 Biomass composition

N. oleoabundans was cultivated under four different conditions to assess the difference in gene 

expression during growth (nitrogen-replete) and TAG accumulation (nitrogen-deplete) in fresh 

water (A and B) and salt water (C and D), and the difference in gene expression for fresh and  

salt water at nitrogen-replete conditions (growth) (A and C) and nitrogen-deplete conditions 

(TAG accumulation) (B and D) (Panel A in S1 Fig). Samples were taken at a time point when 

Triacylglycerol (TAG) accumulation was induced but cells were not so stressed that apoptotic 

gene expression dominated the transcriptional profile (Panel B in S1 Fig). In Figure 4.1 (A-D), 

oil  body  formation  in  the  N.  oleoabundans cells  is  shown  in  the  four  different  growth 
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conditions.  The size of the cells  grown in fresh water is much smaller with a diameter of 

approximately 4 μm, compared to the size of cells  grown in salt water with a diameter of 

approximately 8 μm. The red fluorescence represents the autofluorescence of the chlorophylls 

and the neutral lipid bodies that are stained by BODIPY have a yellow fluorescence signal.  

Under nitrogen-deplete conditions, there is significantly more BODIPY fluorescence indicating 

accumulation of neutral lipids that mainly consist of TAG molecules. Not all cells show the 

same neutral lipid content under nitrogen-deplete conditions. This heterogeneity between cells 

has been observed previously in N. oleoabundans [27, 104]. This could be explained by the fact 

that, under constant light conditions, not every cell is in the same stage of the cell cycle when 

the  TAG  accumulation  phase  is  induced.  Individual  differences  in  metabolic  activity  and 

internal nitrogen pool might determine whether cells start to produce TAG or not. The total 

fatty acid (TFA) content increased as a consequence of the increase in TAG when the cells are 

exposed to nitrogen-deplete conditions (Figure 4.1E). In the first 24 hours of nitrogen depletion, 

N. oleoabundans accumulates 12.1%±1.4 and 10.3%±0.8 of their dry weight as TAG molecules 

in fresh water and salt water conditions, respectively. The TFA and TAG content is therefore 

comparable for the salt water adapted cells compared to the fresh water culture, and the TAG 

fraction of the TFA content is the same under both conditions. In Figure 4.1F (or S1 Table) the 

fatty acid profiles are shown for both TFA and TAG relative to the total cell dry weight. No 

significant changes in fatty acid composition are observed when comparing fresh water with 

salt water conditions, indicating that the salt resistance of N. oleoabundans is unlikely to be a 

consequence of modifications of the plasma membrane lipid composition. This is different for 

Dunaliella salina, which induces fatty acid elongation and expression of their related genes 

under saline stress [158].
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4.3.2 De-novo transcriptome assembly and annotation

For the  de  novo assembly,  RNAseq samples  were pooled,  amounting to  496,158,724 reads 

yielding 30489 contigs with a N50 of 2372 bp. Using a lower bound in contig size of 500 bp,  

18097 contigs  remained with a total  length of  30,540,822 bp.  QUAST  [99] predicted these 

contigs to encode 32,136 protein coding sequences (CDS) with a total length of 20,517,587 bp. 

InterProScan5 [44] subsequently identified the presence of conserved protein domains in 54% 

(15,306)  of  these CDS.  Additionally,  7021 putative proteins  could be associated with Gene 
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Figure  4.1:  Biomass  composition  of  N.  oleoabundans  in  the  four  tested  conditions.  Upper  panel:  

Confocal  laser  scanning  microscope  images  of  N.  oleoabundans under  four  different  cultivation 

conditions. (A) Nitrogen-replete fresh water (FN+). (B) Nitrogen-deplete fresh water conditions (FN-).  

(C)  Nitrogen-replete  salt  water  conditions (SN+).  (D)  Nitrogen-deplete  salt  water  conditions  (SN-).  

Chlorophyll  autofluorescence is  shown in red and the BODIPY stain is  shown in yellow.  The bar  

represents 20 μm. Lower panel: (E) Lipid and starch content. TFA (dark grey), TAG (light grey), and  

starch (white) 24 hours after medium replacement. The height of the bars represents the average of the  

two independent measurements.  Error bars represent distance of  the sample values to the average  

value. TAG, TFA and starch are given as a percentage of total dry weight. (F) Fatty acid profile under  

the different conditions expressed as percentage of TFA.
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Ontology (GO) terms, of which 83% (5861) were unique. Finally, 3249 putative proteins were 

associated with EC numbers, 834 of which were unique. All sequences of genes, proteins, and 

the mentioned annotation results can be found in S1 File. At this time, there are two published 

studies of N. oleoabundans grown under nitrogen-deplete conditions, one with transcriptomics 

data and the other with proteomics [159, 160]. The experimental conditions are fundamentally 

different from our set-up, which makes it difficult to compare the results directly.

4.3.3 Compatible solutes

Compatible solutes are highly soluble low molecular weight molecules that can be accumulated 

to high concentrations without being toxic to the cell. They can protect cells against drought or 

saline stress by regenerating cellular osmotic homeostasis, relieving oxidative stress caused by 

Reactive  Oxygen  Species  (ROS),  and  protecting  membrane  integrity  and  stabilization  of 

enzymes or proteins [161]. Some examples of compatible solutes are, free amino acids, sugars, 

polyols and quaternary ammonium compounds (QAC). We used the transcriptomic landscape 

under stress (nitrogen-deplete) conditions in comparison to the unstressed conditions as proxy 

to identify compounds that may act as a compatible solute or otherwise might be involved in  

protecting the algae against salt stress. For some of these compounds identified with RNAseq 

data we were able to confirm their role by measuring the intracellular concentrations.

4.3.3.1 Sugars

Several sugars are known to have a protective role in organisms experiencing different stress 

conditions  [132].  Examples  of  osmoprotectant  sugars  are  trehalose  and  sucrose.  In  most 

marine and freshwater cyanobacteria sucrose is synthesized from fructose-6-phosphate and 

UDP-glucose by the enzymes sucrose phosphate synthase (SucPS, EC:2.4.1.14) and sucrose-

phosphate phosphatase (SucPP, EC:3.1.3.24)  [162].  Anabaena sp. synthesizes sucrose in one 

step converting fructose and ADP or UDP glucose using sucrose synthase (SucST, EC:2.4.1.13) 

[163]. In N. oleoabundans, transcription of several genes in the sucrose biosynthesis pathway 

are  up-regulated  under  saline  growth  conditions.  Transcripts  are  considered  differentially 

expressed when the FPKM values are at least log2 fold change (LFC) 0.59 (FC 1.5) compared to 

the reference condition. In this pathway, D-glucose-1P derived from glycolysis is converted 

into UDP glucose  by the enzyme G1PUT which is  marginally  overexpressed under  saline 

growth conditions. The conversion from UDP-glucose to sucrose is catalyzed by the enzyme 
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sucrose  synthase  (SucST)  and  is  strongly  overexpressed  under-nitrogen-deplete  conditions 

(Figure 4.2).

The first step in the pathway that goes from UDP-glucose to sucrose via sucrose-6P catalyzed 

by SucPS is up-regulated under both salt water and nitrogen stressed cells. The second step 

catalyzed by sucrose–phosphate phosphatase (SucPP) is absent from the annotation. Sucrose 
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Figure  4.2: Biosynthesis pathway of sucrose and starch. The values that are shown in the following  

figures refer to the Fragments Per Kilobase of transcript per Million mapped reads (FPKM) for each  

condition. The white left-most box represents the FPKM value of the respective gene in the fresh water  

nitrogen-replete reference condition. This is followed by three colored boxes that represent the log2 fold  

change (LFC) of the other conditions compared to the reference condition. The order of the remaining  

three  boxes  are  from left  to  right,  FN-,  SN+,  SN-  respectively.  Abbreviations:  G1PUT:  glucose-1-

phosphate uridylyltransferase; UTP: Uridine triphosphate. SucPS: sucrose-phosphate synthase. SucST:  

sucrose  synthase.  G1PAT:  glucose-1-phosphate  adenylyltransferase.  αTrPS:  alpha,alpha-trehalose-

phosphate  synthase.  αTrS:  alpha,alpha-trehalose  synthase.  TrP:  trehalose-phosphatase.  StS:starch  

synthase. GlBE: glycogen branching enzyme. SucPP: sucrose-phosphate phosphatase. SucGH: sucrose  

glucohydrolase.  β-am:  β-amylase.  D-enzyme:  4-alpha-glucanotransferase.  StarchP:  Starch  

phosphorylase.
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can be degraded by sucrose glycohydrolase (SucGH) into D-fructose. Band et al. found that the 

main soluble carbohydrate that is accumulated in N oleoabundans experiencing a salt osmotic 

up-shock is sucrose [147]. Based on the sucrose levels measured and the expression levels of 

the genes involved, sucrose might be functioning as quick response to saline stress [147], but 

does not seem to be responsible for salt resistance in long term salt adapted cells. The NMR 

spectroscopy analysis revealed that sucrose concentrations may be increased under saline and 

nitrogen stress conditions (S2 Fig). Sucrose accumulation seems to be more of an overflow 

mechanism that results from nitrogen depletion.

Another  sugar  that  is  often  found  to  be  involved  in  salt  resistance  is  trehalose.  In  high-

temperature stressed yeast  cells,  trehalose concentrations are increased to protect  enzymes 

from the elevated temperatures [164]. Trehalose is found in different microalgal species under 

saline  stress  conditions  [165,  166],  but  does  not  seem  to  be  an  osmoprotectant  in  N. 

oleoabundans, since key enzymes in this pathway are not transcriptionally up-regulated under 

saline conditions (Figure 4.2). This observation does however not completely exclude trehalose 

as a candidate for osmoprotection, because trehalose concentration was not analyzed directly 

and it could be that the flux toward this compound is not controlled at transcript level but on a  

metabolic level.

4.3.3.2 Proline

Proline was already found to have many positive effects to cope for osmotic stress in bacteria, 

plants  and  algae  [132,  167–171].  We  summarize  the  effects  and  pathway  regulations  for 

proline as found in diverse studies in S1 Text.

In  N.  oleoabundans,  many genes  upstream of  proline  starting  from the  tricarboxylic  acid 

(TCA) cycle are up-regulated under saline growth conditions. Based on the transcript levels it 

appears that  the major route from the TCA cycle intermediate 2-oxo-glutarate towards  L-

glutamate  is  catalyzed  via  the  enzyme  glutamate  dehydrogenase  (GDH).  There  are  two 

enzymes known that can catalyze this reaction: EC:1.4.1.3 and EC:1.4.1.4 using different co-

factors. Both enzymes are up-regulated under saline growth conditions, the first by LFC 0.7 in 

SN+ and by LFC 0.8 in SN- and the second by much stronger LFC 7.6 (FC ~200) in SN+ and 

LFC 8.5 (FC ~350) in SN-(Figure 4.3). The enzyme complex P5CS1 and P5CS2 converts L-

glutamate into L-glutamyl-P and GSA respectively. Both enzymes are strongly up-regulated 

under saline growth conditions. For the P5CS1 gene this is LFC 0.9 times and LFC 0.6 times for 

nitrogen-replete and -deplete saline growth conditions respectively. For the P5CS2 enzyme, the 

up-regulation under these conditions are LFC 1.5 and LFC 1.4 respectively. The alternative way 
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to produce GSA by OAT from ornithine seems to be less important and only active under 

nitrogen-replete conditions and with slightly higher expression under salt water conditions 

(Figure 4.3). In contrast, the diatom  Fragilariopsis cylindrus is primarily using the ornithine 

pathway to generate proline as a response to salt stress [172]. The final conversion from P5C to 

proline  through  the  P5CR  reaction,  is  markedly  up-regulated  under  saline  conditions. 

However, this overexpression is stronger in SN+ than SN- (LFC 2.3 and LFC 0.7, respectively) 

Furthermore, catabolism of proline is done by proline dehydrogenase (PRODH, EC:1.5.99.8) 

and  is  upregulated  in  all  conditions  in  comparison  to  FN+.  Most  importantly,  PRODH 

overexpression was stronger in SN- than SN+ (LFC 2.0 and LFC 1.4 respectively). Thus, based 

on this proline synthesis would be more upregulated and breakdown less upregulated under 

the SN+ as compared to the SN- condition.

Proline content was then studied for all  four conditions by NMR spectroscopy, results  are 

shown in S2 Fig. Although the differences between the duplicate measurements are large, still 

an increase in proline content can be observed for the SN+ condition, which is in agreement 

with  the  transcriptome  results.  The  cause  for  the  large  difference  between  the  duplicate 

measurements  is  likely  due  to  the  difficulty  to  disrupt  the  cell  wall  of  N.  oleoabundans. 

Furthermore, no increase in proline content is measured for the SN- condition. This could be 

due to the upregulated breakdown pathways under the SN- condition and the fact that in the 

SN- condition nitrogen, which is needed for proline synthesis, is absent.

To  conclude,  since  proline  levels  are  increased  in  salt  water  adapted  cells  and  all  genes 

involved in the proline biosynthesis are up-regulated, proline is most likely to be the primary 

mechanism in the saline resistance of  N.  oleoabundans. Furthermore, under nitrogen-deplete 

conditions,  PRODH is up-regulated possibly to enable the recycling of nitrogen to use the 

nitrogen molecules from proline in other nitrogen requiring processes in the cell.

More  detailed  descriptions  and  analysis  of  Proline  and  other  potential  osmoregulatory 

mechanisms can be found in S1 Text.
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4.3.4 Oxidative stress

Under stress conditions ROS can be formed which need to be removed to prevent damage to 

the  photosystems  and  other  cellular  equipment  [173].  Glutathione  (GSH)  is  a  pivotal 

compound  for  many  plant  species  and  microalgae  to  scavenge  ROS,  such  as  superoxide 

hydrogen peroxide and lipid hydroperoxides, which can be accumulated under environmental 

and oxidative stress [174]. In addition to direct scavenging of ROS, GSH can also function as 

the reductant in the glutathione-ascorbate cycle which can alleviate ROS build up and provide 

protein  protection.  The  tripeptide  glutathione  (GSH)  is  synthesized  from  glutamate  and 
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Figure  4.3:  Proline  and  GABA  biosynthesis  pathway.  The  figure  legend  refers  to  Figure  4.2 

Abbreviations:  GSA:  glutamate-semialdehyde.  P5C:  L-1-Pyrroline-5-carboxylate.  GABA:  4-

aminobutanoate. P5CR: P5C reductase. P5CS1: glutamate-5-kinase. P5CS2: GSA dehydrogenase. GDH:  

glutamate dehydrogenase (EC:1.4.1.3/4). GST: glutamate synthase (EC:1.4.1.13/14). GSTT: glutamine  

synthetase.  GDC:  glutamate  decarboxylase.  OAT:  ornithine  aminotransferase.  PRODH:  Proline  

dehydrogenase. *This reaction occurs non-enzymatically.
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cysteine into γ-glutamylcysteine by γ-glutamylcysteine synthetase (γ-GCSTT EC:6.3.2.2) at 

the expense of  one ATP. In the next  step,  another  ATP molecule is  needed to convert  γ-

glutamylcysteine and glycine into glutathione, by glutathione synthetase (GSHSTT EC:6.3.2.3) 

(Figure 4.4).

The oxidative stress can be relieved by antioxidant enzymes. First, superoxide can be converted 

into  hydrogen  peroxide  by  the  superoxide  dismutase  (SOD;  EC:1.15.1.1).  SOD  is  highly 

overexpressed under saline conditions LFC 1.1 and LFC 1.5 in nitrogen-replete and depleted 

conditions respectively (Figure 4.4). Second, the toxic hydrogen peroxide can be converted to 

H2O by  catalase  (CAT,  EC 1.11.1.6)  or  by  ascorbate  peroxidase  (APX EC:1.11.1.11).  CAT 
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Figure  4.4: Glutathione biosynthesis pathway and glutathione-ascorbate cycle. For the figure legend  

refers  to  Figure  4.2.  Abbreviations:  SOD  Superoxide  dismutase;  CAT  Catalase;  APX  Ascorbate  

peroxidase  (not  annotated);  MDHA  monodehydroascorbate;  MDHAR  monodehydroascorbate  

reductase;  DHA dehydroascorbate; DHAR dehydroascorbate reductase; GSH (reduced) Glutathione;  

GSSG oxidised glutathione; GSHR Glutathione reductase; Glu Glutamate; Cys Cysteine; Gly Glyceine;  

γ-GCSTT  γ-glutamylcystein  Synthetase;  γ-Glu-Cys  γ-glutamylcystein;  GSHSTT  Glutathione  

Synthetase;  GSH-S-T glutathione  S-transferase;  PCST Phytochelatin  synthase.  *  This  reaction  can  

occur enzymatically or non-enzymatically.
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expression  is  stable  under  nitrogen-deplete  conditions  and  strongly  down regulated  under 

nitrogen-replete saline conditions. Such a regulation of CAT suggests that APX is the preferred 

way to relieve the harmful radicals.

Unfortunately, APX could not be annotated in  N.  oleoabundans from the mRNA sequences. 

MDHA, which is produced by APX, needs to be converted back to ascorbate via two different 

ways.  Enzymatically,  by  monodehydroascorbate  reductase  (MDHAR  EC:1.6.5.4),  or  non-

enzymatically  by  spontaneous  disproportionation  of  two  MDHA  molecules  resulting  in 

ascorbate and dehydroascorbate (DHA)  [175]. DHA will subsequently be converted back to 

ascorbate by dehydroascorbate reductase (DHAR EC:1.8.5.1) coupling two GSH molecules into 

glutathione  disulfide  (GSSG).  Glutathione  reductase  (GSHR  EC:1.8.1.7)  can  catalyze  the 

reduction  of  GSSG  back  to  two  GSH  molecules.  The  MDHA reductase  gene  is  LFC  1.4 

increased  under  saline  replete  conditions  and  LFC  0.9  increased  under  nitrogen-deplete 

conditions.  DHA  reductase  was  strongly  up-regulated  under  salt  water  conditions  to 

regenerate the ascorbate from DHA. DHAR was LFC 5.2 (FC 37) and LFC 5.8 (FC 56) up-

regulated under nitrogen-replete and -deplete salt  water growth conditions respectively.  To 

recycle  the GSH molecules,  GSHR is  up-regulated under salt  water nitrogen-replete and -

deplete conditions as well, namely LFC 1.1 and LFC 1.1 times respectively.

The efficiency of GSH is dependent on its concentration in the cell, which in turn depends on 

the activity of the GSH reductase enzyme, which determines the ratio between GSH and its 

oxidized form GSSG.  As  shown,  all  genes  involved in  the  ascorbate-GSH cycle  were  up-

regulated under salt water growth conditions, including the biosynthesis of GSH (Figure 4.4).

Another  function  of  GSH  is  the  detoxification  of  xenobiotics,  compounds  that  have  no 

significant nutritional function in cell metabolism, but do affect cellular homeostasis in too 

high  concentrations,  this  in  contrast  to  compatible  osmolytes  that  do  not  interfere  with 

metabolism when present in high concentrations. The xenobiotic molecules can be conjugated 

to  GSH,  by  GSH-S-transferase  (GSHT,  EC:2.5.1.18),  and  transported  to  vacuoles  to  be 

detoxified. Under saline conditions this enzyme is strongly up-regulated, LFC 5.2 and LFC 5.8 

under nitrogen-replete and -deplete saline conditions respectively. This indicates the likeliness 

of  GSH  conjugate  formation  and  exclusion  to  relieve  xenobiotic  pressure  under  saline 

conditions (Figure 4.4). It is known in plants that GSHT is induced under salt and drought 

stress to reduce the ROS in plants and GSHT could also be involved in reducing the harmful 

byproducts of oxidative stress such as lipid peroxidation [176, 177].

A third protecting feature of  GSH is  the formation of phytochelatins (PC) by the enzyme 

phytochelatin synthase (PCST EC:2.3.2.15). PCs are oligomers of GSH and are able to detoxify 
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heavy  metals  by  chelation  of  toxic  ions  [178,  179].  The  PC-ion  complexes  can  be 

compartmentalized in the vacuole of plants where they can do no further harm. PC has also 

been  found  to  be  involved  in  stress  responses  other  than  to  heavy  metals.  In  the 

cyanobacterium  Anabaena doliolum PCs are produced in response to UV-B radiation  [180]. 

The cloning of the PC synthase gene of  Anabaena sp. into E. coli increased the resistance of 

this bacterium to heat, metals, UV-B, salt, and herbicides [180]. Some plants have been shown 

to produce PCs in response to heat or salt stress [181, 182]. The N. oleoabundans PCST gene is 

up-regulated in salt water medium under both nitrogen conditions (LFC 0.7), indicating that 

PCs are likely to be formed to protect N. oleoabundans against osmotic stress.

Based on the general increase in expression of the genes involved in the ascorbate glutathione 

cycle, it is very likely that N. oleoabundans is using this cycle to alleviate the pressure of ROS 

that  arise  under  saline  growth  conditions  and  that  the  GSH  derived  conjugates  and 

phytochelatins GSH oligomers are likely to be involved as well. This mechanism is not used to 

alleviate the ROS pressure under nitrogen stress, at least not under the tested conditions.

4.3.5 Starch and triacylglycerol accumulation

4.3.5.1 Starch pathway

Starch  is  known  to  be  transiently  accumulated  under  nitrogen-deplete  conditions  in  the 

beginning of the stress phase [33, 34, 183]. In this study, the sample time was 24 hours after 

nitrogen stress  induction and it  is  expected that  the genes  involved in starch biosynthesis 

would be up-regulated in this early phase of nitrogen stress. The starch levels under the four 

different conditions are shown to be strongly increased in the first 24 hours after nitrogen 

depletion. Under fresh water conditions, the starch content increased from 10.5%±0.1 to 33.5%

±0.4 when switched to nitrogen depletion and from 12.9%±01.1 to 39.5%±0.0 under nitrogen 

depletion in salt water conditions (Figure 4.1E). Interestingly, salt water adapted cells had a 1.2 

times higher starch content compared to the fresh water adapted cells under both nitrogen-

replete and -deplete conditions.

The genes encoding glucose-1-phosphate adenylyltransferase (G1PAT, EC:2.7.7.27) and starch 

synthase (StS,  EC:2.4.1.21) are strongly up-regulated under nitrogen-deplete conditions and 

seems to be up-regulated by salt water as well (Figure 4.2). The G1PAT gene is LFC 0.6 times 

up-regulated in FN-, while this gene is up-regulated by LFC 1.3 in SN+ and by LFC 1.6 times 
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SN-. Starch accumulation upon nitrogen depletion seems to be facilitated by transcriptional 

up-regulation of starch biosynthesis genes with the exception of the final step catalyzed by 

glycogen  branching  enzyme  (GlBE,  EC:2.4.1.18).  Starch  catabolism  can  be  facilitated  by 

different enzymes. β-amylase (β-am, EC:3.2.1.2) degrades starch by removing maltose units 

from the non-reducing ends of the chains. β-am was shown to be down-regulated under salt 

water  and  nitrogen-deplete  conditions  (Figure  4.2).  Those  results  correlate  with  another 

nitrogen  deplete  transcriptomics  study  of  N.  oleoabundans [159] in  which  starch  is  also 

accumulated, the glucose branching enzyme (GlBE) is slightly down-regulated, and β-amylase 

is down-regulated. However, that study observed down-regulation of starch building enzymes 

G1PAT and StS, while in this study, we observed up-regulation of those genes. Unexpectedly,  

starch phosphorylase (StarchP, EC:2.4.1.1) and α-amylase (α-am, EC:3.2.1.1), two other starch 

degrading  enzymes,  are  up-regulated  under  nitrogen-deplete  conditions  when  there  is 

accumulation of starch (S1 Table). While the change of expression is rather strong for StarchP, 

the  change  of  expression  of  α-am  is  very  small  and  cannot  be  considered  significant.  A 

possible explanation could be that during nitrogen depletion, starch turnover is accelerated 

with  a  faster  anabolism than catabolism,  while  the  starch  degradation products  are  being 

redirected towards other sugars and TAG. Salt stress does seem to increase the starch content, 

which is possibly a result of reduced growth creating a surplus of energy that needs to be 

channeled from the photosystems [184].

4.3.5.2 Triacylglycerol pathway

When oleaginous microalgae are exposed to unfavorable growth conditions such as nitrogen-

deplete conditions, cells start to accumulate triacylglycerol (TAG). These neutral glycerolipids 

are composed of a glycerol backbone with three fatty acid molecules attached. The fatty acid 

biosynthesis takes place in the chloroplasts and starts downstream of the glycolysis with the 

conversion of acetyl-CoA to malonyl-CoA by the heteromeric enzyme complex acetyl-CoA 

carboxylase (ACCase). The acetyl-CoA pool can be supplied in two different ways. The first 

way is via pyruvate and the pyruvate dehydrogenase complex, in which the first two steps are 

up-regulated under nitrogen-deplete conditions in N. oleoabundans (EC:1.2.4.1 and EC:1.8.1.4, 

see  Figure 4.5). Another way is  via the TCA cycle in which citrate can be converted into 

acetyl-CoA and oxaloacetate by ATP citrate lyase (EC:2.3.3.8) [185]. The N. oleoabundans ATP 

citrate lyase is up-regulated under nitrogen-deplete conditions and it is likely that this pathway 

is involved in supplying part of the acetyl-CoA.
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ACCase  catalyzes  an  important  step  in  fatty acid  biosynthesis  and  overexpression of  this  

enzyme  resulted  in  increased  lipid  contents  in  Arabidopsis [186],  but  not  necessarily  in 

microalgae  [187].  Over  expression  of  the  ACCase  complex  is  challenging  because  of  the 

multigene-encoded enzyme complex and post-translational modifications [188, 189]. Next, an 

acyl-carrier protein (ACP) is exchanged for the CoA moiety by malonyl-CoA:ACP transacylase 

giving rise to a malonyl-CoA molecule. Malonyl-CoA enters the heteromultimeric fatty acid 
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Figure 4.5: Carbon metabolism in N. oleoabundans. For the figure legend refers to Figure 4.2. Codes in 

the white boxes represent the corresponding EC numbers. Abbreviations: PEP phosphoenol pyruvate;  

LysoPA Lysophosphatidic acid; PA Phosphatidic acid; DAG 1,2-Diacylglycerol; TAG Triacylglycerol.  

EC:2.3.1.12 could not be annotated from the transcriptome of N. oleoabundans.
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synthesis  (FAS)  cycle  where  it  is  extended with  two carbon atoms per  repetitive  cycle  to 

usually 16 or 18 carbon long acyl-ACP groups.

In  this  study,  two  subunits  of  the  enzyme  complex  ACCase  could  be  identified,  biotin 

carboxylase  (EC:  6.3.4.14)  and  biotin  carboxyl  carrier  (EC:6.4.1.2).  The  biotin  carboxylase 

subunit is up-regulated under nitrogen-deplete conditions, and the biotin carboxyl carrier has 

little (fresh water) to no (salt water) down-regulation under nitrogen-deplete conditions (Figure

4.5). These results thus show that the biotin carboxylase is the main regulator for ACCase 

complex which is in agreement with the results from both aforementioned N. oleabundans 

studies [159, 160].

Our results  show that  the third reaction of  the FAS cycle  did not  display any changes in 

expression (Figure 4.5), while the first (EC:2.3.1.179) and last (EC:1.3.1.9) step of the FAS cycle 

displayed up-regulation:  the first  step seems to  be  up-regulated due  to  nitrogen depletion, 

whereas the last step is strongly up-regulation due to salt water conditions. In contrast, the  

second reaction of the FAS cycle displayed light down-regulation due to nitrogen depletion and 

displayed  very  strong  down-regulation  due  to  salt  water.  In  agreement  with  the  other 

transcriptome study of  N.  oleoabundans [159], Acyl-ACP desaturase (AAD) was found to be 

significantly up-regulated, which also correlates with the very similar change in fatty acid 

profile in that study being mainly an increase in C18:1. Since the TAG content is strongly 

increased  in  the  first  24  hours  of  nitrogen  starvation  (Figure  4.1),  it  was  expected  that 

transcription  of  the  genes  encoding  the  enzymes  involved in  the  TAG synthesis  pathway 

would  be  up-regulated  under  nitrogen-deplete  conditions.  This  was  not  the  case  with  the 

exception of the glycerol 3-phosphate acyltransferase (EC:2.3.1.15) gene, which showed a LFC 

0.5  and LFC 1.1-under  fresh water  and salt  water  nitrogen-deplete  conditions  respectively 

(Figure 4.5). This enzyme links glycolysis and the TAG synthesis pathway by attaching the first 

acyl-ACP molecule to sn-Glycerol 3-phosphate resulting in lysophosphatidic acid. Glycerol-3-

phosphate  can  be  formed  from  glycerol  via  glycerol  kinase  (EC:2.7.1.30)  or  from 

dihydroxyacetone phosphate via glycerol-3-phosphate dehydrogenase (EC:1.1.5.3). The latter 

seems to be the case in  N.  oleoabundans since transcription of the gene for this enzyme is 

strongly  up-regulated  under  nitrogen-deplete  conditions.  The  overexpression  of  a  yeast 

glycerol-3-phosphate dehydrogenase in rape seed, resulted in a 40% increase of the seed oil 

content, indicating that the available glycerol backbones are a limitation in TAG accumulation 

in  rape  seed  [190].  To  ensure  sufficient  supply  of  G3P,  transcription  of  triose-phosphate 

isomerase (EC:5.3.1.1), the enzyme that converts glycerone-P (Dihydroxyacetone phosphate, 

DHAP) to glyceraldehyde-3-P, is reduced under nitrogen-deplete conditions (Figure 4.5). Chen 
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et al. described the increase of DHAP, G3P and glycerol in Arabidopsis when triose-phosphate 

isomerase was knocked out  [191]. A similar regulatory mechanism was found in microalgae 

[51].

The last step from diacylglycerol (DAG) to triacylglycerol (TAG) is catalyzed by diacylglycerol 

O-acyltransferase (DGAT, EC:2.3.1.20). This enzyme is down regulated in  N.  oleoabundans 

under all tested conditions compared to the fresh water replete conditions. DGAT has been 

extensively studied since it is regarded as one of the most important rate limiting steps in TAG 

biosynthesis. Over expression of this gene or several subunits have resulted in very different  

outputs. In  Phaeodactylum tricornutum there have been very promising results, resulting in 

higher  levels  of  TAG synthesis,  but  in  the  green alga  C.  reinhardtii there  have  not  been 

consistent increases in TAG content in combination with DGAT over expression  [192–195]. 

The fact that DGAT does not seem to be over expressed under nitrogen-deplete conditions is 

surprising,  since  TAG  accumulation  is  occurring  in  N.  oleoabundans under  these 

circumstances. In this study only one DGAT gene could be identified and it is known from 

other species that there are several genes that encode for DGAT enzymes and that they have 

very different expression profiles as a response to nitrogen deprivation [184, 196, 197]. More 

research needs  to  be done to  understand and identify  the  different  DGAT enzymes in  N. 

oleoabundans.

As can be seen in Figure 4.5, most of the genes involved in energy and carbon metabolism are 

up-regulated under nitrogen-deplete conditions. Under salt conditions, transcription of genes 

involved in glycolysis, TCA cycle, and pentose phosphate pathway (PPP) were increased. This 

can be explained by the need for sufficient carbon precursors such as acetyl-CoA and ATP. 

Furthermore, it was already hypothesized [34] that PPP might be used to redirect the starch 

degradation products towards TAG biosynthesis. In the PPP, the transcripts for the NADPH 

generating enzymes are strongly up-regulated to generate the required NADPH that is needed 

for TAG biosynthesis and to scavenge ROS.

To maintain high levels of TAG molecules, the rate of TAG catabolism should be low [198]. 

The gene triacylglycerol lipase (EC:3.1.1.3) is highly expressed under nitrogen-replete fresh 

water conditions (FPKM: 1734). The expression is down regulated under nitrogen-deplete and 

salt water conditions, LFC -0.3, LFC -0.9, and LFC -0.6 for fresh water nitrogen-depleted, salt  

water nitrogen-replete and depleted conditions respectively (S1 Table).
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4.4 Conclusion

To  assess  the  metabolic  and  transcriptomic  response  to  nitrogen  and  salt  stress,  N. 

oleoabundans was cultured under four different conditions being fresh water and saline water 

both under nitrogen-replete and nitrogen-deplete conditions. The most likely compatible solute 

in N. oleoabundans is proline because under saline conditions, transcripts involved in proline 

biosynthesis are up-regulated and NMR indicated that proline is accumulated in the cells. Next 

to this transcriptome analysis shows that anti-oxidant pathways, like the ascorbate GSH cycle, 

GSH-conjugation,  PC  formation  and  GSH itself,  are  upregulated  under  saline  conditions, 

probably protecting the cells from oxidative stress occurring under this condition. Unlike other 

microalgae, the plasma membrane lipid composition of  N.  oleoabundans was not adjusted in 

salt  water  adapted  cells.  Under  Nitrogen-deplete  conditions  both  starch  and  TAG  were 

accumulated at both fresh water and salt water conditions. With the overall gene expression, 

we  could  explain  how  starch  is  accumulated.  However,  no  strong  correlation  was  found 

between accumulation and gene expression in the TAG pathway. Nevertheless, we identified 

two  genes  as  promising  targets  to  enhance  TAG  production:  glycerol-3-phosphate 

acyltransferase  and  glycerol-3-phosphate  dehydrogenase.  Not  only  because  they  link  the 

glycolysis  to  the  TAG biosynthesis  pathway,  but  also  because  of  their  expression  profile. 

Overall, the results of this study can be used to develop strategies to enhance salt resistance of 

N.  oleoabundans and  other  industrially  relevant  microalgal  strains  and  ultimately  help  to 

develop a competitive feasible large-scale  production of  TAG for feed and bio-fuels,  while 

reducing the dependence on precious fresh water resources and arable land.
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Draft Genome Sequence of the Oleaginous Green 

Alga Tetradesmus obliquus UTEX 393
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The  microalgae  Tetradesmus  obliquus is  able  to  maintain  a  high  photosynthetic 

efficiency under nitrogen limitation and is considered a promising green microalgae for 

sustainable production of diverse compounds,  including biofuels.  Here,  we report  the 

first  draft  whole-genome  shotgun  sequencing  of  T.  obliquus.  The  final  assembly 

comprises 108,715,903 bp with over 1,368 scaffolds.
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5.1 Genome Announcement

Microalgae are promising photosynthetic microorganisms for the sustainable production of 

many compounds ranging from bulk chemicals such as biofuels, to high-value compounds such 

as  pigments  and  polyunsaturated  fatty  acids  [4].  The  freshwater  microalga  Tetradesmus  

obliquus (previously  known  as  Scenedesmus  obliquus and  reclassified  as  Acutodesmus 

obliquus [199])  is  a  member  of  the  Chlorophyceae and  has  four  chromosomes  [200].  T.  

obliquus UTEX 393 was identified as a promising candidate for industrial applications, because 

it can accumulate triacylglycerol (TAG) up to 40% of its dry weight. Furthermore, T. obliquus is 

able to maintain a high photosynthetic efficiency under nitrogen limitation for a relatively long 

period, which results in a high yield of lipids on light and thus high volumetric and areal 

productivities [13, 34, 201, 202].

The genome was sequenced using  Illumina Hiseq2000,  yielding  nearly  200 million  101-bp 

reads, with an estimated average insert size of 248 bp. Additionally, more than 8 million 51-bp 

mate pairs were sequenced, with an estimated average insert size of 4,139 bp. Two methods 

were  used in  parallel  for  assembling  and scaffolding,  and the  resulting  scaffold  sets  were 

merged.  In  the  first  method,  contigs  were  assembled using  IDBA-UD version 1.1.1  [157], 

producing a 96,197,736-bp assembly in 9,191 contigs,  and scaffolded using SOPRA version 

1.4.6 [203], as previously recommended [204], to obtain 2,509 scaffolds. In the second method, 

contigs were assembled using CLC Genomics Workbench version 5.1, producing a 93,347,907-

bp assembly in 10,609 contigs, and scaffolded using SSPACE to obtain 2,768 scaffolds  [205]. 

The two scaffold sets were merged using quickmerge  [206] with suitable settings. Additionally, 

the scaffolds matching 96% of their length over another scaffold were taken out. Between each 

scaffolding or merging iteration, the gaps were closed using GapFiller  [207]. The result was 

1,368  scaffolds  with  a  total  length  of  107,715,903  bp.  Using  QUAST version 4.3  [99],  we 

compared our assembly to the complete chloroplast  genome sequence of  UTEX-393  [208], 

covering 99.97% (~50-bp gap) of the reference with few overlapping scaffolds.

Accession  number(s).  This  whole-genome  shotgun  project  has  been  deposited  at 

DDBJ/ENA/GenBank under  the accession numbers  FNXT01000001 to  FNXT01001368.  The 

versions described are the first versions, FNXT01000001 to FNXT01001368.
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The diurnal transcriptional landscape of the 
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Tetradesmus obliquus is a promising oleaginous microalga. We functionally annotated 

its  genome and characterized the transcriptional  landscape of  T.  obliquus adapted to 

16:8 h  light  dark  (LD)  cycles  in  turbidostat  culture conditions  at  very  high temporal 

resolution (1 h  intervals).  Revealing a cycle  of  cellular events,  six distinct  expression 

profiles  were  obtained,  each  with  transcriptional  phenotypes  correlating  with 

measurements of biochemical composition.

The impact of starch deficiency was studied using the starchless mutant slm1. Significant 

changes in the transcriptional  landscape were observed. Starch deficiency resulted in 

incapacity  to  supply  energy  during  the  dark  period,  resulting  in  a  shift  of  energy 

demanding  processes  to  an  earlier  or  later  time  point.  Our  study  provides  new 

perspectives  on  the  role  of  starch  and  the  adaptation  to  LD  cycles  of  oleaginous 

microalgae.
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6.1 Introduction

Microalgae are a promising source of compounds of interest (lipids, proteins, and pigments) for 

the  production  of  food,  feed,  chemicals,  and  fuels  [4,  209,  210].  Large  scale  microalgal 

production will be primarily done outdoors under natural diurnal light/dark (LD) cycles  [9, 

211]. Diurnal cycles are ubiquitous and photosynthetic organisms synchronize their metabolic 

activities to anticipate light changes in the environment and schedule specific tasks during the 

night or day  [24, 183, 212, 213]. Synchronization in photosynthetic organisms involves the 

regulation of photosynthesis to maximize carbon fixation and use of light during the day and 

to schedule light sensitive processes (such as DNA synthesis and cell division) at night [183, 

214–216].

Tetradesmus obliquus is a microalga recognized as an industrially relevant strain for food and 

fuel production [13, 28]. T. obliquus can reach a maximum triacylglycerides (TAG) content of 

0.45 g·gDW−1 and a  maximum TAG yield  on light  of  0.14 g·(mol  photons)−1  under  batch 

nitrogen starvation and continuous light conditions  [153]. For further improvement of TAG 

yield  on  light,  de  Jaeger  et  al.  developed  the  starchless  mutant  slm1 [33],  which  cannot 

synthesize  starch  due  to  a  missense  mutation  in  the  small  subunit  of  ADP-glucose 

pyrophosphorylase, the committed step of starch biosynthesis [35]. Under culture conditions of 

continuous light and batch nitrogen starvation, slm1 showed a higher maximum TAG yield on 

light (0.217 g·(mol photons)−1) and maximum TAG content (0.57 g·gDW−1) compared to the 

wild-type (WT)  without  a  decrease  in  photosynthetic  efficiency  [153].  Comparable  results 

were obtained under light-dark cycles and batch nitrogen starvation [28].

LD  cycles  give  an  advantage  over  continuous  light,  leading  to  higher  energy  conversion 

efficiency and higher yield of biomass on light. The physiological behavior of T. obliquus WT 

and of the starchless mutant (slm1) was also studied under 16:8 h LD cycles in turbidostat 

controlled  systems  [24,  214].  Under  this  light  regime  and  nitrogen  replete  conditions,  T.  

obliquus showed synchronization and diurnal patterns of its metabolism, which among others, 

suggested that starch was used as a temporary energy storage. This is, starch was accumulated 

during  the  light  period  and  was  used  during  the  dark  period.  Cell  division  was  also 

synchronized and occurred mainly during the night.  The starchless mutant  slm1 showed a 

lower energy conversion efficiency (11–24% lower) and biomass yield on light (13–39% lower) 

compared to the WT under different photoperiods [214]. Furthermore, for the slm1 mutant cell 
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division still occurred mainly during the night, but at a slower rate and no diurnal oscillations 

on any of the other measured compounds were found [214]. Unlike for the WT, diurnal LD 

cycles did not provide an advantage for the  slm1 mutant compared to continuous light. On 

light, biomass yield as well as the energy conversion efficiency were similar [24]. Starch may 

therefore play an important role in harvesting additional light energy during LD cycles.

While the biochemical analysis allowed us to draw some conclusions, we still lack information 

on how cellular processes are regulated during the diurnal cycle and how the synthesis and use 

of starch is connected to these processes. Furthermore, while the inability to make starch had 

an impact on energy conversion efficiency, it is not known how this will affect the timing and 

regulation of the different cellular processes. LD cycles and the subsequent synchronization of 

the microalgal population make it of paramount importance to unravel the timing of cellular 

and subcellular events. Understanding the timing at which metabolic changes take place is 

essential to understand the phenotype exhibited by the WT and slm1 strains and to optimally 

design experiments characterizing mutant strains.

Time resolved transcriptome analysis can give useful insights into the timing and regulation of 

the different physiological stages and on the succession of processes in the cell. Thus it allows 

the  association  of  the  cellular  processes  with  biochemical  properties.  Algal  diurnal 

transcriptional regulation is not well known. To our knowledge, only a few reports on diurnal 

oscillations under light/dark cycles in microalgae have been published [217–222]. The first one 

was on the eukaryotic red alga Cyanidioschyzon merolae [223] grown under 12:12 h LD cycles, 

where they studied the transcriptional changes in intervals of 2 h. Furthermore, the diurnal 

transcriptional changes were studied in the diatom  Phaeodactylum tricornutum [219] under 

16:8 h LD cycles. The authors studied changes in biochemical composition (carbohydrates and 

lipids) in 8 different unequally distributed time points during a period of 26.5 h (5 points during 

the  light  period  and  3  during  the  dark  period).  Finally,  transcriptional  analysis  on 

Nannochloropsis  oceanica [220] and  Chlamydomonas reinhardtii [221] under a 12:12 h LD 

cycle  was  published.  For  N.  oceanica the  authors  studied  growth,  changes  in  biomass 

composition  (lipids  and  glucose)  and  in  gene  expression  in  intervals  of  3 h,  while  for  C.  

reinhardtii a more detailed study was done with intervals of 1 h during most of the cycle and 

every 30 min for some time points, ending up with a total of 28 points distributed over the  

24 h cycle. Our study, however, is the first one to look into the transcriptional changes in a  

diurnal cycle of an oleaginous green algae with a high sampling frequency (intervals of 1 h). 

Additionally, this is the first study reporting on the transcriptome changes over a diurnal cycle 

for a starchless mutant, which could give insights into the role of starch in microalgae.
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To fully characterize the changes induced by LD cycles and the role of starch metabolism, we 

analyzed  and  compared  the  transcriptional  landscape  of  T.  obliquus WT and  slm1 under 

diurnal 16:8 h LD cycles. For this, we used the same samples collected from our previously 

published article where also the measurements of the biochemical composition are published 

[24].  Each strain was cultivated in two separate photobioreactors  that  were operated in a 

continuous turbidostat controlled mode under a 16:8 LD cycle resulting in an oscillating steady 

state that was synchronized to the light regime. Samples from all four photobioreactors were 

taken  in  intervals  of  1 h  for  WT,  and  intervals  of  3 h  for  slm1.  Finally,  changes  in  the 

transcriptional landscape were related with their previously published  [24] measurements of 

biochemical composition.

6.2 Materials and methods

6.2.1 Experimental setup and sampling

Wild-type (WT) Tetradesmus obliquus UTEX 393 (formerly known as Acutodesmus obliquus 

and  Scenedesmus  obliquus [224])  was  obtained  from  the  Culture  Collection  of  Algae, 

University of Texas. The starchless mutant of T. obliquus (slm1) was generated as described by 

de Jaeger et al. [33]. T. obliquus was continuously cultivated in a sterile flat panel airlift-loop 

reactor  with  a  1.7 L  working  volume  (Labfors  5  Lux,  Infors  HT,  Switzerland).  Culture 

conditions and reactor set-up (27.5 °C, pH 7.0 and gas flow rate of 1 L·min−1 air enriched with 

2%  CO2)  were  controlled  as  previously  described  in  León-Saiki  et  al.,  where  also  the 

measurements of the biochemical composition are published  [24].  Light was provided in a 

16:8 h light/dark (LD) block at an incident photon flux density of 500 μmol·m−2·s−1 (warm 

white spectrum 450–620 nm). Cultivations were turbidostat controlled, where fresh medium 

was fed to the cultures when the light intensity at the rear of the reactor dropped below the 

setpoint (10 μmol·m−2·s−1, OD750). Feeding of medium was stopped during the dark period. 

After steady state was reached, 8 mL samples were taken for RNA extraction (approximately 

10 mgDW).  Cells  were  immediately  collected  by  centrifugation  (4255 ×g,  0 °C  for  5 min), 

supernatant was discarded and pellets were frozen in liquid nitrogen and stored at −80 °C until  
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further extraction. Samples for RNA extraction were taken in intervals of 1 h for WT or every 

3 h for slm1. Due to restrictions on working hours of the laboratory, the samples were collected 

in  two  successive  time  settings  to  allow sampling  the  dark  period  during  the  day.  After 

collecting samples of the first half of the cycle, light settings were shifted and the culture was 

then allowed to reach oscillating steady-state before collecting samples for the second half of 

the cycle.  The first and the last  samples of each time settings are overlapping samples for 

control. Therefore, four RNA samples are present at these time points. Overall 72 samples were 

taken for RNA extraction.

6.2.2 RNA isolation and quality control

RNA extraction was performed using the Maxwell® 16 LEV simplyRNA Tissue kit (Promega).  

Frozen algae pellet (≈200 μL) were submerged in 400 μL of homogenizing buffer supplemented 

with 8 μL 1-thioglycerol in a 2 mL Lysing matrix C tube (MP), prefilled with a mix of glass 

beads. Samples were disrupted using a FastPrep-24 instrument (MP). After disruption, all liquid 

was transferred to a LEV RNA Cartridge. 300 μL lysis buffer (from the kit) were added and the 

rest  of  the  extraction  was  performed  using  a  Maxwell  MDx  AS3000  machine  (Promega) 

following  manufacturer's  instructions.  RNA integrity  and  quantity  were  assessed  with  an 

Experion system (Bio-Rad), and only high quality samples (RIN value ≥7) were selected. Total  

RNA was sent for whole transcriptome sequencing to Novogene Bioinformatics Technology 

Co. Ltd. (HongKong, China).

The corresponding data have been submitted to EBI ArrayExpress and can be found under the 

accession number E-MTAB-7009.

6.2.3 Genome structural annotation

Using the available genome sequence of  T. obliquus [225], we performed an RNA-Seq-based 

genome annotation using BRAKER1 [226]. RNA reads from 38 samples of both WT and slm1, 

supplemented with an additional sample from each strain under nitrogen limited condition 

were given as additional BRAKER1 input. The annotation information was processed using 

our  semantic  framework  pipeline  [39] and  the  information  was  stored  according  to  our 

integrated  ontology  [227] which  respects  the  FAIR  data  principles  [228].  The  annotation 
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framework  and the  ontology were  extended with  the  necessary  tools  [226,  229,  230] and 

ontology terms for the purpose of this analysis.

The genome feature annotation has been used to update the original genome ENA project with 

accession number PRJEB15865.

6.2.4 Genome functional annotation and pathway 

mapping

Proteins were annotated to GO terms using InterProScan5 and Argot2, with default parameters 

[44, 61]. Proteins were annotated to enzyme commission (EC) number using EnzDP  [231]. 

Results  with  a  complete  EC number  and  a  likelihood-score  of  at  least  0.2  were  used for 

subsequent analysis. To choose a threshold for the likelihood-score that results in a good trade-

off between true positive and false positives, we visually compared the completeness of KEGG 

metabolic maps while avoiding dispersion of each reaction into different expression clusters. 

The functional annotation can be found in Supplementary file S1 that includes EC numbers 

and GO terms.

6.2.5 RNA-seq normalization and expression calculation

Using all the transcripts found from the genome annotation, we aligned the reads from each 

sample  and  calculated  the  FPKM values  using  Cufflinks  [230].  As  a  pre-filter  to  remove 

unexpressed genes and false positives from gene annotation, we selected the transcripts with a 

coverage of at least 1 and a FPKM of at least 0.1 in at least 10 of the 113 analyzed samples. 

These samples  include the 72 of  this  study,  and the rest  were taken under  LD cycles  and 

nitrogen limited  conditions  (not  studied  in  this  manuscript).  Additionally,  we selected  the 

transcripts having an expression of at least 10 samples with a value higher or equal to the 0.15 

quantile. Following the advice of maSigPro  [232], the FPKM of all samples were normalized 

using the scaling normalization method TMM [233] using the R functions from edgeR package 

“calcNormFactors” [104].
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6.2.6 Gene clustering

To identify genes with significant expression profile changes over time, maSigPro was used 

[232,  234],  with  the  modified parameters:  regression model  was  set  to  a  maximum of  23 

degrees, the parameter “counts” was set to true, “nvar.correction” was also set to true, the “step 

method” set as backward, and R-squared was set to 0.7. The R-squared was chosen based on 

the relevance and the balance in the number of enriched pathways identified in each cluster 

(see  below).  To  better  estimate  the  number  of  clusters  to  group  the  gene  expression,  we 

evaluated combinations of significance level (Q: 0.005 to 0.05) and R-squared (0.85 to 0.5). We 

decided to keep the standard-strict values (Q = 0.05, R-squared = 0.7), which would also give a 

good balance in pathway enrichment and number of genes in each group.

Hierarchical clustering with agglomerative linkage was performed using the R stats package 

(hclust  function).  Number  of  clusters  from  3  to  25  were  evaluated  using  the  R  function 

“cluster.stats” from package “fpc”  [235]. For each set of clusters, the following indexes were 

computed: average silhouette widths, normalized gamma, two Dunn indexes, average within 

and average between ratio, and Calinski and Harabasz index. Additionally, each set of clusters 

were compared one on one with the Rand index.

6.2.7 Enrichment analyses

Enrichment  analyses  were  performed  using  the  hypergeometric  function  to  model  the 

probability density using the “phyper” function from the R package stats [236]. Two types of 

analysis were performed: pathway and GO term enrichment. Pathway enrichment required 

associating annotated Enzyme Commission (EC) numbers to metabolic maps. We used the 

online available resource from KEGG pathway maps [237, 238]. The KEGG pathways fitting 

the following requirements were kept for further analysis: 60% coverage if 3 to 6 EC numbers 

annotated, and 50% coverage if 6 to 10 EC numbers annotated, and 25% of coverage if >10 EC 

numbers were annotated. For the hypergeometric test we considered the universe size, N, to be 

the total number of EC numbers in all pathways in the genome, m is the number of successes 

in this universe and is defined as the number of EC numbers in the corresponding pathway in 

the  genome,  k  and x are  the  sample  size  and the  number  of  successes  in  the  sample  (or 

considered  gene  subset)  respectively.  Enrichments  with  a  p-value  lower  than  0.05  were 

considered  significant.  Similarly,  for  the  GO enrichment,  N  is  the  total  number  of  genes 
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annotated to any GO terms in the genome, m is defined by the number of genes annotated to 

the considered GO term in the genome, and k and x refer to the considered subset of genes.  

Multiple test correction for the GO enrichment was performed using the Benjamini–Hochberg 

procedure.  Enrichments  with  FDR < 0.05  were  considered  significant.  To  handle  the  GO 

information  such  as  ontology,  ancestor,  and  offspring,  we  used  “GO.db”  database  from 

Bioconductor  [239]. Additionally, to reduce the number of GO terms and conserve the most 

specific, only terms not having any offspring in the selection were retained. We additionally 

provide the pathway coverage, and the x and m values to better understand the reason of each 

significant enrichment.

6.3 Results

6.3.1 Genome annotation

The genome of T. obliquus UTEX 393 is about 100 million base pairs in size [225]. BRAKER1 

annotation revealed 19,795 genes, which transcribed 21,493 coding sequences and translates 

into 19,723 protein sequences.

To analyze the changes in transcription over a diurnal cycle  of  T. obliquus WT and  slm1 

strains, we sequenced RNA from biological duplicate runs. WT was sampled every hour in 

duplicate resulting in 52 samples. slm1 was sampled in intervals of 3 h resulting in 20 samples. 

For both strains, time points 0 h and 13 h were overlapping samples and therefore sequenced in  

quadruplicate (see material and methods for details). Not all the transcripts were found to be 

expressed and filtering was performed to identify genes with very low expression that were not 

further  considered.  From  the  19,723  proteins,  16,810  proteins  remained  after  filtering  for 

subsequent analysis. GO term annotation yielded 13,687 proteins annotated to 2394 unique GO 

terms. EC annotation yielded 3559 proteins annotated to 1315 EC numbers. The functional 

annotation can be found in Supplementary file S1.
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6.3.2 Light-dark 16:8 h cycle induces systemic 

transcriptional changes following a circular pattern

4686 genes were found to have a significant change of expression during the diurnal cycle. A 

principal component (PC) analysis (PCA) for these selected genes is shown in Figure 6.1A. The 

PC plot provides a global overview of changes in gene expression over time. The time point 

samples  form an ordered and circular  pattern over  the two first  PCs.  These two first  PCs 

together  explain  87%  of  the  variation  in  expression.  To  demonstrate  that  this  is  not  a 

consequence  of  gene  selection,  we  rendered  another  PCA  considering  the  whole  set  of 

expressed genes (Supplementary file S2). Within this set, the overall pattern is noisier, but the 

two first components still explain 78% of the variation in expression. The main changes in gene 

expression occur along PC1 from 1 h to about 5 h and back again from 8 h to about 13 h. The 

second important change occurs along PC2 from 6 h to 9 h and back again from about 22 h to  

0 h. During the period from 14 h to 22 h there is very little change in gene expression. Overall, 

genes associated to light harvesting complex (LHC) were found to be the main contributors of  

PC1.  The  two  highest  contributing  genes  to  PC2  are  glyceraldehyde-3-phosphate 

dehydrogenase  (GA3PDH)  and  glucose-6-phosphate  isomerase  (GPI).  LHC  genes  also 

contributed strongly to PC2.

The  heatmap  representation  in  Figure  6.1B  offers  a  complementary  view  of  these  multi-

dimensional data. It allows to evaluate differences and similarities in expression between the 

time points.  Two samples  corresponding to time points 13 h and 15 h are separated in the 

dendrogram  from  the  neighboring  samples  and  from  the  biological  duplicate  samples. 

However, in the heatmap it can be seen that these samples still show relatively high correlation 

with their corresponding biological duplicates and samples from the surrounding hours. Three 

main groups of time points can be identified in the dendrograms in Figure 6.1B, which we will 

refer to as time phases I, II, and III. Additionally, each phase can be subdivided in two sub-

phases, a and b, which represent subtler expression changes. The occurrence of the phases over 

the 16:8 h LD cycle is  shown in the  Figure 6.1E for both strains.  The phases  were named 

according to their order of appearance from 0 h to 23 h. These time phases are also apparent  

and can be associated to changes along the two first  PC. Similarly,  time phases were also 

associated to the slm1 strain based on the PCA plots. For slm1, we noticed a change in phase 

timing that represents a significant change of expression occurring one to 2 h before each dark-

light shift.
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Figure  6.1:  Principal Component Analysis (PCA) (A,C) of gene expression data for  T. obliquus wild-

type (WT) (A) and both WT and starchless mutant (slm1) (C) during 16:8 h light-dark cycle. Numbers  

represent the time points of the samples, with red for the WT samples and black for the slm1 samples.  

Background colors in both PCA plots refer to the colors given to the six time sub-phases described in  

(E),  and  the  dark  shade  refers  to  the  dark  period.  (B,  D)  Heatmaps  showing  similarity  of  gene  

expression data among samples for WT (B) and slm1 (D) strains, samples are identified by their time  

points. Dark vertical lines across the heatmap in (B) indicate different time phases. (E) Overview of the  

time phases.
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6.3.3 Gene expression clusters and their time profiles

6.3.3.1 Cluster profiles

We clustered the 4686 genes that showed significant changes over time in different numbers of 

clusters  ranging  from 3  to  25.  Next  we evaluated the  cluster  separation using seven well  

established  indexes  to  assess  similarities  within  clusters  and  differences  between  clusters. 

These results are depicted in the Supplementary file S3. Some of the selected metrics (such as 

the first Dunn index) gave no clear indication on the optimal number of clusters. However 

other metrics such as average silhouette width, second Dunn index, normalized gamma or 

Calinski-Harabasz index,  show a local  maximum (or  minimum in the case of  the average 

within and average between ratio) at 4–6 clusters. Inspection of cluster similarities based on 

the Rand index (Supplementary file S3) led to select 6 clusters (over 4 or 5) as it would result in  

a new and distinct cluster. Based on these results, we considered separating the genes in six  

clusters to be optimal.

The resulting six cluster profiles were summarized using for each time point the median value 

of gene expression of each gene present in the cluster and are depicted in Figure 6.2. Cluster 1 

to 6 (WT#1-6) contain respectively 829, 364, 1020, 929, 952 and 592 genes. All the cluster  

profiles are different, but there are certain similarities between clusters 1 and 6, and between 3,  

4, and 5. Interestingly, the two peaks of expression observed in cluster 3, 4, and 5 are all 5–6 h 

apart.

The temporal profile of each cluster peaks at different moments of the diurnal cycle. Cluster 1 

peaks the earliest, 1 h after light goes on. Cluster 2 peaks at 3 h, cluster 3 peaks around 11 h and 

shows a smaller secondary peak at 17 h. Cluster 4, with a similar profile, shows the first peak at 

13 h and the second at 18 h. Cluster 5 has a rather gradual increase of expression and peaks  

around 14 h followed by a smaller peak at 20 h. Finally, cluster 6 has very gradual expression 

changes throughout the day, and shows a peak at 23 h.
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Figure 6.2: Expression profile of the 6 gene clusters for T. obliquus under 16:8 h light-dark cycles. The 

plots show the median profile of  gene expression in the indicated clusters.  The background colors  

correspond to the colors given to the time phases in Figure 6.1. The vertical gray dashed line represents  

the time point of maximum dilution rate taken from [24]. Dark area represents the dark period.
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6.3.3.2 Cluster functional analyses

To  understand  the  functions  of  the  genes  in  the  clusters,  we  performed  two  sets  of  

complementary enrichment analyses. Metabolic pathway enrichment analysis provides direct 

information on gene metabolic functions. The functional annotation identified genes associated 

to EC numbers. Mapping these EC numbers to KEGG pathway maps revealed 67 pathways for  

which  enough  genes  can  be  associated  to  the  corresponding  reactions  to  warrant  further 

analysis, as detailed in Materials and methods. GO enrichment analyses were performed on 

the three ontologies: biological process (BP), molecular function (MF) and cellular component 

(CC). These analyses provide a wider overview not restricted to metabolism. The enrichment 

results  are summarized in  Table 6.1.  Each cluster  median time profiles  and the full  set  of 

significant (p-value < 0.05) enrichments are presented in the Supplementary file S4.

Cluster  1  shows  enrichment  in  pathways  related  to  amino  acids  (AA),  and  riboflavin 

metabolism.  GO  terms  enrichment  is  in  agreement  and  contains  terms  such  as  tRNA 

modification, aminoacyl-tRNA biosynthesis, ribosome, alpha-amino acid biosynthetic process 

and translation. All these pathways and terms indicate protein synthesis and the associated 

strong demand for AA. Riboflavin metabolism, leading to FAD synthesis, and ubiquinone and 

other  terpenoid-quinone biosynthesis  appears  enriched in  cluster  1.  Inspection  of  this  last 

pathway (Supplementary file S5) indicates that ubiquinone is the most probable product in this 

time frame. Ubiquinone is an important step in the oxidative phosphorilation by oxidating 

FADH2 back into FAD and it indirectly plays a role in ATP synthesis.

Cluster  2  mainly  shows enrichment in the  processes  related  to  pigments  synthesis,  which 

include  carotenoids,  chlorophylls,  and  their  precursor  (Phytyl-diphosphate)  from  the 

terpenoids backbone synthesis. Those are needed for building the photosystems and starting 

the carbon fixation. Three of the four reactions involved in the starch synthesis were found in 

cluster 2, this can be observed from the pathway map (Supplementary file S5). Cluster 2, also 

shows enrichment in genes related to transcription, amino acid (AA) and protein synthesis, but 

to a lower extent than cluster 1. The carbon fixation pathway is found enriched in cluster 2,  

which goes in line with enrichment in the pigments and in starch synthesis. The GO terms in 

biological process are in agreement with the pathway enrichments. The GO terms in molecular 

function provide extra information on the nature of chemical reactions performed by these 

genes. We also found that this cluster contains genes associated to the LHC that were found to 
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strongly contribute to PC1 and PC2 and among the proteins associated to carbon fixation in 

this cluster GAPDH was found to be a main contributor in PC2. Interestingly, while all the 

other  amino-acid  synthesis  pathways  were  found  enriched  in  cluster  1,  the  pathway  of 

“Phenylalanine,  tyrosine and tryptophan biosynthesis”  is  found enriched in cluster  2.  This 

result indicates that these aromatic amino-acids are probably synthesized later than the other, 

more simple, amino-acids.

In cluster 3, the GO enrichment provides valuable information that cannot be covered by the 

pathway enrichment. The GO term enrichments display clear terms such as “DNA replication”, 

“organelle  fission”,  “chromosome  organization”,  “microtubule”,  “cytoskeletonDNA-directed”, 

“DNA polymerase activity”.  This cluster clearly groups all  processes related to the full  cell 

cycle. The pathway enrichment reveal processes related to AA pathways: “Lysine degradation” 

and “Phenylalanine metabolism”. Additionally, the enrichment in “N-Glycan biosynthesis” and 

“Various  types  of  N-glycan  biosynthesis”  together  with  the  enriched  GO  terms  “protein 

complex assembly” and “vesicle-mediated transport” indicates important protein maturation 

processes leading to complex proteins and some transport of proteins to membranes.

Cluster  4  is  mostly  enriched  in  pathways  associated  to  different  kind  of  carbohydrates 

metabolism.  The first  pathways  enriched  are  “Galactose  metabolism”,  “Starch  and  sucrose 

metabolism”, “Other glycan degradation”, and “Amino sugar and nucleotide sugar metabolism”. 

With the GO terms displaying “polysaccharide binding”, “hydrolase activity”, and “hydrolyzing 

O-glycosyl”,  we  observed  the  same  trend  towards  starch  degradation.  The  GO  term  for 

“microtubule binding” is the only one of this kind in this cluster, but it comes right after cluster  

3 where a lot  of cytoskeletal  and microtubule terms were found enriched. Finally,  there is 

enrichment  in  Cytochrome P450  which hints  on  repair  mechanisms potentially  related  to 

photo-damage.

Cluster 5 shows enrichment in a very diverse set of metabolic pathways, covering glycolysis,  

pyruvate metabolism, glutathione metabolism, co-enzyme-A, starch and other carbohydrates 

polymers.  More  importantly,  the  cluster  is  also  enriched  in  genes  related  to  nitrogen 

metabolism and glutamate associated genes. ATP synthase is found in this cluster too, but the 

gene is highly expressed throughout the whole light period with highest  expression before 

dark.  Among  the  genes  associated  to  the  chlorophyllase  (EC 3.1.1.14),  the  best  candidate 

(g19660.t1) is found in cluster 5. This also agrees with the observed enrichment of Cytochrome 
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P450,  which  was  recently  found  to  take  major  part  in  the  breakdown  of  chlorophyll  in 

Arabidopsis thaliana [240–242].

Cluster 6 shows enrichment in fatty acids degradation and folate biosynthesis and contains the 

reactions from GTP until the precursor of dihydrofolate (DHF).

Table  6.1: Summary of the results of the enrichment analyses. The first column contains the cluster 
identifier. The second contains the enriched pathways (p-value < 0.0.5). The last three columns are the 
results of the GO enrichment analyses (FDR < 0.05) for each of the GO ontologies: biological process  
(BP),  cellular component (CC) and molecular function (MF).  Full  set  of  GO enrichment results are 
available in the Supplementary file S4.

Cluster Pathways BP CC MF

1

Ubiquinone and other terpenoid-quinone 

biosynthesis

Purine metabolism

Glycine, serine and threonine metabolism

Cysteine and methionine metabolism

Valine, leucine and isoleucine biosynthesis

Lysine biosynthesis

Arginine and proline metabolism

Riboflavin metabolism

Aminoacyl-tRNA biosynthesis

RNA methylation

tRNA modification

translation

nucleobase-containing small 

molecule metabolic process

alpha-amino acid biosynthetic 

process

ribosome RNA binding

structural constituent of ribosome

GTPase activity

GTP binding

S-adenosylmethionine-dependent 

methyltransferase activity

ligase activity, forming carbon-

nitrogen bonds

2

Glycine, serine and threonine metabolism

Phenylalanine, tyrosine and tryptophan 

biosynthesis

Carbon fixation in photosynthetic 

organisms

Porphyrin and chlorophyll metabolism

Terpenoid backbone biosynthesis

Carotenoid biosynthesis

Aminoacyl-tRNA biosynthesis

tRNA aminoacylation for 

protein translation

steroid biosynthetic process

coenzyme metabolic process

porphyrin-containing 

compound biosynthetic process

photosynthesis

pigment biosynthetic process

oxidation-reduction process

photosystem nucleotide binding

3-beta-hydroxy-delta5-steroid 

dehydrogenase activity

aminoacyl-tRNA ligase activity

iron ion binding

calcium ion binding

oxidoreductase activity, acting on a 

sulfur group of donors

oxidoreductase activity, acting on 

paired donors, with incorporation or 

reduction of molecular oxygen

transferase activity, transferring 

alkyl or aryl (other than methyl) 

groups

carbon-carbon lyase activity

hydro-lyase activity

heme binding

precorrin-2 dehydrogenase activity

coenzyme binding

2 iron, 2 sulfur cluster binding

3 Lysine degradation

Phenylalanine metabolism

Glutathione metabolism

N-Glycan biosynthesis

Various types of N-glycan biosynthesis

Propanoate metabolism

DNA replication

DNA repair

DNA recombination

protein complex assembly

vesicle-mediated transport

cell cycle process

regulation of cellular metabolic 

process

proteasome-mediated ubiquitin-

dependent protein catabolic 

process

microtubule 

cytoskeleton

protein complex

cytoskeletal part

DNA binding

DNA-directed DNA polymerase 

activity

ATP binding

microtubule binding

transcription factor binding

four-way junction helicase activity

ATPase activity, coupled
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organelle fission

chromosome organization

regulation of primary metabolic 

process

carbohydrate derivative 

biosynthetic process

single-organism organelle 

organization

4

Galactose metabolism

Starch and sucrose metabolism

Other glycan degradation

Amino sugar and nucleotide sugar 

metabolism

Metabolism of xenobiotics by cytochrome 

P450

Drug metabolism - cytochrome P450

carbohydrate metabolic process hydrolase activity, hydrolyzing O-

glycosyl compounds

microtubule binding

polysaccharide binding

5

Glycolysis / Gluconeogenesis

Glutathione metabolism

Starch and sucrose metabolism

Sphingolipid metabolism

Pyruvate metabolism

Glyoxylate and dicarboxylate metabolism

Thiamine metabolism

Pantothenate and CoA biosynthesis

Nitrogen metabolism

Metabolism of xenobiotics by cytochrome 

P450

Drug metabolism - cytochrome P450

carbohydrate metabolic process

oxidation-reduction process

oxidoreductase activity, acting on 

CH-OH group of donors

6
Fatty acid degradation

Pyrimidine metabolism

Butanoate metabolism

Folate biosynthesis

6.3.3.3 Transcriptional landscape of Tetradesmus obliquus slm1

We compared changes in gene expression between the starchless mutant (slm1) and WT to 

understand the differences resulting from the lack of starch accumulation. An overview of 

gene expression data in slm1 in comparison to WT is shown in Figure 6.1C. The PCA shows 

very similar  regulation over  time in both strains.  While  many time points display similar 

expression patterns, there are also clear differences related to the separation in time phases. At 

the time points from 16 h until 3 h (phase IIIa to phase Ia), all  slm1 samples along PC1 are 

shifted left compared to WT, but they remain at the same level along PC2. This reflects a state 

of expression of WT that is never reached by slm1, rather than a diurnal dysregulation. On the 

contrary, the samples at 6 h and 9 h along PC2 are shifted up for slm1 as compared to WT, but 

remain at the same level along PC1. This reflects an early state of expression, especially for 

slm1 samples at 6 h, which fits into the phase IIb. Another smaller time dysregulation is a small 

shift of time point 22 h that is shifted down for slm1 as compared to WT. This reflects an early 

state of expression that fits into to the time phase Ia. The relative time phases of slm1 are also 
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shown in Figure 6.1E. Overall, two main trends are observed: earlier changes in expression of 

processes shortly after light and a delay in change of expression of the processes before the 

dark period.

The PCA considering the whole set of expressed genes (Supplementary file S2) displays a very 

similar expression between WT and slm1. While there is a general overlap, the expression of 

slm1 seems noisier, especially for the time points between 19 h and 0 h.

6.3.3.4 Comparison of the gene expression dynamics in WT and 

slm1

Using the  regression based approach of  maSigPro,  we identified genes  with  differences  in 

expression  profile  between  slm1 and  WT.  Our  experimental  design  included  sequencing 

samples of WT every hour and of  slm1 every 3 h. However, maSigPro is designed to allow 

uneven distribution of time points. 784 genes showed no significant differences in expression 

profile between WT and slm1 strains. 3902 genes showed significant differences in expression 

profile between WT and slm1. Additionally, 40 genes were found to have a time profile in the 

slm1, while no time profile was detected in WT for these genes. Apart from having no time 

profile it could also be that these genes are too noisy or are not expressed in WT.

6.3.3.5 Differences in time profiles

Clustering was done for the gene expression data obtained from the mutant slm1. Analysis of 

clustering performance indicators again resulted in 6 clusters. As previously stated, 784 genes 

did not show any significant difference in time dynamics between the two strains, therefore, 

these genes were used to guide the identification of the mutant clusters in relation to the wild  

type clusters. The cluster assignments of these 784 genes in both strains are shown in Figure

6.3A. The genes in WT clusters 3 and 4 are all found in the same slm1 cluster, consequently 

named 3&4. Likewise, the WT genes in clusters 1 and 6 are all found in the same slm1 cluster, 

consequently named 1&6. The WT genes in cluster 2 and 5 ended up in separate slm1 clusters 

and consequently kept the same cluster name. Finally, the two remaining clusters, named A 

and B, do not contain genes with conserved expression. Those clusters have a time profile that 

does not fit any of the cluster profiles in WT.
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Figure 6.3B shows the cluster assignments of the 3902 genes with significant differences in 

their time profiles when comparing WT and slm1. From these genes with altered expression 

(Figure 6.3B), there is a general trend of genes to remain clustered together. This means that 

most genes are transcriptionally controlled in large groups. The genes in WT cluster 3 are 

almost all found in the associated slm1 gene cluster 3&4. Again, almost all genes in WT cluster 

2 are found in the associated slm1 cluster 2. The genes in WT cluster 5 are distributed over five 

slm1 clusters, with the majority in the associated slm1 cluster 5. The genes in WT cluster 6 are 

distributed  over  three  clusters,  with  the  majority  in  the  associated  slm1 cluster  1&6. 

Interestingly, a minority of genes in WT cluster 4 is found in the associated slm1 cluster 3&4, 

but the majority is found in slm1 cluster B. Similarly, a minority of WT genes in cluster 1 is 

distributed over three slm1 gene clusters, with a small portion in the associated slm1 cluster 

1&6, a bigger portion in  slm1 cluster 1, and the majority in  slm1 cluster A. Thus the new 

cluster A mainly receives genes from the WT clusters 1, and to lesser extent from cluster 3, 5  

and 6. On the other side, the new cluster B receives genes mainly from cluster 4 and to a lesser  

extent from cluster 5.

slm1 cluster  median  profiles  are  depicted  in  Figure  6.4,  together  with  the  associated  WT 

clusters. From cluster 1&6 to cluster B each slm1 cluster grouped respectively 735, 507, 1304, 
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Figure 6.3: Distribution of genes between time profile clusters of T. obliquus wild-type (WT) (rows) and  

slm1 (columns). A: 784 genes with the same time expression profile in  slm1 and WT. B: Genes with  

significantly different time profiles between  slm1 and WT, as identified by maSigPro (3902 genes).  

Background color ranges from blue, white, to red, with red being the highest value and blue the lowest.
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621, 958, and 600 genes. Overall, the time profiles of  slm1 clusters show strong similarities 

with  the  associated  WT clusters.  slm1 clusters  A and B are  displayed  together  with  WT 

clusters 1 and 4, respectively, due to the large number of genes found in common. The new 

cluster A is characterized by low expression at dark and the first half of the light period, with a  

single  expression  peak  during  the  second  half  of  the  light  period.  The  new  cluster  B  is 

characterized by a shift in the timing of the two peaks and a change in amplitude. A large 

number of genes were detected to be expressed differently between the two strains, but are 

associated to clusters with similar profile. These genes are more affected on their amplitude, 

and not necessarily on the time regulation.

91 genes that were found in WT cluster 5, are now found in slm1 cluster 3&4. This represents a 

shift in time that is reflected in an earlier expression of these genes. This correlates with the 

observed early expression of genes along PC2 in phase II. A substantial number of genes from 

WT cluster 1 are found in slm1 cluster 2, suggesting that these genes are shifted towards later 

expression in time and are not expressed during the dark period anymore. Again, the transfers 

of genes from WT clusters 4 and 5 to slm1 cluster B reflect an earlier change of expression. 

Opposite to the previously mentioned changes, which all indicate decreased expression during 

dark, the genes in slm1 cluster 1&6 are now expressed exclusively during the dark period.
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Figure 6.4: Expression profiles of clusters obtained with slm1 samples and their associated profiles in  

the WT. WT clusters 1 and 6,  slm1 cluster 1&6; WT and  slm1 cluster 2; WT clusters 3 and 4,  slm1 

cluster 3&4; WT and  slm1 cluster 5; cluster A; WT cluster 4 and  slm1 cluster B.  slm1 clusters are  

plotted with the related WT clusters according to the common conserved genes and the redistribution  

of genes as in Figure 6.3. The background colors correspond to the colors given to the time phases in  

Figure 6.1. The gray area represents the dark period.
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6.3.3.6 Functional differences between gene clusters in slm1 

and WT

As observed by the similarities and changes of expression between the two strains (Figure

6.3B),  genes  have  related  expression  in  large  groups.  As  a  result,  the  enrichments  are 

consistent with the large groups of genes changing expression or not. The detailed enrichments 

are available in Supplementary file S4. Enrichments of slm1 clusters A and B are respectively 

similar to WT clusters 1 and 4.  slm1 cluster 3&4 is not enriched for the two AA pathways 

found in WT cluster 3 (lysine degradation and phenylalanine metabolism). This cluster also 

remains enriched in cellular structure and DNA replication, but without any biological process 

GO terms. Unlike for WT cluster 6,  slm1 cluster 1&6 does not display enrichment for other 

fatty-acids related pathways. AA synthesis and protein translation activities are now enriched 

in  slm1 cluster A, but were enriched in WT cluster 1. In  slm1, nitrogen metabolism is no 

longer found enriched in cluster 5. This is due to three EC numbers (out of the five) that are 

associated to slm1 cluster A. Globally, the enrichments are following the expectations drawn 

from the gene transfers described in Figure 6.3B.

6.4 Discussion

This study analyzed gene expression dynamics in a 16:8 h light-dark (LD) cycle synchronized 

culture of T. obliquus wild-type (WT). Hourly sample collection and RNA sequencing allowed 

us to observe in detail the changes of gene expression during a diurnal cycle. A starchless 

mutant  of  the  same  species  (slm1)  was  also  studied.  slm1 was  cultivated  in  the  same 

conditions, but RNA samples were taken every 3 h. The succession of cellular events were then 

compared between WT and slm1, allowing us to examine the role and importance of starch as 

a transient energy storage compound in this microalga.

In this work, RNA measurements were done in duplicate, where the two samples were taken 

from separate photobioreactors (biological duplicates). Due to restrictions on working hours of  

the laboratory, the samples were collected in two successive light settings in such a way that 

sampling could always be done during working hours. First, samples were collected on the first 

half of the cycle, then light settings were shifted 12 h and the culture was then allowed to reach 

an oscillating steady-state before collecting samples for the second half of the cycle. The first 
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and the last samples of each time settings are overlapping samples for control (corresponding 

to time points 0 h and 13 h). Figure 6.1A and C show the high similarity in expression between 

these samples which indicates the robustness of these cultures and the validity of the approach.

6.4.1 The diurnal rhythm of T. obliquus wild-type is 

driven by six transcriptional phases

6.4.1.1 Transcriptional phases

In this experimental setup,  T. obliquus cells are synchronized to the diurnal light-dark (LD) 

cycles  [24]. Many organisms synchronize their metabolism to anticipate the changes in the 

environment  [213,  243,  244].  For  photosynthetic  microorganisms,  this  synchronization 

provides a benefit as they can capture sunlight efficiently during the day and perform light 

sensitive processes at night [183, 216]. In T. obliquus, synchronization was observed in growth 

and cell division, as well as in changes in biomass composition [24]. The overall analysis of the 

changes in gene expression in both the WT and  slm1 strain shows a circular pattern in the 

PCA plot over two strong principal components. In WT, changes in expression appeared to 

occur sequentially, back and forth along each PC. In the studied process, the two main effects 

impacting gene expression are light availability and time itself.

By  analyzing  similarities  between  samples  (Figure  6.1)  and  correlating  genes  expression 

profiles (clusters), we identified six time phases and six clusters of genes, respectively. The 

agreement between these two independent analyses indicates that they are related to each 

other. In fact, the time phase changes correspond to jumps in expression between the time 

points, when either a large increase or large decrease in overall gene expression occurs. The 

gene clusters correspond to synchronized peaks of expression. Thus, the identified phases are 

associated to peaks in expression for each clusters. Accordingly, cluster 1 peaks during phase 

Ia; cluster 2 during IIa; cluster 3 during IIb, cluster 4 during IIIa, cluster 5 during IIIb, and,  

finally,  cluster  6  during  Ib.  Because  the  clusters  regroup  genes  from  the  same  biological 

processes,  the  six  transcriptional  phases  correspond  to  a  logical  succession  of  biological 

processes.
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6.4.1.2 Temporal succession of cellular events as described by 

the gene clusters

An overview of the changes in the transcriptional landscape and experimental measurements 

of WT through the diurnal LD cycle is presented in Figure 6.5.

The expression of genes in cluster 1 starts to increase during the dark period and peaks the first 

after  the  light  is  switched on.  The enrichment  of  cluster  1  reflects  amino acids  (AA) and 

protein synthesis and suggests increased ATP synthesis. These transcriptional changes point to 

increased catabolism for the production of energy (ATP) and agree with the observe starch 

consumption during the night and at the beginning of the day. The energy and intermediates 

of catabolism are apparently used to synthesize amino acids for proteins synthesis as part of 

cell growth that starts at the start of the day.

Cluster  2 mainly contains genes  involved in pigment  and starch synthesis,  besides  carbon 

fixation and AA synthesis.  The expression profile of  this  cluster matches  the dilution rate 
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Figure  6.5:  Overview  of  the  diurnal  changes  in  the  transcriptional  landscape  and  experimental  

measurements of T. obliquus wild-type under 16:8 h light/dark cycles. Small and big rectangles indicate  

that the process is occurring at relatively low or high level, respectively. The cluster ID associated to  

the expression profile is indicated by the black number in the first column. Groups of related processes  

are indicated in the same color. The background colors correspond to the colors given to the time  

phases in Figure 6.1. Amino-acids biosynthesis two lines reflect the synthesis of different amino-acid  
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profile, although gene expression precedes the dilution rate with about 3 h [24], as can be seen 

in  Figure 6.5. The expression profile of processes related to starch synthesis precedes starch 

accumulation by 8 h while starch degradation at transcriptomic level appears correlated to the 

measured starch accumulation (Figure 6.5). Starch is a transient energy source and is subject to 

simultaneous synthesis and degradation [24, 245], which results in daily fluctuations between 

net production during the day and consumption during the night and early day. Between 16 h 

and 0 h, degradation occurs presumably to provide energy for the night processes, since light is 

not available. Between 0 and 4 h, starch is still consumed and it appears that it is used to supply 

additional energy and carbon for the build up of new photo systems, which is also up regulated 

at this time. Between 4 and 8 h, starch synthesis increases following the up regulation of the 

starch synthesis genes in cluster 2. The starch synthesis machinery is getting fully operational 

and energy demanding  processes,  such  as  AA and protein  synthesis,  are  down regulated, 

resulting in net starch synthesis.

Genes in cluster 3 show a peak in expression at  13 h.  GO enrichments point towards cell  

division which agrees with the observed cell  division that starts  just  before the night and 

continues during the early night. Shortly after the genes in cluster 3 peak, genes associated to  

cluster 4, related to starch degradation, increase in expression. This agrees with the observed 

starch degradation during the night.

The  next  cluster  for  which  the  gene  expression  shows  a  peak  is  cluster  5,  enriched  in 

carbohydrates  pathways,  glycolysis  and  contains  the  ATP synthase.  These  point  to  starch 

degradation and glycolysis as the means to generate the needed energy during the night and to 

generate precursors, for example for glutamate metabolism. Glutamate associated genes are 

also found in cluster 5. Glutamate synthesis, which is at the center of nitrogen assimilation and 

amino-acid metabolism, seems to be upregulated before and during the night as anticipation 

for the synthesis of AA (cluster 1) and pigment (chlorophyll and carotenoids, cluster 2) during 

the  night  and  early  light  period.  It  also  suggests  that  T.  obliquus continues  to  assimilate 

nitrogen during the night, which is in agreement with the observed nitrate consumption during 

the night by WT (data not shown). Notably,  slm1 does not consume nitrate in the night and 

nitrogen  metabolism  is  not  enriched  for  slm1,  which  suggests  that  pathways  in  nitrogen 

metabolism  are  regulated  by  the  energy  status  of  the  cell.  Cluster  5  also  contains  genes 

associated to glutathione reductive cycle, indicating some form of oxidative stress. This stress 
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could be a side effect of the whole day exposure to light leading to accumulation of reactive 

oxygen species and damaged photosystems.

Finally, cluster 6 is enriched in fatty acid degradation, which appears to occur during the night  

and early morning. However, fatty acid degradation was not observed experimentally. Possibly, 

these enzymes are involved in remodeling of membranes that has to occur after cell division, 

or maybe are involved in recycling unsaturated fatty-acids damaged from oxidative stress.

Folate  (vitamin B9) is  a  vital  cofactor,  notably in thymidylate  (dTMP) synthesis  and in S-

adenosylmethionine (SAM-e) synthesis. The gene expression in the pathway “one carbon pool 

by folate” of WT (Supplementary file S5) is clearly decoupled for these two processes. While 

dTMP related reactions are associated to cluster 3, SAM-e reactions are associated to clusters 1 

and 2.  Figure 6.5 shows their respective synchronization with cellular division and protein 

synthesis. Considering the temporal succession of these events, it seems that folate is being 

accumulated before the light period in order to sustain the high levels of protein synthesis at 

dawn.

Models  of  a  multiple  fission  cell  cycle  have  been  established  for  C.  reinhardtii and 

Scenedesmus quadricauda where  [246, 247], the latter from the same family as  T. obliquus. 

Comparison to the established cell  cycle model,  suggests that processes leading to the cell 

growth (G1), DNA replication (pS), mitosis (G2), and cellular division (G3), are associated to 

genes in clusters 2, 3,  4,  and 5,  respectively and correlate to phases IIa,  IIb,  IIIa and IIIb, 

respectively. In our experimental condition, the doubling time was measured to be 0.67 day in 

WT and 0.75 day in slm1, resulting in 1.5 and 1.33 divisions per day respectively. This can be 

explained by a double fission for a portion of the cells, 50% for WT and 33% for slm1. Time 

profiles of clusters 3, 4 and 5 show a double peak of expression 4 to 5 h apart. This second and  

lower peak could be associated to that portion of cells performing a double fission.

In summary, the annotation and enrichment analyses uncovered the general function of the 

genes in each cluster, thus showing a clear succession of cellular events: RNA transcription, 

gene expression, protein synthesis, pigments synthesis, starch synthesis, fatty acids synthesis, 

protein  glycosylation,  cellular  growth  and  division,  starch  degradation  and  sugars  inter-

conversions, riboflavin synthesis, folate synthesis, and, finally, fatty acids degradation (Figure
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6.5). This succession indicates that T. obliquus does not simply adapt its cellular phenotype to 

direct signals from the light switch, but it also anticipates the changes in light conditions.

6.4.2 Impact of starch deficiency on the diurnal rhythm

When analyzing data from slm1, significant changes in the temporal profiles were identified 

for the vast majority of the genes compared to the WT (3902 genes). In most cases, the genes 

remained clustered together, as for the WT, and most differences can be explained by a time 

shift or a change in amplitude. Time changes of expression in phase II (and to a lesser extent 

IIIa) contain most of the overall differences between WT and slm1. However, this could be due 

to the less frequent sampling of  slm1 (every 3 h).  From the six clusters of  slm1, cluster A 

showed a really novel expression profile not seen in WT. In WT the profile of these genes  

more or less matches the observed net consumption of starch that occurs during the night and 

early day. In other words, impossibility to consume starch during this period in slm1 may be 

related to the low expression of the genes occurring in cluster A.

The biochemical data for slm1 also match the transcriptome results, but to a lesser extent than 

for WT. Data obtained from the starchless mutant  slm1 shows that the phases from the WT 

are to some extent preserved, and starch deficiency seems to result in rescheduling biological 

processes from the dark to the light period. It is possible that these processes could not happen  

at night due to the lack of energy originally provided by starch degradation. Processes required 

for expression and translation were transferred from cluster  1 to  cluster  A in  slm1.  Thus, 

expression of these genes seems to depend on the presence of starch and is possibly related to 

the energy status of the cell. In slm1, the expression of these processes is shifted to the time 

when starch accumulates in the WT during which it may be assumed that sufficient energy is 

available.

Genes in slm1 cluster 1&6 are mainly expressed during the dark period. This indicates that the 

scheduling of processes that occur in the dark period and that do not depend on energy sources 

only suffers small changes. Notably, genes associated to fatty acid degradation in slm1, are in 

this cluster, although no significant reduction in TAG content was observed.
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The reason of the incapacity of  slm1 to synthesize starch has already been studied  [35]. The 

gene coding for the small subunit of ADP-glucose pyrophosphorylase was found to contain a 

non-sense mutation.  However  slm1 has  been obtained with UV, that is  known to produce 

multiple mutations in genomes, therefore we cannot rule out differences in gene regulation due 

to other mutation not related to starch deficiency.

6.4.3 Selected reactions and pathways

In addition to the described time shifts caused by starch deficiency, a number of processes 

show differences in expression between sml1 and WT that seem more complex. These are 

discussed in the following paragraphs.

6.4.3.1 Starch synthesis

The diurnal expression of genes related to the reactions analyzed in this section is depicted in 

Figure 6.6. Three of the four enzymes necessary for starch synthesis are found in cluster 2,  

being the ADP-Glucose pyrophosphorylase (EC:2.7.7.27), the starch synthase (EC:2.4.1.21) and 

the granule-bound starch synthase (EC:2.4.1.242). The fourth, starch branching enzyme, was 

not  found to  be  regulated  in time.  Genes associated  to  the  starch synthase  (g7327.t3  and 

g2865.t1), show complementary profiles in WT, each being highly expressed during one half of 

the light period. However, their expression appears stretched during the light period in slm1. 

This could be the response to the lack of ADP glucose. Similarly the granule-bound starch 

synthase expression peaks in the middle of the light period for the WT, but appears stretched 

over the light period in  slm1. The difference in time regulation of the two types of starch 

synthase could be explained by their associated processes on starch branching nature  [248]. 

The amylose isomerase (EC:2.4.1.18) was associated to two genes, with very similar profiles, 

but without apparent time regulation for either strain.

The reason of the incapacity of  slm1 to synthesize starch has already been studied  [35]. The 

gene coding for the small subunit of ADP-glucose pyrophosphorylase was found to contain a 

non-sense mutation. In conditions of continuous light, the gene coding for the small subunit of  

ADP-glucose pyrophosphorylase (known to be mutated in  slm1) was found to  be strongly 

down-regulated in comparison to WT (approx. 5 folds). In this study, we found that this gene  

(g788.t1) is even more strongly down-regulated, meaning that the changes become even more 

134



   The diurnal transcriptional landscape of the microalga Tetradesmus obliquus

prominent in presence of a diurnal cycle. Additionally, we found that the time regulation is  

preserved between the two strains.

135

Figure 6.6: Diurnal expression of genes related to carbon fixation. The points represent the mean for  

each time points, the ribbon covers the minimum and maximum values for each time points. The genes  

associated to the same EC number are plotted together. All genes in the same plot are using the same y  

axis scale (not shown), but the scale between each of the six plots varies. Each plot is labeled with the  

reaction name, the corresponding EC number, and the color legend for each gene-strain combination.  

For each gene-strain combination, the letter or the number behind the # symbol, indicate the cluster  

with which the gene is associated. The background color corresponds to the time phases from Figure

6.1. The dark gray area corresponds to the dark period.
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6.4.3.2 Carbon fixation

The diurnal expression of the genes related to the reactions analyzed in this section is depicted 

in Figure 6.7. The expression of RuBisCO (EC:4.1.1.39) is noisy, although it is generally lower 

in  slm1 than in WT. The logical explanation is that less carbon can be fixed due to starch 

deficiency. Similarly,  the bisphosphatase profile is  noisy but with a clear pattern of higher 

expression between 4 h and 9 h in WT that is not observed in slm1. Other reactions associated 

to carbon fixation are fitting the expression pattern of clusters 1 or 2 in both WT and slm1. 

Among  these,  the  two  enzymes  preceding  in  the  carbon  fixation  pathway 

(phosphoriboisomerase  and  phosphopentokinase)  follow  an  expected  pattern  with  carbon 

fixation during the light with a strong peak at the beginning of the light period.

The  RuBisCO  activase  is  activated  by  light  and  helps  to  release  the  substrate  from  the 

RuBisCO  active  site,  accelerating  the  reaction  [249,  250].  Three  candidate  genes  were 

identified among which only g6221.t1 displays high expression and a detected time profile, 

shown in Figure 6.7. Overall, the expression of the RuBisCO activase resembles the expression 

of the RuBisCO, but with an higher amplitude and a few hours earlier.

In complement to the RuBisCO activase,  the RuBisCO inhibitor 2-Carboxy-D-arabitinol  1-

phosphate (CA1P) is inactivated by the 2-carboxy-D-arabinitol-1-phosphatase (CA1Pase EC: 

3.1.3.63).  CA1P normally binds to RuBisCO under dark conditions,  which prevents it  from 

performing chemical reactions. In WT the gene g18093.t1, associated to the CA1Pase, displays 

a rather constant expression through both light and dark periods, except for a dip in expression 

around 1–2 h. However, in slm1, CA1Pase has a higher expression during the dark period and 

lower during the day.

All the aforementioned enzymes are co-localized in the pyrenoid with the RuBisCO [251]. This 

sub-cellular  micro-compartment  plays  a  major  role  in  carbon  fixation  and  it  is  logically 

localized  in  the  chloroplast,  along  the  thylakoid  membrane.  It  is  found  in  green  algae 

(chlorophyta),  and therefore  found in  T.  obliquus [252].  Pyrenoids  are  not  delimited  by a 

membrane, but they accumulate starch at their periphery in the form of a sheath. It is believed 

that starch is a barrier that limits the transfer of CO2 to the rest of the chloroplast and outer 

compartments. It was demonstrated that the pyrenoid plays a role in the CCM, allowing higher 

levels of carbon fixation in C. reinhardtii [58], however analysis of a C. reinhardtii starchless 
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mutant showed that the starch sheath surrounding the pyrenoid is not involved in the CCM 

[253].  Therefore,  the  starchless  mutant,  slm1,  should  not  suffer  from  a  lessened  CCM  in 

comparison to the wild-type. The lower yield on light should be due to the lack of a transient 

energy storage allowing for harvesting more light energy during the day and using this in the 

night.
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Figure 6.7: Diurnal expression of genes related to carbon fixation. The points represent the mean for  

each time points, the ribbon covers the minimum and maximum values for each time points. The genes  

associated to the same EC number are plotted together. All genes in the same plot are using the same y  

axis scale (not shown), but the scale between each of the six plots vary. Each plot is labeled with the  

reaction  name,  the  corresponding  EC  number,  and  the  color  legend  for  each  strain-gene-cluster  

combination. For each gene-strain combination, the letter or the number behind the #symbol, indicates  

the cluster in which the gene was found. The background color corresponds to the time phases from  

Figure 6.1. The dark gray area corresponds to the dark period.
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6.4.3.3 Nitrogen metabolism

The diurnal expression of the genes related to the reactions analyzed in this section is depicted 

in the  Figure 6.8.  The first enzymes of  the nitrogen assimilation pathways are nitrate and 

nitrite reductases converting nitrate to ammonium. These enzymes are known to be strongly 

regulated by the light and nitrogen condition of the cell [254]. We were not able to identify the 

nitrate reductase gene in the transcriptome. The nitrite reductase gene displayed extremely low 

expression and no identifiable diurnal profile. Ammonium can be transformed into glutamate 

via two pathways, either by the glutamate dehydrogenase (GDH, EC 1.4.1.3 and 1.4.1.4), or via 

the glutamate synthase cycle that consists of glutamine synthase (GS, EC 6.3.1.2) followed by 

glutamate synthase (EC 1.4.1.14 and 1.4.7.1). GS is known as the main contributor for nitrogen 

assimilation  [255],  whereas  GDH  is  generally  involved  in  balancing  nitrogen  between 

metabolites by recycling ammonium for GS.

The candidate gene for GS (g10416.t1) was located in the chloroplast  [37, 255] and showed 

higher expression at night and early day with similar profiles in WT and  slm1. Expression 

during the dark period seems to peak at the same time as the GDH (g547.t1). For the glutamate 

synthase, we have three candidates, two using NAD as a cofactor, and one using ferredoxin as 

a cofactor. The two transcripts associated to the NAD-dependent reaction peak at the end of 

the  day  and  have  a  similar  profile  in  WT  and  slm1.  WT  expression  of  the  ferredoxin-

dependent  reaction  is  very  similar  to  GS  but  with  a  small  time-shift  (approximately  2 h) 

towards later expression. Additionally, we also notice a small peak of expression right before 

the dark period that comes right after the peak of  the two genes  associated to the NAD-

dependent glutamate synthase. Additionally, the ferredoxin-dependent glutamine synthase also 

peaks right after the GDH during the late light period, but also several hours after the GDH 

peak during the dark period. These observations in WT match the observed behavior of these 

enzymes in C. reinhardtii [256], meaning that the ferredoxin-dependent enzyme cannot only 

perform the assimilation during the light period, but also contributes to the assimilation during 

the dark period. Expression of the ferredoxin-dependent enzymes in  slm1 follows a similar 

temporal profile but is strongly reduced.

Two genes were associated to GDH EC 1.4.1.3, namely g547.t1 and g12033.t1. The second one, 

g12033.t1, was also associated to EC 1.4.1.4, although with a lower score. Both genes have 

similar WT expression profiles. In slm1, g547.t1 exhibits a similar profile whereas g12033.t1 in 
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slm1 appears to have lost sharp peaks with very gradual variation. The opposing expression of 

GDH and GS matches previous observations in C. reinhardtii [256], suggesting GDH to be an 

exclusively catabolic enzyme. These profiles suggest nitrogen recycling at the end of the light 

period and beginning of dark. Differences in the GDH are probably related to differences in 

cofactor  utilization  [254].  Nitrogen concentration measurements  (data not shown) revealed 

that slm1 does not assimilate nitrogen during the dark period, which would suggest EC 1.4.1.4 

as the main route for nitrogen fixation during the dark period.
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Figure 6.8: Diurnal expression of genes related to nitrogen assimilation. The points represent the mean  

for each time points, the ribbon covers the minimum and maximum values for each time points. The  

genes associated to the same EC number are plotted together. All genes in the same plot are using the  

same y axis scale (not shown), but the scale between each of the five plots vary. Each plot is labeled  

with the reaction name, the corresponding EC number,  and the color legend for each strain-gene-

cluster combination. For each gene-strain combination, the letter or the number behind the # symbol,  

indicate the cluster in which the gene was found. The background color corresponds to the time phases  

from Figure 6.1. The gray area corresponds to the dark period.
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6.5 Conclusions

Oleaginous microalgae are a promising source of biofuels. Among the oleaginous microalgae, 

Tetradesmus obliquus is a promising candidate that can reach a high maximum TAG yield on 

light and TAG content under nitrogen starvation. However, in order to develop strategies to 

enhance  lipid  productivity  for  commercial  production,  a  system-level  understanding  of 

metabolism is essential. Large scale microalgal production will be done outdoors under natural 

LD  cycles.  Therefore,  the  impact  of  LD  cycles  has  to  be  carefully  considered  when 

characterizing the behavior of microalgae.

In this work, we show that LD cycles induce systems level transcriptional changes in 4686 

genes showing a clear expression pattern and indicating a strict succession of cellular events. 

These cellular events were found to be in accordance with the biochemical measurements. 

While  some  regulations  seem  a  direct  response  to  light,  other  regulations  reflect  an 

anticipation  to  the  switch  from  light  to  dark  and  vice-versa.  This  observed  anticipation 

indicates an inner time-keeping system.

Additionally,  we studied the diurnal transcriptional changes in the starchless mutant of  T.  

obliquus slm1. Pathways directly associated to energy storage, such as carbon fixation, and 

other processes such as nitrogen metabolism are strongly affected in slm1. The large changes 

in activity of these processes are attributed to starch deficiency, which seems to be the only 

transient  energy  storage  compound  in  T.  obliquus.  Genes  associated  to  TAG  and  lipid 

degradation are highly expressed during the dark period in  slm1.  This suggests TAG as  a 

transient energy storage, however, no significant changes in TAG content were measured. As a 

result of the lack of an energy source during the dark, some of the energy related processes 

shift to the light period and the algae are less well  prepared to start the next cycle at the 

beginning of the day. More subtly, processes related to the cellular cycle were detected to start  

earlier in slm1 than in WT.

Overall, we provide for the first time a diurnal transcriptional landscape under LD cycles with 

a high resolution (1 h intervals) of an oleaginous green microalgae that produces both starch 

and  TAG  under  nitrogen  starvation.  This  is  also  the  first  time  a  diurnal  transcriptional 

landscape is described and compared for a starchless mutant of green algae. The diverse set of  

insights revealed in this analysis of the diurnal cycle of T. obliquus is very valuable to develop 
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strategies to increase yields. We suggest that the presented transcriptional landscape should be 

carefully considered when designing future experiments with LD cycles, including metabolic 

engineering approaches.
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Tetradesmus  obliquus is  an  oleaginous  microalga  with  high  potential  for 

triacylglycerides  production.  We  characterized  the  biochemical  composition  and  the 

transcriptional  landscape  of  T.  obliquus wild-type  and  the  starchless  mutant  (slm1),  

adapted to 16:8h light dark (LD) cycles under nitrogen limitation. In comparison to the 

nitrogen replete conditions, the diurnal RNA samples from both strains also displayed a 

cyclic  pattern,  but  with  much  less  variation  which  could  be  related  to  a  reduced 

transcription activity in at  least  the usually highly active processes.  During nitrogen 

limitation, the wild-type continued to use starch as the preferred storage compound to  

store energy and carbon. Starch was accumulated to an average content of 0.25 g·gDW
-1, 

which is higher than the maximum observed under nitrogen replete conditions. Small  

oscillations were observed, indicating that starch was being used as a diurnal energy 

storage compound, but to a lesser extent than under nitrogen replete conditions. For the 

slm1 mutant, TAG content was higher than for the wild-type (average steady state value 

was 0.26 g·gDW
-1 for slm1 compared to 0.06 g·gDW

-1 for the wild-type). Despite the higher 

TAG content in the slm1, the conversion efficiency of photons into biomass components 

for the  slm1 was only half of the one obtained for the wild-type. This is related to the 

observed decrease in biomass productivity (from 1.29 gDW·L-1·day-1 for the wild-type to 

0.52 gDW·L-1·day-1 for the slm1). While the transcriptome of slm1 displayed clear signs of 

energy  generation  by  degrading  TAG  and  amino-acids  during  the  dark  period,  no 

significant variation of the metabolites could be measured. When looking through the 

diurnal cycle, the photosynthetic efficiency was lower for the slm1 mutant compared to 

the  wild-type  especially  during  the  second  half  of  the  light  period,  where  starch 

accumulation occurred in the wild-type.
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7.1 Introduction

Microalgae are considered as one of the most promising renewable sources for the production 

of feed, fuels and chemicals [40, 106, 210] However, in order to make large scale production of 

algal  biodiesel  economically  feasible,  high  triacylglycerides (TAG)  productivity  are  needed 

[210, 257].

Tetradesmus obliquus (formerly  known as  Scenedesmus  obliquus [199]) is  a  microalga  of 

interest  due to its high TAG content and the fact  that it  can retain a high photosynthetic 

efficiency under nitrogen starvation [24, 258–260] Besides, de Jaeger et al. [261] developed the 

starchless mutant  slm1 that  showed a higher maximum TAG yield on light compared to the 

wild-type (0.22 gTAG·molph
-1 compared to 0.14 gTAG·molph

-1), as well as a higher maximum TAG 

content (0.57 g·gDW
-1 compared to 0.45 g·gDW

-1) under batch nitrogen starvation and continuous 

illumination [34].

In large scale production, microalgal biomass first  will  be grown outdoors under favorable 

nitrogen replete conditions and light/dark cycles (LD). After biomass has been produced, the 

lipid production phase can be done under  nitrogen deplete  conditions.  The behavior  of  T.  

obliquus under nitrogen replete conditions and diurnal 16:8 h light/dark (LD) cycles has been 

previously  studied  [24,  262].  Under  such  conditions,  T.  obliquus wild-type  and  starchless 

mutant  slm1 showed synchronized cell  division and growth.  T.  obliquus wild-type showed 

diurnal oscillations in biomass composition, with an accumulation of starch during the light 

period that was consumed during the dark period and beginning of next light period. For the 

slm1, no such oscillations in biomass composition were found, which shows that this microalga 

does not need starch as a temporary energy storage compound to survive dark periods up to 

12h [214]. The lack of starch, however, did result in a reduction of the conversion of energy 

(photons) to biomass [24, 214].

Under nitrogen deplete conditions, many microalgal species accumulate starch or TAG, which 

allows the capture and storage of energy and carbon that can be rapidly used when nitrogen 

becomes  available  again  [263].  However,  under  deplete  conditions  growth  stops,  the 

photosynthetic efficiency rapidly decreases and also TAG production stops after a certain time. 

Since production of TAG occurs also under nitrogen limitation in combination with LD cycles, 

this  may result  in  continuous production and in the  end a  higher  yield  of  TAG on light.  

Consequently, the behavior of  T. obliquus under these conditions is of interest. The average 
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steady state behavior under nitrogen limitation and LD cycles of both  T. obliquus wild type 

and slm1 has been previously reported [28]. However, the detailed diurnal behavior during a 

single LD cycle under nitrogen limitation has not been studied in these strains. Therefore, the 

aim of this paper is to obtain a better understanding of the diurnal behavior of  T. obliquus 

wild-type and starchless mutant  slm1 under  nitrogen limitation, with focus on the diurnal 

changes in starch and TAG content, and on energy efficiency. Next to studying the biochemical 

composition and light use, gene expression was examined from RNA sequencing data to obtain 

more insight in the precise  regulation in the affected pathways.  These results  will  also be 

compared to the previously observed changes without nitrogen limitation [262].

7.2 Materials and methods

7.2.1 Strains, pre-culture conditions and cultivation 

medium

Wild-type  Tetradesmus obliquus UTEX 393  was  obtained  from the  Culture  Collection  of 

Algae, University of Texas. The starchless mutant of  T. obliquus (slm1) was generated by de 

Jaeger et al  [261]. Pre-cultures were grown as described by León-Saiki et al. [24] in defined 

medium described by Breuer et al. [258].

7.2.2 Reactor set-up and experimental conditions

T. obliquus was continuously cultivated in a sterilized flat panel airlift-loop photobioreactor 

with  a  working  volume  of  1.7 L  and  a  0.02 m  light  path  (Labfors  5  Lux,  Infors  HT, 

Switzerland).  Temperature was maintained at  27.5 °C and pH was controlled at  7.0  by the 

automatic addition of 2.5% (v/v) H2SO4. The reactor was continuously sparged with 1 L·min-1 

air enriched with 2% CO2. Light was provided by a light panel with 260 LEDs with a warm 

white spectrum  at an  incident photon flux density of 500 µmol·m-2·s-1 in a 16:8 h light/dark 

(LD) block cycle. The reactor was inoculated to an optical density (OD750) of 0.1.
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Duplicate turbidostat cultivations were done, where the light intensity at the rear of the reactor 

was  kept  constant  at  10 µmol·m-2·s-1 by  addition  of  medium.  Dilution  medium  [258] was 

prepared without KNO3 and KNO3 was separately fed at 0.075 gN·L-1day-1 for the wild-type and 

0.052 gN·L-1day-1 for the slm1. This corresponds to a nitrogen limitation of 30% of the nitrogen 

consumption rate observed under nitrogen replete and light limitation [28]. Dilution medium 

was only added during the light period and switched off during the night. This type of system 

allows  the  study  of  the  interaction  between  growth,  nitrogen  consumption  and  lipid 

accumulation [88].

Cultures  were  allowed  to  reach  steady  state,  which  was  defined  as  a  constant  biomass 

concentration and daily dilution rate for a period of at least 3 days. After steady state was 

reached, liquid samples were freshly taken from the reactor and either immediately used for 

dry  weight  measurements  or  centrifuged  for  5 min  at  2360 x g  for  biochemical  analysis 

(approximately 10-12 mg for proteins, 5 mg for starch, 7 mg for triacylglycerides (TAG) and 

5 mg for total carbohydrates). In addition, at least three daily overflow samples were collected 

for each strain. Due to restrictions on working hours of the laboratory,  the samples were 

collected in two successive time settings to allow sampling the dark period during the day.  

After  collecting samples  of  the first  half  of the cycle,  light  settings were shifted and the 

culture was then allowed to reach oscillating steady-state before collecting samples for the 

second half of the cycle. The first and the last samples of each time settings are overlapping 

samples for control.

7.2.3 Dilution rate

Dilution rate was calculated by measuring the feed of the dilution medium (without KNO3) and 

the feed of the KNO3 medium over intervals of 10 min. Dilution rates were then calculated as 

the  total  medium added over  30 min divided by the  reactor  volume.  After  that,  a  moving 

average of 60 min was done.

7.2.4 Measurements

Dry weight (DW) concentration was determined as described by Kliphuis et al.  [90]. Total 

carbohydrates were determined according to DuBois et al.  [264] and Hebert et al. [94] using 
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glucose as a standard. Starch content was measured as described by de Jaeger et al. [261] using 

a  total  starch  kit  (Megazyme,  Ireland).  Triacylglycerol  (TAG)  content  was  quantified  as 

described by Remmers et al. [28] using glyceryl trinonadecanoate (T4632; Sigma Aldrich) and 

1,2-dipentadecanoyl-sn-glycero-3-phospho-(1’-rac-glycerol)  (sodium  salt)  (840446,  Avanti 

Polar Lipids Inc.) as internal standards. Total protein concentration was measured done using a 

colorimetric assay (Bio-Rad DC protein assay) as described by Postma et al. [265].

7.2.5 Conversion of photons into biomass

The  theoretical  amount  of  photons  converted  into  biomass  was  calculated  based  on  the 

theoretical  photon  requirements  for  the  biomass  components  (1.33 g·molph
-1  for  TAG, 

3.24 g·molph
-1 for  starch,  and 1.62 g·molph

-1  for  functional biomass  [90,  202] and the photon 

absorption rate  (1.36 molph·L-1·day-1)  [24].  Samples were taken in intervals of three hours. 

For the calculation of the hourly energy conversion efficiency the additional points for biomass 

composition were estimated assuming a proportional change between the measured points. 

Biomass  composition  of  the  overflow samples  (collected  during  24 h  on  ice)  was  used  to 

calculate the average steady state values.

7.2.6 Starch and TAG productivities

The starch productivity (rstarch,t in g·L-1·h-1) was calculated using a balance for starch over short 

time intervals (Eq. 1), considering the change in starch content over three hour time intervals (

dC starch
dt ), the dilution rate (Dt in h-1) and the starch content (Cstarch,t in g·L-1):

dCstarch
dt

=−D t ∙C starch ,t+r starch , t (Eq. 1).

The TAG productivity was calculated in a similar way where the changes in TAG content over 

intervals of three hours (
dCTAG
dt ), the dilution rate (Dt in h-1), and the TAG content (CTAG,t in g·L-

1)  were  used.  During  the  dark  period  the  dilution  rate  is  zero  and  the  productivity  is  

determined by the accumulation term only.
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7.2.7 RNA sampling, extraction, and sequencing

After steady state was reached, 8 mL samples were taken for RNA extraction (approximately 

10 mgDW).  Cells  were  immediately  collected  by  centrifugation  (4255 x g,  0 °C  for  5 min), 

supernatant was discarded and pellets were frozen in liquid nitrogen and stored at -80 °C until 

further extraction. Samples for RNA extraction were taken in intervals of 3 h for both the wild-

type and the slm1 mutant. Sampling strategy and RNA extraction were performed as described 

in our previous study [262]. 

7.2.8 Analysis of RNA expression

The RNA-seq samples were treated and analyzed with the same method as our previous study 

[262].  To summarize,  the expression was calculated by aligning the read samples over the 

available genome of  T. obliquus UTEX-393  [225]. From the aligned samples, Fragments Per 

Kilobase of transcripts per Million reads mapped (FPKM) values were computed and used in 

the following steps. Genes with significant changes of expression over time were identified 

using  maSigPro  [232].  These  genes  were  then  separated  using  hierarchical  clustering  and 

Pearson’s  correlation.  The  optimal  number  for  cluster  separation  was  determined  by 

combining the results from seven indexes commonly used for this purpose. These indexes were 

calculated using the functions of “clusters.stats” from the “fpc” R package  [266]. Functional 

characterization of genes in each cluster was done using the functional annotation presented in 

[262].Again, the same methods were applied to determine the enrichment of clusters in GO 

terms and in KEGG pathways [262]. In brief, enrichment analyses were performed using the 

hypergeometric function to model the background probability density.  Enzyme commission 

(EC) numbers were associated to metabolic pathways using KEGG pathways maps. Pathways 

fitting the following requirements were kept for further analysis: 60% coverage if 3 to 6 EC 

numbers annotated, and 50% coverage if 6 to 10 EC numbers annotated, and 25% of coverage if  

more than 10 EC numbers were annotated. Enrichments with a p-value lower than 0.05 were 

considered significant. For the GO enrichment analysis multiple test correction was performed 

using  the  Benjamini-Hochberg  procedure.  Enrichments  with  FDR<0.05  were  considered 

significant.

 The annotation was curated manually for specific reactions related to starch, lipids and TAG 

synthesis and degradation pathways. To do so, the combination of top score and p-value from 
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Enz-DP were considered, as well as the relative difference between the scores, and as a final 

verification, the proteins were aligned using DELTA-Blast and HMMER3.

7.3 Results and discussion

7.3.1 Growth of Tetradesmus obliquus wild-type and 

slm1

Our experimental set-up using turbidostat controlled systems imposes a fixed light uptake. We 

created an energy imbalance by decreasing the nitrogen supply rate to 30% of the value that  

would be needed to have nitrogen replete growth at the fixed light uptake rate.

Nitrogen limitation resulted in a reduced growth rate (Figure 7.1).  Nitrogen limited cultures 

showed a  diurnal  pattern  in  dilution  rate  (D),  with  both  the  wild-type  and  the  starchless 

mutant slm1 showing a similar pattern. Dilution patterns were, however, different from those 

under nitrogen replete conditions, specifically with respect to the start of dilution after the 

light went on and the moment where the maximum dilution rate was reached. Dilution started 

about 4 h after start of the light period under nitrogen limitation, while under nitrogen replete 

conditions dilution started immediately after the beginning of the light period. As a result, the 

time at which the maximum dilution rate was reached was also shifted and was reached at 7h.  

A possible explanation for this shift may be that, as nitrogen was not added during the night, 

nitrogen content was equal to zero (starvation). This may have resulted in cells being unable to 

prepare for the next day, or cells  switching to a nitrogen starvation mode, breaking down 

proteins and pigments, from which they had to recover. With respect to the first case, it is 

possible that cells prepare during the night for the next day so they can start growing quickly. 

If nitrogen is needed for this preparation, cells would have to first fixate nitrogen when the 

light is on, which would explain the delay. With respect to the second case, cells switch to a 

nitrogen  starvation  mode,  stopping  pigment  synthesis  and  breaking  down  pigments  and 

proteins,  which would result  in a decreased pigment content at  the beginning of the light 

period.  This  last  point  is  supported  by  the  fact  that  the  light  out  for  the  wild-type  was 

1 µmol·m-2·s-1 above set-point, indicating breakdown of light absorbing material. Consequently, 

first a certain amount of pigment has to be synthesized before the light out drops below the  
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set-point and dilution starts. For slm1, an oscillatory pattern was observed (Figure 7.1B), which 

was also observed in our previous study in nitrogen replete conditions [262].

Under  favorable  nitrogen  replete  conditions,  oleaginous  microalgae  produce  only  small 

amounts of TAG, while under unfavorable nitrogen starvation conditions, TAG accumulation 

is  induced  and  contents  of  up  to  0.40 g·gDW
-1 can  be  reached  [267,  268] However,  this 

unfavorable environmental conditions come with the disadvantage of a complete stop of cell 

division  [28].  Nitrogen limitation processes were suggested as an attempt to overcome the 

disadvantages observed under nitrogen starvation  [88]. As observed for  T. obliquus, growth 

still  occurs under nitrogen limitation, but this  is reduced to approximately half  of the one 

observed under nitrogen replete conditions (from 1.12±0.01 day-1 under nitrogen replete [24] to 

0.55±0.07 day-1 under nitrogen limitation). This was also observed for other microalgae, such as 

Neochloris oleoabundans [257]. For the starchless mutant slm1 the 24 h average daily dilution 

rate, i.e. growth rate, was reduced even more (from 0.90±0.01 day-1 under nitrogen replete to 

0.22±0.02 day-1 under nitrogen limitation), showing again the reduction in growth and lower 

photosynthetic efficiency when blocking starch production.
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Figure  7.1:  Changes  in  dilution  rate  for  Tetradesmus  obliquus wild-type  (A)  and  slm1 (B)  under  

nitrogen  limitation.  Values  represent  the  average  of  replicate  reactors  and  error  bars  represent  

minimum and maximum values.  The x  axis  shows hours  after  start  of  light  period.  Shaded  areas  

indicate the dark period.
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7.3.2 Diurnal changes of storage compounds: Starch and 

TAG.

During nitrogen limitation, starch continued to be the preferred storage compound to store 

energy and carbon for the wild-type (Figure 7.2A).  Starch was accumulated to an average 

content of 0.25 g·gDW
-1, with a maximum content of approximately 0.29 g·gDW

-1, which is higher 

than the maximum observed under nitrogen replete conditions (0.20 g·gDW
-1) [24]. The overall 

preference of  T. obliquus wild-type towards storing starch has been previously observed [28, 

34]. When looking into the starch content during the diurnal cycle, a small oscillation can be 

observed (Figure 7.2A), where starch content slightly increases between 9-12 h and decreases 

during the dark period. This can also be seen in the starch productivity shown in Figure 7.2C, 

that was calculated according to equation 1. Starch productivity remained positive just above 

zero during the first 9 h, then increased reaching the maximum value on t=12 h after which the 

starch productivity decreased and became negative at t=21h, indicating consumption.

Under nitrogen replete conditions, TAG is not accumulated, whereas under nitrogen limitation 

or starvation substantial amounts of TAG can be accumulated in T. obliquus, as observed by 

Remmers et al. [28]. However, no information is known on the diurnal role of this compound 

under nitrogen limitation in T. obliquus. Therefore, we also measured the TAG content during 

the diurnal cycle in intervals of 3 h. The wild-type showed a constant content of approximately 

0.07 g·gDW
-1 for all measured time points (Figure 7.2A). This rather low content of TAG can be 

explained by the fact that carbon and energy are mainly stored as starch. TAG is only formed 

if the carbon and energy supply exceeds the storage capacity in starch, as also mentioned in 

literature  [28,  34,  269].  For  T. obliquus,  Remmers  et  al.  [28] found  that  TAG  is  only 

accumulated after starch reaches  its  cellular  maximum of 0.40 g·gDW
-1.  Under  this  nitrogen 

limited condition, this maximum content is not reached, which explains the low content of 

TAG in the wild-type. The preference for starch cannot be explained from the energy density,  

since  more  energy can be  stored  in  fatty  acids  as  compared  to  starch (yield  of  complete 

oxidation of fatty acids is about 9 kcal·g-1 compared to 4 kcal·g-1 for carbohydrates  [270]. A 

possible explanation for the preference for starch could be that the synthesis and degradation 

of TAGs requires more cellular resources and enzymes  [271]. Another reason might be that 

when  cells  grow photoautotrophically,  fatty  acids  synthesis  represent  a  significant  loss  of 

carbon  as  conversion  of  pyruvate  to  acetyl-CoA by  the  pyruvate  dehydrogenase  complex 

involves  the  loss  of  one of  the  fixed carbons.  This renders  starch a more efficient  carbon 

storage compound regarding carbon fixation [272].
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For the slm1 mutant the TAG content (approximately 0.27 g·gDW
-1) was about 4 times higher 

than  for  the  wild-type  during  the  diurnal  cycle  (Figure  7.2B).  However,  TAG showed no 

diurnal oscillations under nitrogen limitation for either strain (Figure 7.2A&B). When looking 

at the TAG productivity, diurnal variations were expected for the slm1 as the dilution rate is 

changing. However, no clear diurnal variations were observed (Figure 7.2D). This is because 

the values for dilution rate are similar or smaller than the accumulation term (
dCTAG
dt ). The 

accumulation term is in turn highly sensitive for small changes in the measured TAG content. 

Therefore TAG productivity calculations are highly affected by measurement errors in TAG 

content. For the wild-type, the values for the dilution rate are higher making the calculation of 

the TAG productivity less sensitive to small errors in TAG content, which in turn makes the 

differences between the time points more significant.
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Figure 7.2: Diurnal changes under nitrogen limitation in starch and triacylglycerides (TAG) content for  

Tetradesmus obliquus wild-type (A) and slm1 (B) and in starch productivity for the wild-type (C) and  

TAG productivity for wild-type and  slm1 (D). Open and closed symbols represent replicate cultures.  

The x axis shows hours after the start of the light period. Shaded areas indicate the dark period.
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The other measured biomass components, proteins and non-starch carbohydrates did not show 

oscillations through the diurnal cycle for either strain (Supplementary Figure S1).

7.3.3 Energy conversion efficiency

Under nitrogen replete conditions, the energy conversion efficiency into biomass of the wild-

type is higher than that of the slm1 mutant [24, 214]. We therefore investigated if this was also 

the  case  for  nitrogen  limitation  conditions  where  TAG accumulation  occurs.  For  this,  we 

calculated the minimal number of photons needed for the production of functional biomass, 

TAG, and starch (for the wild-type), based on the biomass composition of the overflow samples 

(average steady state values). Results are displayed as a percentage of used photons from the 

total amount supplied in Error: Reference source not foundA. As can be seen, also for nitrogen 

limited conditions the overall efficiency is lower for the  slm1 mutant than for the wild-type 

(approximately 50% for the wild-type and 25% for the slm1). However, the TAG content on the 

slm1 is higher than for the wild-type resulting in a slightly higher TAG volumetric productivity 

for the slm1 as compared to the wild-type (0.09 g·L-1·day-1 for the wild-type and 0.14 g·L-1·day-1 

for the slm1). The lower overall efficiency is related to the fact that the biomass productivity in 

the mutant is reduced to less than half of that of the  wild-type (1.29±0.11 g·L-1·day-1 for the 

wild-type and 0.52±0.06 g·L-1·day-1 for the slm1) (Figure S1). Also, both strains are less efficient 

under nitrogen limited conditions than under nitrogen replete conditions (62.77±0.08% for the 

wild-type and 49.75±0.07% for the  slm1 [214]. When looking into the conversion efficiency 

during the diurnal cycle in intervals of one hour (Error: Reference source not foundB&C), we 

observe that during the first half of the day, both strains behave similarly, with the wild-type 

showing an increase in energy efficiency about one hour before the  slm1. However, in the 

second half  of  the  light  period (approximately  from t=7 h),  the  slm1 mutant  is  much less 

efficient than the wild-type. Notably the second half of the light period is the moment when 

starch accumulation occurs in the wild-type, probably explaining the extra energy fixated.
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Figure 7.3. The percentage of photons (as a fraction of the total supplied) minimally needed to make the different  

biomass components as an average over 1 day (A) and over each hour of the day for Tetradesmus obliquus wild-

type (B) and slm1 (C). For (A), values represent the average values of at least 3 overflow samples. For the hourly  

energy conversion efficiency (B and C)  the x axis  represents  hours after the light  was switched on.  Values  

represent average of replicate reactors and error bars represent minimum and maximum values. Shaded area  

indicates the dark period.

Under nitrogen starvation both starch and TAG can act as an overflow sink for electrons [268]. 

For  starchless  mutants,  it  has  been suggested  that  the  difference  in  energy efficiency and 

biomass yield on light might be due to an increased rate of energy dissipation compared to the 

wild-type  [28,  273] since electrons can no longer be channeled to  starch.  However,  under 

nitrogen limitation growth still occurs and starch still seems to have a role as a diurnal energy 

storage compound, such as under nitrogen replete conditions  [24], which provides an extra 

benefit for the wild-type compared to the slm1.

7.3.4 Transcriptional landscape

Previous transcriptome analysis  on  T.  obliquus under  the  same LD cycles  but  in  nitrogen 

replete  conditions  uncovered  that  genes  following  a  diurnal  expression  pattern  were 

contributing to the vast majority of expression changes  [262]. Principal component analysis 

(PCA) of nitrogen replete samples and nitrogen limited samples (this study) under LD cycles, 

shows that the two first components explain 83% of the total variation in gene expression 

(Figure 7.4A). Samples from both strains (wild-type and  slm1)  grown in the same condition 

with respect to nitrogen availability and from the same time points  overlap. However,  the 

samples taken from the nitrogen replete condition are completely separated from those taken 

from the nitrogen limited condition. This indicates the limited nitrogen supply has a much 
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greater impact on gene expression than the changes caused by the mutation. In both conditions 

(nitrogen replete and deplete), there is a clear succession of time points in the PCA. Under 

nitrogen  replete  conditions,  time  points  are  arranged  in  a  circular  pattern  (Figure  7.4A). 

However, under nitrogen deplete conditions, the circular pattern seems lost and samples at 3h 

overlap  with  the  samples  at  12h.  Yet,  when  selecting  the  genes  with  a  detected  diurnal 

expression, the circular pattern is recovered (Figure 7.4B). This noticeable difference was not 

observed in the nitrogen replete condition, which indicates that nitrogen limitation results in 

an overall reduction of diurnal changes in expression. The time point samples of each strain in 

nitrogen limited condition (Figure 7.4B) draw an overlapping elliptic pattern, but the variation 

of expression in  slm1 is clearly lower than in the wild-type. Moreover, the samples of  slm1 

during  the  dark  period  are  all  extremely  close  to  each  other,  indicating  very  little 

transcriptional changes. Therefore, starch deficiency has a greater impact on gene expression 

in  nitrogen  limited  condition  than  it  has  in  nitrogen  replete  condition,  with  slm1 being 

particularly inactive during the dark period. In complement, the heatmaps showing similarity 

of gene expression between time points is available in the supplementary Figure S2.
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Figure  7.4:  Principal  component analyses of  time point samples. (A) Comparison between samples  

considering  all  genes  (no  selection)  in  nitrogen  replete  [262] and  nitrogen  limited  conditions.  (B)  

Comparison  between  samples  considering  only  selected  genes  (detected  time  profile)  in  nitrogen  

limited conditions. The variance explained by the first two components is indicated on axes labels.
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7.3.5 Diurnal gene regulation and functions
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Figure 7.5: Expression profile over 16:8 light-dark cycle of the 5 genes clusters identified in both strains.  

The plots show the median profile of gene expression in the indicated clusters. Dark area represents the  

dark period.
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Genes with a detected diurnal regulation were clustered using hierarchical clustering based on 

Pearson’s correlation in different numbers of clusters ranging from 3 to 25. Similarities within 

and differences between clusters were evaluated with well established indexes, depicted in the 

supplementary file S3. Some of the selected index (first Dunn, Calinski-Harabasz and the ratio 

between the average within and average between clusters) gave no indication on the optimal 

number of clusters. However other metrics such as average silhouette width, second Dunn 

index or normalized gamma, show a local maximum (or minimum) at 4-6 clusters. Inspection 

of cluster similarities based on the Rand index (supplementary file S3) led to select 5 clusters 

(over 4 or 6). Based on these results, we considered separating the genes in 5 clusters to be 

optimal. Similar results are obtained for both strains. The median profile of these 5 clusters is 

displayed in Figure 7.5. Between the two strains, the clusters with the nearest median profile 

are also the clusters with the most genes in common (supplementary Figure S4). For those 

reasons, clusters were named the same.

As observed in our previous study under nitrogen replete conditions [262], the clusters reflect a 

succession  of  peaking  expressions.  In  the  wild-type,  cluster  1  expression  peaks  at  0h, 

progressively decreases until 12h and next progressively increases. Cluster 2 expression peaks 

at 3h, decreases until 12h before peaking again at 15h, and finally reaches its lowest expression 

during dark period. Cluster 3 expression progressively increases from its lowest point at 0h 

until 12h, maintains high expression at 15, and its expression drops during the dark period. 

Cluster  4  expression is  lowest  at  3h and increases  progressively until  12h,  maintains  high 

expression during the beginning of the dark period before decreasing at 18h. Finally, cluster 5 

displays high expression during the dark period only with a peak of expression at 18h. The 

profile of the clusters in the slm1 strain are similar to those of the wild-type, with noticeable 

differences of shape of  the first three clusters.  Slm1 cluster 1 displays a higher expression 

increase right after the dark period.  Slm1 cluster 2 displays a much lower secondary peak at 

15h, meaning that these genes are now mainly expressed during the first half of the day. The 

median profile of  slm1 cluster 3 seems exclusively expressed during the light period with a 

stronger expression in the early light period (time point 3, 6 and 9h). Slm1 clusters 4 and 5 are 

the same as the wild-type, besides a simple upper shift on the y axis. Interestingly, in both  

strains, the expression profile of cluster 2 is opposite to the profile of cluster 4, and the profile 

of cluster 3 opposes that of clusters 1 and 5. 
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Table 7.1: Results of enrichment analyses. Summary of the results of the enrichment analyses. The first 
column contains the cluster identifier. The second and third contains the enriched pathways (p-value < 
0.0.5). GO terms relate to biological processes (FDR<0.05) for the wild-type. Fourth and fifth column 
present the same information for slm1. Full set of enrichment results are available in the supplementary 
file S5.

wild-type slm1
Cluste

r
Pathway Biological Processes Pathways

Biological 

Process

1

Fatty acid biosynthesis
Glycine, serine and threonine metabolism
Starch and sucrose metabolism
Pyruvate metabolism
Glyoxylate and dicarboxylate metabolism
Carbon fixation in photosynthetic 
organisms

protein phosphorylation
fatty acid biosynthetic process
oxidation-reduction process

Purine metabolism
Geraniol degradation

protein phosphorylation
movement of cell or subcellular 
component

2

Ubiquinone and other terpenoid-quinone 
biosynthesis
Photosynthesis
Glycine, serine and threonine metabolism
Phenylalanine, tyrosine and tryptophan 
biosynthesis
Methane metabolism
Carbon fixation in photosynthetic 
organisms
Porphyrin and chlorophyll metabolism
Terpenoid backbone biosynthesis
Carotenoid biosynthesis
Aminoacyl-tRNA biosynthesis

translation
lysine metabolic process
steroid biosynthetic process
coenzyme metabolic process
aromatic amino acid family metabolic process
photosynthesis
tetrapyrrole metabolic process
dicarboxylic acid metabolic process
cofactor biosynthetic process
oxidation-reduction process
alpha-amino acid biosynthetic process

Glycolysis / Gluconeogenesis
Fatty acid biosynthesis
Ubiquinone and other terpenoid-
quinone biosynthesis
Pyruvate metabolism
Carbon fixation in photosynthetic 
organisms
Porphyrin and chlorophyll metabolism
Aminoacyl-tRNA biosynthesis

cellular amino acid metabolic 
process
fatty acid metabolic process
photosynthesis
tetrapyrrole metabolic process
pigment metabolic process
carboxylic acid biosynthetic 
process
cofactor biosynthetic process
oxidation-reduction process
organonitrogen compound 
biosynthetic process

3

Oxidative phosphorylation
Arginine biosynthesis
Purine metabolism
Pyrimidine metabolism
Valine, leucine and isoleucine biosynthesis
Lysine biosynthesis
Arginine and proline metabolism
Histidine metabolism
Glutathione metabolism
Glyoxylate and dicarboxylate metabolism
Aminoacyl-tRNA biosynthesis

RNA methylation
tRNA threonylcarbamoyladenosine 
modification
rRNA processing
protein folding
purine ribonucleotide biosynthetic process
purine ribonucleoside triphosphate 
biosynthetic process
monocarboxylic acid metabolic process
cellular amide metabolic process
ATP metabolic process
alpha-amino acid biosynthetic process

Photosynthesis
Arginine biosynthesis
Purine metabolism
Pyrimidine metabolism
Alanine, aspartate and glutamate 
metabolism
Lysine biosynthesis

cellular amino acid biosynthetic 
process
monocarboxylic acid metabolic 
process
amide biosynthetic process
nucleobase-containing small 
molecule metabolic process
oxidation-reduction process

4

Citrate cycle (TCA cycle)
Fatty acid biosynthesis
Fatty acid elongation
Fatty acid degradation
Arginine biosynthesis
Alanine, aspartate and glutamate 
metabolism
Glycine, serine and threonine metabolism
Arginine and proline metabolism
Tyrosine metabolism
Pyruvate metabolism
Propanoate metabolism
Butanoate metabolism
Carbon fixation pathways in prokaryotes
Thiamine metabolism
Nitrogen metabolism
Drug metabolism - cytochrome P450

glycolytic process
cellular biogenic amine metabolic process
tRNA processing
energy derivation by oxidation of organic 
compounds

Glycolysis / Gluconeogenesis
Citrate cycle (TCA cycle)
Alanine, aspartate and glutamate 
metabolism
Cysteine and methionine metabolism
Glyoxylate and dicarboxylate 
metabolism
Carbon fixation in photosynthetic 
organisms

5

Glycolysis / Gluconeogenesis
Galactose metabolism
Fatty acid biosynthesis
Fatty acid degradation
Purine metabolism
Pyrimidine metabolism
Valine, leucine and isoleucine degradation
Phenylalanine metabolism
Tryptophan metabolism
beta-Alanine metabolism
Pyruvate metabolism
Propanoate metabolism
Methane metabolism

protein phosphorylation
movement of cell or subcellular component
cell cycle process

Fatty acid biosynthesis
Fatty acid elongation
Fatty acid degradation
Valine, leucine and isoleucine 
degradation
Geraniol degradation
Phenylalanine metabolism
Tryptophan metabolism
beta-Alanine metabolism
alpha-Linolenic acid metabolism
Pyruvate metabolism
Glyoxylate and dicarboxylate 
metabolism
Propanoate metabolism
Butanoate metabolism
Carbon fixation pathways in 
prokaryotes
Biotin metabolism
Biosynthesis of unsaturated fatty acids

generation of precursor metabolites 
and energy

The wild-type strain enrichment analyses (Table 7.1) revealed amino acids related processes in 

all five clusters. On the other hand, slm1 pathway enrichment in amino acids related processes 

is  more  scarce,  and  GO enrichments  clearly  reveal  that  amino  acids  synthesis  (found  in 
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clusters 2 and 3) occurs now exclusively during the light period. In contrast, the wild-type  

shows some clear signs of amino acid synthesis during the dark period. This means that slm1 

lacks the needed energy to start synthesizing amino acids during the dark period, and amino 

acid synthesis  is  delayed until  light  is  available.  Besides  this  delay, the enrichment results 

indicate that  for both strains,  protein synthesis  occurs throughout the whole day, whereas 

protein degradation occurs more during the night. Unlike in nitrogen replete condition [262], 

under nitrogen limitation both strains show signs of amino acids degradation during the dark 

period. This degradation is a logical consequence of the limited nitrogen supply. During the 

dark period there is no nitrogen supply and thus likely the nitrogen concentration is zero and 

nitrogen starvation occurs. Notably, the pathway “Valine, leucine and isoleucine degradation”, 

which produces acetyl-CoA, is found enriched in cluster 5 which is confirmed by the mapping 

to  the  metabolic  maps  (supplementary  file  S6).  Enrichment  of  “protein  phosphorylation” 

appears in clusters 5 and 1 (43 and 31 genes respectively) in the wild-type. In the mutant slm1, 

the “protein phosphorylation” appears only in cluster 1 (30 genes). Additionally, “movement of 

cell or subcellular component” is enriched in wild-type cluster 5 and in  slm1 cluster 1. This 

change reflects a possible delay of the cell cycle that might not be finished before light is on.  

This correlates with the longer duration of cell  division that was measured in the  slm1 as 

compared to the wild-type. The GO term “generation of precursor metabolites and energy” 

was  found  enriched  in  slm1 cluster  5.  This  term  indicates  the  formation  of  precursor 

metabolites  from  which  energy  is  derived.  Those  precursors  can  be  formed  via  different 

pathways including photosynthesis, glycolysis, TCA, pentose phosphate pathway, glyoxylate 

cycle, and fermentation. Except for the last two, non of these pathways were found enriched 

(Table 7.1) because not many reaction of those are associated to cluster 5 (supplementary file 

S6). The glyoxylate cycle is complementary to the TCA for which it pre-processes degradation 

products  originating  from  nucleic-acids,  amino-acids  and  fatty-acids.  Enrichment  for 

degradation  processes  of  the  last  two  is  also  found  in  the  slm1  cluster  5.  Within  the 

fermentation  processes,  we  can  find  the  enriched  butanoate  metabolism  and  amino  acid 

catabolic processes. Since more pathways related to amino acid metabolism are found enriched 

in the  slm1 cluster  5 than in wild-type,  it  is  most  probable  that  more intense amino acid 

catabolism occurs during the dark period.

The  gene  clusters  of  wild-type  display  a  similar  succession  of  transcriptional  events  as 

observed  in  nitrogen  replete  [262],  which  consist  of  protein  synthesis,  photosystem  and 

pigments synthesis, carbon fixation, cellular replication, glycolysis, cell division, and fatty acid 

degradation.  Compared  to  the  nitrogen  replete  condition,  the  nitrogen  limited  condition 
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displays a more prominent role for lipid metabolism, notably prior to and during the dark 

period. Fatty acids related processes are found enriched in clusters 1, 4 and 5 for wild-type, and 

in clusters 2 and 5 for slm1. A vast majority of genes are found in the cluster 3 for both strains.  

Looking at the change in profile for slm1 cluster 3, it is safe to assume that these genes (mostly 

amino-acids synthesis) have shifted their expression to start as soon as light is available and 

result in light-exclusive expression due to an even lower expression at dark. Furthermore, the  

large transfer of genes between wild-type cluster 2 and  slm1 cluster 3 indicates that these 

genes kept an expression pattern that was similar but without an increased expression at the 

end  of  the  light  period  (Figure  S4).  Likewise,  the  genes  in  cluster  2  have  shifted  their  

expression  to  the  earlier  part  of  the  light  period.  The  enrichments  confirm  that  the 

photosynthesis  is  maintained  throughout  the  whole  light  period.  The  genes  in  cluster  3 

participate  in sinking photosynthetic  energy,  fixating  carbon,  and synthesizing the amino-

acids.  Detailed comparison after manual curation is discussed in a dedicated section below. 

Starch and sucrose metabolism is found enriched only in wild-type clusters. This indicates that  

in  slm1 genes in these pathways are affected in such a way that they do not show a shared 

diurnal pattern and do not appear associated to any cluster. This suggests some change in the 

regulation (dysregulation) of  these genes.  No dysregulation was observed between the two 

strains in nitrogen replete condition [262].

7.3.6 Selected processes and pathways

Genes associated to carbon fixation, synthesis of the photosystems, its pigments (chlorophylls 

and carotenoids) and their precursor terpenoid backbone, are all found enriched in the cluster 2 

for both strains. Detailed inspection of these pathways (supplementary File S6) shows all the 

genes annotated to these consecutive reactions are associated to cluster 2. Also for the nitrogen 

replete  conditions  the  expression  pattern  of  these  genes  is  the  same for  both  strains  and 

identical  to the limiting conditions.  This indicates a strong and synchronized regulation of 

these processes with little to no difference between the strains. We can therefore conclude that  

these processes are not affected by either the starch deficiency or by the nitrogen limitation.  

The genes associated to starch synthesis, fatty-acids biosynthesis,  carbon fixation, pyruvate 

metabolism are also tightly regulated within the same time frame. From the detailed pathways 

overview (supplementary File S6), we can see that the carbon fixation remains an early process 

in  slm1, but the other subsequent pathways and reactions are delayed in comparison to the  
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wild-type  strain.  These  delays  reflects  the  higher  difficulty  to  synthesize  the  complex 

machinery required to store energy, due to the nitrogen limitation and the very limited energy 

available before light is turned on. Since expression of genes associated to carbon fixation and 

photosynthesis  machinery  are  not  altered  unlike  what  happens  to  other  key  systems,  we 

deduce that their role is the most essential, if not critical, and their maintenance is given the 

highest priority. Possibly, these processes are directly controlled by the light availability. Even 

if the expression is unchanged, it is possible that the processes are being stretched (or simply 

delayed)  over  time  by  the  lack  of  available  nitrogen  and  starch,  effectively  delaying  the 

subsequent processes as we observed.

7.3.6.1 Starch metabolism

As previously observed in two studies [35, 262], the lack of starch synthesis in slm1 is due to a 

nonsense mutation in the ADP-pyrophosphorylase small  subunit.  The associated gene was 

found to be expressed at much lower level in slm1 than the original gene in wild-type but with 

a  conserved  temporal  regulation.  The  reads  mapping  over  the  mutant  gene  revealed  the 

nonsense mutation and more importantly, a homogeneous distribution over the whole gene 

length. The reduced expression (see Figure 7.6) can be explained by a lower transcription or 

post-transcriptional regulation that would degrade the transcript. Since the diurnal profile of 

the mutated gene is maintained, it is more likely that the transcript is being degraded instead. 

Furthermore,  the  nonsense  mutation  suggests  strongly  that  this  post-transcriptional 

degradation is done by nonsense-mediated mRNA decay (NMD) [274, 275]. Since this quality-

control mechanism is common in eukaryotes, it is very likely that Tetradesmus obliquus, and 

possibly other green algae are subjected to NMD. Nevertheless, it should be noted that  slm1 

has been obtained with UV therefore we can not rule out other mutations that could affect  

regulation.

As previously observed in nitrogen replete condition, the similarity of expression between the 

two strains means that there is little response from the lack of starch. The strongest observed 

difference is for the gene g2865.t1, annotated to the starch synthase (EC 2.4.1.21, Figure 7.6). 

Its  expression is  effectively  doubled  in  the  slm1 as  compare  to  in the  wild-type.  Another 

noticeable difference relates to gene g234.t1, associated to the starch branching enzyme (EC 

2.4.1.18). This gene is overexpressed in  slm1, but with a very similar time profile to that in 

wild-type (Figure 7.6). Though the starch synthesis is operated by few enzymes, we did not 

observe a strong response in the mutant that could be attributed to a transcription regulatory 

mechanism  to  counter  the  incapacity  to  synthesize  ADP-Glucose  and  starch.  Since  the 
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transcript g2865.t1 coding for the starch synthase (EC 2.4.1.21) is the only one that displays a 

change in diurnal expression profile, it is likely to be a regulatory point for synthesizing starch 

in the microalga  T. obliquus. Furthermore, the same transcript had also different expression 

between strains in nitrogen replete condition. Unlike here, the change in nitrogen replete was 

an early shift in expression. However, we can not rule out other post-translational regulatory 

mechanisms.

Similarly to starch synthesis, the expression of genes associated to starch degradation does not 

seem to be affected by the incapacity to synthesize starch. We identified genes associated to 

five enzymatic reactions. The profiles of these genes are shown in  Figure 7.7 except for the 

glucoamylase (EC 3.2.1.3) which did not have a detected time profile. Isoamylase (EC 3.2.1.68) 

was found in the same cluster for both strains and showed identical profiles for both associated 

genes (Figure 7.7). The alpha-amylase (EC 3.2.1.1) has several candidate genes, but significant 

changes were observed only for g17712.t1. This gene was found in wild-type cluster 4 and in 

slm1  cluster  3,  with  an  apparent  higher  expression  during  the  light  period  and  lower 

expression during the dark period. As for the beta-amylase (EC 3.2.1.2), the associated gene 

(g13560.t1) displays a significant difference between the two strains, with a generally higher 

expression and a strong peak right after the switch to dark at 18h (Figure 7.7) for sml1. Finally, 

the glycogen phosphorylase (EC 2.4.1.1) was associated to two genes and both were affected in 

a similar way, since they were found in wild-type cluster 4 and in slm1 cluster 3. While the 

beta-amylase  and  the  isoamylase  are  more  expressed  during  the  dark  period,  the  alpha-

amylase and the glycogen phosphorylase are more expressed at the end of the light period. The 

first  two  are  degrading  beta  glycosidic  linkage,  while  the  later  two  are  degrading  alpha 

glycosidic linkage. The later two are also displaying a stronger decrease right after dark in 

slm1. These results suggest that the genes associated to alpha and beta linkage lysis are not 

only expressed differently over time, but are also regulated differently by starch deficiency.
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Overall, the expression of the genes associated to the starch synthesis and degradation agrees 

with the biochemical measurements. For the wild type, the genes associated to starch synthesis 

show diurnal regulation with higher expression during the first half of the light period, which 

agrees with the accumulation of starch later on. Likewise, the genes involved in degradation 

are upregulated either just before or during the dark period, which agrees with the observed 

starch degradation.  With respect  to  slm1,  the genes  associated to the starch synthesis  are 
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Figure 7.6: Diurnal expression of genes associated to starch synthesis. Points represent mean values for  

each time point, the ribbon covers the minimum and maximum values for each time points. The genes  

associated to the same EC number are plotted together with the same scale Each plot is labeled with  

the  reaction  name,  the  corresponding  EC  number,  and  the  color  legend  for  each  gene-strain  

combinations.  For  each  gene-strain  combination,  the  number  after  the  #  symbol,  indicates  the  

associated cluster and #0 indicates that the gene showed not significant changes in expression over  

time. The dark area corresponds to the dark period.
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strongly upregulated during the day, which may be a physiological response to the inability to 

shuttle an excess of energy and carbon to starch. Likewise, a few of the degradation enzymes 

are up regulated during late light period or during the dark period, which may be again, a 

response to the lack of transient energy due to the absence of starch.
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Figure 7.7: Diurnal expression of genes associated to starch degradation. Points represent mean values  

for each time point, the ribbon covers the minimum and maximum values for each time points. The  

genes associated to the same EC number are plotted together with the same scale Each plot is labeled  

with the reaction name,  the corresponding EC number,  and the color  legend for  each gene-strain  

combinations.  For  each  gene-strain  combination,  the  number  after  the  #  symbol,  indicates  the  

associated cluster and #0 indicates that the gene showed not significant changes in expression over  

time. The dark area corresponds to the dark period.
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7.3.6.2 Metabolism of lipids and TAGs 

The wild-type expression of genes associated to lipid synthesis fits a general trend: highest 

expression is reached right at the beginning of the light period, lowest expression is reached 

half way of the light period, increase of expression right before the dark period, and slight 

decrease during the dark period. This trend is very similar to the TAG productivity measured 

in Figure 7.1D, and the first peak corresponds to the increased TAG productivity at 6h (Figure

7.1), but with a short delay. Remarkably, the same genes in slm1 display larger variations in 

expression with the lowest expression during the dark and highest expression during the day. 

The increased expression at the peaks is roughly 1.5 to 2 times higher in slm1 than in the wild-

type.  This  difference  suggests  that  the  lack  of  the  ability  to  synthesize  starch  is  actively 

compensated  by  increased  accumulation  of  lipids  and  TAG  during  the  light  period. 

Furthermore,  the  presence  of  starch  correlates  with  a  maintained  expression  of  the  lipid 

synthesis enzymes during the night, whereas in the absence of starch these enzymes are no 

longer expressed in the night. This suggests that starch is possibly used to synthesize lipids and 

TAG when there is no photosynthesis.

TAG and lipid synthesis

In the pyruvate metabolism, pyruvate dehydrogenase subunits synthesizing acetyl-CoA (EC 

1.2.4.1, 2.3.1.12, 1.8.1.4) appear in wild-type cluster 1 and slm1 cluster 2 (File S6), which could 

be related to the fact  that  slm1 cannot synthesize acetyl-CoA from starch during the dark 

because starch is not present. Acetyl-CoA is involved in many processes, but most importantly, 

it is the building block to start the lipid synthesis by the Acetyl-CoA carboxylase (ACC, EC 

6.4.1.2). As seen in Figure 7.8, the best candidate genes for the ACC are all found in wild-type 

cluster 1 and slm1 cluster 2 and 3. All these time profiles are very similar to each other, which 

is synchronized with the described synthesis of acetyl-CoA. The following reaction in the lipids 

synthesis is the Beta-ketoacyl-ACP synthase I (KASI, EC 2.3.1.41). Two genes were associated 

to this reaction, g16858.t1 and g14707.t1, where g16858.t1 is identified with a trans-membrane 

domain and g14707.t1 is not. The two genes are expressed with near identical profiles fitting 

into wild-type cluster 1 and  slm1 cluster 2. Overall, the same pattern is observed for genes 

associated to reactions in the lipids biosynthesis  (supplementary Figure S7).  The Acyl-CoA 

synthetase (EC 6.2.1.3) is associated to two genes, displaying very different patterns. This is 

because it is a reversible reaction that is occurring also in the beta oxidation pathway. Our 

results and the manual curation of the annotation confirm that g1817.t1 performs the forward 
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reaction, towards synthesis, while g4377.t1 performs the reverse reaction. The forward reaction 

is in phase with the other synthesizing genes.

The synthesis  of  TAG can  be  performed by two  different  enzymatic  reactions,  known as 

diacylglyceride  acyltransferase  (DGAT,  EC  2.3.1.20)  and  phospholipid  diacylglycerol 

acyltransferase (PDAT, EC 2.3.1.158). While several DGAT genes have been identified in green 

algae,  our  functional  annotation  revealed  two  genes  with  high  confidence  [276].  The 

expression of these two genes is noticeably different, with g2587 being the only one with a 

temporal regulation. In wild-type, the gene g2587 is highly expressed during the dark period. 

In  slm1, its profile is  very similar to the wild-type but with overall  higher expression and 

apparently  more  exclusive  to  the  dark  period.  In  slm1,  PDAT  is  displaying  a  somewhat 

opposite expression to DGAT, meaning that fatty acids from phospholipids are transferred 

onto diacylglycerides (DAG) to form TAG during the light period and free fatty acids are 

added  to  DAG  during  the  dark  period.  This  seems  to  agree  with  the  findings  in 

Chlamydomonas reinhardtii,  where PDAT mediated membrane lipid turnover is helping to 

recycle  phospholipids  and  synthesize  TAG  [277].  Interestingly,  the 

monogalactosyldiacylglycerol (MGDG) synthase (EC 2.4.1.46) is highly expressed during the 

light period with a similar pattern in both strains. This expression is not synchronized with any 

of  the  other  lipids  synthesis  reactions,  but  because  MGDG is  the  main  lipid  form of  the 

chloroplast  membrane,  the  expression  of  the  MGDG synthase  is  logically  correlated  with 

cellular growth and chlorophyll synthesis.
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Figure 7.8: Diurnal expression of genes associated to lipid and TAG synthesis. Points represent mean 

values for each time point, the ribbon covers the minimum and maximum values for each time points.  

The genes associated to the same EC number are plotted together with the same scale Each plot is  

labeled with the reaction name, the corresponding EC number, and the color legend for each gene-

strain combinations. For each gene-strain combination, the number after the # symbol, indicates the  

associated cluster and #0 indicates that the gene showed not significant changes in expression over  

time. The dark area corresponds to the dark period.
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TAG and lipid degradation

In  the  wild-type  strain,  the  diurnal  expression  of  genes  associated  to  TAG  and  lipid 

degradation shows a temporal regulation very similar to that of genes associated to synthesis, 

but with a lower expression.  These genes  are expressed higher during the day period and 

lowest at night. This transcriptional regulation is coherent with the measured accumulation of 

TAG and lipids during the day and night, and with a very limited turnover. However, the slm1 

strain is regulated in a complete opposite way, strongly over-expressing the genes associated to 

TAG and lipid degradation during the dark period (Figure 7.9). Though the profile of  slm1 

under N-limitation is very similar to that in the previously analyzed replete condition, the 

amplitude of the up-regulation at dark is much more important, with fold changes ranging 

from 1.5 to 2.5 folds. Interestingly, also the acyl-CoA oxidase (EC 1.3.3.6) is now displaying a 

strong increase in expression in slm1 compared to the wild-type.

The first and second step to degrade TAG is performed by the same enzyme, the triacylglycerol  

lipase (EC 3.1.1.3). Its highest expression is measured at 18h, the first time point after dark, and 

its  expression reduces progressively until  6h (Figure 7.9). Next,  the last  fatty acid chain is 

removed from the glycerol by the monoacylglycerol lipase (EC 3.1.1.23). Out of the four genes 

annotated  to  this  reaction,  only  two  displayed  some  expression  variation,  although  these 

appear lowly expressed and do not display any temporal regulation (Figure 7.9). The following 

step is  the  Acyl-CoA synthetase,  the reversible  reaction described in the synthesis  section 

(Figure 7.8), for which we have identified separate candidates proteins for each direction. The 

degrading candidate (g4377.t1) is highly expressed during the dark period, which is in phase 

with the other degrading candidates. The four following reactions are repeated reactions and 

are performed by three enzymes: Acyl-CoA oxydase (EC 1.3.3.6), Multifunctional MPF-a (EC 

1.1.1.35, 4.2.1.17),  Acetyl-CoA acyltransferase (EC 2.3.1.16),  Acetyl-CoA C-acetyltransferase 

(EC 2.3.1.9). All the reactions are highly expressed in slm1 during the dark period. Only the 

Acetyl-CoA C-acetyltransferase is expressed with a similar time profile in the wild-type strain 

but at a lower level. Additionally, the enzyme representing the beta oxidation of unsaturated 

fatty-acids, enoyl-CoA isomerase (EC 5.3.3.8), is found to be expressed in the same cluster as 

the other degrading enzymes (sml1 cluster 5, supplementary file S6).

The acetyl-CoA molecules produced from the described reactions can then be utilized by the 

organism. For example,  the acetyl-CoA can be broken down in the TCA cycle to generate 

energy or  can be converted into succinate and malate  through the  glyoxylate  cycle.  Next 
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succinate  and  malate  can  be  converted  into  oxaloacetate  through  the  TCA  cycle  in  the 

mitochondria, and finally converted into hexoses or sucrose through the glyconeogenesis in the 

cytosol [278]. Overall, all these points strongly suggest that a global regulatory mechanism, as 

observed in A. thaliana [279], allows the organism to use TAG as a form of transient energy 

storage, which accumulates during the light period and is degraded during the dark period.
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Figure 7.9: Diurnal expression of genes associated to lipid and TAG degradation. Points represent mean 

values for each time point, the ribbon covers the minimum and maximum values for each time points.  

The genes associated to the same EC number are plotted together on the same scale.  Each plot is  

labeled with the reaction name, the corresponding EC number, and the color legend for each gene-

strain combination. For each gene-strain combination, the number after the # symbol, indicates the  

associated cluster and #0 indicates that the gene showed not significant changes in expression over  

time. The dark area corresponds to the dark period.
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7.3.6.3 Nitrogen metabolism

The expression profiles of the genes associated to nitrogen metabolism are displayed in Figure

7.10. Very little difference is noticeable between the strains at the first sight as most of the 

profiles  are  overlapping  and  only  one  gene  stands  out.  Five  genes  from three  of  the  six 

annotated reactions are in cluster 4, resulting in an enrichment of this pathway. These strong 

similarities suggest that nitrogen metabolism in both strains is regulated in a very similar way.  

In other words, nitrogen metabolism is mostly affected by nitrogen limitation and not from 

starch availability.

In the previous paper on N-replete conditions we could not find a protein for nitrate reductase.  

In this  work we were able to identify a candidate protein for nitrate reductase  [262].  The 

EnzDP score for this protein came second. However, its expression is sufficient, unlike the top 

scored protein that was not found expressed in both the nitrogen limited condition as well as 

the  nitrogen  replete  condition.  Both  strains  display  the  exact  same  pattern  and  level  of 

expression for this protein, fitting the associated cluster 4 pattern but with only the peak of 

expression before the dark period(Figure 7.10). This diurnal expression pattern indicates that 

for  the  wild  type  and  slm1 under  nitrogen  limitation,  nitrogen  is  assimilated  gradually 

throughout the whole light period and gradually reduced right before the dark period until the 

very early light period. In the nitrogen replete condition, the expression of the transcript is for 

sml1 is identical to the one observed here in the nitrogen limited condition, and is part of the 

slm1 cluster A as defined in the previous N-replete paper  [262]. Besides, the wild-type the 

expression is very different and fits the pattern of cluster 5 as defined in the N replete paper 

[262], with a progressive expression throughout the light period similar to the slm1 pattern in 

this study, but with a continued high expression during the late day and early night, where the 

expression of  the  slm1 dropped. Its  expression reached its  highest  value early in the dark 

period after which it decreased. This seems to indicate that nitrogen is probably metabolized 

during the dark period. Since this reaction requires the presence of nitrogen and energy in 

form of NADH, it  can only occur in nitrogen replete conditions  for strains with available 

transient energy storage like starch.

The genes associated to the nitrite reductase and the nitrite reductase NO-forming are too 

lowly  expressed  to  detect  any  time  pattern.  Hence,  it  is  unlikely  that  these  are  used  by 

Tetradesmus obliquus to perform the reduction of nitrite. Besides, two genes were associated to 

two forms of hydroxylamine reductase (EC 1.7.99.1,  Figure 7.10).  These two are expressed 

differently throughout the diurnal cycle, their expression is not affected by the mutation of 
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slm1, and the expression of the hybrid cluster protein (HCP) is much higher (~10 folds) . More 

interestingly, the diurnal expression of the transcript associated to the HCP is nearly identical 

to  the  one  observed  from  the  nitrate  reductase.  In  addition,  the  same  expression  is  also 

observed between the two transcripts in nitrogen replete condition. Since the gene identifiers 

are given by their order of appearance in the genome, it is clear that the nitrate reductase and 

the  HCP  are  neighbor  genes,  further  indicating  that  these  genes  have  a  special  bound. 

Additionally, the hydroxylamine reductase reaction is fairly similar to the nitrite reductase and 

was even found to perform the NO forming nitrite reduction [280]. We are pushed to believe 

that the proteins translated from these transcripts (g618.t1 and g619.t1), though different than 

known enzymes, are performing the successive reactions of nitrate and nitrite reduction. It 

would then be valuable to confirm the functionally of these two proteins.

The glutamine synthetase (GS, EC 6.3.1.2, g10416.t1) is highly expressed throughout the whole 

light period, and lowly expressed during the dark period, effectively fitting clusters 2 and 3 of 

wild-type and slm1 respectively. In both strains the expression is very similar. Compared to our 

previous  observations  in  nitrogen  replete  conditions,  its  maximum expression  in  nitrogen 

limiting conditions is about 3 times lower and its expression profile is very different. In the 

nitrogen limited condition, its expression is high throughout the whole light period, while in 

nitrogen replete, its expression was high during the early light period and the dark period. 

Among the  glutamate  synthase  (GltS,  EC 1.4.1.14)  in  nitrogen replete  condition,  only  the 

ferredoxin-dependent  glutamate  synthase  (fd-GltS)  was  displaying  significant  differences 

between the strains and it  was down-regulated in  slm1.  However,  in  this  nitrogen limited 

condition, fd-GltS only displays a marginal difference at 3h between the strains with a slight  

overexpression. The levels of expression are comparable to slm1 in nitrogen replete condition. 

Most  importantly,  while  the  two  NADH  dependent  GltS  are  displaying  a  similar  profile 

between strains, their expression is roughly 2 folds higher in slm1 than in the wild-type. For 

glutamate synthase (GltS, EC 1.4.1.14) both genes conserved a similar expression pattern, but 

with an expression twice higher in  slm1 than in wild-type. Overall, it appears that when  T.  

obliquus is exposed to nitrogen limitation, it relies more on the NADH dependent GltS than 

the fd-GltS, and with an even stronger expression for slm1. It would seem that with increasing 

stress, GltS is more prominent over fd-GltS, possibly due to stopped ferredoxin oxidation by 

the photosystem I.

Green algae are known to synthesize glutamate with GS, GltS, and fd-GltS, while ammonia is 

recycled by the glutamate dehydrogenase (GDH, EC 1.4.1.3) from metabolites such as amino 

acids [254]. Deamination by GDH suggests that amino acids are used as source of energy and 
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possible ammonium for protein recycling during the heterotrophic condition present in the 

dark period.  Proteins  are  recycled  for  different  purposes:  to  regulate  enzyme activities,  to 

remove abnormal  proteins,  to  generate  energy and to  adapt  to  the  changing  environment 

[281]. Protein turnover is believed to be an adaptive process and also to be one of the most 

energy  demanding  processes  during  dark  respiration  [282–284].  Similarly  to  our  previous 

findings in nitrogen replete  conditions,  among the genes  associated to  GDH, only g547.t1 

displays a difference between the strains with for slm1 a lower peak of expression just before 

dark and a  higher  peak  of  expression just  after  the  start  of  the  dark period.  Even if  the  

difference between the strains is not large and the peak before dark has overlapping values, the 

values in the second peak are significantly different. In fact, the replicate values are much 

closer to each other, and the minimum difference between the strains is ~1.5 folds higher for 

slm1. More subtly, after being subjected to nitrogen limitation, only slm1 kept the high peak of 

expression after dark. The stronger GDH activity, the enrichments for “generation of precursor 

metabolites and energy”, enrichment for diverse amino acids pathways (including degrading 

ones),  transaminases  candidate  proteins,  and  other  enzymes  involved  in  the  amino  acids 

degradation, indicate that amino acids are actively degraded at the end of the light period and 

during the dark period, with higher slm1 activity in the dark period.
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Figure  7.10: Diurnal expression of genes associated to nitrogen metabolism. Points represent mean  

values for each time point, the ribbon covers the minimum and maximum values for each time points.  

The genes associated to the same EC number are plotted together on the same scale.  Each plot is  

labeled with the reaction name, the corresponding EC number, and the color legend for each gene-

strain combination. For each gene-strain combination, the number after the # symbol, indicates the  

associated cluster and #0 indicates that the gene showed not significant changes in expression over  

time. The dark area corresponds to the dark period.
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7.3.6.4 Glyoxylate cycle

The “Glyoxylate and dicarboxylate metabolism” that is enriched in wild-type cluster 1 and 3, 

and is enriched in  slm1 cluster 4 and 5. The glyoxylate cycle serves as an intermediary step 

that accepts the products from degradation pathways of non glycolytic metabolites such as 

amino-  fatty-  and  nucleic-acids.  The  resulting  pyruvate  can  then  be  transported  to  the 

mitochondrion to generate energy through the TCA cycle. This is a sign that the three type of  

metabolites cited above can be degraded to generate energy during the dark period in slm1. In 

the previous sections, we have shown that during the dark period, slm1 display clear signs of 

energy generation and degradation of amino-acids, fatty-acids and TAG. However, slm1 do not 

seem to degrade them during the dark period (supplementary Table S8).

The glyoxylate cycle converts two acetyl-coA molecules to one malate molecule and contains 

two specific enzymes that are not found in the TCA cycle. The transcripts associated to these 

key enzymes, cycle malate synthase (MS, g18100.t1) and isocitrate lyase (ICL, g13192.t1), are 

both found in wild-type cluster 3, while for slm1 they are in cluster 5. Their expression profile 

in  slm1 is  identical  to  the  lipid  degrading  enzymes  (I.g.  ACC,  Figure  7.9),  and  most 

importantly, orders of magnitude higher than the wild-type. We have also analyzed the other 

reactions involved in the glyoxylate cycle, and we have identified candidate proteins that agree 

with  slm1 dark  period  activity  (Supplementary  File  S9).  These  results  suggest  that  the 

glyoxylate cycle is only active in slm1 and exclusively during the dark period. This confirms 

that in slm1 fatty acids are broken down to acetyl-CoA to directly generate energy from. At 

the same time the glyoxylate pathway is used to convert acetyl-CoA to intermediates of the 

TCA cycle  to keep this  cycle running,  or use them to make various biomass components.  

Finally also some amino acids are broken down to glyoxylate or acetyl-CoA and can be used in 

this way.

7.4 Conclusions

Under continuous nitrogen limitation, both T. obliquus wild-type and slm1 showed a repeated 

diurnal  dilution  pattern,  with  the  slm1 showing  a  lower  24 h  dilution  rate  (growth  rate) 

compared to the wild-type. The transcriptome analysis revealed a similar diurnal pattern, with 

a  reduced  amplitude  of  the  changes  in  expression  for  slm1.  Under  nitrogen  limitation, 

T. obliquus wild-type  continued  to  prefer  starch  to  store  energy  and  carbon.  Starch  was 
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accumulated to an average content of approximately 0.25 g·gDW
-1. Additionally, starch showed 

small diurnal oscillations, confirming its role as a transient energy storage compound, but to a 

lower extent than under nitrogen replete conditions. Analysis of expression changes during the 

cycle  of  genes  associated to starch synthesis  and degradation correlate  with the measured 

productivity. The possibility to synthesize starch provides an advantage for the wild-type as 

compared to slm1 as it has a higher energy conversion efficiency into the biomass components. 

With respect to the diurnal cycle this higher efficiency of the wild-type is reached especially 

during the last hours of light, where starch is accumulated. The energy conversion efficiency of 

photons into biomass components for the slm1 was only half of the one obtained for the wild-

type, which resulted in a decrease in biomass productivity in slm1 (from 1.29 gDW·L-1·day-1 for 

the wild-type to 0.52 gDW·L-1·day-1 for the  slm1). However, the TAG content in the  slm1 was 

higher than for the wild-type (average steady state values of approximately 0.27 g·gDW
-1 for 

slm1 compared to 0.07 g·gDW
-1 for the wild-type),  which resulted in a slightly higher  TAG 

volumetric productivity for the slm1 as compared to the wild-type (0.09 g·L-1·day-1 for the wild-

type and 0.14 g·L-1·day-1 for the slm1).

The transcriptome analysis revealed breakdown of lipids and proteins in slm1 during the dark 

period, which are probably used for the generation of  energy in the absence of  starch.  In 

agreement with this, the enzymes in the glyoxylate cycle are upregulated in the slm1 mutant. 

This cycle is used to convert the acetyl-CoA from amino acid and fatty acid breakdown to 

intermediates of the citric acid cycle to either keep this cycle running or to be converted to 

other biomass components. Our measurements do not show significant diurnal variation in 

DW proteins and TAG content, which indicates that substantially less energy is generated in 

the mutant during the dark period.
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   Discussion

8.1 Rationale for the work carried out and 

background on algae and transcriptomics

Microalgae are unicellular photoautotrophic organisms that played and are still playing a very 

important  role  on  the  planet.  Today’s  global  energy  needs  still  largely  rely  on fossil  fuel  

extraction  (~66%),  while  almost  all  renewable  energy  sources  are  based on electricity  [7]. 

Efforts are being made to transition to sustainable and carbon-neutral fuel production. The first 

generation of biofuels were produced using plants, but the competition with food production 

became quickly an issue. In this regard,microalgae that accumulate large amounts of lipids 

precursors of biofuel molecules are a good alternative for sustainable biofuel production since 

they have many advantages over plants [16, 26, 106]. Still, production costs are currently too 

high  and  the  technical  limitations  too  strong  for  a  microalgae  based  process  to  become 

economically feasible  at  large industrial  scale.  To become a viable alternative at  industrial 

scale, the total solar-to-product conversion efficiency needs to be improved. This can be done 

by  improving  the  design  of  the  used  bioreactors  and  bioprocesses,  and  by  improving  the 

microalgal strains through for example metabolic engineering. To be able to do rational strain 

improvement  through  metabolic  engineering,  detailed  knowledge  of  algal  metabolism  in 

relation to production conditions is required.

The aim of this thesis was to obtain a better understanding of algal physiology by analyzing 

the transcriptional landscape of lipid-producing microalgae under conditions relevant for large 

industrial scale production. Thus, we studied the effect of light-dark cycles, salt water, intense 

light, and nitrogen limited or depleted conditions.

The internal phenotype can be studied by analyzing the different omics layers that compose it. 

As displayed in the  Figure 8.1, the layers composing the internal phenotype range from the 

genome and  epigenome through the transcriptome and proteome till  the metabolome. The 

metabolome, in turn, participates in making the external phenotype. The transcriptome is an 

intermediary  layer  and  it  is  possible  to  extrapolate  information  from the  other  layers  by 

analyzing its composition. While the transcriptome is the direct result from the epigenetic and 

transcriptional  regulation,  interpreting  the  possible  outcome from the  subsequent  layers  is 

more difficult. This is where the absolute expression of genes alone is not sufficient, since it 

mainly informs if each gene is expressed or not. While comparing the expression between 

genes  can  be  informative,  their  regulation  can  be  very  different.  Furthermore,  comparing 
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transcriptomes under different conditions allows to calculate the relative composition of the 

transcriptome and  informs  on  the  importance  of  genes  under  each  condition.  Whether  a 

relatively high level of mRNA will result in higher protein levels depends on the synthesis and 

degradation rate of  this  protein.  Although it  not impossible,  it  seems unlikely that  for the 

majority of proteins synthesis and degradation are up and down regulated in the same amount. 

Often, mRNA abundances can explain ~40% of the variations in protein concentration, while 

the  other  ~60% is  generally  explained by post-transcriptional  regulation  and measurement 

noise [285]. Thus, a relative increase in mRNA likely results in a higher protein level. However, 

the relation between proteome and metabolome is difficult to predict. The flux depends on the 

activity of the different proteins, which is partly determined by the metabolome itself.

Despite these limitations, even if transcriptomics alone cannot give a perfect snapshot of the 

internal phenotype, it  is an efficient high throughput method to globally estimate how the 

organism adapts to its environment. While observations and hypotheses can be confirmed by 

the transcriptome landscape, unknown or unexpected ones should be validated by means of 

other omics or dedicated and specific biochemical measurements.
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organism. The internal phenotype bridges the gap between the genotype and the external phenotype.
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8.2 Annotation

8.2.1 Ettlia oleoabundans: de novo assembly

The initial annotation of Ettlia oleoabundans (Neochloris oleoabundans) was performed using 

common,  albeit  largely  uncurated  and  automatic  methods,  which  rely  on  plant  genome 

annotations [38, 47]. As a consequence, the proportion of wrong annotations is certainly high, 

but impossible  to determine to which extent.  Another  reason for the poor annotation was 

because the de novo assembly from RNA-seq data, which is in principle possible, was difficult 

in itself  (chapters Error: Reference source not found and Error: Reference source not found). 

All RNA-seq specific tools resulted in more than four times the expected ~20000 transcripts, 

with many small contigs. This appeared to be due to the high quantity of intronic sequences 

present  in  the  sequencing  reads.  These  reads  originate  from rare  cases  of  sequenced pre-

mRNA. Even full intron sequences could be recovered due to the high sequencing depth, which 

was made possible by combining 16 samples from the different conditions present in Chapters 

Error: Reference source not found and Error: Reference source not found. These lead to more 

sequences being partially assembled and more sequences detected as either different genes or 

splice variants.  Even though it  was designed for  genome assemblies,  IDBA-UD performed 

better with our  samples  because it  is  designed for highly uneven sequencing depth  [157]. 

While this method would allow very low sequencing depth regions such as intronic regions, it 

could allow to assemble the full transcript instead of generating multiple contigs. This way, a 

minority of  the contigs contained intronic  sequences  which possibly led to  frame-shifting, 

rendering their annotation either wrong or impossible. Due to of the lack of algae data in the  

databases and because their genetic background is much more different than those of other 

eukaryotes, standard alignment methods (e.g. those relying on blastP) were not effective and 

reliable  enough,  as  described  in  the  Error:  Reference  source  not  found.  The  following 

annotation method developed for this purpose was laborious as it combined different methods 

and different sources of sequences for alignment. The method was based and performed in 

Blast2GO [92]. The sequence similarity was performed using DELTA-BLAST, which improves 

BLAST alignment by increasing the score in conserved regions (domains) [91]. The alignment 

was done stepwise, starting with closely related species and relying on curated databases. Only 

the transcripts without matches under a strict threshold were used for the following steps. 
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Besides, the transcripts were also annotated using InterProScan [44], to identify the domains, 

protein families, and their associated GO terms. The GO terms from both methods were then 

combined  and  the  corresponding  Enzyme Commission  numbers  (EC)  were  retrieved.  This 

method yielded satisfactory results because only one enzyme frzom the metabolic model of 

Error: Reference source not found was not identified.

8.2.2 Tetradesmus obliquus: genome based read mapping

For  Tetradesmus obliquus the situation with respect to annotation was very different as the 

genome was previously sequenced and assembled (Error: Reference source not found), which 

served  as a solid base to perform the feature annotation that was needed for the expression 

analysis done in Chapters Error: Reference source not found and Error: Reference source not

found. Using BRAKER1 [226] and 38 RNA-seq samples, we were able to identify the genes 

with their accurate exons and introns positions. The resulting protein sequences were then 

annotated to EC numbers using EnzDP [231]. This method was published in 2015, after the 

annotation for E. oleoabundans was done in Chapters Error: Reference source not found and 

Error:  Reference  source  not  found, and was  unknown to  us  until  early  2017.  Unlike  this 

previously used method,  EnzDP is a bottom-up method that makes the direct link between 

sequence structure and enzymatic function. For this reason, the result is more accurate and has 

a much larger number of identifiable EC numbers. While the scoring method in EnzDP is very  

efficient, using a simple threshold, it is still difficult to effectively reduce false positive matches 

without  risking  to  generate  false  negatives.  To  improve  the  result,  the  best  scores  (both 

likelihood-score and max-bitscore) were selected with a restriction on the maximum score gap 

between  two  proteins  (Figure  8.2).  Using  this  approach,  each  EC  number  had  much  less 

proteins associated to them (EC→ Proteins,  Figure 8.2 A),  while keeping the best  possible 

matches within a reasonable range. Then, the same score-gap filter was applied but now for 

each protein regarding their association to EC numbers (Protein → EC number , Figure 8.2 B). 

This resulted in each protein having a more limited number of associated EC numbers and thus 

reactions. However, after discovering the polyketide synthase of  T. obliquus, which contains 

the functions of multiple enzymes, it was clear that this score distribution method described 

above would discriminate this type of proteins. To avoid missing potentially useful annotation, 

it  was  decided  to  use  a  standard likelihood-score  threshold  at  the  risk  to  require  manual 

curation later on. Later on, manual correction was necessary to find the correct  candidate 
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proteins for the reactions in few pathways (e.g. lipids and starch metabolism in Chapter Error:

Reference  source  not  found and  Error:  Reference  source  not  found).  The  scores  for  each 

proteins and EC numbers were evaluated, all the while aligning the protein sequences using 

online  tools  [44,  91,  276].  This  manual  selection  was  on  par  with  the  aforementioned 

automated score distribution based filtering method.  This means that the automated method 

could  replace  the  manual  labor  while  yielding  comparable  quality.  The automated method 

seems to be a very good trade-off between removing false positive matches and limiting the  

removal of true positive. Besides, the case of proteins such as the polyketide synthase is rather  

rare and could be easily dealt with manual treatment. The method could be further improved 

using a dynamically selection by measuring the euclidean distances between the scores of each 

proteins.  The  distances  from both  score  types  could  then  be  used  for  simple  hierarchical 

clustering. Naturally, the clusters would contain the most similarly scored proteins, and the top 

cluster would contain the best annotations.

The annotation method of EnzDP, used for  Tetradesmus obliquus, is then very competent at 

identifying  protein  functions of  microalgae.  The filtering  method (Figure 8.2)  should  yield 

much better ratio between true positive and false positive protein-EC number associations. 

Furthermore, this method relies on building models directly from manually curated proteins in 

Swiss-Prot. With each update of Swiss-Prot, more proteins from various organisms enrich the 
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Figure 8.2: Hypothetical annotation results from EnzDP and selection of most suitable candidates. (A)  

case  of  one protein  annotated to  few EC numbers.  (B)  case  of  one EC number  annotated to  few  

proteins. The grayed lines represent the best protein  ↔ EC number annotation. The red background  

values are too distant from the closest higher value. The green background values are within a short  

distance of the closest higher value.

Protein ID EC number likelihood-score max-bitscore
A

ProtA EC:1.1.1.1 1 691.6
ProtA EC:1.1.1.2 0.91 400.2
ProtA EC:1.1.1.3 0.098 274.7
ProtA EC:1.1.1.4 0.75 752.8

B
ProtB EC:2.1.1.1 1 489
ProtC EC:2.1.1.1 1 752.9
ProtD EC:2.1.1.1 0.3 687.3
ProtA EC:2.1.1.1 0.1 120



Chapter 8 

database and wil  ultimately help the method in defining better models for each enzymatic 

reactions.

8.2.3 Current state of annotation

Despite that our current annotation state still needs further curation, a substantial number of 

associations over a very broad range of functionalities was attained and is shown in Table 8.1, 

which contains  basic  information for  the number of  proteins  and associated  EC numbers. 

There is a large difference in total proteins between the displayed species. This is because other 

organism  contain  multiple  projects  with  multiple  copies  of  the  same genes,  proteins  and 

annotations. There  are more proteins stored in UniProtKB for the human species than for the 

whole  Chlorophyceae  class.  This  reflects  the  fact  that  the  quantity  of  curated  data  for 

microalgae  severely  lacks  behind   (Error:  Reference  source  not  found)  [38,  47].  Both  T. 

obliquus and C. reinhardtii count for a large part of the proteins in their common phylum and 

class. For well studied species like Humans and A. thaliana, the difference between the number 

proteins (prot total) and proteins annotated to an EC number (prot-ec total) is much smaller 

than for the microalgae species in this table. As expected from the statements in the previous 

paragraph,  our  automated annotation  contains  significantly  larger  amount of  EC numbers 

annotated per protein.  Despite this  easily fixable over-fitting, it  is  clear that thanks to the 

bottom-up approach of EnzDP, we were able to identify a very large number of functions. The 

number of unique EC numbers identified in our genome is comparable to the number of EC 

number found in the whole UniProtKB for human proteins, although  there still is probably a 

not negligible number of false positives. It is also important to stress that the annotation of T.  

obliquus was done two years before. With the steady growth of SwissProt, today’s annotation 

should potentially yield more EC numbers and possibly less false positives. Among the 18768 

proteins of T. obliquus available in UniProtKB, 18538 proteins (95%) are from our contribution 

and are labeled by “BQ4739_LOCUSxxx”. Yet, key reactions were still missing for our analysis. 

This automated annotation should be a useful complementary information from the already 

provided annotation with the published article (Error: Reference source not found).
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Table 8.1: Number of proteins and EC annotations found in UniProtKB and Swiss-Prot, in comparison 
with annotations done for T. obliquus. The column UniProtKB regroups the databases of Swiss-Prot and 
TrEMBL, respectively the computationally annotated and manually annotated records. The columns 
“Prot” report the number of proteins. The column “Prot-EC total” represents the total number of times 
an EC number  is  annotated to  a  protein.  The column “Prot-EC unique” represents  the number of  
proteins annotated to an EC number. The column “EC unique” represents the number of unique EC 
numbers annotated. These numbers were collected in May 2019. Data obtained for T. obliquus are from 
Chapters Error: Reference source not found-Error: Reference source not found

UniProtKB Swiss-Prot
Prot

total

Prot-EC

total

Prot

unique

EC

unique

Prot

total

Prot-EC

total

Prot

unique

EC

unique
H. sapiens 171063 12780 12279 1393 20421 3800 3384 1373
A. thaliana 89205 6932 6605 1106 15856 4455 4169 1070
Chlorophyta

(phylum)

314813 20078 19811 873 1168 311 305 80

Chlorophyceae

(class)

149368 8479 8348 835 614 149 148 58

C. reinhardtii 31244 1146 1101 386 331 73 73 49
T. obliquus 18768 577 557 230 69 18 18 8

This thesis

T. obliquus 19723 4543 3911 1315

8.2.4 Microalgae-specific protein domains for improved 

annotation

More advance alignment methods use forms of position specific score matrices, giving higher 

scores for the regions and amino-acids that are evolutionarily conserved. The tools used to 

annotate  Ettlia  oleoabundans  use  protein  domains  to  identify  the  conserved  regions  and 

functional groups. Each species has its own repertoire of protein domain (domainome). While 

many domains are known to be shared between species, they can also be kingdom specific 

[286]. Profile Hidden Markov Models are very powerful to deal with distant organisms, but the 

detection of domains is still limited at increased genetic distances. This is what we have shown 

in Error: Reference source not found, where we demonstrate that proteins of microalgae have 

low sequence similarity with the domains in the protein family database (PFAM). Even though 
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the  known  domainomes  are  diverse,  they  are  clearly  lacking  domains  discovered  from 

microalgae. Using all the proteins available in UniProtKB for the Chlorophyta (Table 8.1), it 

would be possible identify the domainome of algae. The newly found domains could then be 

compared to existing ones, functionally annotated, and ultimately, they would greatly help in 

the difficult task of protein alignment and annotation for microalgae.

8.2.5 The importance of protein localization

Although we annotated a large number of proteins to enzymatic reactions, we do not have the 

information on where the reactions occur. While some reactions occur in only one organelle, 

many can occur in more than one compartment and are subject to different regulation. Clearly, 

information  on  localization  of  proteins  and  metabolic  processes  is  very  important  for 

understanding  the  algal  metabolism  and  for  the  development  of  genome  scale  metabolic 

models.  This raises three questions: is the gene originating from the nuclear genome or an 

organelle genome? In the case of the nuclear genome, what are its final destination(s), which 

organelle  genome  the  gene  is  originating  from,  which  organelle  the  protein  is  being 

transported  to,  and  how the  necessary  metabolites  are  transported  between  the  organelle 

compartments.  The first  question  can  be  easily  answered  is  if  the  organelles  and  nuclear 

genomes are known like it is the case in this thesis for Tetradesmus obliquus (Chapters Error:

Reference source not found,Error:  Reference source not  found,Error:  Reference source not

found). In the case of de novo assembly, only mapping the contigs over other microalgae could 

give this information. However, the protocol used for illumina whole-transcriptome sequencing 

filters  for  polyadenylated  transcripts.  Since  mitochondria  and  chloroplast  have  a  low 

abundance of these, in addition to a  low abundance of RNA in general, no expression from 

these  organelles  was  detected  in  Chapter  Error:  Reference  source  not  found and  Error:

Reference source not found despite the large data-sets.  Again, today’s UniProt’s  automatic 

pipeline  has  identified  the  subcellular  location  for  some  of  our  T.  obliquus proteins.  The 

annotation method used for  T.  obliquus could be improved by integrating the information 

about the protein location and generate separate models for each sub-cellular compartment. To 

this day [June 2019], Swiss-Prot counts 16,459 entries associated to mitochondrion, 11,623 on 

chloroplasts.  Considering  the  numbers  provided  in  the  Table  8.1,  these  numbers  are  not 

negligible and could provide useful addition to the method of EnzDP.
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8.2.6 Genetic code

The difficulties encountered when annotating microalgae proteins [38, 47], we suspected that it 

could be due to a difference in their genetic code. The impact of a single change in the genetic 

code should have major impacts on the resulting proteins, but that could explain the strong 

difficulties to annotate the proteins of certain microalgae like Botryococcus braunii. Since no 

information was clearly stated for the microalgae we were working on, we decided to use a  

prediction tool called FACIL [287]. To use it, some gene sequences should be provided, but any 

form of genome or transcriptome sequencing reads or contigs works as well. However, the 

results were not very clear using the tool as it displayed a rather high background noise. We 

hypothesized that this was because the tool aligns the entire domains. Domains correspond to 

small  regions  of  proteins  that  are  conserved.  However  not  all  amino-acids  are  equally 

conserved.  In fact,  only a minority of  them have a high conservation score.  We therefore 

decided  to  not  simply  align  the  conserved  regions  of  the  proteins  (domain),  but  only  the 

conserved amino-acids within each domain. Reusing the original code of FACIL, we added the 

conservation value and a threshold to count matching amino-acids aligned onto the domain. 

This simple improvement reduced greatly the background noise and resulted in more exclusive 

association between codons and amino-acids. The tool was left with a simple output in form of 

a  matrix  with  codons  on  the  rows  and  amino-acids  on  the  columns,  with  the  counts  of 

matches. The result output could be further improved by displaying Genetic Code Logo similar  

to the one in the original tool. Unlike the original tool, the user does not need to provide the 

expected  genetic  code  to  improve  the  results,  also  meaning  that  no  successive  runs  are 

necessary. With this version, we were able to show that none of the several microalgae tested, 

including the ones studied in this  thesis,  were using a different genetic code. However,  T.  

obliquus has a different genetic code for its mitochondrial genome [287], and we were able to 

find the correct codon to amino-acid association. However, since this method is much more 

selective than the original one, more genetic material is necessary. Providing the mitochondrial 

genome sequence of  T. obliquus was just enough to associate all the codons using a not too 

permissive threshold (lesser  conserved amino-acids  withing the domains).  Additionally,  we 

were able to validate the results from  recent articles describing mutations in the genetic code 

of several yeasts (data not shown). Today, more non-standard mitochondrial genetic codes are 

found in microalgae  [288], suggesting that it may be necessary to systematically verify the 

mitochondrial genetic code of a microalgae before studying its mitochondrial proteins.
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8.3 Transcriptome analysis

In this thesis, transcriptome analyses were done for different purposes. In  Error: Reference

source  not  found,  steady  state  turbidostat  cultures  were  operated  at  nitrogen  replete  and 

nitrogen limiting conditions at two light intensities under continuous red light. The aim of the 

transcriptome analysis was to get a better understanding of light stress, nitrogen limitation, 

and to ascertain the relation between metabolic flux and mRNA levels. In  Error: Reference

source not found, transcriptome analysis was used to obtain insights in adaptation mechanisms 

to  salt  water  in  combination  with  TAG  production  under  nitrogen  depletion.  In  Error:

Reference source not found, we studied the changes in the transcriptional landscape during 

day night cycles under nitrogen replete conditions. This was then used as a reference to assess 

the effect of  a mutation that inhibited starch formation on the gene transcription, thereby 

obtaining more insight in the physiological role of starch and the consequences of a starchless 

phenotype for growth. Likewise, in  Error: Reference source not found, the effect of nitrogen 

limitation on the gene expression profile in the same wild type and starchless mutant were 

studied.

8.3.1 Transcription to flux correlation

As shown in the  Figure 8.1,  the transcriptome is  a  layer  between the epigenome and the 

proteome.  Part  of  the translated proteins participate in enzymatic  reactions that  transform 

metabolites and take part into the molecule turnover in metabolic pathways. This turnover rate 

of metabolites, in units of concentration per unit of time, is called metabolic flux. However, the  

relative change in a transcript does not need to result in a comparable change in flux through 

the reaction. Before translation, post-transcriptional events can occur and affect the effective 

translation level thus decreasing the correlation between transcript  level and protein level. 

After  translation  and  post-translational  modifications,  the  metabolic  flux  is  not  only 

determined by the amount of enzyme. The metabolite concentrations determine the direction 

of the reaction, and together with the enzyme level the flux through the reaction. All these 

factors make it difficult to identify correlation between transcription and metabolic flux. In the 

Error: Reference source not found, we compared the relative transcription and the relative flux 

calculated from the constraint based metabolic flux model. Linear pathways are lumped and 

modeled as linear blocks that share one single flux value, whereas the transcripts represent the 
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different steps in the pathway and each have their own independent expression. While the 

results were not totally random, there was no clear correlation between the fluxes and mRNA 

content,  as  it  has  been often shown  [289].  Since  not  all  enzymes  are  equally  driving  the 

metabolic fluxes, a possible approach to find better correlation would be to select a number of 

flux regulating enzymes from the linear pathways. More forcefully, each enzymes could be 

tested  for  higher  correlation,  which  would  allow to  identify  possible  regulatory  enzymes. 

Another approach could be to consider the global trend and use the mean expression of the 

enzymes  in  the  same  linear  pathway.  Lastly,  the  model  had  some  form  of 

compartmentalization with reactions occurring in the chloroplast  and in the mitochondria. 

However,  the  annotation  of  the  protein  localization  was  not  sufficiently  reliable  for  us  to 

integrate this information and improve our results.

8.3.2 Single cell RNA sequencing

While  the  results  of  these  diurnal  cycle  analysis  were  very  insightful  (Chapters  Error:

Reference source not found and Error: Reference source not found), there are few important 

points that rendered the interpretation of the data difficult if not ambiguous. These are cell 

homogeneity, sampling resolution, and choice of sampling time. The homogeneity of the cells 

in the sample is an important factor since we have sequenced bulk RNA and thus measured 

the average expression of all the cells. Still, it is well established that noise is unavoidable in all  

biological  systems at  all  levels  [290].  Homogeneity  of  cells  is  affected by two factors,  the 

synchronization  of  the  cells,  and the  presence  of  sub-populations of  cells  with  specialized 

functionality.  Bulk sample sequencing of  desynchronized cells  should result  in weaker and 

wider peaks of transcriptional expression, also observed in our results. It is probable that not 

all the cells are stressed equally and certainly with more than a simple bi-polar state. Cells 

subjected to specialized functionality could be analogous to cell types. If those exist within a  

sample, they would have different expression than the others and logically increase the noise 

of a bulk sample. 

As observed in our data, the more stress applied to the population, the less transcriptional  

variability is observed throughout the diurnal cycle. Nitrogen limitation results in strong stress 

that interferes with protein synthesis and cell growth. It is likely that it can also affect the 

synchronicity of the microalgae cells in the culture by not affecting all the cells with the same 

level of stress. If only a portion of the cells are stressed, it means that others are not and those 
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do not accumulate TAG. For best yield, all cells should be stressed at the same wanted level so 

TAG can be accumulated most efficiently. While this is an issue for our measurement, it is also 

an issue for the industrial applications. In fact, a loss in synchronicity is an important factor of  

variability  in  the  culture  that  would  systematically  result  in  lower  achievable  yield  upon 

harvest. Regardless the heterogeneity of the culture is the result of different stress state or 

desynchronization, and in addition to the reduced photo-efficiency, nitrogen limitation may not 

be the best choice for TAG accumulation.

 Tetradesmus obliquus (Chapters Error: Reference source not found to Error: Reference source

not found) is known to be a colonial green algae in clusters of 2 to 8 cells encapsulated within 

a  cellulosic  wall  [291,  292].  It  is  possible  that  the  cells  in  these  colonies  have  different 

phenotypes. Furthermore, the known sexual cycle of  T. obliquus is also a potential source of 

cell differentiation [293, 294]. Analyzing these species with single-cell RNA sequencing should 

provide  enough  information  to  answer  these  suppositions.  Even  though  most  gene 

functionality is unknown, simply identifying large transcriptional differences within a tightly 

controlled environment would be a significant step. The smaller number of clusters and less 

extreme  peaks  of  expression  could  also  be  due  to  the  sampling  frequency.  While  hourly 

sampling proved to be precise enough, sampling every three hours was not sufficient to be able 

to identify the quick responses that can occur. While selecting the samples, we were certain to 

which extent the sampling frequency would be sufficiently precise. We then decided to take 

frequent  samples  (1h)  for  the  wild-type  and  less  frequent  samples  (3h)  for  the  starchless 

mutant and align their expression. However, the high frequency sample revealed strong and 

short  burst  of  expression that  could be entirely missed within the time frame of 3  hours.  

Besides, it is important to have precise measurements around the light switches in order to 

identify whether the transcriptional change is an anticipation or possibly a consequence of the 

switch. The best example is in Error: Reference source not found, where the measurements are 

surrounding the switch to dark. In Error: Reference source not found, sample was taken at the 

time  of  light  switch,  which  allowed  us  to  make  the  distinction  between  adaptation  and 

anticipation. Sampling every two hours in combination with every 1 hour around the light 

switch could thus be a good compromise.
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8.3.3 Characterization of the starchless mutant (slm1) 

gene

In Chapters Error: Reference source not found and Error: Reference source not found, we used 

transcriptomics data to obtain insights into how the mutation in the small subunit of the ADP-

glucose pyrophosphorylase affected expression of genes in the starch metabolism and how this 

mutation caused the starchless  phenotype.  It  was already demonstrated that  the starchless 

mutant  slm1 cannot  synthesize  molecules  of  ADP-glucose  and  any  subsequent  products 

including starch or products of starch degradation  [33, 34]. It was also shown that the gene 

was affected by an early stop codon (non-sense mutation), and the transcription of the gene 

was also greatly reduced [35]. The mRNA data from the Chapters Error: Reference source not

found and  Error: Reference source not found confirmed that the expression level was much 

lower in slm1 than in the wild-type (>5-10 folds).  Most importantly, we found that the diurnal 

regulation of the ADP-glucose pyrophosphorylase small subunit was the same between the 

wild-type and  slm1.  The reads mapping displayed in  Figure 8.3 clearly shows a rather even 

distribution on the whole gene with a nearly identical distribution for the two strains, but with 

much less reads overall for slm1. The lower abundant reads in combination with a conserved 

diurnal  regulation  suggest  some  form  of  post-transcriptional  regulation. Since  the  gene 

contains a nonsense mutation, it is logical to think that the transcripts are degraded by the 

Nonsense-Mediated mRNA decay (NMD) pathway [274, 275]. NMD is a post-transcriptional 

and translation-dependent  mechanism that  actively degrades  from both ends the abnormal 

mRNA coding for shortened proteins. While this protective mechanism leads to lower mRNA 

content for the mutated gene, it is unlikely that any translation occurs for the same reasons. 

Quantifying the protein content will confirm if NMD is the cause of lower mRNA content in 

the starchless mutant of Tetradesmus obliquus.
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8.4 Experimental condition and bioreactors control 

systems

The photobioreactors are the state-of-the-art reactors that allow growing microalgae with tight 

control. These reactors are t perfectly suited to make sure that only the factor of study is varied 

and all other factors remain constant. Thus, confounding factors can be excluded and noise on 

the  measured  parameters  can  be  reduced.  Still,  the  experimental  conditions  were  not  all  

perfect, due to either the reactor itself or due to how it can control certain factors. The limited  

volume of the reactors does not allow to extract too large volume if it is necessary to keep the  

batch unperturbed after sampling. In Chapters  Error: Reference source not found and  Error:

Reference source not found, large duplicate samples needed to be collected at each sampling 

time, which imposed the diurnal cycle sampling to take place over weeks instead of a single 

day. The reactor is set to control the culture in a stable diurnal cycle over the whole sampling 

time, and the transcriptome data show very similar expression between biological duplicates. 
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Figure 8.3: RNA sequencing reads mapping onto the genome of Tetradesmus obliquus (Error: Reference

source not found). Using Integrative Genomics Viewer (IGV), scaffold FNXT01000336, region ~31000-

37000, location of the gene g788 coding for the ADP-glucose pyrophosphorylase small subunit (Uniprot  

gene id BQ4739_LOCUS4183). Reads from three samples of each strains: UTEX393 (WT); starchless  

mutant (slm1). The samples were taken at the same time points for each strains. Samples were also  

taken from each growth conditions: N replete (Error: Reference source not found) and N limited (Error:

Reference source not found). The red arrows were added to indicate the red vertical bar indicating the  

consistent mutation that is  the nonsense mutation responsible for incapacity of  slm1 to synthesize  

starch. The gray barplots represent the reads mapping density over that area. On the top left of each  

sample rectangles, a range of number is written to indicate the y-axis scale of the respective sample.
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Still, there are few time points where the differences between duplicates are rather large, and 

these tend to be at times of large transcriptional changes. These conditions were more than 

sufficient for the objective of these studies with this level of precision, but it must be improved 

if more frequent sample timing is used or if more precise measurements are wanted.

Although our experiments were carried in 16-8h light-dark cycles, the conditions are still not 

representative of what happens outdoors. The photobioreactors lightning system is binary, with 

no intensity changes, and most importantly, no light spectrum changes. It is well known that 

both factors play a role in setting the circadian clock. Our results show that particular light  

spectrum or changes in light intensity are not necessary for the system to display a diurnal 

rhythm. Nevertheless, we do not know how these missing factors could affect the temporal  

regulation of biological processes described in this thesis. A previous study showed that light 

exposure prior to dark period affects the cellular respiration during the dark period, and that if  

microalgae are still  in growth phase right before the dark period, more respiration will  be  

necessary  [295]. This means that having progressive light switch should help reduce cellular 

stress by buffering diverse processes and allow smoother transcriptional changes.  Microalgae 

are found in a large variety of environments, and so is the variety of circadian rhythms in 

behavioral and physiological processes [243]. Aside, the change in temperature and light can 

regulate circadian rhythm cycles in plants,  and these changes are also likely to happen in 

outdoor conditions  [296]. It  would be valuable to study and compare the effect  of  diverse 

progressive light switches and the effect of different light spectrum between light switches. By 

the progressive light or change in blue light and far-red light, should be possible to identify 

some key genes and regulatory events that would be triggered by these different conditions. 

Using  single  cell  transcriptome analysis,  it  would  also  be  possible  to  observed how these 

factors affect the synchronicity of the algae population in the culture in comparison to our not 

so natural experimental condition. Such information is crucial in the case of outdoor industrial 

scale production, as it would allow to optimize yield by harvesting in prevision of weather 

changes.
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8.5 FAIR data management of transcriptomics data

RNA-sequencing  is  a  powerful  method  with  a  wide  variety  of  applications,  notably  to 

understand,  explain,  and  predict  biological  systems.  However,  this  variety  of  applications 

multiplies to quantity of tools, pipelines and practices [297]. Furthermore, these are often not 

interoperable,  static,  lacks  provenance,  and  therefore,  hardly  reproducible.  In  some  cases, 

combining the tools outputs and predictions could help in assessing the quality and gain the 

best insights [38]. The best way to improve the quality of biological data is to follow the FAIR 

guiding principles: Findability, Accessibility, Interoperability, and Reusability [228]. To tackle 

biological data management bottlenecks, our group started to develop the semantic Genetic 

Biology Ontology Language (GBOL)  [227]. This ontology is the foundation of a harmonized 

consistent  description  of  biological  data  by  taking  advantage  of  available  semantic 

technologies. GBOL is tightly integrated to other ontologies, semantic data management, and 

bioinformatics  software,  into  a  toolbox  called  SAPP  (Semantic  Annotation  Pipeline  with 

Provenance) [39]. While SAPP and GBOL were mainly oriented to genomics data, particularly 

for the microalgal work we started developing the tools and the ontology for transcriptomics 

data.  We  created  a  new  semantic  ontology  called  Transcript  Biology  Ontology  Language 

(TBOL).  It  provides,  on  the  top  of  GBOL’s  consistent  and  detailed  genome structure  and 

annotation,  RNA sequencing  specific  terminology that  includes  transcripts  expression.  We 

implemented  the  first  set  of  tools  with  the  semantic  data  integration  with  provenance 

following terminology and structure provided by the TBOL ontology. The information about 

TBOL is summarized in the Figure 8.4, including information such as the type data stored in 

the ontology, their relevance with the FAIR principles and the tools integrated.

GBOL can store the information as found in the standard formats, but in a non ambiguous 

format  and  with  data  provenance.  TBOL  currently  extends  it  with  RNA  sequencing 

information, which ranges from details of input files (e.g: file type, sequencing type, strand 

pairing, strand orientations), to the expression of the transcripts, while providing the means to 

keep information about the method for best reproducibility (data provenance). We focused our 

effort in implementing a genome based strategy for which we used the genome of T. obliquus 

from Error: Reference source not found and analyzed more than 100 samples of RNA-seq for 

Chapters Error: Reference source not found and Error: Reference source not found. The results 

of this analysis are a proof that a semantic framework such as SAPP can analyze RNAseq and 

deliver  properly  integrated  FAIR  data  using  semantic  technologies.  Later  on,  SAPP  was 

extended to analyze RNA-seq data with InterproScan and EnzDP for protein family annotation 
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and EC number annotation,  respectively.  More tools  should be deployed to  cover  the best 

practices of RNA-seq data analysis.
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Figure  8.4: Framework for RNA-seq data analysis according to the FAIR data principles. SAPP is a  

semantic  genome  annotation  tool  tightly  integrated  with  the  Genetic  Biology  Ontology  Language  

(GBOL). To add transcriptomics data analysis, SAPP was extended with new set of bioinformatics tools  

that use the Transcript Biology Ontology Language (TBOL), also designed as an extension to GBOL.  

The F,A,I,R  bubbles  informs  whether  the  data  or  the  type  of  database  complies  with  one  of  the  

principles.
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8.6 A look back at transcriptional landscapes to 

move forward with strain improvement

8.6.1 Looking at the circadian clock

In the Chapters  Error: Reference source not found and  Error: Reference source not

found, we have analyzed the diurnal transcriptional landscape of  T. obliquus, describing the 

succession of biological processes throughout the whole diurnal cycle. However, we were not 

able to identify the circadian clock genes, nor any of the processes directly regulated by them. 

Microalgae  are  believed  to  possess  a  simpler  circadian  clock  system with  only  two  plant 

homologous genes that are suspected to function as feedback loop [243, 298–300]. Most of the 

information  could  already  be  inferred  from  the  model  organism  C.  reinhardtii.  Since  T.  

obliquus is a rather distant organism (class) than the studied ones, a complementary analysis 

could be useful to identify and compare the homologs with other microalgae and plant [301]. 

To this date, no  T. obliquus genes were automatically annotated by the UniProt pipeline. A 

dedicated analysis of the circadian rhythm system in  T. obliquus  could be very valuable in 

improving  metabolic  model  prediction  of  diurnal  adaptation  in  response  to  commonly 

occurring stimuli.

8.6.2 Use of diurnal transcriptional landscape

In Error: Reference source not found, the hourly sampling allowed us to identify succession of 

biological processes throughout the diurnal cycle in detail.  The flat panels photobioreactors 

used to mimic the cycle provided precise control to fine tune many parameters which in turn 

allowed us to measure tightly regulated transcriptional changes. We also observed that lack of 

starch in the starchless mutant  slm1 resulted in dysregulation of the diurnal cycle leading to 

time shifts of processes and a small  decrease in amplitude. In  Error: Reference source not

found, nitrogen limitation resulted in much decreased amplitude of transcriptional changes 

over  the diurnal  cycle  and this  effect  was further  amplified in  slm1.  Dysregulation of  the 

diurnal  cycle  may lead  to  a  less  synchronized  population,  which would  result  in  reduced 

complexity of diurnal profiles with a reduced number of clusters. This is what we observed 
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when  comparing  the  clusters  in  Chapters  Error:  Reference  source  not  found and  Error:

Reference source not found.

The aforementioned clusters were found to group genes from same pathways or biological 

processes,  which allowed us to describe the succession of metabolic events throughout the 

whole  diurnal  cycle.  The diurnal  profiles  of  these  clusters  can  now serve  as  reference  to 

describe the diurnal expression of genes. Analyzing and comparing the diurnal transcriptional 

landscape of different light-dark cycle setups could give insights about the light period stress 

and the respective recovery during the dark period. Furthermore, it would of great value to 

better predict the metabolic adjustments of the different clusters and their associated processes. 

For example, the early-light period peak is probably a consequence of recycled photosystems 

throughout the dark period. Similar patterns can be found in other processes, for which we can 

expect  stabilization  until  the  dark  switch.  These  processes  are  dependent  on  nitrogen  for 

amino-acids synthesis and energy supply. Logically, they will take longer with limited supply. 

Without actual data to compare with, we can already predict some transcriptional changes in 

response of different light-dark cycle setups. Longer light period should, if anything, not result 

in  a stretched peak activity but simply stretched base level.  Cell  division processes  would 

probably be extended till the end of the light period, leading to more successive cell fission at 

dark. It is also possible that more stress would be put on the cell to synthesize amino-acids 

before  light,  delaying  early  light  period processes  like  we observed with lack of  transient 

energy in slm1.  A contrario, shorter light period should result in less damaged photosystem, 

requiring less intense peak in early day. The maintenance of other proteins as part of the early 

light period could result in lower peak and reach stable level earlier. With shorter light period, 

more starch should be accumulated, and with longer dark period, it is possible that more starch 

is  being  consumed.  Cell  growth  processes  should  start  only  after  the  earlier  demanding 

processes (mostly photosystem synthesis) stop sinking carbon and energy. Additionally, the 

observed double peak of expression could be associated to two successive of cell growth and 

results  into  fission  of  four  cells.  Changes  in  light  period  duration  should  then  result  in 

respective increase or decrease in the number of cell division. These hypotheses are consistent 

with the observation in the 12:12h diurnal cycle RNA sequencing project  of  C. reinhardtii 

[221]. Their higher number of division per diurnal cycle (8-16 daughter cells) must be due to  

the faster growth rate of C. reinhardtii in comparison to T. obliquus [302]. Predicting when the 

processes occur and when the metabolites reach their highest concentration is very valuable in 

bioprocessing application. In addition, predicting how the organism adapts with changes in 

light is important for decision making, regarding harvesting or culture adjustments and help 
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maintaining higher yield. More specifically, this could help in adapting large-scale cultures to 

predictable but uncontrollable outdoor weather.

8.6.3 Improving the nitrogen limitation stress phase: 

Starch synthesis

Starch is the main metabolic competitor to TAG, and if not synthesized, more energy and 

carbons can be redirected to the synthesis of TAG. This idea was tested using the metabolic 

model of Ettlia oleoabundans in Error: Reference source not found, and the results were very 

positive promising. However,  the model  also showed that  the potential  gain is  far inferior 

compared  to  what  can  be  reached  by  optimizing  light  energy  usage.  In  continuous  light 

condition, the lack of starch increases the yield of TAG on light by 51% [34], but in light-dark 

cycle condition, the lack of starch results in 20% reduced energy conversion efficiency  [24]. 

Furthermore, in nitrogen limited LD cycle conditions, even though the TAG content in slm1 is 

higher than in the wild-type (0.23 vs 0.07  g·gDW
-1), the overall energy conversion efficiency 

from photons to biomass components in  slm1 was only half that of the wild-type. Thus, the 

lack of starch results in a considerable loss in the efficiency with which light is used. This is  

because starch is being used a transient energy storage that provides the needed energy for  

respiration during the dark period. We have shown using transcriptomics that a number of 

energy demanding  metabolic  processes  occur  during  the  dark  period.  These  processes  are 

associated to the cell maintenance, cell division, amino-acid synthesis and protein turnover. 

This  allows  the  wild-type  to  kick-start  the  synthesis  of  pigments  for  well-functioning 

photosystems at the start of the day. However, in slm1 these dark period processes are delayed 

to the early light period when energy becomes available again. This delays all the early light 

period processes. An important consequence is that the photosystems are not synthesized in 

time, and photon energy is effectively wasted. This issue is even more dramatic in condition of 

limited nitrogen. We observed that limited supply of nitrogen seems to impose the organism to 

degrade  more  proteins  and  amino-acids  during  the  dark  period.  Finally  the  loss  of 

photosynthetic efficiency in the starchless mutant occurs especially during the second half of 

the day when in the WT starch synthesis occurs. Apparently, the ability to synthesize starch 

allows a more efficient use of the light during this period.

Based on this, instead of relying on a fixed starchless phenotype, it could be better to develop a 

microalgae strain in which starch synthesis can be controlled over time and be limited to the 
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right amounts. Thus, during the growth phase, starch synthesis should be kept fully functional 

to allow for fast growth and optimal light use. Next during the TAG accumulating stress phase 

the accumulation of starch should be restricted to the second half of the day to an amount that 

is just enough to supply sufficient energy for the processes that should occur during the night. 

Thus only the necessary amount of starch should be synthesized, to minimize the competition 

with TAG synthesis. As the measurements show in the Error: Reference source not found, the 

starch content in nitrogen limited condition is approximately 25% of the dry weight, and the 

daily variation seems to be fluctuating by approximately 5% of the dry weight and 1/5th of 

total  starch content.  This means that in this  well controlled LD cycle and nitrogen limited 

condition, there is 5 times too much starch accumulated in the microalgal cell.  Ultimately, 

controlling starch synthesis intensity on-demand depending for example on light intensity and 

temperature would allow for the best results. Yet, this level of synthetic organism engineering 

with such deep control is far from being possible at the moment, and plenty of information still 

needs to be collected before anyone are capable to build models that would control such a 

complex system efficiently.

8.6.4 Improving the nitrogen limitation stress phase: 

Nitrogen supply

Microalgae  found  in  ocean  move  upwards  during  the  day  for  photosynthesis,  and  move 

downwards in the depths of the ocean at night, where more nutrients and notably nitrogen, are 

available  [243,  303].  Mimicking  this  condition  could  be  beneficial  for  TAG accumulation. 

Nitrogen limitation over depletion was an answer to allow the microalgae to survive for a 

longer period of time in continuous batches while limiting cell growth. However, while light-

dark cycle normally results in a gain of efficiency, it is lost with limited nitrogen supply. We 

have demonstrated that T. obliquus synthesizes amino-acids during the dark period and early 

light period, also recycling proteins in preparation of a new day cycle. Providing the needed 

nitrogen during the dark period could help the microalgae to sustain its daily protein synthesis 

and may result in less proteins degradation during the night. It  should then be possible to 

recover diurnal cycle gain of efficiency by providing nitrogen during the dark period. While 

still limiting the nitrogen concentration during the day, cell growth should remain inhibited. 

Further limiting nitrogen during the light period, or even depleting it, could further increase 

the TAG yield on light. It is also described that nitrogen can affect all canonical properties of 
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circadian rhythm, namely the amplitude, phase and period  [304, 305]. Therefore, supplying 

nitrogen only during the dark period has the potential to reschedule diurnal processes and 

result  in stronger changes than nitrogen limitation throughout the whole day. It  would be 

interesting to observe whether this cyclic nitrogen stress will impact only nitrogen dependent 

processes or if it will influence in the circadian rhythm and impact a wider range of processes.  

Finally, this approach could be combined with the above-mentioned control of starch synthesis, 

which would guarantee that just the right amount of energy is available during the night for 

nitrogen assimilation.

8.6.5 Salt water adaptation

In the Error: Reference source not found, we have analyzed the transcriptional adaptation of E.  

oleoabundans when grown in salt water. We have identified several pathways that could be 

responsible  for  the  adaptation  in  this  osmotic  stressful  condition.  Proline  synthesis  and 

ascorbate-glutathione cycle seem to be the most important ones, but only proline content was 

experimentally  verified  using  nuclear  magnetic  resonance  (NMR)  where  a  higher 

concentration was measured in salt water condition. Even though the replicate measurements 

were very different, the lowest measured value was still multiple times higher than the highest 

measurement  in  fresh  water.  We also  discussed  about  the  possibility  that  sugars  such  as 

sucrose  or  trehalose  could   play  a  role  in  alleviating  the  osmotic  stress.  We  only  found 

differences in transcription for sucrose synthesis,  but it  seems to be only responsible for a 

quick response and not for long term adaptation. It is possible that the proteins involved in the 

many analyzed pathways were wrongly annotated  or  not  annotated at  all.  Comparatively, 

many less EC numbers were identified in E. oleoabundans than in T. obliquus, furthermore, the 

accuracy of the annotation was also much improved in the case of T. obliquus. Thus, it would 

be  valuable  to  re-perform  the  transcriptome  analysis  with  current  state  knowledge  and 

technologies, using the method applied to T. obliquus in Chapters Error: Reference source not

found and  Error:  Reference  source  not  found with  the  improvements  described  in  this 

discussion. The annotation could also be improved with a high quality genome, but due to 

consistent contamination of samples, the genome has still not been assembled well enough to 

be accepted in databases. Besides verifying the statements already made on proline and sucrose 

synthesis, the improved protein annotation should help identifying whether the other osmo-

protecting processes or metabolites described in  Error: Reference source not found can take 
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place or can be synthesized. For example, the biosynthesis glycine betaine was missing the 

important choline monooxygenase, if it was to be found after reannotation, the glycine betaine 

would then be a potential factor for the protection of salt stress. Besides, as more transcription 

does not always result in more proteins or flux, it would be valuable to verify the metabolite 

and protein content. With sufficient information, it would be possible to draw a map of the salt  

stress protective mechanisms of E. oleoabundans or any other suitable microalgae. Such a map 

would allow to understand the importance of each individual mechanism. Two approach could 

be  undertaken:  introducing  the  salt  water  resistance  to  high  TAG  yield  producers,  or 

manipulate  TAG production in  salt  water  friendly  strain.  This  would  require to  introduce 

multiple  genes  and  would  raise  many  issues  regarding  epigenetics,  and  regulation  of 

transcripts and proteins. To undertake this non trivial experiment, the general knowledge in 

green microalgae should be greatly improved together with microalgal genetic modification 

tools.  These  synthetic  manipulation  could  then be  combined  with  forced  evolution  in  salt  

water.

8.6.6 Metabolic engineering to improve lipids and TAG 

accumulation.

In the Chapters Error: Reference source not found and Error: Reference source not found, we 

have  observed  strong  increase  of  transcription  for  the  genes  involved  in  lipids  and  TAG 

degradation.  Actual  degradation of  lipids  during the  night  could  not  be  confirmed on the 

biochemical level as the changes were not large enough to be detectable by our measurement 

method. While lipid catabolism helps in maintaining a healthy turnover of membrane lipids, it 

will also decrease the yield of lipids on light. With respect to the last point it would be logical 

to  avoid  TAG  degradation  by  suppressing  the  two  enzymes  that  are  responsible  for  the 

debranching of the fatty-acid chains from the glycerol backbone: the triacylglycerol lipase and 

the  monoacylglycerol  lipase.  Our  functional  annotation  found  candidate  proteins  for  both 

enzymes, and after verifying their function experimentally, the right proteins could be targeted 

for removal.  Besides,  while membrane phospholipids are degraded as  part  of  the turnover,  

some of them can be directly used to synthesize novel TAG by the help of the phospholipid 

diacylglycerol  acyltransferase  (PDAT).  While  blocking  forms  of  phospholipase  could  be 

beneficial  for  TAG  accumulation,  it  could  also  lead  to  troubles  in  the  cell  membrane 

remodeling.  Our  annotation  of  Tetradesmus  obliquus has  15  candidate  proteins  for  the 
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phosphatidylcholine-sterol acyltransferase (LCAT, EC 2.3.1.43) and four for the phospholipase 

D (EC 3.1.4.4). Two interesting candidate proteins associated to LCAT, which originate from 

the  same gene (g18408),  are  also  associated  to  PDAT.  Aside,  to  ensure  that  all  the  lipids 

destined for degradation end up stored in form of TAG, important step in lipid degradation 

must  be  avoided.  The  most  logical  approach  would  be  to  avoid  the  first  step  in  lipid 

degradation to happen. This reaction can be performed by a multitude of enzymes available in 

the mitochondria by the acyl-CoA dehydrogenases or in the peroxisomes by the acyl-CoA 

oxidases. The different acyl-CoA dehydrogenases enzymes (EC 1.3.8.7-9) have preferences for 

certain lengths of the acyl chain, but none found with our annotation. However, we have two 

candidate proteins for the acyl-CoA oxidases (EC 1.3.3.6, g12802.t1 and g3816.t1). Even though 

we cannot be sure without experimental validation, it is possible that these candidate proteins 

are the only starting point of the beta-oxidation as it was found in other microalgae  [306]. 

However, before these initial long chain degradation steps occur, the fatty-acid must be bound 

to a Coenzyme A (CoA) with the help of the acyl-CoA synthetase (ACS, EC 6.2.1.3), and this 

reaction occurs in both anabolic and catabolic processes. Our manual annotation and analysis 

revealed  two  main  candidate  proteins  that  are  transcriptionally  regulated  like  the  other 

synthesizing or degrading genes.  This led to the conclusion that one is responsible for the 

synthesis and the other one, ACS (g4377.t1), for the degradation and thus could be a candidate 

for knock out to suppress degradation of fatty acids. Again, experimental validation should be 

done to confirm this hypothesis.

8.7 Conclusion

The  work  in  this  thesis  is  the  result  of  the  integration  of  two  disciplines,  Bioprocess 

Engineering and Bioinformatics. It demonstrates how such a multidisciplinary approach can 

lead to more knowledge and at the same time bring scientific findings closer to application.

The  most  important  challenge  of  this  thesis  was  to  functionally  annotate  proteins.  The 

annotation  method  using  EnzDP  was  a  great  improvement  over  the  more  conventional 

DELTA-Blast coupled with Gene Ontology EC number inference, used for Ettlia oleoabundans. 

Yet, EnzDP could greatly benefit from a better selection and protein location within the cell 

organelles. At the end of this thesis, the challenging protein annotation in high-throughput 

way  is  already  yielding  better  results.  Still,  until  many  more  microalgae  proteins  are 

experimentally identified and described in databases, thus increasing the accuracy and number 
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of  correctly  annotated  proteins,  the  biological  interpretation  will  always  be  filled  with 

uncertainty. In preparation for the  Tetradesmus obliquus projects, the genome sequence was 

assembled with a high coverage. The genes were accurately identified within the genome and 

served as a solid base for accurate protein annotation. State-of-the-art bioinformatics tools and 

specially  developed  ontology  and  software  base  were  developed  to  fulfill  the  FAIR  data 

principles.

Our analyzes focused on comparing adaptation of microalgae to industrially relevant growth 

conditions: diurnal cycle, light stress, salt stress, and nitrogen limitation and depletion. We 

have shown that intense light stress and salt water result in oxidative stress in the cell. We 

were the first to report insights in the saline resistance mechanism of a fresh water oleaginous 

microalgae. The mechanism behind the biosynthesis of compatible osmolytes can be used to 

improve  E. oleoabundans and other industrially relevant microalgal strains to create a more 

robust  and  sustainable  production  platform for  microalgae  derived products  in  the  future. 

Using a metabolic model,  we have shown that TAG yield on light can be more efficiently 

improved by optimizing photosynthetic conversion than by blocking competing pathways. We 

have identified as a possible regulator for photosynthetic capability in response light intensity 

changes.

We built a solid knowledge base of how a microalgae transcriptional landscape changes in a 

diurnal cycle. We described that there is a clear succession of metabolic processes and careful 

scheduling of events during the various phases of the cycle. Such knowledge is important for 

future experimental design, metabolic engineering strategies, and it serves as a reference case 

to study other experimental conditions. Starch seemed to be the only transient energy storage 

that  is  responsible  for  yield  gain  in  a  diurnal  cycle.  When missing,  insufficient  energy is  

available during the dark period, resulting in a loss of synchronization of a number of diurnal 

regulated processes.

Nitrogen limitation significantly reduces cellular activity. An insufficient supply of nitrogen for 

cellular maintenance seems to result in increased protein degradation just before and during 

the dark period. On top of that, the lack of starch in this condition results in much delayed 

activity in the early light period, and possibly more protein degradation during the dark period 

to provide some energy. Furthermore, we observed that the lack of starch triggered lipids and 

TAG degradation during the dark period,  which would provide energy to the cell,  but no 

significant variations were measured within this experimental setup.

Finally, specific points related to the analyses were discussed, such as the correlation between 

expression and fluxes, homogeneity of the synchronized cells, and the experimental conditions. 
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Then, based on the knowledge acquired in this thesis, clear metabolic engineering strategies 

were  given  to  improve  total  solar-to-TAG  conversion  efficiency  of  microalgae  under 

industrially relevant growth conditions. Increasing and maintaining light conversion efficiency 

of microalgae at industrial scale will improve step by step, by correcting each of the individual 

bottlenecks that are already known and described in this thesis. A crucial challenge to solve 

before reaching competitive industrial production of biofuels will be to allow secretion of TAG 

out of oleaginous microalgal cells. TAG secretion would allow long-term production with a 

single batch, avoid wasting photons in cell growth, and ultimately, it would greatly reduce the 

production costs. Hopefully, this drop in the ocean of knowledge will contribute for the future 

of our planet and help alleviating human society’s dependence on fossil fuels.
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Summary

Microalgae are unicellular microscopic and photosynthetic organisms. They are found all over 

the planet and in all sorts of environments. Their role has been and is still very important for 

the  planet,  most  notably  that  they  are  currently  accounted  for  producing  half  of  the 

atmospheric oxygen. While they used to be studied because of their capabilities to depollute 

water, the interests have shifted towards oleaginous microalgae and their high level of fatty-

acids accumulation. Fatty-acids such as Triacylglycerides (TAG) are of particular interest for 

their  easy  chemical  treatment  to  produce  clean biodiesel.  Even if  microalgae  have  higher 

energy conversion efficiency than plants, do not need arable lands to grow on, and do not 

compete with  feed production,  the  optimal  conditions  of  production are  still  too costly  to 

compete  with  fossil  fuel  pricing.  To  decrease  production costs,  growth conditions  and the 

physiological  efficiency  of  the  microalgae  needs  to  be  optimized.  This  requires  a  deep 

understanding of the microalgae phenotype in the relevant growth conditions. A phenotype 

represents a set of  behavioral traits of an organism In this thesis, the internal phenotype, the 

transcriptional  landscape of  two oleaginous microalgae species  was studied using different 

growth conditions. The RNA content was chosen because it provides a dynamic system-wide 

view,  can  be  done  in  high-throughput  and,  as  proxy,  can  inform  about  the  cellular  and 

metabolic activities in response to a changing environment.

To  analyze  the  transcriptome,  it  is  necessary  to  know the  functions of  the  transcripts.  In 

contrast to model organisms like human or  Arabidopsis thaliana whose genomes have been 

deeply annotated and studied, microalgae are far from that state. For both organisms studied in 

this thesis,  Neochloris oleoabundans and Tetradesmus obliquus, it was necessary to annotate 

the genes and transcripts since it was never done before. To functionally annotate a gene, most 

methods rely on sequence similarities to identify the closest gene in known organisms. Green 

algae  are  a  difficult  case  due  to  the  large  genetic  distance  between them and the  greater 

distance to reference organisms from land plants.  Error: Reference source not found treats 

about the particular problem of protein annotation in microalgae. I analyzed the general state 

of data availability in microalgae, and we discussed about several annotation methods that are 

better suited than sequence similarity and discussed the limitations of using domain-based 

recognition methods. Besides, we also discussed the identification of the protein localization 

within  the  different  subcellular  compartment  in  microalgae.  Finally,  we  stressed  the 

importance of a large-scale wet-lab efforts for a few selected microalgae in order to provide a 

solid foundation for computation based methods.
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To obtain more insight into the metabolism of Ettlia oleoabundans in Error: Reference source

not found, a constraint-based metabolic model of  Ettlia oleoabundans was built around the 

central  carbon  metabolism.  This  model  was  built  based  on  the  knowledge  of  central 

metabolism of  algae  at  that  moment  and  was  cross  checked with  the  de  novo assembled 

annotated transcriptome. Experiments in controlled turbidostat  were conducted in different 

combinations of light intensity and nitrogen supply. The measurements from the experimental 

conditions  were  used  as  constraints  on  the  inputs  and  outputs  of  the  model,  effectively 

allowing us to estimate the metabolic flux distributions. In addition, RNA samples from the 

different  experimental  conditions  were  sequenced  and  analyzed.  These  data  were  used  to 

validate the model structure as stated before, correlate expression levels with flux distributions 

and  get  a  better  understanding  of  the  effect  of  light  and  nutrient  conditions  on  algal 

physiology. The metabolic model calculates a maximum TAG yield of N. oleoabundans on light 

of 1.06 g (mol photons)-1,  more than 3 times the current experimental yield under optimal 

conditions. The model also shows that TAG yield on light can be more efficiently improved by 

optimizing photosynthetic conversion than by blocking competing pathways. Geranylgeranyl 

diphosphate reductase was identified as a potential regulator for photosynthetic capability that 

complements the fine-tuning of chlorophyll levels from synthesis and degradation. Finally, we 

identified  some key  reactions  that  could  be  targeted  to  improve  TAG yield,  by  not  only 

specifically  increasing  the  flux  within  the  lipids  and  TAG pathways,  but  also  potentially 

redirect carbons from other pathways.

Water is a precious resource, and using fresh drinkable water to grow plants or microalgae 

could be considered non sustainable. However, salt-water is abundantly available and would be 

cheaper to supply. Therefore it is important to understand how algae deal with a salt water  

environment under growth and production conditions.  This allowed us in  Error: Reference

source not foundto study how algae deal with high salinity conditions under nitrogen replete 

(growth)  and  nitrogen  deplete  (TAG  accumulation)  conditions  using  a  transcriptomics 

approach.  The  oleaginous  microalgae,  Ettlia  oleoabundans (formally  known as  Neochloris  

oleoabundans) was chosen as a model algae, since it can accumulate large amounts of TAG 

and can grow in both fresh and salt-water. For this algae experiments were done in fresh water 

and  salt  water  in  combination  with  nitrogen  replete  and  nitrogen  deplete  conditions.  In 

addition to the transcriptome, we analyzed the biomass composition including TAG and starch 

accumulation and used the data to look into different salt resistance mechanisms. We found 

that  Proline  and  the  ascorbate-glutathione  cycle  seem  to  be  of  importance  for  successful 
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osmoregulation in N. oleoabundans. Genes involved in Proline biosynthesis were found to be 

upregulated  in  salt  water,  which  is  supported  by  Nuclear  magnetic  resonance  (NMR) 

spectroscopy. Oil accumulation is increased under nitrogen-deplete conditions in a comparable 

way  in  both  fresh  and  salt  water.  The mechanism behind  the  biosynthesis  of  compatible 

osmolytes can be used to improve N. oleoabundans and other industrially relevant microalgal 

strains to create a more robust and sustainable production platform for microalgae derived 

products in the future.

Although the TAG content that can be reached in Ettlia oleoabundans is high, the volumetric 

TAG productivity in Tetradesmus obliquus was evaluated to be clearly higher, while reaching 

the  same  TAG  content.  This  was  mainly  due  to  the  ability  of  T.  obliquus to  maintain 

photosynthetic  efficiency  for  a  longer  time  longer  during  the  nitrogen  depletion  phase. 

Therefore, it was decided to switch to T. obliquus as a model organism. To obtain an idea of the 

capabilities  of  T.  obliquus and  to  make  transcriptome  experiments  easier  to  analyze,  the 

genome of T. obliquus was sequenced. In Error: Reference source not found, the sequencing of 

the  genome  of  T.  obliquus is  presented.  The  assembly  approach  was  unconventional  by 

combining two different  methods and was able  to  combine the higher  coverage  from one 

method with the precision of the other method. In this way, the coverage and the accuracy of 

the assembly was maximized.

Production using microalgae will in many cases occur outdoors using sunlight. Consequently 

the algae will be exposed to the naturally occurring day night cycle. To better understand the  

effect of these day night cycles, in  Chapters  Error: Reference source not found and  Error:

Reference source not found, the transcriptional response of algae to diurnal cycles was studied 

under nitrogen replete conditions and nitrogen limiting conditions for the wild type and a 

mutant that can not synthesize starch. In Error: Reference source not found, hourly samples of 

RNA of Tetradesmus obliquus UTEX 393 were taken from a turbidostat culture operated under 

nitrogen replete conditions over a diurnal cycle of 16 hour light and 8 hours dark, to obtain 

more  insight  in  in  the  transcriptional  response  towards  diurnal  cycles.  In  addition,  to 

understand the effects of a lack of starch, the major transient energy storage, we sequenced 

samples of the starchless mutant  slm1 that were collected every three hours under the same 

conditions. At the same time, samples were collected and measurements of the biochemical 

composition of biomass and the specific light absorption rate were performed. These data are 

presented in a previously published article  [24]. The genome features were annotated using 
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more than 38 RNA-seq samples from this study, using a specially developed extension of the 

FAIR principle based framework called SAPP. The work done to extend this framework for 

transcriptome analysis is described in the discussion  Error: Reference source not found. We 

described the succession of metabolic events that occurred during the diurnal cycle, which are 

in  agreement  with  the  biochemical  measurements.  Comparing  the  wild-type  with  the 

starchless  mutant  slm1,  we  found  a  few  temporal  shifts  in  expression  that  reflect 

transcriptional adaptation to the lack of a transient energy storage compound during the dark  

period. Our study provides new perspectives on the role of starch and the adaptation to LD 

cycles of oleaginous microalgae.

In  Error:  Reference  source  not  founda similar  experimental  approach  was  taken,  where 

samples  were  taken  for  biochemical  and  transcriptome  analysis  every  3  hours  from  a 

turbidostat culture operated at the same diurnal cycle of 16 hours light and 8 hours dark, but 

this time in nitrogen limiting conditions, resulting in TAG accumulation. Again this was done 

for the wild type and the starchless mutant. The transcriptional landscape and biochemical 

data are compared to the nitrogen replete condition in Error: Reference source not found, to 

evaluate  the  effect  of  nitrogen  limitation  in  general  and  study  how the  lack  of  starch  is 

affecting TAG accumulation under nitrogen limiting conditions. We observed that the cycling 

diurnal effect is greatly reduced in comparison to nitrogen replete condition. The wild-type 

accumulated  more  starch  than  in  nitrogen  replete  condition  (Error:  Reference  source  not

found), and small oscillation was observed, indicating that it is being used as transient energy 

storage during the dark period. While the biochemical analysis did not reveal any oscillation in 

total lipids content in either strain, slm1 over-expresses transcripts associated to TAG and lipid 

degradation during the dark period. Besides, while slm1 accumulated more TAG than the wild-

type, its conversion efficiency was only half of the wild-type. It appears also that the organism 

recycles more proteins during the dark period to supply nitrogen for the strong increase in 

amino acid synthesis right after light is turned on.

In  Error: Reference source not found, the results of this thesis are discussed. The interest in 

analyzing the transcriptome of microalgae is  explained.  Then,  the annotation methods are 

explained to show the large improvements between them, and could it still be improved. Basic 

numbers  of  the later  annotation  results  are compared to  the current  status  in UniProtKB. 

Particular points from the transcriptomics data are discussed, notably the expression of the 

mutant  gene  responsible  for  slm1 phenotype,  and  the  interests  from  using  single-cell 
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Summary

technologies.  Suggestions  are  then  made  to  improve  the  experimental  conditions  and  the 

photobioreactors setups. The efforts made in the thesis to generate and store the data according 

to the FAIR principles are explained. Finally, using the knowledge acquired during this thesis, 

suggestions are made to improve the growth conditions and to improve TAG production with 

divers metabolic engineering strategies. The work of this thesis contributes for the future of 

sustainable  production  of  biofuels,  which  ultimately  will  help  alleviating  human  society’s 

dependence on fossil fuels.
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