
 

Serotonin and Threat:  

from Gene to Behaviour 

 

 

 

 

 

Shaun Quah Kit Lung 

 

Downing College,  

University of Cambridge 

March 2019 

 

 

This dissertation is submitted for the degree of  

Doctor of Philosophy 

 



 

 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

To my parents, 

 

for encouraging my curiosity from an early age. 

 

And to Bambi, my dear dog, 

 

for being a lovely companion in a lonely childhood. 

 

  



 

 

Preface 

 

This dissertation is the result of my own work and includes nothing which is the outcome of 

work done in collaboration except as declared in the Preface and specified in the text. 

 

It is not substantially the same as any that I have submitted, or, is being concurrently submitted 

for a degree or diploma or other qualification at the University of Cambridge or any other 

University or similar institution except as declared in the Preface and specified in the text. I 

further state that no substantial part of my dissertation has already been submitted, or, is being 

concurrently submitted for any such degree, diploma or other qualification at the University of 

Cambridge or any other University or similar institution except as declared in the Preface and 

specified in the text 

 

It does not exceed the prescribed word limit for the relevant Degree Committee. 

 

Work in chapters 2,3 and 4 were presented at the following conferences: 

 

- Quah, S.K.L., Santangelo, A.M., and Roberts, A.C. 

   Role of the serotonin transporter in the amygdala in trait anxiety. 

   Neuroscience 2018 by the Society for Neuroscience, San Diego 

 

- Quah, S.K.L., Santangelo, A.M., and Roberts, A.C. 

  Serotonergic gene expression in the right amygdala and dorsal anterior cingulate cortex  

  associates with anxious behaviour. 

  The British Association for Psychopharmacology Summer Meeting 2017, Harrogate 

  6th Cambridge International Conference on Mental Health 2017, University of Cambridge 

  6th Cambridge Neuroscience Biennial Symposium 2017, University of Cambridge 

 

 

Shaun Quah Kit Lung 

 

22nd March 2019  



 

 

Acknowledgements 

 

First and foremost, I would like to express my deepest gratitude to my supervisor, Professor Angela 

Roberts for her patient guidance and wisdom throughout my project. I would also like to express my 

greatest appreciation to my secondary supervisor, Dr Andrea Santangelo for her continued support and 

encouragement. They have facilitated my growth as a scientist, and I am incredibly fortunate to have 

had the opportunity to work with them. 

I would also like to thank everyone else at the Roberts lab and the Innes, for helping me learn the ropes 

around the lab and contributed to my work in one form or another. Special thanks to Dr Nicole Horst 

for performing most of the surgeries for my animals and being the “rock” of the lab.  

I would also like to thank my fellow PhD students, for their advice, aid, and banter. Special mention to 

Sufia Rahman and Laith Alexandar for walking me through the early days, Sebastian Axelsson for 

helping me with my human intruder tests, and Zuzanna Stawicka and Lisa Duan for holding my 

monkeys for infusions and weekly cap changes. Their companionship has made challenging moments 

surmountable. I also wish to acknowledge the help provided by the research technicians: Ms Gemma 

Cockcroft and Mrs Lauren Mciver for all the invaluable work they do for the lab. 

Special thanks to Mr Colin Windle, the Named Animal Care & Welfare Officer (NACWO), Dr Jo 

Keeley, the Named Veterinary Surgeon (NVS) and the full team of animal technicians, for taking care 

of the marmosets and without whom the lab would not be able to sustain itself. 

I would also like to thank the lifetime of support provided by my family and friends, and the friendship 

of all the wonderful people I have met in my time at Cambridge. 

And finally, I am grateful to the Medical Research Council (MRC) for funding the research project and 

the Public Service Department of Malaysia for funding my studentship.   



 

 

Abstract 

 

Anxiety and fear are emotions provoked by threatening situations and shape adaptive behaviours, but 

excessive and uncontrollable anxiety and fear form core symptoms of anxiety disorders. High trait 

anxiety, an individual’s disposition to feel anxious, is associated with greater risk of developing 

depression and anxiety disorders. This raises the question: why are some more vulnerable to 

experiencing negative emotions associated with threat than others? As serotonin has been implicated as 

a key neuromodulator of emotion, the thesis addresses this question by adopting a multi-systems 

approach to investigate the link between serotonin and both threat-driven behaviour and trait anxiety 

with the common marmoset as a model.  

Firstly, factors underlying threat-related behaviour modelled with an exploratory factor analysis 

revealed a relationship between a predominantly avoidant fear coping style and an increased propensity 

for anxiety, establishing a link between specific fear-driven behavioural patterns and anxiety.  

After characterising anxiety and fear-driven behaviours, mRNA quantification of brain regions 

implicated in anxiety revealed serotonergic gene expressions corresponding to anxiety and fear-driven 

behaviours. Most notably, amygdala serotonin transporter expression was positively associated with 

anxious behaviour and was differentiated by the serotonin transporter polymorphism. Based on this 

association, the hypothesis that increased amygdala serotonin transporter expression may contribute to 

the high trait anxious phenotype was tested. Consistent with this hypothesis, blockade of amygdala 

serotonin transporters via local infusions of a selective serotonin reuptake inhibitor (SSRI), citalopram 

reduced key characteristics of the high trait anxious phenotype: high state anxiety, and both the 

behavioural and physiological expression of conditioned fear.  

Anatomically, high anxious animals showed reduced basolateral amygdala (BLA) volume in adulthood. 

Moreover, BLA volume in adulthood was differentiated by the serotonin transporter polymorphism. 

During development, high anxious animals showed a delayed BLA growth trajectory. These findings 

demonstrate morphological changes in the BLA across different developmental timepoints predictive 

of high anxiety in adulthood. 

Taken together, findings here provide evidence of amygdala serotonin’s role in trait anxious expression, 

and propose behavioural, genetic, molecular and anatomical factors that may contribute to an 

individual’s vulnerability to anxiety.  



 

 

Table of Contents 

 

List of Abbreviations .............................................................................................................................. 1 

Chapter 1: General Introduction ............................................................................................................. 3 

1.1 Emotions ....................................................................................................................................... 3 

1.1.1 LeDoux’s survival circuits and threat .................................................................................... 4 

1.2 Threat: Anxiety and Fear .............................................................................................................. 8 

1.2.1 The Threat Circuit ................................................................................................................ 11 

1.3 Disorders of Anxiety and Fear .................................................................................................... 14 

1.3.1 Neural mechanisms of dysregulated threat processing ........................................................ 15 

1.3.2 Trait Anxiety, stress and cognitive biases ............................................................................ 17 

1.3.3 Current treatments for anxiety disorders .............................................................................. 20 

1.4 Serotonin ..................................................................................................................................... 22 

1.4.1 Serotonin manipulation and threat processing ..................................................................... 26 

1.5 Summary and aims ...................................................................................................................... 30 

Chapter 2: Anxiety and fear response in the common marmoset ......................................................... 32 

2.1 Introduction ................................................................................................................................. 33 

2.2 Methods....................................................................................................................................... 36 

2.3 Results ......................................................................................................................................... 44 

2.4 Discussion ................................................................................................................................... 52 

Chapter 3: The relationship between serotonergic gene expression and anxiety and fear behaviour ... 61 

3.1 Introduction ................................................................................................................................. 62 

3.2 Methods....................................................................................................................................... 64 

3.3 Results ......................................................................................................................................... 71 

3.4 Discussion ................................................................................................................................... 79 

Chapter 4: Role of amygdala serotonin transporter in the expression of trait anxiety .......................... 83 

4.1 Introduction ................................................................................................................................. 84 

4.2 Methods....................................................................................................................................... 86 

4.3 Results ......................................................................................................................................... 94 



 

 

4.4 Discussion ................................................................................................................................. 102 

Chapter 5: Predictors of adulthood anxiety across development ........................................................ 105 

5.1 Introduction ............................................................................................................................... 106 

5.2 Methods..................................................................................................................................... 108 

5.3 Results ....................................................................................................................................... 113 

5.4 Discussion ................................................................................................................................. 119 

Chapter 6: General Discussion ............................................................................................................ 122 

6.1 Summary of Results .................................................................................................................. 123 

6.2 Amygdala serotonin transporter regulates trait anxiety ............................................................ 126 

6.3 Avoidant coping patterns and anxiety ....................................................................................... 129 

6.4 Strengths, limitations and future work ...................................................................................... 130 

6.5 Concluding remarks .................................................................................................................. 132 

Bibliography ....................................................................................................................................... 133 

 

  



1 

 

List of Abbreviations 

 

5-HT  5-hydroxytryptamine, serotonin 

5-HTTLPR  Serotonin-transporter-linked polymorphic region 

ACC  Anterior cingulate cortex 

ACTH  Adrenocorticotropic hormone 

AP  Anteroposterior 

ATD  Acute tryptophan depletion 

BA  Basal nucleus of the amygdala 

BAI  Beck anxiety inventory 

BCNI  Behavioural and clinical neuroscience institute 

BLA  Basolateral amygdala 

BNST  Bed nucleus of the stria terminalis 

CBT  Cognitive behavioural therapy 

CeA  Central nucleus of the amygdala  

CI  Confidence interval 

CIS  Chronic immbolisation stress 

CRF  Corticotropin-releasing factor 

CRS  Chronic restraint stress 

CS  Conditioned stimulus 

CSF  Cerebrospinal fluid 

CUS  Chronic unpredictable stress 

dlPFC  Dorsolateral prefrontal cortex 

DNA  Deoxyribonucleic acid 

DOI  2,5-Dimethoxy-4-iodoamphetamine 

DRN Dorsal raphe nucleus 

DSM  Diagnostic and statistical manual of mental disorders 

DTI  Diffusion tensor imaging 

EFA Exploratory factor analysis 

fMRI  Functional magnetic resonance imaging 

GAD  Generalised anxiety disorder 

GM  Grey matter 

HCl  Hydrochloric acid 

Hipp Hippocampus 

HPA  Hypothalamic–pituitary–adrenal 



2 

 

LA  Lateral nucleus of the amygdala 

LM  Lateromedial 

LTD  Long term depression 

LTP  Long term potentiation 

MDD Major depressive disorder 

mPFC  Medial prefrontal cortex 

MRI  Magnetic resonance imaging 

MRN  Median raphe nucleus 

MSA  Measure of sampling adequacy 

NAcc  Nucleus accumbens 

OFC  Orbitofrontal cortex 

PBS  Phosphate-buffered saline 

PCA  Principal component analysis 

PD  Panic disorder 

PET  Positron-emission tomography  

PTSD  Post-traumatic stress disorder  

OCD Obsessive compulsive disorder 

RNA  Ribonucleic acid 

ROI Region of interest 

qRT-PCR  Quantitative reverse transcription polymerase chain reaction 

SAD  Social anxiety disorder 

SD  Standard deviation 

SEM  Standard error of the mean 

SSRI Selective serotonin reuptake inhibitor 

STAI  State-trait anxiety inventory 

TIV  Total intracranial volume 

TSAF  Time spent at the front 

US  Unconditioned stimulus 

vlPFC  Ventrolateral prefrontal cortex 

  



 

3 

 

Chapter 1: General Introduction 

 

The study of how we regulate emotions has achieved substantial progress over the recent decades. 

Studies into how the brain and body responds to threat has been particularly successful due to 

advancements in neuroimaging techniques and significant contributions from animal models. But basic 

research on emotion regulation has not translated to significant progress in our ability to treat 

pathological forms of threat processing, with the absence of substantial improvements in treatment 

options within the last decade. Issues arising from current pharmacological interventions range from 

side effects, delayed onset of action, and low efficacy leading to premature treatment discontinuation 

and nonadherence (Taylor, Abramowitz and McKay, 2012). In order to advance clinical approaches to 

anxiety disorders, we need to develop a better understanding of the neural substrates underlying threat-

driven emotion processing, and anxious and fear-driven behaviour in animal models. Moreover, the 

study of the fundamental process underlying threat behaviour will advance our understanding of 

emotion regulation. This chapter will consist of an introduction to emotions, the threat circuit, anxiety 

disorders, trait anxiety, and the role of serotonin in modulating threat processing. 

 

1.1 Emotions 

 

Emotions serve an adaptive role in our lives. Positive emotions drive us towards rewarding behaviours 

such as deriving pleasure from eating calorically dense food; whereas negative emotions help shape 

behaviour to avoid harm, for example, fear motivating us to run away from a predator. In Darwin’s 

classic treatise, The Expression of the Emotions in Man and Animals, he proposed that emotions were 

a result of natural selection with two particular major insights: emotions were expressed similarly across 

the world in different cultures, and emotions were expressed similarly across closely-related animal 

species. Indeed, if emotions did not have a net positive effect on human well-being, survival and 

reproduction, we would expect emotion to be phased out and not phylogenetically conserved.  

Ekman (1972) proposed that there were six distinct basic emotions (anger, disgust, fear, happiness, 

sadness, and surprise) that were expressed universally, innate to specific neural circuits, and were 

evolved to drive behaviours that increased survival. However, Barrett (2006a, 2006b) challenged the 

view that there were emotions that were natural kinds (definite real categories not dependent on human 

description) on the basis that neuroimaging studies in humans report similar brain areas showing 

activation in response to stimuli linked to different basic emotions, and human basic emotions were 

different than those identified in animals. Barrett’s theory of constructed emotion posits that emotions 
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are phenomena that emerge as a product of the brain categorising interoceptive signals into emotion 

concepts from one’s own culture (Barrett, 2016). LeDoux disputes Barrett’s rebuttal of the classical 

view of emotions as evidence from neuroimaging studies do not have the resolution to truly conclude 

that similar neural circuits underlie different emotions as different neuronal subpopulation may mediate 

these different emotions within each region. In contrast, LeDoux argues for the study of emotion from 

the perspective of survival circuits. He proposes that the innate circuits within the mammalian brain 

mediate not emotions per se, but vital life-sustaining survival processes, such as defence and energy 

maintenance (LeDoux, 2012).  

 

1.1.1 LeDoux’s survival circuits and threat 

 

Ledoux posits that the function of survival circuits is to coordinate physiological changes and 

behavioural interactions with the environment in the presence of opportunities and challenges, and only 

indirectly influences feelings.  An example of a survival circuit is the circuit for threat processing. All 

organisms from the simplest to the most complex of life forms needs to be able to process information 

of potential threats and react to threat effectively in order to survive and defend one’s self in a complex 

environment. Although the overall complexity of the brain varies across mammals, threat processing 

has been well studied and shown to be conserved within the mammalian brain (Janak and Tye, 2015). 

The amygdala, a critical structure in threat processing, is well conserved across species (figure 1.1). As 

different animals face different environments and occupy different ecological niches, the behavioural 

responses initiated by these circuits will be species-specific, even though the circuit for threat 

processing may be species-general.  
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Figure 1.1: Conservation of the primary amygdala nuclei across species by Janak & Tye (2015). 

The basolateral nuclei of the amygdala (BLA) and central nucleus of the amygdala (CeA) or 

analogues of lizards, mice, rats, cats, monkeys and humans (top-to-bottom). 
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Activation of survival circuits not only lead to the initiation of innate behavioural responses, but also 

generalized arousal. The generalized arousal response encompasses neurotransmitter release 

modulating neural activity, the release of hormones in the body, and physiological changes such as 

those within the cardiovascular and metabolic domain.  

The serotonin system has been implicated in the mediation of threat sensitivity (trait anxiety) and threat-

related behaviours (Cools et al., 2005; Fisher and Hariri, 2013; Bocchio et al., 2016). Serotonergic 

neurons from both the dorsal and median raphe nuclei innervate the corticolimbic circuit, modulating 

activity of regions in the circuit for fear and anxiety (Jacobs and Azmitia, 1992).  

Stressors in the environment in the form of a predator or signals associated with potential harm also 

elicit the release of corticotropin-releasing factor (CRF) from the hypothalamus. The CRF initiates the 

release of adrenocorticotropic hormones (ACTH) from the pituitary which in turn initiates the secretion 

of glucocorticoids (the primary glucocorticoid released is cortisol in humans and nonhuman primates 

and corticosterone in most other animals) from the adrenal cortex (Smith and Vale, 2006). The 

hypothalamic-pituitary-adrenal (HPA) axis forms the central neuroendocrine stress response and the 

glucocorticoids released in systemic circulation mediate the body’s ongoing response to stress 

(cardiovascular, metabolic, immune, etc.) and activate glucocorticoid receptors expressed in 

particularly high concentrations in brain regions implicated in emotion regulation: the hippocampus, 

the amygdala, and the prefrontal cortex (Gray and Bingaman, 1996; Joëls, 2001; McKlveen et al., 2013). 

Survival circuits instantiate substantial changes in the brain-body state, with the action of 

neurotransmitters being fast-acting, while the action of hormones in the peripheral system are slow-

acting and form a more long-term response to threat-relevant stimuli. 

Motivation like feelings of hunger and sexual drive, aren’t traditionally perceived as emotions but 

constitute a critical part of our inner lives and are sensations whereby the object of appraisal is internal. 

Emotions, in contrast, are induced following cognitive appraisal of external stimuli. LeDoux points out 

that survival circuits engage the motivational system to increase the chance that goal-directed behaviour 

is reinforced and motivated. For example, activation of the fear circuit via an aversive trigger such as 

being bitten after encountering a dog, will lead to the learning (reinforcement) and internal drive 

(motivation) to avoid dogs, and the re-activation of the fear circuit upon seeing a dog. Thus, activation 

of survival circuits and circuits for motivation and learning (conditioning) are intertwined. 

LeDoux posits that emotions related to survival circuits, such as fear, manifest as a product of: 1) 

survival circuits and corresponding behavioural pathway activation, 2) generalised arousal 

(neuromodulatory, hormonal, and physiological), 3) activation of motivational systems, and finally the 

combination of these states and other subcomponents is appraised and labelled in the cognitive 

workspace representing our consciousness (figure 1.2). More complex emotions such as shame and 

guilt are modulated by a separate more complex system that may not involve survival circuits. Insofar 
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as animals have survival circuits and are conscious beings possessing a cognitive workspace, we may 

infer that animals have constructs such as emotions as well. However, as there are differences in the 

brains of humans and animals, the neural circuits giving rise to conscious representation are likely to 

be different too. By extension, the emotions or conscious feelings arising from humans and animals 

would likely be different as well. This is reminiscent of the concept of qualia as described by Nagel in 

“What Is it Like to Be a Bat?”: it is impossible to know the mental state of a bat (Nagel, 1974). Similarly, 

it is impossible to know the fear of a rat, or the anxiety of a monkey. Therefore, we should study survival 

circuits that are emotionally significant without assuming that the phenomena studied are fundamentally 

the same to the phenomena experienced by people when describing emotions.  

 

 

Figure 1.2: Components forming emotions (subjective feelings) within the cognitive workspace 

by LeDoux (2012). 

 

Moving forward, when the term anxiety or fear is referred to within this thesis, the underlying 

processing of threat within their respective neural circuits are being referred to, not the subjective 

feelings that may manifest. Not only is there no way of knowing if the animal is experiencing any 

conscious feeling at all, but even if they do, whether these conscious feelings are similar to that 

experienced by humans remains unknown. With this approach we will discuss and further explore the 

threat circuit underlying anxiety and fear in animal models without anthropomorphising animal 

behaviour and affect.  
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1.2 Threat: Anxiety and Fear 

 

Fear and anxiety are terms that are often used interchangeably but refer to distinct threat states. An 

anxiety-provoking trigger is a context or stimulus that signals potential or uncertain threat. For example, 

a sound coming from the bushes acts as an anxiety-provoking trigger as it may be from a predator or a 

non-threatening animal like a passing deer. As an animal is anxious, the anxiety circuit directs attention 

towards the uncertain threat stimuli and the animal displays vigilant behaviour. The stress response 

initiates physiological and metabolic events such as increased heart rate, vasoconstriction, mobilisation 

of energy stores and decreasing motility of the digestive system to prepare for the rapid execution of 

different potential fear responses.  

In an experimental setting, anxiety-measuring paradigms in rodents focus on the behavioural aspect of 

anxiety. Among the most commonly used anxiety assays, the elevated plus maze (similar to the elevated 

T-maze) and open field test are examples of approach-avoidance conflict task capitalizing on the rodents 

innate conflicting drive to explore novel spaces and to avoid exposed areas where they might be 

vulnerable when anxious (Calhoon and Tye, 2015). Anxious animals therefore, tend to avoid the open 

arms of the elevated plus maze and open centre of the open field test, and prefer the enclosed arms or 

the walled sides of the respective tests. Other paradigms also take advantage of behaviours suppressed 

by high levels of anxiety. For example, in the novelty suppressed feeding test, rodents display 

hyponeophagia, whereby initiation of feeding is suppressed in anxious animals because there is an 

uncertainty of threat in a novel environment. Similarly, inhibition of social interaction with an 

unfamiliar conspecific is measured as anxiety-induced suppression of normal behaviour in the social 

interaction test.  

In humans, anxiety induced by a specific paradigm (e.g. threat of shock) is often assessed via self-

reported questionnaires such as the state-trait anxiety inventory (STAI). The STAI evaluates two 

subscales: state anxiety, the participants current state feelings of anxiety, e.g. feelings of nervousness 

and worry; and trait anxiety, the participant’s trait proneness to feelings of anxiety. In contrast, the Beck 

Anxiety Inventory (BAI) focuses on the somatic symptoms of anxiety, and has been designed 

specifically to distinguish between symptoms of clinical anxiety from symptoms of depression (Beck 

et al., 1988). As the BAI evaluates symptoms occurring over the last week, compared to the subscales 

of the STAI, the BAI assesses persistent state anxiety. Self-reported measures may however, be less 

reliable than objective measures of behaviours or autonomic readings as it is affected by an individual’s 

reporting biases and may not accurately measure instances where nonconscious processing of threat is 

involved. 
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The physiological component of anxiety in both humans and rodents are often studied by measuring 

autonomic arousal in the form of increased heart rate or blood pressure, or by measuring levels of stress 

hormones (cortisol). As anxiety increases the activity of sweat glands, the skin conductance response is 

used as a measure of stress and anxiety as well.  

Furthermore, automatic behaviours such as the startle reflex may also be used as a measure of an 

animal’s anxious or fearful state. The startle reflex such as the jump response of rats in response to the 

sudden onset of an intense neutral sound stimulus is potentiated when the animal is in the presence of 

a conditioned aversive cue (fear-potentiation) or in the context where an aversive stimuli was received 

(anxiety-potentiated)  (Siepmann and Joraschky, 2007). The startle reflex is also measured in humans, 

for example, the eyeblink component of the startle reflex in humans was potentiated by the presentation 

of an aversive conditioned cue previously paired with an electric shock (Grillon et al., 1991). 

In contrast to anxiety, a fear-provoking trigger is a stimulus that directly signals threat. An example 

would be seeing the stripes of a tiger passing behind a bush. Predators such as snakes and spiders are 

examples of innate triggers that elicit a fear response without prior association and conditioning 

(Ohman, 1986; Hoehl et al., 2017). Innate fear triggers are vital as often animals don’t survive multiple 

harmful encounters with a predator, and thus hard-wired responses to specific threats are vital to 

survival. Experimental paradigms measuring the fear response often expose participants to stimuli 

representing innate fear triggers, such as images of a snake.  

Fear circuits are also flexible to associative learning. As demonstrated by classical conditioning 

paradigms, animals may acquire conditioned fear responses to a previously neutral stimuli or context 

by pairing the neutral stimuli or context with the presentation of an innate fear trigger, such as an electric 

shock (Flor and Birbaumer, 2001). The fear conditioning paradigm has been used in humans, rodents 

and nonhuman primates to test both unconditioned (innate) and conditioned (learned) fear responses 

(Milad and Quirk, 2012; Wallis et al., 2017).  

The adaptive value of different fear responses is dependent on a combination of complex factors such 

as the threat type, threat distance, and possibility for escape (Blanchard et al., 2011). The classic fight-

or-flight response describes two general strategies to cope with imminent threat: ‘fight’ e.g. confront 

and prepare to defend oneself against the threat, or ‘flight’ e.g. distance one’s self from the threat and 

attempt to flee. Either responses are valid in different scenarios. Fighting would only be effective against 

a threat that can be effectively overcome or intimidated, but would lead to harm against a threat that 

one cannot fend off. Whereas, fleeing is effective against threats that cannot lead a successful pursuit 

but leaves you more vulnerable against a threat that is more mobile.  

Fear responses also need to change adaptively to the evolving circumstance. For example, if attempts 

to fight/intimidate are unsuccessful and the threat maintains close proximity to the individual, a switch 

to the flight response to regain distance from the threat is necessary to survive the encounter. Thus, the 
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appropriate activation and switching between fear responding pathways is vital for adaptively 

responding to threats, and inappropriate fear responding styles are likely to have consequences on the 

fitness of individuals.  
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1.2.1 The Threat Circuit 

 

A meta-analysis of positron emission tomography (PET) and functional magnetic resonance imaging 

(fMRI) studies in emotion activation showed that threat-related stimuli consistently engaged the 

amygdala, supporting the view that the amygdala plays a central role in threat processing (Phan et al., 

2002).  

The serial model of amygdala function posits that incoming sensory information of both certain (fear) 

and uncertain (anxiety) threat converge from the thalamus and sensory regions to the basolateral 

amygdala (BLA). Long-term synaptic plasticity within these sensory inputs in the BLA (particularly 

the lateral nucleus of the amygdala, LA) has been implicated in the acquisition of conditioned fear 

responses (Chapman et al., 1990). This is supported by evidence from rodents showing NMDA 

receptor-dependent long-term potentiation (LTP) after fear conditioning (McKernan and Shinnick-

Gallagher, 1997; Quirk, Armony and LeDoux, 1997; Rogan, Stäubli and LeDoux, 1997; Rodrigues, 

Schafe and LeDoux, 2001; Goosens and Maren, 2004). Subsequent work in BLA-lesioned rodents 

support the view that the BLA plays a key role in the encoding and storage of fear memory (Gale et al., 

2004).  

Information from the BLA is then passed to the CeA via direct and indirect pathway connections 

between the regions. Bilateral lesions of the CeA cause primates to display less fear-related behaviour 

in response to a snake and less anxiety-related behaviour in response to a  human (human intruder test) 

(Kalin, Shelton and Davidson, 2004). Lesions of CeA also blocked fear-potentiated startle (Hitchcock 

and Davis, 1986, 1991; LeDoux et al., 1988).  The CeA projections to the hypothalamus and 

periaqueductal grey (Amaral et al., 1992; Davis, 2000) initiates the expression of defensive 

physiological and behavioural reactions respectively. For example, lesions of the lateral hypothalamus 

affects blood pressure but not freezing, whereas lesions of the periaqueductal grey affects freezing but 

not blood pressure (LeDoux et al., 1988). CeA projections are also involved in different fear coping 

responses. Gozzi et al. (2010) reported that projections of CeA neurons to cholinergic forebrain neurons 

mediated the switch between active (digging, exploring, rearing) and passive (freezing) fear behaviour 

in rodents in a conditioned fear paradigm. 

However, sensory cortices and the thalamus also project to the central nucleus of the amygdala (CeA) 

(LeDoux, Farb and Ruggiero, 1990; Turner and Herkenham, 1991; Mcdonald, 1998), supporting the 

parallel model of amygdala function, which posits that sensory information enters the amygdala via 

both the CeA and LA, and projections from the LA and CeA drive distinct behaviours. Consistent with 

this, lesion studies in rats demonstrated that LA lesions and CeA lesions mediated different fear-

conditioned behaviour, suggesting that the information flow from the LA and CeA may differentially 
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drive different components of threat-driven behaviour (Killcross, Robbins and Everitt, 1997; Manassero 

et al., 2018). Thus, although the LA receives relatively substantial afferent innervation relative to the 

CeA, the amygdala does not process sensory information via the LA exclusively. The functional roles 

of the amygdala subnuclei should be further explored in nonhuman primates to elucidate how the LA 

and CeA may mediate dissociable cognitive processes within the amygdala microcircuit. 

Information is also passed from the BLA towards the nucleus accumbens (NAcc) of the striatum. 

Dopamine signalling in the nucleus accumbens has been implicated in the expression of avoidance 

behaviour in response to threat (McCullough, Sokolowski and Salamone, 1993; Levita, Hoskin and 

Champi, 2012; Wenzel et al., 2018). Findings from neuroimaging studies also point to the striatum’s 

role in the coding of aversive prediction errors (Delgado et al., 2008). Taken together, the evidence 

suggests that the striatum plays a role in aversive conditioning and that the nucleus accumbens is crucial 

to the expression of avoidance behaviour. 

The BLA also releases CRF, stress hormones from projections to the bed nucleus of stria terminalis 

(BNST).  Evidence from acoustic startle reflex in rodents suggest that the medial CeA mediates the fear 

response whereas lateral CeA corticotropin-releasing hormone mediated excitation of the BNST 

mediates the anxiety response (Grillon, 2008; Davis et al., 2010). The BNST, along with the insular 

cortex and lateral prefrontal cortex, were more greatly recruited in individuals with greater trait anxiety 

(individual disposition to anxiety) and activity in the BNST corresponds to greater tracking of threat 

proximity, implicating the region in mediating anxious response (Somerville, Whalen and Kelley, 

2010). Behavioural and physiological reaction to threat is initiated via projections from the CeA and 

the BNST to the hypothalamus and brainstem (Herman and Cullinan, 1997; Berntson, Sarter and 

Cacioppo, 1998). Stimulation of the oval nucleus of the BNST in mice increased open-arm time in the 

elevated plus maze test (low anxiety) and reduced respiratory rate, whereas stimulation of the 

anterodorsal BNST reversed these effects implicating opposing roles of BNST subregions in the 

modulation of anxious behaviour and physiology. Native spiking of anterodorsal BNST neurons also 

differentiated between safe and anxiogenic environments (Kim et al., 2013).  

Defensive responses and extinction/downregulation of threat circuit activation is mediated via 

reciprocal connections between the BLA, and both the ventral medial prefrontal cortex (vmPFC) and 

the ventral hippocampus (vHipp). The balance of activity between two subpopulation of basal amygdala 

(BA) neurons with distinct vmPFC and vHipp projection patterns modulate the extinction of 

conditioned fear responses in mice. BA neurons projecting to the mPFC and receive inputs from the 

vHipp mediated increased freezing (fear neurons), while BA neurons with reciprocal connections to the 

mPFC but do not project or receive inputs from the vHipp mediated extinction of the freezing response 

(extinction neurons) (Herry et al., 2008). A distinct of subpopulation of BLA neurons projecting to the 
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vHipp were also shown to modulate anxious behaviour, with inhibition of BLA-vHipp synapses 

reducing anxiety and activation increasing anxiety (Felix-Ortiz et al., 2013).  

Evidence from studies where the threatening stimuli is masked suggest that threat processing in the 

amygdala is non-conscious. In masked stimuli paradigms, the threatening stimulus is masked by 

interfering with attentional mechanisms (attentional unawareness) or the stimulus is presented below 

sensory detection thresholds (sensory unawareness) (Diano et al., 2016). Neuroimaging studies reported 

that the stimulus evoked responses in the amygdala even when the emotional stimuli were not attended 

to (Vuilleumier et al. 2001; Anderson et al. 2003; Bishop et al. 2004; Williams et al. 2005). Thus, 

amygdala activation may reflect the non-conscious bottom-up component of threat circuitry while other 

structures such as the vmPFC acts as conscious top-down modulatory components. 

In summary, the amygdala plays a central role in the threat circuitry mediating anxiety and fear 

responses. The combination of bottom-up activation and top-down modulation of the amygdala within 

the limbic circuit is vital for functional threat processing and emotional learning (figure 1.3). 

 

 

Figure 1.3: Core threat circuit underlying anxiety and fear responses. Schematic of the core 

threat circuit with the amygdala at the centre. Information of the perception of certain and uncertain 

threat flows from the sensory cortices and thalamus to the BLA (basolateral amygdala). Subsequently, 

mPFC (medial prefrontal cortex) and Hipp (hippocampus) modulate amygdala microcircuits of threat 

information. Finally, projections from the BLA and CeA (central nucleus of the amygdala) to 

downstream regions such as the BNST (bed nucleus of the stria terminalis), NAcc (nucleus 

accumbens), hypothalamus, and areas of the brainstem mediate various behavioural and physiological 

outputs of threat processing. 

 

 

  



Chapter 1: General Introduction 

14 

 

1.3 Disorders of Anxiety and Fear 

 

Anxiety and fear are adaptive but when normal functioning within this circuit is altered, normal threat 

processing is disrupted and the individual suffers from pathological fear and anxiety. The International 

Classification of Diseases (ICD-11) and the Diagnostic and Statistical Manual (DSM-5) diagnostic 

systems distinguishes types of anxiety disorders, such as generalised anxiety disorder (GAD), panic 

disorder (PD), specific phobia, and social anxiety disorder (SAD) (World Health Organisation, 2011; 

American Psychiatric Association., 2013). It’s worthwhile to note that posttraumatic stress disorder 

(PTSD) and obsessive compulsive disorder (OCD) were categorised out of anxiety disorders in both 

the ICD-10 and DSM-5. This follows the re-conceptualization of PTSD as a “trauma and stressor-

related disorder” (DSM-5) and “reaction to severe stress and adjustment disorder” (ICD-10), and OCD 

into its own category (ICD-10 and DSM-5). Dysregulated anxiety and/or fear form the core 

symptomology of anxiety disorders. 

GAD is highly comorbid with major depressive disorder, the most prevalent mood disorder, indicating 

a link between chronic anxiety and severe disruptions to mood (Hirschfeld, 2001; Conway et al., 2006). 

Among individuals with both mood disorders and anxiety disorders, most developed anxiety disorders 

at an earlier age (Regier et al., 1998; Kessler et al., 2007). Thus, high anxiety early in life may 

predispose individuals to greater vulnerability to mood disorders. 

According to a large population-based survey, approximately one in eight individuals (12.9%, 95%CI: 

11.3%-14.7%) will suffer from an anxiety disorder over their lifetime worldwide (Steel et al., 2014). 

Moreover, among the common mental disorders assessed, anxiety disorders were more prevalent than 

mood disorders and substance use disorders (Steel et al., 2014).  

Anxiety disorders are not only prevalent but also chronic and debilitating, leading to substantial 

impairment of workplace performance to the individual and imposes a major economic burden on 

society (Greenberg et al., 1999; Ahola et al., 2011; Wedegaertner et al., 2013). Anxiety disorders were 

estimated to have cost the European Union in excess of 41 billion Euros (Andlin-Sobocki and Wittchen, 

2005). The total cost of anxiety disorders on society (including service costs and lost employment cost) 

in the UK was approximately £8.9 billion in 2007 and expected to grow to £14.2 billion in 2026 

(McCrone 2008). Anxious individuals are also at risk of developing coronary heart disease (Roest et 

al., 2010). Patients with anxiety disorders were more likely to present with suicidal ideation and more 

likely to attempt suicide (Khan et al., 2002; Sareen et al., 2005; Nepon et al., 2010). Clearly, anxiety 

disorders pose a significant public health problem and research into more effective treatment 

interventions should be a greater priority. 
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1.3.1 Neural mechanisms of dysregulated threat processing  

 

Based on the amygdala’s central role in the processing of threat stimuli and the finding that patients 

with anxiety disorders show hyperreactivity to threat in the form of excessive anxiety and fear, we 

would expect the amygdala to display hyperactivity in individuals with anxiety disorders. Indeed, meta-

analysis of functional imaging studies observed amygdala hyperactivity in SAD, specific phobia and 

PTSD patients when processing emotionally significant stimuli, similar to amygdala activation in 

healthy subjects during fear conditioning (Etkin and Wager, 2007). Consistent with this, symptom 

provocation studies report hyperactivity in the amygdala in patients of other anxiety disorders such as 

PD (van den Heuvel et al., 2005; Pfleiderer et al., 2007) and GAD (McClure et al., 2007). 

Although symptoms of different anxiety disorders are heterogeneous, amygdala hyperactivity may 

reflect the exaggerated engagement of anxiety and fear circuitry resulting in dysregulated threat 

processing common to different anxiety disorder patients (Shin and Liberzon, 2010). Similarly, major 

depressive disorder patients also show hyperactivity in the amygdala when processing threat-related 

stimuli, suggesting that hyperreactivity of the amygdala to threat may be the common underlying 

mechanism mediating different pathological threat-related emotional processes (Peluso et al., 2009; 

Yang et al., 2010).  

Etkin & Wager (2007) also found hyperactivity in the insula of anxiety disorder patients during 

emotional processing. The insular cortex is heavily interconnected with other regions of the threat 

circuit, the amygdala, the hypothalamus, and the periaqueductal grey (a region of the brainstem) 

(Paxinos and Mai, 2004). The insula has been implicated in general emotion processing and regulating 

autonomic function (Oppenheimer et al., 1992; Phan et al., 2002; Barrett and Wager, 2006; Lamm, 

Decety and Singer, 2011). The insula has also been implicated in conscious mental representations with 

damage in the mid-insula associated with anosognosia for hemiplegia, where the patients are unaware 

of their own motor deficits (Karnath, Baier and Nägele, 2005; Spinazzola et al., 2008). (Bud) Craig 

(2009) has proposed that the insula may play a central role in awareness and the mental representation 

of emotions  although the latter has been proposed to occur in anterior cingulate cortex in the theories 

of  Damasio et al. (2000). Furthermore, the insula has also been implicated in the interoception of 

ascending homeostatic feedback from the body, such as processing sensory information of stress-

induced increases in cardiorespiratory activity and other visceral sensations (Craig, 2014; Strigo and 

Craig, 2016). Taken together, increased insula activation may reflect more intense mental 

representations of threat, greater sensitivity to the body’s physiological response to stress, or at the very 

least, more intense bodily responses among anxiety disorder patients.  
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Beyond the amygdala and insula, the prefrontal cortex has also been heavily implicated in the literature 

of anxiety disorders, although there exist substantial heterogeneity in the areas reported between studies 

(Shin and Liberzon, 2010). For example, when reading criticisms about themselves, SAD patients 

showed greater activation of the dmPFC (Blair et al., 2008). Whereas, neuroimaging studies with 

specific phobia patients have implicated upregulation of the anterior cingulate cortex, ACC (Straube et 

al., 2006; Straube, Mentzel and Miltner, 2006; Goossens et al., 2007), hyperactivity in the medial OFC 

(Schienle et al., 2007) and hypoactivity in the mPFC (Hermann et al., 2007) when the patients were 

presented with phobia-relevant stimuli. Youths with GAD showed greater activation in the ventral 

prefrontal cortex and the ACC while attending to personal fear-provoking stimuli (McClure et al., 

2007). Variable involvement of prefrontal cortical regions in symptom provocation studies of different 

anxiety disorders have revealed differential prefrontal activation patterns corresponding to disorder-

relevant information processing. 

In summary, functional neuroimaging studies with anxiety disorder patients widely implicate the 

amygdala and insula hyperactivity, providing evidence that these structures may underlie the increased 

threat reactivity and negative affect shared across different anxiety disorders. In contrast, variable 

involvement of other cortical structures reported across the different individual subtypes of anxiety 

disorders likely represents the distinct top-down factors underlying dysregulated threat processing and 

cognitive mechanisms leading to the heterogeneity in symptomatology observed across different 

anxiety disorders.  
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1.3.2 Trait Anxiety, stress and cognitive biases 

 

To understand the development of pathological emotion regulation, it is important to understand the 

altered neural mechanisms underlying trait anxiety. This is because high trait anxiety is a key risk factor 

for the development of anxiety disorders and depression (Mundy et al., 2015; Jeronimus et al., 2016) 

In the discussion of anxiety, it is important to recognise the distinction between trait and state anxiety.   

Trait anxiety refers to an individual’s enduring disposition for feelings of anxiety, and prevails along 

time and across different contexts. In contrast, state anxiety refers to an individual’s transitory emotional 

state of feeling anxious in the presence of a stress-provoking stimulus. That state may differ when 

exposed to the same stressor over time. 

Stress plays a critical role in mediating lasting effects on the brain and behaviour across an individual’s 

development (Lupien et al., 2009). The in utero environment has shown to have a significant effect on 

trait anxiety as evidence by stress exposure during the prenatal period in both humans and rodents 

leading to programming effects culminating in increased stress reactivity later in life (Barker, 1991; 

Koehl et al., 1999; Weaver et al., 2004; Seckl, 2007; Kapoor, Petropoulos and Matthews, 2008). 

Childhood and adolescents are also a critical period for the development of emotion regulation as 

evidenced by the association between compromised parental care and altered glucocorticoid secretion 

and risk of depressive symptomatology (De Bellis et al., 1999; Heim et al., 2000; Lupien et al., 2000; 

Halligan et al., 2007; Gunnar et al., 2009; McGowan et al., 2009). In contrast, the effects of stress 

exposure on neuronal anatomy in adulthood have been shown to be reversible in rodents after cessation 

of the stressor (Conrad et al., 1999; Shansky et al., 2009). In human adults, chronic exposure to 

increased glucocorticoids were associated with depression while decreased levels were associated with 

PTSD (Heim et al., 2000; Yehuda, Golier and Kaufman, 2005). As stress has been shown to drive 

epigenetic change in the HPA axis and stress-responsive brain regions, stress-driven epigenetic change 

across different developmental periods may interact with genetic factors to contribute to vulnerability 

to dysfunctional emotional regulation (Hunter and McEwen, 2013; Bartlett, Singh and Hunter, 2017). 

The predominant etiological model accounting for the relationship between trait anxiety, anxiety 

disorders and depression are that early life experiences, epigenetic and genetic factors lead to the 

formation of the high trait anxiety phenotype which subsequently, in response to stressful life events 

can lead to the development of pathological emotion regulation in the form of anxiety disorder and 

depression (figure 1.4) (Sandi and Richter-Levin, 2009). Understanding the neural mechanism 

underlying the high trait anxious phenotype will therefore enable us to develop better interventions 

preventing the manifestation of disorders of emotion dysregulation.  
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Figure 1.4: Trait anxiety: from early life factors to pathology. Genetic and environmental risk 

factors define the high trait anxiety phenotype, and subsequent traumatic events and chronic stress act 

on the vulnerability conferred to induce anxiety disorders and depression. High trait anxiety is 

characterised by an increased attentional bias to threat (threat vigilance), increased threat 

interpretation of emotionally ambiguous stimuli (threat generalization), altered conditioned fear 

response, and manifests as high state anxiety in anxiety-provoking context. 

 

High trait anxious individuals are associated with altered neurocognitive threat processes: increased 

attentional bias towards threat (threat vigilance) and increased threat interpretation of emotionally 

ambiguous stimuli (threat generalization). Meta-analysis of studies with high trait anxious individuals 

and individuals with anxiety disorder report a reliable bias towards threat-related stimuli in different 

experimental paradigms, and even when the stimuli are beyond conscious perception (Bar-Haim et al., 

2007). This attentional bias has been proposed to be a result of bottom-up threat evaluation mechanisms 

biasing attentional competition in favour of threat-related stimuli (Mathews and Mackintosh, 1998). 

Upon longer stimuli presentation duration, high trait anxious individuals show attentional avoidance of 

the threat-related stimuli, indicating both threat vigilance and avoidance as components of the high trait 

anxious phenotype (Mogg, Bradley, et al., 2004; Koster et al., 2005a, 2006). Moreover, Bishop reported 

that high trait anxious individuals had impoverished recruitment of dorsolateral prefrontal cortex 

(dlPFC) for attentional control to inhibit distractions even in the absence of threat-related stimuli, 

suggesting that high trait anxious individuals may exhibit general attentional deficits as well (Bishop, 

2009). 
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When presented with emotionally ambiguous stimuli, high trait anxious individuals are biased to 

making negative interpretations (Hirsch and Mathews, 1997; Richards et al., 2002). High trait anxious 

individuals also present a negative interpretive bias towards predictions made about risk and chance, 

and about future life events (Eysenck and Derakshan, 1997; Stöber, 1997). As trait anxious individuals 

present with negative interpretive biases in response to emotional neutral stimuli (threat generalization) 

and negative prediction biases when estimating uncertain future events, the culmination of both may 

explain the high worrying symptomatology in anxiety disorder patients (Brown, Antony and Barlow, 

1992). 

High trait anxious individuals also show altered prefrontal-amygdala functioning in the context of 

conditioned fear. More specifically, high trait anxious individuals showed impoverished recruitment of 

ventral prefrontal cortex (vPFC) and amygdala hyper-reactivity to conditioned fear (Indovina et al., 

2011; Sehlmeyer et al., 2011). Behaviourally, high trait anxious individuals also show deficits in safety 

learning, with delayed and incomplete extinction of conditioned fear, as measured by self-reported 

distress and startle responses (Gazendam, Kamphuis and Kindt, 2013). Thus, the impaired regulation 

of conditioned fear responses has been implicated as a key component of the high trait anxiety 

phenotype. 

The key features of trait anxiety may lead to significant alterations in the way threat is processed and 

regulated. Labelling non-threatening stimuli as threatening when threat generalizing, may lead to the 

prolonged activation of threat circuitry and lead to high trait individuals pessimistically predicting 

uncertain outcomes and perceiving neutral conditions as threat-laden. Similarly, as high trait individuals 

are more vigilant towards potentially threatening stimuli, the attentional bias towards threatening 

stimuli may lead to overactivation of anxious and fear responses and the inability to effectively manage 

emotional distractors. Threat generalization and threat vigilance together may lead to high trait 

individuals experiencing chronic stress in non-threatening or mildly threatening environments and the 

acquisition of inappropriate conditioned fear responses. In turn, the disposition for exaggerated 

conditioned fear responses leads to hyperarousal and distress when individuals with high trait anxiety 

are threatened and may lead to maladaptive fear coping behaviours. Thus, these cognitive biases may 

explain why high trait anxious individuals are more vulnerable to the development of anxiety disorders 

compared low trait anxious individuals.  
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1.3.3 Current treatments for anxiety disorders 

 

Individuals suffering from anxiety disorders are treated with medication, psychotherapy or both. Both 

psychotherapies and medications have led to greater clinical improvement than psychological placebos 

and placebo pills respectively (Bandelow et al., 2015), and have been shown to effectively alleviate 

high trait anxious cognitive biases (Mogg et al., 1995; Mogg, Baldwin, et al., 2004).  

Psychotherapies such as cognitive-behavioural therapy (CBT), mindfulness therapy and applied 

relaxation have the benefit of not having side effects and potential drug-drug interactions compared to 

pharmacological interventions, but has been shown to be less efficacious than medication for the 

treatment of GAD, PD, and SAD in a meta-analysis by Bandelow et al. (2015). CBT is often 

recommended as the first line psychological intervention for a wide range of psychological disorders 

including anxiety disorders, particularly in youths (Benjamin et al., 2011). The combination of CBT 

and medication showed a marked increase from CBT/other psychotherapies alone, but do not show a 

substantial increase in effect size beyond medication alone (Bandelow et al., 2015). The specific 

treatment components of CBT vary depending on the specific anxiety disorder but include a 

combination of problem-focused interventions to decrease maladaptive and increase adaptive coping 

behaviours, and modify maladaptive cognitions and beliefs (Craske, 2010). 

First-line drug treatment for these disorders is currently a selective serotonin reuptake inhibitor (SSRI) 

(Bandelow et al., 2008; National Institute for Health and Clinical Excellence, 2011; Baldwin et al., 

2014). SSRIs have “broad spectrum efficacy” and have been shown to be more effective than placebos 

in the treatment across different anxiety disorders (Bandelow et al., 2008). If SSRIs or other members 

of the drug class are ineffective, alternate medication such as serotonin–norepinephrine reuptake 

inhibitors (SNRIs), pregabalin (α2δ subunit-containing calcium channel modulator), or monoamine 

oxidase inhibitors may be prescribed dependent on symptomatology and contraindications. SSRIs (and 

SNRIs) are associated with a delay in onset of clinical effect, and a transient increase in anxiety and 

risk of suicidal thinking during the first few weeks of treatment (Teicher, Glod and Cole, 1990; Sinclair 

et al., 2009). Other side effects of SSRI such as nausea, weight gain, and sexual dysfunction may 

jeopardise compliance and contribute to discontinuation (Bandelow et al., 2008). SSRI’s putative 

mechanism of action is to inhibit serotonin transporters, leading to reduced reuptake of extracellular 

serotonin and consequently upregulating local serotonin signalling. SSRI’s efficacy in treating anxiety 

disorders and as an antidepressant suggest that serotonin plays a significant role in modulating negative 

mood. 

Alternatively, benzodiazepines may be prescribed for the rapid relief of anxiety without the worsening 

of symptoms observed with serotonin-targeting medication. Benzodiazepines enhances the effect of 
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GABA, the primary inhibitory neurotransmitter of the brain, by acting as a positive allosteric modulator 

at GABAA receptors (Brady et al., 2006). Benzodiazepine has been proposed to exhibit anxiolytic 

properties due to its effect on the amygdala inhibitory network (Gauthier and Nuss, 2015; Babaev, 

Piletti Chatain and Krueger-Burg, 2018). However, enthusiasm for targeting the GABA-nergic system 

in the development of new treatment options have been tempered by benzodiazepine’s strong sedative 

effects due to central nervous system depression, and its strong risk for dependence in patients. As 

SSRIs remain the safest and most effective option for long term treatment, future drug interventions 

may benefit from the short-term use of benzodiazepines combined with more long-term use of a drug 

targeting the serotonin system. 
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1.4 Serotonin 

 

Serotonin (5-HT, 5-Hydroxytryptamine) is a monoamine neurotransmitter that is evolutionarily 

conserved, being present in all bilateral animals, and even found in invertebrates (Jonz et al., 2001). 

Serotonin has been shown to be involved in regulating a wide range of physiological functions, 

including emotion, feeding, social behaviour, sexual behaviour, and the sleep/wake cycle (Lucki, 1998; 

Portas, Bjorvatn and Ursin, 2000; Hull, Muschamp and Sato, 2004; Kiser et al., 2012; Voigt and Fink, 

2015). Serotonergic neurons primarily from the dorsal raphe nucleus, but also the median raphe nucleus, 

project to regions across the corticolimbic circuitry and the serotonin released is responsible for the 

modulatory effects of serotonin on threat processing (Jacobs & Azmitia 1992).  

Notably, dorsal raphe serotonergic neurons were reported by Ren et al. (2018) to be anatomically 

defined with segregated locations dependent on projection regions in rodents. Frontal-cortex projecting 

serotonin neurons were activated by reward and inhibited by punishment, and has been reported to 

promote active coping behaviours in stressful situations (forced-swim test). In contrast, amygdala-

projecting serotonin neurons were activated by both reward and punishment and promoted anxious 

behaviour as measured by the open field test and elevated plus maze. These findings emphasise that 

serotonergic neurons have different projection patterns whose activation may differentially modulate 

anxious and coping behaviour. 

Serotonin receptors are grouped into 7 families and 14 total known receptors consisting of primarily G 

protein-coupled receptors (GPCRs) except for 5-HT3 receptors, which are ligand-gated ion channels 

(Nestler & Hyman 2009). The serotonin 1A (5-HT1A), 2A (5-HT2A), and 2C (5-HT2C) receptors have 

been particularly implicated in the regulation of anxious and fear related behaviour. 

The 5-HT1A receptor is expressed as both an autoreceptor and post-synaptic receptor throughout the 

brain (Barnes and Sharp, 1999; Riad et al., 2000). In the context of anxiety disorders, reduced 5-HT1A 

have been found in patients suffering from panic disorder and social anxiety disorder (Neumeister et 

al., 2004; Lanzenberger et al., 2007; Nash et al., 2008). 5-HT1A receptors in the dorsal and median raphe 

nuclei are somatodendritic autoreceptors that act to downregulate activation of serotonergic neurons 

and thus regulate serotonergic signalling in projection areas (Hjorth and Sharp, 1991). Lower 5-HT1A 

availability in the dorsal raphe nuclei is associated with greater threat-related amygdala reactivity, 

suggesting that weaker auto-inhibition of dorsal raphe serotonergic neurons may underlie greater 

sensitivity to threat (Fisher et al., 2006).  5-HT1A receptors are also localized in frontal and limbic 

regions innervated by serotonergic neurons as postsynaptic receptors on pyramidal and GABAergic 

interneurons (Santana et al., 2004; Palchaudhuri and Flügge, 2005). In rodents, preferential activation 

of 5-HT1A autoreceptors reduced conditioned fear learning but preferential activation of 5-HT1A 
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heteroreceptors did not, emphasising potentially different roles of 5-HT1A receptors dependent on 

localization (Zhao et al., 2018). As activation of 5-HT1A autoreceptors at the raphe nuclei inhibits 

serotonergic projections and thus downregulates serotonergic signalling across the brain, 5-HT1A 

autoreceptors may play a more significant role compared to 5-HT1A heteroreceptors in the modulation 

of the threat circuitry. 

In contrast to the inhibitory 5-HT1A receptor, 5-HT2A and 5-HT2C receptors are excitatory GPCRs. 

Although 5-HT2A and 5-HT2C receptors share strong similarities in their primary sequences and have 

overlapping expression in the layer V of the cortex, both receptors generally exhibit differing 

localization across other parts of the brain on both pyramidal and GABAergic interneurons (Bombardi, 

2014; Shukla, Watakabe and Yamamori, 2014). 5-HT2A receptor signalling has been linked to increased 

anxiety in humans, with neuroticism (measure of trait anxiety) positively associated with frontolimbic 

5-HT2A receptor binding (Frokjaer et al., 2008). Consistent with this, 5-HT2A receptor knockout mice 

displayed low anxiety and was normalized after cortical restoration of 5-HT2A receptors (Weisstaub et 

al., 2006). Similarly, transgenic mice with disruption to 5-HT2C receptor expression exhibited a low 

anxious phenotype while mice overexpressing 5-HT2C receptors display increased anxious behaviour 

(Kimura et al., 2009). Taken together, these findings implicate cortical 5-HT2A receptors and general 5-

HT2C receptors in the upregulation of anxious behaviour. 

The serotonin transporter reuptakes extracellular serotonin into the presynaptic terminals where the 

neurotransmitter may be re-released or degraded and thus plays a key role in regulating serotonin 

availability and signalling (Hirano et al., 2005). Notably, the variable number tandem repeat (VNTR) 

polymorphism occurring in the promoter region of the serotonin transporter gene on chromosome 17 in 

humans (5-HTTLPR) has been found to affect transcription of the serotonin transporter gene. Lesch et 

al. (1996) first reported that individuals with the short form of the 5-HTTLPR had higher scores of 

neuroticism, a measure of trait anxiety on the NEO Personality Inventory. The short allele of the 5-

HTTLPR is also associated with reduced serotonin transporter expression and greater amygdala activity 

in response to threat-related stimuli (Lesch et al., 1996; Little et al., 1998; Mortensen et al., 1999; Hariri 

et al., 2002). Subsequently, Caspi et al. (2003) reported that individuals with the short allele of the 5-

HTTLPR exhibited more depressive symptoms and be suicidal in relation to the occurrence of stressful 

life events and childhood maltreatment, implicating the 5-HTTLPR in the gene-environmental 

interaction leading to the development of psychopathology.  In rhesus macaques, individuals with an 

analogous “short” allele polymorphism and reared with peers (instead of parents) have high levels of 

anxiety-related responses during separation, indicating that the 5-HTTLPR may interact with early life 

experience to affect trait anxiety (Barr et al., 2004; Spinelli et al., 2007). Following these key findings, 

large numbers of studies have investigated the relationship between the 5-HTTLPR and affective 

pathology. The following is a summary of meta-analyses of studies conducted on the 5-HTTLPR and 

different aspects of high anxious pathology (table 1.1): 
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Table 1.1: Meta-analyses of studies involving the relationship between 5-HTTLPR and subjects 

relating to high anxious pathology. 

 

Overall, the studies generally report a small effect of the serotonin transporter polymorphism on 

characteristics ranging from negative attentional bias and other high trait anxious phenotypes to stress 

mediated risk of depression and SSRI efficacy. However, conflicting findings among some meta-

analyses has resulted in the 5-HTTLPR polymorphism remaining a contentious topic in affective 

pathology. Differences in findings likely reflect differences in the choice of included studies. Difference 

in the analytical method used may also affect results from the meta-analysis, for example Munafò et al. 

(2009b) found no significant effect with summary statistics, which is more conservative, while Karg et 

al. (2011) used a broader Z-score method to collate findings and found a significant effect (Taylor and 

Munafò, 2016). Differences in findings particularly among different ethnic groups may also be due to 

Study  Effect  Subject  

Pergamin-Hight et al. 2012  Significant  Attentional bias to negative stimuli 

Munafò et al. 2008  Significant  Amygdala activation 

Murphy et al. 2013  Significant  Amygdala activation 

Miller et al. 2013  Significant  Cortisol stress reactivity 

Schinka et al. 2004  Significant  Neuroticism 

Sen et al. 2004  Significant  Neuroticism 

Willis-Owen et al. 2005  Not Significant  Neuroticism and major depression phenotype 

Munafò et al. 2009a  Not Significant  Neuroticism and harm avoidance 

Gressier et al. 2013  Significant  Trauma exposure and risk of PTSD 

 Munafò et al. 2009b  Not Significant  Stress and risk of depression 

Risch et al. 2009  Not Significant  Stressful life events and risk of depression 

Uher & McGuffin 2010  Significant  Environmental adversity and risk of depression 

Karg et al. 2011  Significant  Stress and risk of depression 

Sharpley et al. 2014  Significant  Stress and risk of depression 

Culverhouse et al. 2017  Not Significant  Stress and risk of depression 

Bleys et al. 2018  Significant  Stress and risk of depression 

Lasky-Su et al. 2005  Not Significant  Major depressive disorder or bipolar disorder 

Lotrich & Pollock 2004  Significant  Major depressive disorder 

Kiyohara & Yoshimasu 2010  Mixed  Major depressive disorder in Caucasians but not Asians 

Clarke et al. 2010  Significant  Major depressive disorder 

Blaya et al. 2007  Not Significant  Panic disorder 

Zhao et al. 2017  Significant  Stress and risk of PTSD 

Navarro-Mateu et al. 2013  Not Significant  PTSD 

Lin 2007  Significant  OCD 

Walitza et al. 2014  Significant  Early-onset OCD 

Mak et al. 2015  Not significant  OCD  

Li & He 2007  Significant  Suicidal behaviour 

Fanelli & Serretti 2019  Significant  Risk of violent suicide attempt 

Smits et al. 2004  Significant  SSRI efficacy in depressed patients 

Serretti et al. 2007  Significant  SSRI efficacy in depressed patients 

Taylor et al. 2010  Not Significant  SSRI and other antidepressant response in depressed patients 

Porcelli et al. 2012  Mixed  SSRI efficacy and remission rate in Caucasians but not Asians 
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the mediation of different environments and cultural attitudes towards specific coping behaviours.  

Thus, the serotonin transporter polymorphism is likely one among many other genetic and 

environmental factors with a moderate-to-small effect size underlying different neural mechanisms 

contributing to the high trait anxious phenotype and stress reactivity. 
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1.4.1 Serotonin manipulation and threat processing 

 

Associations between serotonergic components and anxiety have advanced our understanding of how 

the serotonin system underlies activation of the threat circuit. Following from that, manipulations of the 

serotonin system within both humans and animal models have provided further insight into how 

alterations to the serotonin system may affect anxious behaviour.  

 

Acute Tryptophan depletion (ATD) 

To manipulate brain serotonin levels, acute tryptophan depletions (ATD) have been widely 

implemented in humans. ATD lowers serotonin synthesis rates by diminishing the availability of the 

precursor of serotonin, tryptophan via a combination of a low-protein diet with a tryptophan-deficient 

protein load of competing amino acids for brain uptake. ATD has been shown to reduce brain serotonin 

content and function in animals (Moja et al., 1989; Young et al., 1989), and reduce CSF tryptophan and 

serotonin metabolite (5-HIAA) in humans (Carpenter et al. 1998; Williams et al. 1999). ATD depletions 

in healthy volunteers interacts with individual threat sensitivity to increase amygdala reactivity (Cools 

et al., 2005) and altered PFC-amygdala functional connectivity when responding to threat-related 

stimuli (Passamonti et al., 2012). ATD also increases CRF, a key part of the body’s early stress 

response, measured in cerebrospinal fluid (Tyrka et al., 2004). Taken together, ATD studies in healthy 

volunteers indicate that lowered brain serotonin signalling increases vulnerability to anxiety. Robinson 

et al. demonstrated that ATD increased anxiety-potentiated startle but not fear-potentiated startle 

(2012). As serotonin inhibits BNST activation via 5-HT1A receptors (Levita et al., 2004), Robinson et 

al. (2012) proposes that ATD-mediated depletion of serotonin leads to increases in anxiety via the 

disinhibition of the anxiety-linked BNST, but does not interfere with BNST-independent fear 

mechanisms.  

In a clinical cohort of recovered patients with PD and SAD anxiety disorders treated by SSRI or CBT, 

ATD increased both physiological (blood pressure) and psychological (self-reported anxiety levels) 

indices of anxiety in response to a stress challenge (Davies et al., 2006). In particular, ATD induced a 

panic attack in remitted patients with PD when used in combination with a panicogenic challenge 

(flumazenil) (Bell et al., 2002). Thus, ATD studies inducing relapse in treated patients of anxiety 

disorders suggest that remittance may be mediated by increased serotonin signalling. 

Notably, ATD have shown mixed behavioural changes in rodents, with most studies showing no 

behavioural change (Lieben et al., 2004; Uchida et al., 2007; van Donkelaar et al., 2009), while some 

have showed success with repeated ATD (Blokland, Lieben and Deutz, 2002) and an effect only in 
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specific strains (Jans and Blokland, 2008), suggesting the need for further refinement of ATD 

methodology in rodents. 

Blockade of serotonin reuptake via SSRIs 

Consistent with its effects in anxiety disorder and depressed patients, acute SSRIs have been shown to 

increase both anxiety and fear-potentiated startle in healthy participants (Grillon, Levenson and Pine, 

2007). In rats, acute SSRIs similarly lead to high anxiety-like behaviour as measured by the light/dark 

test, where anxious rodents prefer dark compartments compared to exploring illuminated areas. (Arrant 

et al., 2013). Acute SSRI administration in healthy men was also reported to result in increases in 

amygdala reactivity to general salient stimuli (angry, fearful, surprised and neutral faces) (Bigos et al., 

2008). Subsequently, Murphy et al. (2009) reported that an acute dose of an SSRI reduced amygdala 

response to fearful faces. As Bigos et al.’s (2008) study included only men, a small sample (N = 8), and 

reported an effect to a mixed series of facial expressions, it is difficult to compare it with the results 

obtained by Murphy et al.’s (2009) more rigorously conducted study (counterbalanced number of both 

genders, N = 26, only fearful faces). Thus, studies on the acute effects of SSRIs on threat-related 

amygdala reactivity warrant further investigation and replication. However, following sub-chronic 

administration (7 days), healthy participants not only showed reduction in amygdala reactivity, but also 

showed reduced mPFC and hippocampal reactivity to masked threat cues, suggesting that the treatment 

efficacy of longer term chronic SSRI may be mediated by an overall reduction in threat circuit reactivity 

and unconscious threat processing (Harmer et al., 2006).   

The increased endogenous serotonin from acute SSRIs may paradoxically lead to overall inactivation 

of serotonergic projections in the forebrain via stimulation of homeostatic raphe nuclei 5-HT1A 

autoreceptors, which ultimately results in the enhanced anxiety and fear observed. After chronic 

administration, 5-HT1A autoreceptors are desensitised and serotonergic release is restored, consequently 

SSRIs effectively upregulates serotonin signalling across the brain by reducing reuptake of extracellular 

serotonin (Blier et al., 1998). 5-HT1A autoreceptors desensitisation has been proposed to be a product 

of decreased levels of Gi proteins (Li, Muma and van de Kar, 1996). Consistent with this theory, co-

administration of pindolol (5-HT1A/β-adrenoceptor antagonist), accelerated the therapeutic effects of an 

SSRI and induced rapid improvement in treatment-resistant patients (Artigas et al., 1996).  

Bypassing systemic SSRI’s potential effect on the dorsal raphe with intra-BLA SSRI infusions, induced 

reductions in anxiety as measured by reduced conditioned freezing to a context associated with 

footshock (Inoue et al., 2004). In contrast, intra-BNST infusions of SSRI prior to fear conditioning 

enhanced fear memory and conditioned freezing (Ravinder et al., 2013). Taken together, these findings 

provide support for the theory that systemic SSRI’s acute effect is mediated by dorsal raphe serotonin 

action, and that serotonin has differential action in specific forebrain serotonergic projection regions.  
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Serotonin receptor activation and blockade via agonists and antagonists 

Infusions of pharmacological manipulations within regions of the threat circuit allow us to further probe 

the role of specific serotonergic components in threat processing. 

5-HT1A. Systemic administration of a 5-HT1A receptor agonist exhibit anxiolytic and antidepressant-

like properties in rodents (Nunes-de-Souza et al., 2000; Jastrzȩbska-Wiȩsek et al., 2018). Similarly, 5-

HT1A receptor agonist infusions in the BLA reduced anxious behaviour on the elevated T-maze 

(Zangrossi, Viana and Graeff, 1999) but increased anxious behaviour in the social investigation test 

(Gonzalez, Andrews and File, 1996). It should be noted that in Gonzalez et al.’s (1996) study, a 

substantially lower dose of 5-HT1A receptor agonist (8-OH-DPAT) was used (appx. 0.15–0.6 nmol) 

compared to that in Zangrossi et al. (1999) (8–16 nmol). Taken together, these results suggest that 5-

HT1A receptor activation reduces anxiety but may have differing effects in the BLA either as a function 

of dose or behavioural paradigm (non-social vs. social). 

5-HT2A. Systemic administration of a 5-HT2 agonist (2,5-Dimethoxy-4-iodoamphetamine, DOI) 

induced a reduction in fear-driven behaviour (passive avoidance) on the four-plates test (Nic 

Dhonnchadha et al., 2003; Ripoll, Hascoët and Bourin, 2006). In the four-plates test, fearful animals 

avoid crossing the “plates” of the test area after they have experienced a foot shock doing so. Similarly, 

DOI induced an anxiolytic effect on the elevated plus maze. DOI’s reduction of fear behaviour and 

anxiolysis was attenuated by a 5-HT2A antagonist but not a 5-HT2B antagonist or 5-HT2C antagonist (Nic 

Dhonnchadha et al., 2003; Ripoll, Hascoët and Bourin, 2006). These findings indicate that DOI’s 

reduction of fear and anxious behaviour is mediated by 5-HT2A receptor activation, and that 5-HT2A 

receptor may play a general role in downregulating threat reactivity. 

5-HT2C. Systemic administration of a 5-HT2C agonist increased anxious behaviour on the elevated plus 

maze (Pockros-Burgess et al., 2014). Consistent with this, intra-BLA administration of 5-HT2C receptor 

agonist or serotonin increased anxious behaviour on the elevated T-maze. In contrast, intra-BLA 

administration of 5-HT2C receptor antagonist had the opposing effect and blocked the anxiogenic effect 

caused by intra-BLA serotonin and systemic administration of SSRIs (Vicente and Zangrossi, 2012). 

Intra-BLA 5-HT2C receptor antagonists also attenuated mixed 5-HT2 agonist anxiogenesis on the open 

field test (Campbell and Merchant, 2003). Similarly, intra-BLA 5-HT2C receptor antagonists prevented 

uncontrollable stress-potentiated anxiety measured on a variant of the social investigation test 

(Christianson et al., 2010). 5-HT2C receptors have been posited to produce anxiogenic effects by 

enhancing NMDA receptor function in the BLA (Jiang et al., 2011).  These findings indicate that 

activation of 5-HT2C receptors in the BLA lead to increased expression of anxious behaviour. 

5-HT4. Mendez-David et al. (2014) recently demonstrated that 5-HT₄ receptor agonists not only 

induced anxiolytic action on the elevated plus-maze, open field test, and novelty suppressed feeding 

test, but also induced antidepressant effects on depression-like measures of learned helplessness. 
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Notably, 5-HT₄ receptor agonist induced early onset of brain changes typically observed after chronic 

SSRI treatment: desensitisation of 5-HT1A autoreceptors, increased tonic activation of hippocampal 

pyramidal neurons, and neurogenesis in the hippocampus (Lucas et al., 2007). However, use of 5-HT₄ 

receptor agonists as a rapid action anxiolytic has been hampered by its disruption of normal 

gastrointestinal tract function (Tonini and Pace, 2006). 

 

As a whole, serotonergic manipulations by changing overall serotonin signalling or altering activation 

of specific serotonin receptors have provided valuable insight into the specific serotonergic components 

relevant to the expression of anxiety. ATD-induced serotonergic depletion increased vulnerability to 

anxiety. Acute blockade of serotonin reuptake via SSRI administration increased behavioural measures 

of threat reactivity putatively due to its effect on 5-HT1A autoreceptors but have shown potential to 

reducing threat reactivity when administered sub-chronically, implicating time-dependent neural plastic 

changes underlying SSRI treatment efficacy. For the serotonin receptors, 5-HT1A receptor activation via 

agonists resulted in anxiolysis, potentially due to its effects on 5-HT1A heteroreceptors. Furthermore, 5-

HT2A receptor activation reduced anxiety and fear, 5-HT4 receptor activation was likewise anxiolytic, 

while 5-HT2C receptor activation was linked to increased anxiety. Preclinical work in animals have 

provided valuable insight and more direct evidence of serotonin pathway’s involvement in anxiety and 

has been a critical part of progress in the understanding of threat processing. However, as serotonin 

receptors are expressed on different neuronal subpopulation in different microcircuits, the effect of 

alteration in local serotonin levels and the role of specific receptor subtypes within regions of the threat 

circuit remains poorly explored. 
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1.5 Summary and aims  

 

Substantial evidence in the literature implicates the serotonin system in the activity of the threat 

circuitry. Furthermore, alterations to this system have been associated with vulnerability to pathological 

fear and anxiety. Converging evidence suggest that a general increase in serotonergic tone, overall, 

plays a modulatory role to reduce vulnerability to anxiety. However, serotonin action across different 

regions of the threat circuit may play opposing roles dependent on the local serotonin receptor subtype 

activated (excitatory vs inhibitory) and the neuron type (e.g. principal neurons vs interneurons) 

involved. Although much progress has been made about serotonin’s general involvement in regulating 

emotion, further understanding of the precise role of serotonin subcomponents within specific regions 

of the corticolimbic circuitry underlying anxious behaviour and trait anxiety remains to be elucidated. 

Progress in this area will enable us to improve treatments and clinical interventions for anxiety and 

mood disorders. To approach this question, the common marmoset makes an excellent model animal. 

The common marmoset, Callithrix Jacchus is being increasingly used as a research model as the 

scientific community recognises the importance of nonhuman primates as a model for human disease. 

The common marmoset offers distinct advantages above both rodent models and other nonhuman 

primate models such as the rhesus macaque. As regions of the prefrontal cortex play a role in the 

modulation of the threat circuit, the high degree of similarity in cortical structures shared between the 

common marmoset and humans compared to rodents may aid in the translatability of this thesis’s 

findings (figure 1.5). Compared to macaques, the relatively small size of marmosets makes them easier 

to handle and house in accommodations that meets their needs (Kishi et al., 2014; Jennings et al., 2016). 

In addition, their short gestation period (5 months) and relatively short period of post-natal development 

before they reach adulthood (2 years), makes them an ideal species for studying the aetiology of 

developmental disorders. Thus, marmosets provide an ideal balance of both sample size and behavioural 

complexity for research into the brain mechanisms of human cognition and emotion. 

 

 

 

 

Figure 1.5: Cortical structure comparison. Sagittal view of the medial frontal cortical architecture 

revealed by histological staining in rodents, marmosets and humans (left-to-right). Brain figures by 

Kaiser & Feng (2015).  
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To study the role of serotonin in the regulation of threat processing from gene to behaviour using a 

multi-systems approach, this thesis is composed of 4 key studies: 

i) Firstly, threat-related behaviour in the common marmoset was characterised. Anxious and fear-related 

behaviour in the common marmoset was statistically modelled on a population level. Furthermore, the 

relationship between anxious and fear-related behaviour was determined. 

ii) After establishing a representation of anxiety and fear-driven behaviour in the marmoset in (i), 

potential alterations in serotonergic gene expression across different brain regions that may underlie 

individual differences in vulnerability to anxiety (trait anxiety) were determined. Moreover, the 

potential effect of the serotonin transporter polymorphism on regional gene expression was determined. 

iii) To move from correlation to causation, region-specific serotonergic components corresponding to 

anxious behaviour in (ii) were targeted via pharmacological manipulations to attempt to alter the high 

trait anxious phenotype. 

iv) Finally, beyond the (ii) genetic and (iii) neurochemical mechanism explored, potential anatomical 

changes in the developing and developed brain that corresponds to high anxiety later in life were 

studied. 
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Chapter 2: Anxiety and fear response in the common 

marmoset 

 

Introduction: The common marmoset displays a diverse repertoire of behaviours in anxiety-provoking 

and fear-provoking contexts. The aim of the current study is to characterise the contribution of 

individual behavioural measures of the common marmoset towards underlying factors reflecting 

anxiety, as measured on the human intruder test and fear, as measured on the rubber snake test and to 

study the association between these related but distinct constructs. 

Methods: An exploratory factor analysis (EFA) was conducted on behavioural data collected from 

animals screened for emotionality on the human intruder test (N=171) and rubber snake test (N=151) 

over an 8-year period. The consequent factors were tested for internal consistency via Cronbach’s Alpha 

test. The correlations between the factors were investigated with animals tested on both tests (N=134). 

Results: The human intruder test EFA revealed a factor with variable loadings reflecting avoidance 

behaviour (low time spent at the front, high time spent at the back, high average height), and vigilance 

(low locomotion and high head-bobbing and tse-egg calls). The rubber snake test EFA revealed a factor 

loaded with attention and mobbing calls (factor 1: high stare duration and stare count, and high tsik and 

tsik-egg calls) towards the snake, and an additional factor with variable loadings representing 

behavioural avoidance and passivity (factor 2: high distance from the snake, and low stare duration and 

locomotion). The factor in the human intruder test was negatively associated with engagement of the 

snake (factor 1) and positively associated with avoidance (factor 2) on the rubber snake test. When 

animals were grouped based on their rubber snake test factor scores, animals with a high factor 2 but 

low factor 1 score, had a higher human intruder test factor score. 

Discussion: The factor driving vigilance and avoidance in the presence of the human intruder is 

interpreted as reflecting an animal’s anxiety level. In the rubber snake test, factor 1 underlying attention 

towards and mobbing of the rubber snake reflects an animal’s active fear response, whereas factor 2 

underlying avoidance reflects an animal’s avoidant fear response. The factors also revealed an 

association between fear responding style and anxiety implicating a link between a predominantly 

avoidant fear responding style and higher levels of anxiety, suggesting that an individual’s trait 

disposition for high anxiety is associated with a predominantly avoidant relative to active coping 

strategy to fear. With the increasing popularity of the common marmoset for studies in fear and anxiety, 

our findings provide the basis for the use of unitary factor scores reflecting anxious and fearful 

behaviour for marmosets. findings here suggest that active coping should be an integral part of 

behavioural therapy to reduce vulnerability to anxiety. 
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2.1 Introduction 

 

Anxiety and fear are key components of human emotion and are adaptive defensive responses to 

uncertain threat and certain, proximal threat respectively, but excessively high levels of threat 

responsivity serve as core symptoms of anxiety disorders and many mood disorders. Anxiety disorders 

adversely affect an estimated 1 out of 14 individuals across their lifetime globally (Baxter et al., 2013). 

Fully characterising anxious and fearful behaviour in animal models advances our understanding of the 

behavioural expression of emotion regulation in the context of uncertain and certain threat. One such 

target animal model is the common marmoset. 

The human intruder test and rubber snake test are commonly used in non-human primates to assess 

anxiety and fear behaviour respectively (Meunier et al., 1999; Kalin et al., 2001; Barros et al., 2002; 

Kalin and Shelton, 2003; Izquierdo and Murray, 2004; Izquierdo, Suda and Murray, 2005). The human 

intruder test involves measuring the animal’s behavioural response to an unfamiliar human, the ‘human 

intruder’ standing in front of the animal’s home-cage and maintaining eye contact with the animal. 

Since animals bred in the laboratory have prior positive and negative experiences with human 

encounters, e.g. receiving food treats or being restrained for husbandry or experimental purposes, the 

unfamiliar ‘human intruder’ acts as an uncertain threat and creates an anxiety-provoking context. The 

rubber snake test can also be conducted in the home-cage and involves recording the animal’s 

behavioural response to a rubber snake which acts as an inherent predatory stimulus, provoking an 

innate fear response (Barros et al., 2002; Cross and Rogers, 2006).  

The human intruder and snake tests are particularly popular as they require no specialised equipment 

(only standard recording devices) and can be performed in the home-cage without having to habituate 

the animal to a testing apparatus. They also elicit a wide range of the animal’s behavioural repertoire 

e.g. vocalisations and specific avoidance strategies. Both human and animal studies of coping styles to 

highly stressful situations categorize responding into two broad dimensions representing cognitive and 

behavioural activity either towards (active) or away (avoidant) from the threat, commonly simplified as 

fight-or-flight (Koolhaas et al., 1999). An animal’s defensive response consists of various general 

components: e.g. attentional attendance towards or away from the threat, attempts to confront or avoid 

the threat, and behavioural disinhibition of aggression or behavioural inhibition of 

locomotion/exploration. 

Nonhuman primates are social animals and vocalisations as specific cues to conspecifics are also key 

components of their threat response. Many vocalisations are commonly suppressed if an animal is 

isolated from its conspecifics (Coe et al., 1982).  As an arboreal species, testing in the home-cage also 

allows the animal to escape upwards and away from a threat, a response that can’t be employed within 
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a constrained testing space. Therefore, the human intruder and snake tests also provide a more 

ethological approach to the testing of anxious and fear behaviour. 

Early usage of the human intruder and rubber snake tests involved the measurement of single or 2-3 

variables to reflect anxiety or fear. Time spent at the front of the cage and average distance from the 

“human intruder” during the human intruder test was shown to be sensitive to pharmacological 

manipulations used in the treatment of anxiety disorders such as diazepam and citalopram (Costall et 

al., 1988; Carey et al., 1992; Santangelo et al., 2016). However, the use of just a few variables to 

represent anxiety may not be reliable as they may be driven by multiple underlying constructs to 

differing extents and influenced by individual trait variations. For example, a measure like the time 

spent at the front of the cage may be driven by other underlying factors such as an animal’s territoriality 

or their sociability in the case of the human intruder, and not anxiety per se. Misattributing the effects 

observed leads to problems of interpretation when trying to translate to human findings. On the other 

hand, if we take a more comprehensive approach and account for the full behavioural repertoire the 

animal is displaying in the experimental paradigm by looking at effects on multiple measures 

independently, the difficulty encountered is the comparison of varying effects on multiple scales and 

the problem of multiple underlying constructs driving the measures observed remains unresolved. An 

early solution to overcome these problems is to reduce the data from multiple measures with the use of 

a principal component analysis (PCA) to obtain a single composite score.  

The primary aim of the PCA is to simplify multi-measure data to derive a principal component score 

representing linear trends in the data. Our lab had previously conducted a PCA with data from a large 

cohort of animals tested on the human intruder test and the rubber snake test (Agustín-Pavón et al., 

2012; Shiba et al., 2014) . By deriving a simplified score representing the behaviour observed, 

subsequent studies investigating the effects of a manipulation could determine a test animal’s PCA-

derived score using the coefficients and parameters from the initial larger group, as demonstrated by 

Agustín-Pavón et al. (2012) and Shiba et al. (2014), previous members of our lab. However, a limitation 

of the PCA is that it obtains a composite score by simplifying the data into its linear components but 

does not determine the latent variables driving the observed changes within the data. Where the PCA 

attempts to explain all the variance (common, specific and error variance) to simplify the data, the 

exploratory factor analysis (EFA) derives a mathematical model of the underlying constructs a.k.a. 

factors to explain the common variance driving the variation in the measured variables. The EFA is 

widely utilised in validation studies of psychological tests and has recently been used to uncover the 

latent variables affecting the behavioural response of rhesus macaques in the human intruder test 

(Gottlieb and Capitanio, 2013). Since anxiety and the fear response are critical focal points of this thesis, 

the aim of this study is to take advantage of the expanded dataset of animals screened on the human 

intruder test and rubber snake test at the University of Cambridge Roberts lab marmoset colony in the 

intervening years since the original PCA was performed and apply EFA to characterise the underlying 
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factors driving the common marmoset’s behaviour within the human intruder and rubber snake tests. 

Although anxiety and fear are distinguishable cognitive constructs, both are key emotional responses to 

threat and share overlapping neurocircuitry. Thus, the potential underlying associations between 

animals’ anxious and fearful behaviour was determined. The factors uncovered will elucidate the 

significance of the individual behaviours measured in the tests towards potential underlying constructs 

and enable us to interpret the animal’s behaviour more meaningfully. 
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2.2 Methods 

 

Subjects 

171 common marmosets (Callithrix jacchus; male = 90, female = 81; age in years: 2.32 ± 0.62) were 

tested with the human intruder and 151 common marmosets (male = 77, female = 74; age in years: 2.51 

± 0.68) were tested with the rubber snake. Of these, 134 were tested on both human intruder test (age: 

2.29 ± 0.62) and rubber snake test (age: 2.5 ± 0.68) and so scores obtained from the exploratory factor 

analysis were used to correlate the factor scores of both tests (male = 71, female = 63).  

The animals are housed as male-female pairs in cages with quadrants of dimensions: 92cm (high) x 60 

cm (wide) x 98cm and 73cm (sides). The animals were housed at the Innes Marmoset Colony 

(Behavioural and Clinical Neuroscience Institute, BCNI). Temperature (22 ± 1 °C) and humidity (50 ± 

1%) conditions were controlled and a dawn/dusk-like 12 h-period was maintained. They were provided 

with a balanced diet and water ad libitum. All procedures were performed in accordance with the project 

and personal licenses held by the authors under the UK Animals (Scientific Procedures) Act 1986. 

 

Human Intruder test 

The procedure for the human intruder test is based on the method used by Costall et al. (1988). The test 

is carried out in the animal’s home-cage (figure 2.1). Cameras and microphones are routinely present 

in the room for recording purposes such that all animals are habituated to the presence of recording 

equipment. Before the testing session begins, a camera and microphone are setup in front of the animal’s 

home-cage. During a testing session, the animal is separated from their cage mate and restricted to the 

upper right-hand quadrant of their home cage for 8 minutes of baseline behaviour. Subsequently, an 

experimenter (unfamiliar to the animal) wearing a set of standard lab coat and trousers enters the room 

as the ‘human intruder’. The ‘human intruder’ then stands 40cm from the front of the cage and maintains 

eye contact with the animal while maintaining a rigid posture and minimising movement for 2 minutes 

(intruder phase). Subsequently, the intruder leaves the room with recording continuing for 5 min to 

observe the recovery of normal behaviour (recovery phase). Only behaviour and vocalisations during 

the intruder phase are scored.  
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Figure 2.1 Human Intruder test setup. Schematic of relevant zones for the measurement of average 

height, time spent at the front and time spent at the back. Height of mid-point of different zones 

indicated.  

 

 

Rubber snake test 

Protocol: A snake model made of rubber (approximately 27cm tall) was used as the stimulus. The 

stimulus is modelled after a coiled and rearing snake with dark brown coloration and black stripes. The 

rubber snake was placed in an opaque white Perspex prism box (26 × 26 × 29.5 cm triangle sides × 30 

cm high) with a sliding door. The placement of the box is designed to obstruct vision of the rubber 

snake from other animals in the room and only expose the snake to the test animal when the sliding 

door is removed (figure 2.2). Test animals are not exposed to the rubber snake model or the box 

containing the snake prior to testing. 

The procedure of the rubber snake test is based on the methods developed in Shiba et al. (2014). Before 

the testing session begins, a wireless camera is placed on the top of the cage to provide a top-down view 

of the cage and a camera placed from the front of the cage for a frontal view. A microphone is also 

placed at the front of the cage for audio recording.  During a test session, the animal is separated from 

their cage mate and restricted to the upper right-hand quadrant of their home cage. The 20-minute test 

session is divided into four 5-minute phases: a separation phase, where only the camera and microphone 
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were present; a pre-snake phase, where an empty box without the snake is placed in the test quadrant; 

a snake phase, where the empty box from the previous phase is replaced with the box containing the 

rubber snake (the sliding door is removed to expose the rubber snake once the box is in position); and 

a post-snake phase, where the empty box from the pre-snake phase is replaced in the test quadrant again.  

 

 

Figure 2.2 Rubber snake test setup. Schematic of a division of the home-cage with the addition of 

the contact snake box. Zones are depicted in different colours indicating the mean distances those 

zones represent relative to the rubber snake. Figure from Shiba et al. (2012). 

 

Behavioural Scoring 

The animal’s observable behaviour was scored using the program JWatcher V1.0 

(http://www.jwatcher.ucla.edu/). Average distance was used in the rubber snake test but not the human 

intruder test because the position of the threat: the rubber snake can be reduced to a single point relative 

to different positioning of the animal. In the human intruder test, the ‘human intruder’ facing the animal 

covers a larger area and the animal’s position relative to the ‘human intruder’ is better represented by 

depth and height instead. The animal’s vocalisations were extracted from the video files using Audacity, 

an audio editing software (Audacity, ver. 1.3.13, http://audacity.sourceforge.net/) and subsequently 

visualised in the form of sonograms using Syrinx, a sound analysis software. Classification of 

vocalisations are based on identifications from Bezerra & Souto’s observation of wild common 
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marmosets (2008).  Although other calls such as phee, twitter, and bark were observed, they occurred 

very few times and only in a small subset of the population which lead to their exclusion from this 

study. For the purposes of scoring, the test quadrant was divided into multiple zones represented by 

different depths and heights (more in section: ‘Human Intruder test: Behavioural Measures’). 

Percentage time spent at the front of the cage and back of the cage was used as a measure of approach-

avoidance behaviour instead of average depth due to studies showing the sensitivity of time spent at the 

front to anxiolytic manipulations (Carey et al., 1992). 

 

Human Intruder test: Behavioural measures 

Time spent at the front (TSAF): Percentage time spent at the front of the cage reflects approach 

behaviour towards the human intruder. For the purposes of scoring, the test quadrant was divided into 

3 zones: front, middle, and back. These different zones represent the depth of the zone relative to the 

“human intruder” (shown in figure 2.1).  

Time spent at the back: Percentage time spent at the back of the cage reflects avoidance behaviour 

away from the human intruder. Scored similarly to ‘Time spent at the front’. 

Average height: Average height of the marmoset in the home-cage throughout the test period in 

centimetres. Positioning high in the cage and closer to the nestbox may reflect the common marmoset’s 

innate flight response upwards as an arboreal species. For scoring purposes, the test quadrant is divided 

into 5 different zones: top of the nestbox, high, middle, low, floor. These different zones represent the 

height of the zones relative to the bottom of the test quadrant (shown in figure 2.1). 

Locomotion: Percentage time spent changing locations within the home-cage.  

Head-bobbing: Frequency of the animal bobbing its head to the side while staring at the object of 

interest and is often followed with vocalisation. Head-bobbing is often observed in the presence of an 

unfamiliar human and may be an alarm behaviour intended to signal potential threats to conspecifics. 

 

Rubber snake test: Behavioural measures 

Average distance: Average distance of the marmoset from the rubber snake throughout the test period. 

For scoring purposes, the test area was divided into seven zones based on their proximity to the rubber 

snake (shown in figure 2.2). Each zone is represented by the distance of the mid-point of that zone from 

the snake. The average distance is calculated by obtaining the sum of the multiplication of the 

percentage time spent in each zone with the distance of the respectively zones. 

Locomotion: Percentage time spent changing locations around the home-cage. 
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Stare duration: Percentage time the animal spent maintaining eye and head orientation directly towards 

the rubber snake.  

Stare count: Number of times the animal spends directing its attention towards the snake. Multiple 

counts indicate looking away and back towards the rubber snake, and reflects an animal repeatedly 

averting its gaze away from the snake but clearly pre-occupied with the snake. 

Head-cock: Frequency of the animal cocking its head sideways while maintaining its attention towards 

the rubber snake. Head-cocks have been described as an observational behaviour when presented with 

a novel stimulus and occur during visual inspection (Menzel, 1980; Barros et al., 2002). 

 

Vocalisations in the human intruder and rubber snake tests 

Egg calls: A short call with a few harmonics. May be uttered singly, in series, or in continuous 

combination after tse or tsik calls. Egg calls have been associated with vigilance behaviour, for instance 

when an unknown human approaches the group or when the calling marmoset is on the ground with 

sparse vegetation (Souto et al., 2007). Primarily heard in response to human intruder and seldom heard 

in response to snake.  

Tsik calls: Tsik calls are uttered as a mobbing call and have been observed being made by captive and 

wild common marmosets against conspecifics from other social groups, unfamiliar humans, and 

potential predators (Epple, 1968; Bezerra et al., 2009). Tsik calls have also been observed being made 

by captive common marmosets in response to the stimulus presentation of a predator (Hook-Costigan 

and Rogers, 1998; Cross and Rogers, 2006). 

Tsik-egg calls: Although not clearly characterised in the wild, tsik-egg calls of common marmosets 

have been associated with isolation in a novel environment and have been shown to be sensitive to an 

anxiogenic drug treatment (Kato et al., 2014). 

Tse calls: Sounds similar to tsik calls but distinguishable via sonogram. The lower frequency and end 

frequency of tse calls are higher than tsik calls. The frequency range in tse calls are also lower than tsik 

calls (Bezerra and Souto, 2008). 

Tse-egg calls: A vocalisation consisting of a single utterance of tse followed by a single or a series of 

egg calls. Tse-egg calls are the primary call type uttered during vigilance behaviour (89.2% and 80.4% 

of total calls during vigilance in adults and juveniles respectively) (Bezerra and Souto, 2008). 
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Exploratory factor analysis (EFA) 

All statistical analyses covered were conducted with SPSS (version 24; IBM Corp., Armonk, NY). An 

exploratory factor analysis (EFA) with a principal axis factoring extraction method was performed on 

the data obtained from the human intruder and rubber snake tests separately. The principal axis factoring 

extraction method was used as the variables revealed violations of normal distribution (shown in figure 

2.3 and 2.4) and principal axis factoring does not assume multivariate normal distribution.  

Pre-factor extraction tests. Before factor extraction, the Kaiser-Meyer-Olkin measure of sampling 

adequacy (MSA) was used as a measure of the proportion of common variance among the variables 

that may be driven by underlying factors. The Barlett’s test of sphericity was used to evaluate if there 

were sufficient correlations between the variables such that the factor analysis is able to meaningfully 

model underlying constructs driving these correlations.  

Post-factor extraction. After factor extraction, the communality of a variable is the extent to which that 

variable correlates with all other variables in the analysis. If the average communality of the variables 

is more than .7 after extraction, the Kaiser’s criterion (eigenvalue > 1) should be used to determine the 

number of factors to extract, otherwise the scree plot’s points of inflexion should be referred to instead 

(Field 2009). The scree plot shows the eigenvalue, which reflects the amount of variance explained, of 

each individual factor.  

Rotation. If more than 1 factor is extracted, the factors are rotated to improve the interpretability of the 

resulting factors by maximizing the loadings of each variable to a specific factor and minimizing loading 

on other factors. A direct oblimin method (oblique rotation) was used to allow for correlations between 

the factors as there are no theoretical grounds to assume the independence of the factors.  

After the factors are extracted and rotated, the factor loadings can be referred to as a measure of each 

variable correlation with the extracted factor. Factor loadings are considered significant above |.4| 

(Stevens, 1992). To measure the goodness-of-fit for the extracted factor model, a correlation matrix is 

constructed based on the model and the difference (residuals) between the reproduced correlation matrix 

and the original correlation matrix is computed. The proportion of nonredundant residuals with absolute 

values greater than .05 should be below the recommended value of 50% to suggest that the factor model 

doesn’t have issues with poor fit (Field 2009). The factors scores were estimated with a regression 

method, preserving any existing correlation between the factors. 

The internal consistency of the factors with significantly loading variables was examined using 

Cronbach’s alpha. Cronbach’s alpha evaluates how consistently the factor scores reflect the construct 

it is measuring (Cronbach, 1951).  
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Figure 2.3: Histogram of human intruder test behavioural measures in the EFA. a) time spent at 

front, b) time spent at back, c) average height, d) head-bobbing, e) locomotion, f) tse-egg calls, g) egg 

calls, h) tsik calls, and i) tsik-egg calls. Variables display non-normal distribution. 
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Figure 2.4: Histogram of rubber snake test behavioural measures in the EFA. a) average 

distance, b) stare count, c) stare duration, d) locomotion, e) head-cock, f) tsik calls, g) tsik-egg calls, 

and h) egg calls. All variables display substantial non-normal distribution. 

 

Correlation between factor scores 

The resulting factor scores of the human intruder test and rubber snake test were correlated with 

Pearson’s product-moment correlation coefficient or Spearman rank correlation coefficient if the 

assumption of normality was severely violated (p < .001). Data are presented as mean ± SEM, standard 

error of the mean. Effect sizes of correlations are reflected in the correlation coefficients, r and rs 

(Cohen, 1988, 1992). 
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2.3 Results 

 

EFA reveals a single factor in the human intruder test 

Initial runs of the exploratory factor analysis included: time spent at the front, time spent at the back, 

average height, locomotion, head-bobs, egg calls, tsik call, tsik-egg calls, tse calls, and tse-egg calls. 

The variable with the lowest measure of sampling adequacy  that was below the standard of .5 defined 

by Field (2013), tse calls (MSA = .42) was removed from the EFA. Subsequently, the KMO measure 

of sampling adequacy for the final model indicated sufficient common variance for the factor analysis, 

KMO = .82, well above the recommended threshold of .6 (Kaiser, 1974). Bartlett’s test of sphericity 

was significant (2 (36) = 460.8, p < .001), indicating that correlations between items were sufficiently 

large for a factor analysis. Due to the low level of communalities, reflecting low inter-variable 

correlations, after extraction (figure 2.5a), the scree plot was consulted to decide the number of factors 

to extract instead of using Kaiser’s criterion. Only 1 factor was extracted based on the point of inflection 

on the scree plot (shown in figure 2.5b). This factor accounted for 39.7% of the total variance. There 

were 16 (44.0%) nonredundant residuals, reflecting the sufficient fit of the one-factor model. The factor 

loadings are shown in the factor matrix of figure 2.5c. The variables that contributed greatest to the 

factor were the time spent at the front and back of the cage, average height and head-bobbing. 

Locomotion and tse-egg calls also contributed just above and below 0.5 (figure 2.5d). The highest score 

was associated with greater avoidance (more time spent at the back of the cage and relatively high up) 

and increased vigilance (making little movement, performing greater number of head-bobbing and tse-

egg calls). The factor coefficient matrix estimated from the final output of the EFA and descriptive 

statistics of the sample is shown in figure 2.5c. 

The factor with 6 significantly loading items had moderate reliability, Cronbach’s alpha = .64. Kline 

(2000) notes that psychological constructs with Cronbach’s alpha below .7 should be realistically 

expected. Eliminating any variables from the factor would not yield substantial increases to the alpha 

measure.  
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Figure 2.5: Human Intruder test exploratory factor analysis. (a) Table of communalities. (b) 

Scree plot showing the eigenvalue as a measure of explained variance for the number of factors 

extracted. Point of inflection shown. (c) Table of factor loadings and factor score coefficients for the 

variables in the human intruder test. Significant factor loadings (>|.4) in bold and green. Mean (M) 

and standard deviation (SD) of variables from the cohort (N=171). (d) Factor loading for variables 

loading significantly on the factor. 

 Communalities 

Variables Initial Extraction 

Average height .55 .67 

Head-bobbing .54 .59 

Time spent (back) .52 .47 

Tse-egg calls .22 .17 

Locomotion .31 .32 

Time Spent (front) .59 .62 

Egg calls .19 .11 

Tsik calls .09 .01 

Tsik-egg calls .23 .10 

Variables M SD Factor loading Score coefficient 

Average height 58.69 15.37 .82 0.319 

Head-bobbing 22.09 22.37 .77 0.295 

Time spent (back) 31.02 30.07 .69 0.110 

Tse-egg calls 11.74 14.78 .42 0.048 

Locomotion 7.90 6.54 -.57 -0.100 

Time Spent (front) 31.24 25.26 -.79 -0.288 

Egg calls 9.13 10.03 .33 0.026 

Tsik calls 2.73 7.48 -.09 -0.017 

Tsik-egg calls 9.65 16.39 .32 0.008 
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Rubber snake test EFA reveals two negatively correlated factors for behaviours in a fear-provoking 

context 

Initial runs of the exploratory factor analysis included: average distance, locomotion, stare duration, 

stare count, head-cocks, egg calls, tsik call, tsik-egg calls, tse calls, and tse-egg calls. The variable with 

the lowest measure of sampling adequacy that was below the criterion of .5 defined by Field (2013), tse 

calls (MSA = .32) were removed from the exploratory factor analysis. Tse-egg calls were removed in 

the subsequent run under the same criterion (MSA = .46). The KMO measure of sampling adequacy for 

the final model indicated sufficient common variance for the factor analysis, KMO = .63, just above the 

recommended threshold of .6 (Kaiser, 1974). Bartlett’s test of sphericity was significant (2 (28) = 

233.1, p < .001), indicating that correlations between items were sufficiently large for a factor analysis. 

Due to the low level of communalities after extraction (figure 2.6a), the scree plot was consulted to 

decide the number of factors to extract instead of using Kaiser’s criterion (Field 2009). Two factors 

were extracted based on the point of inflection on the scree plot (shown in figure 2.6b). These factors 

accounted for 50.3% of the total variance. The factor loadings after rotations from the pattern matrix 

are shown in figure 2.6c. There were 10 (35.0%) nonredundant residuals, indicating that the two-factor 

model does not have issues of poor fit. The first factor is characterised by (factor loading > .4) frequent 

mobbing calls (tsik-egg and tsik calls) and actively attending to the snake (longer durations spent staring 

at the rubber snake and higher frequencies of re-attending to the rubber snake after looking away) 

(figure 2.6d). The second factor is characterized by behavioural and attentional avoidance of the rubber 

snake:  maintaining a further distance from the rubber snake, spending less time staring at the rubber 

snake, and remaining stationary (figure 2.6d). The factor score coefficients estimated from the final 

output of the EFA and descriptive statistics of the sample are shown in figure 2.6c.  

Factor 1 with 4 significantly loading items had moderate reliability, Cronbach’s alpha = .61. Factor 2 

with 3 significantly loading items had relatively lower reliability, Cronbach’s alpha = .52. As 

Cronbach’s alpha tends to decrease as a product of a scale’s lower number of items, the factor for 

avoidant fear responding’s low number of items is likely to have contributed to the scale’s relatively 

lower reliability.  
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Figure 2.6 Rubber snake test exploratory factor analysis. (a) Table of communalities. (b) Scree 

plot with eigenvalues as a measure of explained variance for the number of factors extracted. Point of 

inflection shown. (c) Table of factor loadings from the pattern matrix and factor score coefficients for 

the variables in the rubber snake test. Significant factor loadings (>|.4) in bold (factor 1: orange) 

(factor 2: blue). Mean (M) and standard deviation (SD) of variables from the cohort (N=151). (d) 

Factor loading for variables loading significantly on factors 1 (in orange) and 2 (in blue). 

 Communalities 

Variables Initial Extraction 

Tsik-egg calls .39 .64 

Tsik calls .31 .35 

Stare count .38 .45 

Stare duration .38 .50 

Locomotion .33 .40 

Average distance .36 .50 

Head-cock .16 .07 

Egg calls .07 .04 

   Factor loadings  Score coefficient 

Variables M SD 1 2  Active Avoidant 

Tsik-egg calls 38.11 47.05 .81 .23  0.480 0.150 

Tsik calls 23.55 40.00 .60 .19  0.177 0.064 

Stare count 32.56 10.81 .60 -.20  0.257 -0.135 

Stare duration 40.12 17.00 .47 -.44  0.223 -0.275 

Locomotion 6.58 3.66 -.09 -.65  -0.026 -0.310 

Average distance 69.90 16.37 -.02 .70  -0.045 0.423 

Head-cock 8.41 5.40 .26 -.04  0.061 -0.001 

Egg calls 0.93 2.30 .16 -.11  0.033 -0.038 
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The factor loading avoidant and vigilance behaviour in the human intruder test is negatively correlated 

with factor 1 (mobbing and attending the rubber snake) and positively correlated with factor 2 (avoiding 

the rubber snake) of the rubber snake test.  

After deriving the factor scores corresponding to the factors extracted from the human intruder test and 

the rubber snake test, we evaluated the association between the individual factor scores of animals tested 

on both tests. Although calculation for Pearson’s correlation coefficient is robust against violations of 

normality, factor 1 score of the rubber snake test severely violated the assumption of normality (all 

animals: W(151) = 0.93, p < .001; just animals scored on both tests: W(134) = 0.92, p < .001) (histogram 

shown in figure 2.7). Therefore, the nonparametric Spearman’s rank-order correlation was used to 

determine the relationship between factor 1 of the rubber snake test and both factor 2 of the rubber 

snake test and the factor of the human intruder test. Factor 1 was significantly negatively correlated 

(nonlinear) to factor 2 (rs = -.25, p = .002) with a small to medium effect size (.1 < |r| < .3) (figure 2.8a), 

indicating that behaviours corresponding to actively attending to the rubber snake are negatively 

associated with avoidant behaviours towards the rubber snake. Although the fan-shaped distribution of 

the scatterplot suggests heterogeneity of variance, homoscedasticity is not an assumption of Spearman’s 

rank-order correlation and thus does not affect interpretation of the correlations. 

There was a significant small to medium (.1 < |rs| < .3) negative nonlinear correlation between the factor 

driving increased mobbing and greater attendance towards the rubber snake (rubber snake test factor 1) 

and the factor driving avoidance and vigilance of the human intruder (the human intruder test factor) 

(rs = -.18, p = .04) (figure 2.8b). The marginal significance of the correlation between rubber snake test 

factor 1 and the human intruder test factor may be mediated by the more significant correlation of both 

factors with factor 2 of the rubber snake test. 

Pearson’s correlation coefficient was calculated for the association between factor 2 of the rubber snake 

test and the factor scores of the human intruder test though as they did not severely violate assumptions 

of normality (p > .05). There was a significant positive linear correlation between the factor driving 

greater avoidance of the rubber snake (rubber snake test factor 2) and the factor driving greater 

avoidance and vigilance of the human intruder (human intruder test factor) (r = .31, p < .001) (figure 

2.8c). Cohen’s criteria for the correlation coefficient (.3 < |r| < .5) suggested an effect size of medium 

to large practical significance (Cohen, 1988, 1992).   
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Histogram with animals tested on both
rubber snake and human intruder test
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Figure 2.7: Histogram of rubber snake test factor 1 scores. Frequency distributions for rubber 

snake test factor 1 scores with (a) all animals tested on the rubber snake test (N = 151) and (b) only 

animals tested on both the rubber snake test and human intruder test (N = 134). Both histograms are 

positively skewed, depicting significant violations of normality (p < .001). 
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Figure 2.8: Association between factors from the human intruder test and rubber snake test. (a) 

Rubber snake test factor 1 and 2 scores are significantly negatively correlated (Spearman’s, p < .005). 

Human intruder test factor scores are (b) significantly negatively correlated with rubber snake test 

factor 1 scores (Spearman’s, p < .05) (c) and significantly positively correlated with rubber snake test 

factor 2 scores (Pearson’s, p < .001). Regression line only shown for linear relationships measured by 

Pearson’s product-moment correlations. 
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Animals with a low factor 1 but high factor 2 score (avoidant fear responding style) are more anxious 

compared to animals with other fear responding styles. 

As lower mobbing (factor 1) but higher avoidance (factor 2) of the rubber snake was associated with 

greater human intruder test anxiety score, animals were grouped to determine if an avoidant fear 

responding style corresponded with increased anxious behaviour as measured by the human intruder 

test. Animals with the top 50% of factor 1 scores but the bottom 50% of factor 2 scores were classified 

as having an active fear responding style (N = 39), while animals with the bottom 50% of factor 1 scores 

and top 50% of factor 2 scores were classified as having an avoidant fear responding style (N = 39). 

Animals with both top 50% of factor 1 and 2 scores were classified as having a mixed fear responding 

style (N = 28). Finally, animals with bottom 50% of factor 1 and 2 scores are animals that showed low 

fear reactivity towards the rubber snake and were therefore not included in subsequent analysis (N = 

28). As expected, animals grouped for active and avoidant fear responding styles had significantly 

different factor 1 and factor 2 scores (active: t(38) = 10.7, p < .001; avoidant: t(38) = -10.1, p < .001) 

(figure 2.9a). 

There was a significant effect of fear responding style (F(2,103) = 3.91, p = .023). Indeed, a Dunnett’s 

test revealed that animals with an avoidant fear responding style (M = .33, SEM = .14) had a higher 

anxiety score on the human intruder test compared to animals with an active (M = -.17, SEM = .13) and 

mixed (M = -17, SEM = .20) fear responding style (figure 2.9b).  
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Figure 2.9 Fear responding style and corresponding factor scores. (a) Animals were grouped 

based on fear responding style: Active (high factor 1 scores, but low factor 2 scores; *p < .05), Mixed 

(high factor 1 and 2 scores), and Avoidant (low factor 2 score, but high factor 2 scores; *p < .05). (b) 

Animals with an avoidant fear responding style in the rubber snake test had higher levels of anxious 

behaviour as measured by the human intruder test factor score (*p < .05). 

  

a 

b 



Chapter 2: Anxiety and fear response in the common marmoset 

52 

 

2.4 Discussion 

 

Although a composite score to reflect anxiety and fear in the common marmoset have been derived 

previously using PCA, here I’ve derived a multi-measure score by modelling the underlying factor 

instead and studied the relationship between anxious and fear-driven behaviour. 

 

Anxiety underlying behavioural responding on the human intruder test 

Exploratory factor analysis of data from 171 marmosets confronted by an unknown human yielded one 

underlying factor driving the behaviours measured. This factor is interpreted as reflecting the animal’s 

anxious temperament as it drives behaviour typically associated with high levels of anxiety. The 

behaviours that significantly load on the factor are (in descending order of significance): average height, 

time spent at the front, head-bobbing, time spent at the back, locomotion and tse-egg calls. An animal 

with a high anxiety factor score is characterised by marked avoidance behaviour: spending more time 

at positions further away from the human intruder (higher up and at the back of the cage), less time at 

positions close to the human intruder (the front of the cage) and spending more time stationary. 

Moreover, there is marked vigilance behaviour: performing more head-bobbing and vigilance calls (tse-

egg calls). The uncertainty and anticipation model of anxiety posits that behavioural and cognitive 

avoidance and increased threat vigilance are among the key psychological processes central to the 

increased threat expectancies of subclinical and clinical anxiety (Grupe and Nitschke, 2013). Taken 

together, the anxiety factor in the human intruder test reflects classic components of anxiety: avoidance 

behaviour and active vigilance (figure 2.10). 

Although animals make tsik, tsik-egg, and egg calls in the human intruder test, these variables did not 

load significantly on the factor for anxiety. One explanation may be that the mobbing calls, tsik and 

tsik-egg, may be driven specifically by an animal’s fear (as evidenced by the call’s loading in the rubber 

snake test) instead of anxiety. This indicates that although the “human intruder” is intended to induce 

anxiety, a low extent of fear may also be present in some animals during this task. If an additional factor 

was extracted, the additional factor only has tsik calls as a significant loader (table 2.1). The failure of 

egg calls to load significantly on either the human Intruder test factor for anxiety or on the two snake 

test factors suggests that egg calls may be a more general call made in response to mild stress, compared 

to the other calls (tse-egg, tsik, and tsik-egg) which are driven by more specific emotional states. Egg 

calls were also made at a relatively lower frequency than the other calls in the rubber snake test. 

Contrary to findings here linking tse-egg calls to anxiety, Kato et al. (2014) found that common 

marmosets emitted tsik-egg calls in the anxiety-provoking context (isolation in an unfamiliar context) 

and after anxiogenic drug (FG-7142) treatment. Unfortunately, a comparison between our studies is 
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difficult as tse-egg calls were not included in their study. The frequency of tse-egg calls may also have 

been diminished due to Kato et al.’s small sample size (N = 6; 2014). Tse-egg calls and tsik-related 

calls (tsik and tsik-egg) may be useful for distinguishing if a common marmoset is either anxious or 

fearful respectively. 

 

Active and avoidant fear behavioural response underlying the rubber snake test 

The exploratory factor analysis of data from the rubber snake test yielded two underlying factors driving 

the behaviours measured. The two factors may be interpreted as reflecting the animal’s active and 

avoidant fear response. The behaviours that significantly load on rubber snake test factor 1 reflecting 

an active fear response are (in descending order of significance): tsik-egg calls, stare counts, tsik calls 

and stare duration. The active fear response factor drives higher frequencies of mobbing calls in the 

presence of the predator stimuli, tsik-egg calls and tsik calls. Mobbing calls serve to alert conspecifics 

of a potential predator and drive predators away (Epple, 1968). Tsik calls have also been associated 

with reduced cortisol levels, implicating mobbing behaviour in the reduction of physiological stress 

(Cross and Rogers, 2006). The factor representing an active fear response also underlies increased 

attention towards the predatory stimuli: longer durations of staring at the rubber snake and higher levels 

of re-diverting attention towards the snake (measured by stare count). The active fear response factor 

consists of a series of active attentional and vocalisation behaviours that may underlie the animal’s 

attempt to confront and overcome a threat (figure 2.10). 

In contrast to the factor for active fear responding, the cluster of behaviours significantly loading on the 

factor for avoidant fear responding (rubber snake test factor 2) serve to avoid contact between the animal 

and the threat (rubber snake) and avoid drawing attention to the animal. The behaviours loading 

significantly on the factor representing an avoidant fear response are (in descending order of 

significance): average distance, locomotion and stare duration. The factor representing an avoidant fear 

response corresponds to the animal’s behavioural and attentional avoidance of the predatory stimuli: 

higher distance from the rubber snake, lower locomotion, and spending less time staring at the rubber 

snake (measured by stare duration).  

Only head-cocks and egg calls did not load significantly on either fear responding factors. This may be 

due to an animal’s head-cocks being associated to the animal’s response to the novelty of the stimulus 

(rubber snake) (Menzel, 1980; Barros et al., 2002) independent of the emotional response that may be 

elicited. Tilting one’s head during a head-cock may be an attempt to shift the visual field and perspective 

to better examine a novel/unfamiliar object (the rubber snake). 

Our findings of factors representing distinct fear responses in the common marmoset is consistent with 

coping inventories and questionnaires delineating active and avoidant coping strategies in humans 
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(Herman-Stabl, Stemmler and Petersen, 1995; Seiffge-Krenke and Klessinger, 2000; Frydenberg and 

Lewis, 2009; Pineles et al., 2011). For example, in the most well-known coping questionnaire “the ways 

of coping questionnaire” by Folkman & Lazarus (1980), factor analyses have generally shown two 

coping style groups: approach-oriented coping and avoidant coping. Items that load highly on the factor 

for approach-oriented coping include items that address the source of stress e.g. “I try to talk about the 

problem with the person concerned”, while items that load highly on the avoidant coping factor include 

items withdraw from or ignore the problem e.g. “I behave as if everything is alright” (Seiffge-Krenke 

and Klessinger, 2000).  Natural defensive behaviours in rodents and other animals also indicate the 

existence of distinct proactive and reactive defensive behaviours (Koolhaas et al., 1999; Blanchard, 

Griebel and Blanchard, 2001). For example, “proactive” rats display more aggressive behaviour in 

response to an intruder and spend more time actively burying a shock probe in the home cage, whereas 

“reactive” rats display less aggressive behaviours to an intruder and spend more time being immobile 

in the defensive burying test (Koolhaas et al., 2010). 

The negative association between active and avoidant fear responding is consistent with reports in the 

rodent literature of a negative association between active behaviour and freezing in response to 

conditioned fear (Gozzi et al., 2010; Metna-Laurent et al., 2012). Our finding is also consistent with 

the finding that although most people use both active and avoidant coping strategies in response to 

stressful situations, individuals vary in the tendency to use one type over the other as coping patterns 

(Folkman and Lazarus, 1980).  Evidence from rodent studies manipulating amygdala signalling 

demonstrate the switching between the use of active or avoidant fear responding, implicating 

differential underlying neurological mechanisms and further supporting the view that these behaviours 

in a fear-provoking context are distinct groups of defensive behaviours (Gozzi et al., 2010; Lázaro-

Muñoz, LeDoux and Cain, 2010; Metna-Laurent et al., 2012). 

The literature on fear conditioning consists heavily of passive fear responses such as freezing, similar 

to avoidant fear responses described here (low locomotion) and not active expressions of fear. This is 

due to the propensity to freeze when rodents are fearful, in which most conditioned fear studies have 

been done but also because of the inescapable context in which classical fear conditioning is conducted 

which limits the viability of active behaviours to avoid or overcome the threat. It has been demonstrated 

that, in response to the conditioned stimulus (CS) predicting foot-shock, rodents show not just avoidant 

behaviours such as freezing, but also active behaviours after initial exposure to the CS such as digging 

and rearing (Metna-Laurent et al., 2012). Alternative rodent conditioned fear paradigms have evidence 

that distinct fear responding patterns may be modulated by differential neural circuits: basal amygdala 

output and prefrontal-striatal circuit has been implicated in modulating an active avoidant fear response 

system (escape shuttling) and central amygdala output modulating a passive fear response system 

(freezing) (Amorapanth, LeDoux and Nader, 2000; Choi, Cain and LeDoux, 2010; Bravo-Rivera et al., 

2014, 2015). Work with the rodent shock-probe defensive burying test has also found that chronic stress 



Chapter 2: Anxiety and fear response in the common marmoset 

55 

 

induces a shift from active to passive coping that can be reversed with an SSRI or extinction training 

(Jett et al., 2015; Fucich, Paredes and Morilak, 2016; Hatherall, Sánchez and Morilak, 2016; Fucich et 

al., 2018).  

It appears that there may be 3 different fear-driven behaviours at play here: active (fight), avoidant 

(flight), or passive (freeze) responses. Freezing as a passive fear behaviour in rodents is easily 

quantified, but the emphasis on passive fear responding in the literature may confound our efforts to 

advance our understanding of human defence responses elicited by threat from rodent studies of fear. 

The avoidant factor defined in the marmoset here appear to combine elements of passivity (low 

locomotion) and avoidance (distancing oneself from the threat) and more closely mirrors the bimodal 

coping styles in humans (Coping Across Situations Questionnaire, CASQ: Seiffge-Krenke & 

Klessinger 2000; Adolescent Coping Scale, ACS: Frydenberg & Lewis 2009; Coping Strategies 

Inventory, CSI: Pineles et al. 2011). Our finding emphasises the need to view fear responding as not 

simply a unitary construct, but for more work to evaluate mechanisms underlying both active and 

avoidant components of fear behaviour and emotion regulation.  

It’s worth noting that while active and avoidant behaviours are split into two factors, the single factor 

underlying anxiety in the human intruder test consist of both active and avoidant behaviours. More 

specifically, vigilant behaviours to actively attend to the potential threat: head-bobbing and tse-egg 

calls, but also avoidant behaviours: staying at positions further away from the potential threat, and 

spending more time being still. Taken together, the factor’s behavioural loading may indicate that when 

the animal is confronted by a stressor that may or may not be a threat (uncertain), a combination of both 

active (increased attention to the threat: vigilance) and avoidant (maintaining a safe distance and 

remaining still) behaviours are optimal responses. When the threat is ascertained however, and an 

animal moves into a fearful state, impulses for differing strategies to resolve the threat drives the 

observed active (fight: appearing threatening and alert conspecifics at the risk of drawing attention to 

self) and avoidant (flight: flee and staying still to avoid notice) fear responses captured by the two 

factors (figure 2.10).  
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Figure 2.10 The transition of behaviours from anxiety to fear. As an animal’s appraisal of threat 

goes from uncertain to certain, an animal’s behavioural pattern shifts from a combination of both 

active (red) and avoidant behaviours (blue) to either a “fight” response characterised by active 

behaviours to confront the threat or a “flight” response characterised by attempts to avoid 

confrontation with the threat. Direction of arrows for variables indicate direction of factor loading. 

 

Fear responding may be separated by active or avoidant behaviour as the optimal behaviour may be 

dependent on the predator. In a group situation, variation in individual responding styles when 

confronted by the same predator may allow for higher chances for individuals to survive dependent on 

whether the predator is deterred by mobbing (predators relying on remaining unnoticed, e.g. snakes) or 

aren’t deterred by mobbing, and therefore the right course of action would be to avoid and flee (Crofoot 

and Crofoot, 2012). Individual responding styles are also associated with different costs: adopting an 

active response would lead to more immediate stress in the short term, but overcoming the threat may 

lead to less stress in the future; whereas adopting an avoidant response would lead to less immediate 

stress in the short term, but may lead to prolonged stress as the source of the stress is not overcome.  

 

Increased anxiety on human intruder test is associated with an avoidant fear responding style.  

The anxiety factor score derived from the human intruder test has a strong positive association with the 

avoidant fear response factor score and a negative association with the active fear response factor score 

derived from the rubber snake test. The association between anxiety and the respective fear responding 

styles suggests that individuals with a predominant coping pattern to disengage and avoid instead of 

engaging and confronting a threat may be predisposed to have a higher level of anxiety. Subsequent 



Chapter 2: Anxiety and fear response in the common marmoset 

57 

 

analysis in which animals were grouped according to their factors scores on the distinct fear responding 

styles confirmed that indeed, avoidant fear responders had higher anxiety compared to both active and 

mixed fear responders. Consistent with this, the tendency to adopt an avoidant coping strategy (similar 

to avoidant coping) has been linked to anxiety and depressive symptoms during adolescence, and 

increased post-trauma PTSD symptom severity (Chan, 1995; Herman-Stabl, Stemmler and Petersen, 

1995; Seiffge-Krenke and Klessinger, 2000; Gomez and McLaren, 2006; Pineles et al., 2011). 

Avoidance behaviour has also been found to moderate an increase in general anxiety in women with 

specific phobias (Rudaz et al., 2017).  

Inversely, individuals prone to higher levels of anxiety may be predisposed to a predominantly avoidant 

coping style to fear. In support of this, although individuals with higher trait levels of anxiety show an 

attentional bias to the detection of threatening stimuli, they also tend to avoid attending to these stimuli 

if the threatening stimuli persists (Koster et al., 2005b). It is worthwhile to note that although there are 

mixed fear responders (high on both measures of avoidant and active fear responding), that among the 

animals that were reactive towards the rubber snake, 73.6% were either active or avoidant fear 

responders, supporting the notion that most animals tend to have a predominant fear responding style. 

Taken together, a predominantly avoidant behavioural pattern to fear may be indicative of a maladaptive 

coping response that impedes the resolution of threat uncertainty via threat engagement/confrontation, 

leading to an increased vulnerability to anxiety that may in turn feed back into the tendency to avoid 

and not confront a threat.  

 

EFA vs PCA 

Previous efforts to simplify the variables within the human intruder test and rubber snake test with the 

common marmoset using a PCA derived two factors hypothesised to reflect an emotionality component 

and a coping strategy component (Agustín-Pavón et al., 2012; Shiba et al., 2014). For the human 

intruder test, the behaviours loading on the component interpreted as representing emotionality are 

similar to those derived from the EFA factor interpreted as representing anxiety, but the vocalisations 

are loading more significantly in the PCA analysis by Agustín-Pavón et al. (2012) (table 2.1). The low 

level of communality in the animal’s vocalisations here (figure 2.5a) indicate that the difference in the 

vocalisation’s loading in the PCA and EFA may reflect substantial specific and error variance, variance 

excluded from the EFA. The component interpreted as representing coping strategy from the human 

intruder test analysis by Agustín-Pavón et al. (2012) has vocalisations (egg, tsik, and tsik-egg calls) as 

significant loaders, variables that did not load significantly on the EFA (table 2.1). To investigate if the 

variables that did not load significantly on the current “anxiety” factor may load significantly on a 

second factor and correspond to the PCA “coping strategy” component, the EFA was repeated with a 

2-factor extraction. We found that the second factor only has tsik calls as a significant loader (table 2.1), 
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but factors without multiple significant loaders are not meaningfully interpretable beyond the single 

measure. 

With respect to the rubber snake test, the behaviours loading on the “emotionality” component based 

on Shiba et al.’s (2014) PCA is similar to the factor for avoidant fear responding but surprisingly, head-

cocks, a behavioural response to novelty, loaded significantly in the PCA (table 2.2). The behaviours 

loading on the “coping strategy” component by Shiba et al. (2014) is similar to the factor for active fear 

responding, but stare duration did not load significantly on the component, this is attributable to stare 

duration’s loading heavily weighted to the “emotionally” component (table 2.2).  

 

Table 2.1: Human Intruder test EFA and PCA. Table of human intruder test EFA factor loadings 

from a 1-factor extraction and a 2-factor extraction. *Human intruder test PCA variable loadings on 

components from Agustín-Pavón et al. (2012) for comparison. **Tse calls and tse-egg calls were 

calculated as a single variable in the PCA (Agustín-Pavón et al., 2012). Significant loaders (>|.4) in 

bold and yellow. 

 

 EFA factors PCA components* 

Human Intruder 

test variables 

1-factor extraction 2-factor extraction 2-component extraction 

“Anxiety” Factor 1 Factor 2 “Emotionality” 
“Coping 

Strategy” 

Average distance - - - .86 -.14 

Average height .82 .81 .01 - - 

Head-bobbing .77 .77 -.02 .74 -.34 

Time spent (back) .69 .69 .09 - - 

Tse-egg calls .42 .41 -.23 .50** .01** 

Locomotion -.57 -.56 .08 -.84 .06 

Time spent (front) -.79 -.81 -.16 - - 

Egg calls .33 .32 -.27 .45 -.63 

Tsik calls -.09 -.06 .52 -.07 .83 

Tsik-egg calls .32 .37 .37 .55 .54 

Tse calls - - - .50** .01** 
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Table 2.2: Rubber Snake test EFA and PCA. Table of rubber snake test EFA factor loadings and 

*PCA factor loadings from Shiba et al. for comparison (2014). Significant loaders (>|.4) in bold and 

yellow. 

Although differences in the magnitude of loadings are observed between the PCA and EFA due to 

underlying methodological differences, overall the underlying constructs identified by the EFAs is 

supported by the trends identified by the previous PCAs. Besides the substantially expanded sample 

size the factors derived by the EFA improve from the previous PCAs by modelling the underlying 

constructs instead of only simplifying the data. This leads to composite scores derived that are more 

meaningfully defined and parameter estimates that are more reliable and generalizable (Widaman, 

1993). The EFA also determined that there’s only one substantial factor underlying the behaviours in 

the human intruder test, instead of two suggested by the components from the PCA. In terms of the 

rubber snake test, we more specifically interpret the significant factors in the context of differing coping 

strategies in response to fear. Moving forward, subsequent work should be performed to further validate 

the factors identified with a new cohort via a confirmatory factor analysis (CFA). 

To conclude, factors characterising anxious behaviour and fear responding were identified in the 

common marmoset on the human intruder and rubber snake tests. Parameter estimates from this study 

can be used in subsequent studies to estimate the anxiety or fear responding factors scores of animals, 

instead of relying on single measure to represent an animal’s anxiety or fear levels. With the factors 

identified, we found that higher levels of anxious behaviour in the human intruder test is associated 

with a primarily avoidant fear responding style on the rubber snake test, implicating a link between an 

animal’s sensitivity to uncertain threat and coping strategy under certain threat. Our findings of distinct 

factors representing avoidant and active fear responding support the bimodal theory of defensive 

behaviour under high stress and threatening context. These findings demonstrate the importance of 

 EFA factors PCA components* 

Rubber snake test 

variables 

“Active fear 

responding” 

“Avoidant fear 

responding” 
“Emotionality” 

“Coping 

strategy” 

Tsik-egg calls .81 .23 .04 .90 

Tsik calls .60 .19 .11 .91 

Stare count .60 -.20 -.26 .73 

Stare duration .47 -.44 -.85 .03 

Locomotion -.09 -.65 -.71 -.04 

Average distance -.02 .70 .92 .12 

Head-cock .26 -.04 -.64 .16 

Egg calls .16 -.11 - - 
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analysing an animal’s full repertoire of behaviour when trying to study specific underlying constructs. 

Not only are the factor scores more reliable than single behavioural measures but taking an analytical 

approach to modelling behaviour can lead to novel findings neglected when only evaluating single 

behavioural measures. 
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Chapter 3: The relationship between serotonergic 

gene expression and anxiety and fear behaviour 

 

Introduction: The serotonergic system has been implicated in the regulation of anxious and fear 

behaviour. To elucidate the role of the serotonin system in threat-related responses, serotonergic gene 

expression in specific regions of interest that have been implicated in anxious behaviour and fear 

response was investigated. In addition, this study also studies the effect on serotonin brain function of 

the recently discovered marmoset serotonin transporter gene (SLC6A4) polymorphism, which is 

functionally homologous to the human 5-HTTLPR polymorphism, and has been associated with 

anxiety, gene expression and serotonin receptors binding. 

Methods: In a cohort of 12 animals, qRT-PCR was used to measure RNA levels of target genes within 

the medial prefrontal (mPFC), orbitofrontal (OFC), ventrolateral (vlPFC), and dorsal anterior cingulate 

cortices (dACC), amygdala, and the dorsal and median raphe nuclei, the latter where serotonergic cell 

bodies lie. We targeted genes of serotonergic components implicated in anxiety: the serotonin 

transporter (SLC6A4) and 5-HT1A, 5-HT2A and 5-HT2C receptors (HTR1A, HTR2A, HTR2C). The 

relationship between expression of these genes of interest and anxiety score on the human intruder test 

of anxiety and threat responses displayed on the rubber snake test was determined. The potential effect 

of the serotonin transporter polymorphism on SLC6A4 gene expression within the regions of interest 

was also investigated. 

Results: SLC6A4 expression in the right amygdala and right vlPFC correlated positively with anxiety, 

and right mPFC HTR2A expression correlates positively with avoidant fear responding. These 

associations were driven by an overall change in anxiety and fear responding behaviours and not driven 

by a minority of loading behaviours. Moreover, SLC6A4 expression in the right amygdala was higher 

in the AC homozygotes compared to CT homozygotes of the serotonin transporter polymorphism. 

Conclusion: High SLC6A4 expression in the amygdala and vlPFC corresponding with high anxiety 

supports the theory that low serotonin in critical regions of the brain lead to high anxiety. The finding 

that higher HTR2A expression in the mPFC corresponded to higher levels of avoidant fear response 

suggests upregulation of HTR2A expression as a compensatory mechanism to avoidant fear behaviour. 

Finally, the serotonin transporter polymorphism may play a role in the differential expression of 

SLC6A4 in the amygdala associated with anxious behaviour. These findings emphasised the role of 

serotonergic genetic mechanisms in threat-related behaviours.  
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3.1 Introduction 

 

Anxiety and fear are evolutionary adaptive emotional responses towards an uncertain threat in a hostile 

environment, but why are some less able to regulate this response despite being in non-threatening 

situations, leading to pathological forms of these responses in the form of anxiety disorders? Some 

anxiety disorders are characterised by excessive anxiety e.g. generalized anxiety disorder (GAD) and 

obsessive compulsive disorder, whereas other anxiety disorders such as phobic disorder, social anxiety 

disorder and post-traumatic stress disorder are characterised by both a heightened level of anxiety and 

fear (Forster et al., 2012). These neuropsychiatric disorders are associated with dysfunction in an 

overlapping variety of brain regions. Specifically, the serotonergic brain circuitry has been heavily 

implicated in aversive emotional processing in both humans and animals (Cools, Roberts and Robbins, 

2008).  

The 5-HT1A, 5-HT2A and 5-HT2C receptors and the serotonin transporter have been particularly 

implicated in the regulation of threat-related emotional response as discussed in “1.4 Serotonin”. Our 

lab recently found that  marmosets with high trait anxiety show reduced extracellular serotonin levels 

in the amygdala in response to SSRIs, implicating potential alterations in the release of serotonin in the 

expression of high trait anxiety (Mikheenko et al., 2015). The human and macaque serotonin transporter 

gene (SLC6A4) polymorphism, 5-HTTLPR has been implicated in trait anxiety and reduced serotonin 

transporter expression and high anxiety in humans and macaques. Recently, Santangelo et al. (2016) 

identified a double nucleotide polymorphism (−2053AC/CT) and two single-nucleotide polymorphisms 

(−2022C/T and − 1592G/C) within the marmoset SLC6A4 repeat upstream region. The AC/C/G 

haplotype was associated with lower SLC6A4 expression in blood lymphocytes and a high anxiety score 

on the human intruder test, with the CT/T/C haplotype showing the opposite. These results characterise 

a serotonin transporter promoter polymorphism in marmosets associated with differential gene 

expression and anxiety levels, acting as a functional analogue to the human and macaque 5-HTTLPR 

polymorphism.  

At the neural level, the “short” allele of the 5-HTTLPR is linked to stronger amygdala activation to 

aversive stimuli and greater coupling between the amygdala and the medial prefrontal cortex (mPFC) 

(Heinz et al., 2005; Madsen et al., 2016). “Short” allele carriers also showed reduced grey matter in the 

pregenual anterior cingulate cortex (pgACC) and amygdala, and significantly less functional coupling 

between these regions (Pezawas et al., 2005).  These results suggest a link between serotonin transporter 

expression and functional and anatomical alterations in the prefrontal-cingulate-amygdala circuitry. 

Prefrontal-cingulate-amygdala circuitry is heavily implicated in emotional regulation as demonstrated 

by emotional task-specific functional connections of the amygdala with regions including the medial, 

orbital, and ventrolateral sections of the prefrontal cortex in humans (Banks et al., 2007; Prater et al., 
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2013; Gold, Morey and McCarthy, 2015). Similarly, impoverished ventral PFC recruitment and 

increased amygdala responsivity were linked independently with high trait anxiety (Indovina et al., 

2011). The dorsal medial prefrontal cortex (dmPFC) and dorsal anterior cingulate cortices’ (dACC) 

connectivity to the amygdala has also been implicated in an “aversive amplification” circuit of anxiety, 

with negative bias to fearful stimuli under serotonin precursor tryptophan depletion corresponding with 

an increase in functional connectivity in the circuitry (Robinson et al., 2013). 

Taken together, these findings support the proposed model of dysfunction of the frontal-amygdala 

circuit in high trait anxiety (Indovina et al., 2011). The model proposes that high anxiety is primarily a 

result of reduced top-down (prefrontal cortices) and enhanced bottom-up (amygdala) emotion 

regulation (Bishop et al., 2004; Bishop, 2007). Alterations in this circuit have also been demonstrated 

in clinically anxious populations (Shin, Rauch and Pitman, 2006; Phillips, Ladouceur and Drevets, 

2008; Tromp et al., 2012; Robinson et al., 2014).  

The study of the serotonergic system underlying the expression of anxiety in these critical regions of 

the emotion regulation circuit will therefore expand our understanding of pathological anxiety and thus, 

help to improve treatment of mood disorders. Using the anxiety factor score derived from the 

exploratory factor analysis on the human intruder test, potential associations between expression of 

SLC6A4 and several other critical serotonergic genes implicated in threat-related behaviour and anxiety-

driven behaviour was investigated, to study the role of the serotonin system in anxious behaviour. 

Considering serotonin’s involvement in not only anxiety but also fear, the fear responding factor scores 

derived in the rubber snake test was also used to explore associations between the target serotonergic 

genes and fear behaviour. Our target genes include SLC6A4, the 5-HT1A receptor (HTR1A), the 5-HT2A 

receptor (HTR2A), and the 5-HT2C receptor (HTR2C). This project also seeks to extend findings on the 

marmoset serotonin transporter polymorphism using a cohort of marmosets with measures of anxious 

behaviour on the human intruder test from Shiba et al. (2014). Our brain regions of interest include: the 

medial prefrontal cortex (mPFC), the orbital frontal cortex (OFC), the ventral lateral prefrontal cortex 

(vlPFC), the dACC, the amygdala, and the dorsal and median raphe nuclei (DRN and MRN), the latter 

where serotonergic cell bodies lie.  
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3.2 Methods  

 

Subjects 

The cohort consisted of twelve common marmosets, Callithrix Jacchus (age: 3.82 ± 0.55 years; gender: 

5 females and 7 males). Animals were genotyped for the serotonin transporter polymorphism by 

Santangelo et al. (2016). The animals were grouped into three serotonin transporter polymorphism 

groups, (i) AC homozygotes (animals with only AC/C/G alleles, N = 4), (ii) heterozygotes (animals 

with a AC/C/G allele and a CT/C/G or CT/T/C allele, N = 4), and (iii) CT homozygotes (animals with 

CT/T/C and CT/C/G alleles, N = 4). Tissue from the left dACC (female, heterozygote) and DRN (male, 

CT homozygote) of 1 animal respectively were not included as they were used for other tests prior to 

the initiation of this study. Prior to the extraction of their brain tissue, all animals of this cohort 

underwent the same series of behavioural testing. The cohort underwent testing on the human intruder 

test and rubber snake test as part of the population’s screening procedure. The animals also had a 

telemetry device implanted and underwent pavlovian discriminative conditioning and cognitive 

flexibility tests as part of Shiba et al.’s cohort (2014). 

The animals were housed at the Innes Marmoset Colony (Behavioural and Clinical Neuroscience 

Institute, BCNI) with temperature (22 ± 1 °C) and humidity (50 ± 1%) conditions controlled and a 

dawn/dusk-like 12 hour-period maintained. The animals were housed as male-female pairs (males were 

vasectomised) in cages of dimensions: 92cm (high) x 60 cm (wide) x 98cm and 73cm (sides) and were 

provided with a balanced diet and water ad libitum. Their cages contained a variety of environmental 

enrichment, including suspended ladders, wooden branches and ropes to climb and swing on and boxes. 

All procedures were performed in accordance with the project and personal licenses held by the authors 

under the UK Animals (Scientific Procedures) Act 1986 and the local AWERB policies. 

Genotyping 

Animals were genotyped using hair follicles plucked from the animals’ back by Andrea Santangelo. 

Hair follicles were used as DNA collected from these samples showed lower levels of chimaerism and 

more accurately reflects brain genotype compared to tissues derived from the hematopoietic lineage 

(Sasaki et al., 2009; Sweeney et al., 2012; Santangelo et al., 2016). DNA was extracted from the 

samples via the QIAamp DNA Micro kit. Subsequently, the product of polymerase chain reaction (PCR) 

with primers flanking the SLC6A4 repeat region was used to enable the isolation of the targeted DNA 

segment in an agarose gel and purified before being sent for sequencing (Source BioScience, 

Cambridge, UK). The primer sequences can be found in Santangelo et al.(2016). 
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Expression assay 

RNA extraction. Brain tissue samples from Shiba et al.’s (2014) cohort were dissected, snap frozen 

with liquid nitrogen and preserved in a -80 °C freezer. Total RNA was extracted with the RNeasy Plus 

Universal Mini Kit from QIAGEN in accordance to the manufacturer’s protocol. Dissection of the 

regions of interest was conducted based on neuroanatomical landmarks and illustrated in figure 3.1. The 

brain tissue samples were weighed and then disrupted and homogenized with a TissureRuptor 

(QIAGEN). After separating the phases and a series of washes, the total RNA was eluted with 100 uL 

of RNase-free water. The RNA was kept in a -80 °C freezer and diluted in aliquots before use. Dilutions 

were determined based on the lowest total RNA concentration extracted among the samples as measured 

by spectrophotometry.   
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Figure 3.1: Brain regions of interest. Brain tissue dissection of the regions of interest (coronal view) 

with respective anterior/posterior coordinates: (a) AP = +15.8mm: mPFC (red), vlPFC (orange), OFC 

(yellow); (b) AP = +13.2mm: dACC (green); (c) AP = +9.6mm: amygdala (blue); (d) AP = +2.0mm: 

DRN (teal), MRN (purple). 
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qRT-PCR. The relative expression of HTR1A, HTR2A, HTR2C, and SLC6A4 were quantified using 

qRT-PCR with Brilliant II SYBR Green qRT-PCR Master Mix Kit, 1-Step by Agilent Technologies 

and the Bio-RAD CFX96 Touch Real-Time PCR Detection System. Protocol of primer design for the 

target genes and the four reference genes used is discussed below. The optimal primer concentration 

was determined at 100 nM, which presented no primer-dimers formation while retaining high cycle 

thresholds (Ct) for the amplification of the target gene. All reactions were performed in duplicates for 

each individual samples and controls (triplicates for inter-run calibrators). The qRT-PCR program used: 

cDNA synthesis (30 min at 50 °C), RT-polymerase inactivation and DNA polymerase activation step 

(10 min at 95 °C), 40 two-step amplification cycles (denaturation for 30 s at 95 °C and combined 

annealing/extension for 1 min at 60 °C), and a final incubation step (temperature increased from 55 °C 

to 95 °C in 0.5 °C increments) for the construction of the melting curves.  

Development of target serotonergic primer and reference primer validation. Primers for the target 

genes were designed with the aid of Primer-BLAST, a software tool from the National Centre for 

Biotechnology Information (NCBI) (Ye et al., 2012). The predicted mRNA sequence used to design 

the primers were obtained from the NCBI’s Reference Sequence (RefSeq) database or the Ensembl 

database (Pruitt et al., 2012; Flicek et al., 2014). The primer parameters for the Primer-BLAST was set 

to a product size of 90 – 110 bases. The melting temperature was set to a minimum of 55 °C, a maximum 

of 65 °C, an optimal temperature of 57 °C, and a maximum melting temperature difference between the 

forward and reverse primer of 3 °C. One of the primer pairs was specified to span an exon-exon junction 

for the specific amplification of RNA. Primer annealing sites were also selected to be located on spans 

of RNA sequence identical on all transcript variants. A minimum of 7 bases must anneal to exons at the 

5' side of the junction and 4 bases at the 3' side of the junction. Candidate primers were selected from 

the output based on optimal G/C content, low self-complementarity, low 3' self-complementarity, and 

no off-target products. Subsequently, suitable candidate primers were ordered from Sigma-Aldrich and 

suspended before being kept in a -80 °C freezer in aliquots of 100 µM. 

The specificity and efficiency of the candidate primers were tested via quantitative real-time polymerase 

chain reaction (qRT-PCR) with Brilliant II SYBR Green qRT-PCR Master Mix Kit, 1-Step by Agilent 

Technologies and the Bio-RAD CFX96 Touch Real-Time PCR Detection System. For the qRT-PCR 

run protocol, refer to the section:  qRT-PCR reaction above. Primers were considered specific if they 

produced a single melting peak and were further validated via gel electrophoresis (3% agarose gel) to 

produce a single band at the estimated band size. The efficiency of the primers was calculated by the 

construction of standard curves derived from 5-point serial dilutions. Only primers with an efficiency 

of approximately 85%-115% were selected.  
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Four marmoset-specific reference genes were selected based on their expression stability in published 

papers evaluating their use as qRT-PCR reference genes with marmoset brain tissue: ACTB (β-Actin), 

TBP (TATA-box binding protein), and GAPDH (glyceraldehyde-3-phosphate dehydrogenase) 

(Shimamoto et al. 2013); and SDHA (succinate dehydrogenase complex, subunit A) (Fujii et al., 2013; 

Shimamoto et al., 2013). The specificity and efficiency of the reference genes were tested as described 

above. Details of the primers used for the target genes and reference genes are shown in Table 3.1 and 

3.2 respectively. 

 

Gene 

symbol 
Gene name Accession number Primer pairs 

Product 

size (bp) 

Efficiency 

(%) 

HTR1A 
Serotonin receptor 

1A 
XM_008992005.1 

F: CATGCACCATTAGCAAGGAC 

R: GGAATATGCGCCCATAGAGA 
102 101.4 

HTR2A 
Serotonin receptor 

2A 
ENSCJAG00000009349 

F: GCAGAATGCCACCAACTATT 

R: CGGTATCCATACAGGATGGT 
105 99.0 

HTR2C 
Serotonin receptor 

2C 
XM_002763170.2 

F: TCGTTCCTTGTGCACCTAAT 

R: CCACCATCGGAGGTATTGAA 
104 100.2 

SLC6A4 
Serotonin 

Transporter 
XM_008997143.1 

F: GTTCTACGGCATCACTCAGTTC 

R: GCTGATGGCCACCCAGCAGATC 
94 91.4 

 

Table 3.1: Target genes and primers. Sequences of primers used to target the genes of interest in the 

expression assay. F: forward primer; R: reverse primer. 

 

Gene 

symbol 
Gene name Accession number Primer pairs 

Product 

size (bp) 

Efficiency 

(%) 

ACTB β-Actin DD279463 
F: AGCAGTCGGTTGGAGCGAGCAT 

R: TGGCTTTTGGGAGGGCAAGGGA 
139 99.9 

TBP 
TATA box binding 

protein 

ENSCJAT000000405

37 

F: GCCCGAAATGCCGAATATAA 

R: TTCTTCACTCTTGGCTCCTGTG 
126 93.3 

GAPDH 
Glyceraldehyde-3-

phosphate 
XM_002759682 

F: TAAGACCCCCTGGACCATCAGCC 

R: GGGGCAATTCGGTGTGGTGA 
106 104 

SDHA 

Succinate 

dehydrogenase 

complex, subunit A 

XM_002745154 
F: TGGGAACAAGAGGGCATCTG 

R: CCACCACGGCATCAAATTCATG 
86 101.8 

 

Table 3.2: Reference genes and primers. Sequences of primers used to target the reference genes. F: 

forward primer; R: reverse primer. 
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EFA scores – Anxiety, active fear responding and avoidant fear responding 

EFA scores were derived using an exploratory factor analysis with 171 common marmosets (Callithrix 

jacchus; male = 90, female = 81; age: 2.29 ± 0.62) screened for their behaviour on the human intruder 

test and 151 common marmosets (male = 77, female = 74; age: 2.51 ± 0.68) screened on the rubber 

snake test. A factor representing anxious behaviour was extracted from the array of behavioural 

variables measured in the human intruder test and factors representing active and avoidant threat 

responding were extracted from behavioural variables measured in the rubber snake test. Full 

description of EFA scores included in the chapter 2: “Anxiety and fear response in the common 

marmoset”. Factor scores and behavioural scores of individual animals shown in table 3.3 and 3.4.  

 

Animal 
Anxiety 

score 

Average 

Height (cm) 

Time spent 

at front (%) 

Time spent 

at back (%) 

Locomotion 

(%) 

Head-

bobs 

Tse-

egg 

calls 

Egg 

calls 

Tsik-egg 

calls 

Tsik 

calls 

1 2.31 81.97 2 98 1.77 100 52 3 23 0 

2 2.02 82.32 0 99 0.3 76 41 1 40 0 

3 1.82 80.33 0 99 1.54 63 58 1 8 2 

4 0.96 67.49 11 38 7.85 64 4 3 6 0 

5 0.94 76.22 23 59 7.43 53 7 1 0 0 

6 0.56 68.35 48 38 4.8 55 22 12 0 0 

7 -0.44 54.84 32 38 17.66 9 4 1 2 7 

8 -0.74 41.81 49 16 10.48 20 6 2 3 12 

9 -0.74 45.31 38 12 20.15 19 2 0 2 14 

10 -1.46 34.00 77 11 16.25 9 0 2 0 0 

11 -1.55 51.21 74 0 37.62 1 0 0 0 0 

12 -1.63 35.03 67 19 28.46 0 0 0 0 9 

 

Table 3.3: Anxiety factor. Anxiety factor scores of individual animals derived from behavioural 

scores in the human intruder test. Behaviours that load significantly on the factor scores in bold. 
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Table 3.4: Fear responding factor. Active and avoidant fear responding factor scores of individual 

animals derived from behavioural scores in the rubber snake test (arranged in descending order of 

active fear score). Behaviours that load significantly on the factor scores in bold and coloured 

according to corresponding factor scores (Red: active fear; Blue: avoidant fear; Purple: both active 

and avoidant fear). 

 

 

Statistical analyses 

All statistical analyses were performed using SPSS (version 24; IBM Corp., Armonk, NY). Correlations 

between factors were calculated with Pearson product-moment correlation coefficient and differences 

between group means were calculated using one-way ANOVA. Multiple comparisons for the 

exploratory correlations between each target gene and factor score were accounted for using the Šidák 

correction for the number of areas (12) with adjusted alpha levels of αadj = .0043. Effect sizes for 

significant findings were computed based on Cohen’s (1988, 1992) method.  

  

Animal 
Active fear 

score 

Avoidant 

fear score 

Average 

Distance (cm) 

Stare 

Count 

Stare 

Duration (%) 

Locomotion 

(%) 

Head-

cock 

Tsik-egg 

calls 

Tsik 

calls 

Egg 

calls 

8 2.74 0.92 70.6 62 23.6 3.6 8 210 138 0 

6 1.43 1.26 83.4 45 21.8 3.0 9 151 79 0 

4 0.96 -0.37 53.7 36 31.4 10.1 21 93 82 2 

9 0.73 0.55 75.7 39 31.3 4.8 25 73 61 0 

11 0.64 -0.70 47.2 39 37.9 9.0 15 85 8 0 

1 0.17 0.21 72.1 31 46.0 3.4 20 44 2 2 

7 0.00 0.78 85.9 35 33.8 3.4 13 14 80 0 

10 -0.04 0.14 62.6 27 28.1 6.4 22 27 70 0 

12 -0.35 -1.16 50.3 34 35.3 13.8 15 5 14 0 

3 -0.36 0.76 73.0 27 22.2 2.7 8 35 29 1 

2 -0.48 -0.24 55.6 27 45.2 3.2 11 0 0 0 

5 -0.74 1.91 115.4 34 17.1 0.7 5 14 0 1 
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3.3 Results 

 

SLC6A4 in the right amygdala and right vlPFC correlates with anxiety. Right mPFC HTR2A expression 

correlates with avoidant fear responding. 

First, it was determined if the target gene’s expression was associated with the factor scores for anxious 

and fearful behaviour on the human intruder and rubber snake test respectively. Pearson product-

moment correlation coefficient was computed to analyse the relationship between expression of target 

genes in the brain regions of interest and the anxiety score from the human intruder test and threat 

responding scores from the rubber snake test (tables 3.5, 3.6 and 3.7).  

 

 Target gene expression correlation with anxiety score 

Region HTR1A HTR2A HTR2C SLC6A4 

Right mPFC 
r = -.030 

p = .925 

r = .191 

p = .552 

r = -.182 

p = .571 

r = -.309 

p = .328 

Left mPFC 
r = .340 

p = .280 

r = -.216 

p = .499 

r = -.046 

p = .887 

r = .353 

p = .260 

Right OFC 
r = .109 

p = .737 

r = -.344 

p = .273 

r = -.001 

p = .998 

r = .586 

p = .045 

Left OFC 
r = -.358 

p = .253 

r = -.755 

p = .0045 

r = .060 

p = .854 

r = .661 

p = .019 

Right vlPFC 
r = .139 

p = .667 

r = .058 

p = .857 

r = .059 

p = .855 

r = .806 

p = .002 

Left vlPFC 
r = -.282 

p = .374 

r = -.394 

p = .205 

r = .184 

p = .568 

r = -.315 

p = .318 

Right dACC 
r = .334 

p = .289 

r = -.145 

p = .652 

r = .587 

p = .045 

r = -.016 

p = .960 

Left dACC 
r = -.210 

p = .536 

r = -.580 

p = .061 

r = .392 

p = .233 

r = .457 

p = .158 

Right Amygdala 
r = -.195 

p = .543 

r = .647 

p = .023 

r = -.516 

p = .086 

r = .809 

p = .001 

Left Amygdala 
r = -.026 

p = .936 

r = .244 

p = .445 

r = -.210 

p = .513 

r = .005 

p = .987 

Dorsal Raphe 

Nucleus 

r = -.032 

p = .926 

r = .464 

p = .151 

r = .622 

p = .041 

r = .168 

p = .622 

Median Raphe 

Nucleus 

r = -.129 

p = .689 

r = -.258 

p = .419 

r = .249 

p = .436 

r = -.343 

p = .276 

 

Table 3.5: Correlation between target gene expression in each region of interest 

and anxiety score on human intruder test (correlation coefficients, r and unadjusted p-values, 

p). SLC6A4 expression in the right vlPFC and right amygdala were significantly correlated with 

anxiety scores on the human intruder test (**, bold, p < .0043, pcorr < .05). 
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 Target gene expression correlation with active fear responding score 

Region HTR1A HTR2A HTR2C SLC6A4 

Right mPFC 
r = .206 

p = .520 

r = -.316 

p = .317 

r = .449 

p = .144 

r = .376 

p = .229 

Left mPFC 
r = -.230 

p = .472 

r = -.129 

p = .689 

r = .508 

p = .092 

r = .545 

p = .067 

Right OFC 
r = .129 

p = .691 

r = .075 

p = .817 

r = .290 

p = .360 

r = -.092 

p = .776 

Left OFC 
r = .027 

p = .932 

r = -.029 

p = .928 

r = .605 

p = .037 

r = .201 

p = .530 

Right vlPFC 
r = -.076 

p = .815 

r = -.319 

p = .312 

r = -.316 

p = .317 

r = -.159 

p = .621 

Left vlPFC 
r = -.145 

p = .653 

r = .390 

p = .210 

r = -.118 

p = .716 

r = .701 

p = .011 

Right dACC 
r = -.528 

p = .077 

r = -.374 

p = .231 

r = -.271 

p = .395 

r = .502 

p = .097 

Left dACC 
r = -.198 

p = .559 

r = -.248 

p = .463 

r = .026 

p = .940 

r = -.085 

p = .803 

Right Amygdala 
r = -.252 

p = .430 

r = -.265 

p = .405 

r = .450 

p = .143 

r = -.212 

p = .509 

Left Amygdala 
r = -.285 

p = .370 

r = -.158 

p = .624 

r = -.015 

p = .963 

r = -.274 

p = .388 

Dorsal Raphe 

Nucleus 

r = .309 

p = .355 

r = -.537 

p = .088 

r = .047 

p = .891 

r = .443 

p = .172 

Median Raphe 

Nucleus 

r = -.195 

p = .543 

r = -.316 

p = .316 

r = -.440 

p = .152 

r = .285 

p = .370 

 

Table 3.6: Correlation between target gene expression in each region of interest 

and active fear responding score on rubber snake test (correlation coefficients, r and unadjusted 

p-values, p). None of the target gene expression levels were significantly correlated with active fear 

responding scores on the rubber snake test (p > .0043, pcorr > .05). 
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 Target gene expression correlation with avoidant fear responding score 

Region HTR1A HTR2A HTR2C SLC6A4 

Right mPFC 
r = .243 

p = .447 
r = .787 

p = .002 

r = .031 

p = .923 

r = .129 

p = .689 

Left mPFC 
r = .143 

p = .657 

r = .029 

p = .929 

r = .285 

p = .369 

r = -.034 

p = .916 

Right OFC 
r = .573 

p = .051 

r = -.503 

p = .095 

r = -.230 

p = .472 

r = .259 

p = .417 

Left OFC 
r = -.251 

p = .432 

r = -.360 

p = .250 

r = .127 

p = .695 

r = .697 

p = .012 

Right vlPFC 
r = .098 

p = .763 

r = -.112 

p = .728 

r = .055 

p = .865 

r = .424 

p = .170 

Left vlPFC 
r = .172 

p = .593 

r = -.075 

p = .817 

r = .215 

p = .502 

r = -.136 

p = .673 

Right dACC 
r = .252 

p = .430 

r = -.034 

p = .915 

r = .369 

p = .237 

r = .260 

p = .415 

Left dACC 
r = -.079 

p = .818 

r = -.292 

p = .384 

r = .303 

p = .366 

r = -.083 

p = .809 

Right Amygdala 
r = .068 

p = .835 

r = .428 

p = .165 

r = -.008 

p = .980 

r = .319 

p = .312 

Left Amygdala 
r = .112 

p = .729 

r = .188 

p = .558 

r = .293 

p = .355 

r = -.137 

p = .670 

Dorsal Raphe 

Nucleus 

r = .291 

p = .385 

r = .382 

p = .247 

r = .231 

p = .494 

r = .265 

p = .430 

Median Raphe 

Nucleus 

r = .072 

p = .824 

r = -.127 

p = .694 

r = -.231 

p = .470 

r = .362 

p = .248 

 

Table 3.7: Correlation between target gene expression in each region of interest 

and avoidant fear responding score on rubber snake test (correlation coefficients, r and 

unadjusted p-values, p). HTR2A expression in the right mPFC was significantly correlated with 

avoidant fear responding scores on the rubber snake test (**, bold, p < .0043, pcorr < .05). 

 

SLC6A4 expression in the right amygdala (r = .809, p = .001, pcorr < .05) and right vlPFC (r = .806, p = 

.002, pcorr < .05) is significantly positively correlated with anxiety with a large effect size according to 

Cohen’s criteria (r > .50) (figure 3.2ai and 3.2aii) (1988, 1992). HTR2A expression in the right mPFC 

is significantly positively correlated with avoidant fear responding (r = .787, p = .002, pcorr < .05) with 

a large effect size (r > .50) (figure 3.2b).  
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Figure 3.2: Region specific association of gene expression and anxious behaviour. Significant 

correlations were found between (a) anxiety and both (i) right amygdala and (ii) and right vlPFC 

SLC6A4 expression, and between (b) avoidant threat responding and right mPFC HTR2A expression 

(p < .0043, pcorr < .05). 
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Factor-associated expression is driven by an overall change in behaviour. 

To determine if the significant correlations found between the target genes and factor scores were 

generally associated or driven by only a specific subset of the underlying variables, the correlation 

between the right amygdala SLC6A4 expression, right vlPFC SLC6A4 expression, and right mPFC 

HTR2A expression, and respective significantly-loading variables were determined. As shown in table 

3.8, right amygdala and vlPFC SLC6A4 expression were both correlated with all variables that load 

significantly on the anxiety factor score (p < .05). In contrast, right mPFC was correlated with two out 

of three variables that load significantly on the avoidant fear responding factor (average distance and 

locomotion, p < .05). This may be due to stare durations relatively lower factor loading (|.44|) compared 

to average distance (|.70|) and locomotion (|.65|) (table 3.9). 

 

Anxiety factor SLC6A4 expression 

score variables Right Amygdala Right vlPFC 

Average Height 
r =.858** 

p < .001 

r = .794** 

p = .002 

Time spent at front 
r = -.687* 

p = .014 

r = -.683* 

p = .014 

Time spent at back 
r = .714** 

p = .009 

r = .756** 

p = .004 

Locomotion 
r = -.695* 

p = .012 

r = -.841**  

p = .001 

Head-bobs 
r = .768** 

p = .004 

r = .743** 

p = .006 

Tse-egg calls 
r = .660* 

p = .020 

r = .687* 

p = .013 

 

Table 3.8: Correlation between right amygdala and vlPFC SLC6A4 expression, and anxiety 

factor score variables (correlation coefficient, r; p-value, p). Right vlPFC and right amygdala 

SLC6A4 expression is correlated with all the variables that load significantly on the anxiety factor 

score (*, p = .05; **, p = .01). 
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Avoidant fear 

responding variables 

Right mPFC 

HTR2A expression 

Average distance 
r = .807** 

p = .002 

Locomotion 
r = -.756** 

p = .004 

Stare duration 
r = -.468 

p = .125 

 

Table 3.9: Correlation between right mPFC HTR2A expression and avoidant fear responding 

variables (correlation coefficient, r; p-value, p). Among the variables that load significantly on the 

avoidant fear responding factor, right mPFC HTR2A expression was correlated with average distance 

and locomotion (**, p < .01) but not stare duration (p > .05). 

 

 

Differences in right amygdala SLC6A4 expression and anxious behaviour is associated with the 

serotonin transporter polymorphism 

Given that SLC6A4 expression in the amygdala and vlPFC is correlated with anxious behaviour and 

genetic factors affecting SLC6A4 expression are associated with high trait anxiety in both humans and 

marmosets it was determined whether the recently discovered marmoset serotonin transporter 

polymorphism would be associated with this differential amygdala and vlPFC SLC6A4 expression.  

The animals were grouped according to the double nucleotide polymorphism (−2053AC/CT): i) AC 

homozygotes (AC/C/G), ii) heterozygotes (AC/C/G & CT/C/G and AC/C/G & CT/T/C), and iii) CT 

homozygotes (CT/T/C and CT/T/C & CT/C/G). Since the assumption of homogeneity of variance, as 

revealed by Levene’s F test, was not met for right amygdala (F(2,9) = 14.78, p = .001) and right vlPFC 

(F(2,9) = 4.90, p = .036) SLC6A4 expression, the Welch’s F test was used. There was a significant 

difference between right amygdala SLC6A4 expression of the serotonin transporter polymorphism 

groups (Fw(2,5.4) = 20.93, p = .003, pcorr < .05) but not right vlPFC (Fw(2,5.3) = 4.85, p = .06, pcorr > 

.05). The Games-Howell post-hoc procedure revealed that amygdala SLC6A4 expression was 

significantly higher in AC homozygotes (1.75 ± .19) compared to CT homozygotes (.80 ± .20), p = 

.001) (figure 3.3a). Cohen’s effect size value (d = 4.83) suggested an effect of high practical significance 

(d > 0.8). SLC6A4 expression in other regions of interest that did not correlate with anxiety were also 

not statistically different between the serotonin transporter polymorphism groups (pcorr > .05) (table 

3.10).  
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Brain region 
SLC6A4 expression of 

AC homozygotes, heterozygotes, and CT homozygotes 

Right mPFC 
F(2,9) = 1.54 

p = .27 

Left mPFC 
F(2,9) = 0.86 

p = .46 

Right OFC 
F(2,9) = 4.70 

p = .04 

Left OFC 
F(2,9) = 1.60 

p = .26 

Right vlPFC 
Fw(2,5.3) = 4.85 

p = .06 

Left vlPFC 
F(2,9) = 0.25 

p = .79 

Right dACC 
F(2,9) = 0.89 

p = .44 

Left dACC 
F(2,8) = 5.63 

p = .03 

Right Amygdala 
Fw (2,5.4) = 20.93 

p = .003 

Left Amygdala 
Fw (2,5.3) = 1.07 

p = .41 

Dorsal Raphe Nucleus 
F(2,8) = 0.49 

p = .63 

Median Raphe Nucleus 
F(2,9) = 1.43 

p = .29 

 

Table 3.10: Potential genotype-associated difference in SLC6A4 expression across regions of 

interest. Results of one-way ANOVA (F) or Welch test (Fw)  (when the assumption of homogeneity 

of variance was violated) determining if SLC6A4 mRNA levels in each region of interest were 

significantly different between serotonin transporter polymorphism groups with p-values, p 

(unadjusted). SLC6A4 expression in the right amygdala was significantly different between the 

different serotonin transporter polymorphism groups (bold, p < .0043, pcorr < .05). 
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Consistent with findings here of the correlation between right amygdala SLC6A4 expression and anxiety 

and replicating previous findings from the lab by Santangelo et al. (2016), there was a statistically 

significant difference between the anxiety score of the serotonin transporter polymorphism groups as 

determined by one-way ANOVA (F(2,9) = 8.16, p = .01). A Tukey post-hoc test revealed that the 

anxiety score was significantly higher in AC homozygotes (1.55 ± .71, p = .007) compared to CT 

homozygotes (-1.16 ± .49), p = .007, d = 4.44 (Figure 3.3b).  
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Figure 3.3 Genotype-associated differences in expression and behaviour. a) Right amygdala 

SLC6A4 expression and b) anxiety score for the serotonin transporter polymorphism groups (AC 

homozygotes, heterozygotes, and CT homozygotes). **, p < .01. Error bars represent SD. 

 

  

a 
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3.4 Discussion 

 

Although the serotonergic system has been implicated in threat-related responses, the region-specific 

link between the expression of key serotonergic components and negative emotion regulation has not 

been extensively explored. The exploratory gene study here found that SLC6A4 expression in the right 

amygdala and right vlPFC correlates with anxiety on the human intruder test, and HTR2A expression in 

the mPFC correlates with avoidant fear responding on the rubber snake test. Subsequent analysis 

revealed that these region-specific expressions were also correlated with all loading variables of the 

respective factor scores (except for the weakest significant loader of avoidant fear responding), 

indicating that the associations between expression and factor were likely due to a general effect on 

overall behaviour and not only driven by specific measures. The involvement of SLC6A4 expression 

instead of specific serotonin receptor subtypes in anxiety may be an indicator that regulation of overall 

non-specific serotonergic signalling in the amygdala and vlPFC plays a more important role than the 

activation of specific receptor subtypes in anxious behaviour. In direct contrast, the involvement of 

specifically HTR2A expression in avoidant fear behaviour points towards the importance of the 

expression of excitatory serotonin 2A receptor in the mPFC compared to the other serotonin receptor 

subtypes investigated. Further analysis showed that anxiety-associated individual differences in right 

amygdala SLC6A4 expression was also associated with the serotonin transporter polymorphism. More 

specifically, there was higher amygdala SLC6A4 expression in high anxious AC homozygotes 

compared to low anxious CT homozygotes. The key findings at a glance shown in figure 3.4. 

 

 

Figure 3.4:  Summary of main results. mPFC HTR2A expression was positively correlated with 

passive fear coping, whereas vlPFC and amygdala SLC6A4 expression were positively correlated with 

anxiety. Furthermore, AC homozygotes of the serotonin transporter polymorphism group is linked to 

higher amygdala SLC6A4 expression and higher anxiety compared to CT homozygotes. Brain outline 

by Paxinos et al. (2012). 
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The finding that lower SLC6A4 expression in the amygdala is correlated with lower anxiety scores, is 

consistent with the anxiolytic effect of chronic SSRIs that block SLC6A4 reuptake of serotonin in the 

brain (van der Kolk et al., 1994; van Vliet, den Boer and Westenberg, 1994; Boyer, 1995). This suggests 

that the maintenance of low serotonin levels in the amygdala in an individual, as mediated by 

predisposed high SLC6A4 expression may play a role in an individual’s high trait-level vulnerability to 

anxiety. These findings are also consistent with those of Mikheenko et al. (2015) of lower extracellular 

serotonin in the amygdala of high-anxious marmosets  and with high amygdala SLC6A4 availability in 

high trait anxious rhesus monkeys, as measured by positron emission tomography (PET) (Oler et al., 

2009). Together, they suggest that amygdala SLC6A4 expression may affect serotonin signalling in the 

amygdala and play a role in the inter-individual variation observed in trait anxiety. Studies with 

depressed patients and amygdala serotonin transporter PET binding have not been consistent with our 

findings: lower amygdala serotonin transporter binding was linked to high state anxiety (Reimold et al., 

2008) and higher amygdala reactivity (Schneck et al., 2016). Consequently, subsequent work directly 

comparing mRNA expression and PET binding potential of amygdala serotonin transporters within 

depressed and healthy cohorts would elucidate the relationship of findings between these different 

modes of study. Furthermore, it emphasised the importance of validating our associative findings here 

with an investigation into the causal implications of alteration in amygdala serotonin transporter 

functioning in chapter 4. 

Alongside the right amygdala, increased SLC6A4 expression in the vlPFC corresponding with increased 

anxiety scores is also consistent with the low serotonin hypothesis of high anxiety. The vlPFC has been 

implicated in the top-down regulation of threat-related attention, with high anxious individuals showing 

reduced recruitment when expecting threat-related distractors (Bishop et al., 2004). Reduced activation 

in the vlPFC was also observed in social anxiety disorder patients when performing a fear-evoking task 

(verbal fluency task) and has been shown to correlate with increased social avoidance (Yokoyama et 

al., 2015). Taken in context, the results suggest that reduced serotonin as a product of increased 

SLC6A4 expression in the vlPFC may lead to reduced activation of the vlPFC and affect its ability to 

regulate threat-related attentional behaviour in an anxiety-provoking context.  

Not so consistent with available evidence is  the finding of increased mPFC HTR2A expression 

associated with increased avoidant fear responding which contradicts studies showing that serotonin 2A 

receptor activation is linked to reduced fear in rodents (Hughes, Tran and Keele, 2012; Zhang et al., 

2013). Serotonin 2A receptor binding potential in the pregenual PFC and subgenual PFC has also been 

linked to reduced threat-related amygdala reactivity, implicating serotonin 2A in the top-down 

regulation of amygdala reactivity to threat (Fisher et al., 2009). However, the increased mPFC HTR2A 

expression shown here may be a compensatory product of increased avoidant fear instead of the neural 

substrate leading to avoidant fear responding. As serotonin 2A receptors are excitatory and primarily 

localized to pyramidal neurons of the  PFC, increased mPFC HTR2A expression  may act as a genetic 
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compensatory mechanism to upregulate activity in the region  in response to an animal’s experience of 

fear and avoidant coping style (Jakab and Goldman-Rakic, 1998; Aghajanian and Marek, 1999). 

However, subsequent work will have to specifically test and elucidate the validity of this hypothesis. 

The finding that right amygdala SLC6A4 expression and anxiety scores differed between the serotonin 

transporter polymorphism groups suggests that the latter may contribute to the individual variation in 

SLC6A4 expression and anxiety. Specifically, AC homozygotes were associated with high right 

amygdala SLC6A4 expression and high anxiety scores whilst CT homozygotes were associated with 

low right amygdala SLC6A4 expression and low anxiety scores. These results replicate those of 

Santangelo et al. (2016) in terms of the serotonin transporter polymorphism’s association with anxiety 

scores, but show opposing effects with respect to the polymorphisms effect on SLC6A4 expression in 

lymphocytes versus SLC6A4 expression in the amygdala. The high anxious AC homozygotes show 

reduced SLC6A4 expression in lymphocytes, consistent with that shown in humans with the short allele 

(Lesch et al., 1996), but increased SLC6A4 expression in the right amygdala compared to CT 

homozygotes. The latter finding suggests that the marmoset serotonin transporter polymorphism may 

have a differential impact on mRNA levels within the brain, (e.g. amygdala) and lymphocytes. Further 

investigation revealed that SLC6A4 expression in the dorsal and median raphe nucleus, where the 

serotonergic projections of the brain originate were not differentiated by the serotonin transporter 

polymorphism (table 3.10), suggesting that the serotonin transporter polymorphism may have a 

differential effect on SLC6A4 mRNA expression at the level of the terminals in the amygdala but not 

the cell bodies. 

Although SLC6A4 mRNA is primarily localised in the cell body of the serotonergic neurons (close to 

its origin of synthesis, the nucleus), the SLC6A4 mRNA measured at serotonergic projection areas may 

represent mRNA localised in the projection terminals or astrocytes (Hirst et al., 1998). The localisation 

of mRNA to presynaptic nerve terminals has been postulated to enable local translation of synaptic 

proteins beyond the cell body (Akins, Berk-Rauch and Fallon, 2009). Previous studies have consistently 

reported the presence of SLC6A4 mRNA in sites innervated by serotonergic neurons (Lesch et al., 1993; 

Hernandez and Sokolov, 1997; Sun et al., 2001; Beliveau et al., 2017). Local translation in the 

presynaptic nerve terminals has been implicated in activity-dependent synaptic plasticity (Liu et al., 

2003; Si et al., 2003; Akins, Berk-Rauch and Fallon, 2009). Recently, Younts et al. (2016) provide 

evidence of the presence of ribosomal proteins, a critical component for protein synthesis, at presynaptic 

terminals and evidence of presynaptic expression’s involvement in plasticity. The importance of 

presynaptic translation in plasticity taken together with the results showing anxious behaviour 

correlated to SLC6A4 expression in the amygdala but not the raphe nuclei, implicates locally regulated 

SLC6A4 translation within the presynaptic nerve terminals or astrocytes, or both, across cortical and 

limbic regions as a mechanism for neural plasticity, in contrast to soma-dependent long term 

potentiation or depression (LTP or LTD), to modulate serotonin reuptake and consequently anxious 
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behaviour. Subsequent work should be dedicated to understanding the precise localization of the 

anxiety-related SLC6A4 mRNA and the mechanism through which the serotonin transporter 

polymorphism may affect nerve terminal SLC6A4 mRNA expression. 

The lateralization to the right hemisphere of findings here is consistent with previous findings of 

hemispheric asymmetry towards emotional tasks and stimuli, with the predominant theory that the right 

hemisphere is dominant for the perception and expression of emotion (Borod et al., 1998). An 

alternative theory for the lateralization of emotional processing is the valence hypothesis which 

postulates that positive emotion processing is primarily lateralized to the left hemisphere and negative 

emotion processing to the right, but results in this field are far from consistent (Davidson, 1992; Canli 

et al., 1998; Wager et al., 2003).  

Findings from the current study is limited by the sample size of the cohort. Subsequent work 

investigating subtler effects will benefit from the greater statistical power of an expanded sample size. 

Our current results of threat-associated gene expression would also be complemented by further work 

investigating potential threat-associated serotonergic protein density via immunoreactivity or positron-

emission tomography (PET). 

In summary, alterations in SLC6A4 expression in the amygdala and vlPFC corresponding to anxious 

behaviour were identified, supporting the hypothesis that altered serotonin signalling in this area 

contributes to altered vulnerability to anxiety. Moreover, mPFC HTR2A expression was associated with 

avoidant fear responding, implicating upregulation of HTR2A expression as a compensatory 

mechanism to avoidant coping to fear. Finally, evidence that the serotonin transporter polymorphism 

may be driving the differential amygdala SLC6A4 expression and corresponding high anxious behaviour 

were presented. The current results not only extend findings in regards to the serotonergic system’s role 

in anxiety, but also creates the foundation for subsequent work involving the specific pharmacological 

manipulations of brain circuits with a new cohort.   
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Chapter 4: Role of amygdala serotonin transporter 

in the expression of trait anxiety 

 

Introduction: High trait anxiety, an individual’s disposition to feel anxious, is associated with higher 

risk of developing anxiety disorders and altered activity across cortical and amygdala circuitry. Since 

alteration in local serotonin signalling may play a key role in an individual’s level of trait anxiety, I 

investigated region-specific serotonergic manipulation that may underlie the high trait anxious 

phenotype. 

Methods: Animals cannulated in the dorsal anterior cingulate cortex (dACC) and amygdala were 

infused and tested on baseline changes in cardiovascular reactivity, changes in anxious behaviour on 

the human intruder test, and changes in conditioned fear on the fear extinction paradigm. 

Results: Inhibition of serotonin reuptake in the amygdala via infusion of high dose citalopram reduced 

anxious behaviour and expression of physiological and behavioural measures of conditioned fear, but 

did not affect cardiovascular activity (heart rate, HR and mean arterial pressure, MAP) in a neutral 

condition. Inhibition of amygdala 5-HT2a receptor binding via infusions of M100907 (5-HT2a receptor 

antagonist) and dACC 5-HT2c receptor binding via infusions of SB242084 (5-HT2c receptor antagonist) 

did not affect baseline cardiovascular activity and anxious behaviour. 

Conclusion: These results provides evidence that an acute dose of SSRI in the amygdala alters key 

characteristics of trait anxious expression by reducing anxious behaviour and conditioned fear 

expression. These findings elucidate the potential mechanism underlying SSRI’s drug action and 

support the hypothesis that lowered amygdala serotonin signalling regulates threat-related emotion 

processing and may contribute to the high trait anxiety phenotype. 
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4.1 Introduction 

 

The previous chapter explored potential genetic correlates to inter-individual expression in anxious 

behaviours, providing a potential basis for the inter-individual variability in trait anxiety. Building upon 

that, this chapter seeks to determine if the specific associations between serotonergic expression and 

high anxiety is indicative of altered region-specific serotonin signalling in high trait anxiety.  

Trait anxiety is commonly measured in humans with questionnaires via the State-Trait Anxiety 

Inventory (STAI) (Spielberger, 1983). The STAI Trait assesses how responders “generally feel” about 

themselves on the basis of a 4-point Likert scale (from “not at all” to “very much”), e.g. “I lack self-

confidence” or “I am a steady person”. However, as questionnaires are confounded by an individual’s 

perceptual biases, changes in an animal’s trait anxiety are best assessed via changes in key 

characteristics of the high trait anxious phenotype. 

As high trait anxious individuals are more prone to feelings of anxiety, state anxiety as measured by 

anxious behaviour is an unsurprising proxy to measure an individual’s trait anxiety level. Anxious 

behaviour as captured by the EFA-derived anxiety score reflects an animal’s vigilance and avoidance 

behaviour in the presence of a “human intruder”, as an anxiety-provoking context (discussion in chapter 

2: “Anxiety and fear response in the common marmoset”). Threat vigilance in the form of increased 

attentional bias towards threat, has been consistently associated with high trait anxious individuals and 

across anxiety disorders (Mathews and Mackintosh, 1998; Bar-Haim et al., 2007; Cisler and Koster, 

2010). Anxious behaviour on the human intruder test has also shown test-retest consistency, indicating 

that the behaviours displayed are consistent over time and may be indicative of trait levels of 

vulnerability to anxiety (Mikheenko et al., 2015). Thus, the human intruder test anxiety score captures 

multiple components of anxious expression that have been associated with trait anxiety and may reflect 

an animal’s enduring disposition for anxiety. 

High trait anxiety is also associated with elevated and persistent conditioned fear responses. Indovina 

et al. (2011) reported that high trait anxious individuals show increased amygdala reactivity to 

conditioned fear stimuli, cues predictive of the occurrence of an aversive stimuli. Biases in fear learning 

and responding may underlie the excessive fear characteristic in most anxiety disorders. The fear 

conditioning paradigm has been used in humans, rodents and nonhuman primates to isolate the neural 

substrates of learned fear responses by dissociating the participant’s response to the conditioned fear 

stimuli from the unconditioned fear stimuli (Milad and Quirk, 2012; Wallis et al., 2017). Crucially, the 

fear conditioning paradigm also enables us to evaluate potential alterations in the participant’s fear 

(un)learning process during extinction sessions and provides insight into adaptive fear coping processes. 
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This chapter seeks to determine if the association between high serotonergic transporter mRNA levels 

in the amygdala and high anxiety reported in the previous chapter are indicative of low local serotonin 

signalling leading to characteristics of the high trait-anxious phenotype: high anxiety reflected by 

avoidant behaviour and threat vigilance in the human intruder test, and conditioned fear expression 

measured physiologically and behaviourally in the fear extinction paradigm (Wallis et al., 2017). As 

the drug’s potential non-specific effect on physiology may affect an animal’s anxious state, the drug’s 

effect in a neutral condition was evaluated as well. Previously, it has only been demonstrated that direct 

infusion of a selective serotonin reuptake inhibitor (SSRI) in the amygdala and more specifically the 

basolateral amygdala (BLA) reduces conditioned fear freezing in rats (Inoue et al., 2004; Kitaichi et 

al., 2014). However, the causal role of amygdala serotonin transporter inhibition on anxious and 

conditioned fear behaviour in marmosets has not been investigated.  

Amygdala 5-HT2a receptor expression and dACC 5-HT2c expression was only significantly associated 

with anxious behaviour before correcting for multiple comparisons. This may be due to a combination 

of both the limitation of the statistical power from the sample size used and the large number of brain 

regions corrected for. 5-HT2a  and 5-HT2c receptor have been implicated in the regulation of anxiety but 

received less recognition compared to the serotonin 1A receptor in the wider literature (reviews: Bourin 

& Dhonnchadha 2005; Jiang et al. 2011; Heisler et al. 2007).  As 5-HT2a  and 5-HT2c receptors are 

expressed in abundance in the dACC and amygdala, manipulations of these receptor’s signalling may 

have an impact on anxious behaviour (Shukla, Watakabe and Yamamori, 2014). Indeed, activation of 

5-HT2c receptor in the rodent BLA have shown anxiogenic effects (Campbell and Merchant, 2003; 

Christianson et al., 2010; Vicente and Zangrossi, 2012).  Thus, to take advantage of the study’s cohort, 

the potential effect of region-specific serotonergic 2a and 2c receptor antagonism on anxious behaviour 

was also studied as a part of this chapter to explore the implications of specific serotonin receptor 

activation in regions of interest. 
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4.2 Methods 

 

Subjects and Housing 

The cohort consists of nine experimentally naïve marmosets (Callithrix jacchus) with respective test 

participation listed in table 4.1. The animals taking part in the experiment were bred on-site at the 

University of Cambridge Marmoset Breeding Colony. Animals joined the study after being screened 

on the human intruder test and rubber snake test (age: 38.6 ± 14.6 months). All animals were implanted 

with a telemetry probe and cannulated before behavioural testing (figure 4.1).  

 

 

 

 

 

Figure 4.1: Timeline of surgery and behavioural testing. Animals underwent cannulation and 

telemetry surgeries before being tested on the human intruder test (conducted in the homecage) in 

conjunction with behavioural testing in the behavioural apparatus. 

 

The marmosets were housed in male/female pairs (males were vasectomised), in a controlled 

environment (temperature: 22 ± 1ᵒC; humidity: 50 ± 1%) and a dawn/dusk-like 12 hour-period was 

maintained. Their cages contained a variety of environmental enrichment, including suspended ladders, 

wooden branches and ropes to climb and swing on and boxes. The animals were fed a varied diet 

including fruit, rusk, malt loaf, peanuts, eggs, sandwiches and treats and they had ad libitum access to 

water. All procedures were carried out in accordance with the UK Animals (Scientific Procedures) Act 

1986 and the local AWERB policies. 
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Table 4.1: Animal and respective test participation. Animal’s gender (M: male; F: female), date of test participated in, target brain region and drug 

infusion received are listed. Cells are colour-coded for drug-control pairs.
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Surgical Procedures 

All animals underwent two surgical procedures: a surgery to implant intracerebral cannulae targeting 

the amygdala and dACC, and a surgery to implant a telemetric blood pressure monitor into the 

descending aorta. Both surgeries were completed before the animals started behavioural testing. 

Cannulation surgery. Marmosets were premedicated with ketamine hydrochloride (Vetalar; 0.05 mL 

of a 100-mg solution, i.m.; Amersham Biosciences and Upjohn) before being given a long-lasting 

nonsteroidal anti-inflammatory analgesic agent (Carprieve; 0.03 mL of 50 mg/mL carprofen, s.c.; 

Pfizer). They were intubated and maintained on 2.0–2.5% isoflurane in 0.3 L/min O2 and placed into a 

stereotaxic frame modified for the marmoset (David Kopf). Pulse rate, O2 saturation, breathing rate, 

and CO2 saturation were monitored by pulse oximetry and capnography (Microcap Handheld 

Capnograph; Oridion Capnography), and core body temperature was monitored by a rectal thermometer 

(TES-1319 K-type digital thermometer; TES Electrical Electronic). Cannulae (Plastics One) were 

implanted into the amygdala (single 15.0mm long cannula, anteroposterior (AP) +9.6, lateromedial 

(LM) ±5.6), and the dACC (double 3.5mm long cannulae 2mm apart, AP +13.2, LM ±1.0). After the 

animals have fully recovered, the animal was given an analgesic meloxicam (0.1 mL of a 1.5 mg/mL 

oral suspension; Boehringer Ingelheim) and each day for three days after surgery. Cannulae were 

cleaned, and dummy cannulae and caps were replaced weekly. Representative histology sections with 

cannulae placement shown in figure 4.2. 

 

 

 

 

 

 

 

 

 

 

Figure 4.2: Cannulae placements. Representative (a) dACC and (b) amygdala histological sections 

with arrows marking the position of the cannula tip. Cannulae tip positions of individual animals 

shown on the right (C: Celery; W: Whitebeam; N: Nix; A: Annis; w: Watto; G: Greedo)  
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Telemetry Probe Surgery. Animals were anesthetized as described before. The probe catheter was 

implanted into the aorta near the aortic bifurcation and the telemetric blood pressure transmitter (Data 

Sciences International) was placed within the abdomen following procedures described previously 

(Schnell and Wood, 1993). All monkeys received meloxicam as described before in addition to 

prophylactic treatment with amoxicillin and clavulanic acid (Synulox; 50 mg/mL solution; Pfizer), for 

one day before and six days after surgery. 

 

Drug treatment.  

For infusions, the animal was held in the hand of an assistant while the experimenter removed the 

cannulae caps and wiped the surface of the cannulae with an alcohol swab. The experimenter then 

inserted a sterile injector (Plastics One) connected to a 2-μL gas-tight syringe in a syringe pump via 

infusion tubing down the guide cannulae before starting the infusion. After the infusion was completed, 

the position of a pre-loaded air bubble that had been marked was checked, movement of the air bubble 

beyond the mark indicates the successful infusion of the drug down the tubing. One minute is allocated 

before the removal of the injector following the completion of the infusion such that the drug has time 

to diffuse across the target region, reducing the risk of the drug being drawn up the guide due to the 

removal of the injector (Zeredo et al., 2019). New sterile cannula caps were replaced before the animal 

is returned to the home cage. Testing was initiated 10, 5, and 0 minutes after citalopram, M100907, and 

SB242084 infusions respectively. 

Drugs. Citalopram hydrobromide (Sigma-Aldrich/Tocris) was dissolved in sterile saline in 6 μg/μL 

(low dose) or 30 μg/μL (high dose) and infused in the amygdala at a rate of 0.5 μL/min for 2 minutes. 

M100907 (5-HT2a receptor antagonist. Ki5-HT2AR: 0.31 nM; Ki5-HT2CR : 13.0 nM) was prepared by being 

dissolved in 40 µl 1M hydrochloric acid, HCL before being topped with 0.01M phosphate-buffered 

saline, PBS. 1 μg/μL M100907 (Sigma-Aldrich) was infused in the amygdala or dACC at a rate of 0.25 

μL/min for 2 minutes. The 5-HT2c receptor antagonist, SB242084 (Ki5-HT2CR: 1.0 nM; Ki5-HT2AR : 158.5 

nM; Sigma-Aldrich) was dissolved in 10% 2-hydroxypropyl-beta-cyclodextrin (HPBCD, Sigma-

Aldrich) solution before being infused at a concentration of 2 μg/μL and at a rate of 0.25 μL/min for 2 

minutes. Dosage for the low dose citalopram, M100907 and SB242084 were based on effective brain 

infusions performed by Inoue et al. (2004), Pehek et al. (2001), and Alsiö et al. (2015) respectively. 
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Behaviour testing procedures 

1. Human Intruder test 

Anxious behaviour was assessed using the human intruder test. Full description of the human intruder 

test in Chapter 2: “Anxiety and fear response in the common marmoset”. Briefly, the animal’s 

behavioural response to an unknown “human intruder” maintaining eye contact for 2 minutes in a 

section of the homecage was recorded and scored. The behavioural measures scored included: time 

spent at the front of the cage, time spent at the back of the cage, average height, head-bobbing, 

locomotion, and vocalizations (egg, tsik, tsik-egg, tse and tse-egg calls). Different realistic masks 

(Greyland Film) were used for different sessions within-animals and for specific infusion between-

animals, e.g. the “Chris” mask is used for the low dose Citalopram infusion for animal 1 and not used 

again for any other infusion in animal 1 and not used as a mask in the low dose Citalopram infusion of 

other animals in the human intruder test. Each saline-citalopram pair session was conducted as separate 

blocks to avoid the confounding effects of shifting baselines. 

Anxiety factor score. Behavioural scores from the human intruder test for each individual variable were 

standardised to obtain z-scores using the mean and standard deviations of the population the EFA was 

derived from. Between-individuals and within-individual standard deviations are assumed to not be 

significantly different. The anxiety factor score is the sum of the product of all the variables’ 

standardised score multiplied by their respective factor score coefficients. 

 

Behavioural testing apparatus 

Neutral condition and fear extinction tests took place within a sound-attenuated testing apparatus (figure 

4.3). Animals were transported to the behavioural testing apparatus from the home cage via a transparent 

Perspex (Lucite) carry box. The marmoset remains inside the Perspex test box within the testing 

chamber at all times during testing. The test chamber was illuminated by houselights located on the top 

of the chamber and contained a computer-controlled speaker through which auditory stimuli could be 

played. The apparatus was controlled by the Whisker control system and in-house software (Cardinal 

and Aitken, 2010). Three video cameras and a microphone were positioned in the testing apparatus such 

that the behaviour of the animal could be monitored by the experimenter during testing and recorded 

for post-test analysis (Power Director; CyberLink).  
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Figure 4.3: Testing apparatus. Picture of the testing apparatus with the concealed chamber, smart 

glass, the test box, cameras and speakers labelled. 

 

2. Neutral condition testing 

Monkeys were habituated to the testing apparatus for 15-minute sessions until their mean heart rate and 

mean systolic blood pressure remained stable across subsequent sessions (range: 11-20 sessions) before 

neutral condition testing commenced and subsequently testing on the fear extinction paradigm. 

Neutral condition testing consists of 15-minute sessions with no active tasks. The first minute of each 

session is omitted from the analysis of cardiovascular reactivity to avoid the confounding effect of the 

animal’s initial reaction to being transferred to the testing apparatus. 

 

3. Conditioned fear and extinction paradigm 

The protocol used is an adaptation of the classic rodent fear conditioning and extinction paradigm, with 

the foot shock replaced with the sight of a rubber snake model as an innate fear stimulus. Each fear 

extinction test consists of five sessions over five consecutive days: two sessions of habituation to the 

context, followed by a fear conditioning session, and lastly an extinction session (figure 4.4). 

Habituation to the context. For two sessions, the animals were placed inside the Perspex test box and 

testing apparatus with context panels placed in. The context panels consist of differing black-and-white 

patterned panels used to distinguish the testing context between subsequent testing cycles. During these 

sessions, the animals are also habituated to the opaque smart glass turning clear and exposing an empty 
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chamber (US-). The smart glass turns clear for 12 presentations of 5 seconds at 110-130 second 

intervals. 

Fear conditioning. The fear conditioning session consists of nine trials: three trials of CS-US- 

presentation and six trials of CS-US+ presentation. Trials are presented at 160-180 second intervals. For 

the first three CS-US- trials of the session, the auditory CS (70db) is presented for 20 seconds. The US- 

is initiated during the last 5 seconds of the CS presentation and consist of the smart glass turning clear 

to expose an empty chamber.  The rubber snake model was placed inside the chamber, unseen by the 

animal via a side hatch after the end of the final CS-US- trial. For the following six CS-US+ trials, when 

the smart glass turns clear in the final 5 seconds of the CS presentation, the animal is exposed to the 

sight of the rubber snake in the chamber (US+). If an animal does not show a behavioural response to 

the sight of the rubber snake, the animal is re-tested in a new context and the US+ for the fear 

conditioning session is changed to the presentation of the rubber snake with the test box in darkness 

(the chamber the rubber snake is in remains illuminated such that the rubber snake remains visible). 

Darkness has been demonstrated to facilitate the fear response of marmosets to a rubber snake (Shiba 

et al., 2017).  

 

 

 

 

 

 

 

 

 

Figure 4.4: Conditioned fear and extinction paradigm. Animals are habituated to the context and 

the smart glass turning for the first two days of testing. On the third day, animals acquire the 

conditioned fear response by learning that the conditioned stimulus (CS) is paired with the 

unconditioned stimulus (US+). On the following and final day, the animal is exposed to repeated 

presentations of the CS without the US+. 

 

Extinction. The infusion was carried out prior to the initiation of the extinction session. 20 CS-US- 

pairings were presented at 60-80 second intervals. The CS is presented for 20 seconds. During the final 

5 seconds of the CS presentation, the US- is presented (the smart glass turns clear to expose an empty 

chamber). 
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Extinction recall. Similar to the extinction session, but the animal is exposed to only 12 repeated 

presentations of the CS and the smart glass exposing an empty chamber (CS-US-) at 60-80 second 

intervals. 

  

Fear extinction – behavioural and physiological scoring 

Hypervigilant behaviour. Hypervigilant behaviour was scored as the sum of periods spent performing 

rapid head-swings and periods spent maintaining a completely still and hunched body posture. Slow 

and deliberate head movements that reflected normal vigilant or orienting behaviour were not scored. 

Durations of hypervigilance were scored using video recordings of the extinction sessions for the pre-

CS period (15 seconds before the onset of the CS) and the CS period (during 15 seconds of the CS 

presentation).  

Mean arterial pressure (MAP). The animal’s cardiovascular response during the session were 

monitored remotely using the PhysioTel Telemetry System (Data Sciences International, DSI) to derive 

the animal’s systolic and diastolic blood pressure. MAP = [(2 x diastolic blood pressure) + systolic 

blood pressure]/3. MAP, instead of heart rate, was used to represent the physiological aspect of the 

animal’s stress response as it was less variable. One animal (Whitebeam) showed substantial distortion 

of the blood pressure reading when it spent short periods of time grooming its tail, these periods were 

omitted from the final analysis. 

 

Data analysis and statistics 

The freely moving animal’s cardiovascular activity is transmitted via the implanted telemetry probe to 

a receiver in real-time and analysed post-test using Spike2 (version 8.11; CED). Any outliers and 

recording failures in the data were removed (blood pressure values >200 mm Hg or <0 mmHg or other 

abnormal spikes). Data collection was reliable overall, but data gaps of less than 0.4 s were replaced by 

cubic spline interpolation and gaps of more than 0.4 s were treated as missing values. Systolic and 

diastolic blood pressure events were extracted as local maxima and minima for each cardiac cycle. 

All statistical analyses were performed using SPSS (version 24; IBM Corp., Armonk, NY). Differences 

between groups means were calculated using dependent t-tests for human intruder test anxiety scores. 

For the fear extinction paradigm, the drug’s effect on the extinction process was determined via an 

interaction term in a linear regression model. Repeated measures two-way ANOVA was used to 

determine potential differences in the acquisition and extinction recall sessions prior and after animals 

received infusions on the extinction sessions respectively (factor: treatment and trial blocks; potential 

interaction).  
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4.3 Results 

 

High dose SSRI infusion in the amygdala has an overall anxiolytic effect as measured by the anxiety 

score on the human intruder test. 

The previous chapter established a link between amygdala serotonin transporter expression and anxiety. 

To investigate if amygdala serotonin transporter mediated expression of trait anxiety, we first studied 

the effect of central amygdala infusion of SSRI on anxious behaviour in the human intruder test. Low 

dose amygdala infusion of citalopram (6 µg/site) did not significantly affect anxiety scores (t(4) = 1.741, 

p = .16) (figure 4.5a).  Whereas, inhibition of serotonin reuptake in the amygdala via local Infusion of 

high dose of SSRI, citalopram (30 µg/site) significantly reduced anxious behaviour as measured by the 

anxiety factor score in the human intruder test (t(4) = 2.793, p = .049) (figure 4.5b).  
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Figure 4.5: Effect of amygdala SSRI infusion on anxious behaviour in individual animals. There 

was no significant effect of (a) low dose infusion of citalopram in the amygdala on anxiety (p > .05), 

but (b) high dose infusion of citalopram in the amygdala significantly reduced general levels of 

anxious behaviour as measured by the anxiety factor score (*p < .05). ( : Celery;  : Whitebeam;  

:Nix;  : Annis;  : Greedo;  :Watto)  

 

 

 

 

  

a b 



Chapter 4: Role of amygdala serotonin transporter in the expression of trait anxiety 

95 

 

a b c 

After finding that high dose infusions of citalopram in the amygdala had a general anxiolytic effect as 

measured by the anxiety factor score, we subsequently determined which of the individual measures 

that load significantly on the anxiety factor score were affected by SSRI inhibition. We found that high 

dose amygdala infusions of citalopram did not significantly affect individual measures that load 

significantly on the anxiety score (average height: t(4) = 1.30, p = .264; time spent at front: t(4) = -1.89, 

p = .131; time spent at back: t(4) = 1.05, p = .355; locomotion: t(4) = 0.63, p = .56; head-bobbing: t(4) 

= .92, p = .41; tse-egg calls: t(4) = 1.14, p = .32), indicating that its general effect on the anxiety factor 

score was not driven by only a specific subset of measures (figure 4.6).  
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Figure 4.6: Effect of high dose amygdala infusion of SSRI on individual measures of anxious 

behaviour. There was no significant effect (p > .05) of high dose citalopram infusion in the amygdala 

on individual measures that load significantly on the anxiety factor score: a) average height, b) time 

spent at front, c) time spent at back, d) head-bobbing, e) locomotion (percentage time spent) and f) 

tse-egg calls. ( : Celery;  : Whitebeam;  : Annis;  : Greedo;  :Watto) 
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Inhibition of serotonin reuptake in the amygdala reduces expression of physiological and behavioural 

measures of conditioned fear.  

To assess if inhibition of serotonin reuptake in the amygdala affected conditioned fear, animals 

underwent fear conditioning and were infused with citalopram or saline before the fear extinction 

session. To control for potential variability in the animal’s baseline cardiovascular activity, CS-directed 

measures were obtained by subtracting measures during the initial 15 seconds of the CS period (as the 

US is presented during the remaining 5 seconds of the CS presentation) from the 15 seconds before the 

CS period (baseline). Although order of infusions were counterbalanced, animals due to receive 

amygdala infusions of citalopram showed lower baseline and CS MAP in conditioning prior to receiving 

the infusion (baseline: F(1,3) =, 16.15 p = .028; CS: F(1,3) = 20.76, p = .02), potentially indicating 

varied baseline levels of arousal on the day of conditioning (figure 4.7a and 4.7b). However, the CS-

directed MAP in conditioning did not differ (F(1,3) = 5.739, p = .096), indicating that all animals did 

not differ in the learning of the CS-specific response (figure 7c). The animals did not show differences 

in baseline and CS MAP in extinction after receiving infusions (baseline: F(1,3) = .009, p = .932; CS: 

F(1,3) = .004, p = .953) and the next day in extinction recall (baseline: F(1,3) = .198, p = .687; CS: 

F(1,3) = .181, p = .699) (figure 4.7a and 4.7b). 

The change in CS-directed MAP across trial blocks during extinction was significantly affected by 

amygdala serotonin reuptake inhibition (regression, treatment x trial blocks interaction: β = .900, p < 

.001). In the control condition (saline), animals show a classic extinction of elevated CS-directed MAP 

(F(1,38) = 20.967, p < .001), but not after amygdala infusion of citalopram (F(1,38) = .909, p = .347). 

Specifically, animals with amygdala infusions of citalopram (30 µg/site) do not show a conditioned fear 

response to the CS at the start of the extinction session and as such do not show an extinction trend 

across trial blocks (figure 4.7c). The drug effect on extinction was not followed by differences in 

extinction recall (ANOVA, treatment: F(1,3) = .07, p = .809; trial blocks: F(1.392, 4.175) = .697, p = 

.498; treatment x trial blocks: F(1.507,4.521) = .967, p = .419).  

Behaviourally, all animals showed a startle response when first presented with the US+ during the fear 

conditioning session. The animal’s hypervigilant behaviour during extinction was scored to assess if 

the drug effect on extinction CS-directed MAP was reflected in behaviour. Indeed, the change in CS-

directed hypervigilant behaviour across trial blocks during extinction was significantly affected by 

amygdala serotonin reuptake inhibition (regression, treatment x trial blocks interaction: β = .504, p = 

.038). The animals show a linear decline of CS-directed hypervigilant behaviour (F(1,38) = 8.653, p = 

.006) across trial blocks during the control extinction condition, but not after amygdala infusion of 

citalopram (F(1,38) = 1.191, p = .282) (figure 4.7d). 
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Figure 4.7: Effect of citalopram in the amygdala on the fear extinction paradigm. In the 

conditioning session prior to receiving infusions, animals’ MAP differed during the (a) baseline and 

(b) CS period, but (c) CS-directed MAP did not differ depending on treatment groups. Amygdala 

infusions of citalopram (n = 4) significantly affected the extinction process (treatment x trial blocks 

slope interaction: (c) CS-directed mean arterial pressure (MAP): ***p < .001 and (d) hypervigilant 

behaviour: *p < .05). Animals’ CS-directed MAP did not differ significantly the next day on 

extinction recall (p > .05). Error bands represent SEM. 
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Inhibition of amygdala serotonin reuptake did not affect cardiovascular activity (MAP and heart rate) 

in a neutral condition. 

Cardiovascular activity reflects an animal’s stress response. To determine if the SSRI’s effect on MAP 

in the fear conditioning paradigm may be due to a general effect on physiological measures of emotion 

regulation, SSRI’s effect on cardiovascular activity in the absence of emotional stimuli and task activity 

was determined. Both low dose (heart rate: t(5) = .965, p =.38; MAP: t(5) = .024, p = .98) and high dose 

(heart rate: t(2) = 1.32, p =.32; MAP: t(2) = -1.94, p = .19) infusions of citalopram in the amygdala did 

not significantly affect heart rate and MAP in neutral condition testing. Thus, citalopram’s effect on 

MAP in the fear extinction paradigm and anxious behaviour in the human intruder test was not due to 

a more general effect on cardiovascular activity of inhibited amygdala serotonin reuptake (figure 4.8).  
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Figure 4.8: Effect of amygdala blockade of serotonin reuptake on neutral condition testing. 

Infusions of (1) low and (2) high dose of citalopram in the amygdala did not affect (a) MAP and (b) 

heart rate in neutral condition testing. ( : Celery;  : Whitebeam;  :Nix;  : Annis;  : Greedo;  : 

Anx;  : Appo;  : Sidious) 
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a) b) 

Inhibition of 5-HT2a and 5-HT2c receptor binding in the amygdala and dACC did not affect anxious 

behaviour. 

Central infusions revealed that blockade of 5-HT2a receptors via a 5-HT2a receptor antagonist 

(M100907) in the amygdala and dACC did not alter anxious behaviour (amygdala: t(2) = -2.79, p = 

.108; dACC: t(3) = -0.47, p = .674) (figure 4.9a and 4.9b). Data of one animal receiving amygdala 

infusion of M100907 was omitted as the animal showed a persistent freezing behaviour throughout the 

“intruder phase” of the human intruder test. As the human intruder test anxiety factor score is derived 

with behaviour from the population, a highly atypical behaviour such as freezing is not properly 

modelled and significantly distorts the final score. Blockade of 5-HT2c receptors in the dACC via a 5-

HT2c receptor antagonist (SB242084) did not alter anxious behaviour as well (t(2) = 1.36, p = .307) 

(figure 4.9c). 
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Figure 4.9: Effect of 5-HT2a and 5-HT2c antagonist in the amygdala and dACC on anxious 

behaviour. All infusions ((a) amygdala infusion of M100907; (b) dACC infusion of M100907; (c) 

dACC infusion of SB242084) did not have a significant effect on anxious behaviour (p > .05). ( : 

Celery;  : Whitebeam;  : Annis;  : Greedo) 
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In a neutral condition. inhibition of amygdala 5-HT2a receptor binding increased heart rate but did not 

affect MAP. Inhibition dACC 5-HT2c receptor binding did not affect cardiovascular activity (heart rate 

and MAP). 

Next, whether serotonergic manipulations in the dACC and amygdala would have a general effect on 

physiological measures of emotion regulation in a neutral condition was assessed. Animals were given 

the central infusion in a neutral context. Inhibition of amygdala 5-HT2a receptor binding via a 5-HT2a 

receptor antagonist (M100907, .5 µg/site) significantly increased heart rate but did not have an effect 

on MAP (heart rate: t(4) = -3.657, p = .022; MAP: t(4) = -2.036, p = .11) (figure 4.10.1). In contrast, 

inhibition of dACC 5-HT2c receptor binding (SB242084, 1 µg/site; heart rate: t(3) = .009, p = .99; MAP: 

t(3) = -.655, p = .56) did not significantly affect heart rate and MAP in neutral condition testing (figure 

4.10.2).  
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Figure 4.10: Effect of serotonergic manipulations on neutral condition testing. 1) Amygdala 

infusion of M10907 did not affect (a) MAP but increased (b) heart rate (*p < .05). 2) dACC infusions 

of SB242084 did not significantly affect a) MAP or b) heart rate (p > .05). ( : Celery;  : 

Whitebeam;  :Nix;  : Annis;  : Greedo) 
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4.4 Discussion 

 

As predicted by the results of the previous chapter whereby higher levels of amygdala serotonin 

transporter mRNA expression predicted higher levels of anxious behaviour, acute inhibition of 

amygdala serotonin transporter via infusions of citalopram reduced indices of high trait anxiety 

assessed: anxious behaviour and conditioned fear expression. Reduction in the physiological measure 

of conditioned fear (MAP), in addition to the behavioural measure of conditioned fear (hypervigilance), 

indicates that alteration of amygdala serotonin signalling is capable of not only leading to behavioural 

change but may also play a role in the brain-body interaction of anxiety’s somatic symptoms. My 

findings provide evidence in a primate model of trait anxiety for amygdala serotonin transporter’s causal 

role in anxiety and conditioned fear, suggesting that serotonin signalling in the amygdala mediates the 

expression of the high trait anxiety phenotype. My findings also provide some insight into the 

mechanism underlying the anxiolytic action of SSRIs.  

Contrary to our findings here, Johnson et al. (2015) reported that downregulation of amygdala 

serotonergic signalling via local injections of selective serotonergic neurotoxin (5,7-DHT) injections 

reduced anxious behaviour in the social interaction test but not the open field test, and reduced 

conditioned fear expression. However, it should be noted that although extracellular serotonin was 

reduced in the BLA, there was no clear post mortem evidence of loss of serotonergic terminals, 

indicating that the serotonergic neurotoxin may not have been completely effective. It should also be 

noted that destruction of serotonergic neurons may also have led to compensatory mechanisms and 

microcircuit level changes to the local serotonergic system over time, potentially explaining the 

conflicting findings reported by Johnson et al. (2015) when experimental testing was conducted 6-7 

days post-BLA microinjection of 5,7-DHT. Compared to Johnson et al. (2015), serotonin was 

manipulated here by acute blockades of the serotonin transporter instead of serotonergic terminal 

destruction, and animals were tested after infusions with only a short wait time (10 minutes). Overall, 

the findings from Johnson et al. (2015) do not convincingly contradict the findings reported here. 

Although SSRIs are the first line drug treatment for most instances of anxiety disorders, the neural 

substrates for the drug’s efficacy remains largely unclear and their therapeutic effects are hugely 

variable across individuals. Chronic treatment using SSRIs have demonstrated anxiety symptom 

reduction across different anxiety disorder patients (van der Kolk et al., 1994; van Vliet, den Boer and 

Westenberg, 1994; Boyer, 1995). However, SSRI treatment’s efficacy can also be associated with an 

exacerbation of symptoms acutely before the delayed onset of anxiolysis (Teicher, Glod and Cole, 1990; 

Grillon, Levenson and Pine, 2007; Bigos et al., 2008). Similarly, acute and chronic SSRIs have 

opposing effects on conditioned fear. Acute SSRIs were shown to enhance fear acquisition, whereas 

chronic treatment reduces fear acquisition, suggesting both anxiety and conditioned fear behavioural 
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responses are similarly modulated by alterations in systemic serotonin reuptake inhibition (Burghardt 

et al., 2004). Taken together with findings of acute systemic SSRI enhancing anxiety and conditioned 

fear, findings here provide support for the hypothesis that SSRIs have conflicting effects in different 

regions of the brain that lead to a net anxiogenic effect when administered peripherally, e.g. 

downregulating serotonergic neurons via activation of somatodendritic serotonin 1A autoreceptors in 

the raphe nuclei, but an anxiolytic and conditioned fear reducing effect when infused centrally in the 

amygdala (Gartside et al., 1995; Hajós, Gartside and Sharp, 1995). However, an acute SSRI has also 

shown anxiolytic effect when administered peripherally in low anxious marmosets with the CT/T/C 

haplotype (Santangelo et al., 2016), and anxiogenic effect when infused in the BNST of rodents, 

providing further evidence that upregulated serotonin signalling may have differential genotype-

dependent and region-specific effects and warrant further investigation (Marcinkiewcz et al., 2016). 

Serotonin transporter-positive fibers are distributed throughout the subnuclei of the amygdala 

(O’Rourke and Fudge, 2006). Serotonergic innervation of the amygdala from the dorsal raphe nucleus 

projects strongly to the basal amygdala, moderately to the lateral, basomedial and centromedial nuclei 

and only weakly to the centrolateral nucleus (Steinbusch, 1981; Sur, Betz and Schloss, 1996; Muller, 

Mascagni and McDonald, 2007). Serotonergic projections from the dorsal raphe innervate both 

principal neurons and interneurons in the BLA, the target of the cannulations and the main receiving 

nuclei of the amygdala which also receives converging inputs from cortical regions, the thalamus and 

the hippocampus (Aggleton, Burton and Passingham, 1980; Aggleton, 1986; Carmichael and Price, 

1995; Ghashghaei and Barbas, 2002; Muller, Mascagni and McDonald, 2007). An electrophysiological 

study of the rat BLA demonstrated that serotonin in the BLA evoked depolarization of GABAergic 

interneurons (via 5HT2 receptor) which in turn drives the downregulation of BLA principal neuron 

activity (Rainnie 1999). SSRIs inhibit serotonin transporter leading to reduced reuptake of extracellular 

serotonin and increased sustained local serotonergic signalling. Taken together, the downregulation of 

BLA activity may underlie findings here of decreased trait anxiety expression in response to BLA 

infusions of an SSRI. Subsequent work identifying receptor subtype activation within specific amygdala 

subnuclei in response to serotonin will further elucidate the role of serotonin within the amygdala 

microcircuitry. 

Inhibition of 5-HT2a receptor binding in the amygdala increased heart rate in the neutral condition but 

did not have an effect on the human intruder test anxiety score, indicating that amygdala 5-HT2a receptor 

activation may play a role in general cardiovascular reactivity but does not significantly affect 

behavioural responses to anxiety-provoking stimuli. Although preliminary investigation here of the 

effects of 5-HT2a and 5-HT2c receptor antagonism within the dACC and amygdala on anxiety did not 

yield a significant effect on anxious behaviour, it should be noted that manipulations of the 5-HT2a and 

5-HT2c receptor target a specific subpopulation of neurons with those corresponding receptors, whereas 

a blockade of the serotonin transporter will affect all neurons regardless of serotonin receptor subtype.  
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Thus manipulations of the 5-HT2a and 5-HT2c receptor may have a subtler effect on behaviour compared 

to the serotonin transporter. More animals must be tested with differing doses in subsequent studies to 

form a more certain conclusion in regards to the role of 5-HT2a and 5-HT2c receptors within the dACC 

and amygdala on anxiety. 

In conclusion, the series of behavioural analyses here demonstrated that inhibition of amygdala 

serotonin transporter leads to reduction in key threat-processing characteristics of the trait anxious 

phenotype: anxious behaviour and conditioned fear expression. These findings extend results from the 

previous chapter showing that amygdala serotonin transporter expression correspond to differing levels 

of anxious behaviour, by providing direct evidence that alteration in amygdala serotonin signalling may 

contribute to an individual’s level of trait anxiety. Contrary to the anxiogenic effect of acute systemic 

SSRIs, it has been demonstrated here that an acute SSRI has an anxiolytic effect when infused in the 

amygdala. This suggest the anxiolytic effect of SSRIs as an effective antidepressant may be confounded 

by anxiogenic effects of the SSRI acting on other regions of the brain.  
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Chapter 5: Predictors of adulthood anxiety across 

development 

 

Introduction: Diagnoses of anxiety disorders correspond to morphological changes in the amygdala of 

adolescents and adults. The basolateral nuclei of the amygdala (BLA) in particular has been shown to 

be sensitive to stress. Studying genetic factors that affect the structural change of the BLA and the 

developmental trajectory of the BLA will elucidate the changes that occur over an individual’s lifetime 

that may underlie adulthood threat sensitivity.  

Methods: The cohort of adult animals consist of 25 animals that underwent magnetic resonance imaging 

(MRI) with the BLA region of interest (ROI) subsequently drawn. The developing cohort consist of 24 

animals MRI scanned at multiple time-points before and after puberty. The correlation between 

adulthood anxiety and BLA volume during adulthood and BLA volume change before and after puberty 

was determined. Furthermore, potential differences in adulthood anxiety among serotonin transporter 

polymorphism homozygotes was investigated. 

Results: Correlational and trajectory analyses revealed that developing animals with higher anxiety 

display a delayed decline in BLA volume after puberty. In adulthood, higher levels of anxiety were 

associated with reduced general grey matter volume and left BLA volume, whereas reduced active 

coping in response to fear was associated with reduced right BLA volume. The high anxiety-associated 

AC homozygotes showed relatively smaller bilateral BLA volume compared to low anxiety-associated 

CT homozygotes.  

Discussion and Conclusion:  Our results show evidence of developmental and structural mechanisms 

underlying anxious and fear responding behaviour in adulthood. Moreover, I demonstrate a link 

between the newly identified marmoset serotonin transporter polymorphism and BLA volume after 

maturation.
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5.1 Introduction 

 

The first signs of mental illness occur early in life with nearly half of adults with a mental disorder 

having an onset age of 14 years and about 3 quarters before age 25 years (Kessler et al., 2005). Anxiety 

disorders in particular have one of the earliest median onset age of 11 years. Adolescence is a critical 

period of development characterized by substantial cognitive, emotional, physiological, and 

behavioural changes. Although stress can lead to functional adaptive behaviours, chronic and severe 

stressors during critical periods of development by traumatic experiences may disrupt the brain’s 

normal pathway for development and lead to life-long mental disorders. Consistent with this, both 

human and primate research has shown that juveniles experiencing early life stress and adversity present 

with enlarged amygdalas (Mehta et al., 2009; Tottenham et al., 2010; Lupien et al., 2011; Whittle et 

al., 2013; Coplan et al., 2014). 

Stressful stimuli elicit the release of corticotropin-releasing factor (CRF) which in turn plays a central 

role in regulating the hypothalamic-pituitary-adrenal (HPA) axis and initiates a cascade of events 

leading to the release of glucocorticoids from the adrenal cortex (Smith and Vale, 2006). The 

glucocorticoids released mediate the body’s ongoing stress response (cardiovascular, metabolic, 

immune, etc.) and activate glucocorticoid receptors expressed in particularly high concentrations in 

brain regions implicated in emotion regulation: the hippocampus, the amygdala and the prefrontal 

cortex (Gray and Bingaman, 1996; Joëls, 2001; McKlveen et al., 2013). This sequence of 

neuroendocrine events act as the mechanism in which traumatic life experiences lead to long term 

functional dysregulation and morphological change across the brain which may culminate in the 

characteristics of high trait anxiety (Christoffel, Golden and Russo, 2011). Indeed, a single acute dose 

of corticosterone, inducing an acute but substantial stress response, was sufficient to produce dendritic 

hypertrophy in the BLA and behavioural change within adult rodents (Mitra and Sapolsky, 2008). 

In rodent models of stress, chronic restraint stress (CRS) was shown to differentially affect adolescents 

and adults, with CRS increasing number of spontaneously firing BLA neurons without affecting firing 

rate in adolescent rats, but increasing firing rate without increasing number of spontaneously firing 

neurons in adult rats (Zhang and Rosenkranz, 2012). Rodent models with juveniles and adults have also 

shown that chronic immobilisation stress (CIS) and CRS induce increases in spine density and dendritic 

arborization of BLA principal neurons accompanied by increased anxious behaviour and depressive-

like behaviour  (Vyas et al., 2002; Vyas, Pillai and Chattarji, 2004; Mitra et al., 2005; Eiland et al., 

2012). In contrast, chronic unpredictable stress (CUS) induced atrophy of BLA bipolar neurons and 

reduction of synapse density in the lateral amygdala of adults (Vyas et al., 2002; Zhang et al., 2014). 
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Taken together, rodent studies in developed animals provide evidence that stress differentially affects 

the BLA in developing and developed animals, stress mediates morphological change in BLA neurons 

and that BLA neuron structural change correspond to behavioural changes, and that the nature of the 

stressor may differentially affect the nature of the neuronal re-organization. 

In humans, previous work has found that anxiety symptoms and greater threat reactivity were associated 

with greater amygdala (and more specifically BLA) volume in adolescents (De Bellis et al., 2000; van 

der Plas et al., 2010; Qin et al., 2014). Young adults (~20 years) show a similar link between amygdala 

volume and threat vulnerability as adolescents do, consistent with the amygdala’s continued 

development from birth to early adulthood (Machado-de-Sousa et al. 2014; Tian et al. 2016; review: 

Lupien et al. 2009). Although the contrary has also been shown (Milham et al., 2005; Park et al., 2015). 

The mixed findings in developing individuals may be due to the heterogeneity in the age range of 

participants and behavioural measure/symptom criteria selected. In contrast, adult studies have 

primarily found that both pathological anxiety and phobic (fear-based) disorders were linked to reduced 

amygdala volume (Massana et al., 2003; Karl et al., 2006; Hayano et al., 2009; Rogers et al., 2009; Irle 

et al., 2010; Fisler et al., 2013; Foell et al., 2019). Rodent studies have mirrored human studies with 

accelerated amygdala development in adolescents after early-weaning, and reduced amygdala volume 

in matured animals with high fearfulness and stress reactivity (Yang et al., 2008; Kikusui and Mori, 

2009). 

Sawiak et al. (2018) recently demonstrated that the marmoset BLA show an inverted-U shaped 

trajectory across development with an initial increase followed by a steady decline during puberty. This 

pattern of change in grey matter similarly occurs throughout the brain and reflects initial growth as a 

product of dendritic outgrowth and synaptogenesis followed by synaptic pruning and increased axon 

myelination (Giedd et al., 1999; Paus, 2005; Gogtay and Thompson, 2010). As I was interested in 

different changes during development that may lead to long lasting changes in threat vulnerability, I 

investigate potential structural markers across the developing and developed brain predictive of anxious 

and fear-driven behaviour in adulthood. Specifically, using structural magnetic resonance imaging 

(MRI) data from a common marmoset cohort of developing animals scanned at pre-puberty (6-12 

months) and post-puberty (12-21 months) and a separate cohort of animals scanned in adulthood (>21 

months), I determine whether BLA volume is associated with emotion regulation and threat-related 

behaviour. The threat-related behaviour evaluated consists of anxious and fear-driven behaviour from 

animals screened on the human intruder test and rubber snake test respectively in adulthood. As the 

human and macaque serotonin transporter polymorphism was linked to altered amygdala volume, I was 

also interested in determining if the recently discovered marmoset serotonin transporter polymorphism 

mirrored this effect (Pezawas et al., 2005; Santangelo et al., 2016).
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5.2 Methods 

 

Subjects 

The developing cohort consisted of 24 animals (Table 5.1: Male = 8; Female = 16. Pre-puberty scan 

age: 6-12, 7.88 ± 1.5 months; Post-puberty scan age: 12-21, 16.9 ± 2.7 months). The developing cohort 

consisted of a subset of Sawiak et al.’s (2018) cohort with data from the human intruder test and rubber 

snake test. The adult cohort consisted of 22 animals (Table 5.2: M = 14; F = 8. Age: >21, 31.4 ± 7.1 

months). Only homozygotes were included as there were an insufficient number of adult heterozygotes 

scanned in the adult cohort (AC homozygotes, N = 11; M = 6, F = 5; Age: 32.8 ± 8.0. CT homozygotes 

= 11; M = 8; F = 3. Age: 29.9 ± 6.1). There was an insufficient number of AC homozygotes in the 

developing cohort to accurately evaluate the polymorphism’s effect before adulthood. The 

developmental trajectory of the BLA was constructed with scans from 34 animals scanned a total of 

125 times with an average of 3.7 scans per animal (Table 5.3: range 2-6 scans; n = 5, 13, 8, 4, 4 with 2, 

3, 4, 5, 6 scans respectively). 

 

 

Table 5.1: Developing animal cohort. Detail of animals that were MRI scanned before and after 

puberty (12 months). 

No. Name Gender 

Pre-puberty 

scan age 

(month) 

Post-puberty 

scan age 

(month) 

Human 

intruder test 

age (month) 

Serotonin 

transporter 

polymorphism 

1 Bernie M 6.7 17.4 19.8 CT homozygote 

2 Bomb F 9.0 15.2 20.4 CT homozygote 

3 Bullseye M 8.9 20.5 28.9 Heterozygote 

4 Chunk F 8.9 20.5 29.3 AC homozygote 

5 Deneb M 7.7 15.3 22.8 CT homozygote 

6 Eve M 9.0 14.0 25.1 CT homozygote 

7 Frangipane F 6.2 12.6 21.0 Heterozygote 

8 General M 6.2 12.2 22.4 CT homozygote 

9 Graves M 6.2 16.9 19.1 Heterozygote 

10 Heka F 7.8 15.3 23.0 CT homozygote 

11 Macintosh M 8.8 20.0 34.6 Heterozygote 

12 Manny M 6.7 17.4 19.8 CT homozygote 

13 Merida F 11.9 20.0 27.2 Heterozygote 

14 Referee M 7.3 15.1 22.4 CT homozygote 

15 Rex F 9.1 20.2 20.5 AC homozygote 

16 Roll M 9.0 20.2 21.6 CT homozygote 

17 Sarge M 6.3 16.9 22.3 CT homozygote 

18 Sheriff F 7.3 15.1 22.7 Heterozygote 

19 Slim M 6.5 17.4 22.8 Heterozygote 

20 Squibbles M 9.1 14.8 24.8 CT homozygote 

21 Syllabub F 6.2 12.6 21.2 Heterozygote 

22 Trixie M 8.9 18.2 19.8 Heterozygote 

23 Tuck M 9.0 17.2 16.5 CT homozygote 

24 Wall-e M 6.5 20.5 20.3 AC homozygote 
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Marmosets were all born and reared at the Innes Marmoset Colony (Behavioural and Clinical 

Neuroscience Institute, BCNI). Animals of the developing cohort were housed in family groups in 

rooms with temperature (22 ± 1ᵒC) and humidity (50 ± 1%) controlled and a dawn/dusk-like 12 hour-

period was maintained. The animals of the adult animal cohort were housed in male/female pairs (males 

were vasectomised). All animals were provided with a balanced diet and water ad libitum. Besides MRI 

scans as detailed below, marmosets in this study did not undergo any other experimental procedures 

while being scanned for this study. Marmosets were regularly assessed for health as part of the normal 

colony procedures. No adverse health events were recorded for animals of this study. All procedures 

were carried out in accordance with the UK Animals (Scientific Procedures) Act 1986 and the local 

AWERB policies. 

 

No. Name Gender 
Scan age 

(month) 

Human intruder 

test age (month) 

Rubber Snake test 

age (month) 

Serotonin 

transporter 

polymorphism 

1 *Rose M 36.5 35.1 - AC homozygote 

2 Merry M 31.6 29.6 33.5 AC homozygote 

3 Copper F 22.8 21.0 24.5 AC homozygote 

4 Windermere F 21.8 18.1 22.0 AC homozygote 

5 Cinders F 50.0 46.6 50.4 AC homozygote 

6 Bakerloo M 29.9 29.6 30.5 AC homozygote 

7 Axel M 38.8 34.8 39.1 AC homozygote 

8 Waterloo F 30.4 29.5 31.0 AC homozygote 

9 Sally M 36.1 31.7 42.4 AC homozygote 

10 Thissle F 27.0 24.3 29.9 AC homozygote 

11 Rhubarb M 35.8 31.7 35.4 AC homozygote 

12 Mace M 24.9 23.5 27.2 CT homozygote 

13 Riley M 31.1 29.8 33.3 CT homozygote 

14 Jetsam M 23.6 20.8 24.5 CT homozygote 

15 Micky M 25.5 22.2 26.0 CT homozygote 

16 Bob M 30.0 29.7 30.8 CT homozygote 

17 Elise F 35.5 35.5 36.3 CT homozygote 

18 Air F 22.7 19.2 32.3 CT homozygote 

19 Zoom M 31.2 28.1 40.8 CT homozygote 

20 Nettle M 36.0 24.4 26.0 CT homozygote 

21 Cabbage F 26.6 21.3 24.5 CT homozygote 

22 Birch M 42.0 26.8 28.2 CT homozygote 

 

Table 5.2: Adult animal cohort. Detail of animals that were MRI scanned in adulthood. *Rose was 

euthanised 2 months for respiratory difficulties after being screened on the human intruder test but 

before being screened on the rubber snake test. 
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On the day of scanning, animals were fasted. Marmosets were sedated with ketamine (20 mg/kg; Vetalar 

solution 100 mg/mL Pfizer, Kent, UK) and intubated for isoflurane anaesthesia (2.5% in 0.25–0.40 

L/min O2). Throughout scanning, respiration rates were monitored with a pressure sensor over the upper 

abdomen (SA Instruments, Stony Brook, NY) and the isoflurane dose was adjusted between 1% and 

3% to maintain respiratory rates in the normal range. A rectal thermometer was used to monitor 

temperature and a flowing-water heating system was adjusted as necessary. Marmosets were returned 

to their home cages once recovered. 
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Table 5.3: Animals included in modelling the developmental trajectory of the BLA. Adjusted 

values of BLA volume were offset for the effect of gender and the random effect of subject. 

Individuals arranged in descending order of anxiety score. 

  

 
Low 

Anxious  

Anxiety 

score 

Age 

(months) 

BLA volume 

(mm3) 

Adjusted 

volume (mm3) 
 

High 

Anxious 

Anxiety 

score 

Age 

(months) 

BLA volume 

(mm3) 

Adjusted 

volume (mm3) 

1 Eve -0.2223 8.9 32.93 34.98 1 Rex 0.93 9 34.71 35.64 

2 Eve -0.2223 12.6 35.14 37.18 2 Rex 0.93 11.9 34.84 35.76 

3 Eve -0.2223 13.9 36.39 38.43 3 Rex 0.93 17 34.57 35.49 

4 General -0.23 3.7 33.51 35.39 4 Rex 0.93 20 34.31 35.23 

5 General -0.23 6.1 32.6 34.49 5 Catapult 0.9 12 38.68 36.55 

6 General -0.23 12.1 37.04 38.93 6 Catapult 0.9 14.5 39.02 36.89 

7 Sarge -0.24 3.5 36.4 33.62 7 Catapult 0.9 19.9 37.32 35.19 

8 Sarge -0.24 6.2 39.03 36.25 8 Greedo 0.79 3.7 34.95 35.12 

9 Sarge -0.24 11.5 42 39.22 9 Greedo 0.79 6.1 37.77 37.94 

10 Sarge -0.24 14.3 37.82 35.04 10 Deneb 0.53 7.6 37.29 35.62 

11 Sarge -0.24 16.7 38.63 35.86 11 Deneb 0.53 8.9 38.08 36.41 

12 Roz -0.24 12 37.89 37.53 12 Deneb 0.53 12.1 39.67 38 

13 Roz -0.24 20.1 33.64 33.28 13 Deneb 0.53 15.1 37.96 36.29 

14 Roz -0.24 23 35.27 34.91 14 Trebuchet 0.33 11.9 38.71 36.22 

15 Bullseye -0.26 8.8 37.02 38.92 15 Trebuchet 0.33 14.6 39.83 37.34 

16 Bullseye -0.26 11.8 35.13 37.03 16 Trebuchet 0.33 19.9 37.4 34.9 

17 Bullseye -0.26 20.3 29.63 31.53 17 Wall-e 0.29 6.4 38.17 37.5 

18 Trixie -0.43 3.2 34.91 33.78 18 Wall-e 0.29 9.2 38.74 38.07 

19 Trixie -0.43 8.8 38.19 37.06 19 Wall-e 0.29 14.8 36.94 36.26 

20 Trixie -0.43 11.5 38.64 37.51 20 Wall-e 0.29 17.1 36.75 36.07 

21 Trixie -0.43 14.4 36.49 35.36 21 Wall-e 0.29 20.3 30.38 29.71 

22 Trixie -0.43 16.2 37.52 36.38 22 Blake 0.13 12 36.95 37.24 

23 Trixie -0.43 18 35.71 34.58 23 Blake 0.13 20.1 33.58 33.88 

24 Sheriff -0.45 7.2 34.19 37.47 24 Blake 0.13 23 34.01 34.3 

25 Sheriff -0.45 12.5 33.57 36.85 25 Manny 0.13 3.6 37.2 36.04 

26 Sheriff -0.45 14.9 32.62 35.9 26 Manny 0.13 6.6 38.26 37.1 

27 Macintosh -0.47 8.7 35.19 35.51 27 Manny 0.13 11.7 37.96 36.8 

28 Macintosh -0.47 11.8 36.19 36.52 28 Manny 0.13 14.4 37.92 36.76 

29 Macintosh -0.47 17.3 35.36 35.68 29 Manny 0.13 17.2 35.81 34.65 

30 Macintosh -0.47 19.8 33.43 33.76 30 Manny 0.13 21.1 33.48 32.32 

31 Macintosh -0.47 24.2 33.42 33.74 31 Merida 0.07 11.8 33.45 35.88 

32 Bernie -0.5 3.6 39.13 37.21 32 Merida 0.07 17.3 33.1 35.53 

33 Bernie -0.5 6.6 40.02 38.1 33 Merida 0.07 19.8 32.35 34.78 

34 Bernie -0.5 11.7 39.92 38 34 Merida 0.07 24.2 30.8 33.23 

35 Bernie -0.5 14.4 37.7 35.78 35 Snowball 0.06 11.9 38.62 37.88 

36 Bernie -0.5 17.2 33.56 31.64 36 Snowball 0.06 16.9 37.01 36.27 

37 Bernie -0.5 21.1 36.68 34.76 37 Dicker -0.02 3.2 33.15 33.6 

38 Syllabub -0.52 3.2 36.69 33.48 38 Dicker -0.02 5.8 37.37 37.82 

39 Syllabub -0.52 6.2 41.74 38.52 39 Slim -0.05 3 34.26 34.57 

40 Syllabub -0.52 12.4 40.37 37.15 40 Slim -0.05 6.4 37 37.31 

41 Emperor -0.57 11.9 36.85 37.11 41 Slim -0.05 11.6 36.79 37.09 

42 Emperor -0.57 14.7 36.42 36.69 42 Slim -0.05 14.3 37.03 37.34 

43 Emperor -0.57 20.2 34.58 34.84 43 Slim -0.05 17.2 31.47 31.78 

44 Emperor -0.57 23 32.51 32.78 44 Graves -0.08 3.6 37.85 35.84 

45 Tuck -0.66 8.9 38.96 37.39 45 Graves -0.08 6.2 36.32 34.31 

46 Tuck -0.66 11.7 38.22 36.66 46 Graves -0.08 11.5 40.45 38.44 

47 Tuck -0.66 17 36.46 34.89 47 Graves -0.08 14.3 38.58 36.57 

48 Ewok -0.89 3.4 31.94 34.4 48 Graves -0.08 16.7 36.69 34.68 

49 Ewok -0.89 6.2 34.35 36.81 49 Graves -0.08 21.2 37.86 35.85 

50 Roll -1.01 8.9 42.03 37.76 50 Referee -0.18 7.2 34 36.23 

51 Roll -1.01 11.7 40.05 35.78 51 Referee -0.18 8.9 33.48 35.71 

52 Roll -1.01 17 39.09 34.82 52 Referee -0.18 12.5 34.88 37.11 

53 Roll -1.01 20 37.89 33.61 53 Referee -0.18 14.9 35.35 37.58 

54 Yoda -1.08 3.4 35.17 35.77 54 Heka -0.2 7.7 35.55 36.44 

55 Yoda -1.08 6.2 35.22 35.82 55 Heka -0.2 8.9 32.49 33.39 

56 Bomb -1.09 8.9 33.75 36.93 56 Heka -0.2 12.1 37.04 37.93 

57 Bomb -1.09 12.6 33.1 36.28 57 Heka -0.2 15.1 37.68 38.58 

58 Bomb -1.09 13.8 34.41 37.6 58 Chunk -0.21 8.8 36.42 37.78 

59 Bomb -1.09 15 32.99 36.17 59 Chunk -0.21 11.8 36.43 37.79 

60 Frangipane -1.51 3.2 33.04 34.86 60 Chunk -0.21 20.3 30.82 32.18 

61 Frangipane -1.51 6.1 35.19 37.01 61 Squibbles -0.2218 9 32.97 34.89 

62 Frangipane -1.51 12.4 34.69 36.5 62 Squibbles -0.2218 13.9 37.36 39.28 

      63 Squibbles -0.2218 14.7 33.84 35.77 
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Image Acquisition and Processing  

Animals were scanned as part of Sawiak et al.’s (2018) developmental study using a Bruker 

PharmaScan 47/16 MRI system (Bruker, Inc., Ettlingen, Germany) at a field strength of 4.7 T. A custom 

6 cm birdcage coil was used for signal transmission and reception. Structural images were acquired 

using a rapid acquisition with relaxation enhancement (RARE) sequence (parameters: TR/TEeff 11 

750/23.5ms, 125 slices of 250 μm thickness, echo train length 4 and 3 averages) in 21m 44 s. The field 

of view was 64mm × 50mm yielding an isotropic resolution of 250 μm.  

Images were processed using SPM8 (Wellcome Trust Center for Neuroimaging, UCL, UK) with the 

SPMMouse toolbox for animal data (Sawiak, Picq and Dhenain, 2014). Brains were aligned with tissue 

probability maps derived from marmosets from the same colony (Mikheenko et al., 2015) and 

segmented into grey matter, white matter, and cerebrospinal fluid (GM, WM, and CSF). DARTEL 

(Ashburner, 2007) was used for image registration and to create population templates. The BLA ROI 

was drawn using Analyze 8 (Mayo Clinic) by an expert reviewer (Angela Roberts) with reference to a 

histological atlas (Paxinos et al., 2012) (figure 5.1). Regional volumes were estimated by integrating 

Jacobian determinants from the DARTEL transformations over each region mask. No filtering based 

on tissue segmentation was used in this process. Total intracranial volume (TIV) was obtained as the 

sum of grey matter (GM), white matter (WM), and cerebrospinal fluid (CSF) volume. 

 

 

 

Figure 5.1: BLA ROI. Schematic illustrating the BLA within the marmoset brain by Sawiak et al. 

(2018). 

 

Developmental trajectory model 

To illustrate trajectory of BLA, developmental data of animals from Sawiak et al.’s (2018) original 

cohort of animals from 3-21 months were split by the median human intruder test anxiety score. An 

additive mixed model was used to model these volumes using a spline estimation approach with 

GraphPad Prism ver.8 (Alexander-Bloch et al., 2014). A restricted cubic spline curve was used to model 

the smooth but non-linear change in BLA volume across time. Each individual knot are points at which 

the individual polynomial spline function join. Five knots were used to model the date as recommended 

by Stone (1986). Total amygdala volume was adjusted for the effect of gender and the random effect of 

subject (inclusion of an additive constant varying by subject but not time).  
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5.3 Results 

 

Reduced BLA volumetric decline post puberty is associated with higher anxiety 

Anxiety was not associated with TIV, GM, WM, and BLA volume in pre-puberty or post-puberty (p > 

.05) (table 5.4). However, given that Sawiak et al. (2018) found that BLA volume follows a decline 

post-puberty, we investigated if the change in amygdala volume pre- and post-puberty corresponds to 

anxiety levels in adulthood. Greater decline in BLA volume post-puberty corresponds to lower anxiety 

score in adulthood (left: r = .49, p = .032; right: r = .46, p = .047). Difference in age between the pre-

puberty and post-puberty scan, and the age of the post-puberty scan were included as covariates to 

remove the potential confound of variation in scanning age (figure 5.2a). This relationship was specific 

between the BLA and anxiety and not related to general threat reactivity as the change in the BLA 

during development was not associated with fear responding in adulthood (figure 5.2c and 5.2d. p > 

.05). To illustrate BLA developmental difference from the correlation, data of animals from Sawiak et 

al.’s (2018) original cohort of animals from 3-21 months were split by the median anxiety score to 

model the developmental trajectory of BLA volume. The trajectory pattern suggests that increased 

anxiety score’s association with post-puberty difference may be due to a combination of high anxious 

animals tending to have lower BLA volume before puberty and delayed decline after puberty (figure 

5.2b). 
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   TIV (mm3) Grey matter (mm3) White matter (mm3) 

No. Name 
Anxiety 

score 

Pre-

puberty 

Post-

puberty 

Pre-

puberty 

Post-

puberty 

Pre-

puberty 

Post-

puberty 

1 Bernie -0.50 9567.5 8795.4 7495.4 6476.0 1575.8 1756.2 

2 Bomb -1.09 8461.1 8330.2 6729.7 6257.8 1350.0 1597.4 

3 Bullseye -0.26 9251.4 8491.9 7337.0 6209.4 1517.2 1693.1 

4 Chunk -0.21 9082.5 8464.3 7258.7 6042.0 1519.9 1729.8 

5 Deneb 0.53 9032.9 8950.3 7166.9 6739.3 1602.9 1856.8 

6 Eve -0.22 8693.1 8862.1 6826.0 6832.0 1405.6 1665.2 

7 Frangipane -1.51 8882.4 8806.8 7119.9 6617.9 1425.8 1703.1 

8 General -0.23 8797.5 9145.5 6982.0 6875.8 1425.0 1846.0 

9 Graves -0.08 9677.9 9302.3 7715.0 7129.5 1475.4 1680.5 

10 Heka -0.20 9219.6 9242.4 7259.3 6697.2 1579.0 2006.3 

11 Macintosh -0.47 8839.2 8180.0 6920.0 6212.1 1418.5 1482.5 

12 Manny 0.13 9309.0 8866.9 7292.8 6613.6 1534.6 1784.5 

13 Merida 0.07 8457.6 7847.6 6467.3 5949.7 1480.2 1480.1 

14 Referee -0.18 8783.0 8729.2 6843.4 6424.3 1490.7 1820.7 

15 Rex 0.93 8407.5 8058.5 6821.0 6027.5 1223.3 1410.8 

16 Roll -1.01 9968.2 9211.2 7866.2 6812.9 1816.1 1974.2 

17 Sarge -0.24 9443.0 9149.2 7537.4 6937.4 1523.5 1802.6 

18 Sheriff -0.45 8366.4 8096.9 6604.6 5968.1 1379.3 1639.9 

19 Slim -0.05 8557.2 8314.8 6807.0 6268.1 1348.0 1508.4 

20 Squibbles -0.22 9063.9 9055.2 6920.7 6736.7 1596.4 1686.5 

21 Syllabub -0.52 10054.2 10165.8 7893.7 7562.4 1737.6 1956.0 

22 Trixie -0.43 8954.5 8930.5 6980.6 6542.4 1496.2 1754.7 

23 Tuck -0.66 9135.1 8600.6 7406.1 6517.5 1471.7 1652.9 

24 Wall-e 0.29 9498.7 8693.0 7626.9 6288.6 1504.4 1833.3 

 

Table 5.4: General brain volume before and after puberty and individual adulthood anxiety 

score. 
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Figure 5.2: Adulthood anxiety is associated with pattern of BLA volume change post puberty. a) 

Partial regression plot and trendline illustrating that animals with a greater decline in BLA volume 

post-puberty (negative difference) had lower human intruder test anxiety scores in adulthood. b) 

Developmental trajectory of low and high anxious animals illustrating delayed BLA reduction post-

puberty. This effect was specific to anxious behaviour as fear responding (c & d) did not correspond 

to BLA volume change after puberty. (Difference = [post-puberty BLA volume] – [pre-puberty BLA 

volume]). Adj.: adjusted.  
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Subsequently, I assessed if anxiety and fear responding style, measured by the human intruder test and 

rubber snake test factor scores respectively, were associated with variation in general brain structural 

changes whilst controlling for age and gender.  

 

Anxiety score associated with reduction in grey matter and left BLA volume in early adulthood.  

Human intruder test anxiety score was negatively correlated with GM volume (r = -.49, p = .033) but 

not correlated with WM volume (r = .32, p = .19) or TIV (r = -.35, p = .14) (figure 5.3a). Controlling 

for the anxiety score’s association with GM volume and the potential effect of age and gender, whether 

anxious behaviour had a more specific effect, beyond that on grey matter volume, specifically on the 

structural volume of the BLA was assessed. Human intruder test anxiety score was negatively correlated 

with left BLA volume (r = -.65, p = .005), but not right BLA volume (r = -.20, p = .44) (figure 5.3b).  

 

 

 

 

 

 

 

Figure 5.3: Anxious behaviour’s association with brain volumetric differences in adults. Partial 

regression plots and trendline illustrating that anxious behaviour measured in the human intruder test 

in adulthood corresponds to reduction in general grey matter volume (p < .05) and b) a more specific 

reduction in left BLA volume (p < .01). Adj.: adjusted.  
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Active fear responding is associated with reduction in right BLA volume in adults. 

Active and avoidant fear responding were not correlated with any measure of brain volume (Active: 

GM: r = .42, p = .07; WM: r = .38, p = .11; TIV: r = .31, p = .20; Avoidant: GM: r = -.19, p = .44; WM: 

r = -.21, p = .38; TIV: r = -.20, p = .41) (table 5.5). As fear responding style scores did not correspond 

to general volumetric variation, I subsequently assessed if fear responding styles had a specific effect 

on BLA volume whilst only controlling for age and gender. In adult animals, only higher active fear 

responding scores (r = .47, p = .049) was correlated with greater right BLA volume (figure 5.4), but not 

left BLA volume (r = .33, p = .18). Lower avoidant fear responding scores was not correlated with BLA 

volume (left: r = -.35, p = .16; right: r = -.45, p = .061).  

 

Figure 5.4: Fear-driven behaviour’s association 

with brain volumetric differences in adults. Right 

BLA volume was positively associated with active 

fear responding in adulthood (p < .05). Adj.: adjusted. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.5: Individual fear behaviour score on the rubber snake test, general brain volume and 

BLA volume.  

  
Rubber snake test 

fear behaviour 

General brain volume 

(mm3) 

BLA volume 

(mm3) 

No. Name 
Active 

score 

Avoidant 

score 
TIV GM WM Left Right 

1 Rose - - 7181.1 4972.6 1389.7 13.23 16.02 

2 Merry -1.55 1.17 7417.1 5000.8 1593.0 13.27 15.32 

3 Copper -0.56 0.70 7710.2 5436.6 1615.1 13.84 16.82 

4 Windermere 0.09 1.79 8567.8 6095.9 1668.1 15.19 17.75 

5 Cinders 0.82 0.29 7243.3 5152.9 1435.3 13.86 16.18 

6 Bakerloo -0.77 0.54 8109.9 5696.9 1648.9 14.83 17.30 

7 Axel -1.61 1.52 7447.8 5192.2 1511.6 13.47 15.66 

8 Waterloo -0.48 0.50 7631.7 5359.7 1579.9 13.74 16.21 

9 Sally 2.18 -0.74 8076.3 5572.9 1740.1 13.67 17.11 

10 Thissle 0.07 -0.06 7993.6 5785.4 1540.9 14.88 18.13 

11 Rhubarb -0.10 0.19 8059.9 6133.8 1363.4 14.36 17.16 

12 Mace -0.05 -0.01 7970.3 5677.0 1680.3 14.32 17.06 

13 Riley 0.41 -0.66 7858.8 5396.9 1711.2 14.94 17.65 

14 Jetsam -0.25 0.35 7532.6 5307.8 1471.3 14.03 17.20 

15 Micky 0.05 0.46 7746.4 5453.0 1638.6 14.18 16.31 

16 Bob 0.76 0.53 7613.3 5392.3 1579.6 14.30 17.07 

17 Elise 0.22 0.36 7798.0 5777.6 1371.9 13.71 16.34 

18 Air -0.20 0.39 8035.2 5747.5 1660.1 15.61 18.72 

19 Zoom 0.34 -0.87 7819.4 5545.9 1647.8 15.02 17.80 

20 Nettle 1.79 -0.12 9132.1 6749.8 1589.2 14.94 17.26 

21 Cabbage -0.44 0.01 7927.4 5840.6 1440.3 14.96 17.14 

22 Birch -0.24 -0.15 8738.0 6376.3 1618.8 15.08 17.54 
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High anxious AC homozygotes associated with smaller BLA volume in adulthood. 

Following findings here that changes in BLA volume during and after development corresponding with 

adulthood anxiety, I assessed if the anxiety-linked serotonin transporter polymorphism affected 

amygdala volume in adulthood by conducting an ANCOVA whilst controlling for the potential effects 

of individual gender and age. TIV, grey matter, or white matter volume were not included as covariates 

as they did not differ among the homozygotes (p > .05; gender and age controlled). It was found that 

BLA volume of high anxiety-associated AC homozygotes (Left: 14.0 ± .7; Right: 16.7 ± .9) were 

significantly lower than CT homozygotes (Left: 15.0 ± 1.0; Right: 17.5 ± 1.0) in the left hemisphere, 

but only at a trend level on the right hemisphere (Left: F(1,18) = 8.07, p = .011; Right: F(1,18) = 4.25, 

p = .054) (figure 5.5).  
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Figure 5.5: Differential BLA volume in adult homozygotes. Controlling for the effect of gender, 

age and TIV, the difference in the volume of the BLA between AC homozygotes compared to CT 

homozygotes was statistically significant in the left hemisphere, but not the right hemisphere. (*, p < 

.05) 
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5.4 Discussion 

 

Although previous human and rodent studies have provided evidence of altered amygdala volume in 

the context of threat reactivity and pathological anxiety, this chapter uses a nonhuman primate model 

to demonstrate distinct morphological and genetic predictors of adulthood anxiety within the BLA 

during different stages of development. Animals with a delayed decline in BLA volume after puberty 

tended to have higher anxiety in adulthood, but after maturation, animals with lower BLA volume in 

adulthood were more anxious and expressed less active fear behaviour. Moreover, animals with the 

high anxious serotonin transporter polymorphism allele were predisposed to have higher anxiety in 

adulthood. 

Disruption in the developmental pattern of the BLA may underlie aspects of the high threat vulnerable 

phenotype. Here, correlational and trajectory analysis indicates that individuals that have higher levels 

of anxiety in adulthood tend to have lower BLA volume before puberty and relatively delayed decline 

in BLA volume. Consistent with the attenuated growth observed pre-puberty here, childhood 

maltreatment was associated with a decrease in the normal pattern of growth or “flatter” growth of the 

amygdala from early to mid-adolescence in humans (Whittle et al., 2013). Whittle et al. (2013) also 

reported lower amygdala volume in early adolescence but higher amygdala volume mid adolescence in 

juveniles with psychopathology, potentially corresponding to the shift in relative amygdala volume of 

high vs low anxious animals before and after puberty (figure 5.6). Previous studies have also implicated 

abnormal cortical maturation patterns in other mental disorders such as schizophrenia (Alexander-Bloch 

et al., 2014). However, it is unclear as to whether the altered developmental pattern of the BLA in higher 

anxious individuals is (i) a compensatory product of higher stress reactivity in adolescence, (ii) reflects 

smaller BLA volume resulting in reduced efficacy in modulating threat-related stimuli, or (iii) a 

combination of both in the developing brain.   

As high anxious adolescents tend to have lower BLA volume but also a delayed decline in volume post-

puberty, the findings here potentially provide some insight into why studies relating adolescent BLA 

volume and anxiety disorders in the literature have been mixed. Studies with younger adolescents may 

find high anxiety linked to reduced BLA volume, while studies with adolescents in the period after low 

anxious individuals but not high anxious individuals have started BLA volume decline may find 

relatively increased BLA volume in high anxious adolescents (figure 5.6). Subsequent work evaluating 

the association between threat vulnerability in early life and BLA developmental trajectory will shed 

further light to disentangle the intricate relationship between adolescent development and life-long 

vulnerability to emotion dysregulation.  
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Figure 5.6: BLA developmental trajectory of high and low anxious animals. Developmental 

trajectory of BLA volume with period in which low anxious animals had greater total BLA volume 

relative to high anxious animals in grey (shaded), and period in which high anxious animals had 

greater total BLA volume relative to low anxious animals in orange (shaded). 

 

After maturation, higher levels of anxiety were associated with lower general grey matter volume 

providing further evidence that higher levels of anxiety and consequently stress, lead to diffuse cross-

regional changes. Reduced general grey matter in adulthood is consistent with evidence of diffuse grey 

matter reduction in PTSD patients (Li et al., 2014). In contrast, fear reactivity (both active and avoidant 

fear responding) was not associated with general grey matter change. As fear is dependent on threat 

exposure and tends to be an acute response, anxiety may mediate general grey matter lost via prolonged 

stress as high trait anxious animals maladaptively experience anxiety in the absence of threat in a neutral 

environment. While controlling for anxiety’s general effect on grey matter, anxiety had a more specific 

relationship with BLA volume. Specifically, greater anxiety was associated with lower left BLA 

volume, similar to the effect seen in animals before puberty. The lateralised effect observed is consistent 

with evidence from some human studies showing reduced left amygdala in patients with PTSD, panic 

disorder, and phobic disorder, but may also be a statistical artefact as a limitation of the sample size 

(Karl et al., 2006; Hayano et al., 2009; Rogers et al., 2009; Fisler et al., 2013). Lower active fear 

responding was linked to reduced right BLA volume, however this association may be mediated by the 

correlation between active fear responding and anxiety reported in chapter 2: “Anxiety and fear response 

in the common marmoset”. Taken together, findings here point to the potential involvement of the 

BLA’s anatomical reduction in increased anxious and lower active coping behaviour among matured 

individuals.   

Current findings are limited by technical limitations to distinguish the cellular change underlying the 

observed structural change. Grey matter MRI signal reflects cell bodies, synapses, dendrites, terminals, 

glial cells, and unmyelinated axons, whereas the white matter signal primarily reflects myelinated axon 

tracts. The shift in grey/white matter volume observed may be due to changes in grey matter volume, 
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white matter volume, synaptic reorganization, or any combination of those changes. Current findings 

will be supplemented by a subsequent longitudinal study with high resolution structural scans 

differentiating grey matter and white matter within the amygdala. Distinguishing grey/white matter 

balance within the amygdala will further elucidate the developmental trajectory of neuronal change and 

its association with threat reactivity. 

Our findings of reduced bilateral amygdala volume in AC homozygotes of the marmoset serotonin 

transporter polymorphism is consistent with evidence that serotonin plays a critical role during 

development. The serotonin transporter polymorphism’s effect on amygdala volume is likely a 

downstream effect of altered amygdala serotonin transporter expression discussed in chapter 3: “The 

relationship between serotonergic gene expression and anxiety and fear behaviour”, with changes in 

local serotonin signalling affecting neurogenesis, axon branching, and dendritogenesis (Gaspar, Cases 

and Maroteaux, 2003). Our findings are also consistent with evidence of smaller amygdalas in short 

allele carriers of the human serotonin transporter polymorphism, 5-HTTLPR even though the 5-

HTTLPR is a length polymorphism and the marmoset serotonin transporter polymorphism is a double 

nucleotide polymorphism (Pezawas et al., 2005). 

To conclude, three factors predictive of high adulthood anxiety were determined: delayed decline of 

BLA volume after puberty, reduced left BLA volume in adulthood and carriers of the AC allele of the 

marmoset serotonin transporter polymorphism. These findings provide evidence for the view that 

genetic differences in the serotonin system affects the processing of stress which in turn lead to 

disruptions in the development of the BLA and contribute to BLA morphological changes in adulthood. 

While previous studies have explored potential markers for vulnerability to pathological anxiety of 

morphological change in adolescents and adulthood, findings presented here provide insight into the 

trajectory of BLA volume change from early life to adulthood that may underlie an individual’s 

disposition to trait vulnerability to anxiety and fear. Findings here emphasise the need to further explore 

structural markers of trait anxiety and identify periods at which interventions may be effective at 

reversing these developmental and structural changes. 
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Chapter 6: General Discussion 

 

Anxiety and fear are fundamental human emotions. However, a substantial proportion of society are 

struggling to cope with uncontrollable and excessive amounts of these normally adaptive emotions. 

Individuals with high trait anxiety are more vulnerable to developing mood and anxiety disorders. But, 

why are some more vulnerable to threat-related negative emotions than others?  

Neuroimaging studies and experimental work in both humans and animals have identified features of 

the threat circuit preserved across species. Pharmacological work has identified serotonin as a key 

neuromodulator of threat processing and the serotonin transporter polymorphism, 5-HTTLPR has been 

implicated in mediating the impact of stress on the risk for not only depression, but also in an 

individual’s vulnerability to anxiety. Furthermore, SSRIs have emerged as the first-line drug treatment 

for anxiety disorders. However, SSRIs transiently increase symptoms of anxiety during the onset of 

treatment and the role of serotoninergic components in specific regions of the threat circuit remain 

poorly understood, emphasising the need to advance our understanding of the specific role of 

serotonergic components in the regulation of threat. 

The thesis addresses these issues by exploring the link between serotonin and threat behaviour with the 

common marmoset as a model. This chapter will summarise the results of these studies with a schematic 

of the key findings (figure 6.1). A discussion of the key research questions of serotonin’s role in trait 

anxiety and the relationship between fear coping and anxious behaviour, and future work follows.  
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6.1 Summary of Results 

 

 

 

Figure 6.1: Key findings and associations of the thesis. 

 

Firstly, chapter 2 explored the link between behaviours under different threatening situations to model 

anxious and fear-coping behaviours in the marmoset and establish the link between anxiety and fear-

driven behaviours. Exploratory factor analysis revealed that anxious behaviour in the common 

marmoset was characterised by both active vigilance and avoidant behaviours when confronted with an 

unknown human in the human intruder test. However, fear was found to drive two negatively associated 

patterns of behaviours in the rubber snake test: active fear-coping behaviour characterised by actively 

attending to the snake and vocalising; and avoidant fear-coping behaviour characterised by behavioural 

avoidance and passivity. Animals with a high avoidant fear coping score but low active fear coping 

score had higher anxiety scores as measured on the human intruder test, suggesting that a predominantly 

avoidant fear coping style is linked to a greater vulnerability to anxiety. 

Subsequently, chapter 3 investigated the potential associations between both the anxious and fear-

coping behaviours modelled, and serotonergic gene expression within regions of interest. Serotonin 

transporter expression in the right amygdala and right vlPFC were associated positively with anxiety, 

and right mPFC 5-HT2A receptor expression was associated positively with avoidant fear responding. 
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These findings identified potential genetic mechanisms underlying an individual’s vulnerability to 

anxiety and tendencies for specific fear coping behaviours. Moreover, the recently discovered serotonin 

transporter polymorphism of the common marmoset differentiated serotonin transporter expression in 

the right amygdala, with AC homozygotes showing higher amygdala serotonin transporter expression 

compared to CT homozygotes, potentially driving the higher serotonin transporter expression in high 

anxious animals. 

Building on the correlational findings of the previous chapter, chapter 4 explored if amygdala serotonin 

transporter played a causal role in two key characteristics of the high trait anxious phenotype: high state 

anxiety and exaggerated conditioned fear responding. We also examined the effect of the 

pharmacological manipulations on cardiovascular activity in a neutral condition to control for the 

pharmacological manipulation’s non-specific effect on cardiovascular activity. Serotonin transporter 

blockade via an SSRI locally into the amygdala lead to reductions in anxious behaviour in the human 

intruder test. Furthermore, it also reduced both the physiological and behavioural conditioned response 

to threat. Inhibition of amygdala serotonin reuptake did not affect cardiovascular activity in a neutral 

condition, indicating that amygdala SSRI’s only disrupted threat-provoked cardiovascular responses 

and not cardiovascular responses at baseline or at ‘rest’. These findings support the theory that amygdala 

serotonin signalling as mediated by local serotonin transporters plays a role in the expression of the 

high trait anxious phenotype.  

As the 5-HT2A and 5-HT2C receptors have been implicated in the regulation of anxiety, chapter 4 also 

studied the effect of 5-HT2A and 5-HT2C receptor antagonism in the amygdala and dACC on anxiety. 

Inhibition of amygdala 5-HT2A receptor binding and both amygdala and dACC 5-HT2C receptor binding 

did not affect anxious behaviour. In a neutral condition, inhibition of amygdala 5-HT2A receptor binding 

increased heart rate but did not affect blood pressure. Inhibition of dACC 5-HT2C receptor binding did 

not affect cardiovascular activity at all. These findings suggest that 5-HT2A receptor activation does not 

significantly affect behavioural responses to anxiety-provoking stimuli, but may play a role in general 

cardiovascular reactivity. Whereas, 5-HT2C receptor antagonism in the amygdala and dACC without 

manipulations of other systems were not sufficient to affect anxiety and general cardiovascular activity. 

Anxiety disorders often have their onset during development. Thus, considering the amygdala’s role as 

the central locus of the threat circuit and the fact that BLA morphology has been shown to be sensitive 

to stress, chapter 5 compared the volumetric changes of the BLA measured via MRI in the developing 

and developed brain of high and low anxious animals. In development, grey matter initially increases 

in volume but at some point during, or after puberty, grey matter volume apparently declines, probably 

reflecting changes in myelination as well as synaptic re-organisation. However, the decline in BLA 

volume post puberty was delayed in animals characterised as having high anxiety at the start of 

adulthood. Moreover, in adulthood, higher levels of anxiety were associated with reductions in global 
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grey matter volume and left BLA volume, and reduced active fear coping behaviour was associated 

with reduced right BLA volume. When the potential effect of the serotonin transporter genotype on 

BLA morphology was investigated, correlational analysis revealed that the high anxiety-associated AC 

homozygotes exhibited relatively decreased bilateral BLA volume compared to the low anxiety-

associated CT homozygotes. These findings provide evidence of anatomical changes corresponding to 

the behavioural variance observed. 
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6.2 Amygdala serotonin transporter regulates trait anxiety 

 

The primary goal of this thesis was the determination of potential serotonergic mechanisms underlying 

trait vulnerability to anxiety. A multi-systems approach was adopted to provide evidence for a potential 

mechanism of amygdala serotonin transporter’s role in trait anxiety (figure 6.2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

Figure 6.2: Potential pathway contributing to the high trait anxious phenotype. Altered genetic 

and epigenetic factors, such as the serotonin transporter polymorphism, contribute to differential 

expression in the serotonin system and may underlie individual differences in serotonin’s modulatory 

effect on threat circuit reactivity. As the animal develops, stress reactivity interacts with stressors in 

the environment to alter the developmental trajectory of the amygdala. These changes likely 

contribute to life-long changes in anatomy and behaviour without intervention. *Marmoset picture taken by 

Christian Wood. 
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As demonstrated by the human serotonin transporter polymorphism, 5-HTTLPR, genotypic variation 

may contribute to differential expression of key genes and underlie an individual’s trait vulnerabilities. 

Consistent with this, the common marmoset serotonin transporter polymorphism was associated with 

differential levels of amygdala serotonin transporter mRNA levels (chapter 3). These differential levels 

of expression were predictive of individual variation of anxiety, with higher levels of serotonin 

transporter mRNA associated with higher levels of anxiety. Since the serotonin transporter 

downregulates serotonin signalling via reuptake of synaptic serotonin, increased serotonin transporter 

levels supports the lab’s previous finding of reduced amygdala extracellular serotonin in high trait 

anxious marmosets (Mikheenko et al., 2015). Taken together, these findings provide a genetic 

mechanism underlying the individual heterogeneity in vulnerability to anxiety, with AC homozygotes 

contributing to increased expression of amygdala serotonin transporter and leading to reduced local 

serotonin signalling. These findings are consistent with increased serotonin transporter availability 

reported in the amygdalohippocampal area associated with increased anxious temperament in macaques 

(Oler et al., 2009).  

As serotonin leads to direct activation of GABAergic interneurons and indirect inactivation of 

projection BLA neurons (Rainnie, 1999), increased serotonin reuptake from increased serotonin 

transporter expression may lead to reduced serotonin signalling and disinhibition of the BLA, and 

contribute to high anxiety. Future work studying other genetic and epigenetic mechanisms underlying 

altered serotonin signalling in high anxious individuals will supplement findings here. 

To determine if amygdala serotonin transporters played a causal role in the expression of the trait 

anxiety phenotype beyond being simply associated with state anxiety, chapter 4 employed 

pharmacological manipulations and found that local blockade of serotonin transporters in the amygdala 

reduced both state anxiety expression and conditioned threat expression, effectively reducing key 

characteristics of high trait anxiety. Anxiety and fear/certain threat are commonly studied as separate 

constructs, but trait fear and trait anxiety are positively associated (Sylvers, Lilienfeld and LaPrairie, 

2011). Differences in amygdala serotonin signalling may be a key modulator of threat circuit activation 

and more fundamentally affect vulnerability to threat. 

The AC homozygotes were also associated with decreased BLA volume in adulthood, implicating the 

high anxious haplotype with not only changes in gene expression, but also anatomical changes in 

maturation. As stress has been shown to alter BLA neuron morphology and increase reactivity to anxiety 

(Vyas, Pillai and Chattarji, 2004; Mitra and Sapolsky, 2008; Eiland et al., 2012; Zhang and Rosenkranz, 

2012), the gene-expression changes corresponding to the AC homozygotes may lead to increased 

anxiety and stress during the animal’s lifetime and lead to the anatomical changes observed in chapter 

5: delay in BLA volumetric decline before maturation but decreased BLA volume after maturation. 

Alternatively, anatomical alterations may precede changes in anxious behaviour, with abnormality in 
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amygdala morphology reflecting some extent of neuronal loss-of-function and leading to dysfunctional 

threat processing. Further work will be required to better disentangle the cause-and-effect of altered 

amygdala morphology and developmental trajectory observed in high trait individuals. 

Taken together, findings from these series of experiments track the potential effects of the serotonin 

transporter polymorphism and alteration in amygdala serotonin signalling on the anatomical and 

behavioural characteristics of high trait anxious animals. As amygdala hyperreactivity is consistently 

implicated across high trait anxious individuals and patients with anxiety disorders, findings here 

suggest that individuals may possess a relatively disinhibited amygdala and consequently, a greater 

vulnerability to threat-related negative emotions due to downregulations in local serotonin signalling. 

Furthermore, findings here also provide evidence of the region-specific effect of SSRI action and 

suggest that typical SSRI medication processed systemically in patients may have 

nontherapeutic/undesirable effects due to its whole-brain upregulation of serotonin. Future treatment 

interventions should attempt to selectively aim to upregulate serotonin signalling in the amygdala, 

avoiding the conventional downfalls of SSRI prescriptions: the initial worsening of symptoms and the 

side effects from off-site increases in serotonin signalling (weight gain, sleep disruption, sexual 

dysfunction, etc.). The clinical implication of findings here suggesting the involvement of the genetic 

polymorphism in developmental changes paired with findings in the literature of the early onset of 

anxiety disorder emphasise the need for targeted early interventions to develop resilience in vulnerable 

young children before the development of affective and anxiety disorders. 
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6.3 Avoidant coping patterns and anxiety 

 

High trait anxious animals adopted a predominantly avoidant coping strategy in response to fear 

(chapter 2). This is consistent with the prevalence of avoidant behaviour in individuals struggling with 

anxiety and stress e.g. individuals with social anxiety disorder tend to avoid social situations, 

individuals with agoraphobia avoid leaving the house, or individuals with PTSD avoid uncontrollable 

intrusive memories (Brewin and Holmes, 2003). In the short-term, an avoidant coping strategy can 

reduce symptoms of fear or anxiety by avoiding engagement with the threat or avoiding the context in 

which the threat may occur. In the long-term however, the individual may tend to experience greater 

anxiety as the source of threat and stress are not confronted/overcome. In line with this, individuals 

show heightened amygdala responses to cues leading to the avoidance of an aversive stimuli, suggesting 

that even if avoidance behaviour may eliminate presence of the threat, the avoidant behaviour itself may 

lead to activation of threat circuitry (Schlund and Cataldo, 2010). Furthermore, natural processes that 

serve to reduce anxiety and conditioned fear responses such as desensitisation or fear extinction are 

inhibited by an individual’s predominantly avoidant coping strategy. Consequently, the avoidant coping 

strategy is reinforced via negative reinforcement and may gain predominance over active coping 

impulses. Avoidant coping responses to fear may thus act as a maladaptive coping strategy sustaining 

high anxiety. 

Specific fear responding behaviours were associated with different biological systems. Avoidant fear 

responding was positively associated with 5-HT2A receptor expression in the mPFC, suggesting that 5-

HT2A receptor activation of cortical neurons may underlie expression of avoidant coping behaviour 

(chapter 3). On the other hand, active fear responding was positively associated with right BLA volume, 

suggesting that active coping behaviour may interact with BLA neuron morphology (chapter 5). These 

findings provide preliminary evidence of the biological basis of different fear coping strategies. Taken 

together, these findings suggest that although avoidant and active fear responding may have overlapping 

neural mechanisms at the level of the CeA (Gozzi et al., 2010), differential neural pathways within the 

limbic system may contribute to the expression of active and avoidant coping behaviours.  

The findings here emphasise the importance of CBT in the treatment of anxiety disorders. Specifically, 

the combination of exposure therapy and encouraging the use of active coping strategies instead of 

avoidance to engage with the source of distress, may play a significant role in improving individual 

resilience to stressors. These CBT strategies taken in conjunction with SSRI treatment to alleviate stress 

reactivity may be key to helping treatment-resistant individuals, suffering from excessive anxiety and 

fear, to develop healthy coping patterns in everyday life.  
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6.4 Strengths, limitations and future work 

 

The primary strength of the thesis is the multi-systems approach adopted. By demonstrating alteration 

in amygdala serotonin corresponding to genetic, anatomical and behavioural changes with consistent 

findings among the different systems, insight into how changes in one system may translate into another 

enabled the development of a potential explanatory model. In contrast, a key limitation of the study is 

not being able to identify what underpinned the differential expression of serotonin transporter in the 

amygdala. The changes could be driven by mRNA in the serotonergic terminals, amygdala astrocytes, 

or both. The challenge of addressing this issue is that serotonin transporters are expressed at a very low 

level in the amygdala and conventional RNA fluorescence in situ hybridization (RNA-FISH) may not 

have the resolution necessary to localise differential expression corresponding to variation in anxious 

behaviour. Furthermore, the regions of interest included in chapter 3 were not exhaustive. Other regions 

implicated in anxiety such as the hippocampus and subgenual cingulate cortex should be investigated 

in a future study. 

Another limitation of the study is the limited number of animals involved in the behavioural 

manipulation study. The primary constraining factor was the time required to test animals on various 

paradigms. Additionally, animals had to be selected to show avoidance of the human intruder and 

reactivity towards the snake in screening tests such that changes in anxious or fear-driven behaviours 

can be observed after the pharmacological manipulations. 

Furthermore, due to time and technical constraints, work studying the effect of the serotonin transporter 

polymorphism on aspects of serotonin signalling could not be undertaken. Studying if the serotonin 

transporter polymorphism was associated with altered amygdala serotonin signalling in the form of 

differential release of serotonin via microdialysis, or differential principal neuron activation via single-

unit recordings will shed further light on the potential effect of genetic factors on signalling changes 

relevant to threat processing. 

A significant longitudinal study is currently underway with animals in the colony scanned with a high-

resolution MRI scanner providing substantially more information to study the brain changes 

corresponding to behavioural changes across different developmental periods. Diffusion tensor imaging 

(DTI) diffusivity data will enable us to track and identify brain structural changes that correspond to 

different levels of anxiety and coping behaviours. These high-powered scanners will also enable us to 

distinguish regional grey and white matter of much greater resolutions and better disentangle local 

grey/white matter changes.  

It’s important to keep in mind that the amygdala serotonin transporter is likely one of many key factors 

that contribute to the high trait anxious phenotype. Differences in receptor expression did not 
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correspond with differences in levels of anxious behaviour, but serotonin receptors may contribute to 

different levels of vulnerability to anxiety via different mechanisms. For example, the 5-HT2A receptor 

and 5-HT2C receptor protein ratio in the mPFC has been associated with motor impulsivity (Anastasio 

et al., 2015). Moreover, sexual arousal in the hypothalamus-pituitary-testicular axis was facilitated by 

5-HT2A receptor antagonism but suppressed by 5-HT2C receptor antagonism, further suggesting that the 

5-HT2 receptors possess differential roles in the modulation of behaviour (Popova and Amstislavskaya, 

2002). Studying the 5-HT2A:5-HT2C receptor ratio instead of the serotonin receptors in isolation may be 

the key to identifying the involvement of serotonin receptors in anxiety. 

Additionally, as serotonin also modulates sleep and sleep disturbances are prevalent in patients with 

anxiety disorders (Portas, Bjorvatn and Ursin, 2000; Staner, 2003), data of sleep/wake cycle and activity 

patterns throughout the day could potentially be collected from the colony’s animals via wrist-worn 

accelerometer devices. Analysis of this dataset may provide further insight into the potential disruptive 

effects of altered serotonin signalling on an animal’s general wellbeing. 
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6.5 Concluding remarks 

 

As the results of this study have shown, the high trait anxious phenotype is associated with complex 

changes across different systems. Using only a handful of these factors to aid diagnoses of pathological 

forms of emotion regulation are unlikely to yield reliable results as many different factors contribute to 

an individual’s trait anxiety level and risk of anxiety disorders and depression. Moving forward, it is 

critical that a concerted effort across different disciplines is made to identify these underlying factors 

and incorporate them as part of a predictive model that will enable us to prescribe more effective 

treatment strategies and move towards personalised medicine.  
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