Food Mechanical Properties and Dietary Ecology

Michael A. Berthaume*

Max Planck Weizmann Center for Integrative Archaeology and Anthropology, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig 04103, Germany

KEY WORDS Diet mechanical properties; toughness; Young’s modulus; displacement limited index; stress limited index

Abstract

Interdisciplinary research has benefitted the fields of anthropology and engineering for decades: a classic example being the application of material science to the field of feeding biomechanics. However, after decades of research, discordances have developed in how mechanical properties are defined, measured, calculated, and used due to disharmonies between and within fields. This is highlighted by “toughness,” or energy release rate, the comparison of incomparable tests (i.e., the scissors and wedge tests), and the comparison of incomparable metrics (i.e., the stress and displacement-limited indices). Furthermore, while material scientists report on a myriad of mechanical properties, it is common for feeding biomechanics studies to report on just one (energy release rate) or two (energy release rate and Young’s modulus), which may or may not be the most appropriate for understanding feeding mechanics. Here, I review portions of materials science important to feeding biomechanists, discussing some of the basic assumptions, tests, and measurements. Next, I provide an overview of what is mechanically important during feeding, and discuss the application of mechanical property tests to feeding biomechanics. I also explain how 1) toughness measures gathered with the scissors, wedge, razor, and/or punch and die tests on non-linearly elastic brittle materials are not mechanical properties, 2) scissors and wedge tests are not comparable and 3) the stress and displacement-limited indices are not comparable. Finally, I discuss what data gathered thus far can be best used for, and discuss the future of the field, urging researchers to challenge underlying assumptions in currently used methods to gain a better understanding between primate masticatory morphology and diet. Am J Phys Anthropol 159:S79–S104, 2016. © 2016 Wiley Periodicals, Inc.

“If I have seen further it is by standing on ye shoulders of Giants.” Sir Isaac Newton

Materials science is a branch of engineering that “involves investigating the relationships that exist between the structures and properties of materials (pg. 3, Callister (2004)),” where structures are defined by the arrangement and internal components of a material (e.g., atomic structure). Over the past several decades, anthropologists and biologists have been measuring/calculating mechanical properties of dietary items to investigate differences in feeding strategies, feeding adaptations, and plant defenses (Choong et al., 1992; Hill and Lucas, 1996; Wright and Vincent, 1996; Darvell et al., 1996; Agrawal et al., 1997; Strait and Vincent, 1998; Yamashita, 1998, 2002, 2003, 2008; Lucas et al., 2000, 2001, 2009, 2011; Agrawal and Lucas, 2003; Balsamo et al., 2003; Lucas, 2004; Elgart-Berry, 2004; Williams et al., 2005; Teaford et al., 2006; Quyet et al., 2007; Freeman and Lemen, 2007b; Wright et al., 2008; Dominy et al., 2008; Norconk et al., 2009b; Vogel et al., 2009, 2014; Wieczkowski, 2009; Yamashita et al., 2009; Norconk and Vores, 2011; Onoda et al., 2011; Daegling et al., 2011; Thompson et al., 2014; Venkataraman et al., 2014; Taniguchi, 2015; Hartstone-Rose et al., 2015). While these studies sometimes yield results consistent with their hypotheses, this is not always the case. Incongruence could be due to the hypotheses being false, complications occurring during data collection, and/or investigating the wrong mechanical properties. Minimizing the impact of these latter two factors is fundamental to improving our understanding of primate feeding mechanics.

Over the past several decades, a disconnect has developed between materials science and the biological sciences: this is partially due to disagreements within the field of materials science itself. For example, within materials science, toughness can have units of Joules per meter squared (J/m^2) or Joules per cubic meter squared (J/m^3) depending on the source (Atkins and Mai, 1985; Callister, 2004; Courtney, 2005). The field of fracture mechanics frequently assigns toughness units of J/m^2, and is short hand for more complex concepts (i.e., energy release rate, strain energy release rate, critical energy release rate, or critical strain energy release rate). These complex concepts are measures of the amount of energy needed to propagate a crack. Only some of these toughness values are material properties while others are not, as they are a product of the material and the system (Wang, 1996; Roylance, 2001a; Courtney, 2005).

Additional Supporting Information may be found in the online version of this article.

*Correspondence to: Michael A. Berthaume, Deutscher Platz 6, Leipzig 04103, Germany. E-mail: michael_berthaume@eva.mpg.de

Received 18 May 2015; revised 28 August 2015; accepted 21 October 2015

DOI: 10.1002/ajpa.22903
Published online in Wiley Online Library (wileyonlinelibrary.com).
For example, more energy is needed to produce a crack in a given material with a dull compared to a sharp pair of scissors: this will cause a relatively higher energy release rate, and means that energy release rate is not a mechanical property (see Material vs. Mechanical Property and Fracture Mechanics sections for definitions of mechanical properties and the energy release rate.) When toughness has units of J/m^2, it is a mechanical property, and is defined as the amount of energy a material can absorb per unit volume prior to failure (Callister, 2004). In addition, fracture toughness can be given units of Pa or J/m^2 both within materials science (Sun and Jin, 2012) and the biological sciences (Lucas and Pereira, 1990; Lucas et al., 1991, 2013; Choong et al., 1992; Ziscovici et al., 2014).

These disagreements within materials science have translated into disagreements between materials science and the biological sciences, where disparate concepts have gained equivalent names, and equivalent concepts given different names. This in turn has led to some confusion, particularly with respect to “toughness” which has been used to describe multiple, distinct properties (Lucas and Pereira, 1990; Lucas et al., 1993; Zioupos, 2001; Lucas, 2004; Ziscovici et al., 2014).

There are a significant number of assumptions involved in the tests and calculations developed by materials scientists, and when these assumptions are violated, the results may be invalid. For example, nearly all the equations and tests employed in dietary studies assume the material being tested is linearly elastic and will undergo elastic fracture (Lucas, 2004). While some biological materials follow these assumptions, many do not. And when they do not, mechanical properties are no longer being measured. In addition, energy release rates obtained from different modes of fracture (e.g., wedge test [mode I] vs. scissors test [mode III]) are not comparable to one another (Hussain et al., 1974; Shi et al., 1994; Amstutz et al., 1995; Dunn et al., 1997). Thus, violating the assumptions of these equations and tests can lead to inaccurate experimental results. In order to improve dietary studies, we must minimize these problems, either by improving testing methods or using more appropriate equations.

In addition, dietary studies can be improved by incorporating mechanical properties that have largely been ignored. Most studies of primate diets focus on two measurements: 1) energy release rate (G), commonly referred to as toughness (R), a material’s resistance to crack propagation, and Young’s modulus (E), a material’s resistance to elastic deformation under tensile or compressive forces. Other metrics, such as the shear modulus (also G), a material’s resistance to elastic deformation when shear forces are applied, and toughness, with units of J/m^2, may be just as, if not more, important. Adding additional mechanical properties to our toolkit can help us expand our understanding of feeding strategies and adaptations in primates.

Finally, researchers commonly use average Young’s moduli and energy release rates to empirically determine whether or not an animal’s diet is tough or hard through the stress- and displacement-limited indices (Williams et al., 2005; Vogel et al., 2008, 2014). Not only are these two metrics not comparable to one another, but they also cannot be used for ductile food items, and cannot be used to determine whether an animal’s diet is tough or hard (see Application of Mechanical Property Tests to Feeding Biomechanics section).

Because of these challenges, it is helpful to revisit the application of mechanical properties to dietary ecology, reevaluate what has been done, and discuss the future of the field. As such, the purpose of this paper is fourfold. First, to briefly review many of the basic mechanical properties used by materials science, going over basic measurements, calculations, and testing Methods. This will provide the necessary background for evaluating food mechanical property research in anthropology. Second, to review the measurements, tests, and assumptions most commonly employed in studies concerning dietary mechanical properties in primates. Third, to evaluate the applications and limitations of the data gathered thus far. And finally, to consider the future of the field, and propose ideas to help the field move forward.

MATERIAL AND MECHANICAL PROPERTIES

Material vs. mechanical properties

Material properties are the intensive (size independent) properties of a (quasi-)solid that describe how the substance behaves. There are many types of material properties, such as electrical (e.g., conductivity, permeability), optical (e.g., luminosity, reflectivity), thermal (e.g., boiling point, flammability) and mechanical (e.g., Young’s modulus, toughness). Mechanical properties describe how a material behaves under a given load, are frequently measured using a universal testing machine, and are the subset of dietary material properties most frequently reported on in anthropological studies (Darvell et al., 1996; Lucas, 2004). Most anthropological studies that investigate mechanical properties focus on two variables, toughness and Young’s modulus, as it is assumed these two variables are the most critical to understanding the masticatory apparatus (Agrawal et al., 1997; Agrawal and Lucas, 2003; Lucas, 2004). However, there are a myriad of unexplored mechanical properties that may prove to be just as important in primate biology (see Thompson et al., 2014).

Directional and locational variation

Mechanical properties can be independent or dependent of direction and location within the material (Fig. 1). Mechanical properties that are directionally independent are isotropic, while ones that are directionally dependent can be transversely isotropic, orthotropic, or anisotropic. In addition, these properties can either be homogeneous (locationally independent) or heterogeneous (locationally dependent) within the material. Most biological tissues are anisotropic and heterogeneous, but some can be treated as orthotropic, transversely isotropic, isotropic and/or homogeneous (Currey and Butler, 1975; Ashman, 1988; Rho et al., 1993, 1995; Peterson and Decho, 2002, 2003; Dumont et al., 2005, 2012; Peterson et al., 2006; Wang et al., 2006; Currey, 2006; Decho et al., 2010; Chung and Decho, 2011; Davis et al., 2011). Assuming a material is isotropic and homogeneous is convenient, as many of the equations from materials science (and, in American Journal of Physical Anthropology
particular, fracture mechanics) are based on these assumptions (Wang, 1996; Roylance, 2001a,b; Callister, 2004). But doing so is not always appropriate, given the complexity of biological materials (Turner and Burr, 1993; Martin et al., 1998; Peterson and Dechow, 2003; Strait et al., 2005; Currey, 2006; Wang et al., 2006; Berthaume et al., 2012).

In terms of diet, researchers have hypothesized that anisotropy is important in preventing crack propagation in brittle, biological materials (Mai and Atkins, 1989). In brittle isotropic materials, it is easy to concentrate the energy necessary to propagate a crack at the crack tip, making it easier for the crack to propagate. This is why biological materials that are meant to fail, such as amniotic membranes and egg shells tend to have isotropic mechanical properties. However, anisotropy creates a lack of shear stiffness, making it “difficult to concentrate energy into the path of a putative crack (pg. 48, (Mai and Atkins, 1989)).” This could be why brittle leaves which are heavily preyed on have developed anisotropic mechanical properties (Mai and Atkins, 1989; Yamashita, 2003; Yamashita et al., 2009; Onoda et al., 2011).

When preying on anisotropic materials, the most efficient way for a predator to circumvent this defense is by evolving sharper teeth, as sharp teeth can concentrate forces/energies and promote crack propagation in the food item more efficiently than dull teeth (Mai and Atkins, 1989). Therefore, sharp teeth may reflect an adaptation to a diet full of anisotropic foods. Conversely, it is not important to concentrate forces/energies in isotropic materials, materials that do not need to be fractured, or when releasing extracellular liquids (e.g., juicy fruits, nectars, and/or highly fibrous foods that are “wadged”) (Lucas and Luke, 1984; Wrangham et al., 1991; Vogel et al., 2008; Marlowe, 2010). To process these foods, force, energy and/or stress needs to be spread over a larger portion of the food item, creating an isostress condition, as this allows more cells to burst open per chew than if the force, energy, or stress was concentrated. This isostress condition is most efficiently accomplished through blunter/duller teeth (Evans and Sanson, 1998; Freeman and Lemen, 2007a; Berthaume et al., 2010, 2013, 2014; Berthaume, 2013).

Measuring mechanical properties

Loadings. Forces can be applied through tensile, compressive, and/or shear loads (Fig. 2). When applied in combination with one another, new types of loading, such as bending (tension + compression) can be formed. In addition, many loads can be applied by themselves and in a specific manner to cause new loading scenarios. For example, when a series of shear loads are applied tangentially along the outer surface of one end of a

1Wadging is the process by which foods are subjected to molar occlusion or pressed between the lips and anterior dentition (in the case of figs), softened with saliva, and repeatedly compressed between the lips and the anterior dentition. The nutrients are then extracted, followed by expulsion of the pulp/seeds (Lambert, 1999; Vogel et al., 2008; Head et al., 2011). This action has been reported in Pan, Pongo, and Homo, but not Gorilla (Taylor et al., 2008).
cylinder (see Fig. 2), a torsional load forms about a neutral axis that runs through the center of the cylinder. The torsional load causes shear forces to form along the length of the cylinder, as if a cylinder composed of a series of disks that were trying to rotate.

Loads can be applied statically, dynamically, or cyclically. Static loads are applied extremely slowly or over an “infinite” amount of time, making them time independent (e.g., the load of a leaf on its stem or a person’s weight against their feet as they are standing still). Dynamic loads are applied more quickly, making them time dependent (e.g., teeth against a branch as leaves are being stripped, or incisors biting into a ripe piece of fruit). Finally, cyclic loads are applied repeatedly [e.g., over 1,000s of cycles, see fatigue and S-N curves (Ugural and Fenster, 2003; Callister, 2004)], and are dependent on the amplitude of the loads and the number of cycles applied. Examples of cyclic loads include those applied to the body during mastication and locomotion.

In feeding studies, considering the types and manners in which loads are applied is important, as these factors can affect a material’s strength. For example, beams fail under different loads when bending and tensile forces are being applied. All loads are important during mastication, although some likely play a more important role (i.e., tensile, compressive, and shear) than others (i.e., cyclic and bending) during food breakdown.

Fig. 2. Three basic types of loads, (a) tension, (b) compression, and (c) shear, that can be combined to form other types of loads [e.g., (d) bending] or can be applied in a specific way in order to produce new loads [e.g., (e) shear forces applied to tangentially to the edge of a cylinder produce torsional forces]. Arrows represent the way in which the loads are applied. Hashed, gray lines represent the undeformed shapes and the solid, black lines represent the deformed shapes.

Static vs. dynamic analyses. There are two common types of structural analyses: static and dynamic. Static analyses are independent of time—these types of analyses are common in feeding biomechanics [e.g., lever mechanics of the mandible, finite element analysis of the crania or mandible, and calculating mechanical advantage of the chewing muscles (Herring and Herring, 1974; Grosse et al., 2007; Davis et al., 2010)]. These analyses involve three equations in 2D and six equations in 3D, which state the sum of forces in a all directions and the sum of moments about all axes are equal to zero. If the sums of forces or moments are not equal to zero, the system is not in equilibrium and would be moving. Movement only occurs in dynamic analyses, where the sum of the forces are equal to mass times acceleration, and the sum of the moments are equal to the moment of inertia times the angular acceleration (Beer et al., 2006).

Impact force. One force that frequently ignored during masticatory biomechanics is the impact force. Impact force is calculated with the following formula

\[
\text{Impact Force} = \frac{\Delta \text{momentum}}{\Delta \text{time}} \tag{1}
\]

where change in momentum is equal to the mass of the object times the change in velocity (Beer et al., 2006).
During chewing, the change in velocity is equal to mandibular speed. (Note: change in velocity is not acceleration. Acceleration is the rate of change of velocity, i.e., change in velocity divided by change in time). The inverse correlation between impact force and time means that, for a given jaw mass and velocity, animals that close their mouths quicker will have larger impact forces than those that close their mouths slower. While this may mean little in terms of breaking down food items, it suggests that an animal with a weak static (isometric) bite force can break open mechanically challenging food items by chewing quicker and increasing the impact force between the tooth and the food item.

All else being equal, impact forces likely play a larger role in small compared to large food item consumption, as there is more clearance between the food item and the maxillary teeth prior to the power stroke, giving the mandible more time to build up speed before tooth-food-tooth contact occurs. Smaller food items may also interact with the teeth for a shorter period of time, which would decrease the change in time, further increasing the impact force.

Force-displacement and stress–strain curves. Force-displacement and stress–strain curves are used to measure and calculate many mechanical properties. All loading conditions can be used to measure and calculate these curves: however, the most common loads utilized are tension, compression, and shear. For a comprehensive explanation of how to obtain force-displacement and stress–strain curves, please see the Supporting Information section.

Briefly, stress–strain curves are broken into elastic and plastic regions. The elastic region is the beginning of the curve and, if a sample is loaded only within this region, no permanent deformation will occur—this means the specimen will retain its original shape when unloaded. If the specimen is loaded past the elastic region, it enters the plastic region and experiences permanent deformation (Fig. 3). This transition point is the yield stress—if a material is loaded past the yield stress and then unloaded, this causes a localized increase in the yield stress. During mastication, solid food items must be loaded past the elastic region. If they are not, the food item would rebound to its original shape after a chewing cycle, and the food item would not breakdown.

It is important to keep this in mind when determining what biomechanical “problems” food items might cause the masticatory apparatus during feeding, as some mechanical properties change once the food item has begun to plastically deform. For example, during mastication of a homogeneous, isotropic, ductile food item, new surfaces are formed as the food is fractured. Some of these new surfaces will have some plastic deformation, which will cause a localized increase in the yield stress of the food item: therefore, larger stresses must be achieved in order to cause further plastic deformation at these regions. At the same time, the maximum reaction force produced by the food item will be decreasing, as the food item particles will be decreasing in size and require a smaller amount of force to reach their yield stress.

As food items can have a myriad of mechanical properties that can be homogeneous, heterogeneous, isotropic or anisotropic, it is not possible to come up with a single rule to govern the biomechanical “problems” posed by food items on the masticatory apparatus. Instead, what will be important will be situation dependent.

Mechanical properties and stress–strain curves. Mechanical properties can be determined from both the elastic and plastic regions of stress–strain curves. For example, Young’s modulus (E), also known as the elastic modulus or the modulus of elasticity, is the slope of the elastic portion of a tension/compression stress-strain curve and the shear modulus (G) is the slope of the elastic portion of a shear stress–strain curve. In addition, the stress at which a material transitions from the elastic to the plastic region is the yield stress, and the maximum stress experienced by the material prior to fracture is the ultimate tensile (UTS), compressive (UCS), or shear strength (USS) of the material.

2Change in time is the time over which impact occurs, which is likely correlated to kinematic aspects of chewing, such as power stroke duration and/or chewing speed.
through the following formula: $t = \frac{m}{c}$, indicating that stress initially increases at a faster rate than strain, or like an upper case "J," indicating that strain initially increases at a faster rate than stress.

(Callister, 2004). In order for food item breakdown to occur, the yield stress, and the ultimate strength, must be surpassed.

Although the relationship between stress and strain in the elastic zone is generally linear (Hookean), it can be non-linear concave (r-shaped curves) or convex (J-shaped curves) (Fig. 4). Brittle biological materials that are designed to fail, such as egg shells and amniotic membranes, tend to have a linear elastic region, meaning that stresses increase proportionally to strains as energy is added to the system (Mai and Atkins, 1989). Brittle biological materials that are designed to resist crack formation, such as leaves, tend to have J-shaped elastic regions, meaning that stresses increase at a faster rate than strains as energy is added to the system—this allows the system to withstand higher levels of stress before reaching the yield stress (Kendall and Fuller, 1987; Mai and Atkins, 1989). Finally, both brittle and ductile materials that are meant to store energy and avoid failure, such as tendons and muscles, tend to have r-shaped elastic regions, meaning that stresses increase at a slower rate than strains as energy is added to the system (Benedict et al., 1968; Zink et al., 2014). This allows the system to store a larger amount of energy while decreasing the risk of failure.

The shape of the linear elastic region can be determined mathematically. During a tension test, the relationship between stress and strain can be represented through the following formula:

$$\sigma = E'\varepsilon^2$$

where n determines the shape of the curve. If n is equal to one, the curve is linear, if n is greater than one, the curve is J-shaped, and if n is less than one, the curve is r-shaped (Kendall and Fuller, 1987).

After the yield stress but before the ultimate strength is reached, strain hardening can occur (Callister, 2004). During this stage, microscopic changes are occurring in the material as it plastically deforms, increasing its strength. If stresses are held constant during this time, the material will not fail. In order for the material to fail, stresses must increase until the ultimate strength is surpassed. After the ultimate strength is reached, the material begins to visibly deform: during tensile tests, this phenomenon is called necking. Necking continues to occur until fracture.

The integral of the elastic region of the stress–strain curve is the modulus of resilience (U_r), and is a measure of the strain energy, per unit volume, needed to stress a material up until the point of yielding. The integral of the entire stress–strain curve is the energy per unit volume, or toughness, of the material. Toughness has units of J/m^3, and is different in both calculation and units from the toughness used in fracture mechanics (J/m^2) (Ashby, 1992; Callister, 2004; Lucas, 2004; Courtney, 2005). Both the modulus of resilience and toughness are mechanical properties, as they are size independent. For details on how to extract mechanical properties from shear tests, please see Harrison (2006).

If a material fractures soon after the yield stress is reached, it is brittle, and if it has a large plastic region, it is ductile (Fig. 3). A common misconception is that the opposite of brittle is tough, and vice versa (Wright and Vincent, 1996; Currey, 2008; Wood and Schroer, 2012), however the opposite of brittle is ductile, and it is possible for brittle materials to be tough. The distinction of brittle vs. ductile is useful as it informs on how the material will fail: brittle materials fail because of high stresses, while ductile materials fail because of high strains or because they have absorbed a large amount of energy (Callister, 2004).

In materials science, materials are classified into three categories: metals, ceramics, and polymers (Callister, 2004). In general, many metals (e.g., steel) and polymers are ductile, while some metals (e.g., cast iron) and ceramics are brittle. It is difficult to determine the yield stress in some ductile materials, as they do not always appear to have an elastic region. This is particularly common in polymers and biological materials. In these cases, the elastic region is traditionally defined from 0-0.2% strain, and the yield stress occurs at 0.2% strain (Callister, 2004).

Limitations of force-displacement and stress–strain curves.

These tests assume the material being tested is homogeneous, and if the material is only tested in one direction, isotropic. This means mechanical properties are constant throughout the material and properties are not directionally dependent. Many metals and ceramics conform to these assumptions, but many biological materials do not. For example, cranial bone is heterogeneous and anisotropic, meaning mechanical properties are locationally and directionally dependent (Currey, 2006; Wang et al., 2006; Dechow et al., 2010). Similar to bone, most naturally occurring foods (e.g., leaves, grasses) exhibit heterogeneous and anisotropic properties (Lucas et al., 1997; Teaford et al., 2006). To complicate things further, many of these materials are composites, being comprised of many distinct materials (e.g., insects (Strait and Vincent, 1998)).

While it may be useful to measure the mechanical properties of each component of a composite material individually, the approximate mechanical properties for the system as a whole might be more appropriate. For example, *Cebus libidinosus* uses stones tools and anvils to fracture palm nuts, so if the relationship between humeral morphology and tool use is being investigated, the mechanical properties of the nut as a whole and not...
its individual components are pertinent, as all portions of the nut are providing structural integrity (Visalberghi et al., 2008; Wright et al., 2009). However, if the link between diet and tooth morphology is being investigated, the mechanical properties of just the portion of the nut that is being consumed should be considered. Simply put, mechanical properties gathered should be hypothesis and question driven. When choosing which mechanical properties to gather, researchers should not just gather data on the most commonly reported mechanical properties in the literature, but rather choose mechanical properties and testing modes that reflect the way in which the animal is processing the food items. Mechanical properties are also speed dependent, and the tests previously discussed are run extremely slowly to nullify dynamic effects. As speed increases, materials can experience changes in mechanical properties, and go from being ductile to brittle. For example, when a slow force is applied to silly putty, a soft, clay like substance, it stretches, deforms, and exhibits a high level of ductility. If a fast force is applied, it quickly fractures in a brittle manner. Therefore, it is important to report on the speed at which experiments are being done, and to only compare results to experiments done at similar speeds (Lucas et al., 1997; Strait and Vincent, 1998; Williams et al., 2005; Chanthasopeephan et al., 2006; Serrat et al., 2007; Lusk et al., 2010; Thompson et al., 2011). Furthermore, the wedge test (described below) has been shown to be extremely sensitive to speed (Lucas et al., 1993).

During mastication, many primates chew at a rate that is too fast to ignore dynamic effects (Ross et al., 2009; Thompson et al., 2011). However, the tests and mechanical properties discussed in this paper ignore dynamic effects, and assume the system is static. If dynamic effects are of interest (e.g., if differences in chewing rates are being correlated to diet) different mechanical properties, such as the storage and loss modulus (modified versions of Young’s modulus) and viscoelastic properties should be considered (Kunzek et al., 1999). Using only static mechanical properties to characterize a dynamic process like chewing, particularly of viscoelastic foods, would lead to inaccurate and/or incomplete results. For example, measures of Young’s and shear modulus could be inaccurate, and estimates for the amount of force or energy needed to masticate food items would be inaccurate by ignoring impact forces and work lost due to dampening effects (Zink et al., 2014).

Finally, when running a test and there is slack in the system, it is necessary to “zero out” the force-displacement curve. For example, when running a compression test to assess the efficiency of tooth morphology (Abler, 1992; Anderson and LaBarbera, 2008; Anderson, 2009; Berthaume et al., 2010; Crofts and Summers, 2014), the tooth could start off 1 mm or 10 mm above the specimen, creating different force-displacement curves. This problem can be avoided by assuming a reaction force between 1-5% of the maximum reaction force represents zero displacement, effectively zeroing out the graph. A similar procedure is employed by the HKU and FLS-1 portable testers commonly used in primatology (Darvell et al., 1996; Lucas et al., 2001).

Composites. Many naturally occurring biological materials are composites, constructed of many, distinct structures. The Young’s modulus of a composite can be approximated using the volume fractions and the Young’s moduli of the individual components that are used to create the composite. The upper limit is estimated using the following equation

$$E_c = E_1 V_1 + E_2 V_2 + \ldots + E_n V_n$$

(3)

and the lower limit is estimated using the following equation

$$\frac{1}{E_c} = \frac{1}{E_1} V_1 + \frac{1}{E_2} V_2 + \ldots + \frac{1}{E_n} V_n$$

(4)

where E_1 and E_2 are the Young’s moduli of the two materials, V_1 and V_2 are the volume fractions of the two materials, and n is the number of materials in the composite.

Hardness. Hardness is a measure of a material’s ability to resist localized plastic deformation, and is measured using an indentation test. There are many hardness tests available (e.g., Knoop, Rockwell, Vickers, and Martens), most of which have different units and can be done on the macro, micro, or nano scale (Callister, 2004). During a hardness test, an indenter is pressed into the surface of a material, creating localized stress concentrations and plastic deformation. It is important that, during testing, the material is thick enough that the stresses do not penetrate the thickness of the material, as this would mean both the specimen and the base of the test rig are supplying a reaction force to the indenter. Hardness is determined by the magnitude of the reaction force or by the depth of indentation, and can be correlated to other mechanical properties, such as ultimate strength and Young’s modulus (Callister, 2004).

Because the indenter only encounters the surface of the material, hardness is a superficial measurement that reflects the mechanical properties of the surface of the material. If the material is homogeneous and isotropic, these are also the mechanical properties of the entire material. In terms of feeding, most biological materials do not fit into this category, as they are heterogeneous and anisotropic. This makes hardness a product of the local testing environment, and not a mechanical property of the entire food.

Fracture mechanics

Fracture mechanics is based on the idea that every object, man-made or organic, has inherent microcracks which compromise their strength. Once a microcrack absorbs enough energy through an applied force, it will propagate through the material and cause fracture (Wang, 1996). At an atomic level, fracture is the separation of atoms through severing of atomic bonds, which can occur by shearing two atoms past each other, changing the angle of the bonds, or by pulling two atoms apart, lengthening the bonds. It is impossible to break bonds by pushing two atoms closer together. Here, I will
be providing a brief overview of fracture mechanics. For a more detailed overview, please see Wang (1996).

Modes of fracture. There are three types, or modes, of fracture (Fig. 5). Mode I involves applying tensile loads which open and widen the crack, while both Modes II and III involve applying shear loads that occur in and out of plane, respectively (Figs. 5 and 6). When measuring food item mechanical properties, Mode I fracture can be measured with the wedge test, Mode II can be measured with a punch test, and Mode III can be measured with a scissors test (Fig. 6), although the scissors test could represent mixed mode fracture (Lucas and Teaford, 1994; Darvell et al., 1996). It is of note that these tests are only appropriate for brittle materials, of which many food items are not.

Because some materials differ in their ability to resist tensile and shear loads, results from Mode I, II, and III fracture tests are not comparable. In addition, as the ratio of a materials ability to resist Mode I and II or III fracture is not constant, no correction factor can be used to compare results across fracture modes (Hussain et al., 1974; Shi et al., 1994; Amstutz et al., 1995; Darvell et al., 1996; Dunn et al., 1997; Sui et al., 2006; Lucas et al., 2011). Direct comparison among modes of fracture is done in feeding biomechanics studies, where results from scissors, wedge, and punch tests are directly compared (Agrawal et al., 1997, 2000; Sanson et al., 2001; Agrawal and Lucas, 2002; Agrawal and Lucas, 2003; Sui et al., 2006; Ang et al., 2008; Dominy et al., 2008; Wich, 2009; Kitajima and Poorter, 2010; Lucas et al., 2011; Venkataraman et al., 2014). All three modes likely occur during feeding, but the frequency with which each occurs will depend on jaw kinematics and tooth shape. For example, Mode II and Mode III fracture likely occur more frequently during mastication in primates with low molar relief, while Mode I likely occurs during intraoral ingestion and mastication in primates with high molar relief (Agrawal et al., 1997;
Crack propagation. In order to cause a crack to propagate, energy must be concentrated around its tip. The amount of energy needed to cause crack propagation is dependent on the way the material is loaded, the yield stress of the material, and the geometry of the crack itself (i.e., shape and length (Roylance, 2001a; Sun and Jin, 2012)). Together, these factors are used to calculate the stress intensity factor, \(K \), which has units of Pascals\(^{\frac{1}{2}}\)meters (Atkins and Mai, 1985). This is related to the energy release rate, \(G \), units Joules/meters\(^2\), and is the amount of energy required to propagate a crack normalized by crack area (Atkins and Mai, 1985; Wang, 1996). During linear elastic fracture, all the energy concentrated at the crack tip is strain energy, so \(G \) is called the strain energy release rate (Atkins and Mai, 1985; Wang, 1996; Callister, 2004; Courtney, 2005).

Two types of fracture can occur: elastic and elastic-plastic. During elastic fracture, all the energy absorbed by the material is stretching the atomic bonds, and no plastic deformation is occurring. During elastic-plastic (hereafter, plastic) fracture, energy goes into both stretching atomic bonds and rearranging atoms, plastically deforming the material. An easy way to determine whether elastic or plastic fracture has occurred by trying to fit the pieces back together after fracture has occurred. If the pieces can be fit perfectly back together to form the original shape of the specimen, elastic fracture has occurred. If they cannot fit back together because the pieces have distorted, plastic fracture has occurred. Perfectly brittle materials undergo elastic fracture, while ductile materials undergo plastic fracture.

In linearly elastic materials, the energy release rate and stress intensity factor are related to one another through Young's modulus with the following equation

\[
G = \frac{K^2}{E}
\]

when the specimen is in plane stress, and

\[
G = \frac{(1-v^2)K^2}{E}
\]

when the specimen is in plane strain (Wang, 1996; Roylance, 2001a; Sun and Jin, 2012). Plane stress implies that the specimen is a nearly two dimensional, thin sheet, like a piece of paper, and all the forces, and therefore stresses, are occurring in plane. Both principal and shear stresses acting out of the plane are zero. Plane strain implies that the specimen is 3D, and loads are being applied in a way that all strains are either occurring along one of two perpendicular axes or within the plane that is formed by those axes. All other principal and shear strains are zero. During plane stress, Poisson's ratio \((v) \), the ratio of lateral to axial strains (see Fig. 7), can be ignored, but during plane strain, it cannot [Eqs. (5) and (6)].

With the exception of a few polymers, Poisson's ratio is always less than or equal to 0.5. A Poisson's ratio of 0.5 indicates that the material is incompressible, meaning that for every millimeter a specimen is compressed, it will expand a millimeter laterally (one half millimeter in each direction). This means the volume is conserved as a load is applied. A Poisson's ratio less than 0.5 indicates that for every millimeter the specimen is compressed, it will expand less than one millimeter laterally, and volume will decrease. A Poisson's ratio greater than 0.5 indicates that for every millimeter the specimen is compressed, it will expand more than one millimeter laterally, and volume will increase, violating the theory of elasticity.\(^4\)

The energy release rate \((G) \) and stress intensity factor \((K) \) represent the driving force for crack growth, but are not the materials resistance to crack growth. They are therefore not mechanical properties, as they are dependent on factors independent of the material (Wang, 1996; Roylance, 2001a). A material's internal resistance to crack growth, \(R \), is a mechanical property (Wang, 1996; Roylance, 2001a; Sun and Jin, 2012). It is equal to the energy release rate only when it has exceeded a critical level. This is known as the critical energy release rate, \(G_C \), or during elastic fracture, the critical strain energy release rate (Wang, 1996; Roylance, 2001a). Although equivalent in magnitude, \(R \) represents the materials internal resistance to crack extension, which is dependent on temperature, environment and loading rate, while \(G_C \) represents the driving force for crack extension, which is dependent on specimen and microcrack geometry as well as orientation, and loading conditions (Wang, 1996). This makes \(R \) a property of the material, but \(G_C \) a function of the system (Fig. 8).

During linear elastic fracture, \(R \) is constant, but during plastic fracture, \(R \) is a function of crack length (Wang, 1996; Sun and Jin, 2012) (Fig. 8). This is because, during plastic fracture, small amounts of plastic deformation are occurring at the crack tip, causing the crack tip to dull. Longer cracks can cause more dulling to occur, and therefore, require more energy to

\[\text{Fig. 7.} \quad \text{Poisson's ratio is the ratio of lateral to axial strains. Arrows indicate the direction of the applied load, and} \ h \ \text{and} \ w \ \text{are the undeformed height and width of the block. Dashed grey lines represent the undeformed shape, solid black lines represent the deformed shape. Hatched rectangle on the bottom represents an impenetrable surface.}\]

\[\Delta w/2 \]

\[\text{Poisson's ratio: } v = \frac{\Delta w}{\Delta h} \]

\[^{4}\text{While most biological materials have Poisson's ratio that fall at or below 0.5, some values for skin have been reported as high as 1.6–2.5 (Lees et al., 1991; Frolich et al., 1994; Lucas, 2004). If these values are correct, it means skin cannot be modeled as a linearly elastic material.}\]
propagate. Because there is no plastic deformation during elastic fracture, cracks grow and propagate unstably once G_C is reached. During plastic fracture, stable crack growth will occur once G_C is reached; if G_C is exceeded, unstable crack growth will occur.

The critical stress intensity factor, K_C, is a mechanical property known as fracture toughness, and measures a material's ability to resist fracture when a crack is present (Roylance, 2001a; Sun and Jin, 2012).

$$K_C = \sigma_C Y \sqrt{a_C}$$

(7)

K_C is dependent on many properties of the system, including the critical stress (σ_C), critical crack length (a_C), and a geometrical factor (Y). The geometrical factor, Y, is a function of the system: for example, in a beam undergoing bending (Fig. 9a), Y is a function of beam height and crack length. The equation can be rewritten in terms of critical crack length, which is useful in predicting how long a crack would have to be in order to propagate under a given set of loading conditions.

In terms of masticatory biomechanics, this equation is particularly useful in determining how far a single cusp/blade (e.g., from a tooth) must indent into a food item in order to cause fracture. For example, it can predict how far the incisor must move into a fruit to cause catastrophic failure during incisal biting. G_C and K_C are also dependent on the mode of fracture the specimen is undergoing, and are therefore reported as $G_{IC}, K_{IC}, G_{IIIC}, K_{IIIC}, G_{IIIIC}$, and K_{IIIIC}, where the subscripts I, II, and III representing Modes I, II and III fracture, respectively.

FEEDING BIOMECHANICS

Process of feeding

In Hiiemae (1967), a model was proposed to explain the process of feeding in rats. As more data has been gathered, this model has been modified and now includes the process by which liquid, semi-solid, and solid foods move from the external environment into the gut in mammals (Fig. 13.3, Hiiemae, 2000). Five main steps occur when feeding on solid foods: ingestion, stage I transport, processing, stage II transport, and swallowing. During ingestion, the food is moved into the mouth. Next, stage I transport occurs, where food is transported posteriorly within the oral cavity. After stage I transport and before stage II transport, food is processed into a bolus by rhythmic chewing at the postcanine dentition and/or by tongue-palate compression. In primates, this type of chewing is mastication and is characterized by a number of features, including precise occlusion of the postcanine dentition. During stage II transport, a food bolus passes through the fauces. Finally, the food bolus is swallowed and passes into the gut (Hiiemae, 1967, 2000).

Mechanical properties of foods are important during all four steps of the feeding cycle. For example, compliant, semi-solid foods are ingested and transported differently than rigid, solid foods. However, for the purposes of this paper, stage II transport and swallowing will be ignored, as food item mechanical properties likely play a larger role in ingestion and mastication than in bolus formation or swallowing.

Ingestion, mastication, and biting

Dietary mechanical properties are correlated with ingestion, mastication, and biting (defined below). During feeding, ingestion can occur through extraoral or intraoral processing. Examples of extraoral processing are tool use to break down foods into manageable pieces (Visalberghi et al., 2008; Wright et al., 2009; Koops et al., 2010, 2014). Examples of intraoral processing include tree gouging in New World monkeys and slow lorises (Thompson et al., 2014; Burrows et al., 2015), orangutans using incisors to break leaves into smaller...
As the point of mastication is to fracture or cause plastic deformation, it is critical for food items to leave the elastic range during mastication, making properties that describe how the object elastically deforms, such as Young’s modulus, important aspects of feeding. Other aspects related to elastic deformation (e.g., viscoelasticity, non-linearity etc.) are also likely important and should be considered in the future.

During elastic deformation, atomic bonds are shortened or lengthened through the application of a load, causing the volume of the object to change. This means that while the load is being applied, volume is not conserved. During plastic deformation, bonds are broken and (sometimes) reformed, but bond lengths do not change: this means volume is conserved (Courtney, 2005). The only way to mechanically increase the surface area to volume ratio during elastic deformation is by keeping a constant, high force on the object. This is unlikely to occur during digestion in a biologically meaningful manner.

However, the surface area to volume ratio can be increased in a meaningful way through plastic deformation. For example, take a spherical ball of putty with a radius of 1 cm. As a sphere, it has a volume of 4.19 cm³, surface area of 12.57 cm², and a surface area to volume ratio of 3 cm⁻¹. If flattened down to a 1 mm high cylinder, giving it a radius of 3.65 cm, its surface area and surface area to volume ratio would increase to 86.07 cm² and 20.55 cm⁻¹, respectively. This would result in a 685% increase in the surface area to volume ratio without fracture. Therefore, increases in surface area to volume ratio due to plastic deformation may be important during mastication.

APPLICATION OF MECHANICAL PROPERTY TESTS TO FEEDING BIOMECHANICS

Toughness

In anthropology, toughness, sometimes referred to as fracture toughness (Atkins and Vincent, 1984; Lucas and Pereira, 1990) is denoted by R, defined as resistance to crack propagation, and given units of Joules/meters². This is the same as energy release rate, G, from fracture mechanics (Wang, 1996; Roylance, 2001a; Sun and Jin, 2012). It was argued that R should be used because G is generally restricted to elastic fracture and “the term R is more loosely defined as the energy involved in crack resistance (266; Lucas, 2004).” While true, this is because R is a mechanical property that can be measured during both elastic and plastic fracture (see Crack Propagation section), while G, which is not a mechanical property, is only equal to G_C and subsequently R during elastic fracture. Because, as will be shown in the following paragraphs, the data being gathered on diet are not, in fact, mechanical properties, and are instead energy release rates, I suggest energy release rate and G be used instead of toughness and R.

The “toughness” data gathered on diet are not mechanical properties for two main reasons. First, the tests used to calculate energy release rate assume all the energy is going into crack propagation, and none is plastically deforming the material. For this to be true in the case of the wedge or scissors tests, the tip of the crack would always be slightly ahead of, and never touching, the tip of the wedge or scissor’s blades (see...
Fig. 10) (Atkins and Mai, 1979; Atkins and Vincent, 1984; Lucas and Pereira, 1990; Vincent et al., 1991; Khan and Vincent, 1993; Lucas et al., 1993; Ang et al., 2008). This is not true for most biological materials, a point proven by the fact that changes in scissor sharpness cause changes in energy release rate (Darvell et al., 1996). If the tip of the scissor’s blades were not touching the tip of the crack, all the energy absorbed by the material would be strain energy, and the material would absorb the same amount of energy per unit area during fracture, regardless of blade sharpness. If plastic deformation were occurring, the energy absorbed by the material would be strain energy, and the material would absorb the same amount of energy per unit area during fracture, regardless of blade sharpness. If plastic deformation were occurring, the energy absorbed by the material would be increasing as the blades got duller, as more plastic deformation would be occurring with the duller scissors. When the portable tester was first constructed, the effect of blade sharpness on energy release rate when cutting Whatman 542 filter printing paper was tested. It was found that blade sharpness had a significant effect on energy release rate (Darvell et al., 1996), thus demonstrating that the scissors test is not measuring mechanical properties.

The same scenario is true for the other toughness tests, where an object is being driven into the material (e.g., punch and die, razor, or wedge test) and the crack is not allowed to run freely (e.g., a notched four point bending test (Mode I), four point bend end-notched flexure test (Mode II) or a trouser tear (Mode III), Figs. 9 and 11). However, no experiments have quantified how much plastic deformation is occurring in any other test, or with any other material. Therefore, the energy release rates gathered with the wedge, scissors, razor, and punch and dies are not critical energy release rates, and are not mechanical properties.

Second, mechanical properties are, by definition, intrinsic, meaning they are independent of size. It has been shown that, during the scissors test, the energy release rate is sensitive to specimen thickness, which is why it is recommended that the specimen be at least 1–2 mm thick (Darvell et al., 1996; Lucas et al., 2000, 2011; Lucas, 2004). Up until 1–2 mm thickness, there is a strong linear correlation between thickness and toughness. Past 1–2 mm thickness, this correlation disappears in most foods (c.f. sweet potato, Fig. 12). If the scissors test must be used, thickness should be held constant, and if this is not possible, multiple thicknesses should be tested per specimen in order to understand the relationship between thickness and size, and then the toughness for a given thickness should be estimated. The fact that the energy release rate is highly dependent on specimen thickness, even if only for a small range, is further evidence that this is not a mechanical property.

A second issue with energy release rate, mentioned previously, results from different tests (e.g., scissors and wedge test) being directly compared to one another (Agrawal et al., 1997, 2000; Sanson et al., 2001; Agrawal and Lucas, 2002; Agrawal and Lucas, 2003; Sui et al., 2006; Vogel et al., 2008; Ang et al., 2008; Dominy et al., 2008; Wich, 2009; Kitajima and Poorter, 2010; Lucas et al., 2011; Venkataraman et al., 2014). As scissors, wedge, punch, razor, and wire cutting tests represent different modes of fracture, and materials exhibit different levels of resistance to Mode I, II, and III fracture, the results are not directly comparable (see Fig. 13, Table 1 (Sui et al., 2006; Freeman and Lemen, 2007b;
Lucas et al., 2011). Furthermore, the ratio of results between modes of fracture (e.g., Mode I/Mode II) are not comparable, as materials differ in their ability to resist tensile and shear stresses (Shi et al., 1994; Dunn et al., 1997). For example (assuming the same amount of plastic deformation is occurring in the scissors and the wedge test, which may or may not be true), it appears that fibrous foods are more efficient at resisting fracture.

Fig. 13. Scissors test vs. wedge test for twelve domestic food items, ten tests per food item, performed on the FLS-1 Tester, using protocols described in Lucas (2004). Mini salami was Dulano brand. Mushrooms, grapes, sweet potato, cucumber, celery root, salsify, mini salami, and apple were tested with the crack being driven along the long axis, and ginger and rhubarb were tested orthogonal to the fibers. Coconut and orange peel were tested orthogonal to the outer surface. All fruits and vegetables were purchased at Hit in Leipzig, Germany in May, 2015, stored appropriately, and tested within four days of acquisition. The salami was purchased at the same time at Aldi in Leipzig, Germany. With the exception of the celery root and orange peel, there were statistically significant differences between the scissors and the wedge tests ($P < 0.05$, see Table 1).
TABLE 1. Energy release rate (G, toughness) averages and standard deviations for twelve domestic food items using both the scissors test (n = 10) and wedge test (n = 10)

<table>
<thead>
<tr>
<th></th>
<th>Scissors (J/mm²)</th>
<th>Wedge (J/mm²)</th>
<th>Mann-Whitney U test</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>Avg</td>
<td>Stdev</td>
</tr>
<tr>
<td>Chestnut mushroom</td>
<td>10</td>
<td>90.1</td>
<td>32.15</td>
</tr>
<tr>
<td>Red grape</td>
<td>10</td>
<td>62.51</td>
<td>19.16</td>
</tr>
<tr>
<td>Sweet potato</td>
<td>10</td>
<td>420.4</td>
<td>90.3</td>
</tr>
<tr>
<td>Cucumber</td>
<td>10</td>
<td>175.76</td>
<td>26.91</td>
</tr>
<tr>
<td>Ginger</td>
<td>10</td>
<td>666.87</td>
<td>173.44</td>
</tr>
<tr>
<td>Celery root</td>
<td>10</td>
<td>568.09</td>
<td>139.67</td>
</tr>
<tr>
<td>Salsify</td>
<td>10</td>
<td>444.6</td>
<td>77.27</td>
</tr>
<tr>
<td>Rhubarb</td>
<td>10</td>
<td>393.36</td>
<td>94.24</td>
</tr>
<tr>
<td>Mini Salami</td>
<td>10</td>
<td>519.91</td>
<td>93.01</td>
</tr>
<tr>
<td>Coconut</td>
<td>10</td>
<td>783.59</td>
<td>160.85</td>
</tr>
<tr>
<td>Apple</td>
<td>10</td>
<td>119.06</td>
<td>39.25</td>
</tr>
<tr>
<td>Orange peel</td>
<td>10</td>
<td>471</td>
<td>103.12</td>
</tr>
</tbody>
</table>

Tests were performed on the FLS-1 Tester using protocols described in Lucas (2004). Friction during the wedge and scissors test was accounted for using the protocol set forth in Lucas (2004). Orientation of the specimens is described in the caption of Figure 14. Mann-Whitney U-test revealed statistically significant differences between the scissors and the wedge test for all food items except celery root and orange peel.

![Image](https://example.com/image.png)

Fig. 14. Plot of displacement-limited index vs. stress-limited index for food items used in experimental studies of primate masticatory function, data taken from (Williams et al., 2005). Foods in the compliant oval include almond, apple pulp, apple skin, carrot, pear skin, and sweetgum leaf.

Hardness. When used, hardness has been discussed in three ways. First, it is discussed using some of the previously described mechanical property tests (Lucas et al., 2009, 2014; Thompson et al., 2014). Second, a force gauge has been used to measure puncture resistance (Kinsey and Norconk, 1990, 1993; Lambert et al., 2004; Norconk and Veres, 2011; Alvarez and Heymann, 2012). While useful, puncture resistance is not a mechanical property, as it will change depending on the shape of the object being driven into the material (Abler, 1992; Evans and Sanson, 1998; Freeman and Lemen, 2007a; Anderson and LaBarbera, 2008; Anderson, 2009; Berthaume et al., 2010; Barnett et al., 2015). Third, it is used as a synonym for brittleness, or to mean the opposite of toughness (Agrawal et al., 1997; Lucas et al., 2000; Yamashita, 2003, 2008; Dominy et al., 2008; Norconk et al., 2009a; Yamashita et al., 2009). This should be avoided, as hard materials can either be brittle (e.g., cast iron) or ductile (e.g., steel), and soft items can either be brittle (e.g., crackers) or ductile (e.g., silly putty/plasticine).

Young’s modulus/elastic modulus/modulus of elasticity

The methods used to measure Young’s modulus are largely the same between anthropology and materials science (i.e., tension, compression, bending, and indentation tests) (Agrawal et al., 1997; Agrawal and Lucas, 2003; Lucas, 2004; Vogel et al., 2008, 2009; Lee et al., 2010; Thompson et al., 2014). It should be remembered that, during compression tests, the specimen must have a constant cross-sectional area and be loaded along its long axis. In addition, during bending tests, the specimen should be at least 10 times as long as it is high, otherwise the specimen is no longer in pure bending and the shear stresses running along the long axis of the specimen can no longer be ignored (Beer et al., 2006).

Stress and displacement limited

The classification of stress and displacement limited is used to describe how tough or hard food items are, respectively (Agrawal et al., 1997; Agrawal and Lucas, 2003; Yamashita, 2003; Lucas, 2004; Williams et al., 2005; Strait et al., 2009; Wright et al., 2009; Dumont et al., 2011), where stress limited is defined as $ER = \frac{E}{\pi R^2}$ and displacement limited is defined as $ER = \frac{E}{\pi R^2}$ (E is Young’s modulus and R is energy release rate). There are critical problems with the comparison of these indices to classify food items as tough or hard, which could make their broad application in feeding biomechanics studies inappropriate.

In order to determine whether food items are tough or hard, stress and displacement-limited values are compared within categories, between food items (e.g., $ER_{prune} vs. \sqrt{ER_{almond}}$) and between categories, within food items (e.g., $ER_{prune} vs. \sqrt{R/E}_{prune}$). The first comparison puts food items in three categories: hard (high ER, low $\sqrt{R/E}$), tough (low ER, high $\sqrt{R/E}$), or compliant (low ER, low $\sqrt{R/E}$). This gives poor results, as
some foods classified as relatively hard or tough (e.g., almonds, carrots, fruit skins) can be categorized as relatively compliant (Fig. 14).

For the second comparison, the displacement and stress-limited indices cannot be compared to each other to determine if a food item is hard or tough (Yamashita, 2003; Strait et al., 2009; Daegling et al., 2011; Pontzer et al., 2011; Ungar, 2011), as this contrast will only reflect Young’s modulus: if Young’s modulus is greater than one, the food item will be hard, if Young’s modulus is less than one, the food item will be tough. If the displacement and stress limited indices are related to each other by a factor of C, the following equation can be written

$$C = \sqrt{\frac{R}{E}} \sqrt{RE}$$

(8)

Simplifying Eq. (8), we get

$$C = \frac{\sqrt{R}}{\sqrt{E}} = \sqrt{\frac{R}{E}}$$

$$C = \frac{1}{\sqrt{E}} = \sqrt{\frac{1}{E}}$$

$$C = \sqrt{E} \cdot \sqrt{ER}$$

Therefore, the magnitude of the difference between the indices is Young’s modulus (Fig. 15). Furthermore, the difference between the stress and displacement-limited indices is sensitive to the units used to measure Young’s modulus: if megapascals are used, the results will be 1,000 times different than if gigapascals are used. This makes the selection of units, which should not matter, matter greatly. For these reasons, the indices cannot be directly compared.

The way in which the indices were derived also makes their use problematic in feeding biomechanics studies. The stress-limited index was proposed in Agrawal and Lucas (2003), where humans were asked to bite into food items with linear elastic properties with their incisors. Then, using the following equations from linear elastic fracture mechanics, Agrawal and Lucas (2003) derived a correlation between fracture stress, crack length, Young’s modulus, and energy release rate

$$K_I^2 = C_1 E G_I = ER$$

(5 altered eqn)

$$K_I = C_2 \sqrt{ER}$$

(7 altered eqn)

$$C_2 \sqrt{ER} = C_3 \sigma_f \sqrt{a}$$

(combining previous eqns)

$$C_4 \sqrt{ER} = \sigma_f \sqrt{a}$$

(9)

where σ_f is fracture stress, a is crack length and C_1, C_2, C_3, and C_4 are arbitrary constants. By showing there was a strong correlation between \sqrt{ER} and $\sigma_f \sqrt{a}$, the stress limited index was created. This makes the general use of the stress limited index problematic for five reasons, all of which may cause the correlation between \sqrt{ER} and $\sigma_f \sqrt{a}$ to fail apart.

First, the equations used to derive this metric assume linear elastic fracture and plane stress, and are therefore only applicable to perfectly brittle, flat specimens that are being loaded in plane. As previously mentioned, many naturally occurring biological materials violate linear elastic fracture assumptions, and plane stress assumptions are rarely met during feeding (particularly with leaves, which are frequently loaded out of plane). Second, experimental results were based on a single, ingestive, incisal bite, and therefore these results are not applicable to mastication or ingestion where other teeth are used, as incisors function differently than canines, premolars, and molars. Third, this relationship was only tested during Mode I fracture, and may not hold true in Mode II or III fracture, which occur during feeding. Fourth, the linear relationship between \sqrt{ER} and $\sigma_f \sqrt{a}$ was calculated ignoring the variation, and therefore error, in the \sqrt{ER} term. Finally, the slope of the linear relationship (C_4) varied greatly between the 10 human participants (from 7.12 to 25.24): if δ, α were as depend- ent on \sqrt{ER} as has been proposed, there should not be a statistically significant difference in the slopes between individuals.

In addition, \sqrt{ER} was never correlated to food toughness, as tough foods were never shown to have higher \sqrt{ER} values, making it an inadvisable metric for food toughness.

The displacement-limited index was first proposed in Agrawal et al. (1997), where humans were asked to bite into food items that were mostly linearly elastic with their postcanine teeth. Then, using a series of equations derived from beam theory and elastic fracture mechanics, $\sqrt{R/E}$ was correlated to a fragmentation index. To do so, Agrawal et al. (1997) assumed that only three cusps were interacting with a food item at a time, and therefore the maximum displacement of the food item, δ, could be defined using equations from beam theory

$$\delta = \frac{3Fl^3}{4Et^5}$$

(10)

Where l was the distance between the cusps, b is the thickness of the food item, and t is the height of the food item (Fig. 16). If only three cusps are interacting with the food item and the food item is acting like a beam, and the maximum stresses (σ_f) incurred by the food item are

Fig. 15. Plot of ratio of displacement-limited index to stress-limited index vs. Young’s modulus using data from Thompson et al. (2014).
derivation, the displacement-limited index is inappropriate to use in feeding biomechanics for five reasons.

First, it assumes the material being tested fractures elastically and that plane stress conditions are met: as explained before, this is not true. Second, Eqs. (10) and (11) assume that a) only three cusps are touching the food item and b) the food item is acting like a beam. During biting, it is rare that only three cusps of two postcanine teeth contacting a food item and that a food item is acting like a beam (as this would imply the food item is thinner than one-tenth the distance between the lower cusps). Third, these equations assume Mode I, and ignore Mode II and III fracture. Fourth, during experimentation, \(\sqrt{R/E} \) was never correlated to a displacement or stress at fracture. Instead, it was correlated to a fragmentation index, which is independent of displacement or stress at fracture.

Finally, \(\sqrt{R/E} \) was never shown to be correlated to food toughness or hardness, meaning it has never been demonstrated as an appropriate metric to determine if a food item is tough or hard. Further testing is warranted before this metric can be used for this purpose.

Finally, assuming the aforementioned problems did not exist these two indices were derived using two completely different methods: one relating biting to fracture stress and one relating chewing to a fragmentation index. These two indices cannot, therefore, be used to break food items into an “either/or” classification system (i.e., hard vs. tough) (Strait et al., 2009; Dumont et al., 2011; Ungar, 2011), as it is possible for both metrics to be high or low.

How do mechanical properties relate to feeding

Given the wealth of literature, it has been concluded that dietary mechanical properties have many effects on the masticatory apparatus: exactly what these effects are and their role in feeding remains up for debate. For example, chewing foods with higher energy release rates leads a relative increase in balancing side masseter activity, implying greater work done on the occlusal surface of the tooth is necessary to break down foods with higher energy release rates, such as gummy bears (Vinyard et al., 2006). In addition, energy release rate is negatively correlated to the total number of chews per sequence in Cebus (Reed and Ross, 2010). Dietary mechanical properties have also been found to play a role in food selection patterns (Hill and Lucas, 1996; Teaford et al., 2006; Taniguchi, 2015) and foraging behaviors (Vogel et al., 2009) in primates. In terms of functional morphology, evidence has been gathered supporting the idea that more mechanically challenging diets (higher energy release rate, stress-limited index, or displacement-limited index) lead to thicker enameled molars (Lambert et al., 2004; Vogel et al., 2008; Wieczkowski, 2009) and a more robust craniomandibular complexes (Dominy et al., 2008; Daegling et al., 2011; Thompson et al., 2014).

Despite all these correlations, the role of mechanical properties in feeding is still up for debate. One of the big reasons goes back to the problems with a) measuring toughness, and b) calculating the stress-limited and displacement-limited indices. While it is safe to say a gummy bear will always have a higher energy release rate than a raisin, the exact correlation between variables like jaw muscle forces and energy release rate cannot be empirically determined if the mechanical
In terms of functional morphology, researchers are realizing that we know less concerning the relationship between morphology and diet than we thought we did (e.g., the relationship between skull morphology and diet in *Paranthropus boisei* and *Hadropithecus stenognathus* (Godfrey et al., 2015; Constantino and Wood, 2007; Cerling et al., 2011; Dumont et al., 2011; Dzialo et al., 2013; Smith et al., 2015).

A second reason is the lack of an ability to characterize the mechanical properties of diet completely. While energy release rate may turn out to be the property that affects the most, it is impossible for researchers to know this now as no animal has had the mechanical properties of its diet completely characterized. Finally, an investigation of a complete profile of mechanical properties may lead to correlations between mechanical properties, environment, and/or geographic location (Strait, 1997) that would have gone under the radar before, giving us a new way to reconstruct the mechanical properties of the diets of extinct animals.

FUTURE OF THE FIELD

A need for standardization

Inconsistencies in terminology have led to both miscommunications between fields and issues within the field of dietary biomechanics [e.g., the comparison of results of the wedge, scissors, and/or punch and die tests, Fig. 13, (Agrawal et al., 1997; Agrawal and Lucas, 2003; Dominy et al., 2008; Vogel et al., 2008, 2009, 2014; Lucas et al., 2011; Venkataraman et al., 2014; Zink et al., 2014)]. While it is unlikely one set of terms will develop that encompass all possible mechanical properties, it is possible to formulate general rules to minimize miscommunications within and between fields and improve future work. Below are a few suggestions that, if followed, should help minimize confusion and error within and between fields.

1. **Use quantitative and not descriptive terms for quantitative properties.**

Stiffness has been used quantitatively in biomechanics to describe a material’s resistance to deformation, but it is a descriptive term that describes the slope of a bivariate plot: a material with a higher slope is stiffer, whether that is the slope of a force-displacement or a stress–strain plot (Williams et al., 2005; Anderson, 2009; Zack et al., 2009; Claverie et al., 2011; Gutiérrez-Rodriguez et al., 2013; Perry et al., 2015). As stiffness can take on multiple meanings, caution should be taken when comparing stiffness values across studies.

2. **Use one term to describe each quantitative property.**

2a. If multiple terms have been applied to a single property, use the term that is unique to that property.

Toughness and energy release rate are both used to describe energy required to propagate a crack, but toughness is also used to describe the amount of energy a material can absorb per unit volume prior to fracture (Callister, 2004). Therefore, energy release rate, and not toughness, should be used to describe energy required to propagate a crack.

2b. If a single term has been applied to multiple properties and is unique to only one of those properties, use it only with that property.

This is the case for toughness, which has been used with multiple properties, but it is only unique to one, when it is the amount of energy a material can absorb per unit volume prior to failure and has units (J/m3).

2c. If multiple, unique terms have been applied to a single property, list all terms when the measurement is first discussed, and then use only one for the rest of the analysis.

Young’s modulus, elastic modulus, and modulus of elasticity are three terms used to describe the same property, and no other properties. All are acceptable to use, but researchers should be consistent to avoid possible confusion.

It is critical that testing methods between the two fields are as consistent as possible. Tests used to quantify mechanical properties are derived and based on concepts from materials science. Therefore, it is important to minimize the violation of assumptions behind the tests put forth by materials science.

In an ideal world, no assumptions would be violated, as doing so violates the principles governing the equations behind the tests and potentially invalidates the metrics. However, reality dictates some of these assumptions must be violated, particularly in the field, where it is impossible for all tests to be precisely controlled. It is therefore important to understand the effect of violating these assumptions in order to provide a set of “error bars” for the results. Furthermore, guidelines should be constructed that dictate at which point the results have become invalid, as assumptions are violated (Darvell et al., 1996; Lucas et al., 2000, 2011; Lucas, 2004).

Data gathered thus far

A myriad of studies have been conducted over the past several decades investigating dietary mechanical properties. From a material’s science perspective, data gathered on Young’s modulus will remain valid and useful, as will data on hardness, where mechanical property tests were employed (Lucas et al., 2009, 2014; Thompson et al., 2014). However, data gathered on energy release rate will have limited uses, and the stress and displacement-limited indices should no longer be used for reasons listed above. Furthermore, there are some problems with how the tests are conducted in general, that must also be addressed.

To date, few studies in primate feeding report on crosshead speed with which data was gathered. Of the studies that do report on speed, some are running tests much faster than advisable [up to 60 mm/min (Strait and Vincent, 1998)], at which point there may be dynamic effects, making the mechanical properties inaccurate. The only published study the author is aware of that investigates the effects of speed on results was conducted on mung bean gels, and speed was found to have a significant effect on the results (Lucas et al., 1993). It is imperative that more mechanical property data be
gathered, particularly on natural occurring biological materials, in order to quantify the effects of speed on mechanical properties within different materials. This will help determine whether results from dietary mechanical property studies are comparable to one another, as the mung bean data suggests that not all data are, in fact, comparable. The portable universal tester first published by Darvell et al. (1996) is a hand-cranked machine, as it is nearly impossible to power a universal tester in the field. This makes it difficult to control for speed and to ensure speed does not vary within a trial.

While researchers attempt to keep crosshead speed constant within a single test and between tests, this is not always possible. Therefore, studies also need to be conducted investigating how mechanical properties are affected by intra-test variations in speed. A protocol for such a study could be as follows:

1. Obtain a perfectly brittle material with homogeneous, isotropic mechanical properties (e.g., ceramics or plastics situated on the brittle side of the glass transition zone).
2. Run 10 mechanical property tests at a constant speed.
3. Run 10 more tests where speed is varied, but the average speed is the same as from step 2 and there is a standard deviation of at least 20%.
4. Repeat step 3 twice with increased standard deviations.
5. Repeat steps 2-4 for at least three more speeds.
6. Repeat this process for ductile, heterogeneous, and anisotropic materials.
7. Repeat for all mechanical properties of interest.

The error in mechanical property measurements associated with changes in speed both within and between trials can be calculated for a variety of materials and tests, and be used to create error bars for data gathered in the field.

Another possible problem may lie with the equipment used to gather mechanical property data. The portable tester is, by necessity, a light and compliant machine compared to non-portable, full-scale universal testers. Non-portable universal testers are large and heavy to prevent them from elastically deforming during mechanical property testing. If the testers cannot resist deformation, the crosshead displacements are wrong, and the compliance of the machine needs to be taken into account by subtracting out the predicted displacements due to the machine compliance at each load step. While the compliance of the portable testers has been investigated and an upper limit for acceptable reaction forces has been determined for some tester versions (Vinyard, personal communication), the compliance of the machine is frequently not reported when presenting dietary mechanical property data. As the compliance of the non-portable testers is taken into account when gathering mechanical property data (e.g., ASTM E4-14), it should also be taken into account with the portable tester during dietary mechanical property testing. If the compliance cannot be taken into account, the specimen needs to be cut as small as possible in order to minimize compliance within the machine due to high reaction forces. The smaller specimen size will not affect the results when testing mechanical properties, as mechanical properties are size independent.

Energy release rate is one of the most commonly reported mechanical properties in the dietary mechanical property literature for primates. As previously discussed, the data gathered have largely not been mechanical properties, but are rather system specific: by changing a part of the system (e.g., angle of the wedge, sharpness of the scissors), the results will change (see Toughness section in Application of Mechanical Property Tests to Feeding Biomechanics). Therefore, results from these tests cannot be used in conjunction with mechanical property equations, as they are not, themselves, mechanical properties.

The data on energy release rate (aka toughness) has limits on its use. Energy release rate is system dependent, therefore changing the system (e.g., by altering tooth morphology) will change the energy release rate. This means it might require the same amount of energy to propagate a crack for an animal with sharp teeth and a “tough” diet as an animal with dull teeth and a “compliant” diet. This would greatly affect the results of a study that is comparing the mandibular shape of these two species, as the biomechanical effect on the mandible would be identical for both species even though their diets are mechanically distinct. Similarly, if an animal primarily shears its foods and another primarily splits its foods (i.e., Mode II/III vs. Mode I fracture), use of just the wedge or scissors test would be inappropriate as results from the two tests cannot be directly compared. However, if interspecies variation in diet or if two animals with nearly identical masticatory apparatuses are being compared, these tests can be used for comparative purposes. Because of this, it is inadvisable to compare dietary energy release rates, particularly through the wedge or scissors tests, of any two or more animals with disparate tooth morphologies or masticatory apparatuses (Dominy et al., 2008; Taylor et al., 2008; Vogel et al., 2009).

Finally, results of the toughness tests can be used to address questions that are non-system specific where the principles from mechanical properties are not needed. For example, several studies have investigated the mechanical properties of plants and leaves, where questions about the plants, and not animals, are being asked (e.g., correlation between fiber content and resistance to crack propagation (Lucas et al., 2000; Westbrook et al., 2011)). In addition, questions can be asked about ontogenetic changes in leaves and fruits (Yamashita, 2008). As long as tests are being held consistent and principles from materials science are not being employed, it is very useful to use the data for these purposes (Onoda et al., 2011).

Are we looking in the right places?

Challenging underlying assumptions of the field. During the birth of a field, assumptions are made out of necessity—it is impossible to take into account every detail, and to understand how small variations from these assumptions will affect the results. One of the biggest assumptions held in the field of dietary mechanical properties is that primate diets consist of linearly elastic foods—this is an assumption that can be easily tested. When gathering data, simple tension tests can be run on the food items to construct stress–strain curves. If the stress–strain curves are linear and exhibit little to no plastic deformation, this assumption is valid. If the stress–strain curves are non-linear and/or exhibit plastic

American Journal of Physical Anthropology
deformation, it is important to quantify what percentage of the animal’s diet consists of non-linearly elastic foods. These curves can be further used to investigate any plastic deformation that may be occurring and investigate the effects of violating the assumption of linear elasticity on the results.

Another assumption is that mechanical properties can be measured using solely static, and not dynamic, equations. As mentioned previously, during mastication, many primates chew at a rate that is too fast to ignore dynamic effects, so it would be useful to understand how much our results change when we consider dynamic effects.

A third assumption is that foods can be treated as being elastic rather than viscoelastic. The effects of viscoelasticity, particularly when saliva, water, and/or urine are applied to the food item (e.g., marmoset urinate on wood when they are gouging) should be quantified to better understand the validity of the results.

Understanding the relationship between masticatory biomechanics and diet. Currently, our understanding between craniofacial and dental morphology and diet is imperfect, and the more we learn about morphology and diet, the more imperfect this relationship can become. For example, there are some extant [e.g., *Lemur catta* and *Macaca* (Boyer, 2008; Cuozzo and Sauther, 2012; Kato et al., 2014)] and extinct primates [e.g., *Hadropithecus stenognathus* and *Paranthropus boisei* (Godfrey et al., 2015; Ungar et al., 2008; Cerling et al., 2011; Dumont et al., 2011; Smith et al., 2015)] in which contradicting morphological signatures exist, or in which morphological signatures do not match the other dietary signatures (e.g., isotope and microwear).

The first step in moving the field of dietary mechanical properties forward is to gain a better understanding of how food items break down during mastication, and how this relates to dental morphology. For example, researchers know that primates with second molars that are sharper, have relatively longer shearing crests, and higher relief, tend to be more folivorous or insectivorous. Conversely, primates with second molars that are duller, have relatively shorter shearing crests, and lower relief, tend to be more omnivorous or frugivorous (Kay, 1981; Boyer, 2008; Bunn et al., 2011; Winchester et al., 2014). While hypotheses have been generated to explain, biomechanically, why this relationship exists, they have never been rigorously tested. This is largely because we do not have a firm understanding of how food items interact with teeth, and how tooth shape affects food item breakdown.

Once we gain a better understanding of how food items both interact with teeth and breakdown during mastication, which can be done in an experimental or theoretical approach [e.g., (Brainerd et al., 2010; Berthaume et al., 2013, 2014; Müller et al., 2014, 2015)], we can better conclude what mechanical property data should be gathered in the first place. Building on these empirical findings, we can make better links between diet and both craniofacial and dental morphology.

Moving forward. In moving the field forward, we need to begin to more carefully link the questions we are asking to the dietary properties (both mechanical and non-mechanical) that will inform us the most about primate morphology and behavior. In a foundational paper, Thompson et al. (2014) examined the process of marmoset tree gouging step by step, and based on their analysis, predicted which mechanical properties would most affect the masticatory apparatus. Briefly, marmosets first anchor their maxillary incisors in the bark, during which time bark hardness, friction between the tree and incisors, and indentation force were predicted to be important. Next, they use their mandibular incisors to initiate a crack in the bark, where fracture toughness, Young’s modulus, and the critical strain energy were predicted to be important. Finally, the mandibular incisors propagate a crack through the tree, where work to peel was predicted to be important. While not all mechanical properties were significantly correlated to feeding, possibly because marmosets utilize both adaptive behaviors and morphologies to during tree gouging, this study showed a useful conceptual process that can be used to link mechanical properties to feeding before collecting mechanical properties.

Here, I propose a list of mechanical and non-mechanical properties that likely impact ingestion, biting, and mastication (Table 2). That is not to say these are the only properties that are linked to feeding biomechanics, but it is an idea of some of the properties that are likely to be important. In order to understand the role of food properties on the feeding complex, new properties, in addition to the ones that have been used in the past, should be investigated.

Both mechanical and non-mechanical properties are listed because during feeding size matters. There are size dependent, and therefore non-mechanical, properties of diet, that are important in feeding biomechanics. For example, the force needed to access a food item has been hypothesized to be linked to bite force, enamel thickness, and stresses and strain experienced by the craniofacial complex during mastication, and relative food item size has been related to gape angle, food item placement, stretch of the masticatory muscles, and possibly tooth morphology (Dumont and Herrel, 2003; Martin, 2003; Herrel et al., 2005; Taylor and Vinyard, 2009; Dumont et al., 2009, 2011; Eng et al., 2009; Lawn et al., 2003; Herrel et al., 2005; Taylor and Vinyard, 2009; Dumont et al., 2009, 2011; Eng et al., 2009; Lawn et al., 2003; Santana et al., 2012; Daegling et al., 2013; Strait et al., 2013; Berthaume et al., 2014; Smith et al., 2015). But as non-mechanical properties are system dependent (e.g., puncture resistance [Norconk and Conklin-Brittain, 2015]), how should they be measured?

In the past two decades, researchers have been attempting to do this by using models of teeth in universal testers to break down food items, recording the force or energy necessary to break down the foods (Abler, 1992; Evans and Sanson, 1998; Anderson, 2009; Berthaume et al., 2010). These models have provided us with an unparalleled understanding about how teeth break down food items, about how mechanical properties affect optimal tooth morphologies, and ask interesting questions concerning tooth morphology (Anderson, 2009). For example, how much are incisors acting like a “tool” and driving crack propagation when biting into a block of cheese (Agrawal and Lucas, 2003; Ang et al., 2006)? If performed in the field with teeth (or models of teeth) of the animals being studied, these types of tests could aid researchers in understanding what type of forces the masticatory apparatus is experiencing, and how much force or energy is necessary to fracture the food found in the animal’s natural diet (Barnett et al., 2015). For example, marmoset teeth coated in human saliva were used to measure friction between incisors.
and bark/wood in Thompson et al. (2014). Furthermore, these tests could be used to address interesting questions, such as how food item breakdown efficiency is affected by changes in dentition (i.e., deciduous vs. permanent) and tooth wear. A word of caution, however, is that placing teeth in a universal tester only models biting, can only currently model vertical tooth movements, does not include saliva, and does not model soft tissue. New methods need to be developed to model mastication through physical experimentation (e.g. chewing machines/simulator).

Ingestion

During intraoral ingestion, food items are parsed into smaller pieces with the incisors, canines, and/or premolars (Hylander, 1975; Ungar, 1994; Yamashita, 2008). Therefore, properties related to fracture and crack initiation as well as propagation are likely to be important. In particular, the energy release rate as a tooth is driven into the food item is likely to be the most important factor, as teeth likely do not fracture food items in a purely elastic manner. Reaction forces and stresses may also be important.

Mastication

In order to increase the surface area to volume ratio of a food item, foods need to be either fractured or plastically deformed, making properties related to plastic deformation and fracture important. Relatively speaking, properties related to how the material elastically deforms prior to fracture are not likely to be as important. Total energy to masticate the food item, energy exerted by the muscles, and residual stresses (internal stresses “trapped” inside a material)\(^6\) in the craniofacial complex will be important. While energy exerted by the muscles and residual stresses are not directly a property of the food items, the properties of the food items will certainly affect energy exerted and the presence/absence of residual stresses. One could investigate residual stresses by performing a tension test on a food item before it has been chewed, and comparing it to a tension test from a sample taken near the fracture site after it has been chewed, as residual stresses will be present near the fracture site. An increase in Young's modulus, brittleness, or the yield stress, or a decrease in the energy absorbed by the food item would indicate a presence of residual stresses.

\(^6\)Residual stresses are those that remain in a material when it is no longer being subjected to any external loading. These stresses could greatly affect the masticatory complex, causing microcracks in the enamel and bone, triggering bone remodelling, and/or desensitizing bone to external stimuli.

TABLE 2. Properties of diet likely linked to feeding biomechanics

<table>
<thead>
<tr>
<th>Action</th>
<th>Food item categorization</th>
<th>Mechanical properties</th>
<th>Non-mechanical properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingestion</td>
<td>Brittle</td>
<td>Young's modulus</td>
<td>Friction between teeth and food item</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yield stress</td>
<td>Energy to initiate crack propagation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Energy release rate</td>
<td>Energy release rate as the teeth penetrate the food item</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Critical energy release rate</td>
<td>Reaction force from food item onto tooth</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ultimate strength</td>
<td>Forces exerted by muscles</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hardness</td>
<td>Energy exerted by muscles</td>
</tr>
<tr>
<td></td>
<td>Ductile</td>
<td>Young's modulus</td>
<td>Friction between teeth and food item</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yield stress</td>
<td>Energy to initiate crack propagation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Energy release rate</td>
<td>Energy release rate as the teeth penetrate the food item</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Critical energy release rate</td>
<td>Reaction force from food item onto tooth</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ultimate strength</td>
<td>Forces exerted by muscles</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hardness</td>
<td>Energy exerted by muscles</td>
</tr>
<tr>
<td>Biting</td>
<td>Brittle</td>
<td>Young's modulus</td>
<td>Energy to initiate crack propagation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yield stress</td>
<td>Energy release rate as the teeth penetrate the food item</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Energy release rate</td>
<td>Reaction force from food item onto tooth</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Critical energy release rate</td>
<td>Forces exerted by muscles</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ultimate strength</td>
<td>Stresses in the enamel</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hardness</td>
<td>Stresses in the food item</td>
</tr>
<tr>
<td></td>
<td>Ductile</td>
<td>Yield stress</td>
<td>Energy to initiate crack propagation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Toughness (energy per unit volume)</td>
<td>Energy release rate as the teeth penetrate the food item</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hardness</td>
<td>Energy to fracture food item</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Forces exerted by muscles</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Stresses in the enamel</td>
</tr>
<tr>
<td>Mastication</td>
<td>Brittle</td>
<td>Young's modulus</td>
<td>Total energy absorbed during breakdown</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yield stress</td>
<td>Energy release rate as the teeth break down the food item</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Critical energy release rate</td>
<td>Energy exerted by muscles</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ultimate strength</td>
<td>Stresses in the enamel</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Viscoelasticity</td>
<td>Stresses in the food item</td>
</tr>
<tr>
<td></td>
<td>Ductile</td>
<td>Yield stress</td>
<td>Total energy absorbed during breakdown</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Toughness (energy per unit volume)</td>
<td>Energy release rate as the teeth break down the food item</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Critical energy release rate</td>
<td>Energy exerted by muscles</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Viscoelasticity</td>
<td>Stresses in the craniofacial complex</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Residual stresses in the craniofacial complex</td>
</tr>
</tbody>
</table>
Biting

All mechanical properties that are important during ingestion and some mechanical properties that are important during mastication will be important during biting, as biting can be ingestive, masticatory, or related to a non-feeding behavior. Some properties that are important during mastication will not be important during biting (i.e., those related to cyclic loading), as biting is not a cyclic process.

An alternative classification system

Instead of using the tough/hard or stress/displacement-limited classification systems when describing mechanically challenging food items, it may be more sensible to use the brittle/ductile classification system. As mentioned before, materials can be both tough and hard, and the only difference between stress and displacement-limited food items is Young’s modulus. It is impossible for a material to be both brittle and ductile. Furthermore, brittle and ductile inform us about how the food items will break down. Brittle food items will not plastically deform so they must be fractured, while ductile food items can plastically deform or fracture.

Brittle materials follow the rules of elasticity up until fracture and can be divided into two subcategories: linear and non-linear (Mai and Atkins, 1989). Once the material has been classified as brittle linear or brittle non-linear, appropriate elastic fracture mechanics equations can be applied to understand how the material fails. Furthermore, as brittle materials experience little to no yielding, the yield stress is correlated to fracture (Fig. 3), making it an invaluable mechanical property.

Ductile materials experience high levels of plastic deformation, and therefore do not follow the rules of elasticity up until fracture. Properties that govern how a material plastically deforms (e.g., fracture strain, displacement to fracture, total energy to failure) will be important during ductile fracture (as opposed to fracture of brittle materials). Therefore, selection may have acted important during ductile fracture (as opposed to fracture and can be divided into two subcategories: linear and non-linear (Mai and Atkins, 1989). Once the material has been classified as brittle linear or brittle non-linear, appropriate elastic fracture mechanics equations can be applied to understand how the material fails. Furthermore, as brittle materials experience little to no yielding, the yield stress is correlated to fracture (Fig. 3), making it an invaluable mechanical property.

The next steps

Quantification of ingestion, biting, and mastication. As it stands today, researchers have the infrastructure and analytical tools to get very precise information about dietary mechanical properties, but one of the biggest things lacking is information concerning the physiology of feeding, and how it varies as the extrinsic and intrinsic food properties vary. In order to address this, behavioral data needs to be gathered on ingestion, biting, and mastication in order to more precisely quantify how animals deal with food items of different sizes, shapes, and with different properties (Ungar, 1994, 1996; Yamashita, 2008; Daegling et al., 2011). This can be best done by creating a database of videos of animals consuming different types of foods, complimented by dietary property data (when possible). In addition, by comparing how wild and captive animals deal with different food items (e.g., breakdown of large vs. small food items), we may find that we can simply carry out focal observations at local zoos and sanctuaries and do not necessarily need to perform field work to gather such data (German et al., 1989; Lucas et al., 1994; Perry and Hartstone-Rose, 2010; Hartstone-Rose et al., 2015; Perry et al., 2015). Finally, this should be accompanied by experimental data, so researchers can better test the hypotheses generated from focal observations and better investigate the relationships between these behaviours and dietary mechanical properties (Ross et al., 2009; Reed and Ross, 2010).

Integration. Two forms of integration need to occur to improve our understanding of feeding biomechanics. The first is to use more properties, both mechanical and non-mechanical, in conjunction with animal behavior and morphology to describe what is occurring during feeding. The second is to have a larger level of integration between food and material scientists, engineers, and anthropologists, so that people with skills from the different fields can work together to generate new ideas, questions, and hypotheses. For example, tests such as the notched four point bending test, four-point bend end-notched flexure test, and trouser tear can be added to calculate critical energy release rate, so energy release rates that are mechanical properties can also be gathered.

Standardized data sharing. As many researchers will be interested in the properties gained from these studies, for both comparative and meta-studies (Dominy et al., 2008; Onoda et al., 2011), the construction of a database for sharing raw data will become increasingly important. The biological community has become characterized by the sharing of large amounts of data in recent years, particularly through the use of ontologies (Grosse et al., 2005; Rockwell et al., 2008; McPherson et al., 2013; McPherson, 2014), two of the most famous being the Gene Ontology and Open Biomedical Ontologies consortiums (Ashburner et al., 2000; Smith et al., 2007).

In order for meta-analyses to produce valid results, data must be gathered in similar fashions. In terms of dietary properties, several variables describing environmental conditions that are not always reported should be included, such as temperature, rainfall, season, environment, plant part, and location (altitude, latitude, and longitude). Temperature can affect mechanical properties: materials can act more brittle in colder temperatures and more ductile in warmer temperatures (see The Glass Transition, in Callister (2004)). Rainfall, season, environment, and part of the plant being tested have been shown to affect mechanical properties (Yamashita, 2003; Teaford et al., 2006; Vogel et al., 2008, 2009, 2014). Finally, latitude and longitude should be reported to consider potential regional changes in properties (Onoda et al., 2011; Kato et al., 2014).

CONCLUSION

Scientists today are operating on a platform past researchers could only have dreamed of, and it is our responsibility to continue raising this platform for future generations. The field of dietary mechanical properties has made many great strides in the past few decades, but in order to raise that platform for future generations, we must continue to embrace new concepts and
ideas, as others have done before us. One way of doing this is by going back to materials science, critically rethinking what type of data needs to be gathered, and incorporating previously unused metrics, equations, and classification systems. This paper has discussed some of the basic, underlying concepts of materials science and given some ideas of how they can be applied to dietary mechanical and non-mechanical properties. By incorporating these concepts into the existing toolkit, we will be able to understand more about the selective forces underlying feeding biomechanics, and may be able to answer larger questions concerning the evolution of the masticatory apparatus.

ACKNOWLEDGMENTS

The authors thank Chris Vinyard, Erin Vogel, Ian Grosse, Robert Hyers, Elizabeth Dumont, Laurie Godfrey, David Strait, Kes Schroer, Paul Constantino, Steve King, Adam van Casteren for training on the FLS-1 Tester, Chris Vinyard, Kes Schroer, Ellen Schulz-Kornas, and Viviana Toro-Ibacache for their insightful comments on the manuscript, and Chris Vinyard and Trudy Turner for their help in publishing this manuscript.

LITERATURE CITED

FOOD MECHANICAL PROPERTIES AND DIETARY ECOLOGY

