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Obesity, a pandemic of the modern world, is intimately associated with dyslipidemia, which is mainly driven by
the effects of insulin resistance and pro-inflammatory adipokines. However, recent evidence suggests that
obesity-induced dyslipidemia is not a unique pathophysiological entity, but rather has distinct characteristics de-
pending on many individual factors. In line with that, in a subgroup of metabolically healthy obese (MHO) indi-
viduals, dyslipidemia is less prominent or even absent. In this review, we will address themain characteristics of
dyslipidemia and mechanisms that induce its development in obesity. The fields, which should be further inves-
tigated to expand our knowledge on obesity-related dyslipidemia and potentially yield new strategies for pre-
vention and management of cardiometabolic risk, will be highlighted. Also, we will discuss recent findings on
novel lipid biomarkers in obesity, in particular proprotein convertase subtilisin/kexin type 9 (PCSK9), as the
key molecule that regulates metabolism of low-density lipoproteins (LDL), and sphingosine-1-phosphate
(S1P), as one of themost importantmediators of high-density lipoprotein (HDL) particles function. Special atten-
tion will be given to microRNAs and their potential use as biomarkers of obesity-associated dyslipidemia.

© 2018 Elsevier Inc. All rights reserved.
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1. Introduction

Weight gain, as a response to overnutrition and reduced energy ex-
penditure, leads to overweight and obesity, conditions associated with
intensive processes of hyperplasia and hypertrophy of adipocytes [1].
Also, obesity is accompanied by macrophages infiltration into the adi-
pose tissue, followed by a switch of their phenotype from anti-
inflammatory M2 to pro-inflammatory M1 [2]. All these changes in ad-
ipose tissue composition are associated with altered adipokines secre-
tion and development of adipose tissue dysfunction (adiposopathy)
which is responsible for obesity-related metabolic diseases [3].

Insulin resistance/hyperinsulinemia is the most common metabolic
disorder in obesity and it is the main driving force behind the develop-
ment of dyslipidemia. In recent years, the form of dyslipidemia arising
from concerted action of insulin resistance and obesity is recognized
as "metabolic dyslipidemia" [4]. High concentrations of triglycerides
(TG) accompanied by decreased high-density lipoprotein cholesterol
(HDL-C) concentrations are its main characteristics. Low-density lipo-
protein cholesterol (LDL-C) concentrations could be optimal or mildly
increased, although the number of LDL particles (LDL-P) can be in-
creased [5]. Dyslipidemia is an important link between obesity and the
development of type 2 diabetes mellitus, cardiovascular disease (CVD)
and certain types of cancer [6].

2. Pathways of metabolic dyslipidemia development

Accumulating evidence suggests that insulin resistance is the most
probable link between obesity and obesity-associatedmetabolic dyslip-
idemia [4]. According to Magkos et al. [7] insulin resistance and meta-
bolic dyslipidemia are associated with adiposopathy. As previously
demonstrated, adiposopathy is characterised by several structural and
functional changes in adipose tissue [2,3]. These abnormalities also
have detrimental effects on adipocyte intracellular structure, leading
to endoplasmic reticulum stress and dysfunction of mitochondria [8].
Generally, it is accepted that the most important molecular mediators
of obesity-related insulin resistance are adipokines, produced by adipo-
cytes and accumulated macrophages in adiposopathy [9]. Moreover,
changed adipocytes are insulin-resistant, which increases lipolysis and
release of free fatty acids (FFAs) into the circulation. Increased FFAs con-
centration provokes lipotoxicity, as another mechanism of obesity-
related insulin resistance in non-adipose tissue [10].

2.1. Insulin resistance

Effects of insulin on lipid metabolism are known and well explained
[4]. Insulin suppresses lipolysis in adipose tissue by hormone-sensitive
lipase (HSL) inhibition, thereby controlling the release of FFAs into the
circulation [11]. Also, insulin stimulates apolipoprotein B-100 (apoB-
100) degradation and suppresses very low-density lipoproteins
(VLDL) secretion from the liver [12]. In the circulation, lipoprotein lipase
(LPL)-driven hydrolysis of TG from VLDL particles is stimulated by insu-
lin, as well as the activity of hepatic lipase (HL), so overall, insulin stim-
ulates TG-rich lipoprotein degradation. In the liver, insulin promotes
dephosphorylation of 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) re-
ductase, activating the enzyme and stimulating the rate of cholesterol
synthesis [11]. In the state of insulin resistance, plasma clearance of
TG-rich lipoproteins is delayed, resulting in hypertriglyceridemia.
Under these circumstances, cholesteryl ester transfer protein (CETP) ac-
tivity promotes the exchange of TG with cholesteryl esters between li-
poprotein particles. As a result, LDL and HDL particles become
enriched with TG and, after subsequent hydrolysis by plasma lipases,
smaller and denser. These structural changes are accompanied by func-
tional consequences, resulting in the accumulation of small, dense
(sdLDL) and dysfunctional HDL particles [13].

The role of FFAs in obesity-related insulin resistance development
has also been documented. Some authors emphasize that the increased
release of FFAs from adipose tissue could be the first step in this cascade
process [14]. FFAs in hypertrophic adipocytes activate specific serine-
kinases which are responsible for phosphorylation of Insulin Receptor
Substrates (IRS) proteins, and this covalentmodification reduces insulin
receptor signalling [15]. Also, it is known that FFAs are ligands for sev-
eral cellular receptors that are involved in the cellular immune response
[16]. Binding of FFAs to Toll-like receptor 4 (TLR 4) on pro-inflammatory
M1 macrophages induces productions of pro-inflammatory adipokines
and stimulates inflammation in adipose tissue [17,18]. Insulin-
resistant adipocytes release FFAs into the circulation. Normally, FFAs
are utilized either for biosynthesis of complex lipid molecules or for ox-
idation in different tissues. When the capacities of these two metabolic
pathways become saturated, the content of FFAs and their metabolic in-
termediates increase in the cell, leading to ectopic lipid accumulation
and insulin resistance development in liver and skeletal muscle [19]. In-
creased FFAs flux into the hepatocytes alters glucose metabolism, via
hepatic insulin resistance development, but also, by insulin-
independent mechanism. Intensive FFAs catabolism in liver increases
acetyl-CoA, an allosteric activator of pyruvate carboxylase, which stim-
ulates gluconeogenesis. These processes lead to hyperglycemia and con-
sequent hyperinsulinemia [19,20].

2.2. Adipokines

Adipokines have many different metabolic functions and their role
in pathophysiological conditions associated with obesity has been the
main topic of numerous studies during the last two decades. Special in-
terest has been focused on their inflammatory aspects [21,22].

2.2.1. Pro-inflammatory adipokines and dyslipidemia
The discovery of leptin, the product of obesity (ob) gene, and its role

in the regulation of food intake and energy expenditure was the
breakpoint of the concept that adipose tissue is an active endocrine
organ [23]. Association of leptin and insulin resistance was observed
in leptin-deficient (ob/ob) mice and exogenous administration of leptin
improved insulin resistance [24]. Leptin and insulin have similar general
effects on lipidmetabolism (Table 1). It is known that leptin participates
in the negative feedback loop that reduces insulin secretion, but it also
stimulates glucose turnover which improves insulin sensitivity [21].
Leptin is considered a pro-inflammatory adipokine since it stimulates
adipose tissue macrophages to secrete tumor necrosis factor-α (TNF-
α), interleukin 6 (IL-6), interleukin 12 (IL-12) and potentiates low-
grade inflammation in adipose tissue [24]. Despite the fact that leptin
exhibits pro-inflammatory effect, currently it has therapeutic applica-
tion in patients with generalized lipodystrophy [25]. Perry et al. [25]
showed that leptin reduced glucose concentrations in rodents with
poorly controlled type 1 diabetes, by a suppression of hypothalamic-
pituitary-adrenal (HPA) activity and consequent reduction of gluconeo-
genesis and ketogenesis. This result qualifies leptin as a potential new
adjuvant therapy in type 1 diabetes and indicates the need for further
investigations.

Resistin is an adipokine primarily secreted by macrophages and
monocytes in humans and its role in insulin resistance development is
not completely clear. Generally, it is accepted that resistin reduces insu-
lin sensitivity in humans, but the results of numerous studies are not
uniform. Clinical studies found no correlations between resistin concen-
tration and indices of insulin resistance or obesity [22]. However, there
is no doubt that resistin plays a role as a direct molecular mediator of
metabolic dyslipidemia development (Table 1). The role of resistin in in-
flammation is also well known. Inflammatory cytokines stimulate mac-
rophages to secrete resistin by induction of resistin gene expression,
while resistin, in turn, promotes theproduction of pro-inflammatory cy-
tokines [22].

TNF-α is a multipotent cytokine, involved in all aspects of obesity-
induced insulin resistance and dyslipidemia development (Table 1).
The main mechanism which connects inflammation, particularly TNF-



Table 1
Relevant adipokines and their effects on lipid metabolism

Adipokine Mechanisms of action Effects on lipid
metabolism

Pro-inflammatory adipokines
Leptin [21] Activation of FFAs oxidation enzymes Lipolytic effect

Decrease of TG storage in non-adipose tissues
Resistin [26] Activation of microsomal triglyceride transfer protein (MTP) Increased VLDL production

Stimulation of apoB-100 synthesis
Increase of proprotein convertase subtilisin/kexin type 9 (PCSK9) level Downregulation of hepatic LDL receptor expression

TNF-α [27] Phosphorylation and activation of hormone-sensitive lipase (HSL) Lipolytic effect
IL-6 [30] Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway and

activator of the Mitogen-Activated Protein Kinase (MAPK) cascade
Lipolytic effect

IL-1 [31] Suppresion of lipoprotein lipase (LPL) activity Hypertriglyceridemia

Anti-inflammatory adipokines
IL-10 [34] PPAR-γ-dependent ATP-binding cassette transporter 1 (ABCA1)-mediated cholesterol

efflux to apolipoprotein A1
Increased HDL-C concentration

Adiponectin [35] AMPK-activated PPARα transcription factor Increased FFAs oxidation
Omentin 1 [36] Activation of AMPK signalling pathway Inhibition of cholesterol synthesis
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α and IL-6, with insulin resistance is a reduced expression of glucose
transporter type 4 (GLUT 4) in insulin-dependent tissues under their in-
fluence [28]. Also, TNF-α activates serine-kinases responsible for phos-
phorylation of IRS, specifically Jun N-terminal kinase (JNK) [29]. The
specific effect of TNF-α is related to the acceleration of the inflammatory
process by induction of synthesis of other pro-inflammatory cytokines,
such as IL-6 and IL-1, in the macrophages of adipose tissue. It is also im-
portant to note that TNF-α, in cooperationwith other inflammatory cyto-
kines (Table 1), induces the activation of the NF-κB pathway and
promotes oxidative stress in adipose tissue [32]. Activation of the NF-κB
transcription factor by TNF-α is one of themechanismswhich induces in-
flammation of β-cells and leads to reduced insulin production [33].

2.2.2. Anti-inflammatory adipokines and dyslipidemia
Among anti-inflammatory adipokines (Table 1), adiponectin has the

highest concentration in plasma. In adyposopathy, TNF-α, IL-6 and reac-
tive oxygen species downregulate the expression of ADIPOQ gene in ad-
ipocytes, so the level of adiponectin in the circulation is decreased. The
most important mechanisms by which adiponectin enhances insulin
sensitivity seems to be via the activation of AMP-activated protein ki-
nase (AMPK) and peroxisome proliferator-activated receptor-α
(PPAR-α) [35], a transcription factor that regulates lipid metabolism
in the liver (Table 1). The main effects are the increased FFAs oxidation
and glucose uptake in muscle and the inhibition of hepatic glucose pro-
duction [37]. Adiponectin also directly influence β-cell function,
exerting anti-apoptotic effects [38]. The results of several studies con-
nected adiponectinwith the decreased apolipoprotein AI (apoAI) catab-
olism and higher HDL-C concentrations in plasma [39]. Qiao et al. [40]
showed that adiponectin reduces TG concentration in plasma and the
underlying mechanism of this effect is the increased activity of LPL, via
increased LPL gene expression in skeletal muscle. Adiponectin has also
potent anti-inflammatory effects within adipose tissue [41].

Finally, it is interesting to mention specific adipokine Sfrp5, a mem-
ber of Sfrp inhibitors of wingless-typeMMTV integration site family, es-
pecially Wnt 5a [42]. Experiments on mouse models proved that Sfrp5
protein is a powerful anti-inflammatory adipokine [43]. Sfrp5 inhibits
Wnt 5a-mediated phosphorylation of JNK in adipose tissue and this
change in signalling pathway is associated with lower macrophages ac-
cumulation in adipose tissue. However, it is not clear whether similar
relations exist in humans. The pioneering research of Sfrp5 in humans,
concerning its association with the development of insulin resistance
gave controversial results, ranging from positive association to no asso-
ciation at all [42,44]. Recently published results of the population-based
KORA study showed that Sfrp5 concentration was independently asso-
ciated with HDL-C, glycated haemoglobin, high sensitivity C-reactive
protein and adiponectin concentrations [45]. The observed association
between high Sfrp5 and high HDL-C concentrations indicates possible
influence of this adipokine on lipid metabolism, but a concrete mecha-
nism is not yet clarified.

2.3. Vitamin D and dyslipidemia in obesity

High prevalence of vitamin D deficiency in obese individuals is well
known and confirmed by many investigations. Yet, the exact mecha-
nismwhich is responsible for this association is still unrevealed. Several
hypotheses are proposed and all of them can be classified into three cat-
egories. Preliminary theories were based on the associations of vitamin
Dwith anthropometric, physiological and behavioural characteristics of
obesity. The ground for second group of hypotheses is the concept
which relays on the interplay between dyslipidemia and vitamin D. Fi-
nally, the third group of presumptions points towards the crucial role
of obesity-related inflammation (Fig. 1). However, a common feature
of all above mentioned theories is that vitamin D deficiency is more
likely the effect of obesity than its cause. Nevertheless, lack of vitamin
D is associated with many unfavourable metabolic aspects of obesity,
forming a vicious cycle that finally leads to increased cardiometabolic
risk (Fig. 1).

A bulk of evidence suggests that adipose tissue is a direct target for vi-
tamin D actions, in term of modulation of adipogenesis, apoptosis and in-
flammatory pathways [46–50]. It has been demonstrated that vitamin D
exhibits apoptotic effects on adipocytes [51]. Having in mind recent dis-
covery of autonomous bioactivation of this hormone in adipocytes [52],
markedly increased amount of vitamin D in adipose tissue may have po-
tential protective effects by preventing hyperplasia of adipocytes. Con-
trary to studies on mouse cell lines demonstrating inhibitory effects of
vitamin D on adipogenesis, Nimitphong et al. [53] showed that vitamin
D promotes differentiation of human preadipocytes to mature well-
differentiated, insulin-sensitive adipocytes, hypothesizing the role of vita-
min D in the healthy remodelling of adipose tissue.

2.3.1. Vitamin D and lipid profile
Up till now, a significant number of observational and interventional

studies have been conducted in order to elucidate the interplay be-
tween vitamin D deficiency and dyslipidemia, as well as possible thera-
peutic implications. However, it is still difficult to draw a definitive
conclusion regarding the relationship of vitamin D metabolites with
serum lipids. A large cross-sectional study by Jorde et al. [54] demon-
strated an increase in TC and LDL-C levels across increasing quartiles
of 25(OH)D. Conversely, a more recent study by Lupton et al. [55],
which includedmore than 20,000 participants, showed significant asso-
ciations of vitamin D deficiency with higher concentrations of TC and
LDL-C. A Mendelian randomization study by Ooi et al. [56] demon-
strated that genetically elevated levels of nonfasting remnant choles-
terol are related to decreased vitamin D concentrations, but without



Fig. 1. Possible mechanisms of the associations between obesity and vitamin D deficiency.

Table 2
Lipid profile in metabolically healthy and unhealthy obese and normal weight subjects
[72–77]

Metabolically healthy Metabolically unhealthy

Normal weight Obese Normal weight Obese

TC N ↔ ↔ ↔
LDL-C N ↔ ↑ ↔/↑
HDL-C N ↔ ↓ ↓↓
TG N ↔ ↑ ↑↑
sdLDL N ↔ ↑ ↑

In relation tometabolically healthy normal weight subjects (N, normal):↔, unchanged; ↑,
increased; ↓, reduced. TC; total cholesterol; LDL-C, low-density lipoprotein cholesterol;
HDL-C; high-density lipoprotein cholesterol; TG, triglycerides; sdLDL, small, dense LDL.
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evidence for the impact of inherited vitamin D deficiency on cholesterol
concentration. Such results suggest that low vitamin D is more likely a
marker of dyslipidemia than its contributing factor. The same research
[56] demonstrated that genetically low HDL-C levels are associated
with higher concentration of 25(OH)D. Similarly, the findings of the
Rotterdam study [57] pointed toward inverse and, even more impor-
tantly, bidirectional associations between HDL-C and vitamin D plasma
levels, suggesting the possible direct impact of vitaminD onHDLmetab-
olism. Finally, previous studies generally pointed toward negative cor-
relations between vitamin D and TG concentrations [58].

Vitamin D and cholesterol share the same biosynthetic pathway
since 7-dehydrocholesterol is their joint precursor. Therefore, it has
been suggested that the increase in cholesterol biosynthesis would
cause a reciprocal decrease in 25(OH)D formation in the skin [57].
Such an assumption can provide an explanation for the previously re-
ported increase in vitamin D level after statin therapy [59,60]. However,
not all studies reported such findings and it has been as well demon-
strated that statin use does not affect vitamin D levels [61,62]. On the
other hand, Chow et al. [63] recently proposed that activation of vitamin
D receptor (VDR) both in mice and human hepatocytes leads to en-
hanced activity of 7α-hydroxylase, which is the rate-limiting enzyme
in bile acid synthesis. As a result, parenteral treatment with 1,25(OH)
2D caused a decrease of plasma and liver cholesterol in mice [63], sug-
gesting the active role of vitamin D in regulation of cholesterol homeo-
stasis. Finally, one should not neglect the indirect effects of vitamin D,
realized through the changes in calcium and parathyroid hormone
(PTH) concentrations. Previous researches revealed that higher calcium
input increases faecal fat excretion [64], alongside with favourable ef-
fects on plasma lipid profile [65,66]. Similarly, sufficient levels of vita-
min D are necessary for preventing the development of
hyperparathyroidism which is well-known contributor to adverse
changes of lipid profile [67,68].

3. Metabolically healthy and metabolically unhealthy obesity —
the role of dyslipidemia

Metabolically healthy obesity (MHO) is the term used to designate a
subgroup of obese subjects without obvious detrimental consequences
of increased weight [69]. In addition, a subset of lean subjects withmet-
abolic disturbances has also been recognized and categorized as meta-
bolically unhealthy normal weight subjects (MUNW) [70]. To date,
numerous authors proposed various definitions of MHO, which could
be summarised as the absence of the followingmetabolic disturbances:
abdominal obesity, hypertension, dyslipidemia, hyperglycemia and/or
insulin resistance. The most common approach to define metabolic
health was based on the presence of less than two features of metabolic
syndrome [71].

Routine serum lipid parameters are the most frequently evaluated
components for distinguishing between MHO and metabolically un-
healthy obese (MUO) subjects [72–77]. Albeit obese, MHO subjects are
likely to have serum lipid parameters within the recommended range,
similarly to metabolically healthy normal weight (MHNW) subjects. In
contrast, pro-atherogenic changes are usually found in the lipid profile
of MUO andMUNW subjects (Table 2). So far, a limited number of stud-
ies have evaluated the lipoprotein subclasses profile, mainly LDL parti-
cles, among MHO and MUO individuals. According to available data,
MUO subjects have smaller LDL size, increased proportion of sdLDL par-
ticles and higher prevalence of LDL B phenotype [76,78,79]. Investiga-
tors of Women’s Health Study followed 25,626 women for ten years
and showed that obese women with dyslipidemia had increased CVD risk
compared to obese women without dyslipidemia. The authors did not
find the differences in CVD risk between obese and normal weight
women without dyslipidemia [72]. Similarly, in the Danish prospective
Diet, Cancer andHealth study, itwas found that obese participantswith hy-
percholesterolemia have a higher risk for the acute cardiovascular event
than obese or normal weight subjects without hypercholesterolemia [80].

In recent years more attention has been paid to improve the classifi-
cation criteria for MHO, in attempt to direct appropriate preventive
measures according to the anticipated risk [69,70]. Namely, in the
meta-analysis of eight studies Kramer et al. [73] showed that MHO

Image of Fig. 1


Fig. 2. Mutual relationships between PCSK9, VLDL and LDL particles and LDL receptors.
Synthesis of PCSK9 and LDL receptor in the liver is regulated by SREBP-2. The main
route of PCSK9 clearance is via LDL receptor. PCSK9 stimulates hepatic secretion of VLDL
particles. Hepatic uptake of VLDL remnants following lipolysis in plasma depends on the
LDL receptor. Circulating PCSK9 can attach to apoB-100 within LDL particles, but not to
apoB-100 within VLDL. Bonding of PCSK9 to LDL particles diminishes its activity toward
LDL receptor. PCSK9, proprotein convertase subtilisin/kexin type 9; LDL, low-density
lipoprotein; VLDL, very low-density lipoprotein; LPL, lipoprotein lipase.
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subjects, when compared toMHNWpeers, were not at increased risk of
all-cause mortality and/or cardiovascular events. However, MHO was
associated with the risk for long-term (≥10 years) adverse outcomes,
suggesting the transient nature of this apparently healthy phenotype.
More recent meta-analysis of Eckel and co-workers [74] evaluated
data from 22 prospective studies and concluded that MHO subjects, re-
gardless of the criteria used to definemetabolic health, are at increased
risk for cardiovascular events compared to MHNW subjects. Although
based on limited data, this study also suggests that MHO might not in-
crease cardiovascular risk for the limited period of time [74]. Thus, the
work of both groups led to the same conclusion that MHO confers
short-term protection against CVD development [73,74]. Of note, simi-
lar observations have been made about the risk for type 2 diabetes
mellitus [81,82].

In general,MHOsubjects are characterised by less visceral and/or ec-
topic fat accumulation, as well as by a lower extent of adipocyte dys-
function, as reviewed in detail in [83,84]. Compared to MHO,
individuals withMUO have a higher degree of adipose tissue inflamma-
tion [71]. Regarding adipokines, results of Framingham Heart Study
showed that MHO subjects had lower leptin and adiponectin levels
[85]. Other studies found paradoxically higher adiponectin levels in
adult MHO subjects [86–88] and adolescent females [89,90]. These
data suggest protective role of higher adiponectin levels against
obesity-associated metabolic diseases. Studies identified various genes
involved in the regulation of adipogenesis and metabolic processes
whichmay predispose to certain obesity pattern [87,91]. The investiga-
tions are further extended to epigenetic mechanismswhichmay be im-
plicated in regulation of obese phenotypes. MicroRNAs (miRNAs) are
small, single-strained, non-coding RNAswhich regulate protein expres-
sion on post-transcriptional level, by blockingmRNA translation or forc-
ing its degradation [92]. Numerous miRNAs are implicated in the
regulation of adipogenesis, insulin resistance and inflammation
[93,94]. A clear difference in miRNA profile of adipose tissue between
lean and obese subjects has been shown [95], as well as in circulating
miRNA levels between obese, overweight and control subjects [96,97],
suggesting that miRNAs might be explored as biomarkers for
distinguishing between MHO and MUO individuals.

4. Novel biomarkers of dyslipidemia in obesity

Over the last decade, the knowledge of the complex link between
dyslipidemia and cardiovascular risk has been further expanded with
the introduction of novel mechanisms and molecules, constituting po-
tential biomarkers or therapeutic targets. Here, we will discuss
obesity-related changes of two recently discovered biomarkers and
modulators of LDL metabolism and HDL functionality, i.e. PCSK9 and
sphingosine-1-phosphate (S1P), respectively. In addition, functional
role of microRNAs and potential use of circulating microRNAs as novel
biomarkers of dyslipidemia will be discussed.

4.1. Proprotein convertase subtilisin/kexin type 9 in obesity

PCSK9 is a glycoprotein, predominantly synthesized in hepatocytes,
but also in enterocytes, as a zymogen, a preprotein that comprises 692
amino acid residues. It belongs to the proprotein convertase superfam-
ily consisting of nine serine proteases [98]. PCSK9 has no enzymatic ac-
tivity toward other substrates, except itself, enabling its own secretion
in the circulation. However, the catalytic domain of PCSK9 is responsible
for its binding to epidermal growth factor (EGF)-A domain of LDL recep-
tor [99]. Following internalisation, PCSK9 impedes recycling of the re-
ceptor to the cell surface and enhances its lysosomal degradation (for
more comprehensive reviews see [100,101]). There is also another
type of interaction between PCSK9 and LDL receptor, which is termed
intracellular pathway. In brief, intracellular binding of newly synthe-
sized PCSK9 to LDL receptor fosters degradation of the complex in lyso-
somes which reduces the level of the receptors at the cell surface [102].
Therefore, themain role of PCSK9 is regulation of LDL receptor levels and,
consequently clearance of LDL particles, so as plasma LDL-C level. Recent
studies have pointed toward additional mechanisms of interactions be-
tween circulating PCSK9, LDL particles and LDL receptors (Fig. 2) includ-
ing: regulation of both PCSK9 and LDL receptor synthesis via sterol
regulatory element-binding protein-2 (SREBP-2) [103], bonding of circu-
lating PCSK9 to LDL particles (approximately 30% of PCSK9) [104] and the
impact of PCSK9 on secretion of VLDL particles [100]. The link between
PCSK9 and CVD has been confirmed by the results of Mendelian random-
ization studies, documenting that individuals carrying certain loss-of-
function PCSK9 gene variants have a lower LDL-C level and reduced CVD
risk [105]. Accumulating evidence on the role of PCSK9 in dyslipidemia
led to the development of novel therapeutic PCSK9 inhibitors with con-
vincing data about their efficiency and safety [106,107].

Available data on the effect of increased body weight on plasma
PCSK9 levels and/or association between PCSK9 and obesity indices
are scarce and inconclusive. Higher PCSK9 levels were found in obese,
as compared to overweight and normal weight subjects [108,109].
Levenson et al. [110] reported that PCSK9 level was higher in obese
women and those with type 2 diabetes, but not in obese and diabetic
men. In the study of Hasan et al. [111] an inverse association between
PCSK9 level and waist circumference in young females was found. In
contrast, other groups reported positive correlations of PCSK9 with
waist circumference and BMI [112]. As previously explained, insulin re-
sistance and adipokines play major roles in the development of meta-
bolic dyslipidemia. Studies with insulin resistant/deficient mice
suggested that insulin enhances hepatic PCSK9 expression [113]. Al-
though studies with animal models demonstrated up-regulation of he-
patic PCSK9 expression during hyperinsulinemic-euglycemic clamp
[114], clinical studies in healthy subjects and type 2 diabetic patients
found no change [115] or even a decrease in plasma PCSK9 levels in
obese postmenopausal women [116]. Cariou et al. [117] showed that
PCSK9 concentration was positively associated with whole-body and
hepatic insulin resistance. In line with the previous findings, large ob-
servational studies showed a positive correlation between circulating
PCSK9 levels and HOMA-IR in both pediatric [118] and adult [119]

Image of Fig. 2
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populations. A similarity in the PCSK9 and resistin structures has been
revealed by Hampton et al. [120]. It was further demonstrated that
resistin reduced LDL receptor, while in turn increased PCSK9 expression
in HepG2 cells [121]. Surprisingly, Kwakernaak and colleagues [122]
found that plasma PCSK9 level was inversely associated with resistin in
lean and insulin sensitive subjects, while in overweight/obese and insulin
resistant subjects PCSK9was not related to resistin at all [122]. Regarding
the role of leptin, it has beendemonstrated that it suppresses LDL receptor
level and LDLuptake but increases PCSK9 expression inHepG2 cells [123].
However, leptin replacement inmale ob/obmice decreasedplasmaPCSK9
level but had no effect on lipid parameters. In contrast, upon leptin ad-
ministration in female mice, plasma lipids were reduced, while the level
of PCSK9 remained unchanged [124]. On the other hand, treatment
with a synthetic leptin analogue, metreleptin, reduced plasma PCSK9
levels in patients with lipodystrophy [124,125].

One of the mechanisms for a causal relationship between elevated
PCSK9 and development of dyslipidemia in obesity is hepatic VLDL
overproduction since PCSK9 mediates both apoB-100 and TG synthesis
and VLDL assembly pathways [126,127]. In accordance, circulating
PCSK9 levels were significantly correlated with serum TG levels in pop-
ulation studies [118,119]. Although there is a rationale for supporting
the hypothesis that PCSK9 is involved in HDL metabolism [128], avail-
able data showed that PCSK9 is not associated with HDL-C level in
obese subjects [110,111,122]. Similarly, little is known about the associ-
ation between PCSK9 and sdLDL particles in obesity [129]. Several rea-
sons could explain observed unexpected correlations or even lack of
associations between plasma PCSK9, obesity indices and lipid profile
in clinical and epidemiological studies. It is possible that that the effects
observed in vitro or in experimental models might not translate into the
same associations between plasma lipids and PCSK9 in human studies.
Also, conclusions from studies with animal models should be carefully
interpreted and translated taking into account the differences in lipo-
protein metabolism between the species. Plasma concentration of
PCSK9 has very high inter-individual variation [119]. Furthermore,
PCSK9 circulates in plasma as intact and as an inactive, furin-cleaved
form [130]. As already mentioned, approximately one third of plasma
PCSK9molecules are bound to LDL particles, having diminished activity
toward LDL receptors [104]. Thus, it questionable whether plasma
PCSK9 level reliable reflects its activity. Availablemethods do not distin-
guish between various PCSK9 forms, but measure its total plasma con-
centration. Development of the tests that quantify PCSK9 forms and/or
PCSK9 activity would enable further insight into role of PCSK9 in meta-
bolic dyslipidemia.

4.2. Sphingosine-1-phosphate in obesity

S1P is a member of the sphingolipid family, which comprises a large
group of bioactive molecules with a wide range of physiological func-
tions. Sphingolipids are produced in human body either by de novo syn-
thesis or by the salvage pathways. S1P in circulation mainly originates
from erythrocytes, platelets and endothelial cells [131–133]. Themajor-
ity of S1P in plasma is bound to HDL particles, and the rest to albumin
and other plasma lipoproteins [134]. Physiological effects of S1P are
exerted through its interaction with the receptors on target cells, but
also through its relationship with its carriers, principally HDL (Fig. 3).

S1P serves as a ligand for 5 different G protein-coupled receptors
(S1PR1-5). In general, S1P promotes cell survival, mobility, prolifera-
tion, and differentiation, but tissue distribution of the receptors, as
well as S1P coupling with specific G proteins ultimately determine its
biological effects [136]. In linewith this, Hashimoto et al. [137] reported
that increased expression of S1P-producing enzyme sphingosine kinase
is involved in the promotion of adipogenesis. More recently, it has been
demonstrated that S1P stimulates proliferation of adipocytes and adipo-
genesis [138]. In contrast, Moon et al. [139] reported anti-adipogenic ef-
fects of S1P, but these effects are mediated only through S1PR2. Also, it
has been demonstrated that the blockade of S1PR2 provokes adipocytes
proliferation, but suppresses the differentiation of pre-adipocytes,
whereas the opposite is true for S1PR1 [140]. Apart from the receptor-
mediated signal pathways, S1P acts as an intracellular signal molecule
by mediating TNF-α/NF-κB signalling pathway [141]. Taken altogether,
the interplay of receptors' activation and deactivation determines the
final effect of S1P, which might provide a ground for the future thera-
peutic use of S1P analogues.

Approximately two thirds of S1P in circulation is bound to HDL par-
ticles. Therefore, the interplay of S1Pwith serum lipids is predominantly
related to the structure and function of HDL. A carrier of S1Pwithin HDL
particles is apolipoproteinM (apoM) [142]. This apolipoprotein contrib-
utes to atheroprotective effects of HDL by enhancing the cholesterol ef-
flux and antioxidative properties of HDL, but also by serving as a S1P
chaperone. Accumulating evidence implicates that atheroprotective ac-
tions of HDL strongly depend on the presence of S1P, as well as that the
effects of S1P aremediated by its associationswithHDL particles. In a re-
cent study, Ruiz et al. [143] have demonstrated that the ability of HDL to
act anti-apoptotically depends on the presence of S1P and apoM. On the
other hand, anti-apoptotic effects of S1P were more prominent in com-
plex with apoM and HDL, compared to free S1P or its complex with al-
bumin [143]. Similar findings were reported regarding anti-
inflammatory and vasodilatatory properties of the S1P [144–146].

It has been demonstrated that obesity influences the entire
sphingolipid metabolism. The researchers have found an increased
amount of multiple sphingolipids, including S1P in adipocytes of obese
individuals [147]. In addition, plasma levels of S1P in obese mice, as
well as in obese humans were reported to be elevated [148]. Still,
Majumdar et al. [149] found no differences in S1P levels of overweight
and lean adolescents. More recent studies shed new light on the rela-
tionship between obesity and S1P. Namely, by analysing the liver me-
tabolome, Green et al. [150] demonstrated that calorie restriction
causes significant alterations of ceramide and S1P signalling pathways
in mice. The authors reported a significantly increased expression of
liver S1P, as a response to graded calorie restriction. In addition, S1P
negatively correlated with decreasing body mass [150]. Conversely,
Silva et al. [151] have found an increase in circulating S1P levels follow-
ing a high-fat diet in rats. Nonetheless, the same authors [151] demon-
strated that a high-fat diet caused a downregulation of hypothalamic
S1PR1 protein levels and consequent dysregulation of S1P/S1PR interac-
tion in the neurons of hypothalamus, which is crucial for control of en-
ergy balance. Another interesting finding was recently reported by
Christoffersen et al. [152]. Namely, the authors showed that apoM-/-

mice lacking of S1P signalization have enlarged and hyperactive
brown adipose tissuewith enhanced TGutilization. Based on thesefind-
ings, a hypothesis has been raised according to which apoM-S1P com-
plex might have evolutional role in preventing detrimental effects of
starvation, but in the condition of food excess, these bioactivemolecules
might contribute to the obesity development [153].

Green et al. [150] reported negative correlation of liver S1P with cir-
culating leptin levels. Also, it has been shown that leptin resistance in
obese rats is associated with increased plasma S1P levels, probably as
a compensatory effect [151]. Previously, Holland et al. [154] demon-
strated that adiponectin stimulates production of S1P, through activa-
tion of both adiponectin receptors AdipoR1/2 and subsequent
enhancing of ceramidase activity. More recently, Choi et al. [155] con-
firmed these findings by demonstrating a decrease in ceramide and in-
crease of S1P following administration of an adiponectin receptor
agonist. Thus, accumulating evidences suggest an intrinsic connection
between adipokines and sphingolipid metabolism, with S1P as one of
the prominent features inside of this metabolic loop. It is noteworthy
that, in contrast with numerous investigations on cell cultures and ani-
malmodels, a number of studies analysing S1P plasma levels in obese or
overweight human subjects is relatively small. However, it is clear that
the affinity of S1P towards different receptors, but also towards different
carriers, determines its final effect in the body. HDL, as the main carrier
of S1P in plasma, enables beneficiary effects of this signalling molecule.



Fig. 3.Metabolism and plasma distribution of S1P. De novo synthesis of S1P startswith a condensation of serine and palmitoyl-CoA and leads to the formation of themajor precursor of the
entire sphingolipid network: ceramide. Through the activities of several enzymes (sphingomyelin synthase, glucosyl-ceramide synthase or galactosyl-ceramide synthase), ceramide is
transformed into sphingomyelin, glucosyil-ceramide, galactosyl-ceramide and further into various glycosphingolipids. In a distinct metabolic pathway ceramide is, by the activities of
five different ceramidases, deacylated and transformed into sphingosine. Sphingosine kinases 1 and 2 catalyse the phosphorylation of sphyngosine and formation of S1P. Further
metabolism of S1P goes either back to sphingosine throughout the dephosphorisation, or towards an irreversible exit from the sphingolipid metabolism pathway, throughout the
cleavage by the activity of S1P lyase [135]. S1P participates in intracellular signalling, or is transported to extracellular space, wherein it bounds to HDL, albumin, or other lipoproteins.
Physiological effects of extracellular S1P are accomplished through the associations with membrane S1P receptors (1-5). S1P, sphingosine-1-phosphate; HDL, high-density lipoprotein.
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In addition, one should not neglect that obesity is linked with attenu-
ated HDL production and compromised HDL function. In such condi-
tions, higher proportion on S1P will be attached to alternative
chaperones, resulting in attenuated or even reversed effects of S1P. In
confirming such hypothesis, recently it was reported that apoM-S1P
complex is shifted from dense to light HDL particles in women with
type 1 diabetes,whereby such assembly of apoM-S1P and lightHDL par-
ticles is less efficient in promoting anti-inflammatory activities [156].

4.3. Circulating miRNA as biomarkers of dyslipidemia in obesity

Circulating miRNAs are recently established as biomarkers for sev-
eral diseases and have been repeatedly studied in the context of CVD
pathogenesis [157]. Although studies identified numerous miRNAs
with important roles in regulation of lipid metabolism [158], a special
emphasis will be placed on mir-33a and mir-33b, since they are in-
volved in the regulation of cholesterol and fatty acidmetabolism and in-
sulin signalling, which are the hallmarks of metabolic dyslipidemia.

Due to the presence of mir-33a and mir-33b in the introns of the
genes encoding transcription factors SREBP1 and SREBP2, respectively,
the induction of SREBPs will also induce microRNAs expression. As a
consequence, mir-33a upregulation will increase cholesterol synthesis
and uptake (via SREBP1-mediated activation of HMGCR and LDLR
genes), and reduce cholesterol efflux (by targeting ABCA1 and ABCG1
genes) and elimination (by targeting CYP7A1 gene) [158]. Similarly, ac-
tivation of mir-33b will increase cellular lipids, by targeting the genes
controlling fatty acid synthesis and oxidation, and also reduce insulin
signal transduction, by suppression of IRS-2 gene expression [159].
While the functional roles of mir-33a and mir-33b have been highly in-
vestigated, studies on their circulating levels as potential biomarkers are
underway. Martino and colleagues [160] found increased plasma miR-
33a andmiR-33b levels in hypercholesterolemic children and suggested
their use as early biomarkers of disrupted cholesterol homeostasis in
childhood. In a recent study, both circulating miR-33a and miR-33b
levels were positively associated with the levels of serum TC and LDL-
C in type 2 diabetes patients with high CVD risk [161]. Finally, miRNA
profile analysis in plasma of CVD patients showed three times higher
expression of miRNA-33 than in controls [162].

Bonding to HDL and LDL particles protects circulating miRNAs from
degradation by RNAses,while, in turn,miRNA cargo of HDL and LDL par-
ticles controls their function [158]. Based on the findings that miRNA
profile of HDL in healthy subjects differs from the profile in patients
with familiar hypercholesterolemia [163] and acute coronary syndrome
[164], a hypothesis of unique HDL-associatedmiRNA footprint in health
and diseases has been raised. Subsequent investigations revealed that
miR-223, the most abundant miRNA in HDL, mediates HDL anti-
inflammatory function [165]. Of note, LDL particles also carry certain
amount of miRNA-223, but its role in LDL metabolism is less under-
stood, as compared to miR-155, the most abundant miRNA in LDL,
which has pro-atherogenic properties [166]. Recent studies showed
that both circulating miR-223 [167] and miR-155 [168] levels correlate
with severity of coronary atherosclerosis. Further improvements of
the methods for detection of miRNAs in HDL and LDL particles will en-
able answering the question whether lipoprotein-associated miRNAs
may serve as early and sensitive biomarkers of dyslipidemia [169].

5. Implications for cardiovascular disease prevention

Despite significant preventive and therapeutic efforts, development
of CVD remains the principal unfavourable outcome of obesity. With an
aim to reduce the overall risk for cardiovascular and other chronic com-
plications, clinical practice guidelines for management of obesity ac-
knowledge that the treatment of co-morbidities should be integral
part of the obese patients' care [170]. Specific guidelines for the treat-
ment of dyslipidemia in obesity are recently released by the European
Society of Hypertension and European Association for the Study of
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Obesity [171]. These guidelines recommend lifestyle modification for
weight reduction as the main strategy for the regulation of lipid profile
[171]. Although obese patients usually have elevated TG and low HDL-C
levels, the primary goal of dyslipidemia management is the reduction of
LDL-C levels. Actual European guidelines for management of dyslipidemia
recognise patients with metabolic syndrome as high-risk individuals and
recommend lipid-lowering therapy for those with elevated LDL-C [172],
which is applicable to subjects with MUO [71]. Will the newest American
College of Cardiology/American Heart Association (AHA) cholesterol
guidelines provide specific recommendations for obese patients remain
to be seen upon their release in AHA Scientific Sessions 2018 [173].

Apart from well-known strategies aimed to control traditional lipid
parameters, contemporary research revealed a range of new modula-
tors of obesity and dyslipidemia, thus providing possibilities for new ap-
proaches in prevention of these conditions and related complications.
The recognition of MHO and MUO phenotypes might represent the
first step in this direction. It is clear that the maintenance of healthy
weight depends on a delicate balance between individual susceptibility
and lifestyle habits. Although the recognition of MHO phenotype
changed the perspective of cardiometabolic risk in obesity, several pro-
spective studies reported transition fromMHO to MUO phenotype dur-
ing follow-up [71,77]. This finding completely fits the conclusion that
MHO should be considered as a transient state rather than as a perma-
nent phenotype with low risk [71]. Therefore, additional efforts should
be conferred to maintaining MHO phenotype by dietary interventions
and overall changes of lifestyle.

An emerging topic of modern scientific investigations is whether
novel markers of dyslipidemia are also susceptible to non-
pharmacological interventions. To date, several studies have investi-
gated the effects of weight loss on plasma PCSK9 levels in obese sub-
jects. In the study of Filippatos et al. [109] no significant change of
PCSK9 level was found after three months of the low-fat dietary inter-
vention program, despite significant weight loss. Similarly, a one-year
lifestyle modification program in the study of 117 abdominally obese
men showedmodest effects on plasma PCSK9 level reduction [129]. Di-
etary patterns and interventions have different effects on plasma PCSK9
level: it was unchanged following short-term high-fat or high-fat/high-
protein diet, increased after high-fructose diet [117] and reduced by
Mediterranean diet [174]. As it has been mentioned above, dietary re-
strictions can increase levels of S1P and expression of S1P receptors
[150]. Since S1P associated with HDL particles exhibits significant anti-
atherogenic properties, elevation of S1P might present another
favourable aspect included in atheroprotective actions of restrictive
diet and weight loss. It is also interesting to mention possible effects of
physical activity on S1P. Namely, it has been demonstrated that physical
exercise increases levels of S1P in animal models [151]. In addition, re-
cent investigation demonstrated selective increase of HDL-associated
S1P after the endurance training [175]. Such novel findings implicate
that well-known atheroprotective modulators, like restrictive diet and
exercise, might have additional beneficial effects which offers new pos-
sibilities for preventive actions.

Althoughmany pieces of evidence have pointed toward strong asso-
ciations of vitaminD deficiencywith dyslipidemia, themajority of inter-
vention trials failed to prove beneficial effects of vitamin D
supplementation [58], so the question of vitamin D treatment in obese
individuals and dyslipidemic patients still remains open. Also, it is note-
worthy that, to the best of our knowledge, all previous researches fo-
cused on quantitative, but not on qualitative changes of serum
lipoproteins. Future studies should elucidate whether vitamin D has
any effect on quality and functionality of lipoprotein particles.

6. Conclusion

Impaired production of adipokines and chronic low-grade inflam-
mation in adipose tissue form the base for insulin resistance, which is
the main driving force in the development of metabolic dyslipidemia
in obesity. In addition, numerous epidemiological data linked vitamin
D deficiency and metabolic dyslipidemia, although a clear demonstra-
tion of causal relationship is still lacking. The concept of MHO has
been recently recognised, indicating a transitional state of relative pro-
tection against obesity-related metabolic complications. Knowing that
dyslipidemia has a polygenic background, which is additionally modi-
fied by the interactions with various epigenetic and environmental fac-
tors, this phenomenon may have important implication for long-term
cardiovascular prevention inMHOand deserves additional attention. Fi-
nally, further investigations of novel lipid biomarkers in obesity would
potentially yield new therapeutic approaches for controlling metabolic
dyslipidemia and cardiometabolic risk in obesity.
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