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 Abstract  

 

Ubiquitous computing is already weaving itself around us and it is connecting everything to 

the network of networks. This interconnection of objects to the internet is new computing 

paradigm called the Internet of Things (IoT) networks. Many capacity and non-capacity 

constrained devices, such as sensors are connecting to the Internet. These devices interact with 

each other through the network and provide a new experience to its users. In order to make full 

use of this ubiquitous paradigm, security on IoT is important. There are problems with privacy 

concerns regarding certain algorithms that are on IoT, particularly in the area that relates to 

their avalanche effect. In simple terms, avalanche effect means that a small change in the 

plaintext or key should create a significant change in the ciphertext. The higher the significant 

change, the higher the security of that algorithm. If the avalanche effect of an algorithm is less 

than 50% then that algorithm is weak and can create security undesirability in any network. In 

this, case IoT.  

In this study, we propose to do the following: (1) Search and select existing block cryptographic 

algorithms (maximum of ten) used for authentication and encryption from different devices 

used on IoT. (2) Analyse the avalanche effect of select cryptographic algorithms and determine 

if they give efficient authentication on IoT. (3) Improve their avalanche effect by designing a 

mathematical model that improves their robustness against attacks. This is done through the 

usage of the initial vector XORed with plaintext and final vector XORed with cipher text. (4) 

Test the new mathematical model for any enhancement on the avalanche effect of each 

algorithm as stated in the preceding sentences. (5) Propose future work on how to enhance 

security on IoT. 

Results show that, when using the proposed method with variation of key, the avalanche effect 

significantly improved for seven out of ten algorithms. This means that we have managed to 

improve 70% of algorithms tested. Therefore indicating a substantial success rate for the 

proposed method as far as the avalanche effect is concerned. We propose that the seven 

algorithms be replaced by our improved versions in each of their implementation on IoT 

(especially in cases where the key is varied). On the other hand, when using the proposed 

method with variation of plaintexts, only four out of ten algorithms reflected an increase of 

avalanche effect. Again, the proposed method yields positive results though only 40% in this 

case. We recommend that these four algorithms be replaced with the proposed algorithms in 

IoT whenever the plaintext is varied.  
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CHAPTER 1. INTRODUCTION 

1.1 Background of Study 

 

In this section, we give an overview of the Internet of Things (IoT); its definition, components, 

benefits, trending and security. We also define the avalanche effect and cryptographic 

algorithm. We also discuss how the avalanche effect of cryptographic algorithms affects the 

security of IoT. 

 

1.1.1 Definition of Internet of Things (IoT) 

  

The Internet has always been a network of networks, connecting computers together to share 

information. What has changed over the past two decades is the ability to connect remote and 

mobile things, objects, utilities or assets to the Internet and the cloud using wireless 

communications and low-cost sensors with fast computing and big storage [1]. Johnson 

explains in [2], when all these things are interconnected it is called Internet of Things (IoT). 

The International Energy Research Centre (IERC) defines IoT as follows: 

  "A dynamic global network infrastructure with self-configuring capabilities based on 

 standard and interoperable communication protocols where physical and virtual 

 “things” have identities, physical attributes and virtual personalities and use intelligent 

 interfaces, and are seamlessly integrated into the information network." [3].  

Although there are several definitions of IoT, they all  mean the same thing, which is, smart 

objects or devices connected to each other and connected to the internet and sometimes to a 

cloud system.  

1.1.2 Benefits of Internet of Things (IoT) 

 

The growth of IoT is driven by the vast advancement in technology seen in fast and smart 

devices equipped with computing and storage capabilities, as well as the decreasing cost of 

manufacturing electronic gadgets. Holdowsky et al. indicated in [4] that over the last two 

decades, microprocessors’ computational power has improved, doubling every three years, 
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making the processing power of gadgets more suitable for IoT. Kambies et al. reported in their 

research [4] that the price of sensors has consistently been reduced over the past several years, 

and the price reductions are expected to continue well into the future. In support of Kambies et 

al., Johnson indicated in [2] that the average cost of an accelerometer is now 40 cents, compared 

to two USD in 2006. Generally, sensors vary widely in price, but many are now affordable 

enough to support IoT and its applications in ubiquitous computing. On both theoretical and 

practical fronts of sensor development, researchers and developers have concentrated on 

improving the accuracy of sensors. Holdowsky et al. reported in [4] that sensors of IoT are now 

able to report close to the real measured value. Accuracy such as that of GPS devices is one of 

the things that will drive the growth of IoT. Now given the fact that IoT connects different 

devices together, has the ability to collect huge amounts of data, and even transports data on 

high-speed networks than traditional internet or computers, it is clear that IoT has huge storage 

capacity.  

 

IoT with its many benefits such as low cost components, speed, user-friendliness, huge storage, 

computational power and accuracy, makes it to be recommended and used by almost everyone 

anywhere in the world. In fact, Kouns in [1] mentions Gartner’s prediction that by 2017, 50 

percent of employers might ask their employees to “bring your own device” (BYOD) to work, 

thus adding to the growth of IoT. Furthermore, he extended the prediction by indicating that 

by 2020 there would be over 26 billion connected devices [1].  

 

1.1.3 The Avalanche Effect of Cryptographic Algorithms 

 

The main concern with such an enormous network, with various kinds of devices connected to 

it, is security. In particular, personal privacy is at risk, as these devices may expose sensitive 

information and potentially pose security risks. This is where cryptographic solutions in the 

form of ciphers are used, for integrity of information, authentication of users, and secrecy. 

Although there are several types of cryptographic solutions for the security of IoT, we focus 

our research on ciphers. We herein refer to ciphers as cryptographic algorithms.  
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A cryptographic algorithm is a mechanism that is used to encrypt information using plaintext 

(clear and readable information in static or transit) and key (like password) as inputs and 

ciphertext (scrabbled information in static or transit) as output on platforms like IoT. The basic 

usage of algorithms is to encrypt and decrypt information.  

 

In terms of security, a cryptographic algorithm can be evaluated in several ways, and using 

various cryptanalytic techniques. In order to declare an algorithm cryptographically secure, its 

security must be tested against known cryptographic attacks.  One of the techniques to avoid 

the success of these attacks, the tested crypto algorithm must have a strong avalanche effect 

[5], [6], [7]. The avalanche effect is a measure of how a small change in an input affects the 

outputs bits. In the context of the symmetric ciphers, this small change in the plaintext or key 

should cause a huge change (that is more than 50%) in the ciphertext [8], [9].  

Clearly, in order to secure information stored or data in transit, the IoT needs cryptographic 

algorithms that have good avalanche effect [10], [11].  

 

1.1.4 Security of the Internet of Things (IoT) 

 

There are many attacks on IoT, some of which are due to implementation and configuration 

flaws, such as devices that use cryptographic algorithms with poor avalanche effect [4]. We 

now give a few examples of various attacks as reported in the literature. 

Firstly, the Denial of Service (DoS) attacks. Holdowsky gives the DoS attack as an example of 

the many attacks that can be launched against machines connected to IoT [4]. DoS is the 

process where an intruder manipulates functionality of service on network infrastructure 

[6=12]. These types of attacks are a concern for IoT because they increase in proportion to the 

number of IoT connected devices that are under risk. These include remote IoT devices such 

as sensors, which are less likely to be properly secured [13]. DoS attacks get worse when more 

devices without strong cryptographic algorithm with high avalanche effect are interconnected 

[6], [8].  
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Secondly, is eavesdropping, that is interception of communication. Alsaadi et al. [13] 

discovered that eavesdropping poses a security challenge in IoT. It was found that passive 

attackers could intercept communication channels such as the internet, local wired networks, 

IoT and wireless networks, in order to access data from a stream of information [4]. Although 

it is not easy to prevent eavesdropping, it is easier to first encrypt data or a stream of 

information before transmission, by using algorithms with high avalanche effect [40], [6].  

Thirdly, we look at attacks that use ‘weak’ devices to send malicious information to other 

connected devices [12]. In some cases intruders may exploit security vulnerabilities to create 

risks that may range from software risk to physical risk in some instances [14].  

To support the statement above, Walters [15] reported on how he was able to remotely attack 

two different insulin pumps that were connected to IoT and succeeded to change their settings 

so that they stopped delivering medicine. Such an attack is dangerous, even fatal for patients 

who are dependent on those insulin pumps for their regular insulin dosage.  

Klenk et al. [16] explained a situation where an attacker obtained access to a car’s internal 

computer network without touching the car. He described how the attacker was able to hack 

into a car’s built-in telematics unit and control the vehicle’s engine and braking systems.  

In such situations control systems, vehicles, and even the human body can be accessed and 

manipulated, causing injury or worse, due to an unauthorized access to control systems. (i.e. 

Vehicles, body planted medical devices, SCADA, computer systems and manufacturing plants) 

[17]. Lequetica reports in [18] of how automotive manufacturers and car rental companies are 

proactively trying to address the issues of car security in the broader sense of IoT. These 

examples further emphasise the need for implementation of cryptographic algorithms that have 

high avalanche effect.  

An algorithm that has poor avalanche effect does not consider the bit error (collision) 

characteristics that may occur when data is encrypted [19]. Collision is the process when one 

algorithm gives multiple numbers of same output (ciphertext) even though the inputs (plaintext 

or key) are totally different. Vijayrangan et al. [20] showed that there are algorithms on 

platforms like IoT that can pose bit error (collision) attack to the intruders because of poor 
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avalanche effect.  Patidar et al. [8] indicated that, if an error occurs in the encrypted data over 

IoT, which is more likely to happen on medium platforms such as wireless medium, the 

decryption procedure at the receiver might cause half of the original bits to be in error due to 

the weak avalanche effect. Therefore, there is a need for new enhanced encryption algorithm 

with high avalanche effect that will take into consideration or handle the bit error or collision 

characteristics when data travels or sent over IoT based on avalanche effect [19], [9], [7], [8].  

IoT needs a crypto algorithm with high avalanche effect. In most of the algorithms like 

Advanced Encryption Standard (AES) and Data Encryption Standard (DES), there is usually 

no initial and final vectors implemented as in Figure 1.1. In the proposed work, the initial and 

final vectors are implemented to the selected algorithms to enhance their strength and their 

avalanche effect (see Figure 1.2). 

 

Figure 1.1: The model of well-known algorithms. 

 

 

Figure 1.2: Model plan of proposed work, initial and final vectors are implemented. 
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1.2 Problem Statement 

 

Protecting communication on IoT is very hard, not only in protecting application data, but also 

on routing and in other metadata. IoT has many vulnerabilities from design to cross-site. There 

are problems or concerns of privacy, such as lack of encryption, insecure software and 

hardware, insufficient authentication and authorization. Several methods have been proposed 

in order to combat this. Perhaps the most popular methods are the analysis of the speed of 

algorithms, analysis on the power consumption of the algorithm, analysis on the time the 

algorithm takes to encrypt, and analysis on the memory needed to install algorithms. The main 

aim of this study is to enhance the avalanche effect of algorithms used on IoT by implementing 

initial and final vectors. Implementation of initial and final vectors have never been used before 

as the purpose of enhancement of the avalanche effect. An algorithm that has poor avalanche 

effect compromises the security on IoT. Essentially an intruder can easily attack a 

cryptographic algorithm that has a weak avalanche effect on IoT by using attacks mentioned 

in 1.1.  

1.3 Hypothesis 

 

The research hypothesis, which will also serve as the statement of the research reads:  

H1 There is a relationship between the avalanche effect of cryptographic algorithms used 

on IoT and their level of security. 

H2 Improving the avalanche effect of cryptographic algorithms to increase the security 

of IoT. 

1.4 Research Questions 

 

The primary research question forming the crux of this research study reads; what is the 

relationship between the avalanche effect of algorithms used on IoT and their level of security. 

The secondary research questions reads as follows: 

i. What literature is available on security concerns on IoT? 

ii. What are the types of algorithms used on IoT? 
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iii. Do these algorithms have acceptable significant levels of avalanche effect (that is more 

than 50%)? 

iv. How can we possibly increase the avalanche effect of these algorithms if they don’t 

have acceptable levels of avalanche effect (of more than 50%)? 

v. What are the benefit of having an algorithm with high avalanche effect on IoT? 

vi. What is the relationship between crypto algorithms used on IoT and avalanche effect? 

vii. How can we possibly give proposed future work on how to enhance the avalanche effect 

of these algorithms? 

1.5 Research Objectives 

 

In this study, we propose a model where the initial and final vector will be used to enhance 

avalanche effect. The specific objectives are: 

i. To carry out literature review on security concerns of IoT. 

ii. To determine the type of algorithms that are used to create avalanche effect on IoT. 

iii. To analyze avalanche effect by implementing the source code of avalanche effect using 

C++. 

iv. To compare avalanche effect levels of crypto algorithms used in IoT using the 

avalanche effect 

v. To investigate the possibility to increase the avalanche effect of these algorithms if they 

don’t have acceptable significance of avalanche effect (more than 50%) using C++. 

vi. To invitigate the benefit of having an algorithm with high avalanche effect on IoT. 

vii. To investigate the relationship between crypto algorithms used on IoT and avalanche 

effect. 

viii. To design mathematical model that gives more confusion and diffusion to intruder 

using C++. 

ix. To compare the results of existing algorithms and the new designed mathematical 

model of algorithm. 

x. To publish our results in accredited journals and conference proceedings like IEEE. 
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1.6 Research Methodology 

   

In this study, the research methodology to be used will be the experimental research method 

that will be conducted as follows: (1) Searching and selecting existing cryptographic 

algorithms used for authentication and encryption in the context of IoT. (2) Analysing the 

avalanche effect of selected existing cryptographic algorithms from step one. (3) Improving 

their avalanche effect by designing a mathematical model (where an initial vector will be 

XORed with the plaintext and a final vector XORed with the ciphertext) that gives more 

confusion and diffusion to intruder. (4) Testing the new mathematical model if it really 

enhances the avalanche effect of each algorithm that is used on IoT. (5) To propose the future 

work on how to enhance security on IoT and finally give the conclusion. (6) Showing that the 

high avalanche effect of an algorithm means high security of an algorithm. (7) Showing the 

relationship between crypto algorithms used on IoT and avalanche effect. (8) Giving the 

proposed future work on how to enhance the avalanche effect of these algorithms. Figure 1.3 

shows the proposed model of study. Whereas Table 1.1 shows the causal relationship between 

research objectives and research questions. 

 

 

Figure 1.3: Detailed flow diagram of the proposed study with XOR block inserted.  
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Table 1.1: Causal relationship between research objectives and research questions. 

Research Questions Research Objectives Procedure or methodology taken 

What literature is available on 

security concerns in IoT? 

To carry out  literature review on 

security concerns in IoT 

Journals, articles, papers and books 

were used to compile the literature 

review of concerning IoT security. 

What types of algorithms are 

mostly used to create 

Avalanche effect on the   IoT? 

To determine the type of 

algorithms that are used to create 

avalanche effect on IoT. 

From literature we found ten algorithms 

mostly used on IoT. Namely: DES, 

AES, Serpent, Blowfish, Camellia, 

MMB, Cast, RC5, Clefia and Skipjack. 

Do these algorithms have 

acceptable significance of 

avalanche effect? 

To measure and compare 

avalanche effect of crypto 

algorithms used in IoT. 

Most of algorithms found from 

literature review had no significance of 

avalanche effect when avalanche effect 

was calculated using C/C++ code.  

How can we possibly increase 

the avalanche effect of these 

algorithms if they don’t have 

acceptable significance of 

avalanche effect? 

To investigate various methods of 

improving the avalanche effect of 

algorithms. 

We increased avalanche effect by using 

initial and final vectors derived from PI 

value, in most algorithms using C++.  

What are the benefit of having 

an algorithms with high 

avalanche effect on IoT? 

To improve their avalanche effect 

by designing mathematical model 

that gives more confusion and 

diffusion to intruder using C++. 

It is found that if algorithm has high 

avalanche effect, it gives confusion and 

diffusion to the intruders and hackers. 

Meaning it is cumbersome to crack that 

algorithm. Refer to chapter 4. 

What is the comparison 

between avalanche effects 

levels of existing crypto 

algorithms used on IoT and 

proposed ones? 

To compare the results of existing 

algorithms and proposed one 

based on avalanche effect. 

It is found that it is possible to increase 

avalanched effect on certain algorithms 

used on IoT using the proposed method. 

How can we possibly give 

proposed future work on how 

to enhance the avalanche 

effect of these algorithms? 

To analyze if it is possible to 

increase the avalanche effect of 

these algorithms if they don’t have 

acceptable significance of 

avalanche effect using C++. 

The proposed work showed that it is 

possible to increase avalanche effect 

using initial and final vector from Pi 

value. 
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1.7 Significance of the Study 

  

After the study, the increase of avalanche effect on each algorithm has the potential to securing 

communication, data and sensitive information transported and stored on IoT. It is our belief 

that results, underpinned by these studies and work, will give other researchers the knowledge 

on how to improve and implement the security on IoT. We believe that as we explore the issues 

of security surrounding IoT, we are going to be adding yet another dimension of security to it. 

That is enhancing the security of the algorithms used on IoT. The study will give 

cryptographers the necessary background on how to improve avalanche effect when designing 

algorithms. 

1.8 The Research Roadmap 

 

Chapter 1 discussed an introduction of the study. This includes background of study, problem 

statement, hypothesis, research questions, research methodology, research objectives, 

significance of study, research roadmap and chapter summary. 

 

Chapter 2 will review the literature related to our study. This includes: introduction, overview 

of IoT, encryption methodology, algorithms used in the security of IoT, avalanche effect, 

security in the IoT, types of attach on IoT, related work and chapter summary. 

 

Chapter 3 will discuss the research methodology related to our study. This includes 

introduction, source of initial and final vectors, PI methodology that is the overview of PI, 

methodology of study based on the avalanche effect, research design, experimental procedure 

and chapter summary.  

 

Chapter 4 will give the results, discussion and analysis related to our study. This includes 

graphical comparison of avalanche effect, the mathematical discussion and analysis. 

 

Chapter 5 is the conclusion and future work. This includes conclusion of the study, its results 

analysis and proposed future work to be done. 
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1.9 Chapter Summary 

 

In this chapter, we defined IoT, its origin, how is it growing on daily bases, its affordability 

and accessibility, its fastness, its user-friendliness and its security. We also discussed 

cryptographic algorithms and their avalanche effect as the background. The problem statement, 

research methodology, hypothesis, research questions, research objectives, significance of the 

study and the research roadmap were discussed in this chapter to give understanding of 

introduction and background of research.  
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CHAPTER 2: LITERATURE REVIEW 

2.1. Introduction 

 

In this chapter, we present literature review of Internet of Things: its protocols, architecture, 

communication models (that are device-to-device, device-to-cloud, device-to-gateway, and 

back-end data) and security.  

We also present literature review of encryption methodologies and techniques used on IoT: its 

symmetric cryptography, asymmetric cryptography, steganography, vigenère and hash 

(authenticated) function. We present types of algorithms used on IoT: The Advance Encryption 

Standards (AES), Blowfish, Camellia, CAST-128, Clefia, Data Encryption Standard (DES), 

Rivest Cipher 5 (RC5), Modular Multiplications based Block cipher (MMB), Serpent and 

Skipjack algorithm. These are the algorithms selected for the study because they are mostly 

used on different devices of IoT. Refer to section 2.4 , section 2.7 and Table 3.1. We present 

their origins, avalanche effects and security.  

We also present literature review of the types of attacks used on Internet of Things like Denial 

of Service (DoS), Man in the Middle (MITM), eavesdropping, honeypot, differential 

cryptanalysis and differential fault attack.  These attacks are used to attack cryptographic 

algorithms mentioned above due to their avalanche effects. Intruder can crack the machine, 

information in transit, strength of algorithm to get secret key and information. 

Lastly we present the related work done by other researchers concerning the related studies. 

Little has been done in this regard. In our related work we present literature of where these 

cryptographic algorithms are installed on IoT. We present attacks used to crack these 

algorithms which are installed on IoT due to their avalanche effect. We also present other 

studies done by other researchers to enhance security of these algorithms using avalanche effect 

and the results found.  

2.2. Overview of Internet of Things 

 

IoT uses protocols, network layers, wireless connectivity, communication models (that are 

device-to-device communication, device-gateway communication, back-end data sharing 
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communication, device-to-cloud communication) and small devices connected to each other, 

which operate on high speed and have huge storage, flexible to cloud computing and other 

advantages compared to standard internet.  

2.2.1 IoT Protocols 

IoT has many protocols developed from the International Organization for Standardization 

(ISO) stack for IoT devices operation [21]. Security of these protocols is determined by strong 

cryptographic algorithms [15], [22] – [23]. Several protocols exist within IoT stack, such as 

the Constrained Application Protocol (CoAP) which is messaging protocol, Infrastructure 

protocol for networking and the Identification protocol used to identify the user. Other 

protocols such as the Message Queuing Telemetry Transport protocol (MQTT) is used for 

messaging and is maintained by the Advanced Message Queue Protocol (AMQP), Discovery 

protocol which is used to discover web and nodes. Others are the Data Protocols or the 

Representational state transfer (REST) protocol. The REST protocol is used to handle data like 

the web socket. Apart from the protocols mentioned above several others protocols exist which 

are the Device Management protocol that provides ways on how to manage devices, the 

semantic protocol which provides web services, the stomp protocol that handles text oriented 

messaging. All of these protocols are designed to save energy, with slow to computing time 

and less memory because they have space limitation and limited power supply as the use 

batteries [24]. Due to these limitations, it follows that the security problem is one of the issue 

when dealing with IoT [25], [24]. The summary of the protocols used on IoT are defined in 

Table 2.1. 
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 Table 2.1: Summary of the protocols used on IoT [26]. 

Protocol CoAp XMPP RESRful HTTP MQTT   

Transport UDP TCP TCP TCP 

Messaging Request/Res

ponse 

Publish/Subscribe/Request/ 

Response 

Request/Respons

e 

Publish/Subscribe

/Request/ 

Response 

2G,3G,4G 

Suitability (1000s 

nodes) 

Excellent Excellent Excellent Excellent 

LLN Suitability 

(1000s nodes) 

Excellent Fair Fair  Fair 

Compute 

Resources 

10 ks 

RAM/Flash  

10 ks RAM/Flash 10 ks 

RAM/Flash 

10 ks RAM/Flash 

Success Stories Utility Fields 

Area 

Networks 

Remote management of 

consumer white goods 

Smart Energy 

Profile 2 

(premise energy 

management/ho

me services) 

Extending 

enterprise 

messaging into 

IoT application 

 

 

2.2.2. IoT Architecture  

 

There are several existing stack layers within IoT which are used in IoT architecture.  However, 

Security of these layers is determined by strong cryptographic algorithms [21]. Within such 

domains researchers are busy increasing network layers of IoT architecture by breaking down 

some of the main layers into sublayers [21]. Recently, IoT is considered academically and 

practically by several researchers, that its architecture is basically composed of three layers: 

the perception layer, the network layer and the application layer [27]. The application layer 

handles all applications of IoT while the network layer deals with connection to the network 

such as the wireless or the wired network [27]. The perception layer is used to request, acquire, 

collect and process the data from IoT communications [28]. Figure 2.1 shows IoT architecture 

and it network layers. 
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Figure 2.1: IoT architecture and network layers [29] 

 

2.2.3. Device-to-Device Communication model 

 

The device-to-device communication model is the mechanism when two or more devices are 

directly connected to establish communication amongst one another, without using gateway, 

cloud computing and servers [27]. These devices communicate over various kind of 

applications like SHAREit, Bluetooth, ZigBee or Z-Wave [30]. Its security and trust rely on 

direct connection between the devices by pairing them [31]. No internet protocol is used on 

device-device communication model [27].  Santosh et al. [30], described device-to-device 

communication model as shown in Figure 2.2. 

 

 

Figure 2.2: Device-to-device communication model [30].  
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2.2.4. Device-to-Cloud Communication 

 

In a device-to-cloud communication, IoT devices connect directly to an internet cloud service 

like service providers to establish communication amongst each other [27]. This approach 

normally takes advantage of existing channel communications mechanisms like Ethernet, 

mobile phone service providers or Wi-Fi connections to establish a connection between the 

device and the internet network, which finally connects to the cloud computing and services 

[30]. Security and privacy rely on service provider [31]. Communication might become 

dysfunctional if service provider disappears or changes hosting provider [31]. Santosh et al. 

[30] described device-to-cloud communication model as shown in Figure 2.3. 

 

 

Figure 2.3: Device-to-cloud communication model [31].  

 

2.2.5. Device-to-Gateway Communication 

 

The device-to-gateway communication is the process where the devices connected to IoT 

gateways as a channel to reach cloud services. IoT gateway’s function is to fill the 

communication gap amongst IoT devices, systems, sensors, equipment and the cloud. IoT 

gateway also provides internal processing and storage solutions. Security and data 

confidentiality rely on website visited and browsed during communication [31]. Websites 

might become dangerous if intruder wants to attack, he/she might hack or phish information 

from the user using fake website [31]. Santosh et al. [30] described device-to-gateway 

communication model as shown in Figure 2.4. 
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Figure 2.4: Device-to-gateway communication model diagram [30]. 

 

2.2.6. Back-End Data Sharing communication 

 

The back-end data-sharing communication alludes to a communication architecture that allows 

users to transfer and analyze data from a cloud service in combination with data from other 

sources [27]. The need of internet protocol is not necessary in the communication [30]. Security 

and trust rely on the application service providers [31]. If the application service provider stops 

the services or put software on application that has the open-back-door, all user’s information 

and data might be exploited, read or sent to the wrong recipients [31]. Santosh et al. [30] 

graphically described back-end data sharing communication model as shown in Figure 2.5. 
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Figure 2.5: Back-end data sharing model diagram [30]  

 

2.2.7. Security and the Internet of Things  

 

Usually, devices connected to IoT expose sensitive information and may became a potential 

security risks such as: (1) Privacy defined as a mechanism of blocking all unauthorized 

accesses. If there is a lack of securing information, that leads to enable unauthorized access and 

misuse of personal information, then there is a lack of privacy; (2) Data confidentiality defined 

as a mechanism to kept secrecy of data and information. If there is of lack of keeping secret of 

data and information, that leads to facilitate attacks on the storage devices of IoT, then there is 

a lack of data confidentiality; and (3) Trust is a mechanism of identifying and verifying the 

sender, data or device used on IoT, If there is a lack of verifying the legitimacy of devices, 

persons, service providers or cloud services when users are exchanging information over IoT, 

this lead to create safety risks [32], [33]. The main three IoT security risks are represented by 

Bilal [27] as shown in Figure 2.6. 
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Figure 2.6: IoT Security Challenges [27].  

 

Intruders could exploit user identity passwords, credit card numbers, leading to them being 

vulnerable to theft or fraud [34]. Thus, the more devices are connected to IoT in their homes 

or workplaces, the more vulnerabilities which an unauthorized person could use to access 

sensitive information [34]. Most of devices have no cryptographic algorithms, and others have 

algorithms with less avalanche effect [9], [7], [35]. This exposes variability on devices [8].  

Security vulnerabilities on connected device could lead to potential attacks at the end-user’s 

network, or facilitate attacks on other systems [36], [37]. An intruder could exploit security 

vulnerabilities to create risks that could affect software or hardware in some cases [41, 38]. For 

example, attacks like: Data confidentiality, data integrity, data authentication, data freshness, 

availability, time synchronization and many more explained by Borgohain [36], Walters [38] 

and by Klenk [39]. Therefore there is a need to develop algorithms with high avalanche effect 

to secure all levels of IoT [40], [8]. Therefore, all levels of IoT from physical devices, 

controllers, connectivity, servers (edges), data accumulation, data abstraction, application, 

collaboration up to the top processes should be protected [41], in other words everything that 

is used on IoT should be secured before use to achieve identity management, authentication, 

secure storage, secure communication, secure network access and secure content [42]. This can 

be shown in Figure 2.7 on the right hand side of it [41]. 
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Figure 2.7: IoT reference model: Security [41]. 

 

2.3 Encryption Methods and Techniques 

 

Cryptography is the art of encrypting and decrypting information, data and messages. During 

ancient ages, encryption was done using the pen-and-paper methods based on the letter 

substitutions and shifting such as Vigenère and Steganography encryption. Today networks 

like IoT focus on digital cryptographic systems such as symmetric, asymmetric and hash 

function encryption that can encrypt and decrypt information, data and messages using 

computers. 

 

2.3.1 Symmetric Encryption 

 

This is the kind of encryption that uses a same key to secure data from sender to receiver for 

secure communication [43]. Kaur et al. [44] explained the process of symmetric encryption as 

uniform or symmetric because there is only one key used for encryption and decryption 

process. There are several different types of symmetric key algorithms that can be used, such 

as AES, DES, Blowfish, Clefia and Serpent [45].  
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2.3.2 Asymmetric Encryption 

 

This is the kind of encryption method, where the key used to decrypt data or information is 

totally different, compared, to the key used to encrypt same data or information [44]. 

Asymmetric encryption is also known as public-key encryption [46]. There are many 

asymmetric encryption key algorithms such as Elliptic Curve Cryptographic algorithm (ECC), 

Rivest Shimar Aglemen (RSA), Diffie-Hellman and Digital Signature Algorithm (DSA) [47].  

  

2.3.3 Steganography 

 

This is the kind of encryption which puts data or information onto other mediums in an 

unnoticeable way [48]. These mediums are objects that are usually viewed by human beings. 

These objects can be picture, audio, and video files [49]. A very simple example of 

steganography is the invisible ink that is used to write invisible text on a paper that has visible 

text, the receiver will ignore the visible text and read the invisible one written by invisible ink 

using a candle [50]. Another example is when the video is played but pictures on video are 

sending a message which totally different video to unauthorized person. The grass and trees on 

the videos can be used as messages, and are read as morscode (the ring tones of an ancient 

phone were recognized by long-short tones, on-off tones).   

 

2.3.4 Vigenère Encryption 

 

In a vigenère encryption, each letter of the alphabet is substituted or shifted to some number of 

places [51]. For example, in a vigenère encryption of shift 3, A letter A would become E, B 

would become F, Y would become C and so on [52]. The vigenère encryption is composed of 

several shifts of encryption in sequence with different shift values [53]. An example of vigenère 

encryption is Caesar algorithm [51]. 

 

2.3.5 Hashing (Authenticated) Encryption  

 

In hashing, a unique fixed-length signature is created for a specific data or information set [54]. 

Each and every “hash” is different to a specific data or information, so little changes to that 

data or information would be easy to notice. When data or information is hashed, it cannot be 
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reversed nor deciphered [55]. It is simple to tell if the data or information received has been 

tempered with or not. Hashing is used to check if intruder has tempered with communication 

[54]. 

 

2.4 Algorithms Used In the Security of IoT 

 

Several algorithms are used to secure IoT. In this study we selected ten algorithms that are used 

on IoT. The reason is that, they are mostly implemented on different devices of IoT. These 

algorithms are: 

i. AES:  AES is used on IoT to secure sensors and contactless smart cards.  

ii. Blowfish: Blowfish is used to secure application and network layer of IoT. 

iii. Camellia: Camellia is used on a prototype (encryption) for IoT. 

iv. Cast-128: Cast is used as one of the prototype of encryption for IoT.  

v. Clefia: Clefia is used on IoT to secure health-care devices. 

vi. DES: DES is mostly used algorithm on IoT to secure the prototype of encryption for 

IoT.  

vii. MMB: MMB is imbedded on the software applications of IoT. 

viii. RC5: RC5 algorithm is implemented on Mica2 hardware (base station of IoT).  

ix. SWSDSSerpent: Serpent is used to secure sensors of IoT. 

x. Skipjack: Skipjack algorithm is implemented on Mica2 hardware (base station of IoT). 

 2.4.1 The Advanced Encryption Standard (AES) Algorithm  

 

AES is defined as a cryptographic algorithm that was designed by Rijndael and it was submitted 

to the National Institute of Standards and Technology (NIST) in order to secure electronic data 

[56], [57]. The specification of AES was explained in Federal Information Processing 

Standards (FIPS) Publication in 1997 and it was accepted by NIST [58], [59]. The AES was 

analyzed as a block cipher used to encrypt/decrypt blocks of 128 bits and had capacity of using 

keys of 128, 196 or 256 bits [60]. AES is mostly used in hardware and software of IoT [56].  
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2.4.2 Blowfish Algorithm 

 

Blowfish algorithm is as an algorithm created by Bruce Schneier in 1993, it uses a 64-block 

size and a key length of 33 up to 448 bits [61]. Blowfish is used to secure applications and 

network layer of IoT [62]. In this study, we focus on Blowfish which uses a key of 128 bits 

called Blowfish-128 encryption algorithm. Blowfish is described as a block cipher using 16 

rounds [61], [62].  

2.4.3 Camellia Algorithm 

 

Camellia is defined as a block cipher algorithm designed by three companies called Telephone 

Corporation, Nippon Telegraph and Mitsubishi Electric Corporation in 2000 [63]. It was 

submitted to ISO/IEC JTC 1/SC 27 as a consideration proposal for an international encryption 

standard in 2000 [59]. Camellia has been accepted for use by the ISO/IEC [63]. These 

companies (Telephone Corporation, Nippon Telegraph and Mitsubishi Electric Corporation) 

combined expertise from their companies to develop Camellia [65]. Camellia is defined to use 

the 128-bit block size and 128, 192 and 256-bit key sizes [66]. Encryption and decryption of 

Camellia is defined as the same procedure but the order of the sub-keys is reversed in 

decryption process [67].  

 

2.4.4 CAST-128 Algorithm  

 

CAST-128 is defined as symmetric block cipher algorithm developed in 1996 by S. Tavares 

and C. Adams [67], [68]. CAST-128 is explained as a cipher that uses 64-bit plaintext blocks 

under a key size 128 bits [69], [68]. The algorithm is defined to operate on Feistel network 

structure same as DES [67] with 12 or 16 rounds.  

2.4.5 Clefia Algorithm  

 

Clefia algorithm is an algorithm designed by Nagoya University and Sony [70], [43]. It was 

kept secret by Sony as proprietary algorithm until the weakness was found on its S-Boxes 

configuration, after that it was published to the public domain [71]. It is a 128 bits block cipher 

and uses different key lengths: 128, 192 and 256 bits [72]. Clefia is explained to use two Feistel 
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functions, a 4-branch and an 8-branch [43]. The number of rounds are determined by the length 

of key [70].  For 128 bits key, 18 rounds are used. 192 bits key 22 rounds are used and 256 bits 

key 26 round are used [43].  

2.4.6 Data Encryption Standard (DES) Algorithm 

 

DES is defined as a block cipher algorithm widely used on IoT in the world [45], [73]. Kammer 

et al. [74] indicated that man called Horst Feistel developed a function called feistel in 1970. 

This function was used as a building block to strengthen DES. After development, the 

algorithm was submitted to the National Bureau of Standards (NBS) after the invitation to 

propose an algorithm for the protection of data and information of the United State of America 

(USA) government [75]. In 1976, NBS slightly modified DES after picking up some 

weaknesses on the size of key against brute-force attacks, which was made known to the public 

by Federal Information Processing Standard (FIPS) of the USA in 1977. DES was developed 

to encrypt and decrypt blocks of plaintext and ciphertext of 64-bits long respectively and uses 

56 bits of key [73]. It is a 16 rounds block cipher [74], [75]. Decryption was applied by using 

the same sub-keys used in encryption, but in the reverse order [76], [73]. 

2.4.7 Modular Multiplication based Block Cipher (MMB) Algorithm 

 

Modular Multiplication based Block Cipher (MMB) is defined as a block cipher that was 

developed by Govaerts, Daemen and Vandewalle in 1993 [77], [78]. Their goal was mainly to 

replace IDEA block cipher [79]. MMB is an algorithm which uses 6 rounds for decryption and 

encryption [62]. The plaintext block and key size are 128 bits each [79], [78].  

2.4.8 Rivest Cipher 5 (RC-5)-32/32/16 Algorithm  

 

Rivest Cipher (RC5) is a symmetric block cipher that was developed by Ronald Rivest in 1994 

[80], [81]. His aim was to develop a fast algorithm to secure data. It is said to be a fast 

symmetric block cipher because of its elementary computational operations of encryption on 

full words of data takes a short time to encrypt [81]. Unlike other algorithms, RC5 was designed 

to use parameters set by the user before encryption takes place [80] and depending on the 

environment or the platform where it is going to be implemented. These parameters are defined 

https://en.wikipedia.org/wiki/Horst_Feistel
https://en.wikipedia.org/wiki/National_Bureau_of_Standards
https://en.wikipedia.org/wiki/Brute-force_attack
https://en.wikipedia.org/wiki/Federal_Information_Processing_Standard
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as w, r, and b [81]. Where w is word byte chosen from the three numbers 16, 32 or 64 [80]. The 

w is a number of word byte allowed to be chosen for RC5 [81]. The second parameter r is the 

number of rounds user want to run [80]. The third parameter b is the number of bytes in an 

original key size selected [80], [81]. The key size is defined to range from 0 to 255 bits [80], 

[81].  

 

2.4.9 Serpent Algorithm 

 

Serpent is a symmetric block cipher designed by Lars Knudsen, Ross Anderson and Eli Biham 

in 1998 [82], [83]. Their goal was to submit the algorithm to be considered as a candidate of 

the Advanced Encryption Standard [82]. Serpent is adopted from DES algorithm, its S-Boxes 

are extracted from DES and has a new structure that gives confusion to the intruder [83]. It 

uses a 128-bits block size and key size of 128, 192 or 256 bits [84].  

2.4.10 Skipjack Algorithm 

 

Skipjack is an algorithm that was designed by National Security Agency (NSA) in 1993 for the 

tools like hardware crypto-processors used in the military agencies for privacy, confidentiality 

and integrity services [85], [86]. NSA is an intelligent department of USA, one of its core 

functions is to develop and implement cryptographic standards for department of defense in 

the USA.  This algorithm uses a plaintext and ciphertext block size of 64 bits, a key block size 

of 80-bits, and is defined to have 32 rounds [85], [86].  In this study, an 80-bits key will be 

used because of the limitation of key block specification of the algorithm.   

2.5 Avalanche Effect and Security in the Internet of Things  

 

Zibideh [19] defined the avalanche effect as a desirable property of traditional algorithms like 

Advanced Encryption Standard (AES), Data Encryption Standard (DES) and other well-known 

algorithm used on IoT. The avalanche effect is satisfied when one input bit is changed, each of 

the output bits should change with a probability of more than 50% [88]. In context of symmetric 

ciphers a small change of the plaintext should cause a huge change in the ciphertext [89]. 

Vijayrangan et al. [20] showed that there are algorithms that can expose attacks like bit error 

(collision) attack to the intruders because of their poor avalanche effect. The avalanche effect’s 

https://en.wikipedia.org/wiki/National_Security_Agency
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definition is based on the bits of an input and the output bits of the algorithm. In [90], it was 

found that these traditional algorithms could be exposed to a bit error during decryption 

process. Sobti et al. [91] showed that there is a need to develop algorithms which are resistant 

to attacks for prevention of the intruders to access and attack communications on IoT. Even if 

algorithm was used to strengthen security of IoT, if it does not have sufficient avalanche effect 

[7], [35], therefore it does not prevent the bit error characteristics when used on IoT [92]. If an 

error occurred in the encrypted data over IoT, which was found to be more likely to happen on 

channels such as the wireless channel of IoT, the decryption procedure at the receiver side 

could cause half of the original bits to be in error due to the poor avalanche effect [92]. Within 

this theoretical paradigm, it is clear that there is a need of new secure encryption algorithms or 

modification of traditional algorithms that would take into consideration or handle the bit error 

characteristics on IoT by enhancing or considering avalanche effect [89], [35], [8].  In the 

following section we will discuss several attacks used on IoT due to lack of sufficient avalanche 

effect.  

2.6 Types of Attacks on Internet of Things 

 

There are many attacks that have been discovered since the establishment of IoT. In this section 

we discuss an overview of attacks that are mostly used on IoT: Attacks like Denial of Service 

(DoS), Man in the Middle (MITM), Eavesdropping, Honeypot Attack, Collision (Bit Error), 

Differential Cryptanalysis and Differential Fault Attack.  

 

2.6.1 Denial of Service (DoS) Attack 

 

DoS attack is defined as when an intruder manipulates functionality of services on network 

infrastructure [33]. Studies on DoS attacks such as those done by Alsaadi et al. [93] discovered 

many implementation mistakes and configuration flaws on IoT’s deployments and 

developments. For instance, attacks such as DoS could occur on machines connected to IoT. 

DoS was found to be a concern due to the fact that a number of IoT devices were found to be 

under the risk of  being attacked, including remote IoT devices such as sensors where 

cryptographic algorithms are implemented. These sensors are unlikely to be properly secured, 

which would make them easy to be exploited [93].  In summary, DoS have been found to be 

more problematic, because if more devices are interconnected, the more intruders could have 



 

27 
 

access to them [94]. As the more and more devices become connected to IoT without proper 

algorithms or  algorithms with weak avalanche effects, vulnerabilities could increase allowing 

intruders to connect to fake devices that could also be used in such attacks [37], [95].  

2.6.2 Man in the Middle (MITM) Attack 

 

Man-in-the-Middle attack (MITM) attack is when the intruder secretly transfers and possibly 

manipulates the communication between sender and receiver who believe they are secretly 

communicating with each other [10]. MITM attacks usually destroys data confidentiality. Data 

confidentiality is a big problem on IoT devices and services if a weak algorithm is used [96]. 

On IoT functionality, not only would the user have access to information but also have access 

to other interceptive objects [10]. Within IoT domain, there is a need to address the following 

important issues: access control, authorization, need for strong cryptographic algorithms and 

identity management [96]. IoT devices have been seen as not being able to verify the entity 

(person or any other device) for authorization to gain access to a service [10]. To do verification 

of entity, a strong cryptographic algorithm must be implemented to identify and encrypt entity.  

 

2.6.3 Eavesdropping Attack  

 

An eavesdropping attack is where the intruder secretly collect or steal information that is 

transferred over network by either computers, wireless media or devices [37]. Alsaadi et al. 

[93] indicated that there are some of the scholars who were able to discover eavesdropping 

(interception of communication) on IoT. It was found that passive attackers could intercept 

communication channels such as the internet, local wired networks and wireless networks, to 

access data from the stream of information [37]. If communication (data and information) is 

encrypted by a strong algorithm, the intruder could not read nor hear the communication even 

if he can steal or access it [93], [37].  

  

2.6.4 Honeypot Attack  

 

According to Yusuff [97] honeypot is an instrument used to collect data and/or information 

stored during and after communication. This means that when an algorithm is designed to 

secure communication for IoT, it must be borne in mind that it has to be strong enough to 



 

28 
 

prevent data or information from being collected, analyzed, intruded, or attacked by an 

unauthorized human being or hacker using honeypot attack [98].  

 

2.6.5 Collision (Bit Error) Attack 

 

A collision attack is an attack when an intruder tries to find two different input bit strings of 

crypto algorithm that produce the same output bit strings of result [99]. In simple terms when 

two different inputs give the same output, it is called a collision. If an attacker attacks crypto 

algorithm using a collision, this attack is called a collision attack [100]. 

2.6.6 Differential Cryptanalysis Attack  

 

Differential cryptanalysis is when the intruder attacks cryptographic algorithm by studying the 

differences in an input and the result differences in an output [101]. This attack was first 

published after attacking the full 16-round DES in less than 255 complexity [70]. It is different 

to collision attack, because it first XOR the inputs to get the difference, then the difference is 

used as the input to recover the secret key [102]. 

2.6.7 Differential Fault Attack 

 

Differential fault Attack is a technical attack that powerful cryptanalytic technique that 

disorganizes and manoeuvres any type of cryptographic machine so that it can yield erroneous 

results to discover secret keys [103]. Wei et al. [104] used this attack to crack Serpent 

algorithm. Rivain [103] used to crack DES algorithm. 

 

2.7 Related Work  

 

IoT uses AES algorithm to encrypt its sensors [22]. Paul et al. [105] carried out some work on 

how to enhance the avalanche effect on AES algorithm. Their main aim was to enhance 

avalanche effect of AES to prevent attacks [105]. So many attacks used to crack AES have 

been successful on its first few rounds but unsuccessful on full rounds [106]. An attack was 

used on AES by Dunkelman et al. [106] in 2015. This attack is called differential cryptanalysis, 

it is used to recover the related key used on AES. Dunkelman et al. [106] manage to reduce 
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AES’s complexity to recover AES’s secret key bits. To prevent these attacks, Paul et al. [105] 

used matrix based transposition method. Matrix based transposition is when a key is transposed 

by matrix before is mixed with an algorithm. They transpose the encryption key using a size 

16x256 matrix. They indicated that the use of insecure cryptographic algorithm needs encoding 

of information based on the avalanche effect to deal with security attacks [105]. In their 

research, it was shown that by applying a based transposition matrix procedure method, 

avalanche effect was highly improved on the first round (from 48% to 56%). When the method 

was applied on more than eight rounds, the avalanche effect almost remained the same as that 

of standard AES. From their results, when eight rounds were used, the avalanche effect changed 

from 56% to 57%.  

IoT uses Camellia algorithm to secure its medical data systems [107]. Santoso et al. [108] 

carried out some work on how to improve the avalanche effect on Camellia algorithm. The 

main aim to improve avalanche effect was to avoid attacks on medical data systems. Walters 

[15] attacked medical insulin pumps and temper with settings remotely. To avoid this kind of 

attack, Santoso et al. [108] compared all types of Camellia algorithms based on avalanche 

effect. From the results, they got avalanche effect from minimum of 45% to a maximum of 

60% [108]. They recommended that a Camellia with 60% of avalanche effect, should be used 

to secure medical data on IoT systems. 

IoT uses Blowfish algorithm to encrypt its network layer [22]. More recently, Mahindrakar 

[10] carried some work on analysis of Blowfish’s avalanche effect without modifying it. From 

his results, he indicated that the avalanche effect of Blowfish algorithm is not strong enough 

and it is insecure. He indicated that Blowfish gave less than 50% of the avalanche effect when 

one bit was flipped in each round. He discovered that the avalanche effect of Blowfish was 

almost strong only when the plaintext was changed, than when the key was changed. 

Mahindrakar indicated that Blowfish is vulnerable to be attacked if its avalanche effect is not 

increased [10]. 

IoT uses DES algorithm to secure its prototypes [22]. Paul et al [105] indicated that DES is no 

longer secure due to its smaller size of the key (56 bits). DES is also vulnerable to brute force 

attack [105]. It is also vulnerable to differential cryptanalysis attack [70].  Ramanujam et al. 

[109] used ancient cryptographic algorithms (Playfair, Ceaser and Vigenere algorithms) to 

scramble input bits with modern cryptographic algorithms blocks of DES and Blowfish to make 

new algorithm that will secure better IoT’s prototypes than DES. They combined four 

algorithms to make one algorithm [109]. They used ciphertext derived from three ancient 
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algorithms as the plaintext of modern algorithm [109]. They found that the average avalanche 

effect of standard Blowfish algorithm being 28.7100% but that of standard DES being 

54.6800%. After that they mixed ancient and modern algorithms to make new algorithm, they 

managed to get more than 70% of avalanche effect, this new algorithm had an excellent 

avalanche effect but it was expensive to implement due to a limited memory of the device 

[109].  

IoT uses Cast-128 algorithm to secure its prototypes [15]. Wang et al. [110] attacked Cast-128 

using improved differential cryptanalysis attack. They managed to attack Cast-128 

successfully, and more easer and simple to attack when the key was weak. Krishnamurthy et 

al. [111] tried to enhance the security of Cast-128 algorithm by modifying its fiestel function 

to improve the avalanche effect. They manged to get 66.6600% of avalanche effect [111]. 

Which is an improvement compared to 50%. 

IoT uses Clefia algorithm to secure its Radio-Frequency Identification (RFID) [112]. Boura et 

al. [113] successfully attacked Clefia algorithm using differential cryptanalysis attack. Mostly, 

differential cryptanalysis attack works better when the avalanche effect of the algorithm is low 

[70]. Differential cryptanalysis attack is the same attack used to attack DES [70]. 

IoT uses Secure Force algorithm to encrypt its sensors [114]. Extant literature such as in 

Shujaat et al. [11] compared Secure Force (SF), DES and AES algorithms without modifying 

them [11]. SF algorithm is non-complexity algorithm for IoT. It is needed when space of 

installation is limited in some certain devices like sensors [11]. Shujaat et al. [11] did not give 

a new modification method to enhance the avalanche effect of these three standard algorithms; 

they just analysed them without modification or proposed method. SF 64, 128 and 192 gave 

the avalanche effect of 58.2%, 51.5500% and 45.7000% respectively [11]. Whereas the 

avalanche results for AES-128 was 44.9200% [11] and of DES-64 was 65.6300% [11].  

IoT uses DES to encrypt its prototype [22]. It is already indicated that DES is vulnerable to 

brute force attack due to its smaller size of key (56 bits) [105]. Ibrahim et al. [115] compared 

DES Feistel Network (FN) and three types of DES Extended Feistel Network (EFN) (Type 

one, two and three, EFN is the process of multiplying FN several time in one algorithm).  

Ibrahim et al. [115] chose to run this experiment of EFN on DES instead of using standard 

DES. From their results analysis, they indicated that the more EFN used on DES, the more first 

eight rounds executed better avalanche effect [115]. When the number of rounds increase, the 

avalanche effect of DES with EFN became ineffective [115]. They also indicated that, using 

EFN method was the more expensive operation than using normal FN of DES.  
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IoT uses RC5 algorithm to secure its Mica2 hardware [116]. Kaliski-Yin in 1995 attacked RC5 

algorithm using single half-round characteristics attack [117]. This attack is the same as 

differential cryptanalysis attack but instead of attacking all rounds of algorithms, half of 

algorithm’s rounds are attack depending on the characteristics (weakness and strength) of 

algorithm [117]. Ali [118] used avalanche effect to improve the security of RC5 algorithm. He 

managed to reduce vulnerability of matching characteristics attack by increasing block size 

complexity from 232 to 2256 and analysed their avalanche effects. His proposed method work 

successfully compared to the standard RC5 algorithm [118].  

IoT uses Tiny Encryption Algorithm (TEA) to encrypt its Mica2 hardware [116]. Abdelhalim 

et al. [94] modified Tiny Encryption Algorithm (TEA) and named it Modified Tiny Encryption 

Algorithm (MTEA). They left shifted the TEA’s register three times to modify TEA. Their 

main aim of using the Linear Feedback Shift Register (LFSR) was to overcome the security 

weakness of the TEA algorithm against attacks and to improve its avalanche effect [94]. 

Abdelhalim et al. [94] compared MTEA and TEA under the analysis of avalanche effect. The 

results showed that there was no big improvement of avalanche effect when MTEA and TEA 

were compared because they yielded almost the same results (that was almost 33% in average) 

of avalanche effect [94], and both MTEA and TEA had poor avalanche effect (that was less 

than 50%).   

Dewangan et al. [40] modified AES by changing the form of plaintext and encryption key. 

They added a key stream generator to AES to improve the encryption performance. In their 

proposal, they mapped plaintext and encryption key in different binary codes before using them 

as the inputs of the AES algorithm. These binary codes were extracted from weighted and 

unweighted code. From their results, they showed that they managed to enhance avalanche 

effect of AES from 73% to 76% when one bit of key changes. On the side of plaintext changes, 

they showed an improvement from 76% to 80% [40]. Mandal et al [9] also used that method 

of using binary codes, but DES was chosen instead of AES. They got an average of avalanche 

effect from 44% to 64%, when plaintext changes in 5421 binary code. The key was mapped 

with gray code [9]. 

IoT uses Serpent algorithm to encrypt its information and data [104]. Wei et al. [104] indicated 

that there are strong attacks abilities used on Serpent algorithm. He even supported his 

statement by attacking Serpent algorithm using differential fault attack [104]. Aghajanzadeh et 

al. [137] tried to combine Serpent and RC4 to be one algorithm called RC4-Serpent to prevent 
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these strong attacks abilities mentioned above by Wei et al. [104]. He managed to enhance the 

avalanched effect of Serpent based on RC4-Serpent algorithm from 58% to 64%. 

Maita et al. [119] performed a work to enhance security of algorithms where Pseudo Random 

Number Generator (PRNG) was used to increase complexity of the key generation of DES and 

AES. From their experimental results, when both DES and AES algorithms mixed with the 

PRNG, depicted the avalanche effect improvement of 36.3% average [119].  

IoT uses Skipjack algorithm to secure its Mica2 hardware [116]. Biham et al. [120] attacked 

Skipjack algorithm using differential cryptanalysis attack. They managed to attack some few 

rounds of Skipjack algorithm. Their attack failed when they tried to attack a full 32 rounds of 

Skipjack [120]. Maram et al. [121] proposed a new modified Skipjack algorithm to enhance 

the avalanche effect compared to standard Skipjack algorithm. The main aim was to prevent 

attacks like differential cryptanalysis attack. They used dynamic key-dependent S-box instead 

of fixed S-box of standard Skipjack. The proposed algorithm produced better results of the 

avalanche effect that is from 76% to 98% [121]. 

From the above literature review, little has been done to test the avalanche effect using initial 

vector XORed with plaintext and final vector XORed with ciphertext. In this proposal we will 

use initial vector XORed with plaintext and final vector XORed with cipher text and test 

avalanche effect of all ten algorithms described in section 2.4. The vectors will be extracted 

from irrational digits of PI after digit 3. Proposed work is given by Figure 2.8. 
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Figure 2.8: Proposed work diagram explaining how initial and final vectors are derived. 

 

2.8 Chapter Summary  

 

This chapter provided a literature review of IoT: its protocols, network layers, security, model 

of communications, privacy, trust, data confidentiality, some algorithms used on IoT, 

avalanche effect of cryptographic algorithm used on IoT, types of attacks on algorithms, 

encryption methods and techniques. Different types algorithms that are used over IoT were 

analysed. In the next chapter will discuss the research methodology related to our study. This 

includes introduction, source of initial and final vectors, PI methodology that is the overview 

of PI, methodology of study based on the avalanche effect, research design, experimental 

procedure and chapter summary. 
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CHAPTER 3: METHODOLOGY 

3.1. Introduction  

 

In this section, we present the methods used for this study. In this study, we used the simulation 

research based on the comparison and analysis of different cryptographic algorithms used on 

IoT. We selected ten cryptographic algorithms (defined in section 2.4) used on IoT and 

simulated them in C++. In theory, any programming language could be used to develop 

algorithm, but C++ is an authorised “official” language of cryptography used by Federal 

Information Processing Standards (FIPS), National Institute of Standards and Technology 

(NIST), and other cryptographers. The reason being that it is difficult to learn than other 

programming languages. Therefore, it is difficult to crack an algorithm written in C++ 

compared to others. The type of computer used is Hewlett-Packard Compaq Elite 8300 

Convertible Minitower. The main reason for choosing these algorithms was to analyse their 

avalanche effects and compare them with the proposed method. The comparative method used 

to measure the avalanche effect was simulated using C++ programming language. The 

proposed method was to XOR the plaintext with initial vector and XOR ciphertext with the 

final vector in each algorithm mentioned in chapter 2. After that, we did an analysis of the 

avalanche effect on the proposed algorithms and compared them with the ones used on IoT. 

The design of the selected algorithms was based on plaintext key algorithms and ciphertext 

only. In the proposed model, we added two blocks: an initial and the final vector as compared 

to standard model. From Figure 3.1 and Figure 3.2, one can see that the blocks are not the same. 

The difference is in an intial vector and the final vector imposed on Figure 3.2 which is the 

proposed model of algorithms. Of paramount importance is the question of how and where an 

intial and the final vectors were taken or genarated from? Also, of paramount importance, is 

why were they taken or generated from there? The explanation and answers are elaborated in 

section 3.2 and 3.3. 
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Figure 3.1: Standard model with an explaination of block sizes. 

 

                                                        

Figure 3.2: Proposed model of algorithms with an explaination of XOR operation. 
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3.2 Source Of Initial And Final Vector 

 

To explain the questions posed in section 3.1, the values of an initial and the final vector were 

taken from the value of PI after the digit 3. Yang [122] generated 8366 hexedecimal (hex) digits 

string of the value PI after the digit 3. We used Yang’s string to create an intitial and the final 

vectors by extracting their values from two different positions of Yang’s string . We must state 

here that the values of an intial and the final vector are not the same because they are extracted 

from different position of 8366 hex digits string. Yang’s string  has 8366 positions. Refer to 

appendix 2 for an overview of Yang’s string. In appendix 2 we decided to indicate the selected 

value of an intial vector highlighted in red and the final vector highlighed in green for flexibility 

of study. Refer to appendix 2. 

 

3.3. PI Methodology: The Overview  

 

The value of PI after the first digit which is 3 was used due to its characteristics. The value of 

PI in hexadecimal notation is calculated by using Yang’s string [122] and it has 8366 positions. 

If we check the value of PI, from the digits after the first digit 3, we can see that this value is 

an irrational number. Refer to appendix 2. An irrational number is the number calculated from 

ratios (or fractions) of integers [123]. When the fraction or ratio of distances of two line 

segments is an irrational number, then line segments are also irrational, meaning that they have 

no measure in common, that is, there is no distance, no matter how short, that could not be used 

to determine the distances between the two given line segments as integer that can multiply 

itself [122]. The other characteristic is that even if one tries to do a sequence and series 

calculation on the value of PI, the PI value will still not yield the pattern [123]. Therefore it 

would be hard for the intruder to attack or crack the algorithm which is mixed with PI values. 

It is deduced that it will be difficult to intrude or attack a cryptographic algorithm using PI 

values or any irrational number because of the characteristics of irrational numbers and way 

the algorithms is coded [122]. We took the advantage of PI characteristics from the above 

explanation as an advantage and that is where an initial and the final vector values are derived 

or extracted from. 

https://en.wikipedia.org/wiki/Fraction_(mathematics)
https://en.wikipedia.org/wiki/Integer
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3.4 Methodology of Study Based On the Avalanche Effect 

In this section, we discuss an overview of the methodology of avalanche effect: how to 

calculate the avalanche effect percentage, the flowchart of avalanche effect, formula to 

calculate avalanche effect and method to calculate avalanche effect. 

 

3.4.1 Need to Calculate the Avalanche Effect 

 

The avalanche effect is most desirable property for most of the cryptographic algorithms. If an 

input is changed slightly (for example flipping a single input bit) the output must change 

excessively (more than 50% the output bits should flip) [7]. One main reason for the avalanche 

effect is that by flipping only one bit of the input, if there is large change in the output, then it 

is harder to perform an attack (intrusion or hacking) on the cryptographic algorithm [35]. 

Present literature has shown that an algorithm with high avalanche effect is a strong algorithm 

[7]. 

3.4.2. Method to Calculate the Avalanche Effect 

 

The formula to calculate the avalanche effect is defined [7], [35] as follows: 

Avalanche effect = 
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑙𝑖𝑝𝑝𝑒𝑑 𝑏𝑖𝑡𝑠 𝑖𝑛 𝑐𝑖𝑝ℎ𝑒𝑟𝑡𝑒𝑥𝑡 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑖𝑡 𝑖𝑛 𝑐𝑖𝑝ℎ𝑒𝑟𝑡𝑒𝑥𝑡
∗ 100%                               (3.1) 

In this study we fixed the key and flipped the plaintext bit from left to right and then we checked 

the number or the amount of bits that changed in ciphertext and compared it to the un-flipped 

ones. In the second experiment we fixed the plaintext and flipped one bit of key from left to 

right and then checked the number of bits that would have changed in ciphertext. The bits were 

flipped according to the size of input. Refer to appendix 1 for mathematical procedure, or refer 

to Figure 3.3 for flowchart on how to calculate avalanche effect of algorithm like AES. AES is 

used as an example. 

In accordance with the above, we will give an example of the experiment by using the AES 

algorithm. This is basically to show how the avalanche effect is calculated using the flowchart 
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given in Figure 3.3. AES algorithm is 128 block cipher, meaning that the size of ciphertext and 

plaintext are both 128 bits. Refer to appendix 1 for mathematical procedure, or refer to Figure 

3.3 for flowchart on how to calculate avalanche effect of algorithm like AES. AES is used as 

an example. 

 

 

Figure 3.3: Flowchart diagram on how to calculate avalanche effect of algorithm like AES. 
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For more detailed explanation on how to calculate avalanche effect step by step 

mathematically. Refer to appendix 1. Every aspect discussed in this section is mathematically 

demonstrated on appendix 1. 

 

3.5. Research Design 

 

In this study, the research methodology to be used will be quantitative. It will be more of 

experimental research method that will be conducted as follows: (1) Searching and selecting 

existing cryptographic algorithms for authentication and encryption in the context of IoT; (2) 

Analyzing the avalanche effect of selected cryptographic algorithms from step one if they really 

give efficient security on IoT based on avalanche effect; (3) Improving their avalanche effect 

by designing mathematical model (where initial vector will be XORed with the plaintext and 

final vector XORed with ciphertext) that gives more confusion and diffusion to intruder as 

indicated in Figure 3.4; (4) Testing the proposed model if it really enhances the avalanche effect 

on each and every algorithm selected in step one; (5) Giving the proposed future work on how 

to enhance security on IoT and give the conclusion. (6) And finally publish at least one paper 

from this study by IEEE. 

 

Figure 3.4: Proposed model with the explanations of block sizes of each building block. 
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3.6. Experimental Procedure 

 

The experimental procedure was to determine how secure the different algorithms used on IoT 

and compare with each other. In this research, ten different algorithms were selected, because 

they are widely used on IoT. See Table 3, which is comparing the performance of each other 

based on different parameters such as the avalanche effect, time and speed.   

 

Table 3.1: Algorithms and their usage within IoT. 

Name of Algorithm 

 

 

How algorithm is used within the internet of things 

1. AES 

 

IoT uses AES to secure its sensors and contactless smart cards [22], [15]. 

2. Blowfish 

 

IoT uses Blowfish to secure it application and network layer of IoT [22], [124]. 

 

3. Camellia 

 

IoT uses Camellia to secure its prototypes [15]. 

 

4. Cast-128 

 

IoT uses Cast to secure its prototypes [23].  

 

5. Clefia 

 

IoT uses Clefia to secure its health-care devices [15]. 

 

6. DES 

 

IoT uses DES to secure most of its devices. It is mostly used on IoT [22]. 

7. MMB 

 

IoT uses MMB to secure its software’s application [125]. 

 

8. RC5 

 

IoT uses RC5 algorithm to secure its Mica2 hardware (base station of IoT) [126]. 

 

9. Serpent 

 

 

IoT uses Serpent to secure its sensors [102]. 

 

 

10. Skipjack 

 

IoT uses Skipjack algorithm to secure Mica2 hardware (base station of IoT) [126]. 

 

 

 

In this simulation procedure, an algorithm is classfied as standard if it is not modified by the 

proposed methodology. That is if it is taken and analysed as it is from the original developers. 
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An algorithm is classfied as proposed algorithm if it is modified by introducing our 

methodology of the initial and final vectors on it.  

The screanshot below, which is Figure 3.5, depicts the output of C++ code simulation example 

when avalanche effect and time were excuted by our C++ code.  

 

Figure 3.5: Example of reading simulation and table 

 

The other two main characteristics that differentiates one encryption algorithm from another is 

its ability to encrypt data when its time and speed are also measured [127]. We calculated the 

time taken to perform avalanche effect on each and every algorithm. The speed of algorithm 

was calculated as follows: 

We flipped one bit from left to right until to the end, one bit at the time. For example if 128 

bits algorithm is tested, it means that the encryption process was conducted 128 times. It 

therefore suffices to say that 128 x 128 = 16384 bits were encrypted during the avalanche 

effect. We can then calculate the speed as follows: 
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𝑆𝑝𝑒𝑒𝑑 =  
𝑁𝑢𝑚𝑏𝑒𝑟 (𝑠𝑖𝑧𝑒) 𝑜𝑓 𝑏𝑖𝑡𝑠 𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑 𝑑𝑢𝑟𝑖𝑛𝑔 𝑎𝑣𝑎𝑙𝑎𝑛𝑐ℎ𝑒 𝑒𝑓𝑓𝑒𝑐𝑡

𝑇𝑖𝑚𝑒 𝑡𝑎𝑘𝑒𝑛 𝑡𝑜 𝑒𝑛𝑐𝑟𝑦𝑝𝑡 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑏𝑖𝑡𝑠 𝑑𝑢𝑟𝑖𝑛𝑔 𝑎𝑣𝑎𝑙𝑎𝑛𝑐𝑒 𝑒𝑓𝑓𝑒𝑐𝑡
                                          (3.2) 

 

3.6.1. Simulation 1: Testing of Avalanche Effect on AES  

 

When a cryptographic algorithm is published to the public domain by their developers, it is 

published with its test vectors. Test vectors are the sets of inputs and outputs provided to user 

of the system (in this study the system is cryptographic algorithm) in order to test that 

algorithm. In cryptography, test vectors are used for algorithm testing, verification and 

validation.  

As we mentioned earlier that IoT uses AES algorithm to secure its smart cards [22]. We studied 

AES algorithm from [15], [40], [119] and analysed how it works from [56], [64], [58], [60], 

[6]. We programed AES algorithm according to the analysis mentioned above using C++ code. 

We optimise the code to get maximum efficiency. To verify if our AES algorithm is encrypting 

and decrypting according to the specification of its origin (developers), we used test vectors 

found in [15, p. 35]. Then we called it a standard AES algorithm because it gave us the same 

test vector defined in [15, p. 35]. After that, we modified it using an initial and the final vectors 

as we proposed in Figure 1.2 and Figure 2.8 using C++ program. Then we called it the proposed 

AES algorithm. The proposed AES algorithm’s test vectors became totally different to the test 

vector found in [15, p. 35]. Therefore, it is a different algorithm compared to standard AES, 

with its own different test vectors. From these two (standard and proposed AES) algorithms, 

we calculated their avalanche effects when key was fixed and plaintext was varied, and vice 

versa. AES has two inputs (plaintext and key). AES algorithm uses plaintext of 128 bits long 

as a first input. We varied each bit from the first to last bit, one at a time to get better results of 

the avalanche effect. That is how we vary plaintext according to the definition of the avalanche 

effect’s procedure. Again, AES algorithm uses key of 128 bits long as a second input. We 

varied each key bit from the first to last bit, one at a time to get better results of the avalanche 

effect. That is how we vary the key according to the definition of avalanche effect. We even 

calculated their speed when key was fixed and plaintext was varied, and vice versa. We finally 

had four codes of AES algorithms: (1) Standard AES when key varies, (2) Standard AES when 

plaintext varies, (3) Proposed AES when key varies and (4) Proposed AES when plaintext 

varies. Below, in Figure 3.6 to Figure 3.9, we present the executable simulation screenshots of 

https://en.wikipedia.org/wiki/Software_testing
https://en.wikipedia.org/wiki/Software_verification_and_validation
https://en.wikipedia.org/wiki/Software_verification_and_validation
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four different AES algorithms mentioned above. Figure 3.6 presents simulation of avalanche 

effect on standard AES when plaintext is varied with the value of 49.79248 percent. 

 

Figure 3.6: Simulation of avalanche effect on standard AES when plaintext is varied. 

 

Simulation of avalanche effect on proposed AES was conducted when plaintext was varied. 

Figure 3.7 depicts the results of 49.6033% of avalanche effect when plaintext of proposed AES 

was varied. 

 

Figure 3.7: Simulation of avalanche effect on proposed AES when plaintext is varied. 



 

44 
 

Simulation of avalanche effect on standard AES was conducted when key was varied. Figure 

3.8 depicts the results of 49.0662% of avalanche effect when key of standard AES was varied. 

 

Figure 3.8: Simulation of avalanche effect on standard AES when key is varied. 

 

Simulation of avalanche effect on proposed AES was conducted when key was varied. Figure 

3.9 depicts the results of 49.9390 % of avalanche effect when key of proposed AES was varied. 

 

Figure 3.9 Simulation of avalanche effect on proposed AES when key is varied. 
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3.6.2. Simulation 2: Testing of Avalanche Effect on Blowfish 

 

As we mentioned earlier that IoT uses Blowfish algorithm to secure its applications and 

network layer [124], [22]. We studied Blowfish algorithm from [10], [128], [61] and analysed 

how it works from [128], [61], [129], [124]. We programed Blowfish algorithm according to 

the analysis mentioned above using C++ code. We optimise the code to get maximum 

efficiency. To verify if our Blowfish algorithm is encrypting and decrypting according to the 

specification of its origin, we used test vectors from Blowfish’s developers found in [130]. 

Then we called it a standard Blowfish algorithm because it gave us the same test vector defined 

in [130]. After that, we modified it using an initial and the final vectors as we proposed in 

Figure 1.2 and Figure 2.8 using C++ program. Then we called it the proposed Blowfish 

algorithm. From these two (standard and proposed Blowfish) algorithms, we calculated their 

avalanche effects when key was fixed and plaintext was varied, and vice versa. Blowfish has 

two inputs (plaintext and key). Blowfish algorithm uses plaintext of 128 bits long as a first 

input like AES. We varied each bit from the first to last bit, one at a time to get better results 

of the avalanche effect. That is how we vary plaintext according to the definition of the 

avalanche effect’s calculation.  Again, Blowfish algorithm uses a key of 128 bits long as a 

second input. We varied each bit from the first to last bit, one at a time to get better results of 

the avalanche effect. That is how we vary the key according to the definition of avalanche 

effect. We even calculated their speeds when key was fixed and plaintext was varied, and vice 

versa. We finally had four codes of Blowfish: (1) Standard Blowfish when key varies, (2) 

Standard Blowfish when plaintext varies, (3) Proposed Blowfish when key varies and (4) 

Proposed Blowfish when plaintext varies. Below (in Figure 3.10 to Figure 3.13), we present 

the executable simulation screenshots of four different Blowfish algorithms mentioned above. 

Simulation of avalanche effect on standard Blow was conducted when plaintext was varied. 

Figure 3.10 depicts the results of 50.5615% of avalanche effect when plaintext of standard 

Blowfish was varied. 
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Figure 3.10: Simulation of avalanche effect on standard Blowfish when plaintext is varied. 

 

Simulation of avalanche effect on proposed Blow was conducted when plaintext was varied. 

Figure 3.11 depicts the results of 48.3398% of avalanche effect when plaintext of proposed 

Blowfish was varied. 

 

Figure 3.11: Simulation of avalanche effect on proposed Blowfish when plaintext is varied. 

 

Simulation of avalanche effect on standard Blow was conducted when key was varied. Figure 

3.12 depicts the results of 50.4517% of avalanche effect when key of standard Blowfish was 

varied. 
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Figure 3.12: Simulation of avalanche effect on standard Blowfish when key is varied. 

 

Simulation of avalanche effect on proposed Blow was conducted when key was varied. 

Figure 3.13 depicts the results of 49.9878% of avalanche effect when key of proposed 

Blowfish was varied. 

 

Figure 3.13: Simulation of avalanche effect on proposed Blowfish when key is varied. 
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3.6.3. Simulation 3: Testing of Avalanche Effect on Camellia 

 

As we mentioned earlier that IoT uses Camellia algorithm to secure its medical data systems 

[107]. We studied Camellia algorithm from [65], [64] and analysed how it works from [63], 

[79], [113]. We programed Camellia algorithm according to the analysis mentioned above 

using C++ code. We optimise the code to get maximum efficiency. To verify if our Camellia 

algorithm is encrypting and decrypting according to the specification of its origin, we used test 

vectors from [79, p. 22]. Then we called it a standard Camellia algorithm because it gave us 

the same test vector defined in [79, p. 22]. After that, we modified it using an initial and the 

final vector as we proposed in Figure 1.2 and Figure 2.8 using C++ program. Then we called 

it the proposed Camellia algorithm. From these two (standard and proposed Camellia) 

algorithms, we calculated their avalanche effects when key was fixed and plaintext was varied, 

and vice versa. Camellia has two inputs (plaintext and key). Camellia algorithm uses plaintext 

of 128 bits long as a first input like AES. We varied each bit from the first to last bit, one at a 

time to get better results of the avalanche effect. That is how we vary plaintext according to the 

definition of the avalanche effect’s procedure. Again, Camellia algorithm uses key of 192 bits 

long as a second input. We varied each bit from the first to last bit, one at a time to get better 

results of the avalanche effect. That is how we vary the key according to the definition of 

avalanche effect. We even calculated their speeds when key was fixed and plaintext was varied, 

and vice versa. We finally had four codes of Camellia: (1) Standard Camellia when key varies, 

(2) Standard Camellia when plaintext varies, (3) Proposed Camellia when key varies and (4) 

Proposed Camellia when plaintext varies. Below (in Figure 3.14 to Figure 3.17) we present the 

executable simulation screenshots of four different Camellia algorithms mentioned above. 

Simulation of avalanche effect on standard Camellia was conducted when plaintext was varied. 

Figure 3.14 depicts the results of 49.4690% of avalanche effect when plaintext of standard 

Camellia was varied. 
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Figure 3.14: Simulation of avalanche effect on standard Camellia when plaintext is varied. 

 

Simulation of avalanche effect on proposed Camellia was conducted when plaintext was 

varied. Figure 3.15 depicts the results of 50.0977% of avalanche effect when plaintext of 

proposed Camellia was varied. 

 

Figure 3.15: Simulation of avalanche effect on proposed Camellia when plaintext is varied. 

 

Simulation of avalanche effect on standard Camellia was conducted when key was varied. 

Figure 3.16 depicts the results of 49.6094% of avalanche effect when key of standard Camellia 

was varied. 
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Figure 3.16: Simulation of avalanche effect on standard Camellia when key is varied. 

 

Simulation of avalanche effect on proposed Camellia was conducted when key was varied. 

Figure 3.17 depicts the results of 49.8983% of avalanche effect when key of proposed Camellia 

was varied. 

 

Figure 3.17: Simulation of avalanche effect on proposed Camellia when key is varied. 
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3.6.4. Simulation 4: Testing of Avalanche Effect on Cast-128 

 

As we mentioned earlier that IoT uses Cast-128 algorithm to secure its prototypes [15], [23].  

We studied Cast-128 algorithm from [69], [64], [68] and analysed how it works from [68], 

[110], [111]. We programed Cast-128 algorithm according to the analysis mentioned above 

using C++ code. We optimise the code to get maximum efficiency. To verify if our Cast-128 

algorithm is encrypting and decrypting according to the specification of its origin, we used test 

vectors found in [68, p. 15]. Then we called it a standard Cast-128 algorithm because it gave 

us the same test vector defined in [68, p. 15]. After that, we modified it using an initial and the 

final vector as we proposed in Figure 1.2 and Figure 2.8 using C++ program. Then we called 

it the proposed Cast-128 algorithm. From these two (standard and proposed Cast-128) 

algorithms, we calculated their avalanche effect when key was fixed and plaintext was varied, 

and vice versa. Cast-128 has two inputs (plaintext and key). Camellia algorithm uses plaintext 

of 128 bits long as a first input like AES. We varied each bit from the first to last bit, one at a 

time to get better results of the avalanche effect. That is how we vary plaintext according to the 

definition of avalanche effect. Again, Cast-128 algorithm uses key of 128 bits long as a second 

input. We varied each bit from the first to last bit, one at a time to get better results of the 

avalanche effect. That is how we vary the key according to the definition of avalanche effect’s 

calculations. We even calculated their speeds when key was fixed and plaintext was varied, 

and vice versa. We finally had four codes of Cast-128: (1) Standard Cast-128 when key varies, 

(2) Standard Cast-128 when plaintext varies, (3) Proposed Cast-128 when key varies and (4) 

Proposed Cast-128 when plaintext varies. Below (in Figure 3.18 to Figure 3.21) we present 

executable simulation screenshots of four different Cast-128 algorithms mentioned above. 

Simulation of avalanche effect on standard Cast-128 was conducted when plaintext was varied. 

Figure 3.18 depicts the results of 48.8281% of avalanche effect when plaintext of standard 

Cast-128 was varied. 
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Figure 3.18: Simulation of avalanche effect on standard Cast-128 when plaintext is varied. 

 

Simulation of avalanche effect on proposed Cast-128 was conducted when plaintext was 

varied. Figure 3.19 depicts the results of 48.3164% of avalanche effect when plaintext of 

standard Cast-128 was varied. 

 

Figure 3.19: Simulation of avalanche effect on proposed Cast-128 when plaintext is varied. 

 

Simulation of avalanche effect on standard Cast-128 was conducted when key was varied. 

Figure 3.20 depicts the results of 50.1221% of avalanche effect when key of standard Cast-128 

was varied. 
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Figure 3.20: Simulation of avalanche effect on standard Cast-128 when key is varied. 

 

Simulation of avalanche effect on proposed Cast-128 was conducted when key was varied. 

Figure 3.21 depicts the results of 50.1709% of avalanche effect when key of proposed Cast-

128 was varied. 

 

Figure 3.21: Simulation of avalanche effect on proposed Cast-128 when key is varied. 
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3.6.5. Simulation 5: Testing of Avalanche Effect on Clefia 

 

As we mentioned earlier that IoT uses Clefia algorithm to secure its Radio-Frequency 

Identification (RFID) [112]. We studied Clefia algorithm from [70], [72], [43] and analysed 

how it works from [51], [113], [131]. We programed Clefia algorithm according to the analysis 

mentioned above using C++ code. We optimise the code to get maximum efficiency. To verify 

if our Clefia algorithm is encrypting and decrypting according to the specification of its origin, 

we used test vectors found in [131, p. 29]. Then we called it a standard Clefia algorithm because 

it gave us the same test vector defined in [131, p. 29]. After that, we modified it using an initial 

and the final vector as we proposed in Figure 1.2 and Figure 2.8 using C++ program. Then we 

called it the proposed Clefia algorithm. From these two (standard and proposed Clefia) 

algorithms, we calculated their avalanche effects when key was fixed and plaintext was varied, 

and vice versa. Clefia has two inputs (plaintext and key). Clefia algorithm uses plaintext of 128 

bits long as a first input like AES. We varied each bit from the first to last bit, one at a time to 

get better results of the avalanche effect. That is how we vary plaintext according to the 

definition of avalanche effect’s procedure. Again, Clefia algorithm uses key of 128 bits long 

as a second input. We varied each bit from the first to last bit, one at a time to get better results 

of the avalanche effect. That is how we vary the key according to the definition of the avalanche 

effect’s calculation. We even calculated their speeds when key was fixed and plaintext was 

varied, and vice versa. We finally had four codes of Clefia: (1) Standard Clefia when key varies, 

(2) Standard Clefia when plaintext varies, (3) Proposed Clefia when key varies and (4) 

Proposed Clefia when plaintext varies. Below (in Figure 3.22 to Figure 3.25) we present the 

executable simulation screenshots of four different Clefia algorithms mentioned above. 

Simulation of avalanche effect on standard Clefia was conducted when plaintext was varied. 

Figure 3.22 depicts the results of 50.2807% of avalanche effect when plaintext of standard 

Clefia was varied. 
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Figure 3.22: Simulation of avalanche effect on standard Clefia when plaintext is varied. 

 

Simulation of avalanche effect on proposed Clefia was conducted when plaintext was varied. 

Figure 3.23 depicts the results of 49.8230% of avalanche effect when plaintext of proposed 

Clefia was varied. 

 

Figure 3.23: Simulation of avalanche effect on proposed Clefia when plaintext is varied. 

 

Simulation of avalanche effect on standard Clefia was conducted when key was varied. Figure 

3.24 depicts the results of 49.9023% of avalanche effect when key of standard Clefia was 

varied. 
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Figure 3.24: Simulation of avalanche effect on standard Clefia when key is varied. 

 

Simulation of avalanche effect on proposed Clefia was conducted when key was varied. Figure 

3.25 depicts the results of 50.1587% of avalanche effect when key of proposed Clefia was 

varied. 

 

Figure 3.25: Simulation of avalanche effect on proposed Clefia when key is varied. 
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3.6.6. Simulation 6: Testing of Avalanche Effect on DES 

 

As we mentioned earlier that IoT uses DES algorithm to secure its prototypes [22].  We studied 

DES algorithm from [9], [119], [64] and analysed how it works from [74], [76], [99], [103]. 

We programed DES algorithm according to the analysis mentioned above using C++ code. We 

optimise the code to get maximum efficiency. To verify if our DES algorithm is encrypting 

and decrypting according to the specification of its origin, we used test vectors found in [132]. 

Then we called it a standard DES algorithm because it gave us the same test vector defined in 

[132]. After that, we modified it using an initial and the final vector as we proposed in Figure 

1.2 and Figure 2.8 using C++ program. Then we called it the proposed DES algorithm. From 

these two (standard and proposed DES) algorithms, we calculated their avalanche effects when 

key was fixed and plaintext was varied, and vice versa. DES has two inputs (plaintext and key). 

DES algorithm uses plaintext of 64 bits long as a first input unlike AES. We varied each bit 

from the first to last bit, one at a time to get better results of the avalanche effect. That is how 

we vary plaintext according to the definition of avalanche effect’s procedure. Again, DES 

algorithm uses key of 56 bits long as a second input unlike AES. We varied each bit from the 

first to last bit, one at a time to get better results of the avalanche effect. That is how we vary 

the key according to the definition of avalanche effect. We even calculated their speeds when 

key was fixed and plaintext was varied, and vice versa. We finally had four codes of DES: (1) 

Standard DES when key varies, (2) Standard DES when plaintext varies, (3) Proposed DES 

when key varies and (4) Proposed DES when plaintext varies. Below (in Figure 3.26 to Figure 

3.29) we present the executable simulation screenshots of four different DES algorithms 

mentioned above. Simulation of avalanche effect on standard DES was conducted when 

plaintext was varied. Figure 3.26 depicts the results of 62.8662% of avalanche effect when 

plaintext of standard DES was varied. 



 

58 
 

 

Figure 3.26: Simulation of avalanche effect on standard DES when plaintext is varied. 

 

Simulation of avalanche effect on proposed DES was conducted when plaintext was varied. 

Figure 3.27 depicts the results of 58.8379% of avalanche effect when plaintext of proposed 

DES was varied. 

 

Figure 3.27: Simulation of avalanche effect on proposed DES when plaintext is varied. 

 

Simulation of avalanche effect on standard DES was conducted when key was varied. Figure 

3.28 depicts the results of 43.8721% of avalanche effect when key of standard DES was varied. 
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Figure 3.28: Simulation of avalanche effect on standard DES when key is varied. 

 

Simulation of avalanche effect on proposed DES was conducted when key was varied. Figure 

3.29 depicts the results of 44.2139% of avalanche effect when key of proposed DES was varied. 

 

Figure 3.29: Simulation of avalanche effect on proposed DES when key is varied. 
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3.6.7. Simulation 7: Testing of Avalanche Effect on MMB 

As we mentioned earlier that IoT uses MMB algorithm to secure its software’s application 

[125]. We studied MMB algorithm from [77], [133], [134] and analysed how it works from 

[77], [133], [134]. We programed MMB algorithm according to the analysis mentioned above 

using C++ code. We optimise the code to get maximum efficiency. To verify if our MMB 

algorithm is encrypting and decrypting according to the specification of its origin, we used test 

vectors found in [77]. Then we called it a standard MMB algorithm because it gave us the same 

test vector defined in [77]. After that, we modified it using an initial and the final vector as we 

proposed in Figure 1.2 and Figure 2.8 using C++ program. Then we called it the proposed 

MMB algorithm. From these two (standard and proposed MMB) algorithms, we calculated 

their avalanche effects when key was fixed and plaintext was varied, and vice versa. MMB has 

two inputs (plaintext and key). MMB algorithm uses plaintext of 128 bits long as a first input. 

We varied each bit from the first to last bit, one at a time to get better results of the avalanche 

effect. That is how we vary plaintext according to the definition of avalanche effect’s 

calculation.  Again, MMB algorithm uses key of 128 bits long as a second input. We varied 

each bit from the first to last bit, one at a time to get better results of the avalanche effect. That 

is how we vary the key according to the definition of avalanche effect. We even calculated 

their speed when key was fixed and plaintext was varied, and vice versa. We finally had four 

codes of MMB: (1) Standard MMB when key varies, (2) Standard MMB when plaintext varies, 

(3) Proposed MMB when key varies and (4) Proposed MMB when plaintext varies. Below (in 

Figure 3.30 to Figure 3.33) we present the executable simulation screenshots of four different 

MMB algorithms mentioned above. Simulation of avalanche effect on standard MMB was 

conducted when plaintext was varied. Figure 3.30 depicts the results of 49.7742% of avalanche 

effect when plaintext of standard MMB was varied. 
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Figure 3.30: Simulation of avalanche effect on standard MMB when plaintext is varied. 

 

Simulation of avalanche effect on proposed MMB was conducted when plaintext was varied. 

Figure 3.31 depicts the results of 49.7498% of avalanche effect when plaintext of proposed 

MMB was varied. 

 

Figure 3.31: Simulation of avalanche effect on proposed MMB when plaintext is varied. 

 

Simulation of avalanche effect on standard MMB was conducted when key was varied. Figure 

3.32 depicts the results of 49.6765% of avalanche effect when key of standard MMB was 

varied. 
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Figure 3.32: Simulation of avalanche effect on standard MMB when key is varied. 

 

Simulation of avalanche effect on proposed MMB was conducted when key was varied. Figure 

3.33 depicts the results of 49.6399% of avalanche effect when key of proposed MMB was 

varied. 

 

Figure 3.33: Simulation of avalanche effect on proposed MMB when key is varied. 
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3.6.8. Simulation 8: Testing of Avalanche Effect on RC5 

 

As we mentioned earlier that IoT uses RC5 algorithm to secure its Mica2 hardware [116]. We 

studied RC5 algorithm from [135], [81], [118] and analysed how it works from [117], [118], 

[136]. We programed RC5 algorithm according to the analysis mentioned above using C++ 

code. We optimise the code to get maximum efficiency. To verify if our RC5 algorithm is 

encrypting and decrypting according to the specification of its origin, we used test vectors from 

[184, p 270]. Then we called it a standard RC5 algorithm because it gave us the same test vector 

defined in [184, p 270]. After that, we modified it using an initial and the final vector as we 

proposed in Figure 1.2 and Figure 2.8 using C++ program. Then we called it the proposed RC5 

algorithm. From these two (standard and proposed RC5) algorithms, we calculated their 

avalanche effect when key was fixed and plaintext was varied, and vice versa. RC5 has two 

inputs (plaintext and key). RC5 algorithm uses plaintext of 128 bits long as a first input. We 

varied each bit from the first to last bit, one at a time to get better results of the avalanche effect. 

That is how we vary plaintext according to the definition of avalanche effect’s procedure.  

Again, RC5 algorithm uses key of 256 bits long as a second input, unlike DES. We varied each 

bit from the first to last bit, one at a time to get better results of the avalanche effect. That is 

how we vary the key according to the definition of avalanche effect’s calculation. We even 

calculated their speed when key was fixed and plaintext was varied, and vice versa. We finally 

had four codes of RC5: (1) Standard RC5 when key varies, (2) Standard RC5 when plaintext 

varies, (3) Proposed RC5 when key varies and (4) Proposed RC5 when plaintext varies. Below 

(in Figure 3.34 to Figure 3.37) we present the executable simulation screenshots of four 

different RC5 algorithms mentioned above. Simulation of avalanche effect on standard RC5 

was conducted when plaintext was varied. Figure 3.34 depicts the results of 76.1719% of 

avalanche effect when plaintext of standard RC5 was varied. 
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Figure 3.34: Simulation of avalanche effect on standard RC5 when plaintext is varied. 

 

Simulation of avalanche effect on proposed RC5 was conducted when plaintext was varied. 

Figure 3.35 depicts the results of 76.9043% of avalanche effect when plaintext of proposed 

RC5 was varied. 

 

Figure 3.35: Simulation of avalanche effect on proposed RC5 when plaintext is varied. 

 

Simulation of avalanche effect on standard RC5 was conducted when key was varied. Figure 

3.36 depicts the results of 49.1821% of avalanche effect when key of standard RC5 was varied. 
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Figure 3.36: Simulation of avalanche effect on standard RC5 when key is varied. 

 

Simulation of avalanche effect on proposed RC5 was conducted when key was varied. Figure 

3.37 depicts the results of 49.7925% of avalanche effect when key of proposed RC5 was varied. 

 

Figure 3.37: Simulation of avalanche effect on proposed RC5 when key is varied. 
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3.6.9. Simulation 9: Testing of Avalanche Effect on Serpent 

 

As we mentioned earlier that IoT uses Serpent algorithm to secure its sensors, information and 

data [104], [102]. We studied Serpent algorithm from [101], [82], [83], [118] and analysed how 

it works from [104], [137], [138]. We programed Serpent algorithm according to the analysis 

mentioned above using C++ code. We optimise the code to get maximum efficiency. To verify 

if our Serpent algorithm is encrypting and decrypting according to the specification of its 

origin, we used test vectors found in [138]. Then we call it standard Serpent algorithm because 

it gave us the same test vector defined in [138]. After that, we modified it using an initial and 

the final vector as we proposed in Figure 1.2 and Figure 2.8 using C++ program. Then we 

called it proposed Serpent algorithm. From these two (standard and proposed Serpent) 

algorithms, we calculated their avalanche effect when key was fixed and plaintext was varied, 

and vice versa. Serpent has two inputs (plaintext and key). Serpent algorithm uses plaintext of 

128 bits long as a first input. We varied each bit from the first to last bit, one at a time to get 

better results of the avalanche effect. That is how we vary plaintext according to the definition 

of avalanche effect. Again, Serpent algorithm uses key of 256 bits long as a second input unlike 

DES. We varied each bit from the first to last bit, one at a time to get better results of the 

avalanche effect. That is how we vary the key according to the definition of avalanche effect. 

We even calculated their speeds when key was fixed and plaintext was varied, and vice versa. 

We finally had four codes of Serpent: (1) Standard Serpent when key varies, (2) Standard 

Serpent when plaintext varies, (3) Proposed Serpent when key varies and (4) Proposed Serpent 

when plaintext varies. Below (in Figure 3.8 to Figure 3.41) we present the executable 

simulation screenshots of four different Serpent algorithms mentioned above. Simulation of 

avalanche effect on standard Serpent was conducted when plaintext was varied. Figure 3.38 

depicts the results of 50.3845% of avalanche effect when plaintext of standard Serpent was 

varied. 
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Figure 3.38: Simulation of avalanche effect on standard Serpent when plaintext is varied. 

 

Simulation of avalanche effect on proposed Serpent was conducted when plaintext was varied. 

Figure 3.39 depicts the results of 49.7986% of avalanche effect when plaintext of proposed 

Serpent was varied. 

 

Figure 3.39: Simulation of avalanche effect on proposed Serpent when plaintext is varied. 

 

Simulation of avalanche effect on standard Serpent was conducted when key was varied. Figure 

3.40 depicts the results of 49.8657% of avalanche effect when key of standard Serpent was 

varied. 
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Figure 3.40: Simulation of avalanche effect on standard Serpent when key is varied. 

 

Simulation of avalanche effect on proposed Serpent was conducted when key was varied. 

Figure 3.41 depicts the results of 50.5341% of avalanche effect when key of proposed Serpent 

was varied. 

 

Figure 3.41: Simulation of avalanche effect on proposed Serpent when key is varied. 
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3.6.10. Simulation 10: Testing of Avalanche Effect on Skipjack 

 

As we mentioned earlier that I IoT uses Skipjack algorithm to secure its Mica2 hardware [116].  

We studied Skipjack algorithm from [85], [139], [120] and analysed how it works from [140], 

[141], [86], [142]. We programed Skipjack algorithm according to the analysis mentioned 

above using C++ code. We optimise the code to get maximum efficiency. To verify if our 

Skipjack algorithm is encrypting and decrypting according to the specification of its origin, we 

used test vectors found in [142]. Then we called it a standard Skipjack algorithm because it 

gave us the same test vector defined in [142]. After that, we modified it using an initial and the 

final vector as we proposed in Figure 1.2 and Figure 2.8 using C++ program. Then we called 

it the proposed Skipjack algorithm. From these two (standard and proposed Skipjack) 

algorithms, we calculated their avalanche effects when key was fixed and plaintext was varied, 

and vice versa. Skipjack has two inputs (plaintext and key). Skipjack algorithm uses plaintext 

of 64 bits long as a first input. We varied each bit from the first to last bit, one at a time to get 

better results of the avalanche effect. That is how we vary plaintext according to the definition 

of avalanche effect. Again, Skipjack algorithm uses key of 80 bits long as a second input, unlike 

any algorithm defined above. We varied each bit from the first to last bit, one at a time to get 

better results of the avalanche effect. That is how we vary the key according to the definition 

of avalanche effect. We even calculated their speeds when key was fixed and plaintext was 

varied, and vice versa. We finally had four codes of Skipjack: (1) Standard Skipjack when key 

varies, (2) Standard Skipjack when plaintext varies, (3) Proposed Skipjack when key varies 

and (4) Proposed Skipjack when plaintext varies. Below (in Figure 3.42 to Figure 3.45) we 

present the executable simulation screenshots of four different Skipjack algorithms mentioned 

above. Simulation of avalanche effect on standard Skipjack was conducted when plaintext was 

varied. Figure 3.42 depicts the results of 48.7793% of avalanche effect when plaintext of 

standard Skipjack was varied. 
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Figure 3.42: Simulation of avalanche effect on standard Skipjack when plaintext is varied. 

 

Simulation of avalanche effect on proposed Skipjack was conducted when plaintext was varied. 

Figure 3.43 depicts the results of 49.2188% of avalanche effect when plaintext of proposed 

Skipjack was varied. 

 

Figure 3.43: Simulation of avalanche effect on proposed Skipjack when plaintext is varied. 

 



 

71 
 

Simulation of avalanche effect on standard Skipjack was conducted when key was varied. 

Figure 3.44 depicts the results of 62.5732% of avalanche effect when key of standard Skipjack 

was varied. 

 

Figure 3.44: Simulation of avalanche effect on standard Skipjack when key is varied. 

 

Simulation of avalanche effect on proposed Skipjack was conducted when key was varied. 

Figure 3.45 depicts the results of 61.6211% of avalanche effect when key of proposed Skipjack 

was varied. 

 

Figure 3.45: Simulation of avalanche effect on proposed Skipjack when key is varied. 
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3.4. Chapter Summary  

 

In this chapter we presented the different methods that were used for the study, like source of 

initial and final vectors, PI methodology, methodology of study based on avalanche effect, flow 

chart of avalanche effect, research design, experimental procedures and finally simulation 

screenshots of all ten different algorithms when avalanche affect was tested using C++ 

programming. In the next chapter we will analyze and discuss the results. 
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CHAPTER 4: RESULTS DISCUSSION AND ANALYSIS 

4.1 Introduction 

 

As we mentioned earlier the avalanche effect is a desirable property of cryptographic 

algorithms, if input is changed slightly the output must change excessively [143], [6]. One main 

reason why the avalanche effect is necessary is that by flipping only one bit of input, if there is 

large change in the output, and then this shows that it is harder to perform an attack (intrusion 

or hacking) on the cryptographic algorithm [6]. Oppenheim et al [144] indicated that an 

algorithm with high avalanche effect is a strong algorithm. 

 

The other two main desirable properties (except the avalanche effect) that differentiates one 

encryption algorithm from another is its time and speed to encrypt data [145]. We also 

measured time and speed during the avalanche process. We calculated the time taken to 

perform avalanche effect on each and every algorithm. The speed of algorithm was calculated 

as follows: To start with, if the avalanche effect is calculated when the plaintext is varied, and 

given that the size of the plaintext is 128 bits (for example), then flipping one bit from left to 

right until to the end of 128 bits means that the encryption process is conducted 128 times. This 

simply means that 128 x 128 = 16384 bits were encrypted during the avalanche effect. In order 

to calculate the speed we used the equation 3.2.  

 

As a preamble, and essential to this study, an algorithm is standard if it is not modified 

anywhere by us in this study. It is taken as it is and analysed as it is from their designers. When 

we say proposed algorithm, we mean we modified the standard algorithm using the proposed 

method of intruducing the initial and final vectors on the standard algorithm. See Figure 3.1 

and Figure 3.2 for more explanation. 
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4.2 Results and analysis 

 

4.2.1. Results 1: The Avalanche Effect on AES  

 

From Table 4.1 and Figure 4.1 when the plaintext was varied the proposed AES showed low 

avalanche effect as compared to the standard AES. Then standard AES performed better in 

terms of the avalanche effect when the plaintext was varied. Given our hypothesis (H1), one 

can easily conclude that the AES algorithm performed as per our expectation concerning the 

needed avalanche effect. From Table 4.1 the standard AES algorithm has an avalanche effect, 

which is improved than the proposed AES algorithm. Standard AES algorithm has 49.7925 % 

whereas proposed AES algorithm has 49.6033%. From Table 4.1 standard AES algorithm is 

slow compared to proposed AES algorithm. Standard AES takes 0.2286 seconds to encrypt 

whereas proposed AES takes 02244 seconds to encrypt.  

 

Table 4.1: Results of standard and proposed AES when plaintext was varied. 

Algorithm Initial 

vector 

Final 

vector 

Avalanche 

effect 

Time taken to finish 

avalanche effect 

Speed taken to finish 

avalanche effect 

STANDARD 

AES  

NO NO 49.7925 % 0.2286 sec 71671,0411 bit/sec 

PROPOSED 

AES  

YES YES 49.6033% 0.2244 sec 73012,4777 bit/sec 
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From Figure 4.1 the standard AES algorithm has an avalanche effect, which is improved than 

the proposed AES algorithm. Standard AES algorithm has 49.7925% whereas proposed AES 

algorithm has 49.6033%. When plaintext was varied. 

 

Figure 4.1: Results of avalanche effect on AES when plaintext was varied. 

 

From Table 4.1 and Figure 4.2, the proposed AES was faster than the standard AES. IoT uses 

standard AES to secure its sensors and contactless smart cards. Within these domains, the 

proposed algorithm of AES performed better and it could be suitable for applications such as 

sensors and contactless smart cards of IoT when speed is considered. From 4.2, speed of 

standard AES is 71671, 0411 bit/sec, whereas of the proposed AES algorithm is 73012, 4777 

bit/sec. 
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Figure 4.2: Results of speed taken on AES when plaintext was varied. 

 

From Table 4.2 and Figure 4.3, the proposed algorithm managed to increase the avalanche 

effect of standard AES algorithm key was varied, that is from 49.0600% up to 49.9300 % by 

using the proposed method. This means that the modified (proposed) AES can replace the 

standard AES because of its improved avalanche effect if the user wants to vary the key. From 

Table 4.2 the standard AES algorithm has an avalanche effect which is low than the proposed 

AES algorithm. Standard AES algorithm has 49.0662% whereas proposed AES algorithm has 

49.9390%. From Table 4.2 standard AES algorithm is fast compared to proposed AES 

algorithm. Standard AES takes 0.1158 seconds to encrypt whereas proposed AES takes 0.1180 

seconds to encrypt. 
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Table 4.2:  Results of standard and proposed AES when key was varied. 

Algorithm Initial 

vector 

Final 

vector 

Avalanche 

effect 

Time taken to finish 

avalanche effect 

Speed taken to finish 

avalanche effect 

STANDARD  

AES  

NO NO 49.0662% 0.1158 sec 141485.3195 bit/sec 

PROPOSED  

AES  

YES YES 49.9390% 0.118 sec 138847,4576 bits/sec 

 

From Figure 4.3 the standard AES algorithm has an avalanche effect which is low than the 

proposed AES algorithm. Standard AES algorithm has 49.0662% whereas proposed AES 

algorithm has 49.9390%. When key was varied. 

 

Figure 4.3: Results of avalanche effect on AES when key was varied. 

 

From Table 4.2 and Figure 4.4 when the key was varied the proposed AES was slower in terms 

of speed. Then standard AES was still the best in terms of speed when the key was varied. In 

terms of speed, the standard AES worked better on IoT when the user varies the key. From 



 

78 
 

Figure 4.4, the speed of standard AES is 141485.3195 bit/sec, whereas of proposed AES is 

138847,4576 bits/sec. 

 

 

Figure 4.4: Results of speed taken on AES when key was varied. 

 

 

4.2.2. Results 2: The Avalanche Effect on Blowfish 

 

From Table 4.3 and Figure 4.5 it shows that when the plaintext was varied the proposed 

Blowfish algorithm showed a low avalanche effect compared to the standard Blowfish. This 

showed that the standard Blowfish was still the best in terms of the avalanche effect when the 

plaintext was varied. Given the above scenario, it would not be necessary to replace the 

standard Blowfish algorithm with the proposed one, especially if the user wants an algorithm, 

which has an improved avalanche effect when plaintext is varied. From Table 4.3 the standard 

Blowfish algorithm has an avalanche effect, which is improved than the proposed Blowfish 

algorithm. Standard Blowfish algorithm has 50.5615% whereas proposed Blowfish algorithm 

has 48.3398%. From Table 4.3 standard Blowfish algorithm is slow compared to proposed 

Blowfish algorithm. Standard Blowfish takes 0.0614 seconds to encrypt whereas proposed 

Blowfish takes 0.0611 seconds to encrypt. 
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Table 4.3: Results of standard and proposed Blowfish when plaintext was varied. 

Algorithm Initial 

vector 

Final 

vector 

Avalanche 

effect 

Time taken to finish 

avalanche effect 

Speed taken to finish 

avalanche effect 

STANDARD  

BLOWFISH  

NO NO 50.5615% 0.0614 sec 66699,2347 bit/sec 

PROPOSED 

BLOWFISH  

YES YES 48.3398% 0.0611sec 67037,6432 bit/sec 

 

From Figure 4.5 the standard Blowfish algorithm has an avalanche effect, which is improved 

than the proposed Blowfish algorithm. Standard Blowfish algorithm has 50.5615% whereas 

proposed Blowfish algorithm has 48.3398%. When plaintext was varied. 

 

Figure 4.5: Results of avalanche effect on Blowfish when plaintext was varied. 

 

From Table 4.3 and Figure 4.6, the proposed Blowfish was faster than the standard Blowfish. 

IoT uses the standard Blowfish to secure its applications and network layers. This means that 

if any user wants to vary plaintext and secure IoT’s applications and network layers, and wants 

to use a fast algorithm like Blowfish, the proposed Blowfish algorithm is an appropriate one. 
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From Figure 4.6, speed of standard Blowfish is 66699,2347 bit/sec, whereas of proposed 

Blowfish is 67037,6432 bit/sec. 

 

 

Figure 4.6: Results of speed taken on Blowfish when plaintext was varied. 

 

From Table 4.4 and Figure 4.7, when the key was varied the proposed Blowfish had a low 

avalanche effect as compared to the standard Blowfish. Then standard Blowfish is still the best 

in terms of the avalanche effect if plaintext is varied.in this regard, there was no need to replace 

standard Blowfish algorithms from IoT if the user wants an algorithm that has an improved 

avalanche effect when plaintext is varied. From Table 4.4 the standard Blowfish algorithm has 

an avalanche effect, which is improved than the proposed Blowfish algorithm. Standard 

Blowfish algorithm has 50.4517% whereas proposed Blowfish algorithm has 49.9878%. From 

Table 4.4 standard Blowfish algorithm took exact same time as the proposed Blowfish 

algorithm took during encryption. They both took 0.1233 seconds to encrypt. 
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Table 4.4: Results of standard and proposed Blowfish when key was varied. 

Algorithm Initial 

vector 

Final 

vector 

Avalanche 

effect 

Time taken to finish 

avalanche effect 

Speed taken to finish 

avalanche effect 

STANDARD 

BLOWFISH  

NO NO 50.4517% 0.1233 sec 132879,1565 bits/sec 

PROPOSED 

BLOWFISH  

YES YES 49.9878% 0.1233 sec 132879,1565 bits/sec 

 

From Figure 4.7 the standard Blowfish algorithm has an avalanche effect, which is improved 

than the proposed Blowfish algorithm. Standard Blowfish algorithm has 50.4517% whereas 

proposed Blowfish algorithm has 49.9878%. When key was varied. 

 

Figure 4.7: Results of avalanche effect on Blowfish when key was varied. 

 

From Table 4.4 and Figure 4.8 and from our experiment the speed and time of proposed and 

standard Blowfish algorithm were found to be equal when key was varied. It does not matter 

to choose which one between the two if the user wants algorithm like Blowfish with an 
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improved speed when key varies. Both standard and proposed Blowfish algorithms has the 

same speed of 132879,1565 bits/sec. 

 

 

Figure 4.8: Results of speed taken on Blowfish when key was varied. 

 

4.2.3 Results 3: The Avalanche Effect on Camellia 

 

From Table 4.5 and Figure 4.9, the proposed Camellia algorithm manged to increase the 

avalanche effect of standard Camellia algorithm when plaintext was varied. That is from 49.5% 

up to 50.1000% by using the proposed method. This means that our modified (proposed) 

Camellia algorithm can replace the standard Camellia algorithm when one wants to choose 

between the two algorithms because it has an improved avalanche effect when plaintext varies. 

We suggested that instead of using standard Camellia algorithm to secure IoT’s protocols, the 

proposed Camellia algorithm could replace the standard Camellia algorithm, to get high 

security on IoT’s protocols if plaintext varies. From Table 4.5 the standard Camellia algorithm 

has an avalanche effect which is low than the proposed Camellia algorithm. Standard Camellia 

algorithm has 49.4690% whereas proposed Camellia algorithm has 50.0977%. From Table 4.5 

standard Camellia algorithm is slow compared to proposed Camellia algorithm. Standard 

Camellia takes 0.1576 seconds to encrypt whereas proposed Camellia takes 0.1217 seconds to 

encrypt. 
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Table 4.5: Results of standard and proposed Camellia when plaintext was varied. 

Algorithm Initial 

vector 

Final 

vector 

Avalanche 

effect 

Time taken to finish 

avalanche effect 

Speed taken to finish 

avalanche effect 

STANDARD 

CAMELLIA   

NO NO 49.4690% 0.1576 sec 103959,3909 bits/sec 

PROPOSED 

CAMELLIA 

YES YES 50.0977% 0.1217sec 134626,1289 bits/sec 

 

From Figure 4.9 the standard Camellia algorithm has an avalanche effect which is low than 

the proposed Camellia algorithm. Standard Camellia algorithm has 49.4690% whereas 

proposed Camellia algorithm has 50.0977%. When plaintext was varied. 

 

Figure 4.9: Results of avalanche effect on Camellia when plaintext was varied. 

 

From Table 4.5 and Figure 4.10, the proposed Camellia algorithm was faster than the standard 

Camellia algorithm. IoT uses standard Camellia algorithm to secure its data and information. 

In this situation, users who want to vary plaintext and encrypt data and information of IoT in 

high speed then he/she could use the proposed algorithm as it gives an improved encryption 
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speed. From Figure 4.10, speed of standard Camellia is 103959,3909 bits/sec, whereas of 

proposed Camellia is 134626, 1289 bits/sec. 

 

 

Figure 4.10: Results of speed taken on Camellia when plaintext was varied. 

 

From Table 4.6 and Figure 4.11, the proposed Camellia algorithm showed an improved 

avalanche effect compare to standard one.  The avalanche effect was increased from 49.6094% 

up to 49.8983% when the proposed method was used. This means that the proposed Camellia 

algorithm could be used in place of standard Camellia algorithm if there is a need to have an 

algorithm with an improved avalanche effect in line with the suggestions of [143], [146]. We 

suggested that instead of using standard Camellia algorithm to secure IoT’s protocols when 

key varies, then the proposed Camellia algorithm could be used to secure IoT’s protocols. From 

Table 4.6 the standard Camellia algorithm has an avalanche effect which is low than the 

proposed Camellia algorithm. Standard Camellia algorithm has 49.6094% whereas proposed 

Camellia algorithm has 49.8983%. From Table 4.6 standard Camellia algorithm is fast 

compared to proposed Camellia algorithm. Standard Camellia takes 0.1829 seconds to encrypt 

whereas proposed Camellia takes 0.1859 seconds to encrypt. 
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Table 4.6: Results of standard and proposed Camellia when key was varied. 

Algorithm Initial 

vector 

Final 

vector 

Avalanche 

effect 

Time taken to finish 

avalanche effect 

Speed taken to finish 

avalanche effect 

STANDARD 

CAMELLIA 

NO NO 49.6094% 0.1829 sec 201552,7612 bits/sec 

PROPOSED 

CAMELLIA 

YES YES 49.8983% 0.1859 sec 198300,1614 bits/sec 

 

From Figure 4.11 the standard Camellia algorithm has an avalanche effect which is low than 

the proposed Camellia algorithm. Standard Camellia algorithm has 49.6094% whereas 

proposed Camellia algorithm has 49.8983%. When key was varied. 

 

Figure 4.11: Results of avalanche effect on Camellia when key was varied. 

 

From Table 4.6 and Figure 4.12 showed that the proposed algorithm showed slowness when 

the key was varied. In this case, it was observed that the standard Camellia algorithm was the 

best in terms of speed when the key was varied. Given this situation, it is therefore not 

necessary to use the proposed Camellia algorithm on IoT if one wants a fast algorithm when 
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key is varied. From Figure 4.12, speed of standard Camellia is 201552,7612 bits/sec, whereas 

of proposed Camellia is 198300,1614 bits/sec. 

 

 

Figure 4.12: Results of speed taken on Camellia when key was varied. 

 

4.2.4. Results 4: The Avalanche Effect on Cast-128. 

 

From Table 4.7 and Figure 4.13, the proposed Cast-128 algorithm yielded an improved 

avalanche compared standard Cast-128 algorithm when plaintext varied. That is the avalanche 

effect was increased from 48.8281 % up to 49.3164% by using the proposed method. This 

means that our modified (proposed) Cast-128 algorithm can replace the standard Cast-128 

algorithm when one wants to choose between the two algorithms because it has an improved 

avalanche effect. This is according to [143], [6]. IoT uses standard Cast-128 algorithm to secure 

its prototypes, then we recommend that it should be replace by the proposed Cast-128 algorithm 

to give high security of IoT’s prototypes. From Table 4.7 the standard Cast-128 algorithm has 

an avalanche effect which is low than the proposed Cast-128 algorithm. Standard Cast-128 

algorithm has 48.8281% whereas proposed Cast-128 algorithm has 49.3164%. From Table 4.7 

standard Cast-128 algorithm is fast compared to proposed Cast-128 algorithm. Standard Cast-

128 took 0.0630 seconds to encrypt whereas proposed Cast-128 takes 0.0960 seconds to 

encrypt. 
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Table 4.7: Results of standard and proposed Cast-128 when plaintext was varied. 

Algorithm Initial 

vector 

Final 

vector 

Avalanche 

effect 

Time taken to finish 

avalanche effect 

Speed taken to finish 

avalanche effect 

STANDARD 

CAST-128  

NO NO 48.8281%

  

0.06299 sec 260104,7785 bits/sec 

PROPOSED 

CAST-128 

YES YES 49.3164% 0.0960 sec 170666,6667 bits/sec 

 

From Figure 4.13 the standard Cast-128 algorithm has an avalanche effect which is low than 

the proposed Cast-128 algorithm. Standard Cast-128 algorithm has 48.8281% whereas 

proposed Cast-128 algorithm has 49.3164%. When plaintext was varied. 

 

 

Figure 4.13: Results of avalanche effect on Cast-128 when plaintext was varied. 

 

From Table 4.7 and Figure 4.14 when the plaintext is varied the proposed Cast-128 is slow. 

Then standard Cast-128 is still best in speed if the plaintext is varied. Therefore, there is no 

need to replace it for IoT if the user wants an algorithm, which is fast when plaintext varied. 
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From Figure 4.14, speed of standard Cast-128 is 260104,7785 bits/sec, whereas of proposed 

Cast-128  is 170666,6667 bits/sec. 

 

 

Figure 4.14: Results of speed taken on Cast-128 when plaintext was varied. 

 

From Table 4.8 and Figure 4.15, the proposed Cast-128 yielded an improved avalanche effect 

compared to standard Cast-128 algorithm when key varied. The avalanche effect was increased 

from 50.1221% up to 50.1781% by using the proposed method. We recommend that the 

proposed Cast-128 algorithm can replace the standard Cast-128 algorithm when one wants to 

choose between the two, because it has an improved avalanche effect according to [143]. IoT 

uses standard Cast-128 algorithm to secure its prototypes. We recommend that the proposed 

Cast-128 algorithm can be used to secure IoT’s prototypes when key varies. From Table 4.8 

the standard Cast-128 algorithm has an avalanche effect which is low than the proposed Cast-

128 algorithm. Standard Cast-128 algorithm has 50.1221% whereas proposed Cast-128 

algorithm has 50.1781%. From Table 4.8 standard Cast-128 algorithm is fast compared to 

proposed Cast-128 algorithm. Standard Cast-128 takes 0.1239 seconds to encrypt whereas 

proposed Cast-128 takes 0.1251 seconds to encrypt. 
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Table 4.8: Results of standard and proposed Cast-128 when key was varied. 

Algorithm Initial 

vector 

Final 

vector 

Avalanche 

effect 

Time taken to finish 

avalanche effect 

Speed  taken to finish 

avalanche effect 

STANDARD 

CAST-128 

NO NO 50.1221%

  

0.1239 sec 132235,6740 bits/sec 

PROPOSED 

CAST-128  

YES YES 50.1781% 0.1251 sec 130967,2262 bits/sec 

 

From Figure 4.15 the standard Cast-128 algorithm has an avalanche effect which is low than 

the proposed Cast-128 algorithm. Standard Cast-128 algorithm has 50.1221% whereas 

proposed Cast-128 algorithm has 50.1781%. When key was varied. 

 

 

Figure 4.15: Results of avalanche effect on Cast-128 when key was varied. 

 

From Table 4.8 and Figure 4.16 when the key is varied the proposed Cast-128 is slow. Then 

standard Cast-128 is still best in speed if the key is varied. Therefore, there is no need to replace 

it for IoT if the user wants an algorithm that is fast when key varies. From Figure 4.16, speed 

of standard Cast-128 is 132235,6740 bits/sec, whereas of proposed Cast-128 is 130967,2262 

bits/sec. 
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Figure 4.16: Results of speed taken on Cast-128 when key was varied. 

 

4.2.5. Results 5 5: The Avalanche Effect on Clefia 

 

From Table 4.9 and Figure 4.17 when the plaintext is varied the proposed Clefia yields a low 

avalanche effect compared to standard Clefia. Then standard Clefia is still best in avalanche 

effect if the plaintext is varied. Therefore, there is no need to replace it for IoT if the user wants 

an algorithm that has an improved avalanche effect when plaintext is varied. From Table 4.9 

the standard Clefia algorithm has an avalanche effect, which is improved than the proposed 

Clefia algorithm. Standard Clefia algorithm has 50.2808% whereas proposed Clefia algorithm 

has 49.8230%. From Table 4.9 standard Clefia algorithm is fast compared to proposed Clefia 

algorithm. Standard Clefia takes 0.1177 seconds to encrypt whereas proposed Clefia takes 

0.1218 seconds to encrypt. 
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Table 4.9: Results of standard and proposed Clefia when plaintext was varied. 

Algorithm Initial 

vector 

Final 

vector 

Avalanche 

effect 

Time taken to finish 

avalanche effect 

Speed taken to finish 

avalanche effect 

STANDARD 

CLEFIA  

NO NO 50.2808% 0.1177 sec 139201,3594 bits/sec 

PROPOSED 

CLEFIA  

YES YES 49.8230% 0.1218sec 134515,5994 bits/sec 

 

From Figure 4.17 the standard Clefia algorithm has an avalanche effect, which is improved 

than the proposed Clefia algorithm. Standard Clefia algorithm has 50.2808% whereas proposed 

Clefia algorithm has 49.8230%. When plaintext was varied. 

 

 

Figure 4.17: Results of avalanche effect on Clefia when plaintext was varied. 

 

From Table 4.9 and Figure 4.18, when the plaintext is varied the proposed Clefia is slow. Then 

standard Clefia is still best in speed if the plaintext is varied. Therefore, there is no need to 

replace it for IoT if the user wants an algorithm that is fast when plaintext varied. From Figure 

4.18, speed of standard Clefia is 139201,3594 bits/sec, whereas of proposed Clefia is 

134515,5994 bits/sec. 
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Figure 4.18: Results of speed taken on Clefia when plaintext was varied 

 

From Table 4.10 and Figure 4.19, the proposed Clefia algorithm yielded an improved 

avalanche effect compared to standard Clefia algorithm when key varied. The avalanche effect 

increased from 49.9500% up to 50.2000 % by using the proposed method. We recommend that 

the proposed Clefia algorithm can replace the standard Clefia algorithm when one wants to 

choose between the two, because it has an improved avalanche effect. This means the proposed 

Clefia algorithm is more secure than standard Clefia algorithm [143], [6]. IoT uses Clefia to 

secure its health-care devices. Then it is suggested that proposed Clefia algorithm should be 

used to secure IoT’s health-care devices. From Table 4.10 the standard Clefia algorithm has an 

avalanche effect which is low than the proposed Clefia algorithm. Standard Clefia algorithm 

has 49.9023% whereas proposed Clefia algorithm has 50.1587%. From Table 4.10 standard 

Clefia algorithm is slow compared to proposed Clefia algorithm. Standard Clefia takes 0.1455 

seconds to encrypt whereas proposed Clefia takes 0.1219 seconds to encrypt. 
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Table 4.10: Results of standard and proposed Clefia when key was varied. 

Algorithm Initial 

vector 

Final 

vector 

Avalanche 

effect 

Time taken to finish 

avalanche effect 

Speed taken to finish 

avalanche effect 

STANDARD 

CLEFIA  

NO NO 49.9023% 0.1455 sec 112604,8110 bits/sec 

PROPOSED 

CLEFIA  

YES YES 50.1587% 0.1219 sec 134405,2502 bits/sec 

 
 
 

From Figure 4.19 the standard Clefia algorithm has an avalanche effect which is low than the 

proposed Clefia algorithm. Standard Clefia algorithm has 49.9023% whereas proposed Clefia 

algorithm has 50.1586%. When key was varied. 

 
 
 

Figure 4.19: Results of avalanche effect on Clefia when key was varied. 

 

From Table 4.10 and Figure 4.20, the proposed Clefia algorithm is faster than the standard 

Clefia algorithm. IoT uses standard Clefia secure its health-care devices. Then if a user want 

to vary key and encrypt or secure health-care devices on IoT, and wants to use fast algorithm 

like Clefia algorithm, then the proposed Clefia algorithm is a better option than standard one. 
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From Figure 4.20, speed of standard Clefia is 112604,8110 bits/sec, whereas of proposed Clefia 

is 134405,2502 bits/sec. 

 

 

Figure 4.20: Results of speed taken on Clefia when key was varied. 

 

4.2.6. Results 6: The Avalanche Effect on DES 

 

From Table 4.11 and Figure 4.21, the proposed DES algorithm yielded low avalanche effect 

compared to standard DES algorithm when plaintext varied. Then standard DES algorithm is 

still best in avalanche effect if the plaintext is varied. Therefore, there is no need to replace it 

for IoT if the user wants an algorithm that has an improved avalanche effect when plaintext is 

varied. From Table 4.11 the standard DES algorithm has an avalanche effect, which is 

improved than the proposed DES algorithm. Standard DES algorithm has 62.8660% whereas 

proposed DES algorithm has 58.8379%. From Table 4.11 standard DES algorithm is slow 

compared to proposed DES algorithm. Standard DES takes 0.0585 seconds to encrypt whereas 

proposed DES takes 0.05773 seconds to encrypt. 
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Table 4.11: Results of standard and proposed DES when plaintext was varied. 

Algorithm Initial 

vector 

Final 

vector 

Avalanche 

effect 

Time taken to finish 

avalanche effect 

Speed taken to finish 

avalanche effect 

STANDARD 

DES 

NO NO 62.8662% 0.0585 sec 70017,0940 bits/sec 

PROPOSED  

DES  

YES YES 58.8379% 0.05773 sec 70950,9787 bits/sec 

 

From Table 4.21 the standard DES algorithm has an avalanche effect, which is improved than 

the proposed DES algorithm. Standard DES algorithm has 62.8662% whereas proposed DES 

algorithm has 58.8379%. When plaintext was varied. 

 

Figure 4.21: Results of avalanche effect on DES when plaintext was varied. 
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From Table 4.11 and Figure 4.22, the proposed DES algorithm is faster than the standard DES 

algorithm. IoT uses standard DES algorithm to secure its prototypes and many devices. Then 

if a user want to vary plaintext and encrypt IoT’s prototypes and devices, and wants to use fast 

algorithm like DES, then the proposed DES is a better option than standard one. From Figure 

4.22, speed of standard DES is 70017,0940 bits/sec, whereas of proposed DES is 70950,9787 

bits/sec. 

 

 

Figure 4.22: Results of speed taken on DES when plaintext was varied. 

 

From Table 4.12 and Figure 4.23, the proposed DES algorithm yielded an improved avalanche 

effect compared to standard DES algorithm when key varied. The avalanche effect was 

increased from 43.8721% up to 44.2139% by using the proposed method. We recommend that 

the proposed DES algorithm replace the standard DES algorithm when one wants to choose 

between the two, because it has an improved avalanche effect according to [143], [6]. Standard 

DES algorithm is mostly used on IoT. This standard DES algorithm should be replaced from 

IoT because it has low avalanche effect compared to the proposed DES algorithm when the 

key varies. From Table 4.12 the standard DES algorithm has an avalanche effect which is low 

than the proposed DES algorithm. Standard DES algorithm has 43.8721% whereas proposed 

DES algorithm has 44.2139%. From Table 4.12 standard DES algorithm is fast compared to 

proposed DES algorithm. Standard DES takes 0.0616 seconds to encrypt whereas proposed 

DES takes 0.0635 seconds to encrypt.   
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Table 4.12: Results of standard and proposed DES when key was varied. 

Algorithm Initial 

vector 

Final 

vector 

Avalanche 

effect 

Time taken to finish 

avalanche effect 

Speed taken to finish 

avalanche effect 

STANDARD   

DES  

NO NO 43.8721%

  

0.06162 sec 66471,9247 bits/sec 

PROPOSED   

DES  

YES YES 44.2139% 0.0635 sec 64503,9370 bits/sec 

 

From Table 4.23 the standard DES algorithm has an avalanche effect which is low than the 

proposed DES algorithm. Standard DES algorithm has 43.8721% whereas proposed DES 

algorithm has 44.2139%. When key was varied. 

 

Figure 4.23: Results of avalanche effect on DES when key was varied. 

 

From Table 4.12 and Figure 4.24, when the key is varied the proposed DES is slow. Then 

standard DES is still best in speed if the key is varied. Therefore, there is no need to replace it 

for IoT if the user wants an algorithm, which is faster when key varies. From Figure 4.24, speed 

of standard DES is 66471,9247 bits/sec, whereas of proposed DES is 64503,9370 bits/sec. 
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Figure 4.24: Results of speed taken on DES when key was varied. 

 

4.2.7. Results 7: The Avalanche Effect on MMB 

From Table 4.13 and Figure 4.25, when the plaintext is varied the proposed MMB algorithm 

has low avalanche effect compared to standard MMB algorithm. Then standard MMB is still 

best in avalanche effect if the plaintext is varied. Therefore, there is no need to replace it for 

IoT if the user wants an algorithm that has an improved avalanche effect when plaintext is 

varied. From Table 4.13 the standard MMB algorithm has an avalanche effect, which is 

improved than the proposed MMB algorithm. Standard MMB algorithm has 49.7742% 

whereas proposed MMB algorithm has 49.7498%. From Table 4.13 standard MMB algorithm 

is slow compared to proposed MMB algorithm. Standard MMB takes 0.2415 seconds to 

encrypt whereas proposed MMB takes 0.2320 seconds to encrypt. 
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Table 4.13: Results of standard and proposed MMB when plaintext was varied. 

Algorithm Initial 

vector 

Final 

vector 

Avalanche 

effect 

Time taken to finish 

avalanche effect 

Speed taken to finish 

avalanche effect 

STANDARD  

MMB  

NO NO 49.7742% 0.2415 sec 67842,6501 bits/sec 

PROPOSED  

MMB  

YES YES 49.7498% 0.232 sec 70620,6897 bits/sec 

 

From Table 4.25 the standard MMB algorithm has an avalanche effect, which is improved 

than the proposed MMB algorithm. Standard MMB algorithm has 49.7742% whereas 

proposed MMB algorithm has 49.7498%. When plaintext was varied. 

 

Figure 4.25: Results of avalanche effect on MMB when plaintext was varied. 
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From Table 4.13 and Figure 4.26, the proposed MMB algorithm is faster than the standard 

MMB algorithm. IoT uses standard MMB algorithm to secure its software applications. Then 

if a user want to vary plaintext and encrypt IoT’s software applications and wants to use fast 

algorithm like MMB, then the proposed MMB algorithm is the best to choose. From Figure 

4.26, speed of standard MMB is 67842,6501 bits/sec, whereas of proposed MMB is 

70620,6897 bits/sec. 

 

 

Figure 4.26: Results of speed taken on MMB when plaintext was varied. 

 

From Table 4.14 and Figure 4.27 when the key is varied the proposed MMB algorithm has low 

avalanche effect compared to standard MMB algorithm. Then standard MMB algorithm is still 

best in avalanche effect if the plaintext is varied. Therefore, there is no need to replace it for 

IoT if the user wants an algorithm that has an improved avalanche effect when plaintext is 

varied. From Table 4.14 the standard MMB algorithm has an avalanche effect, which is 

improved than the proposed MMB algorithm. Standard MMB algorithm has 49.6765% 

whereas proposed MMB algorithm has 49.6399%. From Table 4.14 both standard and 

proposed MMB algorithm took exact same time to encrypt. Both standard and proposed MMB 

took 0.1216 second to encrypt. 
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Table 4.14: Results of standard and proposed MMB when key was varied. 

Algorithm Initial 

vector 

Final 

vector 

Avalanche 

effect 

Time taken to finish 

avalanche effect 

Speed taken to finish 

avalanche effect 

STANDARD   

MMB  

NO NO 49.6765%

  

0.1216 sec 134736,8421 bits/sec 

PROPOSED   

MMB  

YES YES 49.6399% 0.1216 sec 134736,8421 bits/sec 

 

From Table 4.27 the standard MMB algorithm has an avalanche effect which is improved 

than the proposed MMB algorithm. Standard MMB algorithm has 49.6765% whereas 

proposed MMB algorithm has 49.6399%. When key was varied. 

 

Figure 4.27: Results of avalanche effect on MMB when key was varied. 

 

From Table 4.14 and Figure 4.28, both proposed and standard MMB algorithms yielded equal 

speed and time when key varied. Therefore, user can pick one between the two it does not 

matter. Only if a user focus on speed and when the key varies. Standard and proposed MMB 

has the same of 134736,8421 bits/sec. 
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Figure 4.28: Results of speed taken on MMB when key was varied. 

 

4.2.8. Results 8: The Avalanche Effect on RC5 

 

From Table 4.15 and Figure 4.29, the proposed RC5 algorithm yielded an improved avalanche 

effect compared to standard RC5 algorithm when plaintext varied. The avalanche effect 

increased from 76.2% up to 76.9 % after the proposed method was implemented. This means 

that the proposed RC5 algorithm can replace the standard RC5 algorithm when one wants to 

choose between the two because it has an improved avalanche effect. Algorithm that has an 

improved avalanche effect has high security [143], [6]. IoT uses standard RC5 algorithm to 

secure its Mica2 hardware (base station of IoT). It is recommended to use the proposed RC5 

algorithm from IoT’s Mica2 hardware, only when plaintext varies. We suggest that the 

proposed one have to be used on Mica2 hardware because it has an improved avalanche effect. 

From Table 4.15 the standard RC5 algorithm has an avalanche effect which is low than the 

proposed RC5 algorithm. Standard RC5 algorithm has 76.1719% whereas proposed RC5 

algorithm has 76.9043%. From Table 4.15 standard RC5 algorithm is slow compared to 

proposed RC5 algorithm. Standard RC5 takes 0.0606 seconds to encrypt whereas proposed 

RC5 takes 0.0599 seconds to encrypt. 
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Table 4.15: Results of standard and proposed RC5 when plaintext was varied. 

Algorithm Initial 

vector 

Final 

vector 

Avalanche 

effect 

Time taken to finish 

avalanche effect 

Speed taken to finish 

avalanche effect 

STANDARD 

RC5 

NO NO 76.1719% 0.0606 sec 68266,6667 bits/sec 

PROPOSED 

RC5 

YES YES 76.9043% 0.0599 sec 68380,6344 bits/sec 

 

From Figure 4.29 the standard RC5 algorithm has an avalanche effect which is low than the 

proposed RC5 algorithm. Standard RC5 algorithm has 76.1719% whereas proposed RC5 

algorithm has 76.9043%. When plaintext was varied. 

 

Figure 4.29: Results of avalanche effect on RC5 when plaintext was varied. 

 

From Table 4.15 and Figure 4.30, the proposed RC5 algorithm is faster than the standard RC5 

algorithm. IoT uses standard RC5 algorithm to encrypt its Mica2 hardware. Then if a user want 

to vary plaintext and encrypt the IoT’s Mica2 hardware and wants to use fast algorithm like 
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RC5, then the proposed RC5 is the best to choose. From Figure 4.30, speed of standard RC5 is 

68266,6667 bits/sec, whereas of proposed RC5 is  68380,6344 bits/sec. 

 

 

Figure 4.30: Results of speed taken on RC5 when plaintext was varied. 

 

From Table 4.16 and Figure 4.31, the proposed RC5 algorithm yielded an improved avalanche 

effect compared to standard RC5 algorithm when key varied. The avalanche effect was 

increased from 49.1821% up to 49.7923 % by using the proposed method. We recommend that 

the proposed RC5 algorithm can replace the standard RC5 algorithms when one wants to 

choose between the two, because it has an improved avalanche effect, only when the key varies. 

IoT should use the proposed RC5 algorithm to secure its Mica2 hardware only when the key is 

varied. Then we suggested that the standard RC5 algorithm should be removed from Mica2 

hardware and the proposed RC5 be used to provide enhanced security as compared to the 

standard one on Mica2 hardware. From Table 4.16 the standard RC5 algorithm has an 

avalanche effect which is low than the proposed RC5 algorithm. Standard RC5 algorithm has 

49.1821% whereas proposed RC5 algorithm has 49.7923%. From Table 4.16 standard RC5 

algorithm is fast compared to proposed RC5 algorithm. Standard RC5 takes 0.1165 seconds to 

encrypt whereas proposed RC5 takes 0.1325 seconds to encrypt. 
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Table 4.16: Results of standard and proposed RC5 when key was varied. 

Algorithm Initial 

vector 

Final 

vector 

Avalanche 

effect 

Time taken to finish 

avalanche effect 

Speed taken to finish 

avalanche effect 

STANDARD  

RC5  

NO NO 49.1821%

  

0.1165 sec 140635,1931 bits/sec 

PROPOSED   

RC5  

YES YES 49.7923% 0.1325 sec 123652,8302 bits/sec 

 

 

From Figure 4.31 the standard RC5 algorithm has an avalanche effect which is low than the 

proposed RC5 algorithm. Standard RC5 algorithm has 49.1821% whereas proposed RC5 

algorithm has 49.7923%. When key was varied. 

 

 

Figure 4.31: Results of avalanche effect on RC5 when key was varied. 

 

From Table 4.16 and Figure 4.32, when the key is varied the proposed RC5 is slow. Then 

standard RC5 is still best in speed if the key is varied. Therefore, there is no need to replace it 

for IoT if the user wants an algorithm that is fast when key varies. From Figure 4.32, speed of 

standard RC5 is 140635,1931 bits/sec, whereas of proposed RC5 is 123652,8302 bits/sec. 
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Figure 4.32: Results of speed taken on RC5 when key was varied. 

 

4.2.9. Results 9: The Avalanche Effect on Serpent 

 

From Table 4.17 and Figure 4.33, when the plaintext is varied the proposed Serpent algorithm 

has low avalanche effect compared to standard Serpent algorithm. Then standard Serpent 

algorithm is still best in avalanche effect if the plaintext is varied. Therefore, there is no need 

to replace it for IoT if the user wants an algorithm that has an improved avalanche effect when 

plaintext is varied. From Table 4.17 the standard Serpent algorithm has an avalanche effect 

which is improved than the proposed Serpent algorithm. Standard Serpent algorithm has 

50.3845% whereas proposed Serpent algorithm has 49.7986%. From Table 4.17 standard 

Serpent algorithm is fast compared to proposed Serpent algorithm. Standard Serpent takes 

0.1215 seconds to encrypt whereas proposed Serpent takes 0.1250 seconds to encrypt. 

 

Table 4.17: Results of standard and proposed Serpent when plaintext was varied. 

Algorithm Initial 

vector 

Final 

vector 

Avalanche 

effect 

Time taken to finish 

avalanche effect 

Speed taken to finish 

avalanche effect 

STANDARD 

SERPENT 

NO NO 50.3845% 0.1215 sec 134847,7367 bits/sec 

PROPOSED 

SERPENT 

YES YES 49.7986% 0.125 sec 131072,0000 bits/sec 
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From Figure 4.33 the standard Serpent algorithm has an avalanche effect, which is improved 

than the proposed Serpent algorithm. Standard Serpent algorithm has 50.3845% whereas 

proposed Serpent algorithm has 49.7986%. When plaintext was varied. 

 

 

Figure 4.33: Results of avalanche effect on Serpent when plaintext was varied. 

 

From Table 4.17 and Figure 4.34, when the plaintext is varied the proposed Serpent is slow. 

Then standard Serpent is still best in speed if the plaintext is varied. Therefore, there is no need 

to replace it from internet IoT if the user wants an algorithm, which is faster when plaintext 

varied. From Figure 4.34, speed of standard Serpent is 134847,7366 bits/sec, whereas of 

proposed Serpent is 131072.0000 bits/sec. 
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Figure 4.34: Results of speed taken on Serpent when plaintext was varied. 

 

From Table 4.18 and Figure 4.35, the proposed Serpent algorithm yielded an improved 

avalanche effect compare to standard Serpent algorithm when key varied. The avalanche effect 

was increased from 49.8656% up to 50.5341% by using the proposed method. We recommend 

that the proposed Serpent algorithm can replace the standard Serpent algorithm when one wants 

to choose between the two. Algorithm that has an improved avalanche effect has high security 

[143], [6]. IoT uses standard Serpent algorithm to secure its sensors. Therefore, the proposed 

Serpent algorithm should be used to secure IoT’s sensors, only when the key varies. From 

Table 4.18 the standard Serpent algorithm has an avalanche effect which is low than the 

proposed Serpent algorithm. Standard Serpent algorithm has 49.8656% whereas proposed 

Serpent algorithm has 50.5341%. From Table 4.18 standard Serpent algorithm is fast compared 

to proposed Serpent algorithm. Standard Serpent takes 0.2714 seconds to encrypt whereas 

proposed Serpent takes 0.2744 seconds to encrypt. 
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Table 4.18: Results of standard and proposed Serpent when key was varied. 

Algorithm Initial 

vector 

Final 

vector 

Avalanche 

effect 

Time taken to finish 

avalanche effect 

Speed taken to finish 

avalanche effect 

STANDARD 

SERPENT  

NO NO 49.8657%

  

0.2714 sec 241473,8394 bits/sec 

PROPOSED 

SERPENT  

YES YES 50.5341% 0.2744 sec 238833,8192 bits/sec 

 

From Figure 4.35 the standard Serpent algorithm has an avalanche effect which is low than 

the proposed Serpent algorithm. Standard Serpent algorithm has 49.8657% whereas proposed 

Serpent algorithm has 50.5341%. When key was varied. 

 

 

Figure 4.35: Results of avalanche effect on Serpent when key was varied. 

 

From Table 4.18 and Figure 4.36, when the key is varied the proposed Serpent algorithm is 

slow. Then standard Serpent algorithm is still best in speed if the key is varied. Therefore, there 

is no need to replace it for IoT if the user wants an algorithm that is fast when key varies. From 

Figure 4.36, speed of standard Serpent is 241473,8395 bits/sec, whereas of proposed Serpent 

is 238833,8192 bits/sec. 



 

110 
 

 

Figure 4.36: Results of speed taken on Serpent when key was varied. 

 

4.2.10. Results 10: The Avalanche Effect on Skipjack 

 

From Table 4.19 and Figure 4.37, the proposed Skipjack algorithm yielded an improved 

avalanche effect compared to standard Skipjack algorithm when plaintext varied. The 

avalanche effect was increased from 48.7793% up to 49.2188% by using the proposed method. 

We recommend that the proposed Skipjack algorithm replace the standard Skipjack algorithm 

when one wants to choose between the two, because it has an improved avalanche effect. 

Algorithm that has an improved avalanche effect has high security [143], [6]. IoT uses standard 

Skipjack algorithm to secure its Mica2 hardware. Then standard Skipjack algorithm should be 

replaced by the proposed Skipjack algorithm from substation IoT’s Mica2 hardware the 

proposed Skipjack has an improved avalanche effect. From Table 4.19 the standard Skipjack 

algorithm has an avalanche effect which is low than the proposed Skipjack algorithm. Standard 

Skipjack algorithm has 48.7793% whereas proposed Skipjack algorithm has 49.2188%. From 

Table 4.19 standard Skipjack algorithm is fast compared to proposed Skipjack algorithm. 

Standard Skipjack takes 0.0605 seconds to encrypt whereas proposed Skipjack takes 0.0647 

seconds to encrypt. 
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Table 4.19: Results of standard and proposed Skipjack when plaintext was varied. 

Algorithm Initial 

vector 

Final 

vector 

Avalanche 

effect 

Time taken to finish 

avalanche effect 

Speed taken to finish 

avalanche effect 

STANDARD 

SKIPJACK 

NO NO 48.7793%

  

0.0605 sec 67680,1058 bits/sec 

PROPOSED 

SKIPJACK 

YES YES 49.2186% 0.0647 sec 63268,45845 bit/sec 

 

From Figure 4.37 the standard Skipjack algorithm has an avalanche effect which is low than 

the proposed Skipjack algorithm. Standard Skipjack algorithm has 48.7793% whereas 

proposed Skipjack algorithm has 49.2188%. When plaintext was varied. 

 

 

Figure 4.37: Results of avalanche effect on Skipjack when plaintext was varied. 

 

From Table 4.19 and Figure 4.38, when the plaintext is varied the proposed Skipjack algorithm 

is slow compared to standard Skipjack algorithm. Then standard Skipjack algorithm is still best 

in speed if the plaintext is varied. Therefore, there is no need to replace it for IoT if the user 

wants an algorithm that is fast when plaintext varied. From Figure 4.38, speed of standard 

Skipjack is 67680,1058 bits/sec whereas of proposed Skipjack is 63268,4585 bit/sec. 
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Figure 4.38: Results of speed taken on Skipjack when plaintext was varied. 

 

From Table 4.20 and Figure 4.39, when the key is varied the proposed Skipjack algorithm has 

low avalanche effect compared to standard Skipjack algorithm. Then standard Skipjack 

algorithm is still the best in avalanche effect if the plaintext is varied. Therefore, there is no 

need to replace it for IoT if the user wants an algorithm that has an improved avalanche effect 

when plaintext is varied. From Table 4.20 the standard Skipjack algorithm has an avalanche 

effect, which is improved than the proposed Skipjack algorithm. Standard Skipjack algorithm 

has 62.5732% whereas proposed Skipjack algorithm has 61.6211%. From Table 4.20 standard 

Skipjack algorithm is fast compared to proposed Skipjack algorithm. Standard Skipjack takes 

0.0744 seconds to encrypt whereas proposed Skipjack takes 0.0758 seconds to encrypt. 

 

Table 4.20: Results of standard and proposed Skipjack when key was varied. 

Algorithm Initial 

vector 

Final 

vector 

Avalanche 

effect 

Time taken to finish 

avalanche effect 

Speed taken to finish 

avalanche effect 

STANDARD 

SKIPJACK  

NO NO 62.5732%

   

0.0744 sec 67680,1058 bits/sec 

PROPOSED 

SKIPJACK 

YES YES 61.6211% 0.0758 sec 63268,4584 bit/sec 
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From Figure 4.39 the standard Skipjack algorithm has an avalanche effect, which is improved 

than the proposed Skipjack algorithm. Standard Skipjack algorithm has 62.5732% whereas 

proposed Skipjack algorithm has 61.6211%. When key was varied. 

 

 

Figure 4.39: Results of avalanche effect on Skipjack when key was varied. 

 

From Table 4.20 and Figure 4.40, when the key is varied the proposed Skipjack algorithm is 

slow compared to standard Skipjack algorithm. Then standard Skipjack algorithm is still best 

in speed if the key is varied. Therefore, there is no need to replace it for IoT if the user wants 

an algorithm that is fast when key varies. From Figure 4.40, speed of standard Skipjack is 

67680,1058 bits/sec, whereas of proposed Skipjack is 63268,4584 bit/sec. 
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Figure 4.40: Results of speed taken on Skipjack when key was varied. 

 

4.2.11. Results 11: The Speed and Avalanche Effect on All Ten Algorithms 

 

From the Figure 4.41 and Table 4.21, it is clear that the proposed method worked very 

sufficiently when we compare all algorithms put on test. We found that with the proposed RC5, 

Skipjack, Cast-128 and Camellia algorithms have improved avalanche effect compared their 

standard algorithms when plaintext was varied. The proposed RC5 has a value of avalanche 

effect of 76.9043%, it is heighted in red on Table 4.21. The proposed Skipjack has a value of 

avalanche effect of 49.2188%, also heighted in red on Table 4.21. The proposed Cast-128 has 

a value of avalanche effect of 49.3164%, it is heighted in red on Table 4.21. The proposed 

Camellia has a value of avalanche effect of 50.0977%, also heighted in red on Table 4.21.    

Therefore the proposed RC5, Skipjack, Cast-128 and Camellia algorithms must be selected if 

one wants the algorithm with an improved avalanche effect when plaintext is varied compared 

to their standard algorithms implemented on IoT. Algorithm that has an improved avalanche 

effect has high security [143], [6]. Therefore, the proposed method worked positively according 

to our results from Figure 4.41.   
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Table 4.21: Results of avalanche effect of all algorithms tested when plaintext is varied. 

Algorithm Tested Avalanche effect of standard 

algorithm 

Avalanche effect of proposed 

algorithm 

AES 49.7925 % 49.60327 % 

BLOWFISH 50.5615% 48.33984% 

CAMELLIA 49.4690% 50.0977% 

CAST-128 48.8281% 49.3164% 

CLEFIA 50.28076% 49.8230% 

DES 62.8662% 58.8379% 

MMB 49.7742% 49.7498% 

RC5 76.1719% 76.9043% 

SERPENT 50.3845% 49.7988% 

SKIPJACK 48.77930% 49.21875% 

 

 

The proposed RC5 has a value of avalanche effect of 76.9043%, is presented graphically on 

Figure 4.41.  The proposed Skipjack has a value of avalanche effect of 49.2188%, also 

heighted in red on Table 4.21. The proposed Cast-128 has a value of avalanche effect of 

49.3164%, is presented graphically on Figure 4.41.  The proposed Camellia has a value of 

avalanche effect of 50.0977%, also heighted in red on Table 4.21.     
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Figure 4.41:  Results of avalanche effect of all algorithms tested when plaintext is varied. 

 

From Figure 4.42. The avalanche effect was increased on four algorithms out of ten algorithms 

by using the proposed method. This means an increase of 40% of algorithms security is 

achieved. Therefore, the proposed method gave us positive results (40%) according to Figure 

4.42. Wherever these four standard algorithms are implemented on IoT, therefore the proposed 

algorithms should replace them to enhance IoT security.  
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Figure 4.42:  Results of Avalanche effect when plaintext was varied. 

 

From the Figure 4.43, it is clear that the proposed method worked very sufficiently when we 

compare all algorithms put on test. We found that with the proposed MMB, DES, RC5, 

Camellia and AES algorithms were fast algorithms compared to the standard MMB, DES, RC5 

Camellia and AES algorithms. Therefore, it is recommended that the proposed MMB, DES, 

Camellia and AES algorithms will be used as compared to standard MMB, DES, Camellia or 

AES algorithms if one wants an algorithm that has an improved speed when plaintext is varied 

[143], [6]. The proposed MMB has a speed of 70620.6897 bits/sec it is heighted in red on Table 

4.22. The proposed DES has a speed of 70950.9787 bits/sec also heighted in red on Table 4.22.  

The proposed Camellia has a speed of 134626.1298 bits/sec also heighted in red on Table 4.22. 

The proposed RC5 has a speed of 68380.6344 bits/sec also heighted in red on Table 4.22. The 

proposed AES has a speed of 73012.4777 bits/sec also heighted in red on Table 4.22. Therefore, 

the proposed method worked positively according to our results from Figure 4.43. IoT needs 

algorithm that is fast to encrypt [145], therefore the proposed MMB, DES, RC5, Camellia and 

AES are faster than standard MMB, DES, Camellia and AES when plaintext is varied. The 

faster the algorithm, the higher the security [53].  
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Table 4.22: Result of the speeds of all algorithms tested when plaintext was varied. 

Algorithm Tested Speed calculated to finish 

avalanche effect of standard 

algorithm (in bits/sec) 

Speed calculated to finish 

avalanche effect of proposed 

algorithm (in bits/sec) 

AES 71671.0411  73012.4777  

BLOWFISH 66699.2347 67037.6432 

CAMELLIA 103959.3909  134626.1298 

CAST-128 260104.7785  170666.6667  

CLEFIA 139201.3594  134515.5993  

DES 70017.0940  70950.9787 

MMB 67842.6501 70620.6897  

RC5 68266.66667  68380.6344  

SERPENT  134847.7366  131072.0000  

SKIPJACK 67680.1058  63268.4584  

 

 

The proposed MMB has a speed of 70620.6897 bits/sec is presented graphically on Figure 

4.43. The proposed DES has a speed of 70950.9787 bits/sec is presented graphically on Figure 

4.43. The proposed Camellia has a speed of 134626.12983 bits/sec is presented graphically on 

Figure 4.43. The proposed RC5 has a speed of 68380.6344 bits/sec is presented graphically on 

Figure 4.43. The proposed AES has a speed of 73012.4777 bits/sec is presented graphically on 

Figure 4.43.  
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Figure 4.43: Result of the speeds of all algorithms tested when plaintext was varied. 

 

From the Figure 4.44, it is clear that the proposed method worked very sufficiently when we 

compare all algorithms put on test. We found that with the proposed AES, Camellia, Cast-128, 

Clefia, DES, RC5 and Serpent algorithms yield an improved avalanche effect algorithm 

compared to their standard algorithms. The proposed AES has a value of avalanche effect of 

49.9390%, it is heighted in red on Table 4.23. The proposed Camellia has a value of avalanche 

effect of 49.9893%, it is heighted in red on Table 4.23. The proposed Cast-128 has a value of 

avalanche effect of 50.1709%, also heighted in red on Table 4.23. The proposed Clefia has a 

value of avalanche effect of 50.1587%, also heighted in red on Table 4.23. The proposed DES 

has a value of avalanche effect of 44.2139%, also heighted in red on Table 4.23. The proposed 

RC5 has a value of avalanche effect of 49.7925, also heighted in red on Table 4.23. The 

proposed Serpent has a value of avalanche effect of 50.5341%, also heighted in red on Table 

4.23. Therefore, it is recommended that the proposed AES, Camellia, Cast-128, Clefia, DES, 

RC5 and Serpent algorithms will be used as compared to their standard algorithms if one wants 

the algorithms with an improved avalanche effect when key is varied [143], [6]. We managed 

to increase the security of seven algorithms out of ten. That is 70%. Therefore, the proposed 

method worked positively according to our results from Figure 4.44.   
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Table 4.23: Results of avalanche effect of all algorithms tested when key was varied. 

Algorithm Tested Avalanche effect of algorithm 

before modification (No 

vectors were implemented) 

Avalanche effect of algorithm 

after modification (proposed 

method). Vectors were 

implemented 

AES 49.0662% 49.9390% 

BLOWFISH 50.4517% 49.9878% 

CAMELLIA 49.6094% 49.9893% 

CAST-128 50.1221% 50.1709% 

CLEFIA 49.9023% 50.1587% 

DES 43.8721% 44.21387% 

MMB 49.6765% 49.639893% 

RC5 49.1821% 49.7925% 

SERPENT  49.8657% 50.5341% 

SKIPJACK 62.5732%  61.6211% 

 

 

The proposed AES has a value of avalanche effect of 49.9390%, is indicated on Figure 4.44. 

The proposed Camellia has a value of avalanche effect of 49.9893%, is presented graphically 

on Figure 4.44.  The proposed Cast-128 has a value of avalanche effect of 50.1709%, is 

presented graphically on Figure 4.44.  The proposed Clefia has a value of avalanche effect of 

50.1587%, is presented graphically on Figure 4.44.  The proposed DES has a value of 

avalanche effect of 44.2139%, is presented graphically on Figure 4.44.  The proposed RC5 has 

a value of avalanche effect of 49.7925, is presented graphically on Figure 4.44.  
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Figure 4.44: Results of avalanche effect of all algorithms tested when key was varied. 

 

From Figure 4.45. The avalanche effect was increased. Seven out of ten algorithms enhance 

their avalanche effects when the proposed method used. That is when the key was varied. This 

means that we have managed to increase 70% of algorithms tested when key was varied. 

Therefore, the proposed method gave us positive results of 70% according to Figure 4.5. 

Wherever these seven algorithms are implemented on IoT, the proposed algorithms should 

replace them in order to increase IoT security.  
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Figure 4.45:  Results of Avalanche effect when key was varied. 

 

From the Figure 4.46, it is clear that the proposed method worked very sufficiently when we 

compare all ten algorithms put on test. We find that the modified (proposed) AES and Clefia 

are faster algorithms compared to standard (AES and Clefia) of algorithms. The proposed AES 

has a speed of 138847.4576 bits/sec also heighted in red on Table 4.24. The proposed Clefia 

has a speed of 134405.2502 bits/sec also heighted in red on Table 4.24. Therefore, it is 

recommended that the proposed AES and Clefia will be used as compared to standard ones if 

one wants the algorithms like AES and Clefia with an improved speed when key is varied 

[143], [6]. Therefore, the proposed method worked positively according to our results from 

Figure 4.36. The internet of things needs the algorithm with is fast to encrypt [145], therefore 

the proposed AES and Clefia are faster than standard AES and Clefia when algorithms are 

tested.    
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Table 4.24: Results of the speed of all algorithms test when key was varied. 

Algorithm Tested Speed calculated to finish 

avalanche effect of standard 

algorithm (in bits/sec) 

Speed calculated to finish 

avalanche effect of proposed 

algorithm (in bits/sec) 

AES 138261.6034  138847.4576  

BLOWFISH 132879.1565  132879.1565 

CAMELLIA 201552.7611  198300.1614  

CAST-128 132235.6740  130967.2262  

CLEFIA 112604.8110  134405.25021 

DES 66471.9247  64503.9370  

MMB 134736.8421 134736.8421  

RC5 140635.1931  123652.8302  

SERPENT 241473.8394  238833.8192  

SKIPJACK 86033.0690  84410.4458  

 

The proposed AES has a speed of 138847.4576 bits/sec as indicated on Figure 4.46. The 

proposed Clefia has a speed of 134405.2502 bits/sec as indicated on Figure 4.46. 

 

 

Figure 4.46: Results of the speed of all algorithms test when key was varied. 
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4.3. Chapter Summary  

 

This chapter explained the results and analysis of all different methodologies discussed in 

chapter 3. It produced the results and analysis of avalanche effect of different types of 

cryptographic algorithms used on IoT. It gave results and analysis of the speed yielded by 

different algorithms. Additionally, it also gave the time taken to encrypt form different types 

algorithms. 
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CHAPTER 5: CONCLUSION AND FUTURE WORK 

In this section, we conclude by summarising the work done in this dissertation from chapter 1 

up to chapter 4: its introduction, literature review, methodology, results discussion, results 

analysis and future work. 

 

In chapter 1, we set out to define the background of the study, definition of IoT, benefits of 

IoT, security, set out the problem statement, hypothesis, research questions, research 

objectives, significance and the research roadmap of this study. All these aspects were outlined 

in chapter 1. 

 

Chapter 2 reviewed the literature that is related to our study. In the literature review, we 

explained the basic background of internet and dug deeper into IoT. We explained the security 

of IoT and the avalanche effect of crypto algorithms used to secure IoT. In addition, we 

explained different types of attacks (Denial of Service, Man-in-the-middle etc.) used by 

intruders to attack IoT. Additionally, a list of algorithms used on IoT were presented. 

Furthermore, we explained the origin of algorithms, who developed them and why they were 

developed. Finally, related work done by others researchers were also presented. 

 

Chapter 3 discussed the research methodology that was used in our study. We explained the 

comparison method was used to measure the avalanche effect. In addition, we explained how 

we generated an initial and the final vector on the proposed work. We describe an overview 

and the strength of PI mathematically. We explained the need of avalanche effect on the 

security of IoT and the methods used to calculate them. In addition, chapter 3 explained the 

experimental procedures conducted when measuring avalanche effect, time and speed of all 

algorithms related to our study. 

 

Chapter 4 gave the results, discussion and analysis that are related to our study. In the results, 

the programs written in C++ language executed the output. We discussed the results of 

avalanche effect of specific algorithms when their keys were fixed and plaintexts were varied 

and vice versa (or when plaintexts were fixed and keys were varied).  We discussed the results 

from the output on how long (time) does an algorithm take to finish encryption (using 

avalanche effect to get more sample) when key was fixed and plaintext was varied and in 

reverse (or when plaintext was fixed and key was varied). We discuss the results from the 
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output on how fast (speed) an algorithm take to complete encryption (using the size of block 

the algorithm required and avalanche effect to get more sample) when key was fixed and 

plaintext was varied (or when plaintext was fixed and key was varied).  

 

From the results, it was clear that the proposed method yielded better results by improving 

speed of certain standard algorithms when plaintext was varied. The minimum speed increase 

was 113.967 bits/sec for RC5 and maximum increase was 30667.2523 bits/sec for Camellia. 

Therefore, if the speed of standard algorithm is improved by proposed one, then the proposed 

algorithm is recommended to be used on IoT. The speed of standard AES has been improved 

from 71671.0411 bits/second to 73012.4777 bits/second by the proposed AES, giving the 

difference of 1341.4359 bits/second. The speed of standard Camellia has been improved from 

103959.3909 bits/second to 134626.1298 bits/second by the proposed Camellia, giving the 

difference of 30667.2523 bits/second. The speed of standard DES has been improved from 

70017.0940 bits/second to 70950.9787 bits/second by the proposed DES, giving the difference 

of 933.8847 bits/second. The speed of standard MMB has been improved from 67842.6501 

bits/second to 70620.6897 bits/second by the proposed MMB, giving the difference of 

2778.0397 bits/second. The speed of standard RC5 has improved from 68266.6667 bits/second 

to 68380.6344 bits/second by the proposed RC5, giving the difference of 113.9677 bits/second. 

That is when plaintext is varied.  

 

From the results, it was clear that the proposed method yielded better results by improving 

speed of certain standard algorithms when key was varied. The minimum speed increase was 

585.8542 bits/sec for AES and maximum increase was 21800.43921 bits/sec for Clefia. 

Therefore, if the speed of standard algorithm is improved by proposed one, then the proposed 

algorithm is recommended to be used on IoT. The speed of standard AES has been improved 

from 138261.6034 bits/second to 138847.4576 bits/second by the proposed AES, giving the 

difference of 585.8542 bits/second. The speed of standard Clefia has been improved from 

112604.8110 bits/second to 134405.25021 bits/second by the proposed Clefia, giving the 

difference of 21800.43921 bits/second. That is when key is varied.  

 

Out of ten algorithms that are used on IoT we slightly manged to improve avalanche effects of 

four algorithms, when the proposed algorithms plaintext was varied. The minimum percentage 
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increase of avalanche effect was 0.4395% for Skipjack and maximum increase was 0.7324% 

for RC5. This results are not better as expected but they are good results because the avalanche 

effect of proposed Camellia, Cast-128, RC5 and Skipjack are approaching (or more than) 50%.  

The main goal of this study is achieve avalanche effect, which is equal, or greater than 50%. 

Therefore, if the avalanche of standard algorithm is improved by proposed one, then the 

proposed algorithm is recommended to be used on IoT. The avalanche effect of standard 

Camellia has been slightly improved from 49.4690% to 50.0977% by the proposed Camellia, 

giving the difference of 0.6287%. The avalanche effect of standard Cast-128 has been slightly 

improved from 48.8281% to 49.3164% by the proposed Cast-128, giving the difference of 

0.4883%. The avalanche effect of standard RC5 has been slightly improved from 76.1719% to 

76.9043% by the proposed RC5, giving the difference of 0.7324%. The avalanche effect of 

standard Skipjack has been slightly improved from 48.7793% to 49.21875% by the proposed 

Skipjack, giving the difference of  0.4395%. This is when the plaintext was varied. 

 

Out of ten algorithms that are used on IoT we slightly manged to improve avalanche effects of 

seven algorithms, when the proposed algorithms key was varied. The minimum percentage 

increase of avalanche effect was 0.0488% for Cast-128 and maximum increase was 0.8728% 

for AES. This results are not better as expected but they are good results because the avalanche 

effect of proposed Cast-128 and AES are approaching (or more than) 50%. The main goal of 

this study is achieve avalanche effect, which is equal, or greater than 50%. Therefore, if the 

avalanche of standard algorithm is improved by proposed one, then the proposed algorithm is 

recommended to be used on IoT. The avalanche effect of standard AES has been slightly 

improved from 49.0662% to 49.9390% by the proposed AES, giving the difference of 

0.8728%. The avalanche effect of standard Camellia has been slightly improved from 

49.6094% to 49.9893% by the proposed Camellia, giving the difference of 0.3799%. The 

avalanche effect of standard Cast-128 has been slightly improved from 50.1221% to 50.1709% 

by the proposed Cast-128, giving the difference of 0.0488%. The avalanche effect of standard 

Clefia has been slightly improved from 49.9023% to 50.1587% by the proposed Clefia, giving 

the difference of 0.2564%. The avalanche effect of standard DES has been slightly improved 

from 43.8721% to 44.21387% by the proposed DES, giving the difference of 0.3417%. The 

avalanche effect of standard RC5 has been slightly improved from 49.1821% to 49.7925% by 

the proposed RC5, giving the difference of 0.6104%. The avalanche effect of standard Serpent 
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has been slightly improved from 49.8657% to 50.5341% by the proposed Serpent, giving the 

difference of 0.6684%. This is when the key was varied. 

 

Future work is to improve the results of avalanche effect from good to better results that is to 

improve avalanche effect by more than 2% difference instead of 0.8%. The other future work 

is to study the quality of encryption and decryption used by algorithms, by using image 

processing, that is comparing the original image and decrypted image using correlations and 

coefficients.  

 

The hypothesis is right due to the following reasons: (1) It was found that there is a relationship 

between the avalanche effect of algorithms used on IoT and their security, the relation is high 

avalanche effect algorithm gives high security. (2) Certain algorithms were improved by 

proposed algorithms.  

 

Research questions were answered: (1) The literature review on security of IoT is available in 

libraries, on internet, published papers, journals, conferences etc. (2) Types of algorithms to 

secure IoT are cryptographic algorithm. (3) Certain algorithms used on IoT has less than 50% 

of avalanche effect. (4) Certain algorithms were managed to be improved by proposed 

algorithms. (5) The benefit of high avalanche effect on IoT is to improve security. 
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APPENDIX 1: Calculation of AES avalanche effect. 

 

We will give example by AES algorithm on how avalanche effect is calculated manually. AES 

algorithm is 128 block cipher, this means that the size of ciphertext and plaintext are both 128 

bits. 

i. First we fixed the key, in this study the key is: 

{0123456789abcdeffedcba9876543210} in hexadecimal, 

ii. Then we generated plaintext, in this study the plaintext is: 

{ffffffffffffffffffffffffffffffff}.  

This is 128 bit in hexadecimal number. Note that f in hexadecimal number is 15 in 

decimal and is 1111 in binary. Flipping one bit of generated plaintext from left to right 

we 7 in hexadecimal number which is 0111 in binary, b =1011, d = 1101, e = 1110 etc. 

In this example we will indicate the position of where the bit is changed (flipped) and 

its ciphertext by red color to simplify the explanation. 

iii. ffffffffffffffffffffffffffffffff (Generated plaintext)  

7fffffffffffffffffffffffffffffff (One bit flipped from generated plaintext, from (f=1111) 

then we get (7= 0111) because the first bit is flipped from 1 to 0; 

We encrypted the two plaintext separately (generated and flipped one) and we got the 

following two ciphertext: 

592373540ae1b202615e6d210d868a8c (Ciphertext of generated plaintext) 

500ebff928c4892891726dcd29bd5469 (Ciphertext of one bit flipped from original 

plaintext)  

The above red cipher indicates that, by simply flipping one bit from left (f to 7) the 

whole ciphertext changed, but not all bits in ciphertext change, then we calculated the 

position where the bits are not the same between generated cipher and the flipped 

cipher. In this example we found there is 58 bits difference out of 128. 

Bits different from original ciphertext: 

58   bits different from original cipher.  The value of 58 bit difference is calculated as 

follows: 

iv. From above we have ciphertext from original plaintext which is 

592373540ae1b202615e6d210d868a8c is equivalent to 

010110010010001101110011010101000000101011100001101100100000001001100
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00101011110011011010010000100001101100001101000101010001100 in binary 

and ciphertext generated when one bit is flipped which is  

500ebff928c4892891726dcd29bd5469  

Is equivalent to 

010100000000111010111111111110010010100011000100100010010010100010010

00101110010011011011100110100101001101111010101010001101001 in binary. 

v. Observing these two ciphertext. One can count how many bit positions that are not the 

same (equal) to each other at specific position when two ciphertext are compared. One 

can see that they are 58 bits positions that make two string not the same. That where 58 

bits different value come from. We continued with the flipping the bits until the last bit 

therefore we had to repeat step i. to v. 128 to get better results. Then we calculated the 

average number of bit difference as follows: 

 

Average number of flipped bits in ciphertext =

sum of bits different from original cipher

128 (Since we did flipping 128 times)
  

 

Then, the final step is to calculate the avalanche effect  

 

vi. Avalance effect (for this example AES) =
Average number of flipped bits in ciphertext

128 (Size of CipherText of AES is 128)
∗

100% 

 

vii. We continued flipping the bit from left to right one at time as follows: 

ffffffffffffffffffffffffffffffff (original plaintext) 

bfffffffffffffffffffffffffffffff (2nd bit of original plaintext flipped (f=1111) and b= 1011) 

592373540ae1b202615e6d210d868a8c (original ciphertext) 

2f2931ae1db3c3135d33123a3844bdea (2nd bit flipped ciphertext output) 

Bits different from original ciphertext: 

64   bits different from original cipher 

viii. ffffffffffffffffffffffffffffffff (original plaintext) 

dfffffffffffffffffffffffffffffff (3rd bit of original plaintext flipped (f=1111) and d=1101) 

592373540ae1b202615e6d210d868a8c (original ciphertext) 

6f63de38aa9bf55506608bb74c6ef130 (Ciphertext of flipped bit of original plaintext) 

66   bits different from original cipher,   
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ix. ffffffffffffffffffffffffffffffff (original plaintext) 

efffffffffffffffffffffffffffffff (4th bit of original plaintext flipped (f=1111) and e=1110) 

592373540ae1b202615e6d210d868a8c (original ciphertext) 

c863152dc28ccc91cb58f27ce6a2d0f8 (4th bit flipped ciphertext output) 

64   bits different from original cipher 

x. ffffffffffffffffffffffffffffffff  (original plaintext) 

f7ffffffffffffffffffffffffffffff (One bit flipped from original plaintext) 

592373540ae1b202615e6d210d868a8c (original ciphertext) 

d93f2264665062cc977a19dd64976bcb (Ciphertext of flipped bit of original plaintext) 

57   bits different from original cipher 

xi. ffffffffffffffffffffffffffffffff (original plaintext) 

fbffffffffffffffffffffffffffffff (One bit flipped from original plaintext) 

592373540ae1b202615e6d210d868a8c (original ciphertext) 

f81f2b649cc19391e0736673db64ed11 (Ciphertext of flipped bit of original plaintext) 

54   bits different from original cipher 

xii. ffffffffffffffffffffffffffffffff (original plaintext) 

fdffffffffffffffffffffffffffffff (One bit flipped from original plaintext) 

592373540ae1b202615e6d210d868a8c (original ciphertext) 

f3f4af2dcca6ba6fbef35c613b213bae (Ciphertext of flipped bit of original plaintext) 

65   bits different from original cipher 

xiii. ffffffffffffffffffffffffffffffff (original plaintext) 

feffffffffffffffffffffffffffffff (One bit flipped from original plaintext) 

592373540ae1b202615e6d210d868a8c (original ciphertext) 

f3477c356117d03d89c3d76f219573d7 (Ciphertext of flipped bit of original plaintext) 

69   bits different from original cipher 

xiv. ffffffffffffffffffffffffffffffff (original plaintext) 

ff7fffffffffffffffffffffffffffff (One bit flipped from original plaintext) 

592373540ae1b202615e6d210d868a8c (original ciphertext) 

856fef909f5738dc681d5fa254a600f7 (Ciphertext of flipped bit of original plaintext) 

58   bits different from original cipher 

xv. ffffffffffffffffffffffffffffffff (original plaintext) 

ffbfffffffffffffffffffffffffffff (One bit flipped from original plaintext) 

592373540ae1b202615e6d210d868a8c (original ciphertext) 

ce70cd7d75029d4520bb750432d4dc8f (Ciphertext of flipped bit of original plaintext) 
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66   bits different from original cipher 

xvi. ffffffffffffffffffffffffffffffff (original plaintext) 

ffdfffffffffffffffffffffffffffff (One bit flipped from original plaintext) 

592373540ae1b202615e6d210d868a8c (original ciphertext) 

e58946d8a9817449af3768a45bdb0464 (Ciphertext of flipped bit of original plaintext) 

61   bits different from original cipher 

xvii. ffffffffffffffffffffffffffffffff (original plaintext) 

ffefffffffffffffffffffffffffffff (One bit flipped from original plaintext) 

592373540ae1b202615e6d210d868a8c (original ciphertext) 

04baa1f38785c3572b434da01ebc1c46 (Ciphertext of flipped bit of original plaintext) 

58   bits different from original cipher 

xviii. ffffffffffffffffffffffffffffffff (original plaintext) 

fff7ffffffffffffffffffffffffffff (One bit flipped from original plaintext) 

592373540ae1b202615e6d210d868a8c (original ciphertext) 

56a1cf7ff0d271bc7ee2a86fe085dd11 (Ciphertext of flipped bit of original plaintext) 

71   bits different from original cipher 

xix. ffffffffffffffffffffffffffffffff (original plaintext) 

fffbffffffffffffffffffffffffffff (One bit flipped from original plaintext) 

592373540ae1b202615e6d210d868a8c (original ciphertext) 

6b3c495acb0f472bf6ebd44f0d125625 (Ciphertext of flipped bit of original plaintext) 

65   bits different from original cipher 

xx. ffffffffffffffffffffffffffffffff (original plaintext) 

fffdffffffffffffffffffffffffffff (One bit flipped from original plaintext) 

592373540ae1b202615e6d210d868a8c (original ciphertext) 

be7ce2a3cb38cd020e4eb8ad8b7f69f3 (Ciphertext of flipped bit of original plaintext) 

73   bits different from original cipher 

xxi. ffffffffffffffffffffffffffffffff (original plaintext) 

fffeffffffffffffffffffffffffffff (One bit flipped from original plaintext) 

592373540ae1b202615e6d210d868a8c (original ciphertext) 

e9303e1844784a127dabdcc71db55ddb (Ciphertext of flipped bit of original plaintext) 

61   bits different from original cipher 

xxii. ffffffffffffffffffffffffffffffff (original plaintext) 

ffff7fffffffffffffffffffffffffff (One bit flipped from original plaintext) 

592373540ae1b202615e6d210d868a8c (original ciphertext) 
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26a4ad7e59cae2b48c11d86113a4888f (Ciphertext of flipped bit of original plaintext) 

61   bits different from original cipher 

xxiii. ffffffffffffffffffffffffffffffff (original plaintext) 

ffffbfffffffffffffffffffffffffff (One bit flipped from original plaintext) 

592373540ae1b202615e6d210d868a8c (original ciphertext) 

9e60b950a5645b53bebc408c8d02fd9e (Ciphertext of flipped bit of original plaintext) 

61   bits different from original cipher 

xxiv. ffffffffffffffffffffffffffffffff (original plaintext) 

ffffdfffffffffffffffffffffffffff (One bit flipped from original plaintext) 

592373540ae1b202615e6d210d868a8c (original ciphertext) 

3c8e82b81bd97a22e0ce995b2a88957a (Ciphertext of flipped bit of original plaintext) 

60   bits different from original cipher 

xxv. ffffffffffffffffffffffffffffffff (original plaintext) 

ffffefffffffffffffffffffffffffff (One bit flipped from original plaintext) 

592373540ae1b202615e6d210d868a8c (original ciphertext) 

b960e21b42fed7474cfdc2355028a4e3 (Ciphertext of flipped bit of original plaintext) 

64   bits different from original cipher 

xxvi. ffffffffffffffffffffffffffffffff (original plaintext) 

fffff7ffffffffffffffffffffffffff (One bit flipped from original plaintext) 

592373540ae1b202615e6d210d868a8c (original ciphertext) 

f140793b9eea8356d2d2d7e27b96da50 (Ciphertext of flipped bit of original plaintext) 

57   bits different from original cipher 

xxvii. ffffffffffffffffffffffffffffffff (original plaintext) 

fffffbffffffffffffffffffffffffff (One bit flipped from original plaintext) 

592373540ae1b202615e6d210d868a8c (original ciphertext) 

7612e4e3e277716d97e92b8a276af515 (Ciphertext of flipped bit of original plaintext) 

76   bits different from original cipher 

xxviii. ffffffffffffffffffffffffffffffff (original plaintext) 

fffffdffffffffffffffffffffffffff (One bit flipped from original plaintext) 

592373540ae1b202615e6d210d868a8c (original ciphertext) 

89490174a4140da2dda5b044f6556555 (Ciphertext of flipped bit of original plaintext) 

78   bits different from original cipher 

xxix. ffffffffffffffffffffffffffffffff (original plaintext) 

fffffeffffffffffffffffffffffffff (One bit flipped from original plaintext) 
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592373540ae1b202615e6d210d868a8c (original ciphertext) 

9b6b3fd8c0a3fcafca39a31add40f3d7 (Ciphertext of flipped bit of original plaintext) 

63   bits different from original cipher 

xxx. ffffffffffffffffffffffffffffffff (original plaintext) 

ffffff7fffffffffffffffffffffffff (One bit flipped from original plaintext) 

592373540ae1b202615e6d210d868a8c (original ciphertext) 

efbae24054097bd2f9ee6eab511fac5a (Ciphertext of flipped bit of original plaintext) 

57   bits different from original cipher 

xxxi. ffffffffffffffffffffffffffffffff (original plaintext) 

ffffffbfffffffffffffffffffffffff (One bit flipped from original plaintext) 

592373540ae1b202615e6d210d868a8c (original ciphertext) 

230f778028cca06309caf8f7919e88fc (Ciphertext of flipped bit of original plaintext) 

49   bits different from original cipher 

xxxii. ffffffffffffffffffffffffffffffff (original plaintext) 

ffffffdfffffffffffffffffffffffff (One bit flipped from original plaintext) 

592373540ae1b202615e6d210d868a8c (original ciphertext) 

b5931327b552231245f2597eb158e246 (Ciphertext of flipped bit of original plaintext) 

64   bits different from original cipher 

xxxiii. ffffffffffffffffffffffffffffffff (original plaintext) 

ffffffefffffffffffffffffffffffff (One bit flipped from original plaintext) 

592373540ae1b202615e6d210d868a8c (original ciphertext) 

ecb7a8d57857344b9d833bebe7f4bc58 (Ciphertext of flipped bit of original plaintext) 

68   bits different from original cipher 

xxxiv. ffffffffffffffffffffffffffffffff (original plaintext) 

fffffff7ffffffffffffffffffffffff (One bit flipped from original plaintext) 

592373540ae1b202615e6d210d868a8c (original ciphertext) 

71405f4b70abebbd6322202c4fae8aee (Ciphertext of flipped bit of original plaintext) 

53   bits different from original cipher 

xxxv. ffffffffffffffffffffffffffffffff (original plaintext) 

fffffffbffffffffffffffffffffffff (One bit flipped from original plaintext) 

592373540ae1b202615e6d210d868a8c (original ciphertext) 

e4962471b22828629e4938b167dc74aa (Ciphertext of flipped bit of original plaintext) 

69   bits different from original cipher 

xxxvi. ffffffffffffffffffffffffffffffff (original plaintext) 
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fffffffdffffffffffffffffffffffff (One bit flipped from original plaintext) 

592373540ae1b202615e6d210d868a8c (original ciphertext) 

a4a4a4b3a2810708031f377ad6dd5490 (Ciphertext of flipped bit of original plaintext) 

69   bits different from original cipher 

xxxvii. ffffffffffffffffffffffffffffffff (original plaintext) 

fffffffeffffffffffffffffffffffff (One bit flipped from original plaintext) 

592373540ae1b202615e6d210d868a8c (original ciphertext) 

7caabf59aca85007d61c5b4000ec09eb (Ciphertext of flipped bit of original plaintext) 

56   bits different from original cipher 

xxxviii. ffffffffffffffffffffffffffffffff (original plaintext) 

ffffffff7fffffffffffffffffffffff (One bit flipped from original plaintext) 

592373540ae1b202615e6d210d868a8c (original ciphertext) 

744e492605199b52e7c50bbb280aba96 (Ciphertext of flipped bit of original plaintext) 

58   bits different from original cipher 

xxxix. ffffffffffffffffffffffffffffffff (original plaintext) 

ffffffffbfffffffffffffffffffffff (One bit flipped from original plaintext) 

592373540ae1b202615e6d210d868a8c (original ciphertext) 

44ce4cd592a81e30ef0fd6cbbfc18f5b (Ciphertext of flipped bit of original plaintext) 

65   bits different from original cipher 

xl. ffffffffffffffffffffffffffffffff (original plaintext) 

ffffffffdfffffffffffffffffffffff (One bit flipped from original plaintext) 

592373540ae1b202615e6d210d868a8c (original ciphertext) 

523d9d4b0835703bd1f1fc0959db8f77 (Ciphertext of flipped bit of original plaintext) 

61   bits different from original cipher 

xli. ffffffffffffffffffffffffffffffff (original plaintext) 

ffffffffefffffffffffffffffffffff (One bit flipped from original plaintext) 

592373540ae1b202615e6d210d868a8c (original ciphertext) 

dc0877e53f347b270d6931a8b64e5ef2 (Ciphertext of flipped bit of original plaintext) 

63   bits different from original cipher 

xlii. ffffffffffffffffffffffffffffffff (original plaintext) 

fffffffff7ffffffffffffffffffffff (One bit flipped from original plaintext) 

592373540ae1b202615e6d210d868a8c (original ciphertext) 

9e1b485e3d52312be04eab08c490f422 (Ciphertext of flipped bit of original plaintext) 

59   bits different from original cipher 
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xliii. ffffffffffffffffffffffffffffffff (original plaintext) 

fffffffffbffffffffffffffffffffff (One bit flipped from original plaintext) 

592373540ae1b202615e6d210d868a8c (original ciphertext) 

f94009050a302a5e2e7621ca66b07ce7 (Ciphertext of flipped bit of original plaintext) 

61   bits different from original cipher 

xliv. ffffffffffffffffffffffffffffffff (original plaintext) 

fffffffffdffffffffffffffffffffff (One bit flipped from original plaintext) 

592373540ae1b202615e6d210d868a8c (original ciphertext) 

3ce2294d6daf9b06d0fa7d076a9a1cad (Ciphertext of flipped bit of original plaintext) 

52   bits different from original cipher 

xlv. ffffffffffffffffffffffffffffffff (original plaintext) 

fffffffffeffffffffffffffffffffff (One bit flipped from original plaintext) 

592373540ae1b202615e6d210d868a8c (original ciphertext) 

b639f7d1793f47fa8d9bca98f0e13ba8 (Ciphertext of flipped bit of original plaintext) 

74   bits different from original cipher 

xlvi. ffffffffffffffffffffffffffffffff (original plaintext) 

ffffffffff7fffffffffffffffffffff (One bit flipped from original plaintext) 

592373540ae1b202615e6d210d868a8c (original ciphertext) 

c560efeb8a248924e5af60dcb6abba41 (Ciphertext of flipped bit of original plaintext) 

65   bits different from original cipher 

xlvii. ffffffffffffffffffffffffffffffff (original plaintext) 

ffffffffffbfffffffffffffffffffff (One bit flipped from original plaintext) 

592373540ae1b202615e6d210d868a8c (original ciphertext) 

9418f75e97ad6d1ef2a9d70c40ee9175 (Ciphertext of flipped bit of original plaintext) 

69   bits different from original cipher 

xlviii. ffffffffffffffffffffffffffffffff (original plaintext) 

ffffffffffdfffffffffffffffffffff (One bit flipped from original plaintext) 

592373540ae1b202615e6d210d868a8c (original ciphertext) 

e894666c49b161c66fe05629f4e13d2f (Ciphertext of flipped bit of original plaintext) 

65   bits different from original cipher 

xlix. ffffffffffffffffffffffffffffffff (original plaintext) 

ffffffffffefffffffffffffffffffff (One bit flipped from original plaintext) 

592373540ae1b202615e6d210d868a8c (original ciphertext) 

d4a95149c0dd95a973f662eea4ff8047 (Ciphertext of flipped bit of original plaintext) 
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61   bits different from original cipher 

l. ffffffffffffffffffffffffffffffff (original plaintext) 

fffffffffff7ffffffffffffffffffff (One bit flipped from original plaintext) 

592373540ae1b202615e6d210d868a8c (original ciphertext) 

458ad2de5342eea7e094ff2a19bfa853 (Ciphertext of flipped bit of original plaintext) 

56   bits different from original cipher 

li. ffffffffffffffffffffffffffffffff (original plaintext) 

fffffffffffbffffffffffffffffffff (One bit flipped from original plaintext) 

592373540ae1b202615e6d210d868a8c (original ciphertext) 

baf5719e039e0baa26fb6f41f3acdf22 (Ciphertext of flipped bit of original plaintext) 

62   bits different from original cipher 

lii. ffffffffffffffffffffffffffffffff (original plaintext) 

fffffffffffdffffffffffffffffffff (One bit flipped from original plaintext) 

592373540ae1b202615e6d210d868a8c (original ciphertext) 

411f5b2578a62656d5c244c9fdde8f12 (Ciphertext of flipped bit of original plaintext) 

55   bits different from original cipher 

liii. ffffffffffffffffffffffffffffffff (original plaintext) 

fffffffffffeffffffffffffffffffff (One bit flipped from original plaintext) 

592373540ae1b202615e6d210d868a8c (original ciphertext) 

16ee9d358cef19f9c4ac4c707eec4bd3 (Ciphertext of flipped bit of original plaintext) 

69   bits different from original cipher 

liv. ffffffffffffffffffffffffffffffff (original plaintext) 

ffffffffffff7fffffffffffffffffff (One bit flipped from original plaintext) 

592373540ae1b202615e6d210d868a8c (original ciphertext) 

6217d8ef40dea047d763dc1a42282043 (Ciphertext of flipped bit of original plaintext) 

72   bits different from original cipher 

lv. ffffffffffffffffffffffffffffffff (original plaintext) 

ffffffffffffbfffffffffffffffffff (One bit flipped from original plaintext) 

592373540ae1b202615e6d210d868a8c (original ciphertext) 

99a9b7138f946d3c8407079229e5c218 (Ciphertext of flipped bit of original plaintext) 

61   bits different from original cipher 

lvi. ffffffffffffffffffffffffffffffff (original plaintext) 

ffffffffffffdfffffffffffffffffff (One bit flipped from original plaintext) 

592373540ae1b202615e6d210d868a8c (original ciphertext) 
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da0cd45f803a92e814539afd52e920e9 (Ciphertext of flipped bit of original plaintext) 

71   bits different from original cipher 

lvii. ffffffffffffffffffffffffffffffff (original plaintext) 

ffffffffffffefffffffffffffffffff (One bit flipped from original plaintext) 

592373540ae1b202615e6d210d868a8c (original ciphertext) 

2d8399d13b166995acb53cf8136a1d96 (Ciphertext of flipped bit of original plaintext) 

71   bits different from original cipher 

lviii. ffffffffffffffffffffffffffffffff(original plaintext) 

fffffffffffff7ffffffffffffffffff (One bit flipped from original plaintext) 

592373540ae1b202615e6d210d868a8c (original ciphertext) 

b6c8de76732504745e52478d8bf63c1f (Ciphertext of flipped bit of original plaintext) 

68   bits different from original cipher 

lix. ffffffffffffffffffffffffffffffff (original plaintext) 

fffffffffffffbffffffffffffffffff (One bit flipped from original plaintext) 

592373540ae1b202615e6d210d868a8c (original ciphertext) 

f42c0e82e138e57fbacbcfb5c42bc9a2 (Ciphertext of flipped bit of original plaintext) 

74   bits different from original cipher 

lx. ffffffffffffffffffffffffffffffff (original plaintext) 

fffffffffffffdffffffffffffffffff (One bit flipped from original plaintext) 

592373540ae1b202615e6d210d868a8c (original ciphertext) 

9ca356d8eecea665e5967de034fae1e4 (Ciphertext of flipped bit of original plaintext) 

53   bits different from original cipher 

lxi. ffffffffffffffffffffffffffffffff (original plaintext) 

fffffffffffffeffffffffffffffffff (One bit flipped from original plaintext) 

592373540ae1b202615e6d210d868a8c (original ciphertext) 

17b0c3cde5b98e1a7faf6863260a77ab (Ciphertext of flipped bit of original plaintext) 

62   bits different from original cipher 

lxii. ffffffffffffffffffffffffffffffff (original plaintext) 

ffffffffffffff7fffffffffffffffff (One bit flipped from original plaintext) 

592373540ae1b202615e6d210d868a8c (original ciphertext) 

401d3b362f83a378af808e6a77720eb6 (Ciphertext of flipped bit of original plaintext) 

62   bits different from original cipher 

lxiii. ffffffffffffffffffffffffffffffff (original plaintext) 

ffffffffffffffbfffffffffffffffff (One bit flipped from original plaintext) 
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592373540ae1b202615e6d210d868a8c (original ciphertext) 

7ffbbb2c0d3aeb2d810dad9ae48fdb21 (Ciphertext of flipped bit of original plaintext)  

62   bits different from original cipher 

lxiv. ffffffffffffffffffffffffffffffff (original plaintext) 

ffffffffffffffdfffffffffffffffff (One bit flipped from original plaintext) 

592373540ae1b202615e6d210d868a8c (original ciphertext) 

011276d249e33e27fc640ee9a9221786 (Ciphertext of flipped bit of original plaintext)  

50   bits different from original cipher 

lxv. ffffffffffffffffffffffffffffffff (original plaintext) 

ffffffffffffffefffffffffffffffff (One bit flipped from original plaintext) 

592373540ae1b202615e6d210d868a8c (original ciphertext) 

49c8614390ba9b9234a9a4aec4970f11 (Ciphertext of flipped bit of original plaintext) 

61   bits different from original cipher 

lxvi. ffffffffffffffffffffffffffffffff (original plaintext) 

fffffffffffffff7ffffffffffffffff (One bit flipped from original plaintext) 

592373540ae1b202615e6d210d868a8c (original ciphertext) 

efeedc022f929740a2e61e91a192da9d (Ciphertext of flipped bit of original plaintext) 

59   bits different from original cipher 

lxvii. ffffffffffffffffffffffffffffffff (original plaintext) 

fffffffffffffffbffffffffffffffff (One bit flipped from original plaintext) 

592373540ae1b202615e6d210d868a8c (original ciphertext) 

f58188269a60cec4d05342dedd49604d (Ciphertext of flipped bit of original plaintext) 

68   bits different from original cipher 

lxviii. ffffffffffffffffffffffffffffffff (original plaintext) 

fffffffffffffffdffffffffffffffff (One bit flipped from original plaintext) 

592373540ae1b202615e6d210d868a8c (original ciphertext) 

cd9b49eabc543191b491d5a8c72fa97e (Ciphertext of flipped bit of original plaintext) 

68   bits different from original cipher 

lxix. ffffffffffffffffffffffffffffffff (original plaintext) 

fffffffffffffffeffffffffffffffff (One bit flipped from original plaintext) 

592373540ae1b202615e6d210d868a8c (original ciphertext) 

e92902412c2574eb4af3e00ea79627fb (Ciphertext of flipped bit of original plaintext) 

61   bits different from original cipher 

lxx. ffffffffffffffffffffffffffffffff (original plaintext) 
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ffffffffffffffff7fffffffffffffff (One bit flipped from original plaintext) 

592373540ae1b202615e6d210d868a8c (original ciphertext) 

7e65e820163d8675b656aac208fb21c8 (Ciphertext of flipped bit of original plaintext) 

65   bits different from original cipher 

lxxi. ffffffffffffffffffffffffffffffff (original plaintext) 

ffffffffffffffffbfffffffffffffff (One bit flipped from original plaintext) 

592373540ae1b202615e6d210d868a8c (original ciphertext) 

cc591ef3f644c21056eaf635838b4e8e (Ciphertext of flipped bit of original plaintext) 

61   bits different from original cipher 

lxxii. ffffffffffffffffffffffffffffffff (original plaintext) 

ffffffffffffffffdfffffffffffffff (One bit flipped from original plaintext) 

592373540ae1b202615e6d210d868a8c (original ciphertext) 

bcc7c3cccf95a4011833e76ecf37c89a (Ciphertext of flipped bit of original plaintext) 

58   bits different from original cipher 

lxxiii. ffffffffffffffffffffffffffffffff (original plaintext) 

ffffffffffffffffefffffffffffffff (One bit flipped from original plaintext) 

592373540ae1b202615e6d210d868a8c (original ciphertext) 

f0127df46118504a57f10434a15be4c3 (Ciphertext of flipped bit of original plaintext) 

66   bits different from original cipher 

lxxiv. ffffffffffffffffffffffffffffffff (original plaintext) 

fffffffffffffffff7ffffffffffffff (One bit flipped from original plaintext) 

592373540ae1b202615e6d210d868a8c (original ciphertext) 

7e533318c924ad29d13329cfda90f8cd (Ciphertext of flipped bit of original plaintext) 

59   bits different from original cipher 

lxxv. ffffffffffffffffffffffffffffffff (original plaintext) 

fffffffffffffffffbffffffffffffff (One bit flipped from original plaintext) 

592373540ae1b202615e6d210d868a8c (original ciphertext) 

325297bb143918088bf5ad4a51dc1fed (Ciphertext of flipped bit of original plaintext) 

66   bits different from original cipher 

lxxvi. ffffffffffffffffffffffffffffffff (original plaintext) 

fffffffffffffffffdffffffffffffff (One bit flipped from original plaintext) 

592373540ae1b202615e6d210d868a8c (original ciphertext) 

5f53c31d84021839665f5fe2fb2349a5 (Ciphertext of flipped bit of original plaintext) 

57   bits different from original cipher 
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lxxvii. ffffffffffffffffffffffffffffffff (original plaintext) 

fffffffffffffffffeffffffffffffff (One bit flipped from original plaintext) 

592373540ae1b202615e6d210d868a8c (original ciphertext) 

e6f3492ca8cab8dc87988224edc016cd (Ciphertext of flipped bit of original plaintext) 

63   bits different from original cipher 

lxxviii. ffffffffffffffffffffffffffffffff (original plaintext) 

ffffffffffffffffff7fffffffffffff (One bit flipped from original plaintext) 

592373540ae1b202615e6d210d868a8c (original ciphertext) 

13342168a3ea88c03b8e7c7d87494033 (Ciphertext of flipped bit of original plaintext) 

61   bits different from original cipher 

lxxix. ffffffffffffffffffffffffffffffff (original plaintext) 

ffffffffffffffffffbfffffffffffff (One bit flipped from original plaintext) 

592373540ae1b202615e6d210d868a8c (original ciphertext) 

fa90fb641b1a3a8951dfeceddf7bfa52 (Ciphertext of flipped bit of original plaintext) 

58   bits different from original cipher 

lxxx. ffffffffffffffffffffffffffffffff (original plaintext) 

ffffffffffffffffffdfffffffffffff (One bit flipped from original plaintext) 

592373540ae1b202615e6d210d868a8c (original ciphertext) 

34f72f82b73c9b9350bf435fd3bae7fc (Ciphertext of flipped bit of original plaintext) 

71   bits different from original cipher 

lxxxi. ffffffffffffffffffffffffffffffff (original plaintext) 

ffffffffffffffffffefffffffffffff (One bit flipped from original plaintext) 

592373540ae1b202615e6d210d868a8c (original ciphertext) 

4f6fdc67a014d0107090abfeb654570f (Ciphertext of flipped bit of original plaintext) 

68   bits different from original cipher 

lxxxii. ffffffffffffffffffffffffffffffff (original plaintext) 

fffffffffffffffffff7ffffffffffff (One bit flipped from original plaintext) 

592373540ae1b202615e6d210d868a8c (original ciphertext) 

7eff481e6b8e53b3809f113e3335db61 (Ciphertext of flipped bit of original plaintext) 

70   bits different from original cipher 

lxxxiii. ffffffffffffffffffffffffffffffff (original plaintext) 

fffffffffffffffffffbffffffffffff (One bit flipped from original plaintext) 

592373540ae1b202615e6d210d868a8c (original ciphertext) 

61f9da511bd2c644b5a4290e47b1ff5c (Ciphertext of flipped bit of original plaintext)  



 

160 
 

60   bits different from original cipher 

lxxxiv. ffffffffffffffffffffffffffffffff (original plaintext) 

fffffffffffffffffffdffffffffffff (One bit flipped from original plaintext) 

592373540ae1b202615e6d210d868a8c (original ciphertext) 

9e08327f1430314b5166023cb4575060(Ciphertext of flipped bit of original plaintext) 

63   bits different from original cipher 

lxxxv. ffffffffffffffffffffffffffffffff (original plaintext) 

fffffffffffffffffffeffffffffffff (One bit flipped from original plaintext) 

592373540ae1b202615e6d210d868a8c (original ciphertext) 

9ca0a0ea4783a6b4ff111b3a9932305f (Ciphertext of flipped bit of original plaintext) 

68   bits different from original cipher 

lxxxvi. ffffffffffffffffffffffffffffffff (original plaintext) 

ffffffffffffffffffff7fffffffffff (One bit flipped from original plaintext) 

592373540ae1b202615e6d210d868a8c (original ciphertext) 

66df2e07094e68917066fd3bce22f217 (Ciphertext of flipped bit of original plaintext) 

64   bits different from original cipher 

lxxxvii. ffffffffffffffffffffffffffffffff (original plaintext) 

ffffffffffffffffffffbfffffffffff (One bit flipped from original plaintext) 

592373540ae1b202615e6d210d868a8c (original ciphertext) 

c9fc3c67a4cfd4eb343a19ff982c3c3a (Ciphertext of flipped bit of original plaintext) 

71   bits different from original cipher 

lxxxviii. ffffffffffffffffffffffffffffffff (original plaintext) 

ffffffffffffffffffffdfffffffffff (One bit flipped from original plaintext) 

592373540ae1b202615e6d210d868a8c (original ciphertext) 

62b489194d166bd07bbd8f3c81a63c2f (Ciphertext of flipped bit of original plaintext) 

69   bits different from original cipher 

lxxxix. ffffffffffffffffffffffffffffffff (original plaintext) 

ffffffffffffffffffffefffffffffff (One bit flipped from original plaintext) 

592373540ae1b202615e6d210d868a8c (original ciphertext) 

d345d6bd56067254350871890d7f0f3f (Ciphertext of flipped bit of original plaintext) 

59   bits different from original cipher 

xc. ffffffffffffffffffffffffffffffff (original plaintext) 

fffffffffffffffffffff7ffffffffff (One bit flipped from original plaintext) 

592373540ae1b202615e6d210d868a8c (original ciphertext) 
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1d4d86679786f47c9eb6b84e5807a2a0 (Ciphertext of flipped bit of original plaintext) 

70   bits different from original cipher 

xci. ffffffffffffffffffffffffffffffff (original plaintext) 

fffffffffffffffffffffbffffffffff (One bit flipped from original plaintext) 

592373540ae1b202615e6d210d868a8c (original ciphertext) 

ea7ab8d885231476f449ffaaee24d956 (Ciphertext of flipped bit of original plaintext) 

65   bits different from original cipher 

xcii. ffffffffffffffffffffffffffffffff (original plaintext) 

fffffffffffffffffffffdffffffffff (One bit flipped from original plaintext) 

592373540ae1b202615e6d210d868a8c (original ciphertext) 

f88776e71b7b7dbdaf662f2517666cd9 (Ciphertext of flipped bit of original plaintext) 

58   bits different from original cipher 

xciii. ffffffffffffffffffffffffffffffff (original plaintext) 

fffffffffffffffffffffeffffffffff (One bit flipped from original plaintext) 

592373540ae1b202615e6d210d868a8c (original ciphertext) 

0a19887309846557ff99877514ccd5d5 (Ciphertext of flipped bit of original plaintext) 

69   bits different from original cipher 

xciv. ffffffffffffffffffffffffffffffff (original plaintext) 

ffffffffffffffffffffff7fffffffff (One bit flipped from original plaintext) 

592373540ae1b202615e6d210d868a8c (original ciphertext) 

d242bb5b6c21cc5776f914469d12e497 (Ciphertext of flipped bit of original plaintext) 

63   bits different from original cipher 

xcv. ffffffffffffffffffffffffffffffff (original plaintext) 

ffffffffffffffffffffffbfffffffff (One bit flipped from original plaintext) 

592373540ae1b202615e6d210d868a8c (original ciphertext) 

66a7284e9e97e95380aeb94b2b327023 (Ciphertext of flipped bit of original plaintext) 

67   bits different from original cipher 

xcvi. ffffffffffffffffffffffffffffffff (original plaintext) 

ffffffffffffffffffffffdfffffffff (One bit flipped from original plaintext) 

592373540ae1b202615e6d210d868a8c (original ciphertext) 

da6f98470d2598dbd02e19059dc4336c (Ciphertext of flipped bit of original plaintext) 

54   bits different from original cipher 

xcvii. ffffffffffffffffffffffffffffffff (original plaintext) 

ffffffffffffffffffffffefffffffff (One bit flipped from original plaintext) 
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592373540ae1b202615e6d210d868a8c (original ciphertext) 

ee9ad0aa8f516843e886b0e94bcf5fce (Ciphertext of flipped bit of original plaintext) 

64   bits different from original cipher 

xcviii. ffffffffffffffffffffffffffffffff (original plaintext) 

fffffffffffffffffffffff7ffffffff (One bit flipped from original plaintext) 

592373540ae1b202615e6d210d868a8c (original ciphertext) 

a71fe038d313905e03deb1258173b35d 

62   bits different from original cipher 

xcix. ffffffffffffffffffffffffffffffff (original plaintext) 

fffffffffffffffffffffffbffffffff (One bit flipped from original plaintext) 

592373540ae1b202615e6d210d868a8c (original ciphertext) 

0b5add380cbd5cdf42abd641a0a51d09 (Ciphertext of flipped bit of original plaintext) 

68   bits different from original cipher 

c. ffffffffffffffffffffffffffffffff (original plaintext) 

fffffffffffffffffffffffdffffffff (One bit flipped from original plaintext) 

592373540ae1b202615e6d210d868a8c (original ciphertext) 

249f6a0a162fcae391e2e43c5a06f497 (Ciphertext of flipped bit of original plaintext) 

67   bits different from original cipher 

ci. ffffffffffffffffffffffffffffffff (original plaintext) 

fffffffffffffffffffffffeffffffff (One bit flipped from original plaintext) 

592373540ae1b202615e6d210d868a8c (original ciphertext) 

120a70fba96e811c885162325cbdea76 (Ciphertext of flipped bit of original plaintext) 

64   bits different from original cipher 

cii. ffffffffffffffffffffffffffffffff (original plaintext) 

ffffffffffffffffffffffff7fffffff (One bit flipped from original plaintext) 

592373540ae1b202615e6d210d868a8c (original ciphertext) 

9b17e0e5dd9e8f88aee9707a2c1569e8 

70   bits different from original cipher 

ciii. ffffffffffffffffffffffffffffffff (original plaintext) 

ffffffffffffffffffffffffbfffffff (One bit flipped from original plaintext) 

592373540ae1b202615e6d210d868a8c (original ciphertext) 

a7f04582f70d9bada744044249a12d80 (Ciphertext of flipped bit of original plaintext) 

70   bits different from original cipher 

civ. ffffffffffffffffffffffffffffffff (original plaintext) 
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ffffffffffffffffffffffffdfffffff (One bit flipped from original plaintext) 

592373540ae1b202615e6d210d868a8c (original ciphertext) 

9294db16aa5b5639c53b77f7ae5521ab (Ciphertext of flipped bit of original plaintext) 

65   bits different from original cipher 

cv. ffffffffffffffffffffffffffffffff (original plaintext) 

ffffffffffffffffffffffffefffffff (One bit flipped from original plaintext) 

592373540ae1b202615e6d210d868a8c (original ciphertext) 

70f1a4e3e5679e4c410705eb3bf6b5a5 

64   bits different from original cipher 

cvi. ffffffffffffffffffffffffffffffff  (original plaintext) 

fffffffffffffffffffffffff7ffffff (One bit flipped from original plaintext) 

592373540ae1b202615e6d210d868a8c (original ciphertext) 

91ac421ee67c29b1043f8b087bf1d5f8 (Ciphertext of flipped bit of original plaintext)  

70   bits different from original cipher 

cvii. ffffffffffffffffffffffffffffffff (original plaintext) 

fffffffffffffffffffffffffbffffff (One bit flipped from original plaintext) 

592373540ae1b202615e6d210d868a8c (original ciphertext) 

4582211b2838320a906e95de1cc37944 (Ciphertext of flipped bit of original plaintext) 

57   bits different from original cipher 

cviii. ffffffffffffffffffffffffffffffff (original plaintext) 

fffffffffffffffffffffffffdffffff (One bit flipped from original plaintext) 

592373540ae1b202615e6d210d868a8c (original ciphertext) 

ee4e9e5bea6640526ce786f122c37898 (Ciphertext of flipped bit of original plaintext) 

67   bits different from original cipher 

cix. ffffffffffffffffffffffffffffffff (original plaintext) 

fffffffffffffffffffffffffeffffff (One bit flipped from original plaintext) 

592373540ae1b202615e6d210d868a8c (original ciphertext) 

1abd53ee411527ec3b0b9a9ba11c56c3 (Ciphertext of flipped bit of original plaintext) 

71   bits different from original cipher 

cx. ffffffffffffffffffffffffffffffff (original plaintext) 

ffffffffffffffffffffffffff7fffff (One bit flipped from original plaintext) 

592373540ae1b202615e6d210d868a8c (original ciphertext) 

a5f9c694626cafa6ff357ad21b16506e (Ciphertext of flipped bit of original plaintext) 

66   bits different from original cipher 
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cxi. ffffffffffffffffffffffffffffffff (original plaintext) 

ffffffffffffffffffffffffffbfffff (One bit flipped from original plaintext) 

592373540ae1b202615e6d210d868a8c (original ciphertext) 

4dea41e5fef61b5bca1d607d08d17973 (Ciphertext of flipped bit of original plaintext) 

66   bits different from original cipher 

cxii. ffffffffffffffffffffffffffffffff (original plaintext) 

ffffffffffffffffffffffffffdfffff (One bit flipped from original plaintext) 

592373540ae1b202615e6d210d868a8c (original ciphertext) 

e05b00f9d998fe609067357de91de79c (Ciphertext of flipped bit of original plaintext) 

66   bits different from original cipher 

cxiii. ffffffffffffffffffffffffffffffff (original plaintext) 

ffffffffffffffffffffffffffefffff (One bit flipped from original plaintext) 

592373540ae1b202615e6d210d868a8c (original ciphertext) 

8d75d5919c9a918e8bf64a34f3f83e73 (Ciphertext of flipped bit of original plaintext) 

72   bits different from original cipher 

cxiv. ffffffffffffffffffffffffffffffff (original plaintext) 

fffffffffffffffffffffffffff7ffff (One bit flipped from original plaintext) 

592373540ae1b202615e6d210d868a8c (original ciphertext) 

7212325a88e044fc58172f372fc823ba (Ciphertext of flipped bit of original plaintext) 

54   bits different from original cipher 

cxv. ffffffffffffffffffffffffffffffff (original plaintext) 

fffffffffffffffffffffffffffbffff (One bit flipped from original plaintext) 

592373540ae1b202615e6d210d868a8c (original ciphertext) 

c0599d215a45b5c20651ba88228eaa5a (Ciphertext of flipped bit of original plaintext) 

61   bits different from original cipher 

cxvi. ffffffffffffffffffffffffffffffff (original plaintext) 

fffffffffffffffffffffffffffdffff (One bit flipped from original plaintext) 

592373540ae1b202615e6d210d868a8c (original ciphertext) 

a4ac3a9b8d2a84b069b659ce3415b190 (Ciphertext of flipped bit of original plaintext) 

69   bits different from original cipher 

cxvii. ffffffffffffffffffffffffffffffff (original plaintext) 

fffffffffffffffffffffffffffeffff (One bit flipped from original plaintext) 

592373540ae1b202615e6d210d868a8c (original ciphertext) 

5aa1df70da5713137e35ffb5b24ee5ca (Ciphertext of flipped bit of original plaintext) 
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58   bits different from original cipher 

cxviii. ffffffffffffffffffffffffffffffff (original plaintext) 

ffffffffffffffffffffffffffff7fff (One bit flipped from original plaintext) 

592373540ae1b202615e6d210d868a8c (original ciphertext) 

fbca7c43152fb1ac83ab480757541708 (Ciphertext of flipped bit of original plaintext) 

64   bits different from original cipher 

cxix. ffffffffffffffffffffffffffffffff (original plaintext) 

ffffffffffffffffffffffffffffbfff (One bit flipped from original plaintext) 

592373540ae1b202615e6d210d868a8c (original ciphertext) 

d02119cb35f5dab4905b1d0e6744734d (Ciphertext of flipped bit of original plaintext) 

61   bits different from original cipher 

cxx. ffffffffffffffffffffffffffffffff (original plaintext) 

ffffffffffffffffffffffffffffdfff (One bit flipped from original plaintext) 

592373540ae1b202615e6d210d868a8c (original ciphertext) 

6c0ea469962f063a824ababb914713b9 (Ciphertext of flipped bit of original plaintext) 

67   bits different from original cipher 

cxxi. ffffffffffffffffffffffffffffffff (original plaintext) 

ffffffffffffffffffffffffffffefff (One bit flipped from original plaintext) 

592373540ae1b202615e6d210d868a8c (original ciphertext) 

cd4ef41ef215060dce6b3330bd09f53f (Ciphertext of flipped bit of original plaintext) 

70   bits different from original cipher 

cxxii. ffffffffffffffffffffffffffffffff (original plaintext) 

fffffffffffffffffffffffffffff7ff (One bit flipped from original plaintext) 

592373540ae1b202615e6d210d868a8c (original ciphertext) 

5db5182775f468b608a55d1c58b07e3c (Ciphertext of flipped bit of original plaintext) 

68   bits different from original cipher 

cxxiii. ffffffffffffffffffffffffffffffff (original plaintext) 

fffffffffffffffffffffffffffffbff (One bit flipped from original plaintext) 

592373540ae1b202615e6d210d868a8c (original ciphertext) 

2ba6bc9eb9beb9205076461c02b4bf91 (Ciphertext of flipped bit of original plaintext) 

62   bits different from original cipher 

cxxiv. ffffffffffffffffffffffffffffffff (original plaintext) 

fffffffffffffffffffffffffffffdff (One bit flipped from original plaintext) 

592373540ae1b202615e6d210d868a8c (original ciphertext) 
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965ebf5d678c3cdb350efbbfbd701efc (Ciphertext of flipped bit of original plaintext) 

66   bits different from original cipher 

cxxv. ffffffffffffffffffffffffffffffff (original plaintext) 

fffffffffffffffffffffffffffffeff (One bit flipped from original plaintext) 

592373540ae1b202615e6d210d868a8c (original ciphertext) 

86ed39d2248fa0c2bfb5160b0a639e22 (Ciphertext of flipped bit of original plaintext) 

67   bits different from original cipher 

cxxvi. ffffffffffffffffffffffffffffffff (original plaintext) 

ffffffffffffffffffffffffffffff7f (One bit flipped from original plaintext) 

592373540ae1b202615e6d210d868a8c (original ciphertext) 

b458525a0cd23e0dec5dd74d09c050e5 (Ciphertext of flipped bit of original plaintext) 

58   bits different from original cipher 

cxxvii. ffffffffffffffffffffffffffffffff (original plaintext) 

ffffffffffffffffffffffffffffffbf (One bit flipped from original plaintext) 

592373540ae1b202615e6d210d868a8c (original ciphertext) 

6359b9cf7cc2b390af7a544f9a66c61a (Ciphertext of flipped bit of original plaintext) 

61   bits different from original cipher 

cxxviii. ffffffffffffffffffffffffffffffff (original plaintext) 

ffffffffffffffffffffffffffffffdf (One bit flipped from original plaintext) 

592373540ae1b202615e6d210d868a8c (original ciphertext) 

9539e6f563b6ca3a2e387a6bd1ad125c (Ciphertext of flipped bit of original plaintext) 

61   bits different from original cipher 

cxxix. ffffffffffffffffffffffffffffffff (original plaintext) 

ffffffffffffffffffffffffffffffef (One bit flipped from original plaintext) 

592373540ae1b202615e6d210d868a8c (original ciphertext) 

3142d7ce79327988575aa5c66f0a3303 (Ciphertext of flipped bit of original plaintext) 

61   bits different from original cipher 

cxxx. ffffffffffffffffffffffffffffffff (original plaintext) 

fffffffffffffffffffffffffffffff7 (One bit flipped from original plaintext) 

592373540ae1b202615e6d210d868a8c (original ciphertext) 

23c8d1a7f913b68454421daa1f6e29a3 (Ciphertext of flipped bit of original plaintext) 

64   bits different from original cipher 

cxxxi. ffffffffffffffffffffffffffffffff (original plaintext) 

fffffffffffffffffffffffffffffffb (One bit flipped from original plaintext) 
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592373540ae1b202615e6d210d868a8c (original ciphertext) 

e4772ee29fb6df1410132d43f2d6a3a1 (Ciphertext of flipped bit of original plaintext) 

65   bits different from original cipher 

cxxxii. ffffffffffffffffffffffffffffffff (original plaintext) 

fffffffffffffffffffffffffffffffd (One bit flipped from original plaintext) 

592373540ae1b202615e6d210d868a8c (original ciphertext) 

f3c5fb96ff8bf5835d6ca8b8c85b7ff0 (Ciphertext of flipped bit of original plaintext) 

66   bits different from original cipher 

cxxxiii. ffffffffffffffffffffffffffffffff (original plaintext) 

fffffffffffffffffffffffffffffffe (One bit flipped from original plaintext) 

592373540ae1b202615e6d210d868a8c (original ciphertext) 

fb781891293b8083140d91f7e274c6b1 (Ciphertext of flipped bit of original plaintext) 

70   bits different from original cipher 

cxxxiv. Average number of flipped bits in ciphertext =

sum of bits different from original cipher

128 (Since we did flipping 128 times)
=  63.492188  

cxxxv. Then, the final step is to calculate the avalanche effect 

cxxxvi. Avalance effect (for this example AES) =
63.492188 

128 (Size of CipherText of AES is 128)
∗

100% =  49.603271875% 

cxxxvii. There are algorithm that are less than 128 bit size, like DES. DES is 64 bit. 

cxxxviii. Then instead of using ffffffffffffffffffffffffffffffff (128 bits) used on AES we used 

ffffffffffffffff (64 bits) and instead of using IntialVector[16]= 

{0xC2,0x9B,0x7C,0x97,0xC5,0x0D,0xD3,0xF8,0x4D,0x5B,0x5B,0x54,0x70,0x91,0

x79,0x21} ; and the final vector is array defined as unsigned char FinalVector[16]= 

{0xBA,0x69,0x8D,0xFB,0x5A,0xC2,0xFF,0xD7,0x2D,0xBD,0x01,0xAD,0xFB,0x7

B,0x8E,0x1A} ; 

cxxxix. We used IntialVector[8]= {0xC2,0x9B,0x7C,0x97,0xC5,0x0D,0xD3,0xF8}, and the 

finalvector is array defined as unsigned char FinalVector[8]= 

{0xBA,0x69,0x8D,0xFB,0x5A,0xC2,0xFF,0xD7}; 
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APPENDIX 2: The value of PI in hexadecimal after the first digit [122]. 

 

243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89452821

E638D01377BE5466CF34E90C6CC0AC29B7C97C50DD3F84D5B5B54709179216D5D98

979FB1BD1310BA698DFB5AC2FFD72DBD01ADFB7B8E1AFED6A267E96BA7C9045F

12C7F9924A19947B3916CF70801F2………..[122].  
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