
i

AN ANALYSIS AND A COMPARATIVE STUDY OF CRYPTOGRAPHIC

ALGORITHMS USED ON THE INTERNET OF THINGS (IoT) BASED ON

AVALANCHE EFFECT.

By

KHUMBELO DIFFERENCE MUTHAVHINE

Student number: 62037773

Submitted in accordance with the requirements

For the degree of

Magister Technologiae

In the

Department of Electrical Engineering

At the

UNIVERSITY OF SOUTH AFRICA

SUPERVISOR: DR. M. SUMBWANYAMBE

July 2018

ii

Declaration

I, Khumbelo Difference Muthavhine declare that the work I am submitting for assessment

contains no section copied in whole or in part from any other source unless explicitly identified

in quotation marks and with detailed, complete and accurate referencing.

Name: Mr. Khumbelo Difference Muthavhine.

Signature: Date: 24 January 2019

iii

Papers published from this dissertation

K. D. Muthavhine and M. Sumbwanyambe (2018) “An Analysis and a Comparative Study of

Cryptographic Algorithms Used on the Internet of Things (IoT) Based on Avalanche Effect”,

in proceedings of ICOIACT conference, Indonesia, 6-8 March 2018. It is edited, evaluated and

published by Institute of Electrical and Electronics Engineers (IEEE) on 30 April 2018.

Available: https://ieeexplore.ieee.org/document/8350759.

https://ieeexplore.ieee.org/document/8350759.

iv

 Abstract

Ubiquitous computing is already weaving itself around us and it is connecting everything to

the network of networks. This interconnection of objects to the internet is new computing

paradigm called the Internet of Things (IoT) networks. Many capacity and non-capacity

constrained devices, such as sensors are connecting to the Internet. These devices interact with

each other through the network and provide a new experience to its users. In order to make full

use of this ubiquitous paradigm, security on IoT is important. There are problems with privacy

concerns regarding certain algorithms that are on IoT, particularly in the area that relates to

their avalanche effect. In simple terms, avalanche effect means that a small change in the

plaintext or key should create a significant change in the ciphertext. The higher the significant

change, the higher the security of that algorithm. If the avalanche effect of an algorithm is less

than 50% then that algorithm is weak and can create security undesirability in any network. In

this, case IoT.

In this study, we propose to do the following: (1) Search and select existing block cryptographic

algorithms (maximum of ten) used for authentication and encryption from different devices

used on IoT. (2) Analyse the avalanche effect of select cryptographic algorithms and determine

if they give efficient authentication on IoT. (3) Improve their avalanche effect by designing a

mathematical model that improves their robustness against attacks. This is done through the

usage of the initial vector XORed with plaintext and final vector XORed with cipher text. (4)

Test the new mathematical model for any enhancement on the avalanche effect of each

algorithm as stated in the preceding sentences. (5) Propose future work on how to enhance

security on IoT.

Results show that, when using the proposed method with variation of key, the avalanche effect

significantly improved for seven out of ten algorithms. This means that we have managed to

improve 70% of algorithms tested. Therefore indicating a substantial success rate for the

proposed method as far as the avalanche effect is concerned. We propose that the seven

algorithms be replaced by our improved versions in each of their implementation on IoT

(especially in cases where the key is varied). On the other hand, when using the proposed

method with variation of plaintexts, only four out of ten algorithms reflected an increase of

avalanche effect. Again, the proposed method yields positive results though only 40% in this

case. We recommend that these four algorithms be replaced with the proposed algorithms in

IoT whenever the plaintext is varied.

v

Acknowledgements

I would first like to send my gratitude to my supervisor, Dr. Sumbwanyambe Mbuyu of the

Department of Electrical and Mining Engineering at the University of South Africa (UNISA).

The doctor’s office was always open for consultations whenever I had problems or questions

regarding my experiments, results or research. Finally, I must submit my gratitude to my wife,

Mrs. Tinswalo Audry Mabasa Muthavhine and to my children (Frankie Muthavhine, Lulama

Muthavhine, Mukoni Muthavhine and Khuliso Muthavhine) for giving me the necessary

support and constant motivation throughout my research and studies. This achievement would

not have been successful without them. Thank you very much.

Mr. Khumbelo Difference Muthavhine

vi

Table of Contents:

Acknowledgements ... v

List of Figures ... ix

List of Tables. .. xii

Abbreviations and Glossary .. xiii

Basic Mathematical Operators and Symbols ... xv

CHAPTER 1. INTRODUCTION ... 1

1.1 Background of Study .. 1

1.1.1 Definition of Internet of Things (IoT) ... 1

1.1.2 Benefits of Internet of Things (IoT) ... 1

1.1.3 The Avalanche Effect of Cryptographic Algorithms ... 2

1.1.4 Security of the Internet of Things (IoT) ... 3

1.2 Problem Statement .. 6

1.3 Hypothesis .. 6

1.4 Research Questions ... 6

1.5 Research Objectives .. 7

1.6 Research Methodology ... 8

1.7 Significance of the Study .. 10

1.8 The Research Roadmap ... 10

1.9 Chapter Summary .. 11

CHAPTER 2: LITERATURE REVIEW .. 12

2.1. Introduction .. 12

2.2. Overview of Internet of Things ... 12

2.2.2. IoT Architecture .. 14

2.2.3. Device-to-Device Communication model ... 15

2.2.4. Device-to-Cloud Communication ... 16

2.2.5. Device-to-Gateway Communication ... 16

2.2.6. Back-End Data Sharing communication ... 17

2.2.7. Security and the Internet of Things ... 18

2.3 Encryption Methods and Techniques ... 20

2.3.1 Symmetric Encryption .. 20

2.3.2 Asymmetric Encryption .. 21

2.3.3 Steganography ... 21

2.3.4 Vigenère Encryption .. 21

2.3.5 Hashing (Authenticated) Encryption.. 21

vii

2.4 Algorithms Used In the Security of IoT .. 22

2.4.1 The Advanced Encryption Standard (AES) Algorithm ... 22

2.4.2 Blowfish Algorithm .. 23

2.4.3 Camellia Algorithm .. 23

2.4.4 CAST-128 Algorithm .. 23

2.4.5 Clefia Algorithm ... 23

2.4.6 Data Encryption Standard (DES) Algorithm ... 24

2.4.7 Modular Multiplication based Block Cipher (MMB) Algorithm ... 24

2.4.8 Rivest Cipher 5 (RC-5)-32/32/16 Algorithm .. 24

2.4.9 Serpent Algorithm .. 25

2.4.10 Skipjack Algorithm ... 25

2.5 Avalanche Effect and Security in the Internet of Things .. 25

2.6 Types of Attacks on Internet of Things ... 26

2.6.1 Denial of Service (DoS) Attack .. 26

2.6.2 Man in the Middle (MITM) Attack ... 27

2.6.3 Eavesdropping Attack .. 27

2.6.4 Honeypot Attack ... 27

2.6.5 Collision (Bit Error) Attack ... 28

2.6.6 Differential Cryptanalysis Attack ... 28

2.6.7 Differential Fault Attack .. 28

2.7 Related Work .. 28

2.8 Chapter Summary .. 33

CHAPTER 3: METHODOLOGY .. 34

3.1. Introduction .. 34

3.2 Source Of Initial And Final Vector ... 36

3.3. PI Methodology: The Overview .. 36

3.4 Methodology of Study Based On the Avalanche Effect ... 37

3.4.1 Need to Calculate the Avalanche Effect ... 37

3.4.2. Method to Calculate the Avalanche Effect .. 37

3.5. Research Design ... 39

3.6. Experimental Procedure.. 40

3.6.1. Simulation 1: Testing of Avalanche Effect on AES ... 42

3.6.2. Simulation 2: Testing of Avalanche Effect on Blowfish .. 45

3.6.3. Simulation 3: Testing of Avalanche Effect on Camellia ... 48

3.6.4. Simulation 4: Testing of Avalanche Effect on Cast-128 ... 51

viii

3.6.5. Simulation 5: Testing of Avalanche Effect on Clefia .. 54

3.6.6. Simulation 6: Testing of Avalanche Effect on DES ... 57

3.6.7. Simulation 7: Testing of Avalanche Effect on MMB ... 60

3.6.8. Simulation 8: Testing of Avalanche Effect on RC5 ... 63

3.6.9. Simulation 9: Testing of Avalanche Effect on Serpent .. 66

3.6.10. Simulation 10: Testing of Avalanche Effect on Skipjack .. 69

3.4. Chapter Summary ... 72

CHAPTER 4: RESULTS DISCUSSION AND ANALYSIS ... 73

4.1 Introduction ... 73

4.2.1. Results 1: The Avalanche Effect on AES ... 74

4.2.2. Results 2: The Avalanche Effect on Blowfish .. 78

4.2.3 Results 3: The Avalanche Effect on Camellia .. 82

4.2.4. Results 4: The Avalanche Effect on Cast-128. .. 86

4.2.5. Results 5 5: The Avalanche Effect on Clefia ... 90

4.2.6. Results 6: The Avalanche Effect on DES .. 94

4.2.7. Results 7: The Avalanche Effect on MMB ... 98

4.2.8. Results 8: The Avalanche Effect on RC5 ... 102

4.2.9. Results 9: The Avalanche Effect on Serpent ... 106

4.2.10. Results 10: The Avalanche Effect on Skipjack .. 110

4.2.11. Results 11: The Speed and Avalanche Effect on All Ten Algorithms 114

4.3. Chapter Summary ... 124

CHAPTER 5: CONCLUSION AND FUTURE WORK .. 125

References ... 129

APPENDIX 1: Calculation of AES avalanche effect. .. 147

APPENDIX 2: The value of PI in hexadecimal after the first digit [122]. ... 168

ix

List of Figures

Figure 1.1: The model of well-known algorithms. .. 5

Figure 1.2: Model plan of proposed work, initial and final vectors are implemented. 5

Figure 1.3: Detailed flow diagram of the proposed study with XOR block inserted. 8

Figure 2.1: IoT architecture and network layers [29] .. 15

Figure 2.2: Device-to-device communication model [30]. .. 15

Figure 2.3: Device-to-cloud communication model [31]. ... 16

Figure 2.4: Device-to-gateway communication model diagram [30]. 17

Figure 2.5: Back-end data sharing model diagram [30] .. 18

Figure 2.6: IoT Security Challenges [27]. ... 19

Figure 2.7: IoT reference model: Security [41]. .. 20

Figure 2.8: Proposed work diagram explaining how initial and final vectors are derived. 33

Figure 3.1: Standard model with an explaination of block sizes. .. 35

Figure 3.2: Proposed model of algorithms with an explaination of XOR operation. 35

Figure 3.3: Flowchart diagram on how to calculate avalanche effect of algorithm like AES. 38

Figure 3.4: Proposed model with the explanations of block sizes of each building block. 39

Figure 3.5: Example of reading simulation and table .. 41

Figure 3.6: Simulation of avalanche effect on standard AES when plaintext is varied. 43

Figure 3.7: Simulation of avalanche effect on proposed AES when plaintext is varied. 43

Figure 3.8: Simulation of avalanche effect on standard AES when key is varied. 44

Figure 3.9 Simulation of avalanche effect on proposed AES when key is varied. 44

Figure 3.10: Simulation of avalanche effect on standard Blowfish when plaintext is varied. 46

Figure 3.11: Simulation of avalanche effect on proposed Blowfish when plaintext is varied. 46

Figure 3.12: Simulation of avalanche effect on standard Blowfish when key is varied. 47

Figure 3.13: Simulation of avalanche effect on proposed Blowfish when key is varied......... 47

Figure 3.14: Simulation of avalanche effect on standard Camellia when plaintext is varied. . 49

Figure 3.15: Simulation of avalanche effect on proposed Camellia when plaintext is varied. 49

Figure 3.16: Simulation of avalanche effect on standard Camellia when key is varied. 50

Figure 3.17: Simulation of avalanche effect on proposed Camellia when key is varied. 50

Figure 3.18: Simulation of avalanche effect on standard Cast-128 when plaintext is varied. . 52

Figure 3.19: Simulation of avalanche effect on proposed Cast-128 when plaintext is varied. 52

Figure 3.20: Simulation of avalanche effect on standard Cast-128 when key is varied. 53

Figure 3.21: Simulation of avalanche effect on proposed Cast-128 when key is varied. 53

Figure 3.22: Simulation of avalanche effect on standard Clefia when plaintext is varied. 55

Figure 3.23: Simulation of avalanche effect on proposed Clefia when plaintext is varied. 55

Figure 3.24: Simulation of avalanche effect on standard Clefia when key is varied............... 56

Figure 3.25: Simulation of avalanche effect on proposed Clefia when key is varied. 56

Figure 3.26: Simulation of avalanche effect on standard DES when plaintext is varied. 58

Figure 3.27: Simulation of avalanche effect on proposed DES when plaintext is varied. 58

Figure 3.28: Simulation of avalanche effect on standard DES when key is varied. 59

Figure 3.29: Simulation of avalanche effect on proposed DES when key is varied. 59

Figure 3.30: Simulation of avalanche effect on standard MMB when plaintext is varied. 61

x

Figure 3.31: Simulation of avalanche effect on proposed MMB when plaintext is varied. 61

Figure 3.32: Simulation of avalanche effect on standard MMB when key is varied............... 62

Figure 3.33: Simulation of avalanche effect on proposed MMB when key is varied. 62

Figure 3.34: Simulation of avalanche effect on standard RC5 when plaintext is varied. 64

Figure 3.35: Simulation of avalanche effect on proposed RC5 when plaintext is varied. 64

Figure 3.36: Simulation of avalanche effect on standard RC5 when key is varied. 65

Figure 3.37: Simulation of avalanche effect on proposed RC5 when key is varied. 65

Figure 3.38: Simulation of avalanche effect on standard Serpent when plaintext is varied. ... 67

Figure 3.39: Simulation of avalanche effect on proposed Serpent when plaintext is varied. .. 67

Figure 3.40: Simulation of avalanche effect on standard Serpent when key is varied. 68

Figure 3.41: Simulation of avalanche effect on proposed Serpent when key is varied. 68

Figure 3.42: Simulation of avalanche effect on standard Skipjack when plaintext is varied. . 70

Figure 3.43: Simulation of avalanche effect on proposed Skipjack when plaintext is varied. 70

Figure 3.44: Simulation of avalanche effect on standard Skipjack when key is varied. 71

Figure 3.45: Simulation of avalanche effect on proposed Skipjack when key is varied. 71

Figure 4.1: Results of avalanche effect on AES when plaintext was varied. 75

Figure 4.2: Results of speed taken on AES when plaintext was varied. 76

Figure 4.3: Results of avalanche effect on AES when key was varied. 77

Figure 4.4: Results of speed taken on AES when key was varied. .. 78

Figure 4.5: Results of avalanche effect on Blowfish when plaintext was varied. 79

Figure 4.6: Results of speed taken on Blowfish when plaintext was varied............................ 80

Figure 4.7: Results of avalanche effect on Blowfish when key was varied. 81

Figure 4.8: Results of speed taken on Blowfish when key was varied. 82

Figure 4.9: Results of avalanche effect on Camellia when plaintext was varied. 83

Figure 4.10: Results of speed taken on Camellia when plaintext was varied. 84

Figure 4.11: Results of avalanche effect on Camellia when key was varied. 85

Figure 4.12: Results of speed taken on Camellia when key was varied. 86

Figure 4.13: Results of avalanche effect on Cast-128 when plaintext was varied. 87

Figure 4.14: Results of speed taken on Cast-128 when plaintext was varied. 88

Figure 4.15: Results of avalanche effect on Cast-128 when key was varied. 89

Figure 4.16: Results of speed taken on Cast-128 when key was varied. 90

Figure 4.17: Results of avalanche effect on Clefia when plaintext was varied. 91

Figure 4.18: Results of speed taken on Clefia when plaintext was varied 92

Figure 4.19: Results of avalanche effect on Clefia when key was varied. 93

Figure 4.20: Results of speed taken on Clefia when key was varied. 94

Figure 4.21: Results of avalanche effect on DES when plaintext was varied. 95

Figure 4.22: Results of speed taken on DES when plaintext was varied. 96

Figure 4.23: Results of avalanche effect on DES when key was varied. 97

Figure 4.24: Results of speed taken on DES when key was varied. .. 98

Figure 4.25: Results of avalanche effect on MMB when plaintext was varied. 99

Figure 4.26: Results of speed taken on MMB when plaintext was varied. 100

Figure 4.27: Results of avalanche effect on MMB when key was varied. 101

Figure 4.28: Results of speed taken on MMB when key was varied. 102

Figure 4.29: Results of avalanche effect on RC5 when plaintext was varied. 103

xi

Figure 4.30: Results of speed taken on RC5 when plaintext was varied. 104

Figure 4.31: Results of avalanche effect on RC5 when key was varied. 105

Figure 4.32: Results of speed taken on RC5 when key was varied. 106

Figure 4.33: Results of avalanche effect on Serpent when plaintext was varied. 107

Figure 4.34: Results of speed taken on Serpent when plaintext was varied. 108

Figure 4.35: Results of avalanche effect on Serpent when key was varied. 109

Figure 4.36: Results of speed taken on Serpent when key was varied. 110

Figure 4.37: Results of avalanche effect on Skipjack when plaintext was varied. 111

Figure 4.38: Results of speed taken on Skipjack when plaintext was varied. 112

Figure 4.39: Results of avalanche effect on Skipjack when key was varied. 113

Figure 4.40: Results of speed taken on Skipjack when key was varied. 114

Figure 4.41: Results of avalanche effect of all algorithms tested when plaintext is varied. . 116

Figure 4.42: Results of Avalanche effect when plaintext was varied. 117

Figure 4.43: Result of the speeds of all algorithms tested when plaintext was varied. 119

Figure 4.44: Results of avalanche effect of all algorithms tested when key was varied. 121

Figure 4.45: Results of Avalanche effect when key was varied. .. 122

Figure 4.46: Results of the speed of all algorithms test when key was varied. 123

xii

List of Tables.

Table 2.1: Summary of the protocols used on IoT [26]. .. 14

Table 3.1: Algorithms and their usage within IoT. .. 40

Table 4.1: Results of standard and proposed AES when plaintext was varied. 74

Table 4.2: Results of standard and proposed AES when key was varied. 77

Table 4.3: Results of standard and proposed Blowfish when plaintext was varied. 79

Table 4.4: Results of standard and proposed Blowfish when key was varied. 81

Table 4.5: Results of standard and proposed Camellia when plaintext was varied. 83

Table 4.6: Results of standard and proposed Camellia when key was varied. 85

Table 4.7: Results of standard and proposed Cast-128 when plaintext was varied. 87

Table 4.8: Results of standard and proposed Cast-128 when key was varied. 89

Table 4.9: Results of standard and proposed Clefia when plaintext was varied. 91

Table 4.10: Results of standard and proposed Clefia when key was varied. 93

Table 4.11: Results of standard and proposed DES when plaintext was varied. 95

Table 4.12: Results of standard and proposed DES when key was varied. 97

Table 4.13: Results of standard and proposed MMB when plaintext was varied. 99

Table 4.14: Results of standard and proposed MMB when key was varied. 101

Table 4.15: Results of standard and proposed RC5 when plaintext was varied. 103

Table 4.16: Results of standard and proposed RC5 when key was varied. 105

Table 4.17: Results of standard and proposed Serpent when plaintext was varied. 106

Table 4.18: Results of standard and proposed Serpent when key was varied. 109

Table 4.19: Results of standard and proposed Skipjack when plaintext was varied. 111

Table 4.20: Results of standard and proposed Skipjack when key was varied. 112

Table 4.21: Results of avalanche effect of all algorithms tested when plaintext is varied. ... 115

Table 4.22: Result of the speeds of all algorithms tested when plaintext was varied............ 118

Table 4.23: Results of avalanche effect of all algorithms tested when key was varied. 120

Table 4.24: Results of the speed of all algorithms test when key was varied. 123

xiii

Abbreviations and Glossary

3G: Third generation

AES Advanced Encryption Standard (AES) algorithm

AES: AES is used on IoT to secure sensors and contactless smart

 cards.

Blowfish: Blowfish is used to secure application and network layer of

 IoT.

BYD Bring your device to work.

Camellia: Camellia has been used on a prototype (encryption) for IoT.

Cast-128: Cast has been used as one of the prototype of encryption for IoT.

Clefia: Clefia has been used on IoT to secure health-care devices.

DES Data Encryption standard

DES: DES is mostly used algorithm on IoT to secure the prototype of

 encryption for IoT.

DoS Denial of Service

e Euler’s number

FIPS Federal Information Processing Standards

G G-Permutation

GF (q) Finite field with q elements

GF (q) n n-dimensional vector space of GF (q)

IERC International Energy Research Centre

IoT Internet of Things

IP Initial Permutation

IP-1 Inverse of initial permutation

Kn Subkey K of n (specific) number of round

Lsb Least significant bit

M Plaintext was represented by initial permutation (IP)

MITM Man in the Middle attack

MMB Modular Multiplication based Block Cipher ()

MMB: MMB is imbedded on the software’s application of IoT.

Msb Most significant bit

NIST National Institute of Standards and Technology

P(S) P-permutation of the values S

xiv

r Number of rounds user want to run

RC-5 Rivest Cipher 5 algorithm

RC5: RC5 algorithm is implemented on Mica2 hardware (base station

 of IoT)

S A substitution operation or S-box

Serpent: Serpent is used to secure sensors of IoT.

Skipjack: Skipjack algorithm is implemented on Mica2 hardware (base

 station of IoT).

w Word bit chosen from three numbers: 16, 32 or 64 on RC

 algorithm.

xv

Basic Mathematical Operators and Symbols

⊕ The exclusive-or operation

g◦f The composition of the functions f and g (g◦f) (x) = g (f(x))

= or := Equals to

XOR bitwise addition

• Multiplication in the range GF (28)

AND Bitwise AND operation and

OR Bitwise OR operation.

 Bitwise AND operation

 Bitwise OR operation

<< Left shifting of bits

>> Right shifting of bits

{0, 1} n Bit-string of length n,

b The number of bytes in an original key size selected

E(X): E-permutation of the value X

X [U-V] Bit string of X cut from the U-th bit to the V-th bit, U and V are positions

σ delta constant value used on MMB

ϒ gamma constant value used on MMB

ϕ or ᵩ fractional part of the golden ratio calculated as follows

 The exclusive-or operation or addition modulo 2

1

CHAPTER 1. INTRODUCTION

1.1 Background of Study

In this section, we give an overview of the Internet of Things (IoT); its definition, components,

benefits, trending and security. We also define the avalanche effect and cryptographic

algorithm. We also discuss how the avalanche effect of cryptographic algorithms affects the

security of IoT.

1.1.1 Definition of Internet of Things (IoT)

The Internet has always been a network of networks, connecting computers together to share

information. What has changed over the past two decades is the ability to connect remote and

mobile things, objects, utilities or assets to the Internet and the cloud using wireless

communications and low-cost sensors with fast computing and big storage [1]. Johnson

explains in [2], when all these things are interconnected it is called Internet of Things (IoT).

The International Energy Research Centre (IERC) defines IoT as follows:

 "A dynamic global network infrastructure with self-configuring capabilities based on

 standard and interoperable communication protocols where physical and virtual

 “things” have identities, physical attributes and virtual personalities and use intelligent

 interfaces, and are seamlessly integrated into the information network." [3].

Although there are several definitions of IoT, they all mean the same thing, which is, smart

objects or devices connected to each other and connected to the internet and sometimes to a

cloud system.

1.1.2 Benefits of Internet of Things (IoT)

The growth of IoT is driven by the vast advancement in technology seen in fast and smart

devices equipped with computing and storage capabilities, as well as the decreasing cost of

manufacturing electronic gadgets. Holdowsky et al. indicated in [4] that over the last two

decades, microprocessors’ computational power has improved, doubling every three years,

2

making the processing power of gadgets more suitable for IoT. Kambies et al. reported in their

research [4] that the price of sensors has consistently been reduced over the past several years,

and the price reductions are expected to continue well into the future. In support of Kambies et

al., Johnson indicated in [2] that the average cost of an accelerometer is now 40 cents, compared

to two USD in 2006. Generally, sensors vary widely in price, but many are now affordable

enough to support IoT and its applications in ubiquitous computing. On both theoretical and

practical fronts of sensor development, researchers and developers have concentrated on

improving the accuracy of sensors. Holdowsky et al. reported in [4] that sensors of IoT are now

able to report close to the real measured value. Accuracy such as that of GPS devices is one of

the things that will drive the growth of IoT. Now given the fact that IoT connects different

devices together, has the ability to collect huge amounts of data, and even transports data on

high-speed networks than traditional internet or computers, it is clear that IoT has huge storage

capacity.

IoT with its many benefits such as low cost components, speed, user-friendliness, huge storage,

computational power and accuracy, makes it to be recommended and used by almost everyone

anywhere in the world. In fact, Kouns in [1] mentions Gartner’s prediction that by 2017, 50

percent of employers might ask their employees to “bring your own device” (BYOD) to work,

thus adding to the growth of IoT. Furthermore, he extended the prediction by indicating that

by 2020 there would be over 26 billion connected devices [1].

1.1.3 The Avalanche Effect of Cryptographic Algorithms

The main concern with such an enormous network, with various kinds of devices connected to

it, is security. In particular, personal privacy is at risk, as these devices may expose sensitive

information and potentially pose security risks. This is where cryptographic solutions in the

form of ciphers are used, for integrity of information, authentication of users, and secrecy.

Although there are several types of cryptographic solutions for the security of IoT, we focus

our research on ciphers. We herein refer to ciphers as cryptographic algorithms.

3

A cryptographic algorithm is a mechanism that is used to encrypt information using plaintext

(clear and readable information in static or transit) and key (like password) as inputs and

ciphertext (scrabbled information in static or transit) as output on platforms like IoT. The basic

usage of algorithms is to encrypt and decrypt information.

In terms of security, a cryptographic algorithm can be evaluated in several ways, and using

various cryptanalytic techniques. In order to declare an algorithm cryptographically secure, its

security must be tested against known cryptographic attacks. One of the techniques to avoid

the success of these attacks, the tested crypto algorithm must have a strong avalanche effect

[5], [6], [7]. The avalanche effect is a measure of how a small change in an input affects the

outputs bits. In the context of the symmetric ciphers, this small change in the plaintext or key

should cause a huge change (that is more than 50%) in the ciphertext [8], [9].

Clearly, in order to secure information stored or data in transit, the IoT needs cryptographic

algorithms that have good avalanche effect [10], [11].

1.1.4 Security of the Internet of Things (IoT)

There are many attacks on IoT, some of which are due to implementation and configuration

flaws, such as devices that use cryptographic algorithms with poor avalanche effect [4]. We

now give a few examples of various attacks as reported in the literature.

Firstly, the Denial of Service (DoS) attacks. Holdowsky gives the DoS attack as an example of

the many attacks that can be launched against machines connected to IoT [4]. DoS is the

process where an intruder manipulates functionality of service on network infrastructure

[6=12]. These types of attacks are a concern for IoT because they increase in proportion to the

number of IoT connected devices that are under risk. These include remote IoT devices such

as sensors, which are less likely to be properly secured [13]. DoS attacks get worse when more

devices without strong cryptographic algorithm with high avalanche effect are interconnected

[6], [8].

4

Secondly, is eavesdropping, that is interception of communication. Alsaadi et al. [13]

discovered that eavesdropping poses a security challenge in IoT. It was found that passive

attackers could intercept communication channels such as the internet, local wired networks,

IoT and wireless networks, in order to access data from a stream of information [4]. Although

it is not easy to prevent eavesdropping, it is easier to first encrypt data or a stream of

information before transmission, by using algorithms with high avalanche effect [40], [6].

Thirdly, we look at attacks that use ‘weak’ devices to send malicious information to other

connected devices [12]. In some cases intruders may exploit security vulnerabilities to create

risks that may range from software risk to physical risk in some instances [14].

To support the statement above, Walters [15] reported on how he was able to remotely attack

two different insulin pumps that were connected to IoT and succeeded to change their settings

so that they stopped delivering medicine. Such an attack is dangerous, even fatal for patients

who are dependent on those insulin pumps for their regular insulin dosage.

Klenk et al. [16] explained a situation where an attacker obtained access to a car’s internal

computer network without touching the car. He described how the attacker was able to hack

into a car’s built-in telematics unit and control the vehicle’s engine and braking systems.

In such situations control systems, vehicles, and even the human body can be accessed and

manipulated, causing injury or worse, due to an unauthorized access to control systems. (i.e.

Vehicles, body planted medical devices, SCADA, computer systems and manufacturing plants)

[17]. Lequetica reports in [18] of how automotive manufacturers and car rental companies are

proactively trying to address the issues of car security in the broader sense of IoT. These

examples further emphasise the need for implementation of cryptographic algorithms that have

high avalanche effect.

An algorithm that has poor avalanche effect does not consider the bit error (collision)

characteristics that may occur when data is encrypted [19]. Collision is the process when one

algorithm gives multiple numbers of same output (ciphertext) even though the inputs (plaintext

or key) are totally different. Vijayrangan et al. [20] showed that there are algorithms on

platforms like IoT that can pose bit error (collision) attack to the intruders because of poor

5

avalanche effect. Patidar et al. [8] indicated that, if an error occurs in the encrypted data over

IoT, which is more likely to happen on medium platforms such as wireless medium, the

decryption procedure at the receiver might cause half of the original bits to be in error due to

the weak avalanche effect. Therefore, there is a need for new enhanced encryption algorithm

with high avalanche effect that will take into consideration or handle the bit error or collision

characteristics when data travels or sent over IoT based on avalanche effect [19], [9], [7], [8].

IoT needs a crypto algorithm with high avalanche effect. In most of the algorithms like

Advanced Encryption Standard (AES) and Data Encryption Standard (DES), there is usually

no initial and final vectors implemented as in Figure 1.1. In the proposed work, the initial and

final vectors are implemented to the selected algorithms to enhance their strength and their

avalanche effect (see Figure 1.2).

Figure 1.1: The model of well-known algorithms.

Figure 1.2: Model plan of proposed work, initial and final vectors are implemented.

6

1.2 Problem Statement

Protecting communication on IoT is very hard, not only in protecting application data, but also

on routing and in other metadata. IoT has many vulnerabilities from design to cross-site. There

are problems or concerns of privacy, such as lack of encryption, insecure software and

hardware, insufficient authentication and authorization. Several methods have been proposed

in order to combat this. Perhaps the most popular methods are the analysis of the speed of

algorithms, analysis on the power consumption of the algorithm, analysis on the time the

algorithm takes to encrypt, and analysis on the memory needed to install algorithms. The main

aim of this study is to enhance the avalanche effect of algorithms used on IoT by implementing

initial and final vectors. Implementation of initial and final vectors have never been used before

as the purpose of enhancement of the avalanche effect. An algorithm that has poor avalanche

effect compromises the security on IoT. Essentially an intruder can easily attack a

cryptographic algorithm that has a weak avalanche effect on IoT by using attacks mentioned

in 1.1.

1.3 Hypothesis

The research hypothesis, which will also serve as the statement of the research reads:

H1 There is a relationship between the avalanche effect of cryptographic algorithms used

on IoT and their level of security.

H2 Improving the avalanche effect of cryptographic algorithms to increase the security

of IoT.

1.4 Research Questions

The primary research question forming the crux of this research study reads; what is the

relationship between the avalanche effect of algorithms used on IoT and their level of security.

The secondary research questions reads as follows:

i. What literature is available on security concerns on IoT?

ii. What are the types of algorithms used on IoT?

7

iii. Do these algorithms have acceptable significant levels of avalanche effect (that is more

than 50%)?

iv. How can we possibly increase the avalanche effect of these algorithms if they don’t

have acceptable levels of avalanche effect (of more than 50%)?

v. What are the benefit of having an algorithm with high avalanche effect on IoT?

vi. What is the relationship between crypto algorithms used on IoT and avalanche effect?

vii. How can we possibly give proposed future work on how to enhance the avalanche effect

of these algorithms?

1.5 Research Objectives

In this study, we propose a model where the initial and final vector will be used to enhance

avalanche effect. The specific objectives are:

i. To carry out literature review on security concerns of IoT.

ii. To determine the type of algorithms that are used to create avalanche effect on IoT.

iii. To analyze avalanche effect by implementing the source code of avalanche effect using

C++.

iv. To compare avalanche effect levels of crypto algorithms used in IoT using the

avalanche effect

v. To investigate the possibility to increase the avalanche effect of these algorithms if they

don’t have acceptable significance of avalanche effect (more than 50%) using C++.

vi. To invitigate the benefit of having an algorithm with high avalanche effect on IoT.

vii. To investigate the relationship between crypto algorithms used on IoT and avalanche

effect.

viii. To design mathematical model that gives more confusion and diffusion to intruder

using C++.

ix. To compare the results of existing algorithms and the new designed mathematical

model of algorithm.

x. To publish our results in accredited journals and conference proceedings like IEEE.

8

1.6 Research Methodology

In this study, the research methodology to be used will be the experimental research method

that will be conducted as follows: (1) Searching and selecting existing cryptographic

algorithms used for authentication and encryption in the context of IoT. (2) Analysing the

avalanche effect of selected existing cryptographic algorithms from step one. (3) Improving

their avalanche effect by designing a mathematical model (where an initial vector will be

XORed with the plaintext and a final vector XORed with the ciphertext) that gives more

confusion and diffusion to intruder. (4) Testing the new mathematical model if it really

enhances the avalanche effect of each algorithm that is used on IoT. (5) To propose the future

work on how to enhance security on IoT and finally give the conclusion. (6) Showing that the

high avalanche effect of an algorithm means high security of an algorithm. (7) Showing the

relationship between crypto algorithms used on IoT and avalanche effect. (8) Giving the

proposed future work on how to enhance the avalanche effect of these algorithms. Figure 1.3

shows the proposed model of study. Whereas Table 1.1 shows the causal relationship between

research objectives and research questions.

Figure 1.3: Detailed flow diagram of the proposed study with XOR block inserted.

9

Table 1.1: Causal relationship between research objectives and research questions.

Research Questions Research Objectives Procedure or methodology taken

What literature is available on

security concerns in IoT?

To carry out literature review on

security concerns in IoT

Journals, articles, papers and books

were used to compile the literature

review of concerning IoT security.

What types of algorithms are

mostly used to create

Avalanche effect on the IoT?

To determine the type of

algorithms that are used to create

avalanche effect on IoT.

From literature we found ten algorithms

mostly used on IoT. Namely: DES,

AES, Serpent, Blowfish, Camellia,

MMB, Cast, RC5, Clefia and Skipjack.

Do these algorithms have

acceptable significance of

avalanche effect?

To measure and compare

avalanche effect of crypto

algorithms used in IoT.

Most of algorithms found from

literature review had no significance of

avalanche effect when avalanche effect

was calculated using C/C++ code.

How can we possibly increase

the avalanche effect of these

algorithms if they don’t have

acceptable significance of

avalanche effect?

To investigate various methods of

improving the avalanche effect of

algorithms.

We increased avalanche effect by using

initial and final vectors derived from PI

value, in most algorithms using C++.

What are the benefit of having

an algorithms with high

avalanche effect on IoT?

To improve their avalanche effect

by designing mathematical model

that gives more confusion and

diffusion to intruder using C++.

It is found that if algorithm has high

avalanche effect, it gives confusion and

diffusion to the intruders and hackers.

Meaning it is cumbersome to crack that

algorithm. Refer to chapter 4.

What is the comparison

between avalanche effects

levels of existing crypto

algorithms used on IoT and

proposed ones?

To compare the results of existing

algorithms and proposed one

based on avalanche effect.

It is found that it is possible to increase

avalanched effect on certain algorithms

used on IoT using the proposed method.

How can we possibly give

proposed future work on how

to enhance the avalanche

effect of these algorithms?

To analyze if it is possible to

increase the avalanche effect of

these algorithms if they don’t have

acceptable significance of

avalanche effect using C++.

The proposed work showed that it is

possible to increase avalanche effect

using initial and final vector from Pi

value.

10

1.7 Significance of the Study

After the study, the increase of avalanche effect on each algorithm has the potential to securing

communication, data and sensitive information transported and stored on IoT. It is our belief

that results, underpinned by these studies and work, will give other researchers the knowledge

on how to improve and implement the security on IoT. We believe that as we explore the issues

of security surrounding IoT, we are going to be adding yet another dimension of security to it.

That is enhancing the security of the algorithms used on IoT. The study will give

cryptographers the necessary background on how to improve avalanche effect when designing

algorithms.

1.8 The Research Roadmap

Chapter 1 discussed an introduction of the study. This includes background of study, problem

statement, hypothesis, research questions, research methodology, research objectives,

significance of study, research roadmap and chapter summary.

Chapter 2 will review the literature related to our study. This includes: introduction, overview

of IoT, encryption methodology, algorithms used in the security of IoT, avalanche effect,

security in the IoT, types of attach on IoT, related work and chapter summary.

Chapter 3 will discuss the research methodology related to our study. This includes

introduction, source of initial and final vectors, PI methodology that is the overview of PI,

methodology of study based on the avalanche effect, research design, experimental procedure

and chapter summary.

Chapter 4 will give the results, discussion and analysis related to our study. This includes

graphical comparison of avalanche effect, the mathematical discussion and analysis.

Chapter 5 is the conclusion and future work. This includes conclusion of the study, its results

analysis and proposed future work to be done.

11

1.9 Chapter Summary

In this chapter, we defined IoT, its origin, how is it growing on daily bases, its affordability

and accessibility, its fastness, its user-friendliness and its security. We also discussed

cryptographic algorithms and their avalanche effect as the background. The problem statement,

research methodology, hypothesis, research questions, research objectives, significance of the

study and the research roadmap were discussed in this chapter to give understanding of

introduction and background of research.

12

CHAPTER 2: LITERATURE REVIEW

2.1. Introduction

In this chapter, we present literature review of Internet of Things: its protocols, architecture,

communication models (that are device-to-device, device-to-cloud, device-to-gateway, and

back-end data) and security.

We also present literature review of encryption methodologies and techniques used on IoT: its

symmetric cryptography, asymmetric cryptography, steganography, vigenère and hash

(authenticated) function. We present types of algorithms used on IoT: The Advance Encryption

Standards (AES), Blowfish, Camellia, CAST-128, Clefia, Data Encryption Standard (DES),

Rivest Cipher 5 (RC5), Modular Multiplications based Block cipher (MMB), Serpent and

Skipjack algorithm. These are the algorithms selected for the study because they are mostly

used on different devices of IoT. Refer to section 2.4 , section 2.7 and Table 3.1. We present

their origins, avalanche effects and security.

We also present literature review of the types of attacks used on Internet of Things like Denial

of Service (DoS), Man in the Middle (MITM), eavesdropping, honeypot, differential

cryptanalysis and differential fault attack. These attacks are used to attack cryptographic

algorithms mentioned above due to their avalanche effects. Intruder can crack the machine,

information in transit, strength of algorithm to get secret key and information.

Lastly we present the related work done by other researchers concerning the related studies.

Little has been done in this regard. In our related work we present literature of where these

cryptographic algorithms are installed on IoT. We present attacks used to crack these

algorithms which are installed on IoT due to their avalanche effect. We also present other

studies done by other researchers to enhance security of these algorithms using avalanche effect

and the results found.

2.2. Overview of Internet of Things

IoT uses protocols, network layers, wireless connectivity, communication models (that are

device-to-device communication, device-gateway communication, back-end data sharing

13

communication, device-to-cloud communication) and small devices connected to each other,

which operate on high speed and have huge storage, flexible to cloud computing and other

advantages compared to standard internet.

2.2.1 IoT Protocols

IoT has many protocols developed from the International Organization for Standardization

(ISO) stack for IoT devices operation [21]. Security of these protocols is determined by strong

cryptographic algorithms [15], [22] – [23]. Several protocols exist within IoT stack, such as

the Constrained Application Protocol (CoAP) which is messaging protocol, Infrastructure

protocol for networking and the Identification protocol used to identify the user. Other

protocols such as the Message Queuing Telemetry Transport protocol (MQTT) is used for

messaging and is maintained by the Advanced Message Queue Protocol (AMQP), Discovery

protocol which is used to discover web and nodes. Others are the Data Protocols or the

Representational state transfer (REST) protocol. The REST protocol is used to handle data like

the web socket. Apart from the protocols mentioned above several others protocols exist which

are the Device Management protocol that provides ways on how to manage devices, the

semantic protocol which provides web services, the stomp protocol that handles text oriented

messaging. All of these protocols are designed to save energy, with slow to computing time

and less memory because they have space limitation and limited power supply as the use

batteries [24]. Due to these limitations, it follows that the security problem is one of the issue

when dealing with IoT [25], [24]. The summary of the protocols used on IoT are defined in

Table 2.1.

https://stomp.github.io/

14

 Table 2.1: Summary of the protocols used on IoT [26].

Protocol CoAp XMPP RESRful HTTP MQTT

Transport UDP TCP TCP TCP

Messaging Request/Res

ponse

Publish/Subscribe/Request/

Response

Request/Respons

e

Publish/Subscribe

/Request/

Response

2G,3G,4G

Suitability (1000s

nodes)

Excellent Excellent Excellent Excellent

LLN Suitability

(1000s nodes)

Excellent Fair Fair Fair

Compute

Resources

10 ks

RAM/Flash

10 ks RAM/Flash 10 ks

RAM/Flash

10 ks RAM/Flash

Success Stories Utility Fields

Area

Networks

Remote management of

consumer white goods

Smart Energy

Profile 2

(premise energy

management/ho

me services)

Extending

enterprise

messaging into

IoT application

2.2.2. IoT Architecture

There are several existing stack layers within IoT which are used in IoT architecture. However,

Security of these layers is determined by strong cryptographic algorithms [21]. Within such

domains researchers are busy increasing network layers of IoT architecture by breaking down

some of the main layers into sublayers [21]. Recently, IoT is considered academically and

practically by several researchers, that its architecture is basically composed of three layers:

the perception layer, the network layer and the application layer [27]. The application layer

handles all applications of IoT while the network layer deals with connection to the network

such as the wireless or the wired network [27]. The perception layer is used to request, acquire,

collect and process the data from IoT communications [28]. Figure 2.1 shows IoT architecture

and it network layers.

15

Figure 2.1: IoT architecture and network layers [29]

2.2.3. Device-to-Device Communication model

The device-to-device communication model is the mechanism when two or more devices are

directly connected to establish communication amongst one another, without using gateway,

cloud computing and servers [27]. These devices communicate over various kind of

applications like SHAREit, Bluetooth, ZigBee or Z-Wave [30]. Its security and trust rely on

direct connection between the devices by pairing them [31]. No internet protocol is used on

device-device communication model [27]. Santosh et al. [30], described device-to-device

communication model as shown in Figure 2.2.

Figure 2.2: Device-to-device communication model [30].

16

2.2.4. Device-to-Cloud Communication

In a device-to-cloud communication, IoT devices connect directly to an internet cloud service

like service providers to establish communication amongst each other [27]. This approach

normally takes advantage of existing channel communications mechanisms like Ethernet,

mobile phone service providers or Wi-Fi connections to establish a connection between the

device and the internet network, which finally connects to the cloud computing and services

[30]. Security and privacy rely on service provider [31]. Communication might become

dysfunctional if service provider disappears or changes hosting provider [31]. Santosh et al.

[30] described device-to-cloud communication model as shown in Figure 2.3.

Figure 2.3: Device-to-cloud communication model [31].

2.2.5. Device-to-Gateway Communication

The device-to-gateway communication is the process where the devices connected to IoT

gateways as a channel to reach cloud services. IoT gateway’s function is to fill the

communication gap amongst IoT devices, systems, sensors, equipment and the cloud. IoT

gateway also provides internal processing and storage solutions. Security and data

confidentiality rely on website visited and browsed during communication [31]. Websites

might become dangerous if intruder wants to attack, he/she might hack or phish information

from the user using fake website [31]. Santosh et al. [30] described device-to-gateway

communication model as shown in Figure 2.4.

17

Figure 2.4: Device-to-gateway communication model diagram [30].

2.2.6. Back-End Data Sharing communication

The back-end data-sharing communication alludes to a communication architecture that allows

users to transfer and analyze data from a cloud service in combination with data from other

sources [27]. The need of internet protocol is not necessary in the communication [30]. Security

and trust rely on the application service providers [31]. If the application service provider stops

the services or put software on application that has the open-back-door, all user’s information

and data might be exploited, read or sent to the wrong recipients [31]. Santosh et al. [30]

graphically described back-end data sharing communication model as shown in Figure 2.5.

18

Figure 2.5: Back-end data sharing model diagram [30]

2.2.7. Security and the Internet of Things

Usually, devices connected to IoT expose sensitive information and may became a potential

security risks such as: (1) Privacy defined as a mechanism of blocking all unauthorized

accesses. If there is a lack of securing information, that leads to enable unauthorized access and

misuse of personal information, then there is a lack of privacy; (2) Data confidentiality defined

as a mechanism to kept secrecy of data and information. If there is of lack of keeping secret of

data and information, that leads to facilitate attacks on the storage devices of IoT, then there is

a lack of data confidentiality; and (3) Trust is a mechanism of identifying and verifying the

sender, data or device used on IoT, If there is a lack of verifying the legitimacy of devices,

persons, service providers or cloud services when users are exchanging information over IoT,

this lead to create safety risks [32], [33]. The main three IoT security risks are represented by

Bilal [27] as shown in Figure 2.6.

19

Figure 2.6: IoT Security Challenges [27].

Intruders could exploit user identity passwords, credit card numbers, leading to them being

vulnerable to theft or fraud [34]. Thus, the more devices are connected to IoT in their homes

or workplaces, the more vulnerabilities which an unauthorized person could use to access

sensitive information [34]. Most of devices have no cryptographic algorithms, and others have

algorithms with less avalanche effect [9], [7], [35]. This exposes variability on devices [8].

Security vulnerabilities on connected device could lead to potential attacks at the end-user’s

network, or facilitate attacks on other systems [36], [37]. An intruder could exploit security

vulnerabilities to create risks that could affect software or hardware in some cases [41, 38]. For

example, attacks like: Data confidentiality, data integrity, data authentication, data freshness,

availability, time synchronization and many more explained by Borgohain [36], Walters [38]

and by Klenk [39]. Therefore there is a need to develop algorithms with high avalanche effect

to secure all levels of IoT [40], [8]. Therefore, all levels of IoT from physical devices,

controllers, connectivity, servers (edges), data accumulation, data abstraction, application,

collaboration up to the top processes should be protected [41], in other words everything that

is used on IoT should be secured before use to achieve identity management, authentication,

secure storage, secure communication, secure network access and secure content [42]. This can

be shown in Figure 2.7 on the right hand side of it [41].

20

Figure 2.7: IoT reference model: Security [41].

2.3 Encryption Methods and Techniques

Cryptography is the art of encrypting and decrypting information, data and messages. During

ancient ages, encryption was done using the pen-and-paper methods based on the letter

substitutions and shifting such as Vigenère and Steganography encryption. Today networks

like IoT focus on digital cryptographic systems such as symmetric, asymmetric and hash

function encryption that can encrypt and decrypt information, data and messages using

computers.

2.3.1 Symmetric Encryption

This is the kind of encryption that uses a same key to secure data from sender to receiver for

secure communication [43]. Kaur et al. [44] explained the process of symmetric encryption as

uniform or symmetric because there is only one key used for encryption and decryption

process. There are several different types of symmetric key algorithms that can be used, such

as AES, DES, Blowfish, Clefia and Serpent [45].

21

2.3.2 Asymmetric Encryption

This is the kind of encryption method, where the key used to decrypt data or information is

totally different, compared, to the key used to encrypt same data or information [44].

Asymmetric encryption is also known as public-key encryption [46]. There are many

asymmetric encryption key algorithms such as Elliptic Curve Cryptographic algorithm (ECC),

Rivest Shimar Aglemen (RSA), Diffie-Hellman and Digital Signature Algorithm (DSA) [47].

2.3.3 Steganography

This is the kind of encryption which puts data or information onto other mediums in an

unnoticeable way [48]. These mediums are objects that are usually viewed by human beings.

These objects can be picture, audio, and video files [49]. A very simple example of

steganography is the invisible ink that is used to write invisible text on a paper that has visible

text, the receiver will ignore the visible text and read the invisible one written by invisible ink

using a candle [50]. Another example is when the video is played but pictures on video are

sending a message which totally different video to unauthorized person. The grass and trees on

the videos can be used as messages, and are read as morscode (the ring tones of an ancient

phone were recognized by long-short tones, on-off tones).

2.3.4 Vigenère Encryption

In a vigenère encryption, each letter of the alphabet is substituted or shifted to some number of

places [51]. For example, in a vigenère encryption of shift 3, A letter A would become E, B

would become F, Y would become C and so on [52]. The vigenère encryption is composed of

several shifts of encryption in sequence with different shift values [53]. An example of vigenère

encryption is Caesar algorithm [51].

2.3.5 Hashing (Authenticated) Encryption

In hashing, a unique fixed-length signature is created for a specific data or information set [54].

Each and every “hash” is different to a specific data or information, so little changes to that

data or information would be easy to notice. When data or information is hashed, it cannot be

22

reversed nor deciphered [55]. It is simple to tell if the data or information received has been

tempered with or not. Hashing is used to check if intruder has tempered with communication

[54].

2.4 Algorithms Used In the Security of IoT

Several algorithms are used to secure IoT. In this study we selected ten algorithms that are used

on IoT. The reason is that, they are mostly implemented on different devices of IoT. These

algorithms are:

i. AES: AES is used on IoT to secure sensors and contactless smart cards.

ii. Blowfish: Blowfish is used to secure application and network layer of IoT.

iii. Camellia: Camellia is used on a prototype (encryption) for IoT.

iv. Cast-128: Cast is used as one of the prototype of encryption for IoT.

v. Clefia: Clefia is used on IoT to secure health-care devices.

vi. DES: DES is mostly used algorithm on IoT to secure the prototype of encryption for

IoT.

vii. MMB: MMB is imbedded on the software applications of IoT.

viii. RC5: RC5 algorithm is implemented on Mica2 hardware (base station of IoT).

ix. SWSDSSerpent: Serpent is used to secure sensors of IoT.

x. Skipjack: Skipjack algorithm is implemented on Mica2 hardware (base station of IoT).

 2.4.1 The Advanced Encryption Standard (AES) Algorithm

AES is defined as a cryptographic algorithm that was designed by Rijndael and it was submitted

to the National Institute of Standards and Technology (NIST) in order to secure electronic data

[56], [57]. The specification of AES was explained in Federal Information Processing

Standards (FIPS) Publication in 1997 and it was accepted by NIST [58], [59]. The AES was

analyzed as a block cipher used to encrypt/decrypt blocks of 128 bits and had capacity of using

keys of 128, 196 or 256 bits [60]. AES is mostly used in hardware and software of IoT [56].

23

2.4.2 Blowfish Algorithm

Blowfish algorithm is as an algorithm created by Bruce Schneier in 1993, it uses a 64-block

size and a key length of 33 up to 448 bits [61]. Blowfish is used to secure applications and

network layer of IoT [62]. In this study, we focus on Blowfish which uses a key of 128 bits

called Blowfish-128 encryption algorithm. Blowfish is described as a block cipher using 16

rounds [61], [62].

2.4.3 Camellia Algorithm

Camellia is defined as a block cipher algorithm designed by three companies called Telephone

Corporation, Nippon Telegraph and Mitsubishi Electric Corporation in 2000 [63]. It was

submitted to ISO/IEC JTC 1/SC 27 as a consideration proposal for an international encryption

standard in 2000 [59]. Camellia has been accepted for use by the ISO/IEC [63]. These

companies (Telephone Corporation, Nippon Telegraph and Mitsubishi Electric Corporation)

combined expertise from their companies to develop Camellia [65]. Camellia is defined to use

the 128-bit block size and 128, 192 and 256-bit key sizes [66]. Encryption and decryption of

Camellia is defined as the same procedure but the order of the sub-keys is reversed in

decryption process [67].

2.4.4 CAST-128 Algorithm

CAST-128 is defined as symmetric block cipher algorithm developed in 1996 by S. Tavares

and C. Adams [67], [68]. CAST-128 is explained as a cipher that uses 64-bit plaintext blocks

under a key size 128 bits [69], [68]. The algorithm is defined to operate on Feistel network

structure same as DES [67] with 12 or 16 rounds.

2.4.5 Clefia Algorithm

Clefia algorithm is an algorithm designed by Nagoya University and Sony [70], [43]. It was

kept secret by Sony as proprietary algorithm until the weakness was found on its S-Boxes

configuration, after that it was published to the public domain [71]. It is a 128 bits block cipher

and uses different key lengths: 128, 192 and 256 bits [72]. Clefia is explained to use two Feistel

24

functions, a 4-branch and an 8-branch [43]. The number of rounds are determined by the length

of key [70]. For 128 bits key, 18 rounds are used. 192 bits key 22 rounds are used and 256 bits

key 26 round are used [43].

2.4.6 Data Encryption Standard (DES) Algorithm

DES is defined as a block cipher algorithm widely used on IoT in the world [45], [73]. Kammer

et al. [74] indicated that man called Horst Feistel developed a function called feistel in 1970.

This function was used as a building block to strengthen DES. After development, the

algorithm was submitted to the National Bureau of Standards (NBS) after the invitation to

propose an algorithm for the protection of data and information of the United State of America

(USA) government [75]. In 1976, NBS slightly modified DES after picking up some

weaknesses on the size of key against brute-force attacks, which was made known to the public

by Federal Information Processing Standard (FIPS) of the USA in 1977. DES was developed

to encrypt and decrypt blocks of plaintext and ciphertext of 64-bits long respectively and uses

56 bits of key [73]. It is a 16 rounds block cipher [74], [75]. Decryption was applied by using

the same sub-keys used in encryption, but in the reverse order [76], [73].

2.4.7 Modular Multiplication based Block Cipher (MMB) Algorithm

Modular Multiplication based Block Cipher (MMB) is defined as a block cipher that was

developed by Govaerts, Daemen and Vandewalle in 1993 [77], [78]. Their goal was mainly to

replace IDEA block cipher [79]. MMB is an algorithm which uses 6 rounds for decryption and

encryption [62]. The plaintext block and key size are 128 bits each [79], [78].

2.4.8 Rivest Cipher 5 (RC-5)-32/32/16 Algorithm

Rivest Cipher (RC5) is a symmetric block cipher that was developed by Ronald Rivest in 1994

[80], [81]. His aim was to develop a fast algorithm to secure data. It is said to be a fast

symmetric block cipher because of its elementary computational operations of encryption on

full words of data takes a short time to encrypt [81]. Unlike other algorithms, RC5 was designed

to use parameters set by the user before encryption takes place [80] and depending on the

environment or the platform where it is going to be implemented. These parameters are defined

https://en.wikipedia.org/wiki/Horst_Feistel
https://en.wikipedia.org/wiki/National_Bureau_of_Standards
https://en.wikipedia.org/wiki/Brute-force_attack
https://en.wikipedia.org/wiki/Federal_Information_Processing_Standard

25

as w, r, and b [81]. Where w is word byte chosen from the three numbers 16, 32 or 64 [80]. The

w is a number of word byte allowed to be chosen for RC5 [81]. The second parameter r is the

number of rounds user want to run [80]. The third parameter b is the number of bytes in an

original key size selected [80], [81]. The key size is defined to range from 0 to 255 bits [80],

[81].

2.4.9 Serpent Algorithm

Serpent is a symmetric block cipher designed by Lars Knudsen, Ross Anderson and Eli Biham

in 1998 [82], [83]. Their goal was to submit the algorithm to be considered as a candidate of

the Advanced Encryption Standard [82]. Serpent is adopted from DES algorithm, its S-Boxes

are extracted from DES and has a new structure that gives confusion to the intruder [83]. It

uses a 128-bits block size and key size of 128, 192 or 256 bits [84].

2.4.10 Skipjack Algorithm

Skipjack is an algorithm that was designed by National Security Agency (NSA) in 1993 for the

tools like hardware crypto-processors used in the military agencies for privacy, confidentiality

and integrity services [85], [86]. NSA is an intelligent department of USA, one of its core

functions is to develop and implement cryptographic standards for department of defense in

the USA. This algorithm uses a plaintext and ciphertext block size of 64 bits, a key block size

of 80-bits, and is defined to have 32 rounds [85], [86]. In this study, an 80-bits key will be

used because of the limitation of key block specification of the algorithm.

2.5 Avalanche Effect and Security in the Internet of Things

Zibideh [19] defined the avalanche effect as a desirable property of traditional algorithms like

Advanced Encryption Standard (AES), Data Encryption Standard (DES) and other well-known

algorithm used on IoT. The avalanche effect is satisfied when one input bit is changed, each of

the output bits should change with a probability of more than 50% [88]. In context of symmetric

ciphers a small change of the plaintext should cause a huge change in the ciphertext [89].

Vijayrangan et al. [20] showed that there are algorithms that can expose attacks like bit error

(collision) attack to the intruders because of their poor avalanche effect. The avalanche effect’s

https://en.wikipedia.org/wiki/National_Security_Agency

26

definition is based on the bits of an input and the output bits of the algorithm. In [90], it was

found that these traditional algorithms could be exposed to a bit error during decryption

process. Sobti et al. [91] showed that there is a need to develop algorithms which are resistant

to attacks for prevention of the intruders to access and attack communications on IoT. Even if

algorithm was used to strengthen security of IoT, if it does not have sufficient avalanche effect

[7], [35], therefore it does not prevent the bit error characteristics when used on IoT [92]. If an

error occurred in the encrypted data over IoT, which was found to be more likely to happen on

channels such as the wireless channel of IoT, the decryption procedure at the receiver side

could cause half of the original bits to be in error due to the poor avalanche effect [92]. Within

this theoretical paradigm, it is clear that there is a need of new secure encryption algorithms or

modification of traditional algorithms that would take into consideration or handle the bit error

characteristics on IoT by enhancing or considering avalanche effect [89], [35], [8]. In the

following section we will discuss several attacks used on IoT due to lack of sufficient avalanche

effect.

2.6 Types of Attacks on Internet of Things

There are many attacks that have been discovered since the establishment of IoT. In this section

we discuss an overview of attacks that are mostly used on IoT: Attacks like Denial of Service

(DoS), Man in the Middle (MITM), Eavesdropping, Honeypot Attack, Collision (Bit Error),

Differential Cryptanalysis and Differential Fault Attack.

2.6.1 Denial of Service (DoS) Attack

DoS attack is defined as when an intruder manipulates functionality of services on network

infrastructure [33]. Studies on DoS attacks such as those done by Alsaadi et al. [93] discovered

many implementation mistakes and configuration flaws on IoT’s deployments and

developments. For instance, attacks such as DoS could occur on machines connected to IoT.

DoS was found to be a concern due to the fact that a number of IoT devices were found to be

under the risk of being attacked, including remote IoT devices such as sensors where

cryptographic algorithms are implemented. These sensors are unlikely to be properly secured,

which would make them easy to be exploited [93]. In summary, DoS have been found to be

more problematic, because if more devices are interconnected, the more intruders could have

27

access to them [94]. As the more and more devices become connected to IoT without proper

algorithms or algorithms with weak avalanche effects, vulnerabilities could increase allowing

intruders to connect to fake devices that could also be used in such attacks [37], [95].

2.6.2 Man in the Middle (MITM) Attack

Man-in-the-Middle attack (MITM) attack is when the intruder secretly transfers and possibly

manipulates the communication between sender and receiver who believe they are secretly

communicating with each other [10]. MITM attacks usually destroys data confidentiality. Data

confidentiality is a big problem on IoT devices and services if a weak algorithm is used [96].

On IoT functionality, not only would the user have access to information but also have access

to other interceptive objects [10]. Within IoT domain, there is a need to address the following

important issues: access control, authorization, need for strong cryptographic algorithms and

identity management [96]. IoT devices have been seen as not being able to verify the entity

(person or any other device) for authorization to gain access to a service [10]. To do verification

of entity, a strong cryptographic algorithm must be implemented to identify and encrypt entity.

2.6.3 Eavesdropping Attack

An eavesdropping attack is where the intruder secretly collect or steal information that is

transferred over network by either computers, wireless media or devices [37]. Alsaadi et al.

[93] indicated that there are some of the scholars who were able to discover eavesdropping

(interception of communication) on IoT. It was found that passive attackers could intercept

communication channels such as the internet, local wired networks and wireless networks, to

access data from the stream of information [37]. If communication (data and information) is

encrypted by a strong algorithm, the intruder could not read nor hear the communication even

if he can steal or access it [93], [37].

2.6.4 Honeypot Attack

According to Yusuff [97] honeypot is an instrument used to collect data and/or information

stored during and after communication. This means that when an algorithm is designed to

secure communication for IoT, it must be borne in mind that it has to be strong enough to

28

prevent data or information from being collected, analyzed, intruded, or attacked by an

unauthorized human being or hacker using honeypot attack [98].

2.6.5 Collision (Bit Error) Attack

A collision attack is an attack when an intruder tries to find two different input bit strings of

crypto algorithm that produce the same output bit strings of result [99]. In simple terms when

two different inputs give the same output, it is called a collision. If an attacker attacks crypto

algorithm using a collision, this attack is called a collision attack [100].

2.6.6 Differential Cryptanalysis Attack

Differential cryptanalysis is when the intruder attacks cryptographic algorithm by studying the

differences in an input and the result differences in an output [101]. This attack was first

published after attacking the full 16-round DES in less than 255 complexity [70]. It is different

to collision attack, because it first XOR the inputs to get the difference, then the difference is

used as the input to recover the secret key [102].

2.6.7 Differential Fault Attack

Differential fault Attack is a technical attack that powerful cryptanalytic technique that

disorganizes and manoeuvres any type of cryptographic machine so that it can yield erroneous

results to discover secret keys [103]. Wei et al. [104] used this attack to crack Serpent

algorithm. Rivain [103] used to crack DES algorithm.

2.7 Related Work

IoT uses AES algorithm to encrypt its sensors [22]. Paul et al. [105] carried out some work on

how to enhance the avalanche effect on AES algorithm. Their main aim was to enhance

avalanche effect of AES to prevent attacks [105]. So many attacks used to crack AES have

been successful on its first few rounds but unsuccessful on full rounds [106]. An attack was

used on AES by Dunkelman et al. [106] in 2015. This attack is called differential cryptanalysis,

it is used to recover the related key used on AES. Dunkelman et al. [106] manage to reduce

29

AES’s complexity to recover AES’s secret key bits. To prevent these attacks, Paul et al. [105]

used matrix based transposition method. Matrix based transposition is when a key is transposed

by matrix before is mixed with an algorithm. They transpose the encryption key using a size

16x256 matrix. They indicated that the use of insecure cryptographic algorithm needs encoding

of information based on the avalanche effect to deal with security attacks [105]. In their

research, it was shown that by applying a based transposition matrix procedure method,

avalanche effect was highly improved on the first round (from 48% to 56%). When the method

was applied on more than eight rounds, the avalanche effect almost remained the same as that

of standard AES. From their results, when eight rounds were used, the avalanche effect changed

from 56% to 57%.

IoT uses Camellia algorithm to secure its medical data systems [107]. Santoso et al. [108]

carried out some work on how to improve the avalanche effect on Camellia algorithm. The

main aim to improve avalanche effect was to avoid attacks on medical data systems. Walters

[15] attacked medical insulin pumps and temper with settings remotely. To avoid this kind of

attack, Santoso et al. [108] compared all types of Camellia algorithms based on avalanche

effect. From the results, they got avalanche effect from minimum of 45% to a maximum of

60% [108]. They recommended that a Camellia with 60% of avalanche effect, should be used

to secure medical data on IoT systems.

IoT uses Blowfish algorithm to encrypt its network layer [22]. More recently, Mahindrakar

[10] carried some work on analysis of Blowfish’s avalanche effect without modifying it. From

his results, he indicated that the avalanche effect of Blowfish algorithm is not strong enough

and it is insecure. He indicated that Blowfish gave less than 50% of the avalanche effect when

one bit was flipped in each round. He discovered that the avalanche effect of Blowfish was

almost strong only when the plaintext was changed, than when the key was changed.

Mahindrakar indicated that Blowfish is vulnerable to be attacked if its avalanche effect is not

increased [10].

IoT uses DES algorithm to secure its prototypes [22]. Paul et al [105] indicated that DES is no

longer secure due to its smaller size of the key (56 bits). DES is also vulnerable to brute force

attack [105]. It is also vulnerable to differential cryptanalysis attack [70]. Ramanujam et al.

[109] used ancient cryptographic algorithms (Playfair, Ceaser and Vigenere algorithms) to

scramble input bits with modern cryptographic algorithms blocks of DES and Blowfish to make

new algorithm that will secure better IoT’s prototypes than DES. They combined four

algorithms to make one algorithm [109]. They used ciphertext derived from three ancient

30

algorithms as the plaintext of modern algorithm [109]. They found that the average avalanche

effect of standard Blowfish algorithm being 28.7100% but that of standard DES being

54.6800%. After that they mixed ancient and modern algorithms to make new algorithm, they

managed to get more than 70% of avalanche effect, this new algorithm had an excellent

avalanche effect but it was expensive to implement due to a limited memory of the device

[109].

IoT uses Cast-128 algorithm to secure its prototypes [15]. Wang et al. [110] attacked Cast-128

using improved differential cryptanalysis attack. They managed to attack Cast-128

successfully, and more easer and simple to attack when the key was weak. Krishnamurthy et

al. [111] tried to enhance the security of Cast-128 algorithm by modifying its fiestel function

to improve the avalanche effect. They manged to get 66.6600% of avalanche effect [111].

Which is an improvement compared to 50%.

IoT uses Clefia algorithm to secure its Radio-Frequency Identification (RFID) [112]. Boura et

al. [113] successfully attacked Clefia algorithm using differential cryptanalysis attack. Mostly,

differential cryptanalysis attack works better when the avalanche effect of the algorithm is low

[70]. Differential cryptanalysis attack is the same attack used to attack DES [70].

IoT uses Secure Force algorithm to encrypt its sensors [114]. Extant literature such as in

Shujaat et al. [11] compared Secure Force (SF), DES and AES algorithms without modifying

them [11]. SF algorithm is non-complexity algorithm for IoT. It is needed when space of

installation is limited in some certain devices like sensors [11]. Shujaat et al. [11] did not give

a new modification method to enhance the avalanche effect of these three standard algorithms;

they just analysed them without modification or proposed method. SF 64, 128 and 192 gave

the avalanche effect of 58.2%, 51.5500% and 45.7000% respectively [11]. Whereas the

avalanche results for AES-128 was 44.9200% [11] and of DES-64 was 65.6300% [11].

IoT uses DES to encrypt its prototype [22]. It is already indicated that DES is vulnerable to

brute force attack due to its smaller size of key (56 bits) [105]. Ibrahim et al. [115] compared

DES Feistel Network (FN) and three types of DES Extended Feistel Network (EFN) (Type

one, two and three, EFN is the process of multiplying FN several time in one algorithm).

Ibrahim et al. [115] chose to run this experiment of EFN on DES instead of using standard

DES. From their results analysis, they indicated that the more EFN used on DES, the more first

eight rounds executed better avalanche effect [115]. When the number of rounds increase, the

avalanche effect of DES with EFN became ineffective [115]. They also indicated that, using

EFN method was the more expensive operation than using normal FN of DES.

31

IoT uses RC5 algorithm to secure its Mica2 hardware [116]. Kaliski-Yin in 1995 attacked RC5

algorithm using single half-round characteristics attack [117]. This attack is the same as

differential cryptanalysis attack but instead of attacking all rounds of algorithms, half of

algorithm’s rounds are attack depending on the characteristics (weakness and strength) of

algorithm [117]. Ali [118] used avalanche effect to improve the security of RC5 algorithm. He

managed to reduce vulnerability of matching characteristics attack by increasing block size

complexity from 232 to 2256 and analysed their avalanche effects. His proposed method work

successfully compared to the standard RC5 algorithm [118].

IoT uses Tiny Encryption Algorithm (TEA) to encrypt its Mica2 hardware [116]. Abdelhalim

et al. [94] modified Tiny Encryption Algorithm (TEA) and named it Modified Tiny Encryption

Algorithm (MTEA). They left shifted the TEA’s register three times to modify TEA. Their

main aim of using the Linear Feedback Shift Register (LFSR) was to overcome the security

weakness of the TEA algorithm against attacks and to improve its avalanche effect [94].

Abdelhalim et al. [94] compared MTEA and TEA under the analysis of avalanche effect. The

results showed that there was no big improvement of avalanche effect when MTEA and TEA

were compared because they yielded almost the same results (that was almost 33% in average)

of avalanche effect [94], and both MTEA and TEA had poor avalanche effect (that was less

than 50%).

Dewangan et al. [40] modified AES by changing the form of plaintext and encryption key.

They added a key stream generator to AES to improve the encryption performance. In their

proposal, they mapped plaintext and encryption key in different binary codes before using them

as the inputs of the AES algorithm. These binary codes were extracted from weighted and

unweighted code. From their results, they showed that they managed to enhance avalanche

effect of AES from 73% to 76% when one bit of key changes. On the side of plaintext changes,

they showed an improvement from 76% to 80% [40]. Mandal et al [9] also used that method

of using binary codes, but DES was chosen instead of AES. They got an average of avalanche

effect from 44% to 64%, when plaintext changes in 5421 binary code. The key was mapped

with gray code [9].

IoT uses Serpent algorithm to encrypt its information and data [104]. Wei et al. [104] indicated

that there are strong attacks abilities used on Serpent algorithm. He even supported his

statement by attacking Serpent algorithm using differential fault attack [104]. Aghajanzadeh et

al. [137] tried to combine Serpent and RC4 to be one algorithm called RC4-Serpent to prevent

32

these strong attacks abilities mentioned above by Wei et al. [104]. He managed to enhance the

avalanched effect of Serpent based on RC4-Serpent algorithm from 58% to 64%.

Maita et al. [119] performed a work to enhance security of algorithms where Pseudo Random

Number Generator (PRNG) was used to increase complexity of the key generation of DES and

AES. From their experimental results, when both DES and AES algorithms mixed with the

PRNG, depicted the avalanche effect improvement of 36.3% average [119].

IoT uses Skipjack algorithm to secure its Mica2 hardware [116]. Biham et al. [120] attacked

Skipjack algorithm using differential cryptanalysis attack. They managed to attack some few

rounds of Skipjack algorithm. Their attack failed when they tried to attack a full 32 rounds of

Skipjack [120]. Maram et al. [121] proposed a new modified Skipjack algorithm to enhance

the avalanche effect compared to standard Skipjack algorithm. The main aim was to prevent

attacks like differential cryptanalysis attack. They used dynamic key-dependent S-box instead

of fixed S-box of standard Skipjack. The proposed algorithm produced better results of the

avalanche effect that is from 76% to 98% [121].

From the above literature review, little has been done to test the avalanche effect using initial

vector XORed with plaintext and final vector XORed with ciphertext. In this proposal we will

use initial vector XORed with plaintext and final vector XORed with cipher text and test

avalanche effect of all ten algorithms described in section 2.4. The vectors will be extracted

from irrational digits of PI after digit 3. Proposed work is given by Figure 2.8.

33

Figure 2.8: Proposed work diagram explaining how initial and final vectors are derived.

2.8 Chapter Summary

This chapter provided a literature review of IoT: its protocols, network layers, security, model

of communications, privacy, trust, data confidentiality, some algorithms used on IoT,

avalanche effect of cryptographic algorithm used on IoT, types of attacks on algorithms,

encryption methods and techniques. Different types algorithms that are used over IoT were

analysed. In the next chapter will discuss the research methodology related to our study. This

includes introduction, source of initial and final vectors, PI methodology that is the overview

of PI, methodology of study based on the avalanche effect, research design, experimental

procedure and chapter summary.

34

CHAPTER 3: METHODOLOGY

3.1. Introduction

In this section, we present the methods used for this study. In this study, we used the simulation

research based on the comparison and analysis of different cryptographic algorithms used on

IoT. We selected ten cryptographic algorithms (defined in section 2.4) used on IoT and

simulated them in C++. In theory, any programming language could be used to develop

algorithm, but C++ is an authorised “official” language of cryptography used by Federal

Information Processing Standards (FIPS), National Institute of Standards and Technology

(NIST), and other cryptographers. The reason being that it is difficult to learn than other

programming languages. Therefore, it is difficult to crack an algorithm written in C++

compared to others. The type of computer used is Hewlett-Packard Compaq Elite 8300

Convertible Minitower. The main reason for choosing these algorithms was to analyse their

avalanche effects and compare them with the proposed method. The comparative method used

to measure the avalanche effect was simulated using C++ programming language. The

proposed method was to XOR the plaintext with initial vector and XOR ciphertext with the

final vector in each algorithm mentioned in chapter 2. After that, we did an analysis of the

avalanche effect on the proposed algorithms and compared them with the ones used on IoT.

The design of the selected algorithms was based on plaintext key algorithms and ciphertext

only. In the proposed model, we added two blocks: an initial and the final vector as compared

to standard model. From Figure 3.1 and Figure 3.2, one can see that the blocks are not the same.

The difference is in an intial vector and the final vector imposed on Figure 3.2 which is the

proposed model of algorithms. Of paramount importance is the question of how and where an

intial and the final vectors were taken or genarated from? Also, of paramount importance, is

why were they taken or generated from there? The explanation and answers are elaborated in

section 3.2 and 3.3.

35

Figure 3.1: Standard model with an explaination of block sizes.

Figure 3.2: Proposed model of algorithms with an explaination of XOR operation.

36

3.2 Source Of Initial And Final Vector

To explain the questions posed in section 3.1, the values of an initial and the final vector were

taken from the value of PI after the digit 3. Yang [122] generated 8366 hexedecimal (hex) digits

string of the value PI after the digit 3. We used Yang’s string to create an intitial and the final

vectors by extracting their values from two different positions of Yang’s string . We must state

here that the values of an intial and the final vector are not the same because they are extracted

from different position of 8366 hex digits string. Yang’s string has 8366 positions. Refer to

appendix 2 for an overview of Yang’s string. In appendix 2 we decided to indicate the selected

value of an intial vector highlighted in red and the final vector highlighed in green for flexibility

of study. Refer to appendix 2.

3.3. PI Methodology: The Overview

The value of PI after the first digit which is 3 was used due to its characteristics. The value of

PI in hexadecimal notation is calculated by using Yang’s string [122] and it has 8366 positions.

If we check the value of PI, from the digits after the first digit 3, we can see that this value is

an irrational number. Refer to appendix 2. An irrational number is the number calculated from

ratios (or fractions) of integers [123]. When the fraction or ratio of distances of two line

segments is an irrational number, then line segments are also irrational, meaning that they have

no measure in common, that is, there is no distance, no matter how short, that could not be used

to determine the distances between the two given line segments as integer that can multiply

itself [122]. The other characteristic is that even if one tries to do a sequence and series

calculation on the value of PI, the PI value will still not yield the pattern [123]. Therefore it

would be hard for the intruder to attack or crack the algorithm which is mixed with PI values.

It is deduced that it will be difficult to intrude or attack a cryptographic algorithm using PI

values or any irrational number because of the characteristics of irrational numbers and way

the algorithms is coded [122]. We took the advantage of PI characteristics from the above

explanation as an advantage and that is where an initial and the final vector values are derived

or extracted from.

https://en.wikipedia.org/wiki/Fraction_(mathematics)
https://en.wikipedia.org/wiki/Integer

37

3.4 Methodology of Study Based On the Avalanche Effect

In this section, we discuss an overview of the methodology of avalanche effect: how to

calculate the avalanche effect percentage, the flowchart of avalanche effect, formula to

calculate avalanche effect and method to calculate avalanche effect.

3.4.1 Need to Calculate the Avalanche Effect

The avalanche effect is most desirable property for most of the cryptographic algorithms. If an

input is changed slightly (for example flipping a single input bit) the output must change

excessively (more than 50% the output bits should flip) [7]. One main reason for the avalanche

effect is that by flipping only one bit of the input, if there is large change in the output, then it

is harder to perform an attack (intrusion or hacking) on the cryptographic algorithm [35].

Present literature has shown that an algorithm with high avalanche effect is a strong algorithm

[7].

3.4.2. Method to Calculate the Avalanche Effect

The formula to calculate the avalanche effect is defined [7], [35] as follows:

Avalanche effect =
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑙𝑖𝑝𝑝𝑒𝑑 𝑏𝑖𝑡𝑠 𝑖𝑛 𝑐𝑖𝑝ℎ𝑒𝑟𝑡𝑒𝑥𝑡

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑖𝑡 𝑖𝑛 𝑐𝑖𝑝ℎ𝑒𝑟𝑡𝑒𝑥𝑡
∗ 100% (3.1)

In this study we fixed the key and flipped the plaintext bit from left to right and then we checked

the number or the amount of bits that changed in ciphertext and compared it to the un-flipped

ones. In the second experiment we fixed the plaintext and flipped one bit of key from left to

right and then checked the number of bits that would have changed in ciphertext. The bits were

flipped according to the size of input. Refer to appendix 1 for mathematical procedure, or refer

to Figure 3.3 for flowchart on how to calculate avalanche effect of algorithm like AES. AES is

used as an example.

In accordance with the above, we will give an example of the experiment by using the AES

algorithm. This is basically to show how the avalanche effect is calculated using the flowchart

38

given in Figure 3.3. AES algorithm is 128 block cipher, meaning that the size of ciphertext and

plaintext are both 128 bits. Refer to appendix 1 for mathematical procedure, or refer to Figure

3.3 for flowchart on how to calculate avalanche effect of algorithm like AES. AES is used as

an example.

Figure 3.3: Flowchart diagram on how to calculate avalanche effect of algorithm like AES.

39

For more detailed explanation on how to calculate avalanche effect step by step

mathematically. Refer to appendix 1. Every aspect discussed in this section is mathematically

demonstrated on appendix 1.

3.5. Research Design

In this study, the research methodology to be used will be quantitative. It will be more of

experimental research method that will be conducted as follows: (1) Searching and selecting

existing cryptographic algorithms for authentication and encryption in the context of IoT; (2)

Analyzing the avalanche effect of selected cryptographic algorithms from step one if they really

give efficient security on IoT based on avalanche effect; (3) Improving their avalanche effect

by designing mathematical model (where initial vector will be XORed with the plaintext and

final vector XORed with ciphertext) that gives more confusion and diffusion to intruder as

indicated in Figure 3.4; (4) Testing the proposed model if it really enhances the avalanche effect

on each and every algorithm selected in step one; (5) Giving the proposed future work on how

to enhance security on IoT and give the conclusion. (6) And finally publish at least one paper

from this study by IEEE.

Figure 3.4: Proposed model with the explanations of block sizes of each building block.

40

3.6. Experimental Procedure

The experimental procedure was to determine how secure the different algorithms used on IoT

and compare with each other. In this research, ten different algorithms were selected, because

they are widely used on IoT. See Table 3, which is comparing the performance of each other

based on different parameters such as the avalanche effect, time and speed.

Table 3.1: Algorithms and their usage within IoT.

Name of Algorithm

How algorithm is used within the internet of things

1. AES

IoT uses AES to secure its sensors and contactless smart cards [22], [15].

2. Blowfish

IoT uses Blowfish to secure it application and network layer of IoT [22], [124].

3. Camellia

IoT uses Camellia to secure its prototypes [15].

4. Cast-128

IoT uses Cast to secure its prototypes [23].

5. Clefia

IoT uses Clefia to secure its health-care devices [15].

6. DES

IoT uses DES to secure most of its devices. It is mostly used on IoT [22].

7. MMB

IoT uses MMB to secure its software’s application [125].

8. RC5

IoT uses RC5 algorithm to secure its Mica2 hardware (base station of IoT) [126].

9. Serpent

IoT uses Serpent to secure its sensors [102].

10. Skipjack

IoT uses Skipjack algorithm to secure Mica2 hardware (base station of IoT) [126].

In this simulation procedure, an algorithm is classfied as standard if it is not modified by the

proposed methodology. That is if it is taken and analysed as it is from the original developers.

41

An algorithm is classfied as proposed algorithm if it is modified by introducing our

methodology of the initial and final vectors on it.

The screanshot below, which is Figure 3.5, depicts the output of C++ code simulation example

when avalanche effect and time were excuted by our C++ code.

Figure 3.5: Example of reading simulation and table

The other two main characteristics that differentiates one encryption algorithm from another is

its ability to encrypt data when its time and speed are also measured [127]. We calculated the

time taken to perform avalanche effect on each and every algorithm. The speed of algorithm

was calculated as follows:

We flipped one bit from left to right until to the end, one bit at the time. For example if 128

bits algorithm is tested, it means that the encryption process was conducted 128 times. It

therefore suffices to say that 128 x 128 = 16384 bits were encrypted during the avalanche

effect. We can then calculate the speed as follows:

42

𝑆𝑝𝑒𝑒𝑑 =
𝑁𝑢𝑚𝑏𝑒𝑟 (𝑠𝑖𝑧𝑒) 𝑜𝑓 𝑏𝑖𝑡𝑠 𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑 𝑑𝑢𝑟𝑖𝑛𝑔 𝑎𝑣𝑎𝑙𝑎𝑛𝑐ℎ𝑒 𝑒𝑓𝑓𝑒𝑐𝑡

𝑇𝑖𝑚𝑒 𝑡𝑎𝑘𝑒𝑛 𝑡𝑜 𝑒𝑛𝑐𝑟𝑦𝑝𝑡 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑏𝑖𝑡𝑠 𝑑𝑢𝑟𝑖𝑛𝑔 𝑎𝑣𝑎𝑙𝑎𝑛𝑐𝑒 𝑒𝑓𝑓𝑒𝑐𝑡
 (3.2)

3.6.1. Simulation 1: Testing of Avalanche Effect on AES

When a cryptographic algorithm is published to the public domain by their developers, it is

published with its test vectors. Test vectors are the sets of inputs and outputs provided to user

of the system (in this study the system is cryptographic algorithm) in order to test that

algorithm. In cryptography, test vectors are used for algorithm testing, verification and

validation.

As we mentioned earlier that IoT uses AES algorithm to secure its smart cards [22]. We studied

AES algorithm from [15], [40], [119] and analysed how it works from [56], [64], [58], [60],

[6]. We programed AES algorithm according to the analysis mentioned above using C++ code.

We optimise the code to get maximum efficiency. To verify if our AES algorithm is encrypting

and decrypting according to the specification of its origin (developers), we used test vectors

found in [15, p. 35]. Then we called it a standard AES algorithm because it gave us the same

test vector defined in [15, p. 35]. After that, we modified it using an initial and the final vectors

as we proposed in Figure 1.2 and Figure 2.8 using C++ program. Then we called it the proposed

AES algorithm. The proposed AES algorithm’s test vectors became totally different to the test

vector found in [15, p. 35]. Therefore, it is a different algorithm compared to standard AES,

with its own different test vectors. From these two (standard and proposed AES) algorithms,

we calculated their avalanche effects when key was fixed and plaintext was varied, and vice

versa. AES has two inputs (plaintext and key). AES algorithm uses plaintext of 128 bits long

as a first input. We varied each bit from the first to last bit, one at a time to get better results of

the avalanche effect. That is how we vary plaintext according to the definition of the avalanche

effect’s procedure. Again, AES algorithm uses key of 128 bits long as a second input. We

varied each key bit from the first to last bit, one at a time to get better results of the avalanche

effect. That is how we vary the key according to the definition of avalanche effect. We even

calculated their speed when key was fixed and plaintext was varied, and vice versa. We finally

had four codes of AES algorithms: (1) Standard AES when key varies, (2) Standard AES when

plaintext varies, (3) Proposed AES when key varies and (4) Proposed AES when plaintext

varies. Below, in Figure 3.6 to Figure 3.9, we present the executable simulation screenshots of

https://en.wikipedia.org/wiki/Software_testing
https://en.wikipedia.org/wiki/Software_verification_and_validation
https://en.wikipedia.org/wiki/Software_verification_and_validation

43

four different AES algorithms mentioned above. Figure 3.6 presents simulation of avalanche

effect on standard AES when plaintext is varied with the value of 49.79248 percent.

Figure 3.6: Simulation of avalanche effect on standard AES when plaintext is varied.

Simulation of avalanche effect on proposed AES was conducted when plaintext was varied.

Figure 3.7 depicts the results of 49.6033% of avalanche effect when plaintext of proposed AES

was varied.

Figure 3.7: Simulation of avalanche effect on proposed AES when plaintext is varied.

44

Simulation of avalanche effect on standard AES was conducted when key was varied. Figure

3.8 depicts the results of 49.0662% of avalanche effect when key of standard AES was varied.

Figure 3.8: Simulation of avalanche effect on standard AES when key is varied.

Simulation of avalanche effect on proposed AES was conducted when key was varied. Figure

3.9 depicts the results of 49.9390 % of avalanche effect when key of proposed AES was varied.

Figure 3.9 Simulation of avalanche effect on proposed AES when key is varied.

45

3.6.2. Simulation 2: Testing of Avalanche Effect on Blowfish

As we mentioned earlier that IoT uses Blowfish algorithm to secure its applications and

network layer [124], [22]. We studied Blowfish algorithm from [10], [128], [61] and analysed

how it works from [128], [61], [129], [124]. We programed Blowfish algorithm according to

the analysis mentioned above using C++ code. We optimise the code to get maximum

efficiency. To verify if our Blowfish algorithm is encrypting and decrypting according to the

specification of its origin, we used test vectors from Blowfish’s developers found in [130].

Then we called it a standard Blowfish algorithm because it gave us the same test vector defined

in [130]. After that, we modified it using an initial and the final vectors as we proposed in

Figure 1.2 and Figure 2.8 using C++ program. Then we called it the proposed Blowfish

algorithm. From these two (standard and proposed Blowfish) algorithms, we calculated their

avalanche effects when key was fixed and plaintext was varied, and vice versa. Blowfish has

two inputs (plaintext and key). Blowfish algorithm uses plaintext of 128 bits long as a first

input like AES. We varied each bit from the first to last bit, one at a time to get better results

of the avalanche effect. That is how we vary plaintext according to the definition of the

avalanche effect’s calculation. Again, Blowfish algorithm uses a key of 128 bits long as a

second input. We varied each bit from the first to last bit, one at a time to get better results of

the avalanche effect. That is how we vary the key according to the definition of avalanche

effect. We even calculated their speeds when key was fixed and plaintext was varied, and vice

versa. We finally had four codes of Blowfish: (1) Standard Blowfish when key varies, (2)

Standard Blowfish when plaintext varies, (3) Proposed Blowfish when key varies and (4)

Proposed Blowfish when plaintext varies. Below (in Figure 3.10 to Figure 3.13), we present

the executable simulation screenshots of four different Blowfish algorithms mentioned above.

Simulation of avalanche effect on standard Blow was conducted when plaintext was varied.

Figure 3.10 depicts the results of 50.5615% of avalanche effect when plaintext of standard

Blowfish was varied.

46

Figure 3.10: Simulation of avalanche effect on standard Blowfish when plaintext is varied.

Simulation of avalanche effect on proposed Blow was conducted when plaintext was varied.

Figure 3.11 depicts the results of 48.3398% of avalanche effect when plaintext of proposed

Blowfish was varied.

Figure 3.11: Simulation of avalanche effect on proposed Blowfish when plaintext is varied.

Simulation of avalanche effect on standard Blow was conducted when key was varied. Figure

3.12 depicts the results of 50.4517% of avalanche effect when key of standard Blowfish was

varied.

47

Figure 3.12: Simulation of avalanche effect on standard Blowfish when key is varied.

Simulation of avalanche effect on proposed Blow was conducted when key was varied.

Figure 3.13 depicts the results of 49.9878% of avalanche effect when key of proposed

Blowfish was varied.

Figure 3.13: Simulation of avalanche effect on proposed Blowfish when key is varied.

48

3.6.3. Simulation 3: Testing of Avalanche Effect on Camellia

As we mentioned earlier that IoT uses Camellia algorithm to secure its medical data systems

[107]. We studied Camellia algorithm from [65], [64] and analysed how it works from [63],

[79], [113]. We programed Camellia algorithm according to the analysis mentioned above

using C++ code. We optimise the code to get maximum efficiency. To verify if our Camellia

algorithm is encrypting and decrypting according to the specification of its origin, we used test

vectors from [79, p. 22]. Then we called it a standard Camellia algorithm because it gave us

the same test vector defined in [79, p. 22]. After that, we modified it using an initial and the

final vector as we proposed in Figure 1.2 and Figure 2.8 using C++ program. Then we called

it the proposed Camellia algorithm. From these two (standard and proposed Camellia)

algorithms, we calculated their avalanche effects when key was fixed and plaintext was varied,

and vice versa. Camellia has two inputs (plaintext and key). Camellia algorithm uses plaintext

of 128 bits long as a first input like AES. We varied each bit from the first to last bit, one at a

time to get better results of the avalanche effect. That is how we vary plaintext according to the

definition of the avalanche effect’s procedure. Again, Camellia algorithm uses key of 192 bits

long as a second input. We varied each bit from the first to last bit, one at a time to get better

results of the avalanche effect. That is how we vary the key according to the definition of

avalanche effect. We even calculated their speeds when key was fixed and plaintext was varied,

and vice versa. We finally had four codes of Camellia: (1) Standard Camellia when key varies,

(2) Standard Camellia when plaintext varies, (3) Proposed Camellia when key varies and (4)

Proposed Camellia when plaintext varies. Below (in Figure 3.14 to Figure 3.17) we present the

executable simulation screenshots of four different Camellia algorithms mentioned above.

Simulation of avalanche effect on standard Camellia was conducted when plaintext was varied.

Figure 3.14 depicts the results of 49.4690% of avalanche effect when plaintext of standard

Camellia was varied.

49

Figure 3.14: Simulation of avalanche effect on standard Camellia when plaintext is varied.

Simulation of avalanche effect on proposed Camellia was conducted when plaintext was

varied. Figure 3.15 depicts the results of 50.0977% of avalanche effect when plaintext of

proposed Camellia was varied.

Figure 3.15: Simulation of avalanche effect on proposed Camellia when plaintext is varied.

Simulation of avalanche effect on standard Camellia was conducted when key was varied.

Figure 3.16 depicts the results of 49.6094% of avalanche effect when key of standard Camellia

was varied.

50

Figure 3.16: Simulation of avalanche effect on standard Camellia when key is varied.

Simulation of avalanche effect on proposed Camellia was conducted when key was varied.

Figure 3.17 depicts the results of 49.8983% of avalanche effect when key of proposed Camellia

was varied.

Figure 3.17: Simulation of avalanche effect on proposed Camellia when key is varied.

51

3.6.4. Simulation 4: Testing of Avalanche Effect on Cast-128

As we mentioned earlier that IoT uses Cast-128 algorithm to secure its prototypes [15], [23].

We studied Cast-128 algorithm from [69], [64], [68] and analysed how it works from [68],

[110], [111]. We programed Cast-128 algorithm according to the analysis mentioned above

using C++ code. We optimise the code to get maximum efficiency. To verify if our Cast-128

algorithm is encrypting and decrypting according to the specification of its origin, we used test

vectors found in [68, p. 15]. Then we called it a standard Cast-128 algorithm because it gave

us the same test vector defined in [68, p. 15]. After that, we modified it using an initial and the

final vector as we proposed in Figure 1.2 and Figure 2.8 using C++ program. Then we called

it the proposed Cast-128 algorithm. From these two (standard and proposed Cast-128)

algorithms, we calculated their avalanche effect when key was fixed and plaintext was varied,

and vice versa. Cast-128 has two inputs (plaintext and key). Camellia algorithm uses plaintext

of 128 bits long as a first input like AES. We varied each bit from the first to last bit, one at a

time to get better results of the avalanche effect. That is how we vary plaintext according to the

definition of avalanche effect. Again, Cast-128 algorithm uses key of 128 bits long as a second

input. We varied each bit from the first to last bit, one at a time to get better results of the

avalanche effect. That is how we vary the key according to the definition of avalanche effect’s

calculations. We even calculated their speeds when key was fixed and plaintext was varied,

and vice versa. We finally had four codes of Cast-128: (1) Standard Cast-128 when key varies,

(2) Standard Cast-128 when plaintext varies, (3) Proposed Cast-128 when key varies and (4)

Proposed Cast-128 when plaintext varies. Below (in Figure 3.18 to Figure 3.21) we present

executable simulation screenshots of four different Cast-128 algorithms mentioned above.

Simulation of avalanche effect on standard Cast-128 was conducted when plaintext was varied.

Figure 3.18 depicts the results of 48.8281% of avalanche effect when plaintext of standard

Cast-128 was varied.

52

Figure 3.18: Simulation of avalanche effect on standard Cast-128 when plaintext is varied.

Simulation of avalanche effect on proposed Cast-128 was conducted when plaintext was

varied. Figure 3.19 depicts the results of 48.3164% of avalanche effect when plaintext of

standard Cast-128 was varied.

Figure 3.19: Simulation of avalanche effect on proposed Cast-128 when plaintext is varied.

Simulation of avalanche effect on standard Cast-128 was conducted when key was varied.

Figure 3.20 depicts the results of 50.1221% of avalanche effect when key of standard Cast-128

was varied.

53

Figure 3.20: Simulation of avalanche effect on standard Cast-128 when key is varied.

Simulation of avalanche effect on proposed Cast-128 was conducted when key was varied.

Figure 3.21 depicts the results of 50.1709% of avalanche effect when key of proposed Cast-

128 was varied.

Figure 3.21: Simulation of avalanche effect on proposed Cast-128 when key is varied.

54

3.6.5. Simulation 5: Testing of Avalanche Effect on Clefia

As we mentioned earlier that IoT uses Clefia algorithm to secure its Radio-Frequency

Identification (RFID) [112]. We studied Clefia algorithm from [70], [72], [43] and analysed

how it works from [51], [113], [131]. We programed Clefia algorithm according to the analysis

mentioned above using C++ code. We optimise the code to get maximum efficiency. To verify

if our Clefia algorithm is encrypting and decrypting according to the specification of its origin,

we used test vectors found in [131, p. 29]. Then we called it a standard Clefia algorithm because

it gave us the same test vector defined in [131, p. 29]. After that, we modified it using an initial

and the final vector as we proposed in Figure 1.2 and Figure 2.8 using C++ program. Then we

called it the proposed Clefia algorithm. From these two (standard and proposed Clefia)

algorithms, we calculated their avalanche effects when key was fixed and plaintext was varied,

and vice versa. Clefia has two inputs (plaintext and key). Clefia algorithm uses plaintext of 128

bits long as a first input like AES. We varied each bit from the first to last bit, one at a time to

get better results of the avalanche effect. That is how we vary plaintext according to the

definition of avalanche effect’s procedure. Again, Clefia algorithm uses key of 128 bits long

as a second input. We varied each bit from the first to last bit, one at a time to get better results

of the avalanche effect. That is how we vary the key according to the definition of the avalanche

effect’s calculation. We even calculated their speeds when key was fixed and plaintext was

varied, and vice versa. We finally had four codes of Clefia: (1) Standard Clefia when key varies,

(2) Standard Clefia when plaintext varies, (3) Proposed Clefia when key varies and (4)

Proposed Clefia when plaintext varies. Below (in Figure 3.22 to Figure 3.25) we present the

executable simulation screenshots of four different Clefia algorithms mentioned above.

Simulation of avalanche effect on standard Clefia was conducted when plaintext was varied.

Figure 3.22 depicts the results of 50.2807% of avalanche effect when plaintext of standard

Clefia was varied.

55

Figure 3.22: Simulation of avalanche effect on standard Clefia when plaintext is varied.

Simulation of avalanche effect on proposed Clefia was conducted when plaintext was varied.

Figure 3.23 depicts the results of 49.8230% of avalanche effect when plaintext of proposed

Clefia was varied.

Figure 3.23: Simulation of avalanche effect on proposed Clefia when plaintext is varied.

Simulation of avalanche effect on standard Clefia was conducted when key was varied. Figure

3.24 depicts the results of 49.9023% of avalanche effect when key of standard Clefia was

varied.

56

Figure 3.24: Simulation of avalanche effect on standard Clefia when key is varied.

Simulation of avalanche effect on proposed Clefia was conducted when key was varied. Figure

3.25 depicts the results of 50.1587% of avalanche effect when key of proposed Clefia was

varied.

Figure 3.25: Simulation of avalanche effect on proposed Clefia when key is varied.

57

3.6.6. Simulation 6: Testing of Avalanche Effect on DES

As we mentioned earlier that IoT uses DES algorithm to secure its prototypes [22]. We studied

DES algorithm from [9], [119], [64] and analysed how it works from [74], [76], [99], [103].

We programed DES algorithm according to the analysis mentioned above using C++ code. We

optimise the code to get maximum efficiency. To verify if our DES algorithm is encrypting

and decrypting according to the specification of its origin, we used test vectors found in [132].

Then we called it a standard DES algorithm because it gave us the same test vector defined in

[132]. After that, we modified it using an initial and the final vector as we proposed in Figure

1.2 and Figure 2.8 using C++ program. Then we called it the proposed DES algorithm. From

these two (standard and proposed DES) algorithms, we calculated their avalanche effects when

key was fixed and plaintext was varied, and vice versa. DES has two inputs (plaintext and key).

DES algorithm uses plaintext of 64 bits long as a first input unlike AES. We varied each bit

from the first to last bit, one at a time to get better results of the avalanche effect. That is how

we vary plaintext according to the definition of avalanche effect’s procedure. Again, DES

algorithm uses key of 56 bits long as a second input unlike AES. We varied each bit from the

first to last bit, one at a time to get better results of the avalanche effect. That is how we vary

the key according to the definition of avalanche effect. We even calculated their speeds when

key was fixed and plaintext was varied, and vice versa. We finally had four codes of DES: (1)

Standard DES when key varies, (2) Standard DES when plaintext varies, (3) Proposed DES

when key varies and (4) Proposed DES when plaintext varies. Below (in Figure 3.26 to Figure

3.29) we present the executable simulation screenshots of four different DES algorithms

mentioned above. Simulation of avalanche effect on standard DES was conducted when

plaintext was varied. Figure 3.26 depicts the results of 62.8662% of avalanche effect when

plaintext of standard DES was varied.

58

Figure 3.26: Simulation of avalanche effect on standard DES when plaintext is varied.

Simulation of avalanche effect on proposed DES was conducted when plaintext was varied.

Figure 3.27 depicts the results of 58.8379% of avalanche effect when plaintext of proposed

DES was varied.

Figure 3.27: Simulation of avalanche effect on proposed DES when plaintext is varied.

Simulation of avalanche effect on standard DES was conducted when key was varied. Figure

3.28 depicts the results of 43.8721% of avalanche effect when key of standard DES was varied.

59

Figure 3.28: Simulation of avalanche effect on standard DES when key is varied.

Simulation of avalanche effect on proposed DES was conducted when key was varied. Figure

3.29 depicts the results of 44.2139% of avalanche effect when key of proposed DES was varied.

Figure 3.29: Simulation of avalanche effect on proposed DES when key is varied.

60

3.6.7. Simulation 7: Testing of Avalanche Effect on MMB

As we mentioned earlier that IoT uses MMB algorithm to secure its software’s application

[125]. We studied MMB algorithm from [77], [133], [134] and analysed how it works from

[77], [133], [134]. We programed MMB algorithm according to the analysis mentioned above

using C++ code. We optimise the code to get maximum efficiency. To verify if our MMB

algorithm is encrypting and decrypting according to the specification of its origin, we used test

vectors found in [77]. Then we called it a standard MMB algorithm because it gave us the same

test vector defined in [77]. After that, we modified it using an initial and the final vector as we

proposed in Figure 1.2 and Figure 2.8 using C++ program. Then we called it the proposed

MMB algorithm. From these two (standard and proposed MMB) algorithms, we calculated

their avalanche effects when key was fixed and plaintext was varied, and vice versa. MMB has

two inputs (plaintext and key). MMB algorithm uses plaintext of 128 bits long as a first input.

We varied each bit from the first to last bit, one at a time to get better results of the avalanche

effect. That is how we vary plaintext according to the definition of avalanche effect’s

calculation. Again, MMB algorithm uses key of 128 bits long as a second input. We varied

each bit from the first to last bit, one at a time to get better results of the avalanche effect. That

is how we vary the key according to the definition of avalanche effect. We even calculated

their speed when key was fixed and plaintext was varied, and vice versa. We finally had four

codes of MMB: (1) Standard MMB when key varies, (2) Standard MMB when plaintext varies,

(3) Proposed MMB when key varies and (4) Proposed MMB when plaintext varies. Below (in

Figure 3.30 to Figure 3.33) we present the executable simulation screenshots of four different

MMB algorithms mentioned above. Simulation of avalanche effect on standard MMB was

conducted when plaintext was varied. Figure 3.30 depicts the results of 49.7742% of avalanche

effect when plaintext of standard MMB was varied.

61

Figure 3.30: Simulation of avalanche effect on standard MMB when plaintext is varied.

Simulation of avalanche effect on proposed MMB was conducted when plaintext was varied.

Figure 3.31 depicts the results of 49.7498% of avalanche effect when plaintext of proposed

MMB was varied.

Figure 3.31: Simulation of avalanche effect on proposed MMB when plaintext is varied.

Simulation of avalanche effect on standard MMB was conducted when key was varied. Figure

3.32 depicts the results of 49.6765% of avalanche effect when key of standard MMB was

varied.

62

Figure 3.32: Simulation of avalanche effect on standard MMB when key is varied.

Simulation of avalanche effect on proposed MMB was conducted when key was varied. Figure

3.33 depicts the results of 49.6399% of avalanche effect when key of proposed MMB was

varied.

Figure 3.33: Simulation of avalanche effect on proposed MMB when key is varied.

63

3.6.8. Simulation 8: Testing of Avalanche Effect on RC5

As we mentioned earlier that IoT uses RC5 algorithm to secure its Mica2 hardware [116]. We

studied RC5 algorithm from [135], [81], [118] and analysed how it works from [117], [118],

[136]. We programed RC5 algorithm according to the analysis mentioned above using C++

code. We optimise the code to get maximum efficiency. To verify if our RC5 algorithm is

encrypting and decrypting according to the specification of its origin, we used test vectors from

[184, p 270]. Then we called it a standard RC5 algorithm because it gave us the same test vector

defined in [184, p 270]. After that, we modified it using an initial and the final vector as we

proposed in Figure 1.2 and Figure 2.8 using C++ program. Then we called it the proposed RC5

algorithm. From these two (standard and proposed RC5) algorithms, we calculated their

avalanche effect when key was fixed and plaintext was varied, and vice versa. RC5 has two

inputs (plaintext and key). RC5 algorithm uses plaintext of 128 bits long as a first input. We

varied each bit from the first to last bit, one at a time to get better results of the avalanche effect.

That is how we vary plaintext according to the definition of avalanche effect’s procedure.

Again, RC5 algorithm uses key of 256 bits long as a second input, unlike DES. We varied each

bit from the first to last bit, one at a time to get better results of the avalanche effect. That is

how we vary the key according to the definition of avalanche effect’s calculation. We even

calculated their speed when key was fixed and plaintext was varied, and vice versa. We finally

had four codes of RC5: (1) Standard RC5 when key varies, (2) Standard RC5 when plaintext

varies, (3) Proposed RC5 when key varies and (4) Proposed RC5 when plaintext varies. Below

(in Figure 3.34 to Figure 3.37) we present the executable simulation screenshots of four

different RC5 algorithms mentioned above. Simulation of avalanche effect on standard RC5

was conducted when plaintext was varied. Figure 3.34 depicts the results of 76.1719% of

avalanche effect when plaintext of standard RC5 was varied.

64

Figure 3.34: Simulation of avalanche effect on standard RC5 when plaintext is varied.

Simulation of avalanche effect on proposed RC5 was conducted when plaintext was varied.

Figure 3.35 depicts the results of 76.9043% of avalanche effect when plaintext of proposed

RC5 was varied.

Figure 3.35: Simulation of avalanche effect on proposed RC5 when plaintext is varied.

Simulation of avalanche effect on standard RC5 was conducted when key was varied. Figure

3.36 depicts the results of 49.1821% of avalanche effect when key of standard RC5 was varied.

65

Figure 3.36: Simulation of avalanche effect on standard RC5 when key is varied.

Simulation of avalanche effect on proposed RC5 was conducted when key was varied. Figure

3.37 depicts the results of 49.7925% of avalanche effect when key of proposed RC5 was varied.

Figure 3.37: Simulation of avalanche effect on proposed RC5 when key is varied.

66

3.6.9. Simulation 9: Testing of Avalanche Effect on Serpent

As we mentioned earlier that IoT uses Serpent algorithm to secure its sensors, information and

data [104], [102]. We studied Serpent algorithm from [101], [82], [83], [118] and analysed how

it works from [104], [137], [138]. We programed Serpent algorithm according to the analysis

mentioned above using C++ code. We optimise the code to get maximum efficiency. To verify

if our Serpent algorithm is encrypting and decrypting according to the specification of its

origin, we used test vectors found in [138]. Then we call it standard Serpent algorithm because

it gave us the same test vector defined in [138]. After that, we modified it using an initial and

the final vector as we proposed in Figure 1.2 and Figure 2.8 using C++ program. Then we

called it proposed Serpent algorithm. From these two (standard and proposed Serpent)

algorithms, we calculated their avalanche effect when key was fixed and plaintext was varied,

and vice versa. Serpent has two inputs (plaintext and key). Serpent algorithm uses plaintext of

128 bits long as a first input. We varied each bit from the first to last bit, one at a time to get

better results of the avalanche effect. That is how we vary plaintext according to the definition

of avalanche effect. Again, Serpent algorithm uses key of 256 bits long as a second input unlike

DES. We varied each bit from the first to last bit, one at a time to get better results of the

avalanche effect. That is how we vary the key according to the definition of avalanche effect.

We even calculated their speeds when key was fixed and plaintext was varied, and vice versa.

We finally had four codes of Serpent: (1) Standard Serpent when key varies, (2) Standard

Serpent when plaintext varies, (3) Proposed Serpent when key varies and (4) Proposed Serpent

when plaintext varies. Below (in Figure 3.8 to Figure 3.41) we present the executable

simulation screenshots of four different Serpent algorithms mentioned above. Simulation of

avalanche effect on standard Serpent was conducted when plaintext was varied. Figure 3.38

depicts the results of 50.3845% of avalanche effect when plaintext of standard Serpent was

varied.

67

Figure 3.38: Simulation of avalanche effect on standard Serpent when plaintext is varied.

Simulation of avalanche effect on proposed Serpent was conducted when plaintext was varied.

Figure 3.39 depicts the results of 49.7986% of avalanche effect when plaintext of proposed

Serpent was varied.

Figure 3.39: Simulation of avalanche effect on proposed Serpent when plaintext is varied.

Simulation of avalanche effect on standard Serpent was conducted when key was varied. Figure

3.40 depicts the results of 49.8657% of avalanche effect when key of standard Serpent was

varied.

68

Figure 3.40: Simulation of avalanche effect on standard Serpent when key is varied.

Simulation of avalanche effect on proposed Serpent was conducted when key was varied.

Figure 3.41 depicts the results of 50.5341% of avalanche effect when key of proposed Serpent

was varied.

Figure 3.41: Simulation of avalanche effect on proposed Serpent when key is varied.

69

3.6.10. Simulation 10: Testing of Avalanche Effect on Skipjack

As we mentioned earlier that I IoT uses Skipjack algorithm to secure its Mica2 hardware [116].

We studied Skipjack algorithm from [85], [139], [120] and analysed how it works from [140],

[141], [86], [142]. We programed Skipjack algorithm according to the analysis mentioned

above using C++ code. We optimise the code to get maximum efficiency. To verify if our

Skipjack algorithm is encrypting and decrypting according to the specification of its origin, we

used test vectors found in [142]. Then we called it a standard Skipjack algorithm because it

gave us the same test vector defined in [142]. After that, we modified it using an initial and the

final vector as we proposed in Figure 1.2 and Figure 2.8 using C++ program. Then we called

it the proposed Skipjack algorithm. From these two (standard and proposed Skipjack)

algorithms, we calculated their avalanche effects when key was fixed and plaintext was varied,

and vice versa. Skipjack has two inputs (plaintext and key). Skipjack algorithm uses plaintext

of 64 bits long as a first input. We varied each bit from the first to last bit, one at a time to get

better results of the avalanche effect. That is how we vary plaintext according to the definition

of avalanche effect. Again, Skipjack algorithm uses key of 80 bits long as a second input, unlike

any algorithm defined above. We varied each bit from the first to last bit, one at a time to get

better results of the avalanche effect. That is how we vary the key according to the definition

of avalanche effect. We even calculated their speeds when key was fixed and plaintext was

varied, and vice versa. We finally had four codes of Skipjack: (1) Standard Skipjack when key

varies, (2) Standard Skipjack when plaintext varies, (3) Proposed Skipjack when key varies

and (4) Proposed Skipjack when plaintext varies. Below (in Figure 3.42 to Figure 3.45) we

present the executable simulation screenshots of four different Skipjack algorithms mentioned

above. Simulation of avalanche effect on standard Skipjack was conducted when plaintext was

varied. Figure 3.42 depicts the results of 48.7793% of avalanche effect when plaintext of

standard Skipjack was varied.

70

Figure 3.42: Simulation of avalanche effect on standard Skipjack when plaintext is varied.

Simulation of avalanche effect on proposed Skipjack was conducted when plaintext was varied.

Figure 3.43 depicts the results of 49.2188% of avalanche effect when plaintext of proposed

Skipjack was varied.

Figure 3.43: Simulation of avalanche effect on proposed Skipjack when plaintext is varied.

71

Simulation of avalanche effect on standard Skipjack was conducted when key was varied.

Figure 3.44 depicts the results of 62.5732% of avalanche effect when key of standard Skipjack

was varied.

Figure 3.44: Simulation of avalanche effect on standard Skipjack when key is varied.

Simulation of avalanche effect on proposed Skipjack was conducted when key was varied.

Figure 3.45 depicts the results of 61.6211% of avalanche effect when key of proposed Skipjack

was varied.

Figure 3.45: Simulation of avalanche effect on proposed Skipjack when key is varied.

72

3.4. Chapter Summary

In this chapter we presented the different methods that were used for the study, like source of

initial and final vectors, PI methodology, methodology of study based on avalanche effect, flow

chart of avalanche effect, research design, experimental procedures and finally simulation

screenshots of all ten different algorithms when avalanche affect was tested using C++

programming. In the next chapter we will analyze and discuss the results.

73

CHAPTER 4: RESULTS DISCUSSION AND ANALYSIS

4.1 Introduction

As we mentioned earlier the avalanche effect is a desirable property of cryptographic

algorithms, if input is changed slightly the output must change excessively [143], [6]. One main

reason why the avalanche effect is necessary is that by flipping only one bit of input, if there is

large change in the output, and then this shows that it is harder to perform an attack (intrusion

or hacking) on the cryptographic algorithm [6]. Oppenheim et al [144] indicated that an

algorithm with high avalanche effect is a strong algorithm.

The other two main desirable properties (except the avalanche effect) that differentiates one

encryption algorithm from another is its time and speed to encrypt data [145]. We also

measured time and speed during the avalanche process. We calculated the time taken to

perform avalanche effect on each and every algorithm. The speed of algorithm was calculated

as follows: To start with, if the avalanche effect is calculated when the plaintext is varied, and

given that the size of the plaintext is 128 bits (for example), then flipping one bit from left to

right until to the end of 128 bits means that the encryption process is conducted 128 times. This

simply means that 128 x 128 = 16384 bits were encrypted during the avalanche effect. In order

to calculate the speed we used the equation 3.2.

As a preamble, and essential to this study, an algorithm is standard if it is not modified

anywhere by us in this study. It is taken as it is and analysed as it is from their designers. When

we say proposed algorithm, we mean we modified the standard algorithm using the proposed

method of intruducing the initial and final vectors on the standard algorithm. See Figure 3.1

and Figure 3.2 for more explanation.

74

4.2 Results and analysis

4.2.1. Results 1: The Avalanche Effect on AES

From Table 4.1 and Figure 4.1 when the plaintext was varied the proposed AES showed low

avalanche effect as compared to the standard AES. Then standard AES performed better in

terms of the avalanche effect when the plaintext was varied. Given our hypothesis (H1), one

can easily conclude that the AES algorithm performed as per our expectation concerning the

needed avalanche effect. From Table 4.1 the standard AES algorithm has an avalanche effect,

which is improved than the proposed AES algorithm. Standard AES algorithm has 49.7925 %

whereas proposed AES algorithm has 49.6033%. From Table 4.1 standard AES algorithm is

slow compared to proposed AES algorithm. Standard AES takes 0.2286 seconds to encrypt

whereas proposed AES takes 02244 seconds to encrypt.

Table 4.1: Results of standard and proposed AES when plaintext was varied.

Algorithm Initial

vector

Final

vector

Avalanche

effect

Time taken to finish

avalanche effect

Speed taken to finish

avalanche effect

STANDARD

AES

NO NO 49.7925 % 0.2286 sec 71671,0411 bit/sec

PROPOSED

AES

YES YES 49.6033% 0.2244 sec 73012,4777 bit/sec

75

From Figure 4.1 the standard AES algorithm has an avalanche effect, which is improved than

the proposed AES algorithm. Standard AES algorithm has 49.7925% whereas proposed AES

algorithm has 49.6033%. When plaintext was varied.

Figure 4.1: Results of avalanche effect on AES when plaintext was varied.

From Table 4.1 and Figure 4.2, the proposed AES was faster than the standard AES. IoT uses

standard AES to secure its sensors and contactless smart cards. Within these domains, the

proposed algorithm of AES performed better and it could be suitable for applications such as

sensors and contactless smart cards of IoT when speed is considered. From 4.2, speed of

standard AES is 71671, 0411 bit/sec, whereas of the proposed AES algorithm is 73012, 4777

bit/sec.

76

Figure 4.2: Results of speed taken on AES when plaintext was varied.

From Table 4.2 and Figure 4.3, the proposed algorithm managed to increase the avalanche

effect of standard AES algorithm key was varied, that is from 49.0600% up to 49.9300 % by

using the proposed method. This means that the modified (proposed) AES can replace the

standard AES because of its improved avalanche effect if the user wants to vary the key. From

Table 4.2 the standard AES algorithm has an avalanche effect which is low than the proposed

AES algorithm. Standard AES algorithm has 49.0662% whereas proposed AES algorithm has

49.9390%. From Table 4.2 standard AES algorithm is fast compared to proposed AES

algorithm. Standard AES takes 0.1158 seconds to encrypt whereas proposed AES takes 0.1180

seconds to encrypt.

77

Table 4.2: Results of standard and proposed AES when key was varied.

Algorithm Initial

vector

Final

vector

Avalanche

effect

Time taken to finish

avalanche effect

Speed taken to finish

avalanche effect

STANDARD

AES

NO NO 49.0662% 0.1158 sec 141485.3195 bit/sec

PROPOSED

AES

YES YES 49.9390% 0.118 sec 138847,4576 bits/sec

From Figure 4.3 the standard AES algorithm has an avalanche effect which is low than the

proposed AES algorithm. Standard AES algorithm has 49.0662% whereas proposed AES

algorithm has 49.9390%. When key was varied.

Figure 4.3: Results of avalanche effect on AES when key was varied.

From Table 4.2 and Figure 4.4 when the key was varied the proposed AES was slower in terms

of speed. Then standard AES was still the best in terms of speed when the key was varied. In

terms of speed, the standard AES worked better on IoT when the user varies the key. From

78

Figure 4.4, the speed of standard AES is 141485.3195 bit/sec, whereas of proposed AES is

138847,4576 bits/sec.

Figure 4.4: Results of speed taken on AES when key was varied.

4.2.2. Results 2: The Avalanche Effect on Blowfish

From Table 4.3 and Figure 4.5 it shows that when the plaintext was varied the proposed

Blowfish algorithm showed a low avalanche effect compared to the standard Blowfish. This

showed that the standard Blowfish was still the best in terms of the avalanche effect when the

plaintext was varied. Given the above scenario, it would not be necessary to replace the

standard Blowfish algorithm with the proposed one, especially if the user wants an algorithm,

which has an improved avalanche effect when plaintext is varied. From Table 4.3 the standard

Blowfish algorithm has an avalanche effect, which is improved than the proposed Blowfish

algorithm. Standard Blowfish algorithm has 50.5615% whereas proposed Blowfish algorithm

has 48.3398%. From Table 4.3 standard Blowfish algorithm is slow compared to proposed

Blowfish algorithm. Standard Blowfish takes 0.0614 seconds to encrypt whereas proposed

Blowfish takes 0.0611 seconds to encrypt.

79

Table 4.3: Results of standard and proposed Blowfish when plaintext was varied.

Algorithm Initial

vector

Final

vector

Avalanche

effect

Time taken to finish

avalanche effect

Speed taken to finish

avalanche effect

STANDARD

BLOWFISH

NO NO 50.5615% 0.0614 sec 66699,2347 bit/sec

PROPOSED

BLOWFISH

YES YES 48.3398% 0.0611sec 67037,6432 bit/sec

From Figure 4.5 the standard Blowfish algorithm has an avalanche effect, which is improved

than the proposed Blowfish algorithm. Standard Blowfish algorithm has 50.5615% whereas

proposed Blowfish algorithm has 48.3398%. When plaintext was varied.

Figure 4.5: Results of avalanche effect on Blowfish when plaintext was varied.

From Table 4.3 and Figure 4.6, the proposed Blowfish was faster than the standard Blowfish.

IoT uses the standard Blowfish to secure its applications and network layers. This means that

if any user wants to vary plaintext and secure IoT’s applications and network layers, and wants

to use a fast algorithm like Blowfish, the proposed Blowfish algorithm is an appropriate one.

80

From Figure 4.6, speed of standard Blowfish is 66699,2347 bit/sec, whereas of proposed

Blowfish is 67037,6432 bit/sec.

Figure 4.6: Results of speed taken on Blowfish when plaintext was varied.

From Table 4.4 and Figure 4.7, when the key was varied the proposed Blowfish had a low

avalanche effect as compared to the standard Blowfish. Then standard Blowfish is still the best

in terms of the avalanche effect if plaintext is varied.in this regard, there was no need to replace

standard Blowfish algorithms from IoT if the user wants an algorithm that has an improved

avalanche effect when plaintext is varied. From Table 4.4 the standard Blowfish algorithm has

an avalanche effect, which is improved than the proposed Blowfish algorithm. Standard

Blowfish algorithm has 50.4517% whereas proposed Blowfish algorithm has 49.9878%. From

Table 4.4 standard Blowfish algorithm took exact same time as the proposed Blowfish

algorithm took during encryption. They both took 0.1233 seconds to encrypt.

81

Table 4.4: Results of standard and proposed Blowfish when key was varied.

Algorithm Initial

vector

Final

vector

Avalanche

effect

Time taken to finish

avalanche effect

Speed taken to finish

avalanche effect

STANDARD

BLOWFISH

NO NO 50.4517% 0.1233 sec 132879,1565 bits/sec

PROPOSED

BLOWFISH

YES YES 49.9878% 0.1233 sec 132879,1565 bits/sec

From Figure 4.7 the standard Blowfish algorithm has an avalanche effect, which is improved

than the proposed Blowfish algorithm. Standard Blowfish algorithm has 50.4517% whereas

proposed Blowfish algorithm has 49.9878%. When key was varied.

Figure 4.7: Results of avalanche effect on Blowfish when key was varied.

From Table 4.4 and Figure 4.8 and from our experiment the speed and time of proposed and

standard Blowfish algorithm were found to be equal when key was varied. It does not matter

to choose which one between the two if the user wants algorithm like Blowfish with an

82

improved speed when key varies. Both standard and proposed Blowfish algorithms has the

same speed of 132879,1565 bits/sec.

Figure 4.8: Results of speed taken on Blowfish when key was varied.

4.2.3 Results 3: The Avalanche Effect on Camellia

From Table 4.5 and Figure 4.9, the proposed Camellia algorithm manged to increase the

avalanche effect of standard Camellia algorithm when plaintext was varied. That is from 49.5%

up to 50.1000% by using the proposed method. This means that our modified (proposed)

Camellia algorithm can replace the standard Camellia algorithm when one wants to choose

between the two algorithms because it has an improved avalanche effect when plaintext varies.

We suggested that instead of using standard Camellia algorithm to secure IoT’s protocols, the

proposed Camellia algorithm could replace the standard Camellia algorithm, to get high

security on IoT’s protocols if plaintext varies. From Table 4.5 the standard Camellia algorithm

has an avalanche effect which is low than the proposed Camellia algorithm. Standard Camellia

algorithm has 49.4690% whereas proposed Camellia algorithm has 50.0977%. From Table 4.5

standard Camellia algorithm is slow compared to proposed Camellia algorithm. Standard

Camellia takes 0.1576 seconds to encrypt whereas proposed Camellia takes 0.1217 seconds to

encrypt.

83

Table 4.5: Results of standard and proposed Camellia when plaintext was varied.

Algorithm Initial

vector

Final

vector

Avalanche

effect

Time taken to finish

avalanche effect

Speed taken to finish

avalanche effect

STANDARD

CAMELLIA

NO NO 49.4690% 0.1576 sec 103959,3909 bits/sec

PROPOSED

CAMELLIA

YES YES 50.0977% 0.1217sec 134626,1289 bits/sec

From Figure 4.9 the standard Camellia algorithm has an avalanche effect which is low than

the proposed Camellia algorithm. Standard Camellia algorithm has 49.4690% whereas

proposed Camellia algorithm has 50.0977%. When plaintext was varied.

Figure 4.9: Results of avalanche effect on Camellia when plaintext was varied.

From Table 4.5 and Figure 4.10, the proposed Camellia algorithm was faster than the standard

Camellia algorithm. IoT uses standard Camellia algorithm to secure its data and information.

In this situation, users who want to vary plaintext and encrypt data and information of IoT in

high speed then he/she could use the proposed algorithm as it gives an improved encryption

84

speed. From Figure 4.10, speed of standard Camellia is 103959,3909 bits/sec, whereas of

proposed Camellia is 134626, 1289 bits/sec.

Figure 4.10: Results of speed taken on Camellia when plaintext was varied.

From Table 4.6 and Figure 4.11, the proposed Camellia algorithm showed an improved

avalanche effect compare to standard one. The avalanche effect was increased from 49.6094%

up to 49.8983% when the proposed method was used. This means that the proposed Camellia

algorithm could be used in place of standard Camellia algorithm if there is a need to have an

algorithm with an improved avalanche effect in line with the suggestions of [143], [146]. We

suggested that instead of using standard Camellia algorithm to secure IoT’s protocols when

key varies, then the proposed Camellia algorithm could be used to secure IoT’s protocols. From

Table 4.6 the standard Camellia algorithm has an avalanche effect which is low than the

proposed Camellia algorithm. Standard Camellia algorithm has 49.6094% whereas proposed

Camellia algorithm has 49.8983%. From Table 4.6 standard Camellia algorithm is fast

compared to proposed Camellia algorithm. Standard Camellia takes 0.1829 seconds to encrypt

whereas proposed Camellia takes 0.1859 seconds to encrypt.

85

Table 4.6: Results of standard and proposed Camellia when key was varied.

Algorithm Initial

vector

Final

vector

Avalanche

effect

Time taken to finish

avalanche effect

Speed taken to finish

avalanche effect

STANDARD

CAMELLIA

NO NO 49.6094% 0.1829 sec 201552,7612 bits/sec

PROPOSED

CAMELLIA

YES YES 49.8983% 0.1859 sec 198300,1614 bits/sec

From Figure 4.11 the standard Camellia algorithm has an avalanche effect which is low than

the proposed Camellia algorithm. Standard Camellia algorithm has 49.6094% whereas

proposed Camellia algorithm has 49.8983%. When key was varied.

Figure 4.11: Results of avalanche effect on Camellia when key was varied.

From Table 4.6 and Figure 4.12 showed that the proposed algorithm showed slowness when

the key was varied. In this case, it was observed that the standard Camellia algorithm was the

best in terms of speed when the key was varied. Given this situation, it is therefore not

necessary to use the proposed Camellia algorithm on IoT if one wants a fast algorithm when

86

key is varied. From Figure 4.12, speed of standard Camellia is 201552,7612 bits/sec, whereas

of proposed Camellia is 198300,1614 bits/sec.

Figure 4.12: Results of speed taken on Camellia when key was varied.

4.2.4. Results 4: The Avalanche Effect on Cast-128.

From Table 4.7 and Figure 4.13, the proposed Cast-128 algorithm yielded an improved

avalanche compared standard Cast-128 algorithm when plaintext varied. That is the avalanche

effect was increased from 48.8281 % up to 49.3164% by using the proposed method. This

means that our modified (proposed) Cast-128 algorithm can replace the standard Cast-128

algorithm when one wants to choose between the two algorithms because it has an improved

avalanche effect. This is according to [143], [6]. IoT uses standard Cast-128 algorithm to secure

its prototypes, then we recommend that it should be replace by the proposed Cast-128 algorithm

to give high security of IoT’s prototypes. From Table 4.7 the standard Cast-128 algorithm has

an avalanche effect which is low than the proposed Cast-128 algorithm. Standard Cast-128

algorithm has 48.8281% whereas proposed Cast-128 algorithm has 49.3164%. From Table 4.7

standard Cast-128 algorithm is fast compared to proposed Cast-128 algorithm. Standard Cast-

128 took 0.0630 seconds to encrypt whereas proposed Cast-128 takes 0.0960 seconds to

encrypt.

87

Table 4.7: Results of standard and proposed Cast-128 when plaintext was varied.

Algorithm Initial

vector

Final

vector

Avalanche

effect

Time taken to finish

avalanche effect

Speed taken to finish

avalanche effect

STANDARD

CAST-128

NO NO 48.8281%

0.06299 sec 260104,7785 bits/sec

PROPOSED

CAST-128

YES YES 49.3164% 0.0960 sec 170666,6667 bits/sec

From Figure 4.13 the standard Cast-128 algorithm has an avalanche effect which is low than

the proposed Cast-128 algorithm. Standard Cast-128 algorithm has 48.8281% whereas

proposed Cast-128 algorithm has 49.3164%. When plaintext was varied.

Figure 4.13: Results of avalanche effect on Cast-128 when plaintext was varied.

From Table 4.7 and Figure 4.14 when the plaintext is varied the proposed Cast-128 is slow.

Then standard Cast-128 is still best in speed if the plaintext is varied. Therefore, there is no

need to replace it for IoT if the user wants an algorithm, which is fast when plaintext varied.

88

From Figure 4.14, speed of standard Cast-128 is 260104,7785 bits/sec, whereas of proposed

Cast-128 is 170666,6667 bits/sec.

Figure 4.14: Results of speed taken on Cast-128 when plaintext was varied.

From Table 4.8 and Figure 4.15, the proposed Cast-128 yielded an improved avalanche effect

compared to standard Cast-128 algorithm when key varied. The avalanche effect was increased

from 50.1221% up to 50.1781% by using the proposed method. We recommend that the

proposed Cast-128 algorithm can replace the standard Cast-128 algorithm when one wants to

choose between the two, because it has an improved avalanche effect according to [143]. IoT

uses standard Cast-128 algorithm to secure its prototypes. We recommend that the proposed

Cast-128 algorithm can be used to secure IoT’s prototypes when key varies. From Table 4.8

the standard Cast-128 algorithm has an avalanche effect which is low than the proposed Cast-

128 algorithm. Standard Cast-128 algorithm has 50.1221% whereas proposed Cast-128

algorithm has 50.1781%. From Table 4.8 standard Cast-128 algorithm is fast compared to

proposed Cast-128 algorithm. Standard Cast-128 takes 0.1239 seconds to encrypt whereas

proposed Cast-128 takes 0.1251 seconds to encrypt.

89

Table 4.8: Results of standard and proposed Cast-128 when key was varied.

Algorithm Initial

vector

Final

vector

Avalanche

effect

Time taken to finish

avalanche effect

Speed taken to finish

avalanche effect

STANDARD

CAST-128

NO NO 50.1221%

0.1239 sec 132235,6740 bits/sec

PROPOSED

CAST-128

YES YES 50.1781% 0.1251 sec 130967,2262 bits/sec

From Figure 4.15 the standard Cast-128 algorithm has an avalanche effect which is low than

the proposed Cast-128 algorithm. Standard Cast-128 algorithm has 50.1221% whereas

proposed Cast-128 algorithm has 50.1781%. When key was varied.

Figure 4.15: Results of avalanche effect on Cast-128 when key was varied.

From Table 4.8 and Figure 4.16 when the key is varied the proposed Cast-128 is slow. Then

standard Cast-128 is still best in speed if the key is varied. Therefore, there is no need to replace

it for IoT if the user wants an algorithm that is fast when key varies. From Figure 4.16, speed

of standard Cast-128 is 132235,6740 bits/sec, whereas of proposed Cast-128 is 130967,2262

bits/sec.

90

Figure 4.16: Results of speed taken on Cast-128 when key was varied.

4.2.5. Results 5 5: The Avalanche Effect on Clefia

From Table 4.9 and Figure 4.17 when the plaintext is varied the proposed Clefia yields a low

avalanche effect compared to standard Clefia. Then standard Clefia is still best in avalanche

effect if the plaintext is varied. Therefore, there is no need to replace it for IoT if the user wants

an algorithm that has an improved avalanche effect when plaintext is varied. From Table 4.9

the standard Clefia algorithm has an avalanche effect, which is improved than the proposed

Clefia algorithm. Standard Clefia algorithm has 50.2808% whereas proposed Clefia algorithm

has 49.8230%. From Table 4.9 standard Clefia algorithm is fast compared to proposed Clefia

algorithm. Standard Clefia takes 0.1177 seconds to encrypt whereas proposed Clefia takes

0.1218 seconds to encrypt.

91

Table 4.9: Results of standard and proposed Clefia when plaintext was varied.

Algorithm Initial

vector

Final

vector

Avalanche

effect

Time taken to finish

avalanche effect

Speed taken to finish

avalanche effect

STANDARD

CLEFIA

NO NO 50.2808% 0.1177 sec 139201,3594 bits/sec

PROPOSED

CLEFIA

YES YES 49.8230% 0.1218sec 134515,5994 bits/sec

From Figure 4.17 the standard Clefia algorithm has an avalanche effect, which is improved

than the proposed Clefia algorithm. Standard Clefia algorithm has 50.2808% whereas proposed

Clefia algorithm has 49.8230%. When plaintext was varied.

Figure 4.17: Results of avalanche effect on Clefia when plaintext was varied.

From Table 4.9 and Figure 4.18, when the plaintext is varied the proposed Clefia is slow. Then

standard Clefia is still best in speed if the plaintext is varied. Therefore, there is no need to

replace it for IoT if the user wants an algorithm that is fast when plaintext varied. From Figure

4.18, speed of standard Clefia is 139201,3594 bits/sec, whereas of proposed Clefia is

134515,5994 bits/sec.

92

Figure 4.18: Results of speed taken on Clefia when plaintext was varied

From Table 4.10 and Figure 4.19, the proposed Clefia algorithm yielded an improved

avalanche effect compared to standard Clefia algorithm when key varied. The avalanche effect

increased from 49.9500% up to 50.2000 % by using the proposed method. We recommend that

the proposed Clefia algorithm can replace the standard Clefia algorithm when one wants to

choose between the two, because it has an improved avalanche effect. This means the proposed

Clefia algorithm is more secure than standard Clefia algorithm [143], [6]. IoT uses Clefia to

secure its health-care devices. Then it is suggested that proposed Clefia algorithm should be

used to secure IoT’s health-care devices. From Table 4.10 the standard Clefia algorithm has an

avalanche effect which is low than the proposed Clefia algorithm. Standard Clefia algorithm

has 49.9023% whereas proposed Clefia algorithm has 50.1587%. From Table 4.10 standard

Clefia algorithm is slow compared to proposed Clefia algorithm. Standard Clefia takes 0.1455

seconds to encrypt whereas proposed Clefia takes 0.1219 seconds to encrypt.

93

Table 4.10: Results of standard and proposed Clefia when key was varied.

Algorithm Initial

vector

Final

vector

Avalanche

effect

Time taken to finish

avalanche effect

Speed taken to finish

avalanche effect

STANDARD

CLEFIA

NO NO 49.9023% 0.1455 sec 112604,8110 bits/sec

PROPOSED

CLEFIA

YES YES 50.1587% 0.1219 sec 134405,2502 bits/sec

From Figure 4.19 the standard Clefia algorithm has an avalanche effect which is low than the

proposed Clefia algorithm. Standard Clefia algorithm has 49.9023% whereas proposed Clefia

algorithm has 50.1586%. When key was varied.

Figure 4.19: Results of avalanche effect on Clefia when key was varied.

From Table 4.10 and Figure 4.20, the proposed Clefia algorithm is faster than the standard

Clefia algorithm. IoT uses standard Clefia secure its health-care devices. Then if a user want

to vary key and encrypt or secure health-care devices on IoT, and wants to use fast algorithm

like Clefia algorithm, then the proposed Clefia algorithm is a better option than standard one.

94

From Figure 4.20, speed of standard Clefia is 112604,8110 bits/sec, whereas of proposed Clefia

is 134405,2502 bits/sec.

Figure 4.20: Results of speed taken on Clefia when key was varied.

4.2.6. Results 6: The Avalanche Effect on DES

From Table 4.11 and Figure 4.21, the proposed DES algorithm yielded low avalanche effect

compared to standard DES algorithm when plaintext varied. Then standard DES algorithm is

still best in avalanche effect if the plaintext is varied. Therefore, there is no need to replace it

for IoT if the user wants an algorithm that has an improved avalanche effect when plaintext is

varied. From Table 4.11 the standard DES algorithm has an avalanche effect, which is

improved than the proposed DES algorithm. Standard DES algorithm has 62.8660% whereas

proposed DES algorithm has 58.8379%. From Table 4.11 standard DES algorithm is slow

compared to proposed DES algorithm. Standard DES takes 0.0585 seconds to encrypt whereas

proposed DES takes 0.05773 seconds to encrypt.

95

Table 4.11: Results of standard and proposed DES when plaintext was varied.

Algorithm Initial

vector

Final

vector

Avalanche

effect

Time taken to finish

avalanche effect

Speed taken to finish

avalanche effect

STANDARD

DES

NO NO 62.8662% 0.0585 sec 70017,0940 bits/sec

PROPOSED

DES

YES YES 58.8379% 0.05773 sec 70950,9787 bits/sec

From Table 4.21 the standard DES algorithm has an avalanche effect, which is improved than

the proposed DES algorithm. Standard DES algorithm has 62.8662% whereas proposed DES

algorithm has 58.8379%. When plaintext was varied.

Figure 4.21: Results of avalanche effect on DES when plaintext was varied.

96

From Table 4.11 and Figure 4.22, the proposed DES algorithm is faster than the standard DES

algorithm. IoT uses standard DES algorithm to secure its prototypes and many devices. Then

if a user want to vary plaintext and encrypt IoT’s prototypes and devices, and wants to use fast

algorithm like DES, then the proposed DES is a better option than standard one. From Figure

4.22, speed of standard DES is 70017,0940 bits/sec, whereas of proposed DES is 70950,9787

bits/sec.

Figure 4.22: Results of speed taken on DES when plaintext was varied.

From Table 4.12 and Figure 4.23, the proposed DES algorithm yielded an improved avalanche

effect compared to standard DES algorithm when key varied. The avalanche effect was

increased from 43.8721% up to 44.2139% by using the proposed method. We recommend that

the proposed DES algorithm replace the standard DES algorithm when one wants to choose

between the two, because it has an improved avalanche effect according to [143], [6]. Standard

DES algorithm is mostly used on IoT. This standard DES algorithm should be replaced from

IoT because it has low avalanche effect compared to the proposed DES algorithm when the

key varies. From Table 4.12 the standard DES algorithm has an avalanche effect which is low

than the proposed DES algorithm. Standard DES algorithm has 43.8721% whereas proposed

DES algorithm has 44.2139%. From Table 4.12 standard DES algorithm is fast compared to

proposed DES algorithm. Standard DES takes 0.0616 seconds to encrypt whereas proposed

DES takes 0.0635 seconds to encrypt.

97

Table 4.12: Results of standard and proposed DES when key was varied.

Algorithm Initial

vector

Final

vector

Avalanche

effect

Time taken to finish

avalanche effect

Speed taken to finish

avalanche effect

STANDARD

DES

NO NO 43.8721%

0.06162 sec 66471,9247 bits/sec

PROPOSED

DES

YES YES 44.2139% 0.0635 sec 64503,9370 bits/sec

From Table 4.23 the standard DES algorithm has an avalanche effect which is low than the

proposed DES algorithm. Standard DES algorithm has 43.8721% whereas proposed DES

algorithm has 44.2139%. When key was varied.

Figure 4.23: Results of avalanche effect on DES when key was varied.

From Table 4.12 and Figure 4.24, when the key is varied the proposed DES is slow. Then

standard DES is still best in speed if the key is varied. Therefore, there is no need to replace it

for IoT if the user wants an algorithm, which is faster when key varies. From Figure 4.24, speed

of standard DES is 66471,9247 bits/sec, whereas of proposed DES is 64503,9370 bits/sec.

98

Figure 4.24: Results of speed taken on DES when key was varied.

4.2.7. Results 7: The Avalanche Effect on MMB

From Table 4.13 and Figure 4.25, when the plaintext is varied the proposed MMB algorithm

has low avalanche effect compared to standard MMB algorithm. Then standard MMB is still

best in avalanche effect if the plaintext is varied. Therefore, there is no need to replace it for

IoT if the user wants an algorithm that has an improved avalanche effect when plaintext is

varied. From Table 4.13 the standard MMB algorithm has an avalanche effect, which is

improved than the proposed MMB algorithm. Standard MMB algorithm has 49.7742%

whereas proposed MMB algorithm has 49.7498%. From Table 4.13 standard MMB algorithm

is slow compared to proposed MMB algorithm. Standard MMB takes 0.2415 seconds to

encrypt whereas proposed MMB takes 0.2320 seconds to encrypt.

99

Table 4.13: Results of standard and proposed MMB when plaintext was varied.

Algorithm Initial

vector

Final

vector

Avalanche

effect

Time taken to finish

avalanche effect

Speed taken to finish

avalanche effect

STANDARD

MMB

NO NO 49.7742% 0.2415 sec 67842,6501 bits/sec

PROPOSED

MMB

YES YES 49.7498% 0.232 sec 70620,6897 bits/sec

From Table 4.25 the standard MMB algorithm has an avalanche effect, which is improved

than the proposed MMB algorithm. Standard MMB algorithm has 49.7742% whereas

proposed MMB algorithm has 49.7498%. When plaintext was varied.

Figure 4.25: Results of avalanche effect on MMB when plaintext was varied.

100

From Table 4.13 and Figure 4.26, the proposed MMB algorithm is faster than the standard

MMB algorithm. IoT uses standard MMB algorithm to secure its software applications. Then

if a user want to vary plaintext and encrypt IoT’s software applications and wants to use fast

algorithm like MMB, then the proposed MMB algorithm is the best to choose. From Figure

4.26, speed of standard MMB is 67842,6501 bits/sec, whereas of proposed MMB is

70620,6897 bits/sec.

Figure 4.26: Results of speed taken on MMB when plaintext was varied.

From Table 4.14 and Figure 4.27 when the key is varied the proposed MMB algorithm has low

avalanche effect compared to standard MMB algorithm. Then standard MMB algorithm is still

best in avalanche effect if the plaintext is varied. Therefore, there is no need to replace it for

IoT if the user wants an algorithm that has an improved avalanche effect when plaintext is

varied. From Table 4.14 the standard MMB algorithm has an avalanche effect, which is

improved than the proposed MMB algorithm. Standard MMB algorithm has 49.6765%

whereas proposed MMB algorithm has 49.6399%. From Table 4.14 both standard and

proposed MMB algorithm took exact same time to encrypt. Both standard and proposed MMB

took 0.1216 second to encrypt.

101

Table 4.14: Results of standard and proposed MMB when key was varied.

Algorithm Initial

vector

Final

vector

Avalanche

effect

Time taken to finish

avalanche effect

Speed taken to finish

avalanche effect

STANDARD

MMB

NO NO 49.6765%

0.1216 sec 134736,8421 bits/sec

PROPOSED

MMB

YES YES 49.6399% 0.1216 sec 134736,8421 bits/sec

From Table 4.27 the standard MMB algorithm has an avalanche effect which is improved

than the proposed MMB algorithm. Standard MMB algorithm has 49.6765% whereas

proposed MMB algorithm has 49.6399%. When key was varied.

Figure 4.27: Results of avalanche effect on MMB when key was varied.

From Table 4.14 and Figure 4.28, both proposed and standard MMB algorithms yielded equal

speed and time when key varied. Therefore, user can pick one between the two it does not

matter. Only if a user focus on speed and when the key varies. Standard and proposed MMB

has the same of 134736,8421 bits/sec.

102

Figure 4.28: Results of speed taken on MMB when key was varied.

4.2.8. Results 8: The Avalanche Effect on RC5

From Table 4.15 and Figure 4.29, the proposed RC5 algorithm yielded an improved avalanche

effect compared to standard RC5 algorithm when plaintext varied. The avalanche effect

increased from 76.2% up to 76.9 % after the proposed method was implemented. This means

that the proposed RC5 algorithm can replace the standard RC5 algorithm when one wants to

choose between the two because it has an improved avalanche effect. Algorithm that has an

improved avalanche effect has high security [143], [6]. IoT uses standard RC5 algorithm to

secure its Mica2 hardware (base station of IoT). It is recommended to use the proposed RC5

algorithm from IoT’s Mica2 hardware, only when plaintext varies. We suggest that the

proposed one have to be used on Mica2 hardware because it has an improved avalanche effect.

From Table 4.15 the standard RC5 algorithm has an avalanche effect which is low than the

proposed RC5 algorithm. Standard RC5 algorithm has 76.1719% whereas proposed RC5

algorithm has 76.9043%. From Table 4.15 standard RC5 algorithm is slow compared to

proposed RC5 algorithm. Standard RC5 takes 0.0606 seconds to encrypt whereas proposed

RC5 takes 0.0599 seconds to encrypt.

103

Table 4.15: Results of standard and proposed RC5 when plaintext was varied.

Algorithm Initial

vector

Final

vector

Avalanche

effect

Time taken to finish

avalanche effect

Speed taken to finish

avalanche effect

STANDARD

RC5

NO NO 76.1719% 0.0606 sec 68266,6667 bits/sec

PROPOSED

RC5

YES YES 76.9043% 0.0599 sec 68380,6344 bits/sec

From Figure 4.29 the standard RC5 algorithm has an avalanche effect which is low than the

proposed RC5 algorithm. Standard RC5 algorithm has 76.1719% whereas proposed RC5

algorithm has 76.9043%. When plaintext was varied.

Figure 4.29: Results of avalanche effect on RC5 when plaintext was varied.

From Table 4.15 and Figure 4.30, the proposed RC5 algorithm is faster than the standard RC5

algorithm. IoT uses standard RC5 algorithm to encrypt its Mica2 hardware. Then if a user want

to vary plaintext and encrypt the IoT’s Mica2 hardware and wants to use fast algorithm like

104

RC5, then the proposed RC5 is the best to choose. From Figure 4.30, speed of standard RC5 is

68266,6667 bits/sec, whereas of proposed RC5 is 68380,6344 bits/sec.

Figure 4.30: Results of speed taken on RC5 when plaintext was varied.

From Table 4.16 and Figure 4.31, the proposed RC5 algorithm yielded an improved avalanche

effect compared to standard RC5 algorithm when key varied. The avalanche effect was

increased from 49.1821% up to 49.7923 % by using the proposed method. We recommend that

the proposed RC5 algorithm can replace the standard RC5 algorithms when one wants to

choose between the two, because it has an improved avalanche effect, only when the key varies.

IoT should use the proposed RC5 algorithm to secure its Mica2 hardware only when the key is

varied. Then we suggested that the standard RC5 algorithm should be removed from Mica2

hardware and the proposed RC5 be used to provide enhanced security as compared to the

standard one on Mica2 hardware. From Table 4.16 the standard RC5 algorithm has an

avalanche effect which is low than the proposed RC5 algorithm. Standard RC5 algorithm has

49.1821% whereas proposed RC5 algorithm has 49.7923%. From Table 4.16 standard RC5

algorithm is fast compared to proposed RC5 algorithm. Standard RC5 takes 0.1165 seconds to

encrypt whereas proposed RC5 takes 0.1325 seconds to encrypt.

105

Table 4.16: Results of standard and proposed RC5 when key was varied.

Algorithm Initial

vector

Final

vector

Avalanche

effect

Time taken to finish

avalanche effect

Speed taken to finish

avalanche effect

STANDARD

RC5

NO NO 49.1821%

0.1165 sec 140635,1931 bits/sec

PROPOSED

RC5

YES YES 49.7923% 0.1325 sec 123652,8302 bits/sec

From Figure 4.31 the standard RC5 algorithm has an avalanche effect which is low than the

proposed RC5 algorithm. Standard RC5 algorithm has 49.1821% whereas proposed RC5

algorithm has 49.7923%. When key was varied.

Figure 4.31: Results of avalanche effect on RC5 when key was varied.

From Table 4.16 and Figure 4.32, when the key is varied the proposed RC5 is slow. Then

standard RC5 is still best in speed if the key is varied. Therefore, there is no need to replace it

for IoT if the user wants an algorithm that is fast when key varies. From Figure 4.32, speed of

standard RC5 is 140635,1931 bits/sec, whereas of proposed RC5 is 123652,8302 bits/sec.

106

Figure 4.32: Results of speed taken on RC5 when key was varied.

4.2.9. Results 9: The Avalanche Effect on Serpent

From Table 4.17 and Figure 4.33, when the plaintext is varied the proposed Serpent algorithm

has low avalanche effect compared to standard Serpent algorithm. Then standard Serpent

algorithm is still best in avalanche effect if the plaintext is varied. Therefore, there is no need

to replace it for IoT if the user wants an algorithm that has an improved avalanche effect when

plaintext is varied. From Table 4.17 the standard Serpent algorithm has an avalanche effect

which is improved than the proposed Serpent algorithm. Standard Serpent algorithm has

50.3845% whereas proposed Serpent algorithm has 49.7986%. From Table 4.17 standard

Serpent algorithm is fast compared to proposed Serpent algorithm. Standard Serpent takes

0.1215 seconds to encrypt whereas proposed Serpent takes 0.1250 seconds to encrypt.

Table 4.17: Results of standard and proposed Serpent when plaintext was varied.

Algorithm Initial

vector

Final

vector

Avalanche

effect

Time taken to finish

avalanche effect

Speed taken to finish

avalanche effect

STANDARD

SERPENT

NO NO 50.3845% 0.1215 sec 134847,7367 bits/sec

PROPOSED

SERPENT

YES YES 49.7986% 0.125 sec 131072,0000 bits/sec

107

From Figure 4.33 the standard Serpent algorithm has an avalanche effect, which is improved

than the proposed Serpent algorithm. Standard Serpent algorithm has 50.3845% whereas

proposed Serpent algorithm has 49.7986%. When plaintext was varied.

Figure 4.33: Results of avalanche effect on Serpent when plaintext was varied.

From Table 4.17 and Figure 4.34, when the plaintext is varied the proposed Serpent is slow.

Then standard Serpent is still best in speed if the plaintext is varied. Therefore, there is no need

to replace it from internet IoT if the user wants an algorithm, which is faster when plaintext

varied. From Figure 4.34, speed of standard Serpent is 134847,7366 bits/sec, whereas of

proposed Serpent is 131072.0000 bits/sec.

108

Figure 4.34: Results of speed taken on Serpent when plaintext was varied.

From Table 4.18 and Figure 4.35, the proposed Serpent algorithm yielded an improved

avalanche effect compare to standard Serpent algorithm when key varied. The avalanche effect

was increased from 49.8656% up to 50.5341% by using the proposed method. We recommend

that the proposed Serpent algorithm can replace the standard Serpent algorithm when one wants

to choose between the two. Algorithm that has an improved avalanche effect has high security

[143], [6]. IoT uses standard Serpent algorithm to secure its sensors. Therefore, the proposed

Serpent algorithm should be used to secure IoT’s sensors, only when the key varies. From

Table 4.18 the standard Serpent algorithm has an avalanche effect which is low than the

proposed Serpent algorithm. Standard Serpent algorithm has 49.8656% whereas proposed

Serpent algorithm has 50.5341%. From Table 4.18 standard Serpent algorithm is fast compared

to proposed Serpent algorithm. Standard Serpent takes 0.2714 seconds to encrypt whereas

proposed Serpent takes 0.2744 seconds to encrypt.

109

Table 4.18: Results of standard and proposed Serpent when key was varied.

Algorithm Initial

vector

Final

vector

Avalanche

effect

Time taken to finish

avalanche effect

Speed taken to finish

avalanche effect

STANDARD

SERPENT

NO NO 49.8657%

0.2714 sec 241473,8394 bits/sec

PROPOSED

SERPENT

YES YES 50.5341% 0.2744 sec 238833,8192 bits/sec

From Figure 4.35 the standard Serpent algorithm has an avalanche effect which is low than

the proposed Serpent algorithm. Standard Serpent algorithm has 49.8657% whereas proposed

Serpent algorithm has 50.5341%. When key was varied.

Figure 4.35: Results of avalanche effect on Serpent when key was varied.

From Table 4.18 and Figure 4.36, when the key is varied the proposed Serpent algorithm is

slow. Then standard Serpent algorithm is still best in speed if the key is varied. Therefore, there

is no need to replace it for IoT if the user wants an algorithm that is fast when key varies. From

Figure 4.36, speed of standard Serpent is 241473,8395 bits/sec, whereas of proposed Serpent

is 238833,8192 bits/sec.

110

Figure 4.36: Results of speed taken on Serpent when key was varied.

4.2.10. Results 10: The Avalanche Effect on Skipjack

From Table 4.19 and Figure 4.37, the proposed Skipjack algorithm yielded an improved

avalanche effect compared to standard Skipjack algorithm when plaintext varied. The

avalanche effect was increased from 48.7793% up to 49.2188% by using the proposed method.

We recommend that the proposed Skipjack algorithm replace the standard Skipjack algorithm

when one wants to choose between the two, because it has an improved avalanche effect.

Algorithm that has an improved avalanche effect has high security [143], [6]. IoT uses standard

Skipjack algorithm to secure its Mica2 hardware. Then standard Skipjack algorithm should be

replaced by the proposed Skipjack algorithm from substation IoT’s Mica2 hardware the

proposed Skipjack has an improved avalanche effect. From Table 4.19 the standard Skipjack

algorithm has an avalanche effect which is low than the proposed Skipjack algorithm. Standard

Skipjack algorithm has 48.7793% whereas proposed Skipjack algorithm has 49.2188%. From

Table 4.19 standard Skipjack algorithm is fast compared to proposed Skipjack algorithm.

Standard Skipjack takes 0.0605 seconds to encrypt whereas proposed Skipjack takes 0.0647

seconds to encrypt.

111

Table 4.19: Results of standard and proposed Skipjack when plaintext was varied.

Algorithm Initial

vector

Final

vector

Avalanche

effect

Time taken to finish

avalanche effect

Speed taken to finish

avalanche effect

STANDARD

SKIPJACK

NO NO 48.7793%

0.0605 sec 67680,1058 bits/sec

PROPOSED

SKIPJACK

YES YES 49.2186% 0.0647 sec 63268,45845 bit/sec

From Figure 4.37 the standard Skipjack algorithm has an avalanche effect which is low than

the proposed Skipjack algorithm. Standard Skipjack algorithm has 48.7793% whereas

proposed Skipjack algorithm has 49.2188%. When plaintext was varied.

Figure 4.37: Results of avalanche effect on Skipjack when plaintext was varied.

From Table 4.19 and Figure 4.38, when the plaintext is varied the proposed Skipjack algorithm

is slow compared to standard Skipjack algorithm. Then standard Skipjack algorithm is still best

in speed if the plaintext is varied. Therefore, there is no need to replace it for IoT if the user

wants an algorithm that is fast when plaintext varied. From Figure 4.38, speed of standard

Skipjack is 67680,1058 bits/sec whereas of proposed Skipjack is 63268,4585 bit/sec.

112

Figure 4.38: Results of speed taken on Skipjack when plaintext was varied.

From Table 4.20 and Figure 4.39, when the key is varied the proposed Skipjack algorithm has

low avalanche effect compared to standard Skipjack algorithm. Then standard Skipjack

algorithm is still the best in avalanche effect if the plaintext is varied. Therefore, there is no

need to replace it for IoT if the user wants an algorithm that has an improved avalanche effect

when plaintext is varied. From Table 4.20 the standard Skipjack algorithm has an avalanche

effect, which is improved than the proposed Skipjack algorithm. Standard Skipjack algorithm

has 62.5732% whereas proposed Skipjack algorithm has 61.6211%. From Table 4.20 standard

Skipjack algorithm is fast compared to proposed Skipjack algorithm. Standard Skipjack takes

0.0744 seconds to encrypt whereas proposed Skipjack takes 0.0758 seconds to encrypt.

Table 4.20: Results of standard and proposed Skipjack when key was varied.

Algorithm Initial

vector

Final

vector

Avalanche

effect

Time taken to finish

avalanche effect

Speed taken to finish

avalanche effect

STANDARD

SKIPJACK

NO NO 62.5732%

0.0744 sec 67680,1058 bits/sec

PROPOSED

SKIPJACK

YES YES 61.6211% 0.0758 sec 63268,4584 bit/sec

113

From Figure 4.39 the standard Skipjack algorithm has an avalanche effect, which is improved

than the proposed Skipjack algorithm. Standard Skipjack algorithm has 62.5732% whereas

proposed Skipjack algorithm has 61.6211%. When key was varied.

Figure 4.39: Results of avalanche effect on Skipjack when key was varied.

From Table 4.20 and Figure 4.40, when the key is varied the proposed Skipjack algorithm is

slow compared to standard Skipjack algorithm. Then standard Skipjack algorithm is still best

in speed if the key is varied. Therefore, there is no need to replace it for IoT if the user wants

an algorithm that is fast when key varies. From Figure 4.40, speed of standard Skipjack is

67680,1058 bits/sec, whereas of proposed Skipjack is 63268,4584 bit/sec.

114

Figure 4.40: Results of speed taken on Skipjack when key was varied.

4.2.11. Results 11: The Speed and Avalanche Effect on All Ten Algorithms

From the Figure 4.41 and Table 4.21, it is clear that the proposed method worked very

sufficiently when we compare all algorithms put on test. We found that with the proposed RC5,

Skipjack, Cast-128 and Camellia algorithms have improved avalanche effect compared their

standard algorithms when plaintext was varied. The proposed RC5 has a value of avalanche

effect of 76.9043%, it is heighted in red on Table 4.21. The proposed Skipjack has a value of

avalanche effect of 49.2188%, also heighted in red on Table 4.21. The proposed Cast-128 has

a value of avalanche effect of 49.3164%, it is heighted in red on Table 4.21. The proposed

Camellia has a value of avalanche effect of 50.0977%, also heighted in red on Table 4.21.

Therefore the proposed RC5, Skipjack, Cast-128 and Camellia algorithms must be selected if

one wants the algorithm with an improved avalanche effect when plaintext is varied compared

to their standard algorithms implemented on IoT. Algorithm that has an improved avalanche

effect has high security [143], [6]. Therefore, the proposed method worked positively according

to our results from Figure 4.41.

115

Table 4.21: Results of avalanche effect of all algorithms tested when plaintext is varied.

Algorithm Tested Avalanche effect of standard

algorithm

Avalanche effect of proposed

algorithm

AES 49.7925 % 49.60327 %

BLOWFISH 50.5615% 48.33984%

CAMELLIA 49.4690% 50.0977%

CAST-128 48.8281% 49.3164%

CLEFIA 50.28076% 49.8230%

DES 62.8662% 58.8379%

MMB 49.7742% 49.7498%

RC5 76.1719% 76.9043%

SERPENT 50.3845% 49.7988%

SKIPJACK 48.77930% 49.21875%

The proposed RC5 has a value of avalanche effect of 76.9043%, is presented graphically on

Figure 4.41. The proposed Skipjack has a value of avalanche effect of 49.2188%, also

heighted in red on Table 4.21. The proposed Cast-128 has a value of avalanche effect of

49.3164%, is presented graphically on Figure 4.41. The proposed Camellia has a value of

avalanche effect of 50.0977%, also heighted in red on Table 4.21.

116

Figure 4.41: Results of avalanche effect of all algorithms tested when plaintext is varied.

From Figure 4.42. The avalanche effect was increased on four algorithms out of ten algorithms

by using the proposed method. This means an increase of 40% of algorithms security is

achieved. Therefore, the proposed method gave us positive results (40%) according to Figure

4.42. Wherever these four standard algorithms are implemented on IoT, therefore the proposed

algorithms should replace them to enhance IoT security.

117

Figure 4.42: Results of Avalanche effect when plaintext was varied.

From the Figure 4.43, it is clear that the proposed method worked very sufficiently when we

compare all algorithms put on test. We found that with the proposed MMB, DES, RC5,

Camellia and AES algorithms were fast algorithms compared to the standard MMB, DES, RC5

Camellia and AES algorithms. Therefore, it is recommended that the proposed MMB, DES,

Camellia and AES algorithms will be used as compared to standard MMB, DES, Camellia or

AES algorithms if one wants an algorithm that has an improved speed when plaintext is varied

[143], [6]. The proposed MMB has a speed of 70620.6897 bits/sec it is heighted in red on Table

4.22. The proposed DES has a speed of 70950.9787 bits/sec also heighted in red on Table 4.22.

The proposed Camellia has a speed of 134626.1298 bits/sec also heighted in red on Table 4.22.

The proposed RC5 has a speed of 68380.6344 bits/sec also heighted in red on Table 4.22. The

proposed AES has a speed of 73012.4777 bits/sec also heighted in red on Table 4.22. Therefore,

the proposed method worked positively according to our results from Figure 4.43. IoT needs

algorithm that is fast to encrypt [145], therefore the proposed MMB, DES, RC5, Camellia and

AES are faster than standard MMB, DES, Camellia and AES when plaintext is varied. The

faster the algorithm, the higher the security [53].

118

Table 4.22: Result of the speeds of all algorithms tested when plaintext was varied.

Algorithm Tested Speed calculated to finish

avalanche effect of standard

algorithm (in bits/sec)

Speed calculated to finish

avalanche effect of proposed

algorithm (in bits/sec)

AES 71671.0411 73012.4777

BLOWFISH 66699.2347 67037.6432

CAMELLIA 103959.3909 134626.1298

CAST-128 260104.7785 170666.6667

CLEFIA 139201.3594 134515.5993

DES 70017.0940 70950.9787

MMB 67842.6501 70620.6897

RC5 68266.66667 68380.6344

SERPENT 134847.7366 131072.0000

SKIPJACK 67680.1058 63268.4584

The proposed MMB has a speed of 70620.6897 bits/sec is presented graphically on Figure

4.43. The proposed DES has a speed of 70950.9787 bits/sec is presented graphically on Figure

4.43. The proposed Camellia has a speed of 134626.12983 bits/sec is presented graphically on

Figure 4.43. The proposed RC5 has a speed of 68380.6344 bits/sec is presented graphically on

Figure 4.43. The proposed AES has a speed of 73012.4777 bits/sec is presented graphically on

Figure 4.43.

119

Figure 4.43: Result of the speeds of all algorithms tested when plaintext was varied.

From the Figure 4.44, it is clear that the proposed method worked very sufficiently when we

compare all algorithms put on test. We found that with the proposed AES, Camellia, Cast-128,

Clefia, DES, RC5 and Serpent algorithms yield an improved avalanche effect algorithm

compared to their standard algorithms. The proposed AES has a value of avalanche effect of

49.9390%, it is heighted in red on Table 4.23. The proposed Camellia has a value of avalanche

effect of 49.9893%, it is heighted in red on Table 4.23. The proposed Cast-128 has a value of

avalanche effect of 50.1709%, also heighted in red on Table 4.23. The proposed Clefia has a

value of avalanche effect of 50.1587%, also heighted in red on Table 4.23. The proposed DES

has a value of avalanche effect of 44.2139%, also heighted in red on Table 4.23. The proposed

RC5 has a value of avalanche effect of 49.7925, also heighted in red on Table 4.23. The

proposed Serpent has a value of avalanche effect of 50.5341%, also heighted in red on Table

4.23. Therefore, it is recommended that the proposed AES, Camellia, Cast-128, Clefia, DES,

RC5 and Serpent algorithms will be used as compared to their standard algorithms if one wants

the algorithms with an improved avalanche effect when key is varied [143], [6]. We managed

to increase the security of seven algorithms out of ten. That is 70%. Therefore, the proposed

method worked positively according to our results from Figure 4.44.

120

Table 4.23: Results of avalanche effect of all algorithms tested when key was varied.

Algorithm Tested Avalanche effect of algorithm

before modification (No

vectors were implemented)

Avalanche effect of algorithm

after modification (proposed

method). Vectors were

implemented

AES 49.0662% 49.9390%

BLOWFISH 50.4517% 49.9878%

CAMELLIA 49.6094% 49.9893%

CAST-128 50.1221% 50.1709%

CLEFIA 49.9023% 50.1587%

DES 43.8721% 44.21387%

MMB 49.6765% 49.639893%

RC5 49.1821% 49.7925%

SERPENT 49.8657% 50.5341%

SKIPJACK 62.5732% 61.6211%

The proposed AES has a value of avalanche effect of 49.9390%, is indicated on Figure 4.44.

The proposed Camellia has a value of avalanche effect of 49.9893%, is presented graphically

on Figure 4.44. The proposed Cast-128 has a value of avalanche effect of 50.1709%, is

presented graphically on Figure 4.44. The proposed Clefia has a value of avalanche effect of

50.1587%, is presented graphically on Figure 4.44. The proposed DES has a value of

avalanche effect of 44.2139%, is presented graphically on Figure 4.44. The proposed RC5 has

a value of avalanche effect of 49.7925, is presented graphically on Figure 4.44.

121

Figure 4.44: Results of avalanche effect of all algorithms tested when key was varied.

From Figure 4.45. The avalanche effect was increased. Seven out of ten algorithms enhance

their avalanche effects when the proposed method used. That is when the key was varied. This

means that we have managed to increase 70% of algorithms tested when key was varied.

Therefore, the proposed method gave us positive results of 70% according to Figure 4.5.

Wherever these seven algorithms are implemented on IoT, the proposed algorithms should

replace them in order to increase IoT security.

122

Figure 4.45: Results of Avalanche effect when key was varied.

From the Figure 4.46, it is clear that the proposed method worked very sufficiently when we

compare all ten algorithms put on test. We find that the modified (proposed) AES and Clefia

are faster algorithms compared to standard (AES and Clefia) of algorithms. The proposed AES

has a speed of 138847.4576 bits/sec also heighted in red on Table 4.24. The proposed Clefia

has a speed of 134405.2502 bits/sec also heighted in red on Table 4.24. Therefore, it is

recommended that the proposed AES and Clefia will be used as compared to standard ones if

one wants the algorithms like AES and Clefia with an improved speed when key is varied

[143], [6]. Therefore, the proposed method worked positively according to our results from

Figure 4.36. The internet of things needs the algorithm with is fast to encrypt [145], therefore

the proposed AES and Clefia are faster than standard AES and Clefia when algorithms are

tested.

123

Table 4.24: Results of the speed of all algorithms test when key was varied.

Algorithm Tested Speed calculated to finish

avalanche effect of standard

algorithm (in bits/sec)

Speed calculated to finish

avalanche effect of proposed

algorithm (in bits/sec)

AES 138261.6034 138847.4576

BLOWFISH 132879.1565 132879.1565

CAMELLIA 201552.7611 198300.1614

CAST-128 132235.6740 130967.2262

CLEFIA 112604.8110 134405.25021

DES 66471.9247 64503.9370

MMB 134736.8421 134736.8421

RC5 140635.1931 123652.8302

SERPENT 241473.8394 238833.8192

SKIPJACK 86033.0690 84410.4458

The proposed AES has a speed of 138847.4576 bits/sec as indicated on Figure 4.46. The

proposed Clefia has a speed of 134405.2502 bits/sec as indicated on Figure 4.46.

Figure 4.46: Results of the speed of all algorithms test when key was varied.

124

4.3. Chapter Summary

This chapter explained the results and analysis of all different methodologies discussed in

chapter 3. It produced the results and analysis of avalanche effect of different types of

cryptographic algorithms used on IoT. It gave results and analysis of the speed yielded by

different algorithms. Additionally, it also gave the time taken to encrypt form different types

algorithms.

125

CHAPTER 5: CONCLUSION AND FUTURE WORK

In this section, we conclude by summarising the work done in this dissertation from chapter 1

up to chapter 4: its introduction, literature review, methodology, results discussion, results

analysis and future work.

In chapter 1, we set out to define the background of the study, definition of IoT, benefits of

IoT, security, set out the problem statement, hypothesis, research questions, research

objectives, significance and the research roadmap of this study. All these aspects were outlined

in chapter 1.

Chapter 2 reviewed the literature that is related to our study. In the literature review, we

explained the basic background of internet and dug deeper into IoT. We explained the security

of IoT and the avalanche effect of crypto algorithms used to secure IoT. In addition, we

explained different types of attacks (Denial of Service, Man-in-the-middle etc.) used by

intruders to attack IoT. Additionally, a list of algorithms used on IoT were presented.

Furthermore, we explained the origin of algorithms, who developed them and why they were

developed. Finally, related work done by others researchers were also presented.

Chapter 3 discussed the research methodology that was used in our study. We explained the

comparison method was used to measure the avalanche effect. In addition, we explained how

we generated an initial and the final vector on the proposed work. We describe an overview

and the strength of PI mathematically. We explained the need of avalanche effect on the

security of IoT and the methods used to calculate them. In addition, chapter 3 explained the

experimental procedures conducted when measuring avalanche effect, time and speed of all

algorithms related to our study.

Chapter 4 gave the results, discussion and analysis that are related to our study. In the results,

the programs written in C++ language executed the output. We discussed the results of

avalanche effect of specific algorithms when their keys were fixed and plaintexts were varied

and vice versa (or when plaintexts were fixed and keys were varied). We discussed the results

from the output on how long (time) does an algorithm take to finish encryption (using

avalanche effect to get more sample) when key was fixed and plaintext was varied and in

reverse (or when plaintext was fixed and key was varied). We discuss the results from the

126

output on how fast (speed) an algorithm take to complete encryption (using the size of block

the algorithm required and avalanche effect to get more sample) when key was fixed and

plaintext was varied (or when plaintext was fixed and key was varied).

From the results, it was clear that the proposed method yielded better results by improving

speed of certain standard algorithms when plaintext was varied. The minimum speed increase

was 113.967 bits/sec for RC5 and maximum increase was 30667.2523 bits/sec for Camellia.

Therefore, if the speed of standard algorithm is improved by proposed one, then the proposed

algorithm is recommended to be used on IoT. The speed of standard AES has been improved

from 71671.0411 bits/second to 73012.4777 bits/second by the proposed AES, giving the

difference of 1341.4359 bits/second. The speed of standard Camellia has been improved from

103959.3909 bits/second to 134626.1298 bits/second by the proposed Camellia, giving the

difference of 30667.2523 bits/second. The speed of standard DES has been improved from

70017.0940 bits/second to 70950.9787 bits/second by the proposed DES, giving the difference

of 933.8847 bits/second. The speed of standard MMB has been improved from 67842.6501

bits/second to 70620.6897 bits/second by the proposed MMB, giving the difference of

2778.0397 bits/second. The speed of standard RC5 has improved from 68266.6667 bits/second

to 68380.6344 bits/second by the proposed RC5, giving the difference of 113.9677 bits/second.

That is when plaintext is varied.

From the results, it was clear that the proposed method yielded better results by improving

speed of certain standard algorithms when key was varied. The minimum speed increase was

585.8542 bits/sec for AES and maximum increase was 21800.43921 bits/sec for Clefia.

Therefore, if the speed of standard algorithm is improved by proposed one, then the proposed

algorithm is recommended to be used on IoT. The speed of standard AES has been improved

from 138261.6034 bits/second to 138847.4576 bits/second by the proposed AES, giving the

difference of 585.8542 bits/second. The speed of standard Clefia has been improved from

112604.8110 bits/second to 134405.25021 bits/second by the proposed Clefia, giving the

difference of 21800.43921 bits/second. That is when key is varied.

Out of ten algorithms that are used on IoT we slightly manged to improve avalanche effects of

four algorithms, when the proposed algorithms plaintext was varied. The minimum percentage

127

increase of avalanche effect was 0.4395% for Skipjack and maximum increase was 0.7324%

for RC5. This results are not better as expected but they are good results because the avalanche

effect of proposed Camellia, Cast-128, RC5 and Skipjack are approaching (or more than) 50%.

The main goal of this study is achieve avalanche effect, which is equal, or greater than 50%.

Therefore, if the avalanche of standard algorithm is improved by proposed one, then the

proposed algorithm is recommended to be used on IoT. The avalanche effect of standard

Camellia has been slightly improved from 49.4690% to 50.0977% by the proposed Camellia,

giving the difference of 0.6287%. The avalanche effect of standard Cast-128 has been slightly

improved from 48.8281% to 49.3164% by the proposed Cast-128, giving the difference of

0.4883%. The avalanche effect of standard RC5 has been slightly improved from 76.1719% to

76.9043% by the proposed RC5, giving the difference of 0.7324%. The avalanche effect of

standard Skipjack has been slightly improved from 48.7793% to 49.21875% by the proposed

Skipjack, giving the difference of 0.4395%. This is when the plaintext was varied.

Out of ten algorithms that are used on IoT we slightly manged to improve avalanche effects of

seven algorithms, when the proposed algorithms key was varied. The minimum percentage

increase of avalanche effect was 0.0488% for Cast-128 and maximum increase was 0.8728%

for AES. This results are not better as expected but they are good results because the avalanche

effect of proposed Cast-128 and AES are approaching (or more than) 50%. The main goal of

this study is achieve avalanche effect, which is equal, or greater than 50%. Therefore, if the

avalanche of standard algorithm is improved by proposed one, then the proposed algorithm is

recommended to be used on IoT. The avalanche effect of standard AES has been slightly

improved from 49.0662% to 49.9390% by the proposed AES, giving the difference of

0.8728%. The avalanche effect of standard Camellia has been slightly improved from

49.6094% to 49.9893% by the proposed Camellia, giving the difference of 0.3799%. The

avalanche effect of standard Cast-128 has been slightly improved from 50.1221% to 50.1709%

by the proposed Cast-128, giving the difference of 0.0488%. The avalanche effect of standard

Clefia has been slightly improved from 49.9023% to 50.1587% by the proposed Clefia, giving

the difference of 0.2564%. The avalanche effect of standard DES has been slightly improved

from 43.8721% to 44.21387% by the proposed DES, giving the difference of 0.3417%. The

avalanche effect of standard RC5 has been slightly improved from 49.1821% to 49.7925% by

the proposed RC5, giving the difference of 0.6104%. The avalanche effect of standard Serpent

128

has been slightly improved from 49.8657% to 50.5341% by the proposed Serpent, giving the

difference of 0.6684%. This is when the key was varied.

Future work is to improve the results of avalanche effect from good to better results that is to

improve avalanche effect by more than 2% difference instead of 0.8%. The other future work

is to study the quality of encryption and decryption used by algorithms, by using image

processing, that is comparing the original image and decrypted image using correlations and

coefficients.

The hypothesis is right due to the following reasons: (1) It was found that there is a relationship

between the avalanche effect of algorithms used on IoT and their security, the relation is high

avalanche effect algorithm gives high security. (2) Certain algorithms were improved by

proposed algorithms.

Research questions were answered: (1) The literature review on security of IoT is available in

libraries, on internet, published papers, journals, conferences etc. (2) Types of algorithms to

secure IoT are cryptographic algorithm. (3) Certain algorithms used on IoT has less than 50%

of avalanche effect. (4) Certain algorithms were managed to be improved by proposed

algorithms. (5) The benefit of high avalanche effect on IoT is to improve security.

129

References

[1] J. Kouns, “Bring Your Own Internet of Things BYO-IoT” 2015 RSA Conference, pp 4-5.

[Online]. Available: https://docplayer.net/16470302-Bring-your-own-internet-of-things-byo-

iot.html. [Accessed December 21, 2017].

[2] B Johnson, “The Internet of Things is nothing new for Johnson Controls”, 2017. [Online].

Available: http://www.johnsoncontrols.com/insights/2017/thought-leadership/johnson-contro

ls-continues-to-lead-in-iot-space. [Accessed May 31, 2018].

[3] European Research Cluster on the Internet of Things, “Internet of Things,” European

Research Cluster on the Internet of Things, [Online]. Available: http://www.internet-of-things-

research.eu/about_iot.htm. [Accessed May 3, 2018].

[4] J. Holdowsky, M. Mahto, M. E. Raynor and M. Cotteleer, “Inside the Internet of Things

(IoT), “2015, A Primer on the Technologies Building the IoT. [Online]. Available:

https://www2.deloitte.com/insights/us/en/focus/internet-of-things/iot-primer-iot-technologies-

applications.html. [Accessed May 31, 2018].

[5] T. Kambies, M.E. Raynor, D.M. Pankratz and G. Wadekar, “Closing the digital divide: IoT

in retail’s transformative potential: The Internet of Things in the retail industry”, 2016.

[Online]. Available: https://www2.deloitte.com/insights/us/en/focus/internet-of-things/iot-

retail-strategies.

html. [Accessed May 31, 2018].

[6] A. Kumar, N.amita Tiwari, “Effective Implementation and Avalanche Effect of AES.” 2013

International Journal of Security, Privacy and Trust Management (IJSPTM), Vol. 1, 2012, pp

31-35.

[7] A. Kumar, N. Tiwari, “Effective Implementation and Avalanche Effect of AES”, 2012

International Journal of Security, Privacy and Trust Management (IJSPTM), Vol. 1, 2012, pp

31-35.

https://docplayer.net/16470302-Bring-your-own-internet-of-things-byo-iot.h
https://docplayer.net/16470302-Bring-your-own-internet-of-things-byo-iot.h
http://www.johnsoncontrols.com/insights/2017/thought-leadership/johnson-contro
http://www.internet-of-things-research.eu/about_iot.htm
http://www.internet-of-things-research.eu/about_iot.htm
https://www2.deloitte.com/insights/us/en/focus/internet-of-things/iot-primer-iot-technologies-applications.html
https://www2.deloitte.com/insights/us/en/focus/internet-of-things/iot-primer-iot-technologies-applications.html
https://dupress.deloitte.com/dup-us-en/authors/k/tracie-kambies.html
https://dupress.deloitte.com/dup-us-en/authors/r/michael-raynor.html
https://dupress.deloitte.com/dup-us-en/authors/p/derek-pankratz.html
https://dupress.deloitte.com/dup-us-en/authors/w/geetendra-wadekar.html
https://www2.deloitte.com/insights/us/en/focus/internet-of-things/iot-retail-strategies
https://www2.deloitte.com/insights/us/en/focus/internet-of-things/iot-retail-strategies

130

[8] G. Patidar, N. Agrawal and S. Tarmakar, “A block based encryption model to improve

Avalanche Effect for data security”, International Journal of Scientific and Research

Publications, Vol. 3, (2013), pp.1-4. [Online]. Available: https://www.ijsr.net. [Accessed April

31, 2018].

[9] A. K. Mandal, and A. Tiwari, “Analysis of Avalanche Effect in Plaintext of DES using

Binary Codes”, Chhatrapati Shivaji Institute of Technology, 2012, pp 166-0171.

[10] M.S. Mahindrakar, “Evaluation of Blowfish Algorithm based on Avalanche Effect,” 2014

International Journal of Innovations in Engineering and Technology (IJIET), Vol. 4, 2014, pp

99-103. [Online]. Available: http://ijiet.com/wp-content/uploads/2014/06/15.pdf. [Accessed

December 21, 2017].

[11] K. Shujaat, I. M. Sohail, K. K. Ahmed and E. Mansoor, “Security Analysis of Secure

Force Algorithm for Wireless Sensor Networks performance evaluation of 64, 128 and 192-bit

secure force algorithm architecture”, 2014 Asian Journal of Engineering, Sciences &

Technology, Vol. 4 No. 2, 2014, pp 46-52.

[12] D. Drushti and U. Hardik, “Security and Privacy Consideration for Internet of Things in

Smart Home Environments”, 2014 International Journal of Engineering Research and

Development, Vol. 10, pp 73-83.

[13] E. Alsaadi and A. Tubaishat, “Internet of Things: Features, Challenges, and Vulnerabilities

International Journal of Advanced Computer Science and Information Technology.” 2015

IJACSIT, Vol. 4, No. 1, 2015, Pp: 1-13.

[14] T. Borgohain, U. Kumar and S. Sanyal, “Survey of Security and Privacy Issues of Internet

of Things”, 2016 IEEE Internet of Things Journal, 2015, pp 1-7. [Online]. Available:

https://www.researchgate.net/publication/270763270_Survey_of_Security_and_Privacy_Issu

es_of_Internet_of_Things. [Accessed December 27, 2017].

http://ijiet.com/wp-content/uploads/2014/06/15.pdf
https://www.researchgate.net/publication/270763270_Survey_of_Security_and_Privacy_Issues_of_Internet_of_Things
https://www.researchgate.net/publication/270763270_Survey_of_Security_and_Privacy_Issues_of_Internet_of_Things

131

[15] P. Walters, “The Risks of Using Portable Devices”, 2016 The United States Computer

Emergency Readiness Team (US-CERT), 2016, pp 1- 3.

[16] H. Klenk, H. B. Keller, E. Plödereder, P. Dencker (Hrsg.), “Automotive – Safety &

Security”, 2015 Sicherheit und Zuverlässigkeit für automobile Informationstechnik , pp 95-

96.

[17] F. Telefonica, “Trend Report Insecurity in the Internet of Things Trend Report Insecurity

in the Internet of Things”, 06/10/2015. [Online]. Available: https://www.elevenpaths.com/wp-

content/uploads/2015/10/TDS_Insecurity_in_the_IoT.pdf. [Accessed November 21, 2017].

[18] I. Lequetica, “Automotive IoT is disrupting the car rental industry”, 2017 Geotab

management by measurement, 2016. [Online]. Available:

https://www.geotab.com/blog/automotive-iot/. [Accessed June 31, 2018].

[19] W.Y. Zibideh and M. M. Matalgah, “Alleviating the Effect of the Strict Avalanche

Criterion (SAC) of Symmetric-Key Encryption in Wireless Communication Channels” 2011

International Conference on Communications and Information Technology (ICCIl), pp 1,

2011.

[20] N. Vijayrangan, “Method for preventing and detecting hash collisions of data during the

data transmission” Peer to Patent, 2013. [Online] Available:

https://www.peertopatent.org/method-for-preventing-and-detecting-hash-collisions-of-data-

during-the-data-transmission/. [Accessed May 31, 2018].

[21] S. Al-Sarawi, M. Anbar, K. Alieyan and M. Alzubaidi, “Internet of Things (IoT)

Communication Protocols: Review”, IEEE 8th International Conference on Information

Technology, 2017, pp 1-10.

[22] O. Gunnsteinsson, “A Search for a Convenient Data Encryption Algorithm for an Internet

of Things Device.” 2016, Chalmers University of Technology, Gothenburg, Sweden 2016.

https://www.elevenpaths.com/wp-content/uploads/2015/10/TDS_Insecurity_in_the_IoT.pdf
https://www.elevenpaths.com/wp-content/uploads/2015/10/TDS_Insecurity_in_the_IoT.pdf
https://www.geotab.com/blog/automotive-iot/
https://www.peertopatent.org/method-for-preventing-and-detecting-hash-collisions-of-data-during-the-data-transmission/
https://www.peertopatent.org/method-for-preventing-and-detecting-hash-collisions-of-data-during-the-data-transmission/

132

[23] N. Saxena and A. Reza Sadeghi. “Radio Frequency Identification: Security and Privacy

Issues,” 2014 10th International Workshop, RFIDSec, Oxford, UK, 2014, pp 61.

[24] M. Morrow, “Securing the Internet of Things: A Proposed Framework”, 2015, pp 1-7.

[Online]. Available: https://blogs.cisco.com/sp/securing-the-internet-of-things-a-proposed-

framework. [Accessed Jul 31, 2017].

[25] M. Mohammedi and M. Aledhari, “Internet of Things: A Survey on Enabling

Technologies, Protocols and Applications”, IEEE Communications Surveys & Tutorials, Vol.

17, 2015.

[26] P. Duffy, “Beyond MQTT: A Cisco View on IoT Protocols”, Digital Transformation,

2013.

[27] M. Bilal, “A Review of Internet of Things Architecture, Technologies and Analysis

Smartphone-based Attacks Against 3D printers”, Zhejiang University Hangzhou, China.

[28] S. N. Swamy, D. Jadhav and N. Kulkarni, “Security threats in the application layer in IOT

applications”, International Conference on I-SMAC (IoT in Social, Mobile, Analytics and

Cloud) (I-SMAC), 2017.

[29] D. Anand, A. Rathore, S. Kumar and S. Durgapal, “Awesome & Useful IoT

Protocols”, Electronics For You (EFY) magazine, 2017.

[30] S. Kulkarni and S. Kulkarni, “Communication Models in Internet of Things: A Survey”

International Journal of Science Technology & Engineering (IJSTE), Vol: 3, May 2017, pp 87-

91. [Online]. Available: http://www.ijste.org/articles/IJSTEV3I11049.pdf. [Accessed January

31, 2018].

[31] D. Thaler, H. Tschofenig and T.M. Barnes, “Architectural Considerations in Smart Object

Networking”, IAB RFC 7452, IETF 92 Technical Plenary.

https://blogs.cisco.com/author/moniquemorrow
https://blogs.cisco.com/sp/securing-the-internet-of-things-a-proposed-framework
https://blogs.cisco.com/sp/securing-the-internet-of-things-a-proposed-framework
https://blogs.cisco.com/author/paulduffy
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Sowmya%20Nagasimha%20Swamy.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Dipti%20Jadhav.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Nikita%20Kulkarni.QT.&newsearch=true
https://in.linkedin.com/in/dilinanand
https://www.linkedin.com/in/abhimanyurathore19
https://www.linkedin.com/in/shanosh-kumar-21b17722
https://in.linkedin.com/in/saurabhdurgapal?trk=seokp-title_posts_secondary_cluster_res_author_name
http://en.wikipedia.org/wiki/Electronics_For_You
http://www.ijste.org/articles/IJSTEV3I11049.pdf

133

[32] M. Abomhara and G. M. Køien, “Cyber Security and the Internet of Things:

Vulnerabilities, Threats, Intruders and Attacks” 2015 Journal of Cyber Security, University of

Agder, Norway, Vol. 4, 2015, pp 66-69.

[33] A. Nordrum, “Popular internet of things Forecast of 50 Billion Devices by 2020 is

Outdated,”2016 IEEE Spectrum: Technology, Engineering, and Science News, 2016, pp 5-7.

[34] P. Paganini, “How Hackers Violate Privacy and Security of Smart Home”, 2015 InfoSec

Institute, 2016, pp 3-6.

[35] K. Kishore, S. Satapathy, K. Udgata and N. Bisval, “Randomised Approach for Block

Cipher Encryption and Calculation of the avalanche effect coefficient”, 2016 Frontiers of

Intelligent Computing: Theory and Practical.

[36] T. Borgohain, U. Kumar and S. Sanyal, “Survey of Security and Privacy Issues of Internet

of Things”, 2015. Int. J. Advanced Networking and Applications Vol. 6, No. 4, Assam

Engineering College, 2015, pp 2373-2378. [Online]. Available:

http://www.ijana.in/papers/V6I4-3.pdf. [Accessed: Aug. 17, 2017].

[37] I. van der Elzen and J. van Heugten, “Techniques for detecting compromised IoT devices”,

2017 University of Amsterdam, 2017, pp 1-17.

[38] P. Walters, “The Risks of Using Portable Devices”, 2012 Carnegie Mellon University.

Produced for US-CERT, a government organization, 2016 The United States Computer

Emergency Readiness Team (US-CERT), 2012, pp 1- 3.

[39] H. Klenk, H. B. Keller, E. Plödereder and P. Dencker (Hrsg.), “Automotive – Safety &

Security”, 2015 Sicherheit und Zuverlässigkeit für automobile Informationstechnik , 2015, pp

95-96.

https://crypto.stackexchange.com/questions/34269/calculation-of-the-avalanche-effect-coefficient
http://www.ijana.in/papers/V6I4-3.pdf

134

[40] C. P. Dewangan and S. Agrawal, “A Novel Approach to Improve Avalanche Effect of

AES Algorithm,” 2012 International Journal of Advanced Research in Computer Engineering

& Technology Vol. 1, 2012, pp 248-252.

[41] Source: Cisco, “The Internet of Things Reference Model”, Controlled Distribution.

[Online]. Available: http://cdn.iotwf.com/resources/71/IoT_Reference_Model_White_Paper_

June_4_2014.pdf. [Accessed December 27, 2017].

[42] H. M. Aldosari, “A Proposed Security Layer for the Internet of Things Communication

Reference Model”, International Conference on Communication, Management and

Information Technology (ICCMIT), 2015, pp 421-428. [Online]. Available:

https://link.springer.com/chapter/10.1007%2F978-3-642-14478-3_42?LI=true. [Accessed

May 31, 2018].

[43] M. Katagi and S. Moriai, “The 128-Bit Block Cipher CLEFIA,” 2011 Sony Corporation,

Vol. 6114, 2011, pp 1-19.

[44] J. Kaur and E. ManpreetKaur, “Data Encryption Using Different Techniques: A Review”,

International Journal of Advanced Research in Computer Science, Vol. 8, No. 4, May 2017,

pp 252-255.

[45] C. Collberg, “Cryptography — Symmetric Key” 2012, University of Arizona CSc 466/566

Computer Security 6, Version: 2012/02/22 16:14:32, 2012, pp 1-56.

[46] M. Fischlin, “Public-Key Encryption (Asymmetric Encryption)”, Summer School,

Romania 2014.

[47] P.K. Arya, M.S. Aswal and V. Kumar, “Comparative Study of Asymmetric Key

Cryptographic Algorithms”, International Journal of Computer Science and Communication

Networks, Vol. 5, pp 17-21.

http://cdn.iotwf.com/resources/71/IoT_Reference_Model_White_Paper_
https://link.springer.com/chapter/10.1007%2F978-3-642-14478-3_42?LI=true

135

[48] S. Channalli and A. Jadhav, “Steganography an Art of Hiding Data”, International Journal

on Computer Science and Engineering, Vol. 1, 2009, pp 137-14.

[49] N.G. McDonald, “Past, Present, and Future Methods of Cryptography and Data

Encryption”, University of Utah, 2015.

[50] A. Toumazis, “Steganography”, 2009. [Online]. Available: [Accessed Jan 31, 2018].

[51] A. A. Bruen and M. A. Forcinito, “Cryptography, Information Theory, and Error-

Correction: A Handbook for the 21st Century”, John Wiley and Sons, 2011, pp 21-27.

[52] K. M. Martin, “Everyday Cryptography”, Oxford University Press, 2012, pp 142-149.

[53] L. D. Smith, "Substitution Ciphers". Cryptography the Science of Secret Writing: The

Science of Secret Writing. Dover Publications, 1943, pp 81-90.

[54] M. Behrens, “Understanding the 3 main types of encryption”, 2014. [Online]. Available:

https://spin.atomicobject.com/2014/11/20/encryption-symmetric-asymmetric-hashing/.

[Accessed May 31, 2018].

[55] R. Smith, “Understanding encryption and cryptography basics”. 2015. [Online].

Available: https://searchsecurity.techtarget.com/Understanding-encryption-cryptography.

[Accessed Jun 31, 2018].

[56] M. J. Dworkin, E. B. Barker, J. R. Nechvatal, J. Foti, L. E. Bassham, E. Roback, J. F.

Dray, “Advanced Encryption Advanced (AES)”, Federal Inf. Process. Stds. (NIST FIPS),

2001.

[57] D. L. Evans, P. J. Bond and A. L. Bement “Security Requirements for Cryptographic

Modules”, FIPS Publication 140-2, 1994.

https://spin.atomicobject.com/2014/11/20/encryption-symmetric-asymmetric-hashing/
http://searchsecurity.techtarget.com/Understanding-encryption-and-cryptography-basics

136

[58] R. D. Bajaj and U.M. Gokhale, “AES Algorithm for Encryption”, 2016 International

Journal of Latest Research in Engineering and Technology (IJLRET), Vol. 02, 2016, pp 63-68.

[59] S. Bhargav, L. Chen, A. Majumdar and S. Ramudit, “128-bit AES decryption”, 2008

CSEE 4840 Embedded System Design Spring, Columbia University, Vol. 4840, 2008, pp

8347-8350.

[60] A. Jagadev and V. Senapati, “Advanced Encryption Standard (AES) Implementation.”

2009, Rourkela May 2009. [Online]. Available:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.606.1732&rep=rep1&type=pdf.

[Accessed May 31, 2017].

[61] P. Singh and K. Singh, “Cryptography in Image Using Blowfish Algorithm”, 2015

International Journal of Science and Research (IJSR), Vol. 4, 2015, pp 150-154.

[62] K. Bawale, Y. S. Patil, and P. R. Pawale, “ Image Encryption Technique using Blowfish

Algorithm “ 2015 International Journal of Advance Foundation And Research In Science &

Engineering (IJAFRSE), Vol. 1, 2015, pp 1-6.

[63] K. Aoki, T. Ichikawa, M. Kanda, M. Matsui, S. Moriai, J. Nakajima and T. Tokita,

“Specification of Camellia — a 128-bit Block Cipher”, 2001 Nippon Telegraph and Telephone

Corporation and Mitsubishi Electric Corporation, 2001.

[64] A. Satoh and S. Morioka, “Hardware-Focused Performance Comparison for the Standard

Block Ciphers AES, Camellia, and Triple-DES”, 2001 Tokyo Research Laboratory IBM Japan

Ltd, 2001.

[65] Y. L. Yin, “A Note on the Block Cipher Camellia,” 2000 NTT Multimedia

Communication Laboratories 250 Cambridge Avenue, Palo Alto, CA 94306 6, Vol. 1.11.

137

[66] M. Matsui, S. Moriai and J. Nakajima, “A Description of the Camellia Encryption

Algorithm,” 2004 Network Working Group Mitsubishi Electric Corporation and Sony

Computer Entertainment Inc. pp 1-15.

[67] C.M. Adams, “Constructing Symmetric Ciphers using the CAST Design Procedure,

Designs, Codes, and Cryptography”, Vol. 12, pp 283–316, 1997.

[68] C. Adams, “The CAST-128 Encryption Algorithm”, 1997 Network Working Group and

Entrust Technologies Category, 1997, pp 1-15.

[69] J. Nakahara Jr and M. Rasmussen, “Linear Analysis of reduced-round CAST-128 and

CAST-256”, 2016 LSI-TEC, Brazil, 2016, pp 1-5.

[70] W. Wang and X.Y. Wang, “Impossible differential cryptanalysis of CLEFIA-

128/192/256” 2009 Journal of Software by Institute of Software, the Chinese Academy of

Sciences, Vol. 20, No. 9, 2009, pp. 2587−2596.

[71] A. Biryukov and I. Nikoli´c, “Security Analysis of the Block Cipher”, Clefia version 1.1

final report. [Online]. Available: https://www.cryptrec.go.jp/exreport/cryptrec-ex-2202-

2012p2.pdf. [Accessed December 01, 2018].

[72] S.S. Ali and D. Mukhopadhyay, “Protecting Last Four Rounds of CLEFIA is Not Enough

against Differential Fault Analysis,” Indian Institute of Technology Kharagpur, 2016.

[73] J. Chouinard, “Design of secure system. Notes on Data Ecryption Standard,” The

University of Ottawa, Canada, 2002.

[74] R.G. Kammer and W. Mehuron, “Data Encryption Standard (DES)”, 1999 U.S. National,

Institution of Standards and Technology, FIPS Publication 46-3,1999, pp 1-27.

https://www.cryptrec.go.jp/exreport/cryptrec-ex-2202-2012p2.pdf
https://www.cryptrec.go.jp/exreport/cryptrec-ex-2202-2012p2.pdf

138

[75] F. El-Zoghdy, Y. A. Nada, and A. A. Abdo, “How Good Is The DES Algorithm In Image

Ciphering?” 2011 Int. J. Advanced Networking and Applications, 796 Vol. 02, 2011, pp 796-

803.

[76] J. Thakur and N. Kumar “DES, AES and Blowfish: Symmetric Key Cryptography

Algorithms Simulation Based Performance Analysis”, 2011. [Online]. Available:

www.ijetae.com. [Accessed: Aug. 17, 2017].

[77] K. Jia, J. Chen, M. Wang and W. Xiaoyun, “Practical-time Attack on the Full MMB

Block,” 2010 Key Laboratory of Cryptologic Technology and Information Security, Ministry

of Education, Shandong University, Jinan 250100, China, 2010, pp 1-13.

[78] J. Daemen, R. Govaerts and J. Vandewalle, “Block Ciphers Based on Modular

Arithmetic”, Katholieke Universiteit Leuven, Laboratorium ESAT Kardinaal Mercierlaan 94,

B-3001 Heverlee, Belgium.

 [79] K. Aoki, T. Ichikawa, et al, “Specification of Camellia”, Nippon Telegraphy and

Telephone Corporation and Mitsubishi Electric Corporation, Vol. 2.0, 2001.

[80] R. Rymon, “Conventional Cryptography”, Efi Arazi School of Computer Science IDC,

Herzliya, 2008.

[81] R. L. Rivest, “The RC5 Encryption Algorithm”, 1997 MIT 545 Laboratory for Computer

Science Technology Square Cambridge Mass Revised, 1997.

[82] R. Anderson, E. Biham and L. Knudsen, “Serpent: A Proposal for the Advanced

Encryption Standard”, pp 1-23. [Online]. Available:

https://www.cl.cam.ac.uk/~rja14/Papers/serpent. [Accessed June 27, 2017].

[83] S. Mister, “Properties of the Building Blocks of Serpent,” 2000 Entrust Technologies, pp

1-9, 2000.

http://www.ijetae.com/
https://www.cl.cam.ac.uk/~rja14/Papers/serpent

139

[84] G. Kuznetsov, R. Karri and M. G¨ossel, “Error Detection by Parity Modification for the

128-bit Serpent Encryption Algorithm”, Polytechnical University Brooklyn, USA University

of Potsdam, Germany, 2016, pp 1-24.

[85] A. Muhammad, “Implementation and verification of SKIPJACK Algorithm using

Verilog,” IEEE, Vol. 2, 1998, pp 1-9.

[86] P. Bantarha, L. Knudsen and D. Wagner, “On the structure of Skipjack”, 2000, University

of Bergen, N-5020 Bergen, Norway.

[87] D. D. Moskovich. “An Overview of the State of the Art for Practical Quantum Key

Distribution”, Vol. 4, 2015, pp 1-26.

[88] C. Bourke, “CSCE 477/877”, University of Nebraska, Lincoln, 2015, pp 5-138.

[89] Y. Shaikh and A. Jain, “Investigation of Symmetric Block Cipher Algorithms” 2011

International Institute of Professional Studies, Devi Ahilya University, 2011.

[90] M. M. Matalgah and W. Y. Zibideh “Alleviating the Effect of the Strict Avalanche

Criterion (SAC) of Symmetric-Key Encryption in Wireless Communication Channels” 2011

International Conference on Communications and Information Technology (ICCIl), Aqaba

2011, pp 1-9.

[91] R. Sobti and G.Geetha, “Cryptographic Hash Functions: A Review”, IJCSI International

Journal of Computer Science Issues, Vol. 9, No. 2, No 2, March 2012, pp 461-479. [Online].

Available: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.402.7241&rep=rep1&ty

pe=pdf. [Accessed May 31, 2018].

[92] C. Paar and J. Pelzl, “Understanding Cryptography”, 2010 Springer Heidelberg Dordrecht

London, New York, ACM Computing Classification, 2010.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.402.7241&rep=rep1&ty

140

[93] E. Alsaadi and A. Tubaishat, “Internet of Things: Features, Challenges, and Vulnerabilities

International Journal of Advanced Computer Science and Information Technology” 2015

IJACSIT Switzerland, Vol. 4, No. 1, 2015, pp: 1-13.

[94] M. B. Abdelhalim, M. El-Mahallawy, M. Ayyad and A. Elhennawy, “Design and

Implementation of an Encryption Algorithm for use in RFID, ” 2013 System International

Journal of RFID Security and Cryptography (IJRFIDSC), Vol. 2, No. 1, 2013, pp 51-57.

[95] J. Pawlick and Q. Zhu, “Internet of Things: Privacy & Security in a Connected World”

Transcript of Workshop at 182. Transcript of Workshop, 2015, pp5-55.

[96] R. Leidos, C. Garlati, D. Lingenfelter and B. Russell, “Security Guidance for Early

Adopters of the Internet of Things (IoT)”, 2015 Cloud Security alliance and Mobile Working

Group Peer Reviewed Document, 2015, pp 1-54.

[97] M.N. Yusuff, “Honeypot Revealed”, 2005. [Online]. Available:

http://files.spogel.com/abstracts/p-1528--Honeypots.pdf. [Accessed May 31, 2018].

[98] L. Spitzner, “Honeypots Definition and Value of Honeypots”, 2002. [Online]. Available:

https://www.eetimes.com/document.asp?doc_id=1255091. [Accessed June 01, 2017].

[99] K. Schramm, T. Wollinger, and C. Paar, “A New Class of Collision Attacks and its

Application to DES”, Communication Security Group (COSY), Ruhr-Universit¨at Bochum,

Germany Universitaetsstrasse 150 44780 Bochum, Germany.

[100] I. Dinur, O. Dunkelman and A. Shamir1, “Collision Attacks on Up to 5 Rounds of SHA-

3 Using Generalized Internal Differentials”, The Weizmann Institute, Rehovot, Israel.

[101] L. Wei, T. Zhi, G. Dawu, S. Li, Q. Bo, L. Zhiqiang and L. Ya, “An effective differential

fault analysis on the Serpent cryptosystem in the Internet of Things” 2014 China

Communications, Vol.11, 2014, pp 129-139.

https://www.researchgate.net/scientific-contributions/2130519463_Jeffrey_Pawlick
https://www.researchgate.net/scientific-contributions/49050403_Quanyan_Zhu
https://www.google.co.za/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwj4jvL0nojUAhUkIcAKHVDEBL0QFggmMAA&url=https%3A%2F%2Fwww.ftc.gov%2Fsystem%2Ffiles%2Fdocuments%2Freports%2Ffederal-trade-commission-staff-report-november-2013-workshop-entitled-internet-things-privacy%2F150127iotrpt.pdf&usg=AFQjCNFpuXNJEGRuaot5A7QUCCJ8pvHkmA&sig2=iE_VGnMNY6GniJpXd0YOWQ
https://www.eetimes.com/document.asp?doc_id=1255091
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6245522
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6245522

141

[102] L. Wei, “An effective differential fault analysis on the Serpent cryptosystem in the

Internet of Things” 2014 Sch. of Computer. Sci. & Technol., Donghua Univ., Shanghai, China,

Vol: 11, 2014.

[103] M. Rivain, “Differential Fault Analysis on DES Middle Rounds”, Oberthur Technologies

and University of Luxembourg.

[104] L. Wei, T Zhi and G. Dau, “An effective differential fault analysis on the Serpent

cryptosystem in the Internet of Things”, China Communications Vol. 11, No. 6, June 2014.

[105] A.J. Paul, A. Saju and R. Lekshimi, “Data based Transposition to Enhance Data

Avalanche and Differential Data Propagation in Advanced Encryption Standard,” International

Journal of Computer Applications, Vol. 67– No.12, 2013, pp 6-9.

[106] O. Dunkelman, N. Keller , A. Biryukov and D. Khovratovich , A. Shamir, “Improved

Single-Key Attacks on 8-Round AES-192 and AES-256”, Journal of Cryptology, Vol. 28, No.

3, 2015, pp1-29. [Online]. Available: https://eprint.iacr.org/2010/322.pdf. [Accessed May 31,

2018].

[107] N. Alassaf, B. Alkazemi and A. Gutub, Applicable Light-Weight Cryptography to Secure

Medical Data in IoT Systems”, Journal of Research in Engineering and Applied Sciences,

2017, pp 50-58. [Online]. Available: https://www.researchgate.net/publication/316147802_Ap

plicable_LightWeight_Cryptography_to_Secure_Medical_Data_in_IoT_Systems. [Accessed

May 31, 2018].

[108] L.W. Santoso, G. S. Budhi and L. Sutanto, “ Perbandigan Apliasi Menggunakan Metode

Camelia 128 Bit Key Dan 256 Key”, Jurnal Informatika, Vol. 12, No. 2, November 2014, pp

109-115. [Online]. Available: http://jurnalinformatika.petra.ac.id/index.php/inf/article/view/1

9147. [Accessed May 31, 2018].

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.%20Li%20Wei.QT.&newsearch=true
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6245522
https://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=6878993
https://eprint.iacr.org/2010/322.pdf
https://www.researchgate.net/publication/316147802_Ap
http://jurnalinformatika.petra.ac.id/index.php/inf/article/view/1

142

[109] S. Ramanujam and M. Karuppiah, “Designing an algorithm with high Avalanche Effect,”

2011 IJCSNS International Journal of Computer Science and Network Security, Vol. 11, No.1,

2011, pp 106-111. [Online]. Available: http://paper.ijcsns.org/07_book/201101/20110116.pdf.

[Accessed February 21, 2017].

[110] S. Wang, T. Cui and M. Wang, “Improved Differential Cryptanalysis of CAST-128 and

CAST-256”, Key Laboratory of Cryptologic Technology and Information Security, Ministry

of Education, Shandong University, Jinan 250100, China, 2017, pp 18-32.

https://link.springer.com/chapter/10.1007/978-3-319-54705-3_2citeas. [Accessed June 31,

2018].

[111] G.N. Krishnamurthy,V. Ramaswamy, G.H. Leela G.H and M.E Ashalatha, “Performance

enhancement of Blowfish and CAST-128 algorithms and Security analysis of improved

Blowfish algorithm using Avalanche effect”, IJCSNS 244 International Journal of Computer

Science and Network Security, Vol. 8 No. 3. 2008, pp. 244-250 [Online]. Available:

http://paper.ijcsns.org/07_book/200803/20080336.pdf. [Accessed May 31, 2018].

[112] D. Sehrawat and N. Singh Gill, “Lightweight Block Ciphers for IoT based applications:

A Review”, International Journal of Applied Engineering Research ISSN 0973-4562 Vol. 13,

pp. 2258-2270, 2018.

[113] C. Boura, M. Naya-Plasencia and V. Suder, “Scrutinizing and Improving Impossible

Di_erential Attacks: Applications to Clefia, Camellia, LBlock and Simon (Full Version)”

Versailles Saint-Quentin-en-Yvelines University, France.

[114] S. Khan, M. S. Ibrahim, K. A. Khan and M. Ebrahim, “Security Analysis of Secure Force

Algorithm for Wireless Sensor Networks”, Asian Journal of Engineering Science and

Technology, 2015, [Online]. Available: https://arxiv.org/abs/1509.00981. [Accessed May 31,

2018].

http://paper.ijcsns.org/07_book/201101/20110116.pdf
https://link.springer.com/chapter/10.1007/978-3-319-54705-3_2citeas
http://paper.ijcsns.org/07_book/200803/20080336.pdf
https://arxiv.org/search?searchtype=author&query=Khan%2C+S
https://arxiv.org/search?searchtype=author&query=Ibrahim%2C+M+S
https://arxiv.org/search?searchtype=author&query=Khan%2C+K+A
https://arxiv.org/search?searchtype=author&query=Ebrahim%2C+M
https://arxiv.org/abs/1509.00981

143

[115] S. Ibrahim, B. Mohd, A. Maarof and N. B. Idris, “Avalanche Analysis of Extended Feistel

Network,” Universiti Teknologi, Malaysia, Proceedings of the Postgraduate Annual Research

Seminar, 2005, pp 265-269.

[116] M. Talbi and M. Salim Bouhlel, “Application of a Lightweight Encryption Algorithm to

a Quantized Speech Image for Secure IoT”, Sciences Electroniques, Technologie de

l'Information et Télécommunications (SETIT), 2018.

[117] A. Biryukov and V. Velichkov, “On Improving Data Complexity of Attacks on RC5

Laboratory of Algorithmic, Cryptology and Security (LACS)”, University of Luxembourg,

Early Symmetric Crypto, 2015.

[118] Y.H. Ali, “Proposed 256 bits RC5 Encryption Algorithm Using Type-3 Feistel Network”,

Eng. & Tech. Journal, Vol. 28, No.12, 2010, pp 2337-2345. [Online]. Available:

https://www.researchgate.net/publication/312029656_Proposed_256_bits_RC5_Encryption_

Algorithm_Using_Type-3_Feistel_Network. [Accessed Jan 31, 2018].

[119] A. A. Maaita and H. A. Alsewadi, “A Multi-Threaded Symmetric Block Encryption

Scheme Implementing PRNG for DES and AES Systems,” 2017 International Journal of

Advanced Computer Science and Applications, Vol. 8, No. 2, 2017 pp 76-82.

[120] E. Biham, A. Biryukov and A. Shamir3, “Cryptanalysis of Skipjack Reduced to 31

Rounds Using Impossible Differentials”, Institute of Technology, Technicon, Israel.

[121] B. Maram and J. M. Gnanasekar, “A Block Cipher Algorithm to Enhance the Avalanche

Effect Using Dynamic Key-Dependent S-Box and Genetic Operations”, Research and

Development Centre, Bharathiar University, Coimbatore.

[122] H. Yang “Blowfish - 8-Byte Block Cipher”, 2017 Cryptography Tutorials - Herong's

Tutorial Examples - Version 5.31, First 8366 Hex Digit of PI, 2017.

https://www.researchgate.net/publication/312029656_Proposed_256_bits_RC5_Encryption_Algorithm_Using_Type-3_Feistel_Network
https://www.researchgate.net/publication/312029656_Proposed_256_bits_RC5_Encryption_Algorithm_Using_Type-3_Feistel_Network
http://www.herongyang.com/Cryptography/Blowfish-8-Byte-Block-Cipher.html

144

[123] P. Trüb,” π trillion digits of π”, 2016 Project, Dectris Ltd. 5400 Baden Switzerland, 2016.

[Online]. Available: https://www.dectris.com/company/news/newsroom/success-story-details

/pi-computed-to-22-4-trillion-digits. [Accessed December 27, 2017].

[124] M. Suresh, M.B Neema, “Hardware implementation of blowfish algorithm for the secure

data transmission in Internet of Things” 2016 Global Colloquium in Recent Advancement and

Effectual Researches in Engineering, Science and Technology (RAEREST), 2016.

[125] J. Daemen, R. Govaerts, J. Vandewalle, “Block Ciphers Based on Modular Arithmetic”,

1993 Proc. of the third Symposium on the State and Progress of Research in Cryptography,

1993.

[126] M. Usman, I. Ahmed, M. I. Aslam, S. Khan and U. A. Shah, “SIT: A Lightweight

Encryption Algorithm for Secure Internet of Things”, 2017 International Journal of Advanced

Computer Science and Applications, Vol. 8, 2017.

[127] A. L. Abdel-Karim, “Tamimi Performance Analysis of Data Encryption Algorithms”.

2014. [Online]. Available: https://www.researchgate.net/publication/228775009_Performance

_Analysis_of_Data_Encryption_Algorithms. [Accessed Jun 31, 2018].

[128] K. N. Prasetyo, Y. Purwanto and D. Darlis, “An implementation of data encryption for

Internet of Things using blowfish algorithm on FPGA” 2014 Information and Communication

Technology (ICoICT), 2014 2nd International Conference, 2014.

[129] G.N. Krishnamurthy, V. Ramaswamy, G.H. Leela and M.E. Ashalatha, “Performance

enhancement of Blowfish and CAST-128 algorithms and Security analysis of improved

Blowfish algorithm using Avalanche effect” 2008 IJCSNS International Journal of Computer

Science and Network Security, Vol. 8 No.3, 2008, pp 244-250.

[130] E. Young, “HomePage-EricYoung,”schneier.com, para 3, DES Validation test. [Online].

Available: https://www.schneier.com/code/vectors.txt. [Accessed Nov. 14, 2017].

https://www.dectris.com/company/news/newsroom/success-story-details
https://www.researchgate.net/publication/228775009_Performance
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Yudha%20Purwanto.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Denny%20Darlis.QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6908150
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6908150
https://www.schneier.com/code/vectors.txt

145

[131] Sony Corporation, “The 128-bit Blockcipher CLEFIA,” Specification, Version 1.0, 2010.

[Online]. Available: http://www.cryptrec.go.jp/english/cryptrec_13_spec_cypherlist_files/P

DF/22_00espec.pdf. [Accessed May 31, 2018].

[132] J.O. Grabbe, “The DES Algorithm Illustrated”, 2011. [Online]. Available:

http://page.math.tu-berlin.de/~kant/teaching/hess/krypto-ws2006/des.htm. [Accessed: Aug.

17, 2017].

[133] K Jia, J. Meiqin, and X. Wang, “Practical Attack on the Full MMB Block Cipher”,

Institute for Advanced Study, Tsinghua University, Beijing, China.

 [134] T. Ashur and O. Dunkelman, “A Practical-Time Related-Key Boomerang Attack on

MMB,” International Conference on Cryptology and Network Security CANS

2013: Cryptology and Network Security, pp 271-290, 2013.

[135] K. Agarwal, P. Rao and A. Kaminsky, “Implementation of the RC5 block cipher

algorithm and implementing a variation of meet-in-the-middle attack on it”, 2013

Cryptography Spring 2013 - Team Project Report, 2013, pp1-21.

[136] A. J. Menezes, J. Katz and P. C. van Oorschot, “Handbook of Applied Cryptography”,

CRC Press, 1996.

[137] N. Aghajanzadeh, F. Aghajanzadeh and H. R. Kargar, “Developing a new Hybrid Cipher

using AES, RC4 and SERPENT for Encryption and Decryption”, International Journal of

Computer Applications, Vol. 69, May 2013, pp 53-62. [Online]. Available:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.404.1822&rep=rep1&type=pdf.

[Accessed December 31, 2017].

[138] Project NESSIE, “New European Schemes for Signature, Integrity, and Encryption,”

[Online]. Available: http://www.cs.technion.ac.il/~biham/Reports/Serpent/Serpent-256-

28.verified.test-vectors. [Accessed December. 3, 2017].

http://www.cryptrec.go.jp/english/cryptrec_13_spec_cypherlist_files/P
https://link.springer.com/conference/cans
https://link.springer.com/book/10.1007/978-3-319-02937-5
https://www.google.co.za/search?tbm=bks&q=inauthor:%22Alfred+J.+Menezes%22&sa=X&ved=0ahUKEwijm6PKqfbbAhWLV8AKHU0gAEAQ9AgIbzAJ
https://www.google.co.za/search?tbm=bks&q=inauthor:%22Jonathan+Katz%22&sa=X&ved=0ahUKEwijm6PKqfbbAhWLV8AKHU0gAEAQ9AgIcDAJ
https://www.google.co.za/search?tbm=bks&q=inauthor:%22Paul+C.+van+Oorschot%22&sa=X&ved=0ahUKEwijm6PKqfbbAhWLV8AKHU0gAEAQ9AgIcTAJ
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.404.1822&rep=rep1&type=pdf

146

[139] J. Pawling “Use of the KEA and SKIPJACK Algorithms in CMS”. 2000. [Online].

Available: https://tools.ietf.org/html/rfc2876. [Accessed May 31, 2018].

[140] E. Biham, A. Biryukov, O. Dunkelman and E. Richardson, “Initial Observations on

Skipjack: Cryptanalysis of Skipjack-3XOR”, 2002, pp 1-14. [Online]. Available:

https://dl.acm.org/citation.cfm?id=694578. [Accessed May 31, 2018].

[141] L. Knudsena and D. Wagnerb, “On the structure of Skipjack” , 2001 Discrete Applied

Mathematics 111, University of Bergen, N-5020 Bergen, Norway University of California

Berkeley, Soda Hall, Berkeley, 2000, pp 103-116.

[142] Ziel Project, “New European Schemes for Signature, Integrity, and Encryption,”

[Online]. Available: https://cordis.europa.eu/project/rcn/54113/factsheet/de. [Accessed

October 2017]. [Accessed February 3, 2018].

[143] S. Ramanujam and M. Karuppiah, “An algorithm with high Avalanche Effect”, 2011

International Journal of Computer Science and Network Security, Vol. 11, 2011, pp 106-111.

[144] L. Oppenheim and S. Tal, “The Internet of TR069 Things: One Exploit to Rule Them

All” 2015 RSA Conference, 2015.

[145] A. A. Tamimi, “Performance Analysis of Data Encryption Algorithms”. 2015. [Online].

Available: www.cs.wustl.edu/~jain/cse567-06/ftp/encryption_perf/. [Accessed May 31,

2018].

[146] M. Abomhara and G. M. Køien, “Cyber Security and the Internet of Things:

Vulnerabilities, Threats, Intruders and Attacks”, University of Agder, Norway, pp 66-69.

https://tools.ietf.org/html/rfc2876
http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-get.cgi/1998/CS/CS0946.ps.gz
http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-get.cgi/1998/CS/CS0946.ps.gz
https://dl.acm.org/citation.cfm?id=694578
http://www.cs.wustl.edu/~jain/cse567-06/ftp/encryption_perf/

147

APPENDIX 1: Calculation of AES avalanche effect.

We will give example by AES algorithm on how avalanche effect is calculated manually. AES

algorithm is 128 block cipher, this means that the size of ciphertext and plaintext are both 128

bits.

i. First we fixed the key, in this study the key is:

{0123456789abcdeffedcba9876543210} in hexadecimal,

ii. Then we generated plaintext, in this study the plaintext is:

{ffffffffffffffffffffffffffffffff}.

This is 128 bit in hexadecimal number. Note that f in hexadecimal number is 15 in

decimal and is 1111 in binary. Flipping one bit of generated plaintext from left to right

we 7 in hexadecimal number which is 0111 in binary, b =1011, d = 1101, e = 1110 etc.

In this example we will indicate the position of where the bit is changed (flipped) and

its ciphertext by red color to simplify the explanation.

iii. ffffffffffffffffffffffffffffffff (Generated plaintext)

7fffffffffffffffffffffffffffffff (One bit flipped from generated plaintext, from (f=1111)

then we get (7= 0111) because the first bit is flipped from 1 to 0;

We encrypted the two plaintext separately (generated and flipped one) and we got the

following two ciphertext:

592373540ae1b202615e6d210d868a8c (Ciphertext of generated plaintext)

500ebff928c4892891726dcd29bd5469 (Ciphertext of one bit flipped from original

plaintext)

The above red cipher indicates that, by simply flipping one bit from left (f to 7) the

whole ciphertext changed, but not all bits in ciphertext change, then we calculated the

position where the bits are not the same between generated cipher and the flipped

cipher. In this example we found there is 58 bits difference out of 128.

Bits different from original ciphertext:

58 bits different from original cipher. The value of 58 bit difference is calculated as

follows:

iv. From above we have ciphertext from original plaintext which is

592373540ae1b202615e6d210d868a8c is equivalent to

010110010010001101110011010101000000101011100001101100100000001001100

148

00101011110011011010010000100001101100001101000101010001100 in binary

and ciphertext generated when one bit is flipped which is

500ebff928c4892891726dcd29bd5469

Is equivalent to

010100000000111010111111111110010010100011000100100010010010100010010

00101110010011011011100110100101001101111010101010001101001 in binary.

v. Observing these two ciphertext. One can count how many bit positions that are not the

same (equal) to each other at specific position when two ciphertext are compared. One

can see that they are 58 bits positions that make two string not the same. That where 58

bits different value come from. We continued with the flipping the bits until the last bit

therefore we had to repeat step i. to v. 128 to get better results. Then we calculated the

average number of bit difference as follows:

Average number of flipped bits in ciphertext =

sum of bits different from original cipher

128 (Since we did flipping 128 times)

Then, the final step is to calculate the avalanche effect

vi. Avalance effect (for this example AES) =
Average number of flipped bits in ciphertext

128 (Size of CipherText of AES is 128)
∗

100%

vii. We continued flipping the bit from left to right one at time as follows:

ffffffffffffffffffffffffffffffff (original plaintext)

bfffffffffffffffffffffffffffffff (2nd bit of original plaintext flipped (f=1111) and b= 1011)

592373540ae1b202615e6d210d868a8c (original ciphertext)

2f2931ae1db3c3135d33123a3844bdea (2nd bit flipped ciphertext output)

Bits different from original ciphertext:

64 bits different from original cipher

viii. ffffffffffffffffffffffffffffffff (original plaintext)

dfffffffffffffffffffffffffffffff (3rd bit of original plaintext flipped (f=1111) and d=1101)

592373540ae1b202615e6d210d868a8c (original ciphertext)

6f63de38aa9bf55506608bb74c6ef130 (Ciphertext of flipped bit of original plaintext)

66 bits different from original cipher,

149

ix. ffffffffffffffffffffffffffffffff (original plaintext)

efffffffffffffffffffffffffffffff (4th bit of original plaintext flipped (f=1111) and e=1110)

592373540ae1b202615e6d210d868a8c (original ciphertext)

c863152dc28ccc91cb58f27ce6a2d0f8 (4th bit flipped ciphertext output)

64 bits different from original cipher

x. ffffffffffffffffffffffffffffffff (original plaintext)

f7ffffffffffffffffffffffffffffff (One bit flipped from original plaintext)

592373540ae1b202615e6d210d868a8c (original ciphertext)

d93f2264665062cc977a19dd64976bcb (Ciphertext of flipped bit of original plaintext)

57 bits different from original cipher

xi. ffffffffffffffffffffffffffffffff (original plaintext)

fbffffffffffffffffffffffffffffff (One bit flipped from original plaintext)

592373540ae1b202615e6d210d868a8c (original ciphertext)

f81f2b649cc19391e0736673db64ed11 (Ciphertext of flipped bit of original plaintext)

54 bits different from original cipher

xii. ffffffffffffffffffffffffffffffff (original plaintext)

fdffffffffffffffffffffffffffffff (One bit flipped from original plaintext)

592373540ae1b202615e6d210d868a8c (original ciphertext)

f3f4af2dcca6ba6fbef35c613b213bae (Ciphertext of flipped bit of original plaintext)

65 bits different from original cipher

xiii. ffffffffffffffffffffffffffffffff (original plaintext)

feffffffffffffffffffffffffffffff (One bit flipped from original plaintext)

592373540ae1b202615e6d210d868a8c (original ciphertext)

f3477c356117d03d89c3d76f219573d7 (Ciphertext of flipped bit of original plaintext)

69 bits different from original cipher

xiv. ffffffffffffffffffffffffffffffff (original plaintext)

ff7fffffffffffffffffffffffffffff (One bit flipped from original plaintext)

592373540ae1b202615e6d210d868a8c (original ciphertext)

856fef909f5738dc681d5fa254a600f7 (Ciphertext of flipped bit of original plaintext)

58 bits different from original cipher

xv. ffffffffffffffffffffffffffffffff (original plaintext)

ffbfffffffffffffffffffffffffffff (One bit flipped from original plaintext)

592373540ae1b202615e6d210d868a8c (original ciphertext)

ce70cd7d75029d4520bb750432d4dc8f (Ciphertext of flipped bit of original plaintext)

150

66 bits different from original cipher

xvi. ffffffffffffffffffffffffffffffff (original plaintext)

ffdfffffffffffffffffffffffffffff (One bit flipped from original plaintext)

592373540ae1b202615e6d210d868a8c (original ciphertext)

e58946d8a9817449af3768a45bdb0464 (Ciphertext of flipped bit of original plaintext)

61 bits different from original cipher

xvii. ffffffffffffffffffffffffffffffff (original plaintext)

ffefffffffffffffffffffffffffffff (One bit flipped from original plaintext)

592373540ae1b202615e6d210d868a8c (original ciphertext)

04baa1f38785c3572b434da01ebc1c46 (Ciphertext of flipped bit of original plaintext)

58 bits different from original cipher

xviii. ffffffffffffffffffffffffffffffff (original plaintext)

fff7ffffffffffffffffffffffffffff (One bit flipped from original plaintext)

592373540ae1b202615e6d210d868a8c (original ciphertext)

56a1cf7ff0d271bc7ee2a86fe085dd11 (Ciphertext of flipped bit of original plaintext)

71 bits different from original cipher

xix. ffffffffffffffffffffffffffffffff (original plaintext)

fffbffffffffffffffffffffffffffff (One bit flipped from original plaintext)

592373540ae1b202615e6d210d868a8c (original ciphertext)

6b3c495acb0f472bf6ebd44f0d125625 (Ciphertext of flipped bit of original plaintext)

65 bits different from original cipher

xx. ffffffffffffffffffffffffffffffff (original plaintext)

fffdffffffffffffffffffffffffffff (One bit flipped from original plaintext)

592373540ae1b202615e6d210d868a8c (original ciphertext)

be7ce2a3cb38cd020e4eb8ad8b7f69f3 (Ciphertext of flipped bit of original plaintext)

73 bits different from original cipher

xxi. ffffffffffffffffffffffffffffffff (original plaintext)

fffeffffffffffffffffffffffffffff (One bit flipped from original plaintext)

592373540ae1b202615e6d210d868a8c (original ciphertext)

e9303e1844784a127dabdcc71db55ddb (Ciphertext of flipped bit of original plaintext)

61 bits different from original cipher

xxii. ffffffffffffffffffffffffffffffff (original plaintext)

ffff7fffffffffffffffffffffffffff (One bit flipped from original plaintext)

592373540ae1b202615e6d210d868a8c (original ciphertext)

151

26a4ad7e59cae2b48c11d86113a4888f (Ciphertext of flipped bit of original plaintext)

61 bits different from original cipher

xxiii. ffffffffffffffffffffffffffffffff (original plaintext)

ffffbfffffffffffffffffffffffffff (One bit flipped from original plaintext)

592373540ae1b202615e6d210d868a8c (original ciphertext)

9e60b950a5645b53bebc408c8d02fd9e (Ciphertext of flipped bit of original plaintext)

61 bits different from original cipher

xxiv. ffffffffffffffffffffffffffffffff (original plaintext)

ffffdfffffffffffffffffffffffffff (One bit flipped from original plaintext)

592373540ae1b202615e6d210d868a8c (original ciphertext)

3c8e82b81bd97a22e0ce995b2a88957a (Ciphertext of flipped bit of original plaintext)

60 bits different from original cipher

xxv. ffffffffffffffffffffffffffffffff (original plaintext)

ffffefffffffffffffffffffffffffff (One bit flipped from original plaintext)

592373540ae1b202615e6d210d868a8c (original ciphertext)

b960e21b42fed7474cfdc2355028a4e3 (Ciphertext of flipped bit of original plaintext)

64 bits different from original cipher

xxvi. ffffffffffffffffffffffffffffffff (original plaintext)

fffff7ffffffffffffffffffffffffff (One bit flipped from original plaintext)

592373540ae1b202615e6d210d868a8c (original ciphertext)

f140793b9eea8356d2d2d7e27b96da50 (Ciphertext of flipped bit of original plaintext)

57 bits different from original cipher

xxvii. ffffffffffffffffffffffffffffffff (original plaintext)

fffffbffffffffffffffffffffffffff (One bit flipped from original plaintext)

592373540ae1b202615e6d210d868a8c (original ciphertext)

7612e4e3e277716d97e92b8a276af515 (Ciphertext of flipped bit of original plaintext)

76 bits different from original cipher

xxviii. ffffffffffffffffffffffffffffffff (original plaintext)

fffffdffffffffffffffffffffffffff (One bit flipped from original plaintext)

592373540ae1b202615e6d210d868a8c (original ciphertext)

89490174a4140da2dda5b044f6556555 (Ciphertext of flipped bit of original plaintext)

78 bits different from original cipher

xxix. ffffffffffffffffffffffffffffffff (original plaintext)

fffffeffffffffffffffffffffffffff (One bit flipped from original plaintext)

152

592373540ae1b202615e6d210d868a8c (original ciphertext)

9b6b3fd8c0a3fcafca39a31add40f3d7 (Ciphertext of flipped bit of original plaintext)

63 bits different from original cipher

xxx. ffffffffffffffffffffffffffffffff (original plaintext)

ffffff7fffffffffffffffffffffffff (One bit flipped from original plaintext)

592373540ae1b202615e6d210d868a8c (original ciphertext)

efbae24054097bd2f9ee6eab511fac5a (Ciphertext of flipped bit of original plaintext)

57 bits different from original cipher

xxxi. ffffffffffffffffffffffffffffffff (original plaintext)

ffffffbfffffffffffffffffffffffff (One bit flipped from original plaintext)

592373540ae1b202615e6d210d868a8c (original ciphertext)

230f778028cca06309caf8f7919e88fc (Ciphertext of flipped bit of original plaintext)

49 bits different from original cipher

xxxii. ffffffffffffffffffffffffffffffff (original plaintext)

ffffffdfffffffffffffffffffffffff (One bit flipped from original plaintext)

592373540ae1b202615e6d210d868a8c (original ciphertext)

b5931327b552231245f2597eb158e246 (Ciphertext of flipped bit of original plaintext)

64 bits different from original cipher

xxxiii. ffffffffffffffffffffffffffffffff (original plaintext)

ffffffefffffffffffffffffffffffff (One bit flipped from original plaintext)

592373540ae1b202615e6d210d868a8c (original ciphertext)

ecb7a8d57857344b9d833bebe7f4bc58 (Ciphertext of flipped bit of original plaintext)

68 bits different from original cipher

xxxiv. ffffffffffffffffffffffffffffffff (original plaintext)

fffffff7ffffffffffffffffffffffff (One bit flipped from original plaintext)

592373540ae1b202615e6d210d868a8c (original ciphertext)

71405f4b70abebbd6322202c4fae8aee (Ciphertext of flipped bit of original plaintext)

53 bits different from original cipher

xxxv. ffffffffffffffffffffffffffffffff (original plaintext)

fffffffbffffffffffffffffffffffff (One bit flipped from original plaintext)

592373540ae1b202615e6d210d868a8c (original ciphertext)

e4962471b22828629e4938b167dc74aa (Ciphertext of flipped bit of original plaintext)

69 bits different from original cipher

xxxvi. ffffffffffffffffffffffffffffffff (original plaintext)

153

fffffffdffffffffffffffffffffffff (One bit flipped from original plaintext)

592373540ae1b202615e6d210d868a8c (original ciphertext)

a4a4a4b3a2810708031f377ad6dd5490 (Ciphertext of flipped bit of original plaintext)

69 bits different from original cipher

xxxvii. ffffffffffffffffffffffffffffffff (original plaintext)

fffffffeffffffffffffffffffffffff (One bit flipped from original plaintext)

592373540ae1b202615e6d210d868a8c (original ciphertext)

7caabf59aca85007d61c5b4000ec09eb (Ciphertext of flipped bit of original plaintext)

56 bits different from original cipher

xxxviii. ffffffffffffffffffffffffffffffff (original plaintext)

ffffffff7fffffffffffffffffffffff (One bit flipped from original plaintext)

592373540ae1b202615e6d210d868a8c (original ciphertext)

744e492605199b52e7c50bbb280aba96 (Ciphertext of flipped bit of original plaintext)

58 bits different from original cipher

xxxix. ffffffffffffffffffffffffffffffff (original plaintext)

ffffffffbfffffffffffffffffffffff (One bit flipped from original plaintext)

592373540ae1b202615e6d210d868a8c (original ciphertext)

44ce4cd592a81e30ef0fd6cbbfc18f5b (Ciphertext of flipped bit of original plaintext)

65 bits different from original cipher

xl. ffffffffffffffffffffffffffffffff (original plaintext)

ffffffffdfffffffffffffffffffffff (One bit flipped from original plaintext)

592373540ae1b202615e6d210d868a8c (original ciphertext)

523d9d4b0835703bd1f1fc0959db8f77 (Ciphertext of flipped bit of original plaintext)

61 bits different from original cipher

xli. ffffffffffffffffffffffffffffffff (original plaintext)

ffffffffefffffffffffffffffffffff (One bit flipped from original plaintext)

592373540ae1b202615e6d210d868a8c (original ciphertext)

dc0877e53f347b270d6931a8b64e5ef2 (Ciphertext of flipped bit of original plaintext)

63 bits different from original cipher

xlii. ffffffffffffffffffffffffffffffff (original plaintext)

fffffffff7ffffffffffffffffffffff (One bit flipped from original plaintext)

592373540ae1b202615e6d210d868a8c (original ciphertext)

9e1b485e3d52312be04eab08c490f422 (Ciphertext of flipped bit of original plaintext)

59 bits different from original cipher

154

xliii. ffffffffffffffffffffffffffffffff (original plaintext)

fffffffffbffffffffffffffffffffff (One bit flipped from original plaintext)

592373540ae1b202615e6d210d868a8c (original ciphertext)

f94009050a302a5e2e7621ca66b07ce7 (Ciphertext of flipped bit of original plaintext)

61 bits different from original cipher

xliv. ffffffffffffffffffffffffffffffff (original plaintext)

fffffffffdffffffffffffffffffffff (One bit flipped from original plaintext)

592373540ae1b202615e6d210d868a8c (original ciphertext)

3ce2294d6daf9b06d0fa7d076a9a1cad (Ciphertext of flipped bit of original plaintext)

52 bits different from original cipher

xlv. ffffffffffffffffffffffffffffffff (original plaintext)

fffffffffeffffffffffffffffffffff (One bit flipped from original plaintext)

592373540ae1b202615e6d210d868a8c (original ciphertext)

b639f7d1793f47fa8d9bca98f0e13ba8 (Ciphertext of flipped bit of original plaintext)

74 bits different from original cipher

xlvi. ffffffffffffffffffffffffffffffff (original plaintext)

ffffffffff7fffffffffffffffffffff (One bit flipped from original plaintext)

592373540ae1b202615e6d210d868a8c (original ciphertext)

c560efeb8a248924e5af60dcb6abba41 (Ciphertext of flipped bit of original plaintext)

65 bits different from original cipher

xlvii. ffffffffffffffffffffffffffffffff (original plaintext)

ffffffffffbfffffffffffffffffffff (One bit flipped from original plaintext)

592373540ae1b202615e6d210d868a8c (original ciphertext)

9418f75e97ad6d1ef2a9d70c40ee9175 (Ciphertext of flipped bit of original plaintext)

69 bits different from original cipher

xlviii. ffffffffffffffffffffffffffffffff (original plaintext)

ffffffffffdfffffffffffffffffffff (One bit flipped from original plaintext)

592373540ae1b202615e6d210d868a8c (original ciphertext)

e894666c49b161c66fe05629f4e13d2f (Ciphertext of flipped bit of original plaintext)

65 bits different from original cipher

xlix. ffffffffffffffffffffffffffffffff (original plaintext)

ffffffffffefffffffffffffffffffff (One bit flipped from original plaintext)

592373540ae1b202615e6d210d868a8c (original ciphertext)

d4a95149c0dd95a973f662eea4ff8047 (Ciphertext of flipped bit of original plaintext)

155

61 bits different from original cipher

l. ffffffffffffffffffffffffffffffff (original plaintext)

fffffffffff7ffffffffffffffffffff (One bit flipped from original plaintext)

592373540ae1b202615e6d210d868a8c (original ciphertext)

458ad2de5342eea7e094ff2a19bfa853 (Ciphertext of flipped bit of original plaintext)

56 bits different from original cipher

li. ffffffffffffffffffffffffffffffff (original plaintext)

fffffffffffbffffffffffffffffffff (One bit flipped from original plaintext)

592373540ae1b202615e6d210d868a8c (original ciphertext)

baf5719e039e0baa26fb6f41f3acdf22 (Ciphertext of flipped bit of original plaintext)

62 bits different from original cipher

lii. ffffffffffffffffffffffffffffffff (original plaintext)

fffffffffffdffffffffffffffffffff (One bit flipped from original plaintext)

592373540ae1b202615e6d210d868a8c (original ciphertext)

411f5b2578a62656d5c244c9fdde8f12 (Ciphertext of flipped bit of original plaintext)

55 bits different from original cipher

liii. ffffffffffffffffffffffffffffffff (original plaintext)

fffffffffffeffffffffffffffffffff (One bit flipped from original plaintext)

592373540ae1b202615e6d210d868a8c (original ciphertext)

16ee9d358cef19f9c4ac4c707eec4bd3 (Ciphertext of flipped bit of original plaintext)

69 bits different from original cipher

liv. ffffffffffffffffffffffffffffffff (original plaintext)

ffffffffffff7fffffffffffffffffff (One bit flipped from original plaintext)

592373540ae1b202615e6d210d868a8c (original ciphertext)

6217d8ef40dea047d763dc1a42282043 (Ciphertext of flipped bit of original plaintext)

72 bits different from original cipher

lv. ffffffffffffffffffffffffffffffff (original plaintext)

ffffffffffffbfffffffffffffffffff (One bit flipped from original plaintext)

592373540ae1b202615e6d210d868a8c (original ciphertext)

99a9b7138f946d3c8407079229e5c218 (Ciphertext of flipped bit of original plaintext)

61 bits different from original cipher

lvi. ffffffffffffffffffffffffffffffff (original plaintext)

ffffffffffffdfffffffffffffffffff (One bit flipped from original plaintext)

592373540ae1b202615e6d210d868a8c (original ciphertext)

156

da0cd45f803a92e814539afd52e920e9 (Ciphertext of flipped bit of original plaintext)

71 bits different from original cipher

lvii. ffffffffffffffffffffffffffffffff (original plaintext)

ffffffffffffefffffffffffffffffff (One bit flipped from original plaintext)

592373540ae1b202615e6d210d868a8c (original ciphertext)

2d8399d13b166995acb53cf8136a1d96 (Ciphertext of flipped bit of original plaintext)

71 bits different from original cipher

lviii. ffffffffffffffffffffffffffffffff(original plaintext)

fffffffffffff7ffffffffffffffffff (One bit flipped from original plaintext)

592373540ae1b202615e6d210d868a8c (original ciphertext)

b6c8de76732504745e52478d8bf63c1f (Ciphertext of flipped bit of original plaintext)

68 bits different from original cipher

lix. ffffffffffffffffffffffffffffffff (original plaintext)

fffffffffffffbffffffffffffffffff (One bit flipped from original plaintext)

592373540ae1b202615e6d210d868a8c (original ciphertext)

f42c0e82e138e57fbacbcfb5c42bc9a2 (Ciphertext of flipped bit of original plaintext)

74 bits different from original cipher

lx. ffffffffffffffffffffffffffffffff (original plaintext)

fffffffffffffdffffffffffffffffff (One bit flipped from original plaintext)

592373540ae1b202615e6d210d868a8c (original ciphertext)

9ca356d8eecea665e5967de034fae1e4 (Ciphertext of flipped bit of original plaintext)

53 bits different from original cipher

lxi. ffffffffffffffffffffffffffffffff (original plaintext)

fffffffffffffeffffffffffffffffff (One bit flipped from original plaintext)

592373540ae1b202615e6d210d868a8c (original ciphertext)

17b0c3cde5b98e1a7faf6863260a77ab (Ciphertext of flipped bit of original plaintext)

62 bits different from original cipher

lxii. ffffffffffffffffffffffffffffffff (original plaintext)

ffffffffffffff7fffffffffffffffff (One bit flipped from original plaintext)

592373540ae1b202615e6d210d868a8c (original ciphertext)

401d3b362f83a378af808e6a77720eb6 (Ciphertext of flipped bit of original plaintext)

62 bits different from original cipher

lxiii. ffffffffffffffffffffffffffffffff (original plaintext)

ffffffffffffffbfffffffffffffffff (One bit flipped from original plaintext)

157

592373540ae1b202615e6d210d868a8c (original ciphertext)

7ffbbb2c0d3aeb2d810dad9ae48fdb21 (Ciphertext of flipped bit of original plaintext)

62 bits different from original cipher

lxiv. ffffffffffffffffffffffffffffffff (original plaintext)

ffffffffffffffdfffffffffffffffff (One bit flipped from original plaintext)

592373540ae1b202615e6d210d868a8c (original ciphertext)

011276d249e33e27fc640ee9a9221786 (Ciphertext of flipped bit of original plaintext)

50 bits different from original cipher

lxv. ffffffffffffffffffffffffffffffff (original plaintext)

ffffffffffffffefffffffffffffffff (One bit flipped from original plaintext)

592373540ae1b202615e6d210d868a8c (original ciphertext)

49c8614390ba9b9234a9a4aec4970f11 (Ciphertext of flipped bit of original plaintext)

61 bits different from original cipher

lxvi. ffffffffffffffffffffffffffffffff (original plaintext)

fffffffffffffff7ffffffffffffffff (One bit flipped from original plaintext)

592373540ae1b202615e6d210d868a8c (original ciphertext)

efeedc022f929740a2e61e91a192da9d (Ciphertext of flipped bit of original plaintext)

59 bits different from original cipher

lxvii. ffffffffffffffffffffffffffffffff (original plaintext)

fffffffffffffffbffffffffffffffff (One bit flipped from original plaintext)

592373540ae1b202615e6d210d868a8c (original ciphertext)

f58188269a60cec4d05342dedd49604d (Ciphertext of flipped bit of original plaintext)

68 bits different from original cipher

lxviii. ffffffffffffffffffffffffffffffff (original plaintext)

fffffffffffffffdffffffffffffffff (One bit flipped from original plaintext)

592373540ae1b202615e6d210d868a8c (original ciphertext)

cd9b49eabc543191b491d5a8c72fa97e (Ciphertext of flipped bit of original plaintext)

68 bits different from original cipher

lxix. ffffffffffffffffffffffffffffffff (original plaintext)

fffffffffffffffeffffffffffffffff (One bit flipped from original plaintext)

592373540ae1b202615e6d210d868a8c (original ciphertext)

e92902412c2574eb4af3e00ea79627fb (Ciphertext of flipped bit of original plaintext)

61 bits different from original cipher

lxx. ffffffffffffffffffffffffffffffff (original plaintext)

158

ffffffffffffffff7fffffffffffffff (One bit flipped from original plaintext)

592373540ae1b202615e6d210d868a8c (original ciphertext)

7e65e820163d8675b656aac208fb21c8 (Ciphertext of flipped bit of original plaintext)

65 bits different from original cipher

lxxi. ffffffffffffffffffffffffffffffff (original plaintext)

ffffffffffffffffbfffffffffffffff (One bit flipped from original plaintext)

592373540ae1b202615e6d210d868a8c (original ciphertext)

cc591ef3f644c21056eaf635838b4e8e (Ciphertext of flipped bit of original plaintext)

61 bits different from original cipher

lxxii. ffffffffffffffffffffffffffffffff (original plaintext)

ffffffffffffffffdfffffffffffffff (One bit flipped from original plaintext)

592373540ae1b202615e6d210d868a8c (original ciphertext)

bcc7c3cccf95a4011833e76ecf37c89a (Ciphertext of flipped bit of original plaintext)

58 bits different from original cipher

lxxiii. ffffffffffffffffffffffffffffffff (original plaintext)

ffffffffffffffffefffffffffffffff (One bit flipped from original plaintext)

592373540ae1b202615e6d210d868a8c (original ciphertext)

f0127df46118504a57f10434a15be4c3 (Ciphertext of flipped bit of original plaintext)

66 bits different from original cipher

lxxiv. ffffffffffffffffffffffffffffffff (original plaintext)

fffffffffffffffff7ffffffffffffff (One bit flipped from original plaintext)

592373540ae1b202615e6d210d868a8c (original ciphertext)

7e533318c924ad29d13329cfda90f8cd (Ciphertext of flipped bit of original plaintext)

59 bits different from original cipher

lxxv. ffffffffffffffffffffffffffffffff (original plaintext)

fffffffffffffffffbffffffffffffff (One bit flipped from original plaintext)

592373540ae1b202615e6d210d868a8c (original ciphertext)

325297bb143918088bf5ad4a51dc1fed (Ciphertext of flipped bit of original plaintext)

66 bits different from original cipher

lxxvi. ffffffffffffffffffffffffffffffff (original plaintext)

fffffffffffffffffdffffffffffffff (One bit flipped from original plaintext)

592373540ae1b202615e6d210d868a8c (original ciphertext)

5f53c31d84021839665f5fe2fb2349a5 (Ciphertext of flipped bit of original plaintext)

57 bits different from original cipher

159

lxxvii. ffffffffffffffffffffffffffffffff (original plaintext)

fffffffffffffffffeffffffffffffff (One bit flipped from original plaintext)

592373540ae1b202615e6d210d868a8c (original ciphertext)

e6f3492ca8cab8dc87988224edc016cd (Ciphertext of flipped bit of original plaintext)

63 bits different from original cipher

lxxviii. ffffffffffffffffffffffffffffffff (original plaintext)

ffffffffffffffffff7fffffffffffff (One bit flipped from original plaintext)

592373540ae1b202615e6d210d868a8c (original ciphertext)

13342168a3ea88c03b8e7c7d87494033 (Ciphertext of flipped bit of original plaintext)

61 bits different from original cipher

lxxix. ffffffffffffffffffffffffffffffff (original plaintext)

ffffffffffffffffffbfffffffffffff (One bit flipped from original plaintext)

592373540ae1b202615e6d210d868a8c (original ciphertext)

fa90fb641b1a3a8951dfeceddf7bfa52 (Ciphertext of flipped bit of original plaintext)

58 bits different from original cipher

lxxx. ffffffffffffffffffffffffffffffff (original plaintext)

ffffffffffffffffffdfffffffffffff (One bit flipped from original plaintext)

592373540ae1b202615e6d210d868a8c (original ciphertext)

34f72f82b73c9b9350bf435fd3bae7fc (Ciphertext of flipped bit of original plaintext)

71 bits different from original cipher

lxxxi. ffffffffffffffffffffffffffffffff (original plaintext)

ffffffffffffffffffefffffffffffff (One bit flipped from original plaintext)

592373540ae1b202615e6d210d868a8c (original ciphertext)

4f6fdc67a014d0107090abfeb654570f (Ciphertext of flipped bit of original plaintext)

68 bits different from original cipher

lxxxii. ffffffffffffffffffffffffffffffff (original plaintext)

fffffffffffffffffff7ffffffffffff (One bit flipped from original plaintext)

592373540ae1b202615e6d210d868a8c (original ciphertext)

7eff481e6b8e53b3809f113e3335db61 (Ciphertext of flipped bit of original plaintext)

70 bits different from original cipher

lxxxiii. ffffffffffffffffffffffffffffffff (original plaintext)

fffffffffffffffffffbffffffffffff (One bit flipped from original plaintext)

592373540ae1b202615e6d210d868a8c (original ciphertext)

61f9da511bd2c644b5a4290e47b1ff5c (Ciphertext of flipped bit of original plaintext)

160

60 bits different from original cipher

lxxxiv. ffffffffffffffffffffffffffffffff (original plaintext)

fffffffffffffffffffdffffffffffff (One bit flipped from original plaintext)

592373540ae1b202615e6d210d868a8c (original ciphertext)

9e08327f1430314b5166023cb4575060(Ciphertext of flipped bit of original plaintext)

63 bits different from original cipher

lxxxv. ffffffffffffffffffffffffffffffff (original plaintext)

fffffffffffffffffffeffffffffffff (One bit flipped from original plaintext)

592373540ae1b202615e6d210d868a8c (original ciphertext)

9ca0a0ea4783a6b4ff111b3a9932305f (Ciphertext of flipped bit of original plaintext)

68 bits different from original cipher

lxxxvi. ffffffffffffffffffffffffffffffff (original plaintext)

ffffffffffffffffffff7fffffffffff (One bit flipped from original plaintext)

592373540ae1b202615e6d210d868a8c (original ciphertext)

66df2e07094e68917066fd3bce22f217 (Ciphertext of flipped bit of original plaintext)

64 bits different from original cipher

lxxxvii. ffffffffffffffffffffffffffffffff (original plaintext)

ffffffffffffffffffffbfffffffffff (One bit flipped from original plaintext)

592373540ae1b202615e6d210d868a8c (original ciphertext)

c9fc3c67a4cfd4eb343a19ff982c3c3a (Ciphertext of flipped bit of original plaintext)

71 bits different from original cipher

lxxxviii. ffffffffffffffffffffffffffffffff (original plaintext)

ffffffffffffffffffffdfffffffffff (One bit flipped from original plaintext)

592373540ae1b202615e6d210d868a8c (original ciphertext)

62b489194d166bd07bbd8f3c81a63c2f (Ciphertext of flipped bit of original plaintext)

69 bits different from original cipher

lxxxix. ffffffffffffffffffffffffffffffff (original plaintext)

ffffffffffffffffffffefffffffffff (One bit flipped from original plaintext)

592373540ae1b202615e6d210d868a8c (original ciphertext)

d345d6bd56067254350871890d7f0f3f (Ciphertext of flipped bit of original plaintext)

59 bits different from original cipher

xc. ffffffffffffffffffffffffffffffff (original plaintext)

fffffffffffffffffffff7ffffffffff (One bit flipped from original plaintext)

592373540ae1b202615e6d210d868a8c (original ciphertext)

161

1d4d86679786f47c9eb6b84e5807a2a0 (Ciphertext of flipped bit of original plaintext)

70 bits different from original cipher

xci. ffffffffffffffffffffffffffffffff (original plaintext)

fffffffffffffffffffffbffffffffff (One bit flipped from original plaintext)

592373540ae1b202615e6d210d868a8c (original ciphertext)

ea7ab8d885231476f449ffaaee24d956 (Ciphertext of flipped bit of original plaintext)

65 bits different from original cipher

xcii. ffffffffffffffffffffffffffffffff (original plaintext)

fffffffffffffffffffffdffffffffff (One bit flipped from original plaintext)

592373540ae1b202615e6d210d868a8c (original ciphertext)

f88776e71b7b7dbdaf662f2517666cd9 (Ciphertext of flipped bit of original plaintext)

58 bits different from original cipher

xciii. ffffffffffffffffffffffffffffffff (original plaintext)

fffffffffffffffffffffeffffffffff (One bit flipped from original plaintext)

592373540ae1b202615e6d210d868a8c (original ciphertext)

0a19887309846557ff99877514ccd5d5 (Ciphertext of flipped bit of original plaintext)

69 bits different from original cipher

xciv. ffffffffffffffffffffffffffffffff (original plaintext)

ffffffffffffffffffffff7fffffffff (One bit flipped from original plaintext)

592373540ae1b202615e6d210d868a8c (original ciphertext)

d242bb5b6c21cc5776f914469d12e497 (Ciphertext of flipped bit of original plaintext)

63 bits different from original cipher

xcv. ffffffffffffffffffffffffffffffff (original plaintext)

ffffffffffffffffffffffbfffffffff (One bit flipped from original plaintext)

592373540ae1b202615e6d210d868a8c (original ciphertext)

66a7284e9e97e95380aeb94b2b327023 (Ciphertext of flipped bit of original plaintext)

67 bits different from original cipher

xcvi. ffffffffffffffffffffffffffffffff (original plaintext)

ffffffffffffffffffffffdfffffffff (One bit flipped from original plaintext)

592373540ae1b202615e6d210d868a8c (original ciphertext)

da6f98470d2598dbd02e19059dc4336c (Ciphertext of flipped bit of original plaintext)

54 bits different from original cipher

xcvii. ffffffffffffffffffffffffffffffff (original plaintext)

ffffffffffffffffffffffefffffffff (One bit flipped from original plaintext)

162

592373540ae1b202615e6d210d868a8c (original ciphertext)

ee9ad0aa8f516843e886b0e94bcf5fce (Ciphertext of flipped bit of original plaintext)

64 bits different from original cipher

xcviii. ffffffffffffffffffffffffffffffff (original plaintext)

fffffffffffffffffffffff7ffffffff (One bit flipped from original plaintext)

592373540ae1b202615e6d210d868a8c (original ciphertext)

a71fe038d313905e03deb1258173b35d

62 bits different from original cipher

xcix. ffffffffffffffffffffffffffffffff (original plaintext)

fffffffffffffffffffffffbffffffff (One bit flipped from original plaintext)

592373540ae1b202615e6d210d868a8c (original ciphertext)

0b5add380cbd5cdf42abd641a0a51d09 (Ciphertext of flipped bit of original plaintext)

68 bits different from original cipher

c. ffffffffffffffffffffffffffffffff (original plaintext)

fffffffffffffffffffffffdffffffff (One bit flipped from original plaintext)

592373540ae1b202615e6d210d868a8c (original ciphertext)

249f6a0a162fcae391e2e43c5a06f497 (Ciphertext of flipped bit of original plaintext)

67 bits different from original cipher

ci. ffffffffffffffffffffffffffffffff (original plaintext)

fffffffffffffffffffffffeffffffff (One bit flipped from original plaintext)

592373540ae1b202615e6d210d868a8c (original ciphertext)

120a70fba96e811c885162325cbdea76 (Ciphertext of flipped bit of original plaintext)

64 bits different from original cipher

cii. ffffffffffffffffffffffffffffffff (original plaintext)

ffffffffffffffffffffffff7fffffff (One bit flipped from original plaintext)

592373540ae1b202615e6d210d868a8c (original ciphertext)

9b17e0e5dd9e8f88aee9707a2c1569e8

70 bits different from original cipher

ciii. ffffffffffffffffffffffffffffffff (original plaintext)

ffffffffffffffffffffffffbfffffff (One bit flipped from original plaintext)

592373540ae1b202615e6d210d868a8c (original ciphertext)

a7f04582f70d9bada744044249a12d80 (Ciphertext of flipped bit of original plaintext)

70 bits different from original cipher

civ. ffffffffffffffffffffffffffffffff (original plaintext)

163

ffffffffffffffffffffffffdfffffff (One bit flipped from original plaintext)

592373540ae1b202615e6d210d868a8c (original ciphertext)

9294db16aa5b5639c53b77f7ae5521ab (Ciphertext of flipped bit of original plaintext)

65 bits different from original cipher

cv. ffffffffffffffffffffffffffffffff (original plaintext)

ffffffffffffffffffffffffefffffff (One bit flipped from original plaintext)

592373540ae1b202615e6d210d868a8c (original ciphertext)

70f1a4e3e5679e4c410705eb3bf6b5a5

64 bits different from original cipher

cvi. ffffffffffffffffffffffffffffffff (original plaintext)

fffffffffffffffffffffffff7ffffff (One bit flipped from original plaintext)

592373540ae1b202615e6d210d868a8c (original ciphertext)

91ac421ee67c29b1043f8b087bf1d5f8 (Ciphertext of flipped bit of original plaintext)

70 bits different from original cipher

cvii. ffffffffffffffffffffffffffffffff (original plaintext)

fffffffffffffffffffffffffbffffff (One bit flipped from original plaintext)

592373540ae1b202615e6d210d868a8c (original ciphertext)

4582211b2838320a906e95de1cc37944 (Ciphertext of flipped bit of original plaintext)

57 bits different from original cipher

cviii. ffffffffffffffffffffffffffffffff (original plaintext)

fffffffffffffffffffffffffdffffff (One bit flipped from original plaintext)

592373540ae1b202615e6d210d868a8c (original ciphertext)

ee4e9e5bea6640526ce786f122c37898 (Ciphertext of flipped bit of original plaintext)

67 bits different from original cipher

cix. ffffffffffffffffffffffffffffffff (original plaintext)

fffffffffffffffffffffffffeffffff (One bit flipped from original plaintext)

592373540ae1b202615e6d210d868a8c (original ciphertext)

1abd53ee411527ec3b0b9a9ba11c56c3 (Ciphertext of flipped bit of original plaintext)

71 bits different from original cipher

cx. ffffffffffffffffffffffffffffffff (original plaintext)

ffffffffffffffffffffffffff7fffff (One bit flipped from original plaintext)

592373540ae1b202615e6d210d868a8c (original ciphertext)

a5f9c694626cafa6ff357ad21b16506e (Ciphertext of flipped bit of original plaintext)

66 bits different from original cipher

164

cxi. ffffffffffffffffffffffffffffffff (original plaintext)

ffffffffffffffffffffffffffbfffff (One bit flipped from original plaintext)

592373540ae1b202615e6d210d868a8c (original ciphertext)

4dea41e5fef61b5bca1d607d08d17973 (Ciphertext of flipped bit of original plaintext)

66 bits different from original cipher

cxii. ffffffffffffffffffffffffffffffff (original plaintext)

ffffffffffffffffffffffffffdfffff (One bit flipped from original plaintext)

592373540ae1b202615e6d210d868a8c (original ciphertext)

e05b00f9d998fe609067357de91de79c (Ciphertext of flipped bit of original plaintext)

66 bits different from original cipher

cxiii. ffffffffffffffffffffffffffffffff (original plaintext)

ffffffffffffffffffffffffffefffff (One bit flipped from original plaintext)

592373540ae1b202615e6d210d868a8c (original ciphertext)

8d75d5919c9a918e8bf64a34f3f83e73 (Ciphertext of flipped bit of original plaintext)

72 bits different from original cipher

cxiv. ffffffffffffffffffffffffffffffff (original plaintext)

fffffffffffffffffffffffffff7ffff (One bit flipped from original plaintext)

592373540ae1b202615e6d210d868a8c (original ciphertext)

7212325a88e044fc58172f372fc823ba (Ciphertext of flipped bit of original plaintext)

54 bits different from original cipher

cxv. ffffffffffffffffffffffffffffffff (original plaintext)

fffffffffffffffffffffffffffbffff (One bit flipped from original plaintext)

592373540ae1b202615e6d210d868a8c (original ciphertext)

c0599d215a45b5c20651ba88228eaa5a (Ciphertext of flipped bit of original plaintext)

61 bits different from original cipher

cxvi. ffffffffffffffffffffffffffffffff (original plaintext)

fffffffffffffffffffffffffffdffff (One bit flipped from original plaintext)

592373540ae1b202615e6d210d868a8c (original ciphertext)

a4ac3a9b8d2a84b069b659ce3415b190 (Ciphertext of flipped bit of original plaintext)

69 bits different from original cipher

cxvii. ffffffffffffffffffffffffffffffff (original plaintext)

fffffffffffffffffffffffffffeffff (One bit flipped from original plaintext)

592373540ae1b202615e6d210d868a8c (original ciphertext)

5aa1df70da5713137e35ffb5b24ee5ca (Ciphertext of flipped bit of original plaintext)

165

58 bits different from original cipher

cxviii. ffffffffffffffffffffffffffffffff (original plaintext)

ffffffffffffffffffffffffffff7fff (One bit flipped from original plaintext)

592373540ae1b202615e6d210d868a8c (original ciphertext)

fbca7c43152fb1ac83ab480757541708 (Ciphertext of flipped bit of original plaintext)

64 bits different from original cipher

cxix. ffffffffffffffffffffffffffffffff (original plaintext)

ffffffffffffffffffffffffffffbfff (One bit flipped from original plaintext)

592373540ae1b202615e6d210d868a8c (original ciphertext)

d02119cb35f5dab4905b1d0e6744734d (Ciphertext of flipped bit of original plaintext)

61 bits different from original cipher

cxx. ffffffffffffffffffffffffffffffff (original plaintext)

ffffffffffffffffffffffffffffdfff (One bit flipped from original plaintext)

592373540ae1b202615e6d210d868a8c (original ciphertext)

6c0ea469962f063a824ababb914713b9 (Ciphertext of flipped bit of original plaintext)

67 bits different from original cipher

cxxi. ffffffffffffffffffffffffffffffff (original plaintext)

ffffffffffffffffffffffffffffefff (One bit flipped from original plaintext)

592373540ae1b202615e6d210d868a8c (original ciphertext)

cd4ef41ef215060dce6b3330bd09f53f (Ciphertext of flipped bit of original plaintext)

70 bits different from original cipher

cxxii. ffffffffffffffffffffffffffffffff (original plaintext)

fffffffffffffffffffffffffffff7ff (One bit flipped from original plaintext)

592373540ae1b202615e6d210d868a8c (original ciphertext)

5db5182775f468b608a55d1c58b07e3c (Ciphertext of flipped bit of original plaintext)

68 bits different from original cipher

cxxiii. ffffffffffffffffffffffffffffffff (original plaintext)

fffffffffffffffffffffffffffffbff (One bit flipped from original plaintext)

592373540ae1b202615e6d210d868a8c (original ciphertext)

2ba6bc9eb9beb9205076461c02b4bf91 (Ciphertext of flipped bit of original plaintext)

62 bits different from original cipher

cxxiv. ffffffffffffffffffffffffffffffff (original plaintext)

fffffffffffffffffffffffffffffdff (One bit flipped from original plaintext)

592373540ae1b202615e6d210d868a8c (original ciphertext)

166

965ebf5d678c3cdb350efbbfbd701efc (Ciphertext of flipped bit of original plaintext)

66 bits different from original cipher

cxxv. ffffffffffffffffffffffffffffffff (original plaintext)

fffffffffffffffffffffffffffffeff (One bit flipped from original plaintext)

592373540ae1b202615e6d210d868a8c (original ciphertext)

86ed39d2248fa0c2bfb5160b0a639e22 (Ciphertext of flipped bit of original plaintext)

67 bits different from original cipher

cxxvi. ffffffffffffffffffffffffffffffff (original plaintext)

ffffffffffffffffffffffffffffff7f (One bit flipped from original plaintext)

592373540ae1b202615e6d210d868a8c (original ciphertext)

b458525a0cd23e0dec5dd74d09c050e5 (Ciphertext of flipped bit of original plaintext)

58 bits different from original cipher

cxxvii. ffffffffffffffffffffffffffffffff (original plaintext)

ffffffffffffffffffffffffffffffbf (One bit flipped from original plaintext)

592373540ae1b202615e6d210d868a8c (original ciphertext)

6359b9cf7cc2b390af7a544f9a66c61a (Ciphertext of flipped bit of original plaintext)

61 bits different from original cipher

cxxviii. ffffffffffffffffffffffffffffffff (original plaintext)

ffffffffffffffffffffffffffffffdf (One bit flipped from original plaintext)

592373540ae1b202615e6d210d868a8c (original ciphertext)

9539e6f563b6ca3a2e387a6bd1ad125c (Ciphertext of flipped bit of original plaintext)

61 bits different from original cipher

cxxix. ffffffffffffffffffffffffffffffff (original plaintext)

ffffffffffffffffffffffffffffffef (One bit flipped from original plaintext)

592373540ae1b202615e6d210d868a8c (original ciphertext)

3142d7ce79327988575aa5c66f0a3303 (Ciphertext of flipped bit of original plaintext)

61 bits different from original cipher

cxxx. ffffffffffffffffffffffffffffffff (original plaintext)

fffffffffffffffffffffffffffffff7 (One bit flipped from original plaintext)

592373540ae1b202615e6d210d868a8c (original ciphertext)

23c8d1a7f913b68454421daa1f6e29a3 (Ciphertext of flipped bit of original plaintext)

64 bits different from original cipher

cxxxi. ffffffffffffffffffffffffffffffff (original plaintext)

fffffffffffffffffffffffffffffffb (One bit flipped from original plaintext)

167

592373540ae1b202615e6d210d868a8c (original ciphertext)

e4772ee29fb6df1410132d43f2d6a3a1 (Ciphertext of flipped bit of original plaintext)

65 bits different from original cipher

cxxxii. ffffffffffffffffffffffffffffffff (original plaintext)

fffffffffffffffffffffffffffffffd (One bit flipped from original plaintext)

592373540ae1b202615e6d210d868a8c (original ciphertext)

f3c5fb96ff8bf5835d6ca8b8c85b7ff0 (Ciphertext of flipped bit of original plaintext)

66 bits different from original cipher

cxxxiii. ffffffffffffffffffffffffffffffff (original plaintext)

fffffffffffffffffffffffffffffffe (One bit flipped from original plaintext)

592373540ae1b202615e6d210d868a8c (original ciphertext)

fb781891293b8083140d91f7e274c6b1 (Ciphertext of flipped bit of original plaintext)

70 bits different from original cipher

cxxxiv. Average number of flipped bits in ciphertext =

sum of bits different from original cipher

128 (Since we did flipping 128 times)
= 63.492188

cxxxv. Then, the final step is to calculate the avalanche effect

cxxxvi. Avalance effect (for this example AES) =
63.492188

128 (Size of CipherText of AES is 128)
∗

100% = 49.603271875%

cxxxvii. There are algorithm that are less than 128 bit size, like DES. DES is 64 bit.

cxxxviii. Then instead of using ffffffffffffffffffffffffffffffff (128 bits) used on AES we used

ffffffffffffffff (64 bits) and instead of using IntialVector[16]=

{0xC2,0x9B,0x7C,0x97,0xC5,0x0D,0xD3,0xF8,0x4D,0x5B,0x5B,0x54,0x70,0x91,0

x79,0x21} ; and the final vector is array defined as unsigned char FinalVector[16]=

{0xBA,0x69,0x8D,0xFB,0x5A,0xC2,0xFF,0xD7,0x2D,0xBD,0x01,0xAD,0xFB,0x7

B,0x8E,0x1A} ;

cxxxix. We used IntialVector[8]= {0xC2,0x9B,0x7C,0x97,0xC5,0x0D,0xD3,0xF8}, and the

finalvector is array defined as unsigned char FinalVector[8]=

{0xBA,0x69,0x8D,0xFB,0x5A,0xC2,0xFF,0xD7};

168

APPENDIX 2: The value of PI in hexadecimal after the first digit [122].

243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89452821

E638D01377BE5466CF34E90C6CC0AC29B7C97C50DD3F84D5B5B54709179216D5D98

979FB1BD1310BA698DFB5AC2FFD72DBD01ADFB7B8E1AFED6A267E96BA7C9045F

12C7F9924A19947B3916CF70801F2………..[122].

169

