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Abstract: With the obesity epidemic being largely attributed to overeating, much research has been
aimed at understanding the psychological causes of overeating and using this knowledge to develop
targeted interventions. Here, we review this literature under a model of food addiction and present
evidence according to the fifth edition of the Diagnostic and Statistical Manual (DSM-5) criteria for
substance use disorders. We review several innovative treatments related to a food addiction model
ranging from cognitive intervention tasks to neuromodulation techniques. We conclude that there is
evidence to suggest that, for some individuals, food can induce addictive-type behaviours similar to
those seen with other addictive substances. However, with several DSM-5 criteria having limited
application to overeating, the term ‘food addiction’ is likely to apply only in a minority of cases.
Nevertheless, research investigating the underlying psychological causes of overeating within the
context of food addiction has led to some novel and potentially effective interventions. Understanding
the similarities and differences between the addictive characteristics of food and illicit substances
should prove fruitful in further developing these interventions.

Keywords: food addiction; overeating; obesity; impulsivity; reward sensitivity; cognitive training;
neuromodulation

1. Introduction

In 2003, obesity was declared a global epidemic by the World Health Organisation [1], and
the prevalence of overweight and obesity in both developed and developing countries continues
to increase [2,3]. In 2016, 39% of adults were estimated to be overweight and 13% to be obese [4].
Overweight and obesity present a substantial economic burden; in the UK, the total direct and
indirect costs are expected to reach £37.2 billion by 2025 [5]. One of the common explanations for
the increase in obesity over recent decades is the environment and, in particular, the availability of
highly varied, palatable and fattening foods—which have been considered to be addictive [6–9]. While
many individuals manage to resist these temptations and maintain a healthy weight, obese individuals
have been shown to have a preference for such energy-dense foods compared to healthy-weight
individuals [10–12]. The critical question is why some individuals are able to resist overeating while
others cannot; what is the evidence for ‘food addiction’ and how can this be used to inform interventions
for overeating.

The concept of ‘food addiction’ has been evident in the media and general public for some time
and is gaining increasing interest in the scientific literature [13]. There are now numerous reviews
discussing the diagnostic, neurobiological and practical aspects of food addiction, with arguments
both for and against its utility and validity [14–20]. This surge of interest comes with the perspective
that addiction can be conceptualised as a loss of control over intake for a particular substance or
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behaviour without the need to focus purely on psychoactive substances [21,22]. The fifth edition of
the Diagnostic and Statistical Manual [23] acknowledged this shift in perspective, with the addition
of gambling disorder as the first behavioural addiction. Acceptance of this disorder was based on
evidence that gambling can produce behavioural symptoms that parallel those of substance addiction
and can activate the same neural reward circuits as drugs of abuse [24,25]. There is now a large
body of research documenting similar observations for overeating and obesity. Moreover, treatments
developed for addictive disorders have also shown some efficacy for the treatment of obesity and
overeating. These findings highlight how a model of food addiction may help us to understand
elements of overweight/obesity beyond a simple lack of willpower and can also be used to inform
effective interventions and policy [26–30].

Food addiction has not yet been recognised in the DSM; however, the similarities between some
feeding and eating disorders and substance-use disorders (SUDs) have been acknowledged. These
similarities include the experience of cravings, reduced control over intake, increased impulsivity and
altered reward-sensitivity. Binge eating disorder (BED) and bulimia nervosa (BN) have been proposed
as phenotypes that may reflect these similarities to the greatest extent [31–34]. Both BED and BN are
characterised by recurrent episodes of binge eating in which large quantities of food are consumed
in a short time accompanied by feelings of a lack of control, despite physical and emotional distress.
Reports of food addiction have been shown to be particularly high amongst these individuals [32,35,36].
Food addiction has also been acknowledged with a standardised ‘diagnostic’ tool—the Yale Food
Addiction Scale (YFAS) [37,38]. The YFAS is a questionnaire that parallels the diagnostic criteria for
SUDs. The scale has so far been shown to exhibit good internal reliability as well as convergent,
discriminant and incremental validity [37–40].

In this review, we first discuss the DSM-5 diagnostic criteria for SUDs to summarise evidence
for food addiction. These criteria are defined as ‘a cluster of cognitive, behavioural and physiological
symptoms’ [23]. More specifically, the following categories are considered: impaired control, social
impairment, repeated use despite negative consequences and physiological criteria. However, it should
be noted that the physiological criteria of tolerance and withdrawal—for which there is less evidence
in relation to food—are not necessary for a diagnosis of SUD. The DSM-5 also states that although
changes in neural functioning are a key characteristic of SUDs, the diagnosis is based on a pathological
pattern of behaviours. Hence, we discuss the diagnostic criteria initially, followed by a review of
neurobiological evidence. We then explore the question of how this information can be, and has been,
applied to interventions for overeating.

1.1. Impaired Control

Taking larger amounts of the substance for longer periods than intended has been cited as one of
the most commonly reported symptoms in overweight/obese and BED individuals [41,42]. Excessive
and uncontrolled eating also forms the definition of binge eating in BED [23]. Although bingeing can
be a planned behaviour, it has been shown that planned binges still result in a greater intake than
initially intended [41]. Binge eating has also been documented in non-clinical samples [43,44]; however,
in these individuals, occasions of impaired control are more likely to reflect unintentional snacking
and excessive portion sizes [8,41,45].

Unsuccessful efforts to restrict food intake are also well documented, with many dieters failing to
maintain their diet or even gaining weight in the long term [46–51]. In their paper reviewing evidence
for refined food addiction (i.e., processed foods with high levels of sugars or sweeteners, refined
carbohydrates, fat, salt and caffeine), Ifland et al. [52] report that ‘Every refined food addict reports a
series of attempts to cut back on eating. They have used a variety of techniques’ (pg. 521). Curtis and
Davis [41] also report similar anecdotes in women with BED who describe avoiding certain trigger
foods to control their binges.

The third criterion of time spent obtaining, using and recovering from substance use also translates
to BED and BN. These individuals may spend a lot of their time thinking about, engaging in and
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recovering from binge episodes. As mentioned earlier, bingeing is often a planned behaviour which
may require a great deal of effort to purchase and store foods ready for a binge episode [41]. In addition,
the criteria for BED emphasise the time spent bingeing, with the number of binge episodes per week
determining the severity of the disorder [23]. Moreover, these individuals often experience physical
and emotional distress following a binge eating episode. Recovery from food consumption has also
been reported in self-identified food addicts with references to feeling sleepy or ‘hung-over’ [52,53].

Although evidence for food addiction directly related to the DSM-5 diagnostic criteria for impaired
control is largely anecdotal, there is a considerable amount of empirical evidence for an association
between overeating/obesity and impaired control generally. Two aspects of self-regulatory failure
that are particularly pertinent in the case of substance use and overeating are impulsivity and reward
sensitivity [54–56].

1.1.1. Impulsivity

Although impulsivity is a multi-faceted construct, it can be defined broadly as the tendency
to think and act without sufficient forethought, which often results in behaviour that is discordant
with one’s long-term goals. The role of impulsivity in SUDs is well documented [55,57–60]. Many
studies have reported higher impulsivity levels with increasing substance use across a wide range of
questionnaires and behavioural tasks, and for a variety of different substances [61–66]. For example,
Noël et al. [67] performed a series of behavioural tasks assessing the ability to suppress irrelevant
responses (response inhibition) and irrelevant information (proactive interference) in a group of
detoxified alcohol-dependent individuals and matched healthy controls. They found a statistically
significant group difference for all three tests assessing response inhibition but no differences for
proactive interference.

Impulsivity has also been implicated in overeating and obesity [54,68–71]. Overweight/obese
individuals score higher on self-reported [72–74] and behavioural measures of impulsivity [75–77],
whereas those high in self-control have been shown to be less likely to give in to temptation [78–80]
and are more likely to maintain a healthy diet and engage in physical exercise [81–83] Impulsivity
scores have also been shown to predict poor food choices [84] and correlate positively with food
consumption [85–87]. For example, Guerrieri et al. [87] found that, in a sample of healthy-weight
women, those with higher impulsivity scores ate more candy during a ‘bogus’ taste test than those
with lower impulsivity scores. Churchill and Jessop [88] also showed a predictive relationship between
impulsivity and snacking on high-fat foods over a two-week period. Scores on the YFAS have also
been associated with various measures of impulsivity, such as motor and attentional impulsivity,
mood-related impulsivity and delay discounting [89,90].

1.1.2. Reward Sensitivity

A heightened general sensitivity to reward has also been linked to both substance use and
overeating [69,77,91–93]. In the food literature, self-report measures of reward sensitivity have revealed
associations with BMI, food craving and preferences for foods high in fat and sugar [93–95]. Using
two behavioural tasks, Guerrieri et al. [69] measured reward sensitivity and response inhibition in
children aged 8–10. They subsequently measured food intake in a bogus taste test when the foods
were either varied or monotonous. Their results revealed that reward-sensitive children consumed
significantly more calories than non-reward sensitive children only when the food was varied. There
was no effect of response inhibition on food intake, nor any interaction with variety; however, unlike
reward sensitivity, deficient response inhibition was associated with being overweight. The authors
suggested that reward sensitivity may play a causal role in overeating, whereas deficient inhibitory
control may be more of a maintaining factor. This fits well with findings from a study demonstrating
a role of reward sensitivity in the early onset of heroin use and a role of impulsivity in escalating
use [92,96].
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There is also evidence to suggest that reward sensitivity may decrease with more prolonged
or established overeating, with studies showing anhedonia, or hypo-sensitivity to reward, in obese
participants [97–100]. For example, Davis et al. [97] demonstrated that although overweight women
were more sensitive to reward than healthy-weight women, those who were obese were significantly
less reward sensitive than overweight women. Importantly, the earlier mentioned association between
reward sensitivity and increased BMI was found in a sample of mainly healthy-weight women, with
only 1% classified as obese [93]. Although there is a great deal of evidence to suggest that sensitivity to
reward plays a role in substance abuse and overeating, the causal direction of this relationship remains
unclear. On the one hand, increasing reward sensitivity may lead to overeating by increasing motivation
towards pleasurable activities, such as consuming energy-dense foods that elicit dopamine and opioid
activation. On the other hand, decreased reward sensitivity may cause individuals to seek out rewarding
activities as a form of ‘self-medication’ in order to boost dopamine functioning (i.e., addictive behaviour
is the result of a ‘reward deficiency syndrome’) [101,102]. These two arguments, and the relevant
neuroimaging literature, are discussed further below (see the Neurobiological Similarities section
below) and in more detail by Burger and Stice [103].

Burger and Stice [103] offer several theories for how these two causal directions combine to
explain obesity. They propose that high sensitivity to reward may initially cause individuals to
over-consume palatable foods, but this sensitivity is then modified over time as the brain’s reward
system adapts and shows divergent changes in food motivation (‘wanting’) versus hedonic pleasure
(‘liking’). According to Robinson and Berridge’s [104–106] incentive-sensitisation theory, repeated
intake results in an increased incentive value for these foods and their associated cues, which may
be subjectively experienced as excessive wanting or craving. Moreover, this theory argues that with
repeated presentations of palatable foods, the hedonic pleasure derived from consuming the food
will decrease due to neural habituation, while the anticipation of reward increases. Hence, a vicious
cycle emerges in which the individual will experience less pleasure from the food (‘liking’), but will
simultaneously experience an increased desire (‘wanting’) for the food, driving further food seeking
and consumption [107–109] (see Figure 1). The experience of intense cravings is the third criterion
of impaired control and is another symptom of substance addiction that can be readily applied to
overeating and obesity.
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Figure 1. The proposed cycle of ‘food addiction’. Initial vulnerability for the over-consumption of 
palatable food is marked by increased impulsivity and reward sensitivity, as well as a diminished 
capacity for inhibitory control. As a consequence of overconsumption, individuals experience 
tolerance, craving and withdrawal, along with a range of social, emotional and behavioural 
difficulties such as weight stigmatisation and feelings of guilt and shame. With repeated consumption 
of these foods, the individual is likely to habituate to the hedonic properties of the food, resulting in 
reduced enjoyment or liking. These changes are also accompanied by an increased desire or ‘wanting’ 
for the food [104–108]. In an attempt to relieve these symptoms, the individual ‘self-medicates’ by 
increasing food consumption, which can result in compulsive or binge eating behaviour, thus creating 
a cycle of addiction. It should be noted that the extent to which each of these mechanisms is 
experienced varies considerably across individuals. In particular, initial vulnerability to addiction 
may be related to individual differences in reward sensitivity, impulsivity and inhibitory control 
[110–113]. 

1.2. Craving 

The term ‘food craving’ typically refers to an intense desire to consume a specific food [114,115]. 
Food cravings appear to be very common with reports of 100% of young women and 70% of young 
men experiencing a craving for at least one food in the past year [116,117]. The most commonly 
reported craved food is chocolate, although cravings for carbohydrates and salty snacks are also 
common [118–122]. The prevalence of food cravings has prompted the development of several 
standardised questionnaires that measure food cravings with a good degree of internal consistency 
and construct validity [123–127], including a specific questionnaire just for chocolate (Attitudes to 
Chocolate Questionnaire) [128]. Recurrent food cravings are of interest in relation to food addiction 
as they have been associated with binge eating, increased food intake and increased BMI 
[124,127,129–132]. Increased reports of food craving have also been demonstrated in individuals who 
score highly on measures of self-reported food addiction [133–135] and those with BED and BN [136–
138]. Furthermore, just as drug craving is associated with an increased likelihood of relapse [139–
141], food craving has been linked to poor dieting success [142–144]. 

Further support for the similarity between drug and food craving is evident in the findings of 
cue-reactivity research. The aphorism that cravings are most likely to occur in the presence of 
substance-related stimuli has been well documented, with cue-exposure paradigms showing 
significant effects of drug-related cues on self-reported and physiological measures of craving [145–
148]. Similarly, exposure to food cues has also been shown to increase food cravings [149,150] and a 
recent systematic review of 45 studies (involving 3292 participants) concluded that ‘food cue-
reactivity’ (physiological, neural and subjective reward-related responses to food cues) reliably and 

Figure 1. The proposed cycle of ‘food addiction’. Initial vulnerability for the over-consumption of
palatable food is marked by increased impulsivity and reward sensitivity, as well as a diminished
capacity for inhibitory control. As a consequence of overconsumption, individuals experience tolerance,
craving and withdrawal, along with a range of social, emotional and behavioural difficulties such as
weight stigmatisation and feelings of guilt and shame. With repeated consumption of these foods, the
individual is likely to habituate to the hedonic properties of the food, resulting in reduced enjoyment or
liking. These changes are also accompanied by an increased desire or ‘wanting’ for the food [104–108].
In an attempt to relieve these symptoms, the individual ‘self-medicates’ by increasing food consumption,
which can result in compulsive or binge eating behaviour, thus creating a cycle of addiction. It should
be noted that the extent to which each of these mechanisms is experienced varies considerably across
individuals. In particular, initial vulnerability to addiction may be related to individual differences in
reward sensitivity, impulsivity and inhibitory control [110–113].

1.2. Craving

The term ‘food craving’ typically refers to an intense desire to consume a specific food [114,115].
Food cravings appear to be very common with reports of 100% of young women and 70% of young
men experiencing a craving for at least one food in the past year [116,117]. The most commonly
reported craved food is chocolate, although cravings for carbohydrates and salty snacks are also
common [118–122]. The prevalence of food cravings has prompted the development of several
standardised questionnaires that measure food cravings with a good degree of internal consistency and
construct validity [123–127], including a specific questionnaire just for chocolate (Attitudes to Chocolate
Questionnaire) [128]. Recurrent food cravings are of interest in relation to food addiction as they
have been associated with binge eating, increased food intake and increased BMI [124,127,129–132].
Increased reports of food craving have also been demonstrated in individuals who score highly on
measures of self-reported food addiction [133–135] and those with BED and BN [136–138]. Furthermore,
just as drug craving is associated with an increased likelihood of relapse [139–141], food craving has
been linked to poor dieting success [142–144].

Further support for the similarity between drug and food craving is evident in the findings
of cue-reactivity research. The aphorism that cravings are most likely to occur in the presence of
substance-related stimuli has been well documented, with cue-exposure paradigms showing significant
effects of drug-related cues on self-reported and physiological measures of craving [145–148]. Similarly,
exposure to food cues has also been shown to increase food cravings [149,150] and a recent systematic
review of 45 studies (involving 3292 participants) concluded that ‘food cue-reactivity’ (physiological,
neural and subjective reward-related responses to food cues) reliably and prospectively predicts both
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energy intake and weight gain, particularly over the longer-term, accounting for ~11% (7%–26%) of
variance in these outcomes [129]. Food cue-induced craving is especially prevalent among binge
eaters and those with BED [151,152] in whom it has been correlated with binge eating frequency
and BMI [153]. It is possible, therefore, that certain individuals are more susceptible to cue-induced
cravings, and also that this susceptibility may transfer across different substances. Both Mahler and de
Wit [147] and Styn et al. [148] found a significant correlation between cue-induced cigarette craving
and cue-induced food craving in smokers, suggesting a common mechanism. Cue-induced craving is
also believed to strengthen with repeated consumption, fueling the vicious circle shown in Figure 1.

1.3. Social Impairment

Overeating and obesity have been associated with poor social functioning, especially among
children and adolescents. When assessing quality of life with child and parent-proxy reports, social
functioning is significantly lower for obese compared to healthy-weight children and is inversely
correlated with BMI [154–156]. Poor social functioning in overweight children may be partly due
to the overt victimisation and teasing experienced as a direct result of their weight status [157,158].
Hayden-Wade et al. [159] found that the degree of teasing experienced by overweight children was
positively correlated with loneliness, an increased preference for isolative activities and a lower
preference for social activities. This preference for being alone, along with the emotional difficulty of
being victimised, fuels a vicious cycle as these circumstances are likely to promote further overeating
and binge-eating—which, in turn, leads to increased weight gain and further teasing [42,160] (see
Figure 1).

Weight stigmatisation may also affect interpersonal friendships and romantic relationships in
adulthood with reports of discriminatory attitudes and behaviours in occupational [161,162] and
romantic settings [158,162,163]. For example, Chen and Brown [164] reported that when making sexual
choices about a partner, both male and female college students ranked an obese individual as the least
liked. In a study focusing on the psychosocial correlates of food addiction, Chao et al. [165] found that,
compared to control participants, those who met the YFAS criteria scored lower on physical, mental
and social aspects of health-related quality of life. Social impairments were related to self-esteem,
sexual life, public distress and work. Interpersonal problems have also been associated with binge
eating—a relationship which is likely to be bidirectional [166,167].

1.4. Repeated Use Despite Negative Consequences

It has been noted that due to its increase in prevalence and associated comorbidities, obesity
now appears to be a greater threat to the burden of disease than smoking [168]. The physical
and psychological effects of overweight and obesity are well documented and include, but are not
limited to, depression, an increased risk of diabetes, hypertension, cardiovascular disease and some
cancers [169–177]. With pervasive warnings regarding the consequences of overeating, from the
media, government, and the medical profession, it seems fair to assume that most overweight and
obese individuals are aware of the negative outcomes associated with their dietary behaviour [41,52].
Critically, even those who have undergone weight loss treatment often fail to lose weight or gain weight
following intervention [46,48,50,51]. Continued overeating also occurs in those who have received
bariatric surgery with patients showing continued snacking and poor food choices [178,179]. There is,
therefore, considerable evidence to support continued overeating despite negative consequences.

1.5. Physiological Criteria

Tolerance to a substance occurs when the same amount of the substance has an increasingly
diminished effect with repeated use. This effect usually results in escalated use as the individual
increases their dosage in order to recreate the original experience. There is some evidence of food
tolerance in animal models of sugar addiction. Rats given intermittent and excessive access to sugar
solution increase their intake significantly over time, and this is accompanied by neurochemical
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changes that are similar to those seen in drug abuse [180,181]. In humans, there is some indication
that tolerance to sugar may occur in the first few years of life. The effectiveness of sucrose as an
analgesic in young infants is reported to diminish after 18 months of age as sugar consumption
increases [182–185]. The possibility of such early tolerance to palatable foods and the methodological
difficulties of diet restriction in humans makes finding empirical evidence of tolerance in adults
difficult and unlikely. However, statistics indicating increased consumption and portion sizes for these
foods provide indirect evidence of tolerance to high-fat/high-sugar foods at a population level [52,186],
and also at an individual level based on anecdotal reports. For example, Pretlow [42] found that
77% of overweight poll respondents reported eating more now than when they originally became
overweight. Furthermore, in response to a follow-up question asking why they believed that they ate
more, 15% indicated that they were less satisfied by food. Hetherington et al. [109] also found that
when participants were provided with chocolate for three weeks, they increased their intake over time
while simultaneously reporting a reduction in food liking.

Withdrawal is the second physiological criterion for substance abuse and is defined by the
presence of physical or psychological symptoms in response to substance deprivation, or the use of
the substance in order to relieve these symptoms. Evidence of withdrawal has also been found in
the aforementioned animal models of sugar addiction. Under conditions of sugar deprivation, these
animals show withdrawal symptoms similar to those seen with morphine and nicotine withdrawal,
including physical symptoms of teeth chattering, forepaw tremor, head shaking and reduced body
temperature [187,188] as well as increased aggression [189] and anxiety [190]. There are also anecdotal
reports of withdrawal-like symptoms in humans, including persistent cravings and negative affects
when attempting to reduce food intake [42,191], as well as the tendency to eat to avoid the emotional
symptoms associated with withdrawal such as fatigue, anxiety and depression [52]. Using the YFAS,
withdrawal symptoms (such as agitation, anxiety, or other physical symptoms) have been reported in
up to 50% of individuals with obesity and BED [35].

2. Neurobiological Similarities between Palatable Foods and Drugs of Abuse

Just as altered brain functioning has been reported in SUDs, overeating and obesity have also
been associated with changes in the neural processing of the motivational properties of food. This
includes changes in systems coding the hedonic and rewarding aspects of the substance, as well as the
systems involved in controlling these motivations [103,192–194]. Volkow and colleagues [195–199]
have proposed a common model for addiction and obesity that involves two neural circuits that are
both modulated by dopamine—increased reward sensitivity and diminished inhibitory control [70].

2.1. Neurobiology of Reward Sensitivity

Addictive drugs directly affect the mesolimbic dopamine system (MDS), which is thought to
mediate the processing of motivational salience, pleasure and reward [200]. Animal studies have
shown that, similar to drugs of abuse, palatable foods are capable of triggering dopamine release in
the nucleus accumbens (NAc) and ventral tegmental area (VTA) [181,201–203]. Furthermore, activity
in the MDS has been linked to the amount of food ingested and its rewarding properties [204,205].
However, distinct patterns of neuronal firing in the NAc to food and illicit substances have also
been reported [206,207]. Increased activation of this reward system has also been shown in human
participants during the presentation of food cues and meal consumption [96,208–211]. For example,
Stoeckel et al. [212] demonstrated that when viewing images of high-calorie foods, obese women
showed significantly greater activation in a number of regions associated with reward, compared to
healthy-weight women. Obese participants have also demonstrated increased responsivity to food in
gustatory and somatosensory regions [213,214], suggesting a heightened sensitivity to palatable food
that may contribute to overeating and obesity.

Although an increased sensitivity to reward may initially drive individuals to consume calorific
foods, it has been speculated that compulsive eating may develop as the pleasure derived from
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these foods diminishes with increased tolerance (see Figure 1). It has been argued that, just as with
drugs of abuse, the chronic consumption of such rewarding foods may cause the downregulation
of dopamine receptors in order to compensate for their overstimulation [215–217]. Decreased
striatal dopamine receptor availability has frequently been observed in individuals with substance
addictions [218–222], whereas increased receptor availability has been shown to have a protective role
against alcoholism [223,224]. It has also been shown that striatal D2 receptor availability is significantly
lower in severely obese individuals compared to controls and is significantly and negatively correlated
with BMI [99,100].

It has been argued, therefore, that a reduction in dopamine receptor availability may subsequently
cause or exacerbate overeating as a form of ‘self-medication’ in which the individual attempts
to compensate for a diminished experience of reward [100,225–227] (see Figure 2). For example,
Geiger et al. [228] found that rats fed on a cafeteria-style diet showed reduced baseline levels of
mesolimbic dopamine activity. This activity was stimulated by cafeteria foods but not by their regular
chow, thus suggesting that a preference for palatable food may develop as a consequence of its ability
to increase dopamine release compared to other, less palatable, foods. Animal studies have also
demonstrated causal effects of D2 receptor agonists and antagonists on overeating. The administration
of D2 antagonists has been shown to increase meal size, meal duration and body weight, whereas
treatment with D2 agonists can reduce hyperphagia and prevent weight gain [229–231]. The effects
of such pharmaceutical interventions in humans, however, have been fairly mixed. The use of
antipsychotic medication which blocks D2 receptors is typically associated with weight gain [232] and
some D2 agonists have been found to reduce body weight [233]. A recent trial, however, found no effect
of the dopamine agonist cabergoline on preventing weight regain [234,235] and there is some evidence
that D2 agonists can promote weight gain in patients with anorexia nervosa [236]. More encouragingly,
studies with gastric bypass patients have demonstrated increased D2 receptor availability following
weight loss, indicating that the effects of overeating on dopamine receptor downregulation may be
reversible [237–239].
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Figure 2. The proposed cycle of ‘food addiction’ including the role of dopamine. When palatable food
is consumed, the brain releases the hormone dopamine (alongside other neurotransmitters such as
opioids). Over time, this increase in dopamine leads to the downregulation of dopamine receptors,
causing individuals to experience a reduction in pleasure during palatable food consumption. This
decrease in pleasure, combined with symptoms of tolerance, craving, withdrawal and other social,
emotional and behavioural difficulties, results in the individual engaging in compensatory behaviour
by increasing food consumption. As a consequence, food consumption may become compulsive, thus
creating a cycle of food addiction.
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2.2. Neurobiology of Inhibitory Control

Dopamine receptor availability in obese individuals has also been shown to correlate positively
with metabolism in prefrontal regions involved in inhibitory control (specifically the dorsolateral
prefrontal cortex [DLPFC], medial orbitofrontal cortex [mOFC] and anterior cingulate gyrus, as well as
the somatosensory cortices) [99]. Similar findings have been observed in healthy-weight participants,
who demonstrated a positive correlation between dopamine receptor availability and inhibitory control
performance on the stop-signal task [240]. Volkow et al. [99] hypothesised that altered dopamine
functioning may play a role in overeating not only through altering the rewarding properties of food
but also by reducing inhibitory control. A significant negative correlation between BMI and prefrontal
activity has also been reported [75,241,242] along with reduced prefrontal activation following a meal
in obese men and women [243–245]. Conversely, successful dieting has been positively associated with
frontal activation [246–249].

In a study of healthy women, Lawrence et al. [96] reported an association between food cue
reactivity in the NAc and later snack consumption [117]. They also found that this reactivity was
associated with increased BMI for individuals who reported low self-control. The authors proposed a
‘dual hit’ of increased reward motivation and poor self-control in predicting increased food intake [250].
Similarly, reductions in frontal grey matter volume have also been linked to increased BMI, poor
food choices and related deficits in executive functioning [251–258]. These findings are reflective of
a growing literature on the cognitive dysfunction associated with drug abuse and obesity, although
research indicates that the causal relationship is bidirectional [76,259–263].

Although it has been hypothesised that overeating is initially caused by a hyper-responsive reward
circuitry and maintained by the subsequent degradation of this system [103], there is also evidence
to suggest that some individuals may be genetically vulnerable to an impaired capacity for reward
and inhibitory control. Genetics studies have revealed that both drug users and obese individuals
have a significantly greater prevalence of the TaqI A1 allele polymorphism which can cause a 30%–40%
reduction in striatal D2 receptors [213,264–269]. In addition, this polymorphism has been associated
with behavioural measures of impulsivity and low reward sensitivity [270–272]. It has also been linked
to low grey matter volume in the anterior cingulate cortex (ACC) [273], an area which is believed to be
involved in executive control and reward expectancy [240,274,275], and has been shown to be active
during resistance of cigarette craving [276]. Together these findings demonstrate that overeating and
SUDs may share a common neurobiological mechanism involving altered dopamine functioning that
subsequently disrupts mechanisms involved in reward sensitivity and inhibitory control.

Our review, considering each of the DSM-5 criteria for SUDs in isolation, suggests that there is
considerable evidence for food addiction. Whether an individual meets clinical diagnostic criteria
under an SUD model, and the severity of the disorder, however, is dependent on an individual
presenting a number of symptoms (mild: two to three symptoms; moderate: four to five symptoms;
severe: six or more symptoms). Studies utilising the YFAS (which uses diagnostic criteria for SUDs)
have certainly suggested that a substantial proportion of the general population meet the diagnostic
cut-off for food addiction (15%–20%), with approximately 11% of the population being classified as
‘severe’ [38,276]. The prevalence of food addiction in those with BED and BN has been reported as
much higher, with estimates of 92% for BED and 96%–100% for BN [32,277,278]. Acknowledging the
potential prevalence of food addiction, we next discuss a range of treatments for overeating that have
been informed by the similarities between SUDs and overeating.

3. Treatment Implications

One of the greatest potential advantages of identifying the similarities between substance
addictions and overeating is the development of effective interventions. The standard approach to
weight loss, involving maintaining a healthy diet and physical exercise, is often associated with poor
adherence rates and overall weight gain [46–51,279]. One possible reason for the ineffectiveness of
dieting is that it is treating the outcome of overeating and not the underlying cause. Approaches
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that target increased impulsivity and reduced self-control may have more success. For example, Hall,
Fong, Epp and Elias [280] showed that executive function on the go/no-go task (a measure of response
inhibition) predicted unique variance for dietary behaviour and physical exercise, and also moderated
the association between intentions and behaviour [117,281]. This suggests that individuals who are
more capable of controlling their impulsive actions are more likely to successfully meet their goals.
This also implies that techniques to improve such abilities may prove to be effective tools for aiding
weight loss.

3.1. Cognitive Interventions

Increased motivation for illicit substances has been associated with several cognitive biases
including attentional biases [282–287], approach biases [283,284,288–290] and affective biases [291–294].
One method for reducing this motivation, therefore, has been to use training tasks that are designed
to reduce these cognitive biases, and recently, these training tasks have been explored as potential
interventions for overeating.

Heightened attentional biases towards food have been demonstrated across various populations,
including those with disordered eating patterns [295–300] and those who are overweight or
obese [301–304]. Just as the addiction literature has explored whether attentional biases can be
manipulated to reduce substance intake, this approach has also been explored with food consumption,
although with mixed results [305–309]. Hardman et al. [305] trained undergraduate students on the
visual probe task to either attend or avoid images of cake and stationery. They found a modest increase
in attentional bias for the attend-cake group but no effects of bias training, for either group, on hunger
or food consumption, suggesting that any attentional biases with food may be particularly difficult to
modify. Using a female-only sample, Kemps et al. [306] demonstrated significant effects of a similar
dot-probe training on attentional bias and food consumption. Effects on attention were found to
generalise to novel pictures, however, effects on food intake were specific to the trained food and
were undermined by participants consuming more of an equally unhealthy novel food. More recent
results hold some promise for attentional bias modification, indicating that training can be used to
decrease immediate calorie consumption in overweight and obese women [310] and can increase the
consumption of healthy foods [311]. Multiple training sessions have also demonstrated that effects can
persist beyond the period of training for up to a week [312].

There is also a small body of evidence demonstrating an approach tendency towards food for
individuals with disordered eating [295,313,314], high trait food craving [315] and those who are
overweight or obese [316–318]. For example, Veenstra and de Jong [313] showed that those who scored
highly on a measure of dietary restraint (a measure for the chronic, cognitive limitation of food intake)
were significantly faster to move a manikin towards than away from images of food. Using a different
measure of approach bias, Kemps, Tiggemann, Martin and Elliott [319] also found that participants
who liked chocolate were significantly faster at pairing images of chocolate with approach words
compared to avoid words. Furthermore, they also demonstrated that participants who were trained to
pair images of chocolate with either approach or avoid words increased and decreased their approach
bias, respectively. The approach group also demonstrated a significant increase in chocolate cravings.
Although the avoid group showed a decrease in reported craving, this finding was not statistically
significant from baseline [320]. Similar training protocols have also been shown to be effective at
reducing action tendencies towards high-calorie foods and reducing trait- and cue-induced craving in
participants with subclinical eating disorders [321].

The use of addictive substances can also be motivated by the positive affect associated with them;
therefore, reducing such an affective bias should discourage their use. Studies using evaluative (or
affective) conditioning have shown initial promise. Here, the evaluation of a conditioned stimulus (CS)
can be modified by consistently pairing it with a valenced unconditioned stimulus (US) [322,323]. In the
food literature, negatively valenced stimuli are typically used to reduce the implicit liking of unhealthy
foods [324–328]. Further, evaluative conditioning has been found to lead to more favourable food
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choices in some studies. For example, Walsh and Kiviniemi [329] found that participants were three
times more likely to select fruit over a granola bar after receiving evaluative conditioning training where
positive (relative to negative or neutral) words and images were paired with images of fruit. Similarly,
Hollands et al. [325] showed that participants were more likely to select fruit over an unhealthy snack
when snack images were repeatedly paired with negative body images compared to a blank screen.
Interestingly, this effect was moderated by implicit attitudes towards the snack foods; participants
with more favourable attitudes at baseline showed the greatest change in subsequent behaviour.
Although these studies have involved healthy participants, this latter finding, in particular, suggests
that evaluative conditioning may be an appropriate intervention for those with disordered eating who
show strong preferences for unhealthy foods. However, the effects of evaluative conditioning training
on reducing unhealthy food consumption are currently unclear. To date, only a limited number of
studies have included post-intervention follow-up, and while some have found reduced consumption
in the week following training [330], others have failed to show immediate effects [327,328,330]. It is
likely that training effects are dependent on baseline strength of liking for specific foods [325,330], the
specificity of the US used [331], and awareness of the CS-US contingencies [332–334]. To establish the
therapeutic benefits of evaluative conditioning training, studies in overweight and disordered eating
groups are required.

Another approach to cognitive training is to reduce such biases indirectly through tasks such as
response inhibition training. Response inhibition refers to our ability to interrupt or override impulsive
reactions in accordance with new information, and plays a key role in goal-directed behaviour [335–340].
Deficient response inhibition has been linked not only to the use of different addictive substances [70]
but also to the severity of use [61,64,341], poor treatment outcomes [342] and likelihood of relapse [343].
Houben and Wiers [344] have also shown that positive implicit attitudes towards alcohol are only
related to alcohol consumption when inhibitory control is low. These results suggest that an increased
ability to inhibit responses may enable an individual to exert self-control over their behaviour, even
when they possess strong implicit preferences [117].

Similar findings have also been replicated with overeating and obesity. Obese individuals
have been shown to demonstrate less efficient response inhibition than their healthy-weight
counterparts [69,251,345,346] and poor inhibitory control has been associated with increased unhealthy
food consumption [86,347,348], high BMI [75,85,349,350], food cravings [351], unhealthy food
choices [84,352] and binge-eating [353]. Moreover, as in the addiction literature, inhibitory control
has also been shown to interact with implicit attitudes towards food, thus indicating that effective
response inhibition may play a protective role against strong implicit preferences for unhealthy
foods [80,117,250].

Simple tasks designed to train response inhibition to relevant cues or contexts have been shown
to reduce gambling behaviour and alcohol consumption [354–359]—although available evidence
suggests that the longevity of such effects may be limited [360]. These training tasks have also been
adapted to train response inhibition to food stimuli and are showing encouraging effects across a
range of eating-related behaviours including food consumption [361–365], food choices [365–371] and
even weight loss [372–375]. For example, Lawrence et al. [376] trained participants to inhibit their
responses towards either images of unhealthy snack foods (active group) or non-food items (control
group). After four training sessions, they found that, compared to the control group, individuals in
the active group showed reduced energy intake (220 kcal less per 24 h food diary) and reduced liking
for unhealthy foods. Furthermore, participants in the active group showed significant weight loss;
showing objectively measured weight loss of 0.7 kg after 2 weeks and self-reported weight loss of more
than two kilograms after a six month follow up (2.66% decrease).

The cognitive training paradigms discussed above show promise but are currently in the early
phases of testing. Before such training methods can be taken forward to clinical trials, researchers
should further explore the effects of different experimental protocols with the aim of developing the
most effective training techniques. One aspect of training that is likely to be important in determining
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successful behavior change is training performance. For example, the proportion of successful
inhibitions on an inhibition training task and accuracy during attentional bias training have both
been shown to moderate efficacy [308,375]. To establish whether effects can be long-lasting, we
need to consider repeated testing sessions, personalised training stimuli and combining training
techniques to simultaneously reduce cognitive biases and increase executive control [312,369,377,378].
Understanding the mechanisms that underlie such effects could also prove crucial. For example, the
effects of inhibition training on food consumption may be due to the devaluation of inhibited stimuli.
Several studies have shown that repeatedly pairing a stimulus with the inhibition of a response can
reduce how much the image is liked or how attractive it was perceived to be [371,376]. Such devaluation
could be the result of action conflict or inherent links between avoidance and aversion [371,379–382].
Designing interventions that promote automatic associations between stimuli and action tendencies
may, therefore, prove fruitful, especially if training is performed accurately, personalised and delivered
across multiple sessions. Combining cognitive training tasks with prefrontal brain stimulation is
another avenue worthy of investigation. Brain stimulation methods have the potential to augment
learning effects [383] and can also be used to reduce food consumption and craving in isolation; these
methods are discussed below.

3.2. Neuromodulation Interventions

Non-surgical brain stimulation techniques have also been explored for their potential benefits in
reducing craving and addictive behaviours by altering neural activity and increasing dopamine [384–
388]. The most commonly applied stimulation methods are transcranial magnetic stimulation (TMS)
and transcranial direct current stimulation (tDCS). These methods are used in awake participants and
are generally considered to be safe when administered within recommended guidelines [389–394].

The use of TMS involves the delivery of electromagnetic pulses that penetrate the skull to induce
electric current in the underlying cortex and cause short-term changes in cortical excitability. The
modulation of cortical excitability can last beyond the period of stimulation by delivering trains of
pulses, a technique known as repetitive TMS (rTMS) [395]. When applied to the DLPFC, rTMS has
been shown to effectively reduce cravings for cigarettes, alcohol and drugs of abuse, especially when
applied for multiple sessions [396–400]. The DLPFC is an area involved extensively in inhibitory
control [401–404] and stimulation of this region may act to boost self-control, potentially by increasing
dopamine release in the caudate nucleus [405,406].

Reductions in substance craving have also been demonstrated with stimulation of the DLPFC
using tDCS [114,407–412]. The use of tDCS involves the application of a weak (typically 1–2mA)
direct electrical current to the scalp via a pair of electrodes. The effect of tDCS on brain activity is
dependent on the stimulation polarity; anodal stimulation is thought to increase cortical excitability
by neuronal depolarisation whereas cathodal stimulation is believed to decrease excitability by
hyperpolarising neurons [413–418]. Long-lasting effects on resting membrane potential have been
shown with longer stimulation durations, for example, 13 min of anodal tDCS has been shown to
increase motor cortical excitability for up to 90 min [419]. Compared to TMS, tDCS is a weaker form of
stimulation with fewer incidental artefacts and is considered to be safer and more appropriate for reliable
double-blinding [387,420,421]. It is also thought that tDCS can be used to potentiate learning [422],
and may effectively enhance the effects of the aforementioned cognitive interventions [378,423].

These stimulation methods are currently being investigated for their potential to reduce food
craving and consumption [424–429]. Using rTMS to the left DLPFC, Uher et al. [430] found an increase
in cue-induced craving for palatable foods in the group who experienced sham stimulation but not the
active group. However, no effect was found on ad-libitum food consumption, although this result may
have been due to the limited time period (5 min) causing participants in both groups to consume a
large amount of calories. Using a similar methodology, Van den Eynde et al. [431] demonstrated an
increase in craving scores in the sham group, but a decrease in craving scores for the active group in a
sample of participants with bulimic-type eating disorders. In addition, active rTMS was associated
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with a reduction in binge-eating episodes in the following 24 h period. However, blinding was only
partially successful in this study with most participants correctly guessing whether they were receiving
active or sham rTMS. In a later study, Barth et al. [432] used a within-subjects design with an improved
sham condition in which they matched the perceived pain of active rTMS with scalp electrodes. They
found an equal reduction in cravings for both conditions and attributed this effect to the experience of
pain rather than prefrontal stimulation.

As mentioned, tDCS is believed to involve a more appropriately matched sham condition,
especially when participants receive active stimulation for a short initial period [420,421]. When
stimulating the DLPFC bilaterally using tDCS, Fregni et al. [433] found a significant increase in
cue-induced craving, measured before and after stimulation, in the sham condition and a significant
reduction when participants received anodal right/cathodal left stimulation. Compared to the sham
condition, active stimulation was also associated with a reduction in food intake during an ad-libitum
eating phase. Although the authors did not assess blinding in this study, they did report equal
occurrences of mild adverse effects across conditions. Using the same montage, Goldman et al. [424]
and Lapenta et al. [426] also found the same reduction in food craving, and an early meta-analysis
revealed a medium effect-size favouring active over sham stimulation in the reduction of cravings [434].
However, as the number of studies utilizing tDCS in the exploration of its effects on food craving
has increased, evidence of efficacy has weakened. A more recent meta-analysis, including eight
experiments, found no effect of tDCS on food craving [386], and subsequent research, including
a large pre-registered experiment, has also failed to replicate findings for both food craving and
consumption [435,436].

Another neuromodulation intervention, which is worthy of a brief mention and gaining
in popularity for the treatment of SUDs, is real-time fMRI (rt-fMRI) neurofeedback training.
Neurofeedback training involves providing participants with feedback of their neural response
to certain cues and instructing them to increase or decrease their response, so that they may gain
volitional control over specific brain regions. In the treatment of SUDs, neurofeedback training typically
involves increasing activity in control regions, such as the prefrontal cortex, or decreasing activity in
regions associated with craving, such as the ACC. For example, it has been shown that decreasing
activity in the ACC with rt-fMRI neurofeedback is significantly correlated with decreased nicotine
craving in smokers [437–439]. Using a similar technique with electroencephalography (EEG) has
also shown improvements in cravings, drug use and treatment outcomes for a range of different
substances [440–443]. Although in its early days, the application of neurofeedback training to food
consumption and obesity has already been proposed [444–446]; recent findings have also suggested
that neurofeedback may be another method of decreasing activity in motivation- and reward-related
regions [447] and increasing activity within critical prefrontal regions such as the DLPFC [448,449].

3.3. Therapeutic Interventions

Therapeutic interventions such as Overeaters Anonymous and cognitive behavioural therapy have
taken a more holistic approach to the treatment of obesity. Overeaters Anonymous (OA) is based directly
on the 12-step programme developed by Alcoholics Anonymous. The OA organisation promotes the
central belief that obesity is a symptom of ‘compulsive overeating’, which is an addictive-like illness
with physical, emotional and spiritual components [450]. Individuals are required to acknowledge that
compulsive overeating is beyond their willpower to overcome and, therefore, they must attempt to
control their intake by avoiding certain foods and surrendering to a ‘higher power’. Just like Alcoholics
Anonymous, OA involves group meetings for individuals to share their feelings and experiences.
Although the way in which this programme influences outcomes is unclear [53], the group meetings
may act to alleviate feelings of isolation and instead foster a sense of community. As discussed earlier,
due to the feelings of shame and guilt and the weight teasing experienced, overweight and obesity
are associated with a preference for isolative activities [159]. This social isolation can subsequently
exacerbate overeating, creating a vicious cycle [42,160]. It is possible, therefore, that OA acts to
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break this cycle by providing a supportive and encouraging social environment. However, due to
the anonymous nature of OA, there has been little research conducted on its efficacy and it is not
understood exactly how OA affects overeating and the extent to which it may do so.

Cognitive behavioural therapy (CBT), on the other hand, is a therapeutic approach which is
extensively informed by research. CBT requires patients to critically evaluate the thoughts, feelings
and behaviours that result in maladaptive behaviour and then modify them through therapy. This
therapy allows patients to recognise potential triggers and develop appropriate coping strategies.
CBT interventions have been effective in the treatment of substance addictions [451] and have also
demonstrated their potential in the treatment of obesity [452,453] and BED [453–456]. However, it
has been argued that the success of treating overeating and BED with CBT refutes the food addiction
model [30]. The food addiction model applied in OA requires complete avoidance of so-called trigger
foods, thereby acting to increase dietary restraint, whereas a reduction in dietary restraint has been
shown to moderate the increased effectiveness of CBT on binge eating in a sample of patients with
BN [457]. The focus of CBT is to replace dysfunctional eating with more normalised eating behaviour,
therefore, favouring moderation and flexibility rather than absolute restraint.

4. Conclusions

As the prevalence of obesity continues to increase and traditional weight loss methods appear to
be largely unsuccessful, researchers and clinicians have begun to consider the addictive potential of
food. There is a substantial body of evidence demonstrating the similarities between addictive drugs
and food on reward and control pathways in the brain and subsequent behaviour such as craving and
impulsivity. There is also limited evidence to indicate that in some circumstances, overeating meets the
physiological criteria of substance dependence, although more research is necessary to determine the
validity of these symptoms in human participants. More research is also required for other behavioural
criteria such as social impairment and repeated use despite negative consequences, as the evidence to
date is largely anecdotal. However, meeting the physiological criteria for addiction is not necessary
for a DSM diagnosis, and as food is a legal substance, just like caffeine, tobacco and alcohol, not all
criteria associated with SUDs [23] readily translate to food addiction. Nevertheless, the criterion of
withdrawal in SUDs has been associated with clinical severity and the number of symptoms that an
individual endorses is used to determine the disorder’s overall severity [23].

With a number of these criteria having a limited application to food addiction, a clinical diagnosis
appears unlikely in most cases of overeating; however, using the YFAS, it has been estimated that
approximately 11% of the general population meet the criteria for a ‘severe’ food addiction [38]. It
should also be made clear that the concept of food addiction does not equate with obesity. Obesity is a
multifactorial condition determined by genetic, environmental, biological and behavioural components.
For the majority of cases, obesity is caused by a steady increase in excess energy intake and it is not
characterised by a compulsive drive for food consumption. Instead, it is thought that the concept of
food addiction applies most appropriately to individuals with BED and BN [31,32,277,278].

Despite there being considerable parallels between substance use and compulsive overeating,
there is still some concern regarding the use and validity of the term ‘food addiction’, which is unlikely
to apply to the majority of cases [17]. There is also concern over the use of such terminology in the wider
social context and whether the term may do more harm than good. While most people would believe
that an addiction model reduces individual responsibility, it has also been argued that attributing the
problem to a minority of individuals also reduces corporate responsibility [28,458]. As the majority
of the population would not be considered ‘food addicts’, there would be less pressure for the food
industry to reduce marketing or to promote healthier alternatives. Likewise, any environmental
interventions to reduce access and availability may also seem less critical with a food addiction model.

There are also implications of such terminology for the diagnosed individual. Obesity is already
associated with significant social stigmatisation [157–159,161–164] and an additional ‘addict’ label,
which may invoke stereotypes of a person who is untrustworthy and inferior [459], may only serve to
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heighten the problem [460–462]. DePierre et al. [460] found that when an individual was labelled as
an ‘obese food addict’ they were more stigmatised than when they received either label in isolation
(‘food addict’ or ‘obese’). However, a study investigating the effect of an addiction model on public
perceptions found that it actually reduced stigma, blame and perceived psychopathology [463,464],
suggesting that it may be beneficial in reducing weight-related prejudice. The ‘addicted’ individual
described in the study was viewed as being less at fault for their weight. Although, it is unclear
whether the fault then lies with the individual’s biology (i.e., certain individuals are prone to becoming
‘food addicts’) or the industry that continues to promote potentially addictive foods. Although it is
almost certain to be a combination of both entities, demonstrating that certain foods can be addictive
should increase corporate responsibility and pressure on the food industry to regulate the availability,
advertising and nutritional content of such palatable foods [9,458].

Despite these issues and concerns, it has also been acknowledged that for some individuals,
‘food addiction’ may be the most appropriate diagnosis for their symptoms and it may help to inform
their treatment [34]. The available evidence suggests, therefore, that some individuals are capable
of experiencing an addictive-type relationship with food, although the majority of individuals who
compulsively overeat are unlikely to receive such a diagnosis. Considering the underlying causes
of impulsive overeating has also led to the development of some exciting and potentially effective
interventions. While there are differences between the addictive characteristics of food and illicit
substances, there are many parallels that should not be ignored. These parallels have contributed greatly
to our current knowledge of compulsive overeating and potential treatments. Both the similarities
and differences should encourage more research, which is necessary to determine the extent and
potential impact of such a disorder. Until then, the idea of ‘food addiction’ is expected to remain hotly
debated [14,19,20].
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