
Local Search Heuristic for the
Optimisation of Flight Connections

Maab Alrasheed∗, Wafaa Mohammed∗, Yaroslav Pylyavskyy†, Ahmed Kheiri†
∗University of Khartoum, Faculty of Engineering

Department of Electrical and Electronic Engineering
Algamaa Street, P.O. Box 321, Khartoum, Sudan

{maabnimir, wafamoh97}@gmail.com
†Lancaster University, Department of Management Science

Lancaster University Management School
Lancaster, LA1 4YX, United Kingdom
{y.pylyavskyy, a.kheiri}@lancaster.ac.uk

Abstract—Kiwi.com proposed a real-world NP-hard optimisa-
tion problem with a focus on air travelling services, determining
the cheapest connection between specific areas. Despite some
similarities with the classical TSP problem, more complexity is
involved that makes the problem unique. It is Time-dependent,
Asymmetric and involves areas that contain sets of cities from
which exactly one is visited. In addition to this, infeasibility
adds more complexity to the problem since there are no flights
available between specific points in the network for certain days.
While solving such computationally difficult problems, exact
methods often fail, particularly when the problem instance size
increases; Then alternative approaches, such as heuristics, are
preferred in problem solving. In this study, we present an effective
local search method for solving Kiwi.com problem. The empirical
results show the success of the approach, which embeds four
simple operators, on most of the released instances.

Index Terms—Local Search, Optimisation, Metaheuristics,
Computational Design, Travelling Salesman Problem

I. INTRODUCTION

Travelling salesman problem (TSP) is a well-known prob-
lem in the field of computer science and operational research.
Many variations of TSP have been created in order to fit and
tackle real-world problems. Kiwi.com problem is a modified
version of the ordinary TSP and it is described as follows:
Given a set of n areas, the airports in each area, the starting
airport and the costs of travelling between those airports, the
goal is to find the cheapest possible route that visits each area
exactly once.

There are several variants of TSP formulations [1]:
• General: The cost is arbitrarily assigned between cities.
• Metric: The cost c is metric and satisfies the triangle

inequality; ∀i, j, k, cik ≤ cij + cjk.
• Symmetric TSP: The cost of travelling from city i to

city j is the same as travelling from city j to city i; i.e.
cij = cji.

• Asymmetric TSP: The cost of travelling from city i to
city j is not the same as travelling from city j to city i;
cij 6= cji.

• TSP with multiple visits (TSPM): It is allowed to visit
cities more than once.

• Open tour TSP: The salesman does not have to end the
tour where it started.

• Multiple TSP: Instead of only one salesman, multiple
salesmen are allowed [2].

• Time-dependent TSP: The travel cost depends on the
distance and the day of travel [3].

• Maximum benefit TSP (MBTSP): Salesman derives some
benefit from visiting the cities [4].

• Prize collecting TSP (PCTSP): Salesman gets a prize for
every visited city and pays a penalty for every city not
visited [5].

Numerous of algorithms have been developed for solving
TSP. Such algorithms are classified into:

1) Exact methods, such as Branch-and-Cut. However, ex-
act methods often fail particularly when the problem
instance size increases [6].

2) Heuristic algorithms which are used to provide near opti-
mal solutions for TSP within reasonable time. Examples
include local search algorithms [7], genetic algorithms
[8], simulated annealing [6], hyper-heuristics [9], [10],
artificial neural network [11], ant colony optimisation
[12] and particle swarm optimisation [13].

Thanaboon and Pisut [7] have discussed the time-dependent
asymmetric TSP with time window (a country may have
to be visited within a given time period) and precedence
constraints (a country may have to be visited immediately after
a predefined preceding country) in Air Travel. They suggested
three algorithms to solve the problem: MNN (modified near-
est neighbour), LS-SWAP (local search algorithm with swap
operator) and LS-INSERT (local search algorithm with insert
operator). They used small instances with around 20 cities
to test their algorithms. Their results indicated that the local
search algorithms perform better than the MNN algorithm
in terms of the total cost and execution time. LS-INSERT
performs slightly better on ‘easy’ instances while LS-SWAP
is more recommended for ‘hard’ instances.

The paper is structured as follows: Section II describes
the Kiwi.com problem. In Section III we discuss the local

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Lancaster E-Prints

https://core.ac.uk/display/237200706?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


search algorithm and the four operators embedded. Section IV
presents the results. Finally, the conclusion and suggested
further research are provided in Section V.

II. PROBLEM DESCRIPTION

Kiwi.com problem requires the minimisation of the travel-
ling cost by finding the best possible flight route for a given
number of areas, where an area is a set of cities (airports).
Costs differ according to the direction and day of travel. The
trip begins from a given city and everyday exactly one city
of each area is visited. Throughout the trip, the arrival city is
also the departure city for each area. This means that it is not
allowed to arrive to a city and continue the trip by departing
from another city of the same area. The trip ends in the area
(not necessarily the city) where it began.

A simple problem instance consisting of 4 areas and 5
airports is presented in Figure 1.

Fig. 1. Simple problem instance with a possible solution

Mathematically, let Area = {area1, area2, . . . , arean} be
a set of n areas, where each area r ∈ Area is composed
of a set of airports {airport1, airport2, . . . }; and let cdij be
the flight cost between the departure airport i and the arrival
airport j on day d, which has two properties: cdij is not
necessarily equal cdji (i.e. the problem is asymmetric); and
for d1 6= d2, cd1ij is not necessarily equal cd2ij , (i.e. the problem
is time dependent). The objective of the problem is to find
the best possible flight route that connects all the given areas
and minimises the cost within the time given, subject to the
following constraints:

• The trip starts from the starting airport (city) given.
• Exactly one city is visited in each area (but we can choose

which one).

• Every day a different area is visited.
• The trip continues from the arrival airport.
• The entire trip ends in any airport of the area where it

began.

III. LOCAL SEARCH ALGORITHM

Local search algorithm (see Algorithm 1) moves from one
solution to another in the search space by applying an operator
(e.g. swap operator) until a better solution is found [14].

Algorithm 1: Local search algorithm

1 Let O represent the set of operators
2 Let S represent the current solution
3 Let Snew represent the new solution
4 S ← Initialise();
5 repeat
6 Oi ← Select(O);
7 Snew ← ApplyOperator(Oi, S);
8 if Snew isNotWorseThan S then
9 S ← Snew;

10 end
11 until TimeLimit;

A solution is represented by a pair S = (π, airport), where
π is a permutation of the areas and airport is a set of airports.
Two methods were implemented to generate initial solutions,
including random method and greedy. The random method
lists the areas and airports in the order they were provided in
the input instance. The greedy method chooses the next airport
that generates the lowest cost from the remaining airports to
visit. Both methods do not guarantee the feasibility of the
solution. Hence, it is repaired using the proposed local search
algorithm. Following the initialisation stage, the same local
search method uses the remaining time left to improve the
quality (cost) of the solution.

The local search method manages the following four opera-
tors: (i) swap areas then change their airports with a probability
of 50%; (ii) insert an area then change their airports with a
probability of 50%; (iii) reverse then change their airports with
a probability of 50%; and (iv) change airport.

The time limit that the algorithm was allowed to run
depends on the size of the problem instance, as suggested
by Kiwi.com:

• For small instances, i.e. instances where the number of
areas is less than or equal 20 and the total number of
airports is less than 50 - the time limit is 3s.

• For medium instances, i.e. instances where the number
of areas is less than or equal 100 and the total number
of airports is less than 200 - the time limit is 5s.

• Otherwise the time limit is 15s.

IV. RESULTS

Our experiments were performed on an i7-4710HQ Intel
Processor at 2.50GHz with 16.00GB RAM and the algorithms
have been implemented using VC++ 2017. The summary of



TABLE I
THE PERFORMANCE OF THE LOCAL SEARCH ALGORITHMS OVER 10 RUNS. WE USE “-” TO DENOTE THE CASE WHEN NO FEASIBLE SOLUTION IS FOUND

WITHIN THE TIME LIMIT

Characteristics of the Dataset Random Greedy

Name areas airports airports in areas time best average std. best average std.

Instance-1 10 10 1 (min) – 1 (max) 3 1396 1434.3 41.0 1396 1447.9 33.3
Instance-2 10 15 1 (min) – 2 (max) 3 1498 1498 0.0 1498 1498 0.0
Instance-3 13 38 1 (min) – 6 (max) 3 7672 7858.1 197.3 7951 8035 55.0
Instance-4 40 99 1 (min) – 5 (max) 5 14045 14552.7 389.3 14066 14425.6 237.2
Instance-5 46 138 3 (min) – 3 (max) 5 837 930.9 58.6 739 890.5 129.5
Instance-6 96 192 2 (min) – 2 (max) 5 3021 3965.1 436.6 3791 4325.6 382.1
Instance-7 150 300 1 (min) – 6 (max) 15 32705 38654.3 6991.1 32534 34698.5 3724.2
Instance-8 200 300 1 (min) – 4 (max) 15 7712 9747.3 1787.1 4041 4068.1 18.5
Instance-9 250 250 1 (min) – 1 (max) 15 221188 233509 10129.4 82242 96695.4 9864.8
Instance-10 300 300 1 (min) – 1 (max) 15 122719 129511 8395.9 87462 116301 11291.5
Instance-11 150 200 1 (min) – 4 (max) 15 70579 73743 2393.1 49453 66399.2 7766.4
Instance-12 200 250 1 (min) – 4 (max) 15 113084 118149 3577.6 70082 99283.2 17323.5
Instance-13 250 275 1 (min) – 3 (max) 15 - - - - - -
Instance-14 300 300 1 (min) – 1 (max) 15 - - - - - -

0 1 2 3

1,500

2,000

2,500

3,000

Time

C
os

t

Instance-1

swap
insert
reverse
all

0 2 4

0.4

0.6

0.8

1

1.2

·104

Time

C
os

t

Instance-6

swap
insert
reverse
all

5 10 15

7

8

9

·104

Time

C
os

t

Instance-11

swap
all

Fig. 2. Plots of the cost versus time while solving Instance-1, Instance-6 and Instance-11, respectively

experimental results are presented in Table I including the
characteristics of the Kiwi.com dataset. The experiments were
repeated 10 times for each problem instance using different
random seed values. The table illustrates the best and average
costs found along with the standard deviation for both initiali-
sation methods (i.e. random method and greedy approach) over
10 runs. The experiments suggest that initialising the solution
using random method is better for small instances, while
greedy approach often leads to better solutions for medium
and large size instances.

A. An analysis of the local search method

Figure 2 shows the difference in cost reduction between the
application of the four operators separately and their jointly
application. The results are presented for Instance-1 (small
instance), Instance-6 (medium instance) and Instance-11 (large
instance). Figure 3 shows the utilisation rate in cost reduction
of each operator.

As far as the four operators are concerned, results suggest
that:

• Swap operator performs a change in only two positions
in the solution. When applied separately, it performs very
well in reducing the cost for all types of instances (small,

Instance-1 Instance-6

Instance-11

swap

change airport

insert

reverse

43%

21%

36%
26%

50%

24%

3%

7%
3%

87%

Fig. 3. Utilisation rate of each operator



medium and large) and is particularly effective for large
instances. When combined with the other operators, its
utilisation rate in cost reduction is high.

• The performance of the change airport operator depends
on the number of airports in the areas. However, all
instances in our experiments have a limited number of
airports in each area. Thus, the contribution in cost re-
duction of this operator is relatively small. When applied
separately, this operator has failed to obtain feasible
solutions.

• The performance of the insert and reverse operators
highly depends on the two random positions selected.
When the distance between the two selected positions
is large they perform a big change in the solution, and
thus increasing the probability of obtaining an infeasi-
ble solution. Hence, they contribute more in small and
medium instances. In addition, insert operator seems to
outperform the other operators for medium size instances
in terms of utilisation rate.

Further analysis of the results confirm the following:
• For small instances, swap and reverse operators perform

very well and provide good solutions. Insert operator has
the worst performance among the operators. The best
solution, however, is achieved when all operators are
combined together.

• For medium instances, insert operator is the best com-
pared to the other operators. This is because the number
of areas in these instances are neither too small nor too
large. Hence, the change in the solution is also moderate
and provides good results with relatively low chance
of infeasibility. Yet again, the combination of operators
provide the best solution.

• For large instances, the swap operator is the best. In
contrast to small and medium instances swap operator
outperforms the combination of all operators. However,
an essential drawback is that the whole algorithm perfor-
mance is poor for large instances.

V. CONCLUSION

In this study, we proposed a local search algorithm with
four operators (swap, insert, change airport and reverse) to
solve Kiwi.com problem. Our research has shown that the
algorithm provides essentially improved solutions for all types
of instances. Overall, the combination of all operators is sug-
gested for small and medium instances. The main contributors
are swap and reverse operators and insert operator for small
and medium instances respectively. For large instances the
swap operator is recommended. However, for such instances
the algorithm lacks time efficiency. Furthermore, based on
our findings the use of greedy approach for initialising the
solutions of medium and large size instances leads to improved
performance. The application of advanced algorithms, such as
hyper-heuristics [15], [16] and evolutionary algorithms [17]–
[19], is suggested for further research in order to escape local
minima and achieve improved solutions for medium and large
instances.

REFERENCES

[1] R. Rasmussen, “TSP in spreadsheets - a guided tour,” International
Review of Economics Education, vol. 10, no. 1, pp. 94–116, 2011.

[2] T. Bektas, “The multiple traveling salesman problem: an overview of
formulations and solution procedures,” Omega, vol. 34, no. 3, pp. 209–
219, 2006.

[3] K. R. Fox, B. Gavish, and S. C. Graves, “Technical note—an n-constraint
formulation of the (time-dependent) traveling salesman problem,” Op-
erations Research, vol. 28, no. 4, pp. 1018–1021, 1980.

[4] C. Malandraki and M. S. Daskin, “The maximum benefit chinese
postman problem and the maximum benefit traveling salesman problem,”
European Journal of Operational Research, vol. 65, no. 2, pp. 218–234,
1993.

[5] E. Balas, “The prize collecting traveling salesman problem,” Networks,
vol. 19, no. 6, pp. 621–636, 1989.

[6] M. M. Abid and I. A. Muhammad, “Heuristic approaches to solve
traveling salesman problem,” 2015.

[7] T. Saradatta and P. Pongchairerks, “A time-dependent ATSP with time
window and precedence constraints in air travel,” Journal of Telecom-
munication, Electronic and Computer Engineering (JTEC), vol. 9, no.
2-3, pp. 149–153, 2017.

[8] A. Vyas, D. Chawla, A. Mehta, A. Chelawat, and U. Thakar, “Genetic
algorithm for solving the traveling salesman problem using neighbor-
based constructive crossover operator,” International Journal of Engi-
neering Sciences and Research Technology (IJESRT), vol. 7, pp. 101–
110, 2018.

[9] A. Kheiri and E. Keedwell, “A sequence-based selection hyper-heuristic
utilising a hidden markov model,” in Proceedings of the 2015 Annual
Conference on Genetic and Evolutionary Computation. ACM, 2015,
pp. 417–424.

[10] A. Kheiri and E. Özcan, “An iterated multi-stage selection hyper-
heuristic,” European Journal of Operational Research, vol. 250, no. 1,
pp. 77–90, 2016.

[11] J.-Y. Potvin, “The traveling salesman problem: A neural network per-
spective,” 1993.

[12] M. Dorigo, M. Birattari, and T. Stützle, “Ant colony optimization -
artificial ants as a computational intelligence technique,” IEEE Com-
putational Intelligence Magazine, vol. 1, pp. 28–39, 2006.

[13] J. Regional Campus, “A review of parameters for improving the perfor-
mance of particle swarm optimization,” International Journal of Hybrid
Information Technology, vol. 8, no. 4, pp. 7–14, 2015.

[14] O. Mersmann, B. Bischl, J. Bossek, H. Trautmann, M. Wagner, and
F. Neumann, “Local search and the traveling salesman problem: A
feature-based characterization of problem hardness,” in Learning and
Intelligent Optimization, Y. Hamadi and M. Schoenauer, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2012, pp. 115–129.

[15] A. Kheiri and E. Keedwell, “A hidden Markov model approach to the
problem of heuristic selection in hyper-heuristics with a case study in
high school timetabling problems,” Evolutionary Computation, vol. 25,
no. 3, pp. 473–501, 2017.

[16] J. H. Drake, A. Kheiri, E. Özcan, and E. K. Burke, “Recent advances in
selection hyper-heuristics,” European Journal of Operational Research,
2019.

[17] A. Kheiri, A. G. Dragomir, D. Mueller, J. Gromicho, C. Jagtenberg,
and J. J. van Hoorn, “Tackling a VRP challenge to redistribute scarce
equipment within time windows using metaheuristic algorithms,” EURO
Journal on Transportation and Logistics, 2019.

[18] D. Wilson, S. Rodrigues, C. Segura, I. Loshchilov, F. Hutter, G. L. Buen-
fil, A. Kheiri, E. Keedwell, M. Ocampo-Pineda, E. Özcan, S. I. V. Peña,
B. Goldman, S. B. Rionda, A. Hernández-Aguirre, K. Veeramachaneni,
and S. Cussat-Blanc, “Evolutionary computation for wind farm layout
optimization,” Renewable Energy, vol. 126, pp. 681–691, 2018.

[19] E. K. E. Ahmed, A. M. A. Khalifa, and A. Kheiri, “Evolutionary
computation for static traffic light cycle optimisation,” in 2018 Inter-
national Conference on Computer, Control, Electrical, and Electronics
Engineering (ICCCEEE), 2018, pp. 1–6.


