
Internet-oriented measurement and automation
project for Industry 4.0 educational program

L. Angrisani, F. Bonavolontà, M. D’Arco, A. Liccardo
Dep. Computer Science and Electric Engineering

University of Naples Federico II
Via Claudio 21, 80125 Napoli, ITALY

O. Tamburis
Dep. Veterinary Medicine and Animal Productions

University of Naples Federico II
Via Delpino 1, 80137 Napoli, ITALY

Abstract— In the paper a remote laboratory as educational
tool in measurement and automation courses is presented.
Industry 4.0 and IoT paradigms require future information
engineers to be able to use enabling technologies not only for the
automation of measurements, but also for their remote
management. For this purpose, a solution is proposed that makes
the students an active part in the process of realization of the
remote laboratory. An architecture involving typical laboratory
instruments, introduced during measurement courses, and a
server to allow remote access to laboratory equipment is
implemented. The realization of the software architecture,
however, is left to the students who, under teacher’s guide, learn
how to use the tools and programming environments to build up
remote measurement stations.

Keywords—Remote laboratories; automatic measurement
stations; remote stations didactics.

I. INTRODUCTION
In engineering teaching courses, laboratory experiences are

a fundamental stage of learning [1]. In this context, remote
laboratories are a very useful tool as they allow students to
perform experiments 24 hours a day from any Internet-enabled
workstation [2]-[7].

Cost advantage is the main characteristic of a remote
laboratory: in a traditional laboratory it is in fact necessary to
create an appropriate number of laboratory stations with
respect to the number of students, while in a remote laboratory
the stations are accessible at any time. In this way students are
able to perform (and repeat, if necessary) the assigned
experiments with a reduced number of stations, therefore
saving the hardware equipment [8]-[19]. In addition, the
remote laboratory can be powered by including other
experiments that involve advanced devices located in physical
laboratories distributed throughout the territory. Further
advantages are related to safety, since the operator is physically
distant from the laboratory and can conduct experiments
without risks [20].

Until few years ago, the design and implementation of a
remote laboratory was a multidisciplinary task that required the
intervention of various experts from different sectors [21]-[25]:
in order to be able to remotely control an automatic
measurement station, it is in fact necessary for the student to
gain knowledge regarding the didactic experiments of the
course, and then to focus the attention on those aspects that
need therefore to be transferred via a remote experience.

Moreover, the knowledge of the laboratory instrumentation is
necessary to understand how the remote user can interact with
the instruments and design the client interface. Eventually, the
experience in computer science is necessary to realize the
hardware architecture of the laboratory, to figure out the most
suitable communication protocol, as well as to implement the
software, both server- and client-side, based on the
characteristics of the remote experiment and the type of clients.

Currently, the creation of a remote laboratory requires less
effort and can be quickly achieved even by those who do not
possess relevant experience in communication networks and IT
skills, thanks to the tools made available to users from different
software environments. As a consequence, the implementation
of a remote measurement station can be assigned as a project
within the measurement and automation courses. Students have
in this way the opportunity to learn and use the enabling
technologies of remote monitoring and automation [26].
Although the capability to create automatic measurement and
control stations is no longer sufficient in the typical Industry
4.0 processes, the ability to know how to communicate with a
remote device is anyway required, as well as the capability to
implement internet-oriented measurement processes [29]-[32].

The paper presents the structure of the remote laboratory,
with the intent to lead students during the creation and testing
of their own software for remote control of the instrumentation.
The article is organized as follows: after a brief description of
the bases of the remote laboratories, given in Section II, the
server architecture is described in Section III; Section IV then
provides details on the server software for controlling the
connected instruments, and Section V describes the structure of
the client software. Finally, some conclusions are drawn in
Section VI.

II. REMOTE LABORATORY ASSET
The scheme of a typical remote laboratory is shown in

Fig. 1. The server machine is physically connected to the
laboratory equipment, and communicates with the devices via a
proper interface. The server is also connected to the Internet
network, in order to receive remote requests.

The clients’ machines are geographically distributed
personal computers that can communicate with the server
through Internet connections.

For what concerns the software architecture, there are no
rules on the software environment for the implementation of
server and client programs; it is only required that both server

and client applications are able to exchange data according to
the TCP/IP protocol. The authors, in particular, have used
LabVIEW environment, exploiting their experience in the
realization of programs for automatic measurement stations,
but the approach described in the paper can be extended to all
software environments that allow configuring TCP/IP
communication parameters.

Fig.1 Block diagram of a remote laboratory based on server/client
paradigm.

The server application can be seen as a translator between
the TCP/IP protocol and the interface adopted for the
communication with the laboratory equipment. It receives via
Internet the commands that the client wants to send to a
specific instrument and forwards them to the device, adapting
them (if needed) to the device interface. Similarly, it forwards
the response from the local device back to the client via
TCP/IP connection.

Usually the client needs to send a sequence of messages to
the laboratory instrumentation in order to perform an
experiment. The server must process these messages during a
single client connection: it is important in fact to avoid that,
when performing the experiment of a client, the server receives
and processes messages due to the connection of another client.
The messages exchanged between client and server
applications must be therefore structured so that in a single
connection the client completes the tasks structuring the
experiment.

The authors suggest to use the array type to this purpose
and describe, in the following sections, how the client and
software interact with each other.

III. SERVER SOFTWARE
The server application has to receive client messages. The

first server operation is then the creation of a TCP listener.
LabVIEW offers its library built-in function to create a listener
that allows selecting some parameters as the Ethernet board (if
more than one board is present) and the port number of the
connection.

The port number should be in the range 49152-65535 that
is the range of the so-called dynamic and/or private ports,
according to Internet Assigned Numbers Authority (IANA)
specifications.

It has to be noticed that some operating systems do not
meet IANA specifications – Windows, for example, allows the
use of ports ranging within 1024 and 5000, which is an interval
included in the range of ports classified by IANA as user or

registered ports. It is still possible to create a listener on these
ports, but the possibility of receiving an error message due to a
conflict on the port has to be taken into account. The library
function that creates the listener returns a handle that uniquely
identifies the listener.

Once the listener is designed, a function that waits for the
client TCP connection is necessary. This function can be
configured for waiting indefinitely a client connection or a
timeout can be set, so that when the timeout expires an error
message is returned. If a client connection occurs, this function
returns the handle for identifying the connection, the IP address
and the port of the remote client.

When the connection is established, the server receives the
client message through a TCP read function and sends
messages to the client through a TCP write function.

Specifically, the TCP read is a flexible function that can be
configured in order to obtain different behaviors, depending on
the selected mode. For example, the user can configure a
termination character that, when received, indicates the end of
the client message, or specify that the function has to
immediately return the received bytes regardless the expected
length of the client message. Alternatively, user can specify the
number of bytes that have to be received from the client and a
timeout interval: if a number of bytes lower than that expected
is received when the timeout expires, the user can select if this
function has to return an empty string or the partial message
received (in both cases an error condition is raised).

In particular, the authors suggest the last configuration
since the error signal is monitored; if all the expected bytes
have not been received, the connection is closed.

The expected client message is structured as shown in
Fig. 2. The header is composed by eight bytes. The first four
bytes represent the client ID adopted for the client
authentication; if the client ID is not in the list of clients
authorized to use the laboratory, the server closes the
connection. The other four bytes of the header express the
length in bytes of the remaining data block, referred in the
following as payload.

Fig.2 Structure of client and server messages.

The payload contains the directive for the laboratory
equipment, organized as a sequence of tasks that have to be
properly processed by a program called Instrument and
Actuator Controller, described in detail in the following
section.

Header and payload are received through two different TCP
read functions. The first one reads the header so that the server
program can verify the client ID and then obtain the length of
the payload. After sending an acknowledge message, a second
TCP read function is performed: it is configured for reading a
number of bytes equal to the length received in the header, but
also a timeout interval is set, to prevent that the server program
is blocked waiting to receive the expected number of bytes. If
the timeout expires, the connection is closed, regardless the
payload received until then.

The payload contains the data to be transmitted to the
laboratory devices, and is organized as an array that is a
sequence of structured data, corresponding to particular tasks.
The array is passed to the Instrument and Actuator Controller
that, interfacing with the local devices, executes the tasks.
Some tasks cause a response from the device, such as the result
of a measurement. To allow the client to quickly retrieve the
device response, the Instrument and Actuator Controller
maintains the order relationship between the task array and the
response array. Specifically, for each task that is executed the
Instrument and Actuator Controller adds a string to the
response array that will be returned to the client: if the device
has returned data, the string that is appended to the array is
exactly the data returned by the device; alternatively, an empty
string is appended. In this way, the client receives an array
whose size is the same as the array that has been sent; since the
client knows the position of a query within the task array, he
knows where to find the device response in the response array.

The server program sends the response array to the client
using a TCP write function. Actually, the server sends a packet
similar to those sent by the client, as shown in Fig. 3, but the
bytes related to the identification are omitted for the server.
The header, then, is only composed by the four byte expressing
the length of the payload.

Finally, the server closes the connection using the handle
for identifying the client connection. It is worth noticing that
the described operations are indefinitely iterated in a while
loop, in order to accept and process other client connections.

Fig. 3 Diagram of the main operations of the server program.

IV. INSTRUMENT AND ACTUATOR CONTROLLER
The Instrument and Actuator Controller communicates with

the laboratory device, according to one or more interfaces.
Many software environments (including LabVIEW) offer, also
for this type of communication, library functions for

communicating with devices through the interfaces most
commonly adopted in industrial processes. In the developed
laboratory the IEEE 488 interface is adopted.

The Controller receives the array of tasks contained in the
payload of the client message. A task is an operation performed
with a specific instrument that can be the transmission of
configuration commands or the data reading from the
instrument buffer. The task is composed by the following
fields: (i) the device ID identifies through a symbolic name the
device involved by the task; (ii) the operation, that can be write
or read; (iii) the field is dependent on the operation: if the
operation is write, it contains the data to be sent to the device,
otherwise it is a number representing the number of bytes to be
read from the device; (iv) a delay that the Controller has to wait
before executing the required operation.

In order to better describe the task structure, in Fig. 4 a
basic example of received array of tasks is shown. In the
example the client wants to configure the source, namely an
arbitrary waveform generator (AWG), for obtaining a square
wave signal with frequency of 2.5 kHz and peak-to-peak
amplitude of 1 Vpp. The client wants as well to measure the
true rms voltage of the signal by means of a digital multi-meter
(DMM). The device ID of the first task, that is AWG, indicates
that such task involves the generator. In particular, the task is a
write operation and the message to be written contains the
command for properly configuring the generator, listed in the
programmer’s manual of the instrument. The field delay equal
to zero indicates that the write operation can be executed
immediately.

The device ID of the second task is equal to DMM, which
means that the task involves the digital multi-meter. The task
performs a write operation and sends to the multi-meter the
configuration commands (available in the programmer’s
manual of the instrument) for measuring the rms voltage of the
input waveform.

Fig. 4 Example of array of tasks received by the Instruments and Actuator
Controller.

The third task aims at acquiring the measurement result.
The device ID is still DMM, but the operation is equal to read.

This time the message field contains the number of bytes to
read, set equal to 100.

The response array built by the Instrument and Actuator
Controller, according to the example of Fig. 4, has size equal to
three. The first and second elements are empty strings,
corresponding to the write operations; the third array element is
the string returned by the digital multi-meter in the read
operation performed in the third task.

V. CLIENT SOFTWARE
Authors chose LabVIEW environment for the

implementation of the client software as well, but the described
operations can be performed in other environments.

The client program has to establish an Internet connection
with the server in order to send the tasks to be executed. A
proper library function is used to such scope. In order to
correctly configure the open TCP function, the remote user
needs to know the physical IP address of the server and the
remote port number. This function receives also a timeout
parameter, since if the connection is not established and the
timeout expires, the function returns an error condition.
Another output of the open TCP function is the handle that
uniquely identifies the connection session.

Following, the client has to send the array of task to the
server. To this aim, the client has first to build the array, in
dependence on the operation sequence that the remote user
wants to perform. It has to be noticed that the client can be
implemented by following two different approaches, depending
on the level of knowledge that the remote user is supposed to
have. The basic user is who simply has to perform operations
with the laboratory devices, without having the skills to create
an automatic measurement station or to communicate with a
remote laboratory. In this case, the software interface is very
user friendly and the client software builds the array of tasks
based on the selections. The specialized user, to whom the
laboratory is mainly addressed, after having designed the
process to be executed, is able to describe the tasks, to organize
them into a single array and to use the TCP/IP functions to
transmit the latter to the server.

In both cases the client program, after the construction of
the array of tasks, has to send it as a string, which represents
the payload of the message to be transmitted. According to the
protocol described in the previous section, the client has to
evaluate the length of the payload, in order to build the header.

The header is obtained by concatenating the four bytes
representing the authentication ID, and the four bytes
expressing the length of the payload.

The transmission of header and payload is performed
through a library function TCP write. The client program must
include a wait function, proportional to the number and
complexity of the tasks sent, in order to allow the server to
perform all the required tasks.

After the waiting time has elapsed, the client can receive
the server response. Also, this operation is performed with the
TCP read library function, which returns the array of responses
relative to each task, from which the client can extract the
responses of interest of the queried devices.

The last operation is to close the connection; the TCP close
function is used, which requires in input the connection handle
returned by the open function.

For the sake of clarity, a diagram of the main operations of
the client software is shown in Fig. 5.

Fig. 5 Diagram of the main operations of the client program; the dashed
lines indicates a timeout event.

VI. CONCLUSIONS
In the paper an educational approach aimed at teaching the

implementation of measurement processes geographically
distributed throughout the territory is proposed. The authors in
fact believe that remote laboratories should no longer be tools
just to make students design automated measurement as if they
were physically in the laboratory. Rather, students can be
trained on fundamental themes of IoT and Industry 4.0 as
pillars of openness [33], making them an active part in the
realization of the remote laboratory itself.

As part of the project proposed to students regarding the
realization of a remote laboratory, students are invited to also
consider issues related to the management of errors and the
management of concurrent client requests.

REFERENCES
[1] L. Angrisani, P. Arpaia, F. Bonavolontà, R. Schiano Lo Moriello,

“Academic FabLabs for industry 4.0: Experience at University of Naples
Federico II”, (2018) IEEE Instrumentation and Measurement Magazine,
21 (1), art. no. 8278802, pp. 6-13.

[2] U. Lichtenthaler, “Open Innovation in Practice. An analysis of strategic
approaches to technology transactions”, IEEE Transactions, Vol. 55, no.
1, pp. 148-157, January-March 2008.

[3] L. de la Torre, J.P.Sànchez and S. Dormido, “What remote labs can do
for you”, Physics Today, Vol. 69, no. 4, 2016.

[4] G. Andria et alii “Remote didactic laboratory ‘G. Savastano’, the Italian
experience for e-learning at the technical universities in the field of
electrical and electronic measurement: architecture and optimization of
the communication performance based on thin client technology” IEEE
Trans. on Instrum. and Meas., vol. 56, no. 4, 2007, pp. 1124-1134.

[5] A. Baccigalupi, U. Cesaro, M. D’Arco, A. Liccardo, “Web-based
networking protocol for expanding IEEE-488 ATE capabilities”, IEEE
International Workshop Measurements and Networking (M&N), Capri,
Italy, 2011, pp.100-104.

[6] J. M. G. Palop and J. M. A. Teruel, “Virtual work bench for electronic
instrumentation teaching”, IEEE Trans. Educ., vol. 43, no. 1, 2000, pp.
15–18.

[7] C. C. Ko, B. M. Chen, S. H. Chen, V. Ramakrishnan, R. Chen, and Y.
Zhuang, “A large-scale Web-based virtual oscilloscope laboratory
experiment”, Eng. Sci. Educ. J., vol. 9, no. 2, 2000, pp. 69–76.

[8] P. Arpaia, A. Baccigalupi, F. Cennamo, and P. Daponte, “A
measurement laboratory on geographic network for remote test
experiments”, IEEE Trans. Instrum. Meas., vol. 49, no. 5, 2000, pp.
992–997.

[9] G. Canfora, P. Daponte, and S. Rapuano, “Remotely accessible
laboratory for electronic measurement teaching”, Comput. Stand.
Interfaces, vol. 26, no. 6, 2004, pp. 489–499.

[10] L. Benetazzo, M. Bertocco, F. Ferraris, A. Ferrero, C. Offelli, M. Parvis,
and V. Piuri, “A Web based, distributed virtual educational laboratory”,
IEEE Trans. Instrum. Meas., vol. 49, no. 2, 2000, pp. 349–356.

[11] M. Albu, K. Holbert, G. Heydt, S. Grigorescu, and V. Trusca,
“Embedding remote experimentation in power engineering education”,
IEEE Trans. Power Syst., vol. 19, no. 1, 2004, pp. 139–143.

[12] P. Arpaia, A. Baccigalupi, F. Cennamo, P. Daponte, “A remote
measurement laboratory for educational experiments, Measurement,
Volume 21, Issue 4, August 1997, Pages 157-169.

[13] Domenico Grimaldi, Sergio Rapuano, “Hardware and software to design
virtual laboratory for education in instrumentation and measurement”,
Measurement, Volume 42, Issue 4, May 2009, Pages 485-493.

[14] M. Corrado, L. De Vito, H. Ramos, J. Saliga, “Hardware and software
platform for ADCWAN remote laboratory”, Measurement, Volume 45,
Issue 4, May 2012, Pages 795-807.

[15] Unai Hernandez-Jayo, Javier Garcia-Zubia, “Remote measurement and
instrumentation laboratory for training in real analog electronic
experiments”, Measurement, Volume 82, March 2016, Pages 123-134.

[16] N. Wang, X. Chen, Q. Lan, G. Song, H. R. Parsaei and S. C. Ho, "A
Novel Wiki-Based Remote Laboratory Platform for Engineering
Education", in IEEE Transactions on Learning Technologies, vol. 10,
no. 3, pp. 331-341, July-Sept. 1 2017.

[17] N. Valov and I. Valova, "Drying process management laboratory with
remote access", 2017 16th International Conference on Information
Technology Based Higher Education and Training (ITHET), Ohrid,
2017, pp. 1-6.

[18] C. Arguedas-Matarrita et al., "A teacher training workshop to promote
the use of the VISIR remote laboratory for electrical circuits teaching",
2017 4th Experiment@International Conference (exp.at'17), Faro, 2017,
pp. 1-6.

[19] P. Di Giamberardino and M. Temperini, "Adaptive access to robotic
learning experiences in a remote laboratory setting", 2017 18th
International Carpathian Control Conference (ICCC), Sinaia, 2017, pp.
565-570.

[20] A. Tocchi, V. Roca, L. Angrisani, F. Bonavolontà, R. Schiano Lo
Moriello, “First step towards an IoT implementation of a wireless
sensors network for environmental radiation monitoring” , I2MTC 2017
- 2017 IEEE International Instrumentation and Measurement
Technology Conference, Proceedings, DOI:
10.1109/I2MTC.2017.7969754

[21] L. Angrisani, F. Bonavolontà, R. Schiano Lo Moriello, A. Andreone, R.
Casini, G. Papari, D. Accardo (2014). “First steps towards an innovative
compressive sampling based-THz imaging system for early crack
detection on aereospace plates”, In: 2014 IEEE Metrology for Aerospace
(MetroAeroSpace). p. 488-493, ISBN: 9781479920693, Benevento, 29-
30/05/2014, doi: 10.1109/MetroAeroSpace.2014.6865974

[22] P. Orduña et al., "An Extensible Architecture for the Integration of
Remote and Virtual Laboratories in Public Learning Tools", in IEEE
Revista Iberoamericana de Tecnologias del Aprendizaje, vol. 10, no. 4,
pp. 223-233, Nov. 2015.

[23] A. C. Caminero, S. Ros, R. Hernández, A. Robles-Gómez, L. Tobarra
and P. J. T. Granjo, "VirTUal remoTe labORatories Management
System (TUTORES): Using Cloud Computing to Acquire University
Practical Skills", in IEEE Transactions on Learning Technologies, vol.
9, no. 2, pp. 133-145, April-June 1 2016.

[24] A. Chevalier, C. Copot, C. Ionescu and R. De Keyser, "A Three-Year
Feedback Study of a Remote Laboratory Used in Control Engineering
Studies", in IEEE Transactions on Education, vol. 60, no. 2, pp. 127-
133, May 2017.

[25] N. Wang, X. Chen, G. Song, Q. Lan and H. R. Parsaei, "Design of a
New Mobile-Optimized Remote Laboratory Application Architecture
for M-Learning", in IEEE Transactions on Industrial Electronics, vol.
64, no. 3, pp. 2382-2391, March 2017.

[26] F. Bonavolontà, A. Tedesco, R. Schiano Lo Moriello, A. Tufano,
“Enabling wireless technologies for industry 4.0: State of the art”, 2017
IEEE International Workshop on Measurement and Networking, M&N
2017 - Proceedings, DOI: 10.1109/IWMN.2017.8078381.

[27] L. Angrisani, P. Arpaia, F. Bonavolontà, M. Conti, A. Liccardo, (2017,).
“LoRa protocol performance assessment in critical noise conditions,” In
2017 IEEE 3rd International Forum on Research and Technologies for
Society and Industry (RTSI) (pp. 1-5). September 2017.

[28] P. Orduña, L. Rodriguez-Gil, J. Garcia-Zubia, I. Angulo, U. Hernandez
and E. Azcuenaga, "LabsLand: A sharing economy platform to promote
educational remote laboratories maintainability, sustainability and
adoption", 2016 IEEE Frontiers in Education Conference (FIE), Erie,
PA, USA, 2016, pp. 1-6.

[29] F. Bonavolontà, et al. "New approach based on compressive sampling
for sample rate enhancement in DASs for low-cost sensing nodes."
Sensors 14.10 (2014): 18915-18940.

[30] J. M. M. Quintero, P. E. N. Ortiz, D. M. O. Martinez and L. F. C.
Alfonso, "Low cost remote instructional laboratory for control systems
courses", 2016 International Conference on Interactive Mobile
Communication, Technologies and Learning (IMCL), San Diego, CA,
2016, pp. 78-82.

[31] J. Grodotzki, T. R. Ortelt and A. E. Tekkaya, “Remote and Virtual Labs
for Engineering Education 4.0: Achievements of the ELLI project at the
TU Dortmund University”, in Procedia Manufacturing, Vol. 26, 2018,
pp. 1349-1360.

[32] J. Zalewski, J, “Cyberlab for cyberphysical systems: remote lab stations
in software engineering curriculum”, The Fourth International
Conference on e-Learning (ICEL2013), 2013, pp. 1-7.

[33] I. Bonacci, O. Tamburis, “Empowering openness: The case of CROs-
related innovation networks in the Italian bio-pharmaceutical sector”,
International Journal of Learning and Intellectual Capital, Vol. 13, Issue
2-3, 2016, pp. 184-201.
.

